1
|
Wang X, Sun S, Chen H, Yun B, Zhang Z, Wang X, Wu Y, Lv J, He Y, Li W, Chen L. Identification of key genes and therapeutic drugs for cocaine addiction using integrated bioinformatics analysis. Front Neurosci 2023; 17:1201897. [PMID: 37469839 PMCID: PMC10352680 DOI: 10.3389/fnins.2023.1201897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 06/05/2023] [Indexed: 07/21/2023] Open
Abstract
Introduction Cocaine is a highly addictive drug that is abused due to its excitatory effect on the central nervous system. It is critical to reveal the mechanisms of cocaine addiction and identify key genes that play an important role in addiction. Methods In this study, we proposed a centrality algorithm integration strategy to identify key genes in a protein-protein interaction (PPI) network constructed by deferential genes from cocaine addiction-related datasets. In order to investigate potential therapeutic drugs for cocaine addiction, a network of targeted relationships between nervous system drugs and key genes was established. Results Four key genes (JUN, FOS, EGR1, and IL6) were identified and well validated using CTD database correlation analysis, text mining, independent dataset analysis, and enrichment analysis methods, and they might serve as biomarkers of cocaine addiction. A total of seventeen drugs have been identified from the network of targeted relationships between nervous system drugs and key genes, of which five (disulfiram, cannabidiol, dextroamphetamine, diazepam, and melatonin) have been shown in the literature to play a role in the treatment of cocaine addiction. Discussion This study identified key genes and potential therapeutic drugs for cocaine addiction, which provided new ideas for the research of the mechanism of cocaine addiction.
Collapse
|
2
|
Rahimi O, Cao J, Lam J, Childers SR, Rais R, Porrino LJ, Newman AH, Nader MA. The Effects of the Dopamine Transporter Ligands JJC8-088 and JJC8-091 on Cocaine versus Food Choice in Rhesus Monkeys. J Pharmacol Exp Ther 2023; 384:372-381. [PMID: 36507847 PMCID: PMC9976790 DOI: 10.1124/jpet.122.001363] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 11/26/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
Although there are no Food and Drug Administration-approved treatments for cocaine use disorder, several modafinil analogs have demonstrated promise in reducing cocaine self-administration and reinstatement in rats. Furthermore, the range of dopamine transporter (DAT) compounds provides an opportunity to develop pharmacotherapeutics without abuse liability. This study extended the comparison of JJC8-088 and JJC8-091, the former compound having higher DAT affinity and predicted abuse liability, to rhesus monkeys using a concurrent cocaine versus food schedule of reinforcement. First, binding to striatal DAT was examined in cocaine-naïve monkey tissue. Next, intravenous pharmacokinetics of both JJC compounds were evaluated in cocaine-experienced male monkeys (n = 3/drug). In behavioral studies, acute and chronic administration of both compounds were evaluated in these same monkeys responding under a concurrent food versus cocaine (0 and 0.003-0.1 mg/kg per injection) schedule of reinforcement. In nonhuman primate striatum, JJC8-088 had higher DAT affinity compared with JJC8-091 (14.4 ± 9 versus 2730 ± 1270 nM, respectively). Both JJC compounds had favorable plasma pharmacokinetics for behavioral assessments, with half-lives of 1.1 hours and 3.5 hours for JJC8-088 (0.7 mg/kg, i.v.) and JJC8-091 (1.9 mg/kg, i.v.), respectively. Acute treatment with both compounds shifted the cocaine dose-response curve to the left. Chronic treatment with JJC8-088 decreased cocaine choice in two of the three monkeys, whereas JJC8-091 only modestly reduced cocaine allocation in one monkey. Differences in affinities of JJC8-091 DAT binding in monkeys compared with rats may account for the poor rodent-to-monkey translation. Future studies should evaluate atypical DAT blockers in combination with behavioral interventions that may further decrease cocaine choice. SIGNIFICANCE STATEMENT: Cocaine use disorder (CUD) remains a significant public health problem with no Food and Drug Administration-approved treatments. The ability of drugs that act in the brain in a similar manner to cocaine, but with lower abuse liability, has clinical implications for a treatment of CUD.
Collapse
Affiliation(s)
- Omeed Rahimi
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, North Carolina (O.R., S.R.C., L.J.P., M.A.N.); Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, Maryland (J.C., J.L., A.H.N.); Department of Neurology, Johns Hopkins Drug Discovery, The Johns Hopkins University School of Medicine, Baltimore, Maryland (J.L., R.R.); and EncepHeal Therapeutics, Inc., Winston-Salem, North Carolina (O.R., S.R.C.)
| | - Jianjing Cao
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, North Carolina (O.R., S.R.C., L.J.P., M.A.N.); Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, Maryland (J.C., J.L., A.H.N.); Department of Neurology, Johns Hopkins Drug Discovery, The Johns Hopkins University School of Medicine, Baltimore, Maryland (J.L., R.R.); and EncepHeal Therapeutics, Inc., Winston-Salem, North Carolina (O.R., S.R.C.)
| | - Jenny Lam
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, North Carolina (O.R., S.R.C., L.J.P., M.A.N.); Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, Maryland (J.C., J.L., A.H.N.); Department of Neurology, Johns Hopkins Drug Discovery, The Johns Hopkins University School of Medicine, Baltimore, Maryland (J.L., R.R.); and EncepHeal Therapeutics, Inc., Winston-Salem, North Carolina (O.R., S.R.C.)
| | - Steven R Childers
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, North Carolina (O.R., S.R.C., L.J.P., M.A.N.); Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, Maryland (J.C., J.L., A.H.N.); Department of Neurology, Johns Hopkins Drug Discovery, The Johns Hopkins University School of Medicine, Baltimore, Maryland (J.L., R.R.); and EncepHeal Therapeutics, Inc., Winston-Salem, North Carolina (O.R., S.R.C.)
| | - Rana Rais
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, North Carolina (O.R., S.R.C., L.J.P., M.A.N.); Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, Maryland (J.C., J.L., A.H.N.); Department of Neurology, Johns Hopkins Drug Discovery, The Johns Hopkins University School of Medicine, Baltimore, Maryland (J.L., R.R.); and EncepHeal Therapeutics, Inc., Winston-Salem, North Carolina (O.R., S.R.C.)
| | - Linda J Porrino
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, North Carolina (O.R., S.R.C., L.J.P., M.A.N.); Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, Maryland (J.C., J.L., A.H.N.); Department of Neurology, Johns Hopkins Drug Discovery, The Johns Hopkins University School of Medicine, Baltimore, Maryland (J.L., R.R.); and EncepHeal Therapeutics, Inc., Winston-Salem, North Carolina (O.R., S.R.C.)
| | - Amy Hauck Newman
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, North Carolina (O.R., S.R.C., L.J.P., M.A.N.); Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, Maryland (J.C., J.L., A.H.N.); Department of Neurology, Johns Hopkins Drug Discovery, The Johns Hopkins University School of Medicine, Baltimore, Maryland (J.L., R.R.); and EncepHeal Therapeutics, Inc., Winston-Salem, North Carolina (O.R., S.R.C.)
| | - Michael A Nader
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, North Carolina (O.R., S.R.C., L.J.P., M.A.N.); Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, Maryland (J.C., J.L., A.H.N.); Department of Neurology, Johns Hopkins Drug Discovery, The Johns Hopkins University School of Medicine, Baltimore, Maryland (J.L., R.R.); and EncepHeal Therapeutics, Inc., Winston-Salem, North Carolina (O.R., S.R.C.)
| |
Collapse
|
3
|
D-amphetamine maintenance therapy reduces cocaine use in female rats. Psychopharmacology (Berl) 2022; 239:3755-3770. [PMID: 36357743 DOI: 10.1007/s00213-022-06271-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 10/19/2022] [Indexed: 11/12/2022]
Abstract
RATIONALE D-amphetamine maintenance therapy is a promising strategy to reduce drug use in cocaine use disorder (addiction). In both male rats and human cocaine users, d-amphetamine treatment reduces cocaine-taking and -seeking. However, this has not been examined systematically in female animals, even though cocaine addiction afflicts both sexes, and the sexes can differ in their response to cocaine. OBJECTIVES We determined how d-amphetamine maintenance therapy during cocaine self-administration influences cocaine use in female rats. METHODS In experiment 1, two groups of female rats received 14 intermittent access (IntA) cocaine self-administration sessions. One group received concomitant d-amphetamine maintenance treatment (COC + A rats; 5 mg/kg/day, via minipump), the other group did not (COC rats). After discontinuing d-amphetamine treatment, we measured responding for cocaine under a progressive ratio schedule, responding under extinction, and cocaine-primed reinstatement of drug-seeking. In experiment 2, we assessed the effects of d-amphetamine maintenance on these measures in already IntA cocaine-experienced rats. Thus, rats first received 14 IntA cocaine self-administration sessions without d-amphetamine. They then received 14 more IntA sessions, now either with (COC/COC + A rats) or without (COC/COC rats) concomitant d-amphetamine treatment. RESULTS In both experiments, d-amphetamine treatment did not significantly influence ongoing cocaine self-administration behaviour. After d-amphetamine treatment cessation, cocaine-primed reinstatement of cocaine-seeking was also unchanged. However, after d-amphetamine treatment cessation, rats responded less for cocaine both under progressive ratio and extinction conditions. CONCLUSIONS D-amphetamine treatment can both prevent and reverse increases in the motivation to take and seek cocaine in female animals.
Collapse
|
4
|
Amphetamine maintenance therapy during intermittent cocaine self-administration in rats attenuates psychomotor and dopamine sensitization and reduces addiction-like behavior. Neuropsychopharmacology 2021; 46:305-315. [PMID: 32682325 PMCID: PMC7853073 DOI: 10.1038/s41386-020-0773-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 07/07/2020] [Accepted: 07/10/2020] [Indexed: 12/19/2022]
Abstract
D-amphetamine maintenance therapy shows promise as a treatment for people with cocaine addiction. Preclinical studies using Long Access (LgA) cocaine self-administration procedures suggest D-amphetamine may act by preventing tolerance to cocaine's effects at the dopamine transporter (DAT). However, Intermittent Access (IntA) cocaine self-administration better reflects human patterns of use, is especially effective in promoting addiction-relevant behaviors, and instead of tolerance, produces psychomotor, incentive, and neural sensitization. We asked, therefore, how D-amphetamine maintenance during IntA influences cocaine use and cocaine's potency at the DAT. Male rats self-administered cocaine intermittently (5 min ON, 25 min OFF x10; 5-h/session) for 14 sessions, with or without concomitant D-amphetamine maintenance therapy during these 14 sessions (5 mg/kg/day via s.c. osmotic minipump). We then assessed responding for cocaine under a progressive ratio schedule, responding under extinction and cocaine-primed reinstatement of drug seeking. We also assessed the ability of cocaine to inhibit dopamine uptake in the nucleus accumbens core using fast scan cyclic voltammetry ex vivo. IntA cocaine self-administration produced psychomotor (locomotor) sensitization, strong motivation to take and seek cocaine, and it increased cocaine's potency at the DAT. D-amphetamine co-administration suppressed the psychomotor sensitization produced by IntA cocaine experience. After cessation of D-amphetamine treatment, the motivation to take and seek cocaine was also reduced, and sensitization of cocaine's actions at the DAT was reversed. Thus, treatment with D-amphetamine might reduce cocaine use by preventing sensitization-related changes in cocaine potency at the DAT, consistent with an incentive-sensitization view of addiction.
Collapse
|
5
|
D-amphetamine maintenance treatment goes a long way: lasting therapeutic effects on cocaine behavioral effects and cocaine potency at the dopamine transporter. Neuropsychopharmacology 2021; 46:275-276. [PMID: 32859997 PMCID: PMC7852542 DOI: 10.1038/s41386-020-00825-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 08/14/2020] [Indexed: 11/08/2022]
|
6
|
Minkiewicz M, Czoty PW, Blough BE, Nader MA. Evaluation of the Reinforcing Strength of Phendimetrazine Using a Progressive-Ratio Schedule of Reinforcement in Rhesus Monkeys. J Pharmacol Exp Ther 2020; 374:1-5. [PMID: 32269168 DOI: 10.1124/jpet.120.264952] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 04/01/2020] [Indexed: 12/21/2022] Open
Abstract
Stimulant abuse is a persistent public health problem with no Food and Drug Administration-approved pharmacotherapy. Although monoamine-releasing drugs such as d-amphetamine can decrease cocaine self-administration in human and animal laboratory studies, their potential for abuse limits clinical utility. "Abuse-deterrent" formulations of monoamine releasers, such as prodrugs, hold greater clinical promise if their abuse potential is, as theorized, lower than that of cocaine. In these studies, we determined the reinforcing strength of phendimetrazine (PDM), a prodrug for the amphetamine-like monoamine releaser phenmetrazine; both drugs have been shown to decrease cocaine self-administration in laboratory animals. To date, no study has directly compared PDM (Schedule III) with cocaine (Schedule II) under progressive-ratio (PR) schedules of reinforcement, which are better suited than fixed-ratio schedules to directly compare reinforcing strength of drugs. Dose-response curves for cocaine (saline, 0.001-0.3 mg/kg per injection) and PDM (0.1-1.0 mg/kg per injection) were generated in six cocaine-experienced male rhesus monkeys during 4-hour sessions with a 20-minute limited hold (LH). Under these conditions, the maximum number of injections was not significantly different between cocaine and PDM. The reinforcing strength of doses situated on the peaks of the cocaine and PDM dose-effect curves were redetermined with a 60-minute LH. The mean number of injections increased for both drugs, but not for saline. Cocaine presentations resulted in significantly higher peak injections than PDM with a 60-minute LH, which is consistent with the lower scheduling of PDM. These results support PDM as Schedule III and highlight the importance of schedule parameters when comparing reinforcing strength of drugs using a PR schedule of reinforcement. SIGNIFICANCE STATEMENT: One strategy for reducing cocaine use is to identify a treatment that substitutes for cocaine but has lower abuse potential. In a rhesus monkey model of drug abuse, this study compared the reinforcing strength of cocaine and phendimetrazine, a drug that has been shown to decrease cocaine use in some studies.
Collapse
Affiliation(s)
- Molly Minkiewicz
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, North Carolina (M.M., P.W.C., M.A.N.) and Discovery Sciences, Research Triangle Institute, Research Triangle Park, North Carolina (B.E.B.)
| | - Paul W Czoty
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, North Carolina (M.M., P.W.C., M.A.N.) and Discovery Sciences, Research Triangle Institute, Research Triangle Park, North Carolina (B.E.B.)
| | - Bruce E Blough
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, North Carolina (M.M., P.W.C., M.A.N.) and Discovery Sciences, Research Triangle Institute, Research Triangle Park, North Carolina (B.E.B.)
| | - Michael A Nader
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, North Carolina (M.M., P.W.C., M.A.N.) and Discovery Sciences, Research Triangle Institute, Research Triangle Park, North Carolina (B.E.B.)
| |
Collapse
|
7
|
Allain F, Samaha AN. [Cocaine peaks and troughs. Modeling pathological drug use in rats]. Med Sci (Paris) 2020; 36:212-215. [PMID: 32228836 DOI: 10.1051/medsci/2020034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Florence Allain
- Département de pharmacologie et de physiologie, Groupe de recherche sur le système nerveux central, Faculté de médecine, Université de Montréal, Montréal, QC, H3C 3J7, Canada
| | - Anne-Noël Samaha
- Département de pharmacologie et de physiologie, Groupe de recherche sur le système nerveux central, Faculté de médecine, Université de Montréal, Montréal, QC, H3C 3J7, Canada
| |
Collapse
|
8
|
Turner AC, Stramek A, Kraev I, Stewart MG, Overton PG, Dommett EJ. Repeated intermittent oral amphetamine administration results in locomotor tolerance not sensitization. J Psychopharmacol 2018; 32:949-954. [PMID: 29580130 DOI: 10.1177/0269881118763984] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND The phenomenon of locomotor sensitization to injected amphetamine is well-characterised. The increased locomotor activity found acutely is enhanced with repeated intermittent treatment. This effect arises due to hypersensitization of the dopaminergic system and is linked to drug addiction. A clinical population exposed to chronic repeated intermittent amphetamine treatment, such as is found for attention deficit hyperactivity disorder (ADHD), may be expected to be more at risk of addiction following this treatment. However, evidence suggests the opposite may be true. This suggests the route of administration may determine the direction of effects. AIMS AND METHODS We aimed to establish how an oral amphetamine treatment regimen, similar to that used in ADHD, impacts on locomotor activity, specifically whether tolerance or sensitization would arise. Healthy hooded Lister rats were given amphetamine (2 mg/kg, 5 mg/kg and 10 mg/kg) or a vehicle solution once daily for 4 weeks with a 5 day on, 2 day off schedule. Locomotor activity was measured on the first day of treatment to establish the acute effects and on the final day of treatment to examine the chronic effects. RESULTS As expected, acute doses of amphetamine increased locomotor activity, although this only reached statistical significance for the 5 mg/kg and 10 mg/kg doses. By contrast, after chronic treatment, animals administered these doses showed reduced activity indicating drug tolerance rather than sensitization had occurred. CONCLUSION We suggest that the route of administration used in ADHD, which results in more stable and longer duration drug levels in the blood, results in tolerance rather than sensitization and that this effect could explain the reduced likelihood of substance addiction in those treated with psychostimulants for ADHD.
Collapse
Affiliation(s)
- Amy C Turner
- 1 School of Life, Health and Chemical Sciences, The Open University, Milton Keynes, UK
| | - Agata Stramek
- 1 School of Life, Health and Chemical Sciences, The Open University, Milton Keynes, UK
| | - Igor Kraev
- 1 School of Life, Health and Chemical Sciences, The Open University, Milton Keynes, UK
| | - Michael G Stewart
- 1 School of Life, Health and Chemical Sciences, The Open University, Milton Keynes, UK
| | | | - Eleanor J Dommett
- 1 School of Life, Health and Chemical Sciences, The Open University, Milton Keynes, UK.,3 Department of Psychology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK
| |
Collapse
|
9
|
Fletcher PJ, Li Z, Coen KM, Lê AD. Acquisition of nicotine self-administration in amphetamine and phencyclidine models of schizophrenia: A role for stress? Schizophr Res 2018; 194:98-106. [PMID: 28318841 DOI: 10.1016/j.schres.2017.02.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 02/25/2017] [Accepted: 02/27/2017] [Indexed: 01/07/2023]
Abstract
Nicotine use and dependence is very high in patients with schizophrenia. One possible reason is that altered dopamine or glutamate activity in schizophrenia enhances the reinforcing effectiveness of nicotine. We used animal models to test the hypothesis that a hyperdopaminergic state (induced by repeated intermittent injections of amphetamine) or altered glutamate function (subchronic injection of phencyclidine, PCP) facilitates spontaneous acquisition of nicotine self-administration in rats. In Experiment 1 animals in an amphetamine-induced sensitized state (AISS) did not differ from saline-injected controls in their acquisition and maintenance of nicotine self-administration. This effect was replicated in experiment 2, but it was also found that AISS rats and saline-injected controls showed higher rates of nicotine self-administration compared to uninjected controls. This difference was maintained across several fixed ratio and progressive ratio schedules of reinforcement. In Experiment 3 PCP treated rats and their saline-injected controls did not differ in nicotine self-administration. However, both groups showed consistently increased responding for nicotine on FR and PR schedules compared to an uninjected control group. Injection-stress appeared to influence the outcomes of these experiments in two ways. Firstly, injection stress potentially masked the impact of the AISS and PCP treatment on nicotine self-administration. Secondly, injection stress itself may have been sufficient to induce plastic changes in dopamine and glutamate systems, and these changes enhanced the acquisition and maintenance of nicotine self-administration. Further investigation is needed into the role of stress in the development of nicotine use and dependence, in the aetiology of schizophrenia and in their co-morbidity.
Collapse
Affiliation(s)
- Paul J Fletcher
- Preclinical Research and Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, 250 College St., Toronto, Ontario M5T 1R8, Canada; Dept. Psychiatry, University of Toronto, Toronto, ON, Canada; Dept. Psychology, University of Toronto, Toronto, ON, Canada.
| | - Zhaoxia Li
- Preclinical Research and Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, 250 College St., Toronto, Ontario M5T 1R8, Canada
| | - Kathleen M Coen
- Preclinical Research and Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, 250 College St., Toronto, Ontario M5T 1R8, Canada
| | - Anh D Lê
- Preclinical Research and Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, 250 College St., Toronto, Ontario M5T 1R8, Canada; Dept. Psychiatry, University of Toronto, Toronto, ON, Canada; Dept. Pharmacology & Toxicology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
10
|
Karkhanis AN, Beveridge TJR, Blough BE, Jones SR, Ferris MJ. The individual and combined effects of phenmetrazine and mgluR2/3 agonist LY379268 on the motivation to self-administer cocaine. Drug Alcohol Depend 2016; 166:51-60. [PMID: 27394931 PMCID: PMC5003316 DOI: 10.1016/j.drugalcdep.2016.06.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 06/14/2016] [Accepted: 06/20/2016] [Indexed: 01/01/2023]
Abstract
BACKGROUND The US Food and Drug Administration has not approved a treatment for cocaine addiction, possibly due in part to the fact that repeated cocaine use results in dysregulation of multiple neurotransmitter systems, including glutamate and dopamine, and an emergence of increased negative affective states and heightening motivation to take cocaine despite negative consequences. We used a combination therapy approach to assess whether modulation of both glutamate and dopamine transmission would reduce the motivation to self- administer cocaine compared to modulation of either system alone. METHODS The metabotropic glutamate 2/3 receptor agonist, LY379268, and the monoamine releaser, phenmetrazine, were used to assess their individual and combined ability to decrease the reinforcing efficacy of cocaine because they modulate glutamate and dopamine levels, respectively. Cocaine breakpoints and cocaine intake was assessed, using a progressive ratio schedule, at baseline in three groups based on dose of cocaine (0.19, 0.38, 0.75mg/kg/infusion), and following LY379268 (0.03 or 0.30mg/kg; i.p.), phenmetrazine (25mg/kg/day; osmotic minipump), and a combination of the two drugs. RESULTS LY379268 and phenmetrazine alone reduced breakpoints for all doses of cocaine. The combination of the two drugs showed a concerted effect in reducing breakpoints for all doses of cocaine, with the lowest dose of cocaine reduced by as much as 70%. CONCLUSIONS These data support combination therapy of dopamine and glutamate systems as an effective means to reduce the motivation to take cocaine since a combination of drugs can address neurobiological dysfunction in multiple neurotransmitter systems compared to therapies using single drugs.
Collapse
Affiliation(s)
- Anushree N. Karkhanis
- Department of Physiology and Pharmacology, Wake Forest
School of Medicine, Winston-Salem, NC 27157, USA
| | - Thomas J. R. Beveridge
- Clinical Sciences, Medical Affairs, Ferring Pharmaceuticals
Inc., 100 Interpace Parkway, Parsippany, NJ 07054, USA
| | - Bruce E. Blough
- Center for Organic and Medicinal Chemistry, Research
Triangle Institute, Research Triangle Park, NC 27709, USA
| | - Sara R. Jones
- Department of Physiology and Pharmacology, Wake Forest
School of Medicine, Winston-Salem, NC 27157, USA
| | - Mark J. Ferris
- Department of Physiology and Pharmacology, Wake Forest
School of Medicine, Winston-Salem, NC 27157, USA
| |
Collapse
|
11
|
Czoty PW, Blough BE, Fennell TR, Snyder RW, Nader MA. Attenuation of cocaine self-administration by chronic oral phendimetrazine in rhesus monkeys. Neuroscience 2016; 324:367-76. [PMID: 26964683 DOI: 10.1016/j.neuroscience.2016.03.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 02/09/2016] [Accepted: 03/02/2016] [Indexed: 11/18/2022]
Abstract
Chronic treatment with the monoamine releaser d-amphetamine has been consistently shown to decrease cocaine self-administration in laboratory studies and clinical trials. However, the abuse potential of d-amphetamine is an obstacle to widespread clinical use. Approaches are needed that exploit the efficacy of the agonist approach but avoid the abuse potential associated with dopamine releasers. The present study assessed the effectiveness of chronic oral administration of phendimetrazine (PDM), a pro-drug for the monoamine releaser phenmetrazine (PM), to decrease cocaine self-administration in four rhesus monkeys. Each day, monkeys pressed a lever to receive food pellets under a 50-response fixed-ratio (FR) schedule of reinforcement and self-administered cocaine (0.003-0.56 mg/kg per injection, i.v.) under a progressive-ratio (PR) schedule in the evening. After completing a cocaine self-administration dose-response curve, sessions were suspended and PDM was administered (1.0-9.0 mg/kg, p.o., b.i.d.). Cocaine self-administration was assessed using the PR schedule once every 7 days while food-maintained responding was studied daily. When a persistent decrease in self-administration was observed, the cocaine dose-effect curve was re-determined. Daily PDM treatment decreased cocaine self-administration by 30-90% across monkeys for at least 4 weeks. In two monkeys, effects were completely selective for cocaine. Tolerance developed to initial decreases in food-maintained responding in the third monkey and in the fourth subject, fluctuations were observed that were lower in magnitude than effects on cocaine self-administration. Cocaine dose-effect curves were shifted down and/or rightward in three monkeys. These data provide further support for the use of agonist medications for cocaine abuse, and indicate that the promising effects of d-amphetamine extend to a more clinically viable pharmacotherapy.
Collapse
Affiliation(s)
- P W Czoty
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC 27157, United States.
| | - B E Blough
- Discovery Sciences, Research Triangle Institute, Research Triangle Park, NC 27709, United States
| | - T R Fennell
- Discovery Sciences, Research Triangle Institute, Research Triangle Park, NC 27709, United States
| | - R W Snyder
- Discovery Sciences, Research Triangle Institute, Research Triangle Park, NC 27709, United States
| | - M A Nader
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC 27157, United States; Department of Radiology, Wake Forest School of Medicine, Winston-Salem, NC 27157, United States
| |
Collapse
|
12
|
Effects of the dopamine/norepinephrine releaser phenmetrazine on cocaine self-administration and cocaine-primed reinstatement in rats. Psychopharmacology (Berl) 2015; 232:2405-14. [PMID: 25673020 PMCID: PMC4465864 DOI: 10.1007/s00213-015-3875-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 01/20/2015] [Indexed: 10/24/2022]
Abstract
RATIONALE Like other monoamine releasers such as D-amphetamine, chronic treatment with phenmetrazine can attenuate cocaine self-administration in monkeys. OBJECTIVES The present studies extended this finding to rodents and to cocaine-primed reinstatement, a putative laboratory animal model of relapse. METHODS In experiment 1, rats self-administered food pellets or injections of 0.19 mg/kg cocaine (i.v.) under a progressive-ratio schedule. When responding was stable, subcutaneous osmotic pumps were implanted containing saline or (+)-phenmetrazine (25 or 50 mg/kg per day). In experiment 2, rats self-administered injections of 0.75 mg/kg cocaine under a fixed-ratio 1 schedule in daily 6-h sessions. When responding was stable, rats were removed from the self-administration environment for 7 days and treated continuously with saline, 5 mg/kg per day D-amphetamine or phenmetrazine (25 or 50 mg/kg per day) via osmotic pumps. Rats were then returned to the self-administration context while treatment continued, and responding was extinguished by removing response-contingent stimulus changes and cocaine injections. Once responding was extinguished, reinstatement tests were conducted using cocaine injections (10 mg/kg i.p.). RESULTS Phenmetrazine decreased self-administration of cocaine, but not food pellets, during the 14-day treatment period; effects persisted for several days after treatment was discontinued. Moreover, cocaine-induced increases in responding during the reinstatement test were attenuated by D-amphetamine and both phenmetrazine doses. CONCLUSIONS These results extend the study of the effects of phenmetrazine on cocaine self-administration to a rodent model, and provide further support for the use of monoamine releasers as agonist medications for cocaine abuse.
Collapse
|
13
|
Cohen A, Treweek J, Edwards S, Leão RM, Schulteis G, Koob GF, George O. Extended access to nicotine leads to a CRF1 receptor dependent increase in anxiety-like behavior and hyperalgesia in rats. Addict Biol 2015; 20:56-68. [PMID: 23869743 DOI: 10.1111/adb.12077] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Tobacco dependence is associated with the emergence of negative emotional states during withdrawal, including anxiety and nociceptive hypersensitivity. However, the current animal models of nicotine dependence have focused on the mechanisms that mediate the acute reinforcing effects of nicotine and failed to link increased anxiety and pain during abstinence with excessive nicotine self-administration. Here, we tested the hypothesis that the activation of corticotropin-releasing factor-1 (CRF1 ) receptors and emergence of the affective and motivational effects of nicotine abstinence only occur in rats with long access (>21 hours/day, LgA) and not short (1 hour/day, ShA) access to nicotine self-administration. ShA and LgA rats were tested for anxiety-like behavior, nociceptive thresholds, somatic signs of withdrawal and nicotine intake after 3 days of abstinence. The role of CRF1 receptors during abstinence was tested using systemic or intracerebral infusion of MPZP (N,N-bis(2-methoxyethyl)-3-(4-methoxy-2-methylphenyl)-2,5-dimethyl-pyrazolo(1,5α)pyrimidin-7-amine), a CRF1 receptor antagonist, in the central nucleus of the amygdala (CeA). LgA but not ShA rats exhibited abstinence-induced increases in anxiety-like behavior and nociceptive hypersensitivity, which both predicted subsequent excessive nicotine intake and were prevented by systemic administration of MPZP. Intra-CeA MPZP infusion prevented abstinence-induced increases in nicotine intake and nociceptive hypersensitivity. These findings demonstrate that the model of short access to nicotine self-administration has limited validity for tobacco dependence, highlight the translational relevance of the model of extended-intermittent access to nicotine self-administration for tobacco dependence and demonstrate that activation of CRF1 receptors is required for the emergence of abstinence-induced anxiety-like behavior, hyperalgesia and excessive nicotine intake.
Collapse
Affiliation(s)
- Ami Cohen
- The Scripps Research Institute; La Jolla CA USA
| | | | | | | | - Gery Schulteis
- Research Service; VA San Diego Healthcare System; San Diego CA USA
- Department of Anesthesiology; University of California San Diego School of Medicine; La Jolla CA USA
| | | | | |
Collapse
|
14
|
The effects of amphetamine, butorphanol, and their combination on cocaine self-administration. Behav Brain Res 2014; 274:158-63. [PMID: 25127681 DOI: 10.1016/j.bbr.2014.08.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 08/04/2014] [Indexed: 12/11/2022]
Abstract
There have been recent calls to examine the efficacy of drug-combination therapies in the treatment of substance use disorders. The purpose of the present study was to examine the ability of a novel stimulant-opioid combination to reduce cocaine self-administration, and to compare these effects to those of each drug administered alone. To this end, male Long-Evans rats were implanted with intravenous catheters and trained to self-administer cocaine under positive reinforcement contingencies. Once self-administration was acquired, rats were divided into four different groups and treated chronically for 20 days with (1) saline, (2) the psychomotor stimulant and monoamine releaser amphetamine, (3) the mu/kappa opioid agonist butorphanol, or (4) a combination of amphetamine and butorphanol. During chronic treatment, cocaine self-administration was examined on both fixed ratio (FR) and progressive ratio (PR) schedules of reinforcement. On the FR schedule, butorphanol significantly decreased cocaine self-administration, but this effect was not enhanced by amphetamine. On the PR schedule, amphetamine and butorphanol non-significantly decreased cocaine self-administration when administered alone but significantly decreased cocaine self-administration when administered in combination. These data suggest that under some conditions (e.g., when the response requirement of cocaine is high), a dual stimulant-opioid pharmacotherapy may be more effective than a single-drug monotherapy.
Collapse
|
15
|
Lacy RT, Morgan AJ, Harrod SB. IV prenatal nicotine exposure increases the reinforcing efficacy of methamphetamine in adult rat offspring. Drug Alcohol Depend 2014; 141:92-8. [PMID: 24925022 PMCID: PMC4103028 DOI: 10.1016/j.drugalcdep.2014.05.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 05/13/2014] [Accepted: 05/13/2014] [Indexed: 12/31/2022]
Abstract
BACKGROUND Maternal smoking during pregnancy is correlated with increased substance use in offspring. Research using rodent models shows that gestational nicotine exposure produces enduring alterations in the neurodevelopment of motivational systems, and that rats prenatally treated with nicotine have altered motivation for drug reinforcement on fixed-ratio (FR) schedules of reinforcement. OBJECTIVE The present study investigated methamphetamine (METH) self-administration in adult offspring prenatally exposed to intravenous (IV) nicotine or saline using a progressive-ratio (PR) schedule of reinforcement. METHODS Pregnant rats were administered IV prenatal saline (PS) or nicotine (PN; 0.05mg/kg/infusion), 3×/day during gestational days 8-21. At postnatal day 70, offspring acquired a lever-press response for sucrose (26%, w/v; FR1-3). Rats were trained with METH (0.05mg/kg/infusion), and following stable FR responding, animals were tested using a progressive-ratio (PR) schedule for three different doses of METH (0.005, 0.025, and 0.05mg/kg/infusion). RESULTS METH infusion, active lever presses, and the ratio breakpoint are reported. PN-exposed animals exhibited more METH-maintained responding than PS controls, according to a dose×prenatal treatment interaction (e.g., infusions). PN rats self-administered more METH infusions between the range of 0.025 and 0.05, but not for the 0.005mg/kg/infusion dose. CONCLUSIONS IV PN-exposure produced enhanced motivation to self-administer METH. These findings indicate that pregnant women who smoke tobacco may impart neurobiological changes in offspring's motivational systems that render them increasingly vulnerable to drug abuse during adulthood.
Collapse
|
16
|
The effect of chronic amphetamine treatment on cocaine-induced facilitation of intracranial self-stimulation in rats. Psychopharmacology (Berl) 2014; 231:2461-70. [PMID: 24408209 PMCID: PMC4040317 DOI: 10.1007/s00213-013-3405-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Accepted: 12/13/2013] [Indexed: 10/25/2022]
Abstract
RATIONALE Chronic amphetamine treatment reduces cocaine self-administration in pre-clinical and clinical settings, and amphetamine has been proposed as a candidate medication for treatment of cocaine abuse. OBJECTIVE The objective of the present study was to investigate whether chronic amphetamine treatment can decrease abuse-related cocaine effects in an assay of intracranial self-stimulation (ICSS). METHODS Thirteen adult male Sprague-Dawley rats were equipped with intracranial electrodes targeting the medial forebrain bundle and trained to lever press for pulses of brain stimulation in a "frequency-rate" ICSS procedure. Cocaine (10 mg/kg) was administered before (day 0), during (days 7 and 14), and after (posttreatment days 1 and 3) 2 weeks of continuous treatment with either amphetamine (0.32 mg/kg/h, n = 7) or saline (n = 6) via osmotic pump. RESULTS Prior to treatment, cocaine facilitated ICSS in all rats. Saline treatment had no effect on baseline ICSS or cocaine-induced facilitation of ICSS at any time. Conversely, amphetamine produced a sustained though submaximal facilitation of baseline ICSS, and cocaine produced little additional facilitation of ICSS during amphetamine treatment. Termination of amphetamine treatment produced a depression of baseline ICSS and recovery of cocaine-induced facilitation of ICSS. CONCLUSIONS These data suggest that chronic amphetamine treatment blunts expression of abuse-related cocaine effects on ICSS in rats.
Collapse
|
17
|
Reduction of the reinforcing effectiveness of cocaine by continuous D-amphetamine treatment in rats: importance of active self-administration during treatment period. Psychopharmacology (Berl) 2014; 231:949-54. [PMID: 24146137 PMCID: PMC4327829 DOI: 10.1007/s00213-013-3305-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Accepted: 10/02/2013] [Indexed: 10/26/2022]
Abstract
RATIONALE Continuous administration of D-amphetamine has shown promise as a treatment for psychostimulant addiction. In rodent studies, constant infusion of D-amphetamine (5 mg/kg/day) has been shown to reduce cocaine-reinforced responding in the dose range of 0.19-0.75 mg/kg/inf. OBJECTIVES The present study tested whether these effects were a reflection of pharmacological interactions between D-amphetamine and cocaine or if they resulted from associative learning mechanisms METHODS After stable progressive ratio (PR) baselines were established, rats were implanted with subcutaneous osmotic minipumps filled with either D-amphetamine (5 mg/kg/day-groups 1 and 2) or saline (group 3). During the treatment period, groups 1 and 3 self-administered cocaine at a dose that was previously shown to produce the most robust effects in combination with D-amphetamine treatment (0.19 mg/kg/inf), while group 2 received passive cocaine infusions. RESULTS In replication of previous studies, D-amphetamine treatment resulted in a significant (35 %) decrease in breakpoints relative to saline controls. By contrast, no reductions in breakpoints were observed in animals that received passive cocaine infusions during the treatment period (group 2). CONCLUSIONS Active self-administration of cocaine during the treatment period appears to be an important factor in reducing cocaine-reinforced breakpoints. These findings suggest learning mechanisms are involved in the therapeutic effects of continuous D-amphetamine, and pharmacological interaction mechanisms such as cross-tolerance cannot completely account for the observed decreases in cocaine seeking.
Collapse
|
18
|
Banks ML, Blough BE, Fennell TR, Snyder RW, Negus SS. Effects of phendimetrazine treatment on cocaine vs food choice and extended-access cocaine consumption in rhesus monkeys. Neuropsychopharmacology 2013; 38:2698-707. [PMID: 23893022 PMCID: PMC3828541 DOI: 10.1038/npp.2013.180] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 07/23/2013] [Accepted: 07/24/2013] [Indexed: 01/25/2023]
Abstract
There is currently no Food and Drug Administration-approved pharmacotherapy for cocaine addiction. Monoamine releasers such as d-amphetamine constitute one class of candidate medications, but clinical use and acceptance are hindered by their own high-abuse liability. Phendimetrazine (PDM) is a schedule III anorectic agent that functions as both a low-potency monoamine-uptake inhibitor and as a prodrug for the monoamine-releaser phenmetrazine (PM), and it may serve as a clinically available, effective, and safer alternative to d-amphetamine. This study determined efficacy of chronic PDM to reduce cocaine self-administration by rhesus monkeys (N=4) using a novel procedure that featured both daily assessments of cocaine vs food choice (to assess medication efficacy to reallocate behavior away from cocaine choice and toward choice of an alternative reinforcer) and 20 h/day cocaine access (to allow high-cocaine intake). Continuous 21-day treatment with ramping PDM doses (days 1-7: 0.32 mg/kg/h; days 8-21: 1.0 mg/kg/h) reduced cocaine choices, increased food choices, and nearly eliminated extended-access cocaine self-administration without affecting body weight. There was a trend for plasma PDM and PM levels to correlate with efficacy to decrease cocaine choice such that the monkey with the highest plasma PDM and PM levels also demonstrated the greatest reductions in cocaine choice. These results support further consideration of PDM as a candidate anti-cocaine addiction pharmacotherapy. Moreover, PDM may represent a novel pharmacotherapeutic approach for cocaine addiction because it may simultaneously function as both a monoamine-uptake inhibitor (via the parent drug PDM) and as a monoamine releaser (via the active metabolite PM).
Collapse
Affiliation(s)
- Matthew L Banks
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA,Institute for Drug and Alcohol Studies, Virginia Commonwealth University, Richmond, VA, USA,Department of Pharmacology and Toxicology, Virginia Commonwealth University, 410 North 12th Street, PO Box 980613, Richmond, VA 23298, USA, Tel: +1 804 828 8466, Fax: +1 804 828 2117, E-mail:
| | - Bruce E Blough
- Center for Organic and Medicinal Chemistry, Research Triangle Institute International, Research Triangle Park, NC, USA
| | - Timothy R Fennell
- Department of Pharmacology and Toxicology, Research Triangle Institute International, Research Triangle Park, NC, USA
| | - Rodney W Snyder
- Department of Pharmacology and Toxicology, Research Triangle Institute International, Research Triangle Park, NC, USA
| | - S Stevens Negus
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA,Institute for Drug and Alcohol Studies, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
19
|
Czoty PW, Martelle SE, Gould RW, Nader MA. Effects of chronic methylphenidate on cocaine self-administration under a progressive-ratio schedule of reinforcement in rhesus monkeys. J Pharmacol Exp Ther 2013; 345:374-82. [PMID: 23579044 DOI: 10.1124/jpet.113.204321] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
It has been hypothesized that drugs that serve as substrates for dopamine (DA) and norepinephrine (NE) transporters may be more suitable medications for cocaine dependence than drugs that inhibit DA and NE uptake by binding to transporters. Previous studies have shown that the DA/NE releaser d-amphetamine can decrease cocaine self-administration in preclinical and clinical studies. The present study examined the effects of methylphenidate (MPD), a DA uptake inhibitor, for its ability to decrease cocaine self-administration under conditions designed to reflect clinically relevant regimens of cocaine exposure and pharmacotherapy. Each morning, rhesus monkeys pressed a lever to receive food pellets under a fixed-ratio 50 schedule of reinforcement; cocaine was self-administered under a progressive-ratio schedule of reinforcement in the evening. After cocaine (0.003-0.56 mg/kg per injection, i.v.) dose-response curves were determined, self-administration sessions were suspended and MPD (0.003-0.0056 mg/kg per hour, i.v.; or 1.0-9.0 mg/kg p.o., b.i.d.) was administered for several weeks. A cocaine self-administration session was conducted every 7 days. When a MPD dose was reached that either persistently decreased cocaine self-administration or produced disruptive effects, the cocaine dose-effect curve was re-determined. In most cases, MPD treatment either produced behaviorally disruptive effects or increased cocaine self-administration; it took several weeks for these effects to dissipate. These data are consistent with the largely negative results of clinical trials with MPD. In contrast to the positive effects with the monoamine releaser d-amphetamine under identical conditions, these results do not support use of monoamine uptake inhibitors like MPD as a medication for cocaine dependence.
Collapse
Affiliation(s)
- Paul W Czoty
- Department of Physiology and Pharmacology, Center for the Neurobiology of Addiction Treatments, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157-1083, USA
| | | | | | | |
Collapse
|
20
|
Thomsen M, Barrett AC, Negus SS, Caine SB. Cocaine versus food choice procedure in rats: environmental manipulations and effects of amphetamine. J Exp Anal Behav 2013; 99:211-33. [PMID: 23319458 PMCID: PMC3893350 DOI: 10.1002/jeab.15] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2012] [Accepted: 09/04/2012] [Indexed: 11/06/2022]
Abstract
We have adapted a nonhuman primate model of cocaine versus food choice to the rat species. To evaluate the procedure, we tested cocaine versus food choice under a variety of environmental manipulations as well as pharmacological pretreatments. Complete cocaine-choice dose-effect curves (0-1.0 mg/kg/infusion) were obtained for each condition under concurrent fixed ratio schedules of reinforcement. Percentage of responding emitted on the cocaine-reinforced lever was not affected significantly by removal of cocaine-associated visual or auditory cues, but it was decreased after removal of response-contingent or response-independent cocaine infusions. Cocaine choice was sensitive to the magnitude and fixed ratio requirement of both the cocaine and food reinforcers. We also tested the effects of acute (0.32, 0.56, 1.0, 1.8 mg/kg) and chronic (0.1, 0.32 mg/kg/hr) d-amphetamine treatment on cocaine choice. Acute and chronic d-amphetamine had opposite effects, with acute increasing and chronic decreasing cocaine choice, similar to observations in humans and in nonhuman primates. The results suggest feasibility and utility of the choice procedure in rats and support its comparability to similar procedures used in humans and monkeys.
Collapse
Affiliation(s)
- Morgane Thomsen
- Alcohol and Drug Abuse Research Center, McLean Hospital and Harvard Medical School, Belmont, MA 02478, USA.
| | | | | | | |
Collapse
|
21
|
Engeln M, Ahmed SH, Vouillac C, Tison F, Bezard E, Fernagut PO. Reinforcing properties of Pramipexole in normal and parkinsonian rats. Neurobiol Dis 2013; 49:79-86. [DOI: 10.1016/j.nbd.2012.08.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Revised: 07/18/2012] [Accepted: 08/15/2012] [Indexed: 10/28/2022] Open
|
22
|
Rush CR, Stoops WW. Agonist replacement therapy for cocaine dependence: a translational review. Future Med Chem 2012; 4:245-65. [PMID: 22300101 PMCID: PMC3292908 DOI: 10.4155/fmc.11.184] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Cocaine use disorders are prevalent throughout the world. Agonist replacement therapy is among the most effective strategies for managing substance use disorders including nicotine and opioid dependence. This paper reviews the translational literature, including preclinical experiments, human laboratory studies and clinical trials, to determine whether agonist-replacement therapy is a viable strategy for managing cocaine dependence. Discussion is limited to transporter blockers (i.e., methylphenidate) and releasers (i.e., amphetamine analogs) that are available for use in humans in the hope of impacting clinical research and practice more quickly. The translational review suggests that agonist-replacement therapy, especially monoamine releasers, may be effective for managing cocaine dependence. Future directions for medications development are also discussed because the viability of agonist-replacement therapy for cocaine dependence may hinge on identifying novel compounds or formulations that have less abuse and diversion potential.
Collapse
Affiliation(s)
- Craig R Rush
- Department of Behavioral Science, University of Kentucky, College of Medicine, Medical Behavioral Science Building, Lexington, KY 40536-0086, USA.
| | | |
Collapse
|
23
|
Schindler CW, Gilman JP, Panlilio LV, McCann DJ, Goldberg SR. Comparison of the effects of methamphetamine, bupropion, and methylphenidate on the self-administration of methamphetamine by rhesus monkeys. Exp Clin Psychopharmacol 2011; 19:1-10. [PMID: 21341918 PMCID: PMC3392967 DOI: 10.1037/a0022432] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The effectiveness of methadone as a treatment for opioid abuse and nicotine preparations as treatments for tobacco smoking has led to an interest in developing a similar strategy for treating psychostimulant abuse. The current study investigated the effects of three such potential therapies on intravenous methamphetamine self-administration (1 - 30 μg/kg/injection) in rhesus monkeys. When given as a presession intramuscular injection, a high dose of methamphetamine (1.0 mg/kg) decreased intravenous methamphetamine self-administration but did not affect responding for a food reinforcer during the same sessions. However, the dose of intramuscular methamphetamine required to reduce intravenous methamphetamine self-administration exceeded the cumulative amount taken during a typical self-administration session, and pretreatment with a low dose of methamphetamine (0.3 mg/kg) actually increased self-administration in some monkeys at the lower self-administration dose. Like pretreatment with methamphetamine, pretreatment with bupropion (3.2 mg/kg) decreased methamphetamine self-administration but did not affect responding for food. Pretreatment with methylphenidate (0.56 mg/kg) did not significantly alter methamphetamine self-administration. These results suggest that some agonist-like agents can decrease methamphetamine self-administration. Although the most robust effects occurred with a high dose of methamphetamine, safety and abuse liability considerations suggest that bupropion should also be considered for further evaluation as a methamphetamine addiction treatment.
Collapse
Affiliation(s)
- Charles W. Schindler
- Preclinical Pharmacology Section, Behavioral Neuroscience Branch DHHS/NIH/NIDA Intramural Research Program, Baltimore, MD
| | - Joanne P. Gilman
- Preclinical Pharmacology Section, Behavioral Neuroscience Branch DHHS/NIH/NIDA Intramural Research Program, Baltimore, MD
| | - Leigh V. Panlilio
- Preclinical Pharmacology Section, Behavioral Neuroscience Branch DHHS/NIH/NIDA Intramural Research Program, Baltimore, MD
| | - David J. McCann
- Division of Pharmacotherapies and Medical Consequences of Drug Abuse DHHS/NIH/NIDA, Rockville, MD
| | - Steven R. Goldberg
- Preclinical Pharmacology Section, Behavioral Neuroscience Branch DHHS/NIH/NIDA Intramural Research Program, Baltimore, MD
| |
Collapse
|
24
|
Czoty PW, Gould RW, Martelle JL, Nader MA. Prolonged attenuation of the reinforcing strength of cocaine by chronic d-amphetamine in rhesus monkeys. Neuropsychopharmacology 2011; 36:539-47. [PMID: 20962765 PMCID: PMC3005744 DOI: 10.1038/npp.2010.185] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Chronic treatment with the indirect dopamine agonist d-amphetamine can reduce cocaine use in clinical trials and, in preclinical studies in laboratory animals, attenuates daily cocaine self-administration. The present study extended previous results to conditions designed to reflect a more clinically relevant experience of cocaine exposure and d-amphetamine treatment. Each morning, monkeys pressed a lever to receive food pellets under a 50-response fixed-ratio schedule of reinforcement. After determining a dose-response curve for cocaine (0.003-0.56 mg/kg per injection, i.v.) under a progressive-ratio (PR) schedule of reinforcement in the evening, cocaine self-administration sessions were suspended and d-amphetamine (0.01-0.056 mg/kg/h, i.v.) was administered continuously for at least 24 days, except during cocaine self-administration sessions, which were conducted using the PR schedule once every 8 days. When a persistent decrease in self-administration was observed, the cocaine dose-effect curve was redetermined. Cocaine- and food-maintained responding were also examined after discontinuation of d-amphetamine. Although individual differences in sensitivity were observed, d-amphetamine produced selective, qualitatively similar decreases in the reinforcing strength of cocaine in all monkeys that persisted at least 4 weeks. Moreover, cocaine dose-effect curves were shifted downward and/or to the right. For 2 weeks following discontinuation of d-amphetamine treatment, the reinforcing strength of cocaine varied within and across individuals, however, on the whole no increased sensitivity was apparent. These data provide further support for the use of agonist medications for cocaine abuse, and extend the conditions under which such treatment is successful to those that incorporate clinically relevant patterns of cocaine use and drug treatment.
Collapse
Affiliation(s)
- Paul W Czoty
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Robert W Gould
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Jennifer L Martelle
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Michael A Nader
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC, USA,Department of Radiology, Center for the Neurobiology of Addiction Treatments, Wake Forest University School of Medicine, Winston-Salem, NC, USA,Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Medical Center Boulevard, 546 NRC, Winston-Salem, NC 27157-1083, USA, Tel: +336-713-7172, Fax: +336-713-7180, E-mail:
| |
Collapse
|
25
|
Greenwald MK, Lundahl LH, Steinmiller CL. Sustained release d-amphetamine reduces cocaine but not 'speedball'-seeking in buprenorphine-maintained volunteers: a test of dual-agonist pharmacotherapy for cocaine/heroin polydrug abusers. Neuropsychopharmacology 2010; 35:2624-37. [PMID: 20881947 PMCID: PMC2978797 DOI: 10.1038/npp.2010.175] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The aim of this study was to determine whether oral sustained release d-amphetamine (SR-AMP) reduces cocaine and opioid/cocaine combination ('speedball'-like) seeking in volunteers with current opioid dependence and cocaine dependence. Following outpatient buprenorphine (BUP) 8 mg/day stabilization without SR-AMP, eight participants completed a 3-week in-patient study with continued BUP 8 mg/day maintenance and double-blind ascending SR-AMP weekly doses of 0, 30, and 60 mg/day, respectively. After 3 days (Saturday-Monday) stabilization at each SR-AMP weekly dose (0, 15, or 30 mg administered at 0700 and 1225 each day), on Tuesday-Friday mornings (0900-1200 hours), participants sampled four drug combinations in randomized, counterbalanced order under double-blind, double-dummy (intranasal cocaine and intramuscular hydromorphone) conditions: cocaine (COC 100 mg+saline); hydromorphone (COC 4 mg+HYD 24 mg); 'speedball' (COC 100 mg+HYD 24 mg); and placebo (COC 4 mg+saline). Subjective and physiological effects of these drug combinations were measured. From 1230 to 1530 hours, participants could respond on a choice, 12-trial progressive ratio schedule to earn drug units (1/12th of total morning dose) or money units (US$2). SR-AMP significantly reduced COC, but not HYD or speedball, choices and breakpoints. SR-AMP also significantly reduced COC subjective (eg, abuse-related) effects and did not potentiate COC-induced cardiovascular responses. This study shows the ability of SR-AMP to attenuate COC self-administration, as well as its selectivity, in cocaine/heroin polydrug abusers. Further research is warranted to ascertain whether SR-AMP combined with BUP could be a useful dual-agonist pharmacotherapy.
Collapse
Affiliation(s)
- Mark K Greenwald
- Substance Abuse Research Division, Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI 48207, USA.
| | - Leslie H Lundahl
- Substance Abuse Research Division, Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, USA
| | - Caren L Steinmiller
- Substance Abuse Research Division, Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, USA,Department of Pharmacology and Toxicology, University of Toledo, Toledo, OH, USA
| |
Collapse
|
26
|
Effects of chronic d-amphetamine administration on the reinforcing strength of cocaine in rhesus monkeys. Psychopharmacology (Berl) 2010; 209:375-82. [PMID: 20217052 PMCID: PMC3122267 DOI: 10.1007/s00213-010-1807-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2010] [Accepted: 02/15/2010] [Indexed: 10/19/2022]
Abstract
RATIONALE Agonist medications have been proven effective in treating opioid and nicotine dependence; results from clinical studies suggest that the indirect dopamine agonist d-amphetamine may reduce cocaine abuse. In preclinical studies, chronic d-amphetamine treatment decreased ongoing cocaine self-administration. OBJECTIVES The present study extended previous results by determining effects of chronic d-amphetamine treatment on the reinforcing strength of cocaine under conditions in which access to cocaine was suspended during d-amphetamine treatment. METHODS Daily operant conditioning sessions consisted of morning access to food pellets delivered under a 50-response fixed-ratio schedule and evening access to cocaine (0.005-0.48 mg/kg per injection, i.v.) under a progressive-ratio schedule. After responding maintained by 0.045 mg/kg per injection cocaine stabilized, self-administration sessions were suspended and d-amphetamine (0.01-0.1 mg/kg per hr, i.v.) was administered continuously for 5 days. On the following day, d-amphetamine treatment was discontinued and daily self-administration sessions resumed. RESULTS Following termination of d-amphetamine treatment, food- and cocaine-maintained responding was decreased in a dose-related manner. Decreases in the reinforcing strength of cocaine were larger and lasted longer than effects on food reinforcement. However, cocaine self-administration was unaltered if 6 days elapsed between discontinuation of d-amphetamine treatment and the next cocaine self-administration session. CONCLUSIONS The necessity of a self-administration session in the presence of d-amphetamine suggests that the protracted decrease in cocaine self-administration may be a manifestation of behavioral tolerance. Regarding treatment of cocaine dependence, data suggest that prolonged d-amphetamine treatment may be necessary to produce a sustained reduction in the reinforcing effects of cocaine.
Collapse
|