1
|
Zhao YL, Yi HY, Baba SS, Guo YX, Yuan XC, Hou XM, Liang LL, Huo FQ. Activation of 5-HT 6 Receptors in the Ventrolateral Orbital Cortex Produces Anti-Anxiodepressive Effects in a Rat Model of Neuropathic Pain. Mol Neurobiol 2025; 62:1136-1150. [PMID: 38963532 DOI: 10.1007/s12035-024-04314-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 06/16/2024] [Indexed: 07/05/2024]
Abstract
The comorbidity of anxiety and depression frequently occurs in patients with neuropathic pain. The ventrolateral orbital cortex (VLO) plays a critical role in mediating neuropathic pain and anxiodepression in rodents. Previous studies suggested that 5-HT6 receptors in the VLO are involved in neuropathic pain. Strong evidence supports a close link between 5-HT6 receptors and affective disorders such as depression and anxiety disorders. However, it remains unclear whether the 5-HT6 receptors in the VLO are involved in neuropathic pain-induced anxiodepression. Using a rat neuropathic pain model of spared nerve injury (SNI), we demonstrated that rats exhibited significant anxiodepression-like behaviors and the expression of VLO 5-HT6 receptors obviously decreased four weeks after SNI surgery. Microinjection of the 5-HT6 receptor agonist EMD-386088 into the VLO or overexpression of VLO 5-HT6 receptors alleviated anxiodepression-like behaviors. These effects were blocked by pre-microinjection of a selective 5-HT6 receptor antagonist (SB-258585) or inhibitors of AC (SQ-22536), PKA (H89), and MEK1/2 (U0126) respectively. Meanwhile, the expression of p-ERK, p-CREB, and BDNF in the VLO decreased four weeks after SNI surgery. Furthermore, administration of EMD-386088 upregulated the expression of BDNF, p-ERK, and p-CREB in the VLO of SNI rats, which were reversed by pre-injection of SB-258585. These findings suggest that activating 5-HT6 receptors in the VLO has anti-anxiodepressive effects in rats with neuropathic pain via activating AC-cAMP-PKA-MERK-CREB-BDNF signaling pathway. Accordingly, 5-HT6 receptor in the VLO could be a potential target for the treatment of the comorbidity of neuropathic pain and anxiodepression.
Collapse
Affiliation(s)
- Yu-Long Zhao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
- Institute of Neuroscience, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
- Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, 710061, Shaanxi, China
| | - Hui-Yuan Yi
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
- Institute of Neuroscience, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
- Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, 710061, Shaanxi, China
| | - Sani Sa'idu Baba
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
- Institute of Neuroscience, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
- Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, 710061, Shaanxi, China
| | - Yi-Xiao Guo
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
- Institute of Neuroscience, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
- Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, 710061, Shaanxi, China
| | - Xiao-Cui Yuan
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
- Institute of Neuroscience, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
- Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, 710061, Shaanxi, China
| | - Xue-Mei Hou
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
- Institute of Neuroscience, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
- Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, 710061, Shaanxi, China
| | - Ling-Li Liang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
- Institute of Neuroscience, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
- Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, 710061, Shaanxi, China
| | - Fu-Quan Huo
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China.
- Institute of Neuroscience, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China.
- Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, 710061, Shaanxi, China.
| |
Collapse
|
2
|
Arias HR, Micheli L, Rudin D, Bento O, Borsdorf S, Ciampi C, Marin P, Ponimaskin E, Manetti D, Romanelli MN, Ghelardini C, Liechti ME, Di Cesare Mannelli L. Non-hallucinogenic compounds derived from iboga alkaloids alleviate neuropathic and visceral pain in mice through a mechanism involving 5-HT 2A receptor activation. Biomed Pharmacother 2024; 177:116867. [PMID: 38889634 DOI: 10.1016/j.biopha.2024.116867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/28/2024] [Accepted: 06/03/2024] [Indexed: 06/20/2024] Open
Abstract
The aim of this study was to determine the anti-hypersensitivity activity of novel non-hallucinogenic compounds derived from iboga alkaloids (i.e., ibogalogs), including tabernanthalog (TBG), ibogainalog (IBG), and ibogaminalog (DM506), using mouse models of neuropathic (Chronic Constriction Injury; CCI) and visceral pain (dextrane sulfate sodium; DSS). Ibogalogs decreased mechanical hyperalgesia and allodynia induced by CCI in a dose- and timeframe-dependent manner, where IBG showed the longest anti-hyperalgesic activity at a comparatively lower dose, whereas DM506 displayed the quickest response. These compounds also decreased hypersensitivity induced by colitis, where DM506 showed the longest activity. To understand the mechanisms involved in these effects, two approaches were utilized: ibogalogs were challenged with the 5-HT2A receptor antagonist ketanserin and the pharmacological activity of these compounds was assessed at the respective 5-HT2A, 5-HT6, and 5-HT7 receptor subtypes. The behavioral results clearly demonstrated that ketanserin abolishes the pain-relieving activity of ibogalogs without inducing any effect per se, supporting the concept that 5-HT2A receptor activation, but not inhibition, is involved in this process. The functional results showed that ibogalogs potently activate the 5-HT2A and 5-HT6 receptor subtypes, whereas they behave as inverse agonists (except TBG) at the 5-HT7 receptor. Considering previous studies showing that 5-HT6 receptor inhibition, but not activation, and 5-HT7 receptor activation, but not inhibition, relieved chronic pain, we can discard these two receptor subtypes as participating in the pain-relieving activity of ibogalogs. The potential involvement of 5-HT2B/2 C receptor subtypes was also ruled out. In conclusion, the anti-hypersensitivity activity of ibogalogs in mice is mediated by a mechanism involving 5-HT2A receptor activation.
Collapse
Affiliation(s)
- Hugo R Arias
- Department of Pharmacology and Physiology, College of Osteopathic Medicine, Oklahoma State University Center for Health Sciences, Tahlequah, OK, USA
| | - Laura Micheli
- Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, Florence, Italy.
| | - Deborah Rudin
- Division of Clinical Pharmacology and Toxicology, Department of Biomedicine, University Hospital Basel, Basel, Switzerland; Division of Clinical Pharmacology and Toxicology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Ophelie Bento
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Saskia Borsdorf
- Cellular Neurophysiology, Hannover Medical School, Hannover, Germany
| | - Clara Ciampi
- Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Philippe Marin
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Evgeni Ponimaskin
- Cellular Neurophysiology, Hannover Medical School, Hannover, Germany
| | - Dina Manetti
- Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Florence, Italy
| | - Maria Novella Romanelli
- Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Florence, Italy
| | - Carla Ghelardini
- Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Matthias E Liechti
- Division of Clinical Pharmacology and Toxicology, Department of Biomedicine, University Hospital Basel, Basel, Switzerland; Division of Clinical Pharmacology and Toxicology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Lorenzo Di Cesare Mannelli
- Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, Florence, Italy
| |
Collapse
|
3
|
Vozella V, Cruz B, Feldman HC, Bullard R, Bianchi PC, Natividad LA, Cravatt BF, Zorrilla EP, Ciccocioppo R, Roberto M. Sexually dimorphic effects of monoacylglycerol lipase inhibitor MJN110 on stress-related behaviour and drinking in Marchigian Sardinian alcohol-preferring rats. Br J Pharmacol 2023; 180:3130-3145. [PMID: 37488777 PMCID: PMC10805956 DOI: 10.1111/bph.16197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 07/26/2023] Open
Abstract
BACKGROUND AND PURPOSE The endocannabinoid (eCB) system plays an important homeostatic role in the regulation of stress circuits and has emerged as a therapeutic target to treat stress disorders and alcohol use disorder (AUD). Extensive research has elucidated a role for the eCB anandamide (AEA), but less is known about 2-arachidonoylglycerol (2-AG) mediated signalling. EXPERIMENTAL APPROACH We pharmacologically enhanced eCB signalling by inhibiting the 2-AG metabolizing enzyme, monoacylglycerol lipase (MAGL), in male and female Marchigian Sardinian alcohol-preferring (msP) rats, a model of innate alcohol preference and stress hypersensitivity, and in control Wistar rats. We tested the acute effect of the selective MAGL inhibitor MJN110 in alleviating symptoms of alcohol drinking, anxiety, irritability and fear. KEY RESULTS A single systemic administration of MJN110 increased 2-AG levels in the central amygdala, prelimbic and infralimbic cortex but did not acutely alter alcohol drinking. MAGL inhibition reduced aggressive behaviours in female msPs, and increased defensive behaviours in male msPs, during the irritability test. Moreover, in the novelty-induced hypophagia test, MJN110 selectively enhanced palatable food consumption in females, mitigating stress-induced food suppression. Lastly, msP rats showed increased conditioned fear behaviour compared with Wistar rats, and MJN110 reduced context-associated conditioned fear responses, but not cue-probed fear expression, in male msPs. CONCLUSIONS AND IMPLICATIONS Acute inhibition of MAGL attenuated some stress-related responses in msP rats but not voluntary alcohol drinking. Our results provide new insights into the sex dimorphism documented in stress-induced responses. Sex-specific eCB-based approaches should be considered in the clinical development of therapeutics.
Collapse
Affiliation(s)
- Valentina Vozella
- Department of Molecular Medicine, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Bryan Cruz
- Department of Molecular Medicine, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Hannah C. Feldman
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Ryan Bullard
- Department of Molecular Medicine, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Paula C. Bianchi
- Department of Molecular Medicine, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
- Department of Pharmacology, Universidade Federal de São Paulo - UNIFESP, São Paulo, SP 04023-062, Brazil
| | - Luis A. Natividad
- College of Pharmacy, Division of Pharmacology and Toxicology, The University of Texas at Austin, 107 W. Dean Keeton Street, Austin, TX 78712, USA
| | - Benjamin F. Cravatt
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Eric P. Zorrilla
- Department of Molecular Medicine, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Roberto Ciccocioppo
- School of Pharmacy, Pharmacology Unit, University of Camerino, Via Madonna delle Carceri 9, Camerino, 62032 Italy
| | - Marisa Roberto
- Department of Molecular Medicine, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
| |
Collapse
|
4
|
Wróbel MZ, Chodkowski A, Dawidowski M, Siwek A, Stachowicz K, Szewczyk B, Nowak G, Satała G, Bojarski AJ, Turło J. Synthesis and biological evaluation of novel 3-(5-substituted-1H-indol-3-yl)pyrrolidine-2,5-dione derivatives with a dual affinity for serotonin 5-HT 1A receptor and SERT. Bioorg Chem 2023; 141:106903. [PMID: 37827015 DOI: 10.1016/j.bioorg.2023.106903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 09/20/2023] [Accepted: 09/29/2023] [Indexed: 10/14/2023]
Abstract
The serotonin 1A (5-HT1A) receptors and serotonin transporter (SERT) are important biological targets in the treatment of diseases of the central nervous system, especially for depression. In this study, new 3-(1H-indol-3-yl)pyrrolidine-2,5-dione derivatives linked with the 3-(1,2,3,6-tetrahydropyridin-4-yl)-1H-indole moiety were synthesised and evaluated for their affinity for 5-HT1A receptor and serotonin reuptake inhibition. Selected compounds were then tested for their affinity for D2, 5-HT2A, 5-HT6 and 5-HT7 receptors, and also in in vitro metabolic stability assays in human microsomes. Finally, in vivo assays allowed us to evaluate the agonist-antagonist properties of pre- and postsynaptic 5-HT1A receptors. 3-(1-(4-(3-(5-methoxy-1H-indol-3-yl)-2,5-dioxopyrrolidin-1-yl)butyl)-1,2,3,6-tetrahydropyridin-4-yl)-1H-indole-5-carbonitrile (4f) emerged as the most promising compound from the series, due to its favourable receptor binding profile (Ki(5-HT1A) = 10.0 nM; Ki(SERT) = 2.8 nM), good microsomal stability and 5-HT1A receptor agonistic activity.
Collapse
Affiliation(s)
- Martyna Z Wróbel
- Department of Drug Technology and Pharmaceutical Biotechnology, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha Street, 02-097 Warszawa, Poland.
| | - Andrzej Chodkowski
- Department of Drug Technology and Pharmaceutical Biotechnology, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha Street, 02-097 Warszawa, Poland
| | - Maciej Dawidowski
- Department of Drug Technology and Pharmaceutical Biotechnology, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha Street, 02-097 Warszawa, Poland
| | - Agata Siwek
- Department of Pharmacobiology, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Kraków, Poland
| | - Katarzyna Stachowicz
- Department of Neurobiology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Street, 31-343 Kraków, Poland
| | - Bernadeta Szewczyk
- Department of Neurobiology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Street, 31-343 Kraków, Poland
| | - Gabriel Nowak
- Department of Pharmacobiology, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Kraków, Poland; Department of Neurobiology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Street, 31-343 Kraków, Poland
| | - Grzegorz Satała
- Department of Medicinal Chemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Street, 31-343 Kraków, Poland
| | - Andrzej J Bojarski
- Department of Medicinal Chemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Street, 31-343 Kraków, Poland
| | - Jadwiga Turło
- Department of Drug Technology and Pharmaceutical Biotechnology, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha Street, 02-097 Warszawa, Poland
| |
Collapse
|
5
|
Guo M, Yu X, Zhu YZ, Yu Y. From Bench to Bedside: What Do We Know about Imidazothiazole Derivatives So Far? Molecules 2023; 28:5052. [PMID: 37446714 DOI: 10.3390/molecules28135052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Imidazothiazole derivatives are becoming increasingly important in therapeutic use due to their outstanding physiological activities. Recently, applying imidazothiazole as the core, researchers have synthesized a series of derivatives with biological effects such as antitumor, anti-infection, anti-inflammatory and antioxidant effects. In this review, we summarize the main pharmacological effects and pharmacological mechanisms of imidazothiazole derivates; the contents summarized herein are intended to advance the research and rational development of imidazothiazole-based drugs in the future.
Collapse
Affiliation(s)
- Mu Guo
- School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
- Fujian Center for New Drug Safety Evaluation, Fuzhou 350122, China
| | - Xiangbin Yu
- School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
- Fujian Center for New Drug Safety Evaluation, Fuzhou 350122, China
| | - Yi Zhun Zhu
- School of Pharmacy, Macau University of Science and Technology, Macau 999078, China
| | - Yue Yu
- School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
- Fujian Center for New Drug Safety Evaluation, Fuzhou 350122, China
| |
Collapse
|
6
|
Lin J, Liu W, Guan J, Cui J, Shi R, Wang L, Chen D, Liu Y. Latest updates on the serotonergic system in depression and anxiety. Front Synaptic Neurosci 2023; 15:1124112. [PMID: 37228487 PMCID: PMC10203201 DOI: 10.3389/fnsyn.2023.1124112] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 03/24/2023] [Indexed: 05/27/2023] Open
Abstract
Psychiatric disorders are among the leading causes of global health burden, with depression and anxiety being the most disabling subtypes. The two common disorders, depression and anxiety, usually coexist and are pathologically polygenic with complicated etiologies. Current drug-based therapies include selective serotonin reuptake inhibitors, serotonin and norepinephrine reuptake inhibitors, and 5-hydroxytryptamine partial agonists. However, these modalities share common limitations, such as slow onset and low efficacy, which is why potential mechanistic insights for new drug targets are needed. In this review, we summarize recent advances in brain localization, pathology, and therapeutic mechanisms of the serotonergic system in depression and anxiety.
Collapse
Affiliation(s)
- Jianwen Lin
- Department of Neurology, Dalian Municipal Central Hospital, Central Hospital of Dalian University of Technology, Dalian, China
| | - Wenxin Liu
- Department of Neurology, Dalian Municipal Central Hospital, Central Hospital of Dalian University of Technology, Dalian, China
- Department of Graduate Studies, Dalian Medical University, Dalian, China
| | - Jing Guan
- Department of Neurology, Dalian Municipal Central Hospital, Central Hospital of Dalian University of Technology, Dalian, China
- Department of Graduate Studies, Dalian Medical University, Dalian, China
- Department of Pediatrics, Yingkou Economic and Technological Development Zone Central Hospital, Yingkou, China
| | - Jianing Cui
- Department of Neurology, Dalian Municipal Central Hospital, Central Hospital of Dalian University of Technology, Dalian, China
| | - Ruolin Shi
- Department of Graduate Studies, Dalian Medical University, Dalian, China
| | - Lu Wang
- Department of Neurology, Dalian Municipal Central Hospital, Central Hospital of Dalian University of Technology, Dalian, China
| | - Dong Chen
- Department of Neurosurgery, Dalian Municipal Central Hospital, Central Hospital of Dalian University of Technology, Dalian, China
| | - Yi Liu
- Department of Neurology, Dalian Municipal Central Hospital, Central Hospital of Dalian University of Technology, Dalian, China
- Department of Graduate Studies, Dalian Medical University, Dalian, China
| |
Collapse
|
7
|
Kozyra P, Pitucha M. Terminal Phenoxy Group as a Privileged Moiety of the Drug Scaffold-A Short Review of Most Recent Studies 2013-2022. Int J Mol Sci 2022; 23:8874. [PMID: 36012142 PMCID: PMC9408176 DOI: 10.3390/ijms23168874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/03/2022] [Accepted: 08/07/2022] [Indexed: 11/16/2022] Open
Abstract
The terminal phenoxy group is a moiety of many drugs in use today. Numerous literature reports indicated its crucial importance for biological activity; thus, it is a privileged scaffold in medicinal chemistry. This review focuses on the latest achievements in the field of novel potential agents bearing a terminal phenoxy group in 2013-2022. The article provided information on neurological, anticancer, potential lymphoma agent, anti-HIV, antimicrobial, antiparasitic, analgesic, anti-diabetic as well as larvicidal, cholesterol esterase inhibitors, and antithrombotic or agonistic activities towards the adrenergic receptor. Additionally, for selected agents, the Structure-Activity-Relationship (SAR) is also discussed. Thus, this study may help the readers to better understand the nature of the phenoxy group, which will translate into rational drug design and the development of a more efficient drug. To the best of our knowledge, this is the first review devoted to an in-depth analysis of the various activities of compounds bearing terminal phenoxy moiety.
Collapse
Affiliation(s)
- Paweł Kozyra
- Independent Radiopharmacy Unit, Faculty of Pharmacy, Medical University of Lublin, 20-093 Lublin, Poland
| | - Monika Pitucha
- Independent Radiopharmacy Unit, Faculty of Pharmacy, Medical University of Lublin, 20-093 Lublin, Poland
| |
Collapse
|
8
|
Popova NK, Tsybko AS, Naumenko VS. The Implication of 5-HT Receptor Family Members in Aggression, Depression and Suicide: Similarity and Difference. Int J Mol Sci 2022; 23:ijms23158814. [PMID: 35955946 PMCID: PMC9369404 DOI: 10.3390/ijms23158814] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 07/21/2022] [Accepted: 08/06/2022] [Indexed: 11/16/2022] Open
Abstract
Being different multifactorial forms of psychopathology, aggression, depression and suicidal behavior, which is considered to be violent aggression directed against the self, have principal neurobiological links: preclinical and clinical evidence associates depression, aggression and suicidal behavior with dysregulation in central serotonergic (5-HT) neurotransmission. The implication of different types of 5-HT receptors in the genetic and epigenetic mechanisms of aggression, depression and suicidality has been well recognized. In this review, we consider and compare the orchestra of 5-HT receptors involved in these severe psychopathologies. Specifically, it concentrates on the role of 5-HT1A, 5-HT1B, 5-HT2A, 5-HT2B, 5-HT2C, 5-HT3 and 5-HT7 receptors in the mechanisms underlying the predisposition to aggression, depression and suicidal behavior. The review provides converging lines of evidence that: (1) depression-related 5-HT receptors include those receptors with pro-depressive properties (5-HT2A, 5-HT3 and 5-HT7) as well as those providing an antidepressant effect (5-HT1A, 5-HT1B, 5-HT2C subtypes). (2) Aggression-related 5-HT receptors are identical to depression-related 5-HT receptors with the exception of 5-HT7 receptors. Activation of 5-HT1A, 5-HT1B, 5-HT2A, 5-HT2C receptors attenuate aggressiveness, whereas agonists of 5-HT3 intensify aggressive behavior.
Collapse
|
9
|
Marcinkowska M, Bucki A, Sniecikowska J, Zagórska A, Fajkis-Zajączkowska N, Siwek A, Gluch-Lutwin M, Żmudzki P, Jastrzebska-Wiesek M, Partyka A, Wesołowska A, Abram M, Przejczowska-Pomierny K, Cios A, Wyska E, Mika K, Kotańska M, Mierzejewski P, Kolaczkowski M. Multifunctional Arylsulfone and Arylsulfonamide-Based Ligands with Prominent Mood-Modulating Activity and Benign Safety Profile, Targeting Neuropsychiatric Symptoms of Dementia. J Med Chem 2021; 64:12603-12629. [PMID: 34436892 PMCID: PMC8436213 DOI: 10.1021/acs.jmedchem.1c00497] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
![]()
The current pharmaceutical
market lacks therapeutic agents designed
to modulate behavioral disturbances associated with dementia. To address
this unmet medical need, we designed multifunctional ligands characterized
by a nanomolar affinity for clinically relevant targets that are associated
with the disease pathology, namely, the 5-HT2A/6/7 and
D2 receptors. Compounds that exhibited favorable functional
efficacy, water solubility, and metabolic stability were selected
for more detailed study. Pharmacological profiling revealed that compound 11 exerted pronounced antidepressant activity (MED 0.1 mg/kg),
outperforming commonly available antidepressant drugs, while compound 16 elicited a robust anxiolytic activity (MED 1 mg/kg), exceeding
comparator anxiolytics. In contrast to the existing psychotropic agents
tested, the novel chemotypes did not negatively impact cognition.
At a chronic dose regimen (25 days), 11 did not induce
significant metabolic or adverse blood pressure disturbances. These
promising therapeutic-like activities and benign safety profiles make
the novel chemotypes potential treatment options for dementia patients.
Collapse
Affiliation(s)
- Monika Marcinkowska
- Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna St., 30-688 Krakow, Poland
| | - Adam Bucki
- Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna St., 30-688 Krakow, Poland
| | - Joanna Sniecikowska
- Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna St., 30-688 Krakow, Poland
| | - Agnieszka Zagórska
- Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna St., 30-688 Krakow, Poland
| | | | - Agata Siwek
- Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna St., 30-688 Krakow, Poland
| | - Monika Gluch-Lutwin
- Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna St., 30-688 Krakow, Poland
| | - Paweł Żmudzki
- Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna St., 30-688 Krakow, Poland
| | | | - Anna Partyka
- Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna St., 30-688 Krakow, Poland
| | - Anna Wesołowska
- Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna St., 30-688 Krakow, Poland
| | - Michał Abram
- Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna St., 30-688 Krakow, Poland
| | | | - Agnieszka Cios
- Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna St., 30-688 Krakow, Poland
| | - Elżbieta Wyska
- Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna St., 30-688 Krakow, Poland
| | - Kamil Mika
- Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna St., 30-688 Krakow, Poland
| | - Magdalena Kotańska
- Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna St., 30-688 Krakow, Poland
| | - Paweł Mierzejewski
- Institute of Psychiatry and Neurology, 9 Sobieskiego Street, 02-957 Warsaw, Poland
| | - Marcin Kolaczkowski
- Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna St., 30-688 Krakow, Poland.,Adamed Pharma S.A., 6A Mariana Adamkiewicza Street, Pienkow, 05-152 Czosnow, Poland
| |
Collapse
|
10
|
Villas-Boas GR, Lavorato SN, Paes MM, de Carvalho PMG, Rescia VC, Cunha MS, de Magalhães-Filho MF, Ponsoni LF, de Carvalho AAV, de Lacerda RB, da S. Leite L, da S. Tavares-Henriques M, Lopes LAF, Oliveira LGR, Silva-Filho SE, da Silveira APS, Cuman RKN, de S. Silva-Comar FM, Comar JF, do A. Brasileiro L, dos Santos JN, de Freitas WR, Leão KV, da Silva JG, Klein RC, Klein MHF, da S. Ramos BH, Fernandes CKC, de L. Ribas DG, Oesterreich SA. Modulation of the Serotonergic Receptosome in the Treatment of Anxiety and Depression: A Narrative Review of the Experimental Evidence. Pharmaceuticals (Basel) 2021; 14:ph14020148. [PMID: 33673205 PMCID: PMC7918669 DOI: 10.3390/ph14020148] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/05/2021] [Accepted: 02/09/2021] [Indexed: 02/07/2023] Open
Abstract
Serotonin (5-HT) receptors are found throughout central and peripheral nervous systems, mainly in brain regions involved in the neurobiology of anxiety and depression. 5-HT receptors are currently promising targets for discovering new drugs for treating disorders ranging from migraine to neuropsychiatric upsets, such as anxiety and depression. It is well described in the current literature that the brain expresses seven types of 5-HT receptors comprising eighteen distinct subtypes. In this article, we comprehensively reviewed 5-HT1-7 receptors. Of the eighteen 5-HT receptors known today, thirteen are G protein-coupled receptors (GPCRs) and represent targets for approximately 40% of drugs used in humans. Signaling pathways related to these receptors play a crucial role in neurodevelopment and can be modulated to develop effective therapies to treat anxiety and depression. This review presents the experimental evidence of the modulation of the “serotonergic receptosome” in the treatment of anxiety and depression, as well as demonstrating state-of-the-art research related to phytochemicals and these disorders. In addition, detailed aspects of the pharmacological mechanism of action of all currently known 5-HT receptor families were reviewed. From this review, it will be possible to direct the rational design of drugs towards new therapies that involve signaling via 5-HT receptors.
Collapse
Affiliation(s)
- Gustavo R. Villas-Boas
- Research Group on Development of Pharmaceutical Products (P & DProFar), Center for Biological and Health Sciences, Federal University of Western Bahia, Rua Bertioga, 892, Morada Nobre II, Barreiras CEP 47810-059, BA, Brazil; (S.N.L.); (M.M.P.); (P.M.G.d.C.); (V.C.R.); (M.S.C.); (M.F.d.M.-F.); (L.F.P.); (A.A.V.d.C.)
- Correspondence: ; Tel.: +55-(77)-3614-3152
| | - Stefânia N. Lavorato
- Research Group on Development of Pharmaceutical Products (P & DProFar), Center for Biological and Health Sciences, Federal University of Western Bahia, Rua Bertioga, 892, Morada Nobre II, Barreiras CEP 47810-059, BA, Brazil; (S.N.L.); (M.M.P.); (P.M.G.d.C.); (V.C.R.); (M.S.C.); (M.F.d.M.-F.); (L.F.P.); (A.A.V.d.C.)
| | - Marina M. Paes
- Research Group on Development of Pharmaceutical Products (P & DProFar), Center for Biological and Health Sciences, Federal University of Western Bahia, Rua Bertioga, 892, Morada Nobre II, Barreiras CEP 47810-059, BA, Brazil; (S.N.L.); (M.M.P.); (P.M.G.d.C.); (V.C.R.); (M.S.C.); (M.F.d.M.-F.); (L.F.P.); (A.A.V.d.C.)
| | - Pablinny M. G. de Carvalho
- Research Group on Development of Pharmaceutical Products (P & DProFar), Center for Biological and Health Sciences, Federal University of Western Bahia, Rua Bertioga, 892, Morada Nobre II, Barreiras CEP 47810-059, BA, Brazil; (S.N.L.); (M.M.P.); (P.M.G.d.C.); (V.C.R.); (M.S.C.); (M.F.d.M.-F.); (L.F.P.); (A.A.V.d.C.)
| | - Vanessa C. Rescia
- Research Group on Development of Pharmaceutical Products (P & DProFar), Center for Biological and Health Sciences, Federal University of Western Bahia, Rua Bertioga, 892, Morada Nobre II, Barreiras CEP 47810-059, BA, Brazil; (S.N.L.); (M.M.P.); (P.M.G.d.C.); (V.C.R.); (M.S.C.); (M.F.d.M.-F.); (L.F.P.); (A.A.V.d.C.)
| | - Mila S. Cunha
- Research Group on Development of Pharmaceutical Products (P & DProFar), Center for Biological and Health Sciences, Federal University of Western Bahia, Rua Bertioga, 892, Morada Nobre II, Barreiras CEP 47810-059, BA, Brazil; (S.N.L.); (M.M.P.); (P.M.G.d.C.); (V.C.R.); (M.S.C.); (M.F.d.M.-F.); (L.F.P.); (A.A.V.d.C.)
| | - Manoel F. de Magalhães-Filho
- Research Group on Development of Pharmaceutical Products (P & DProFar), Center for Biological and Health Sciences, Federal University of Western Bahia, Rua Bertioga, 892, Morada Nobre II, Barreiras CEP 47810-059, BA, Brazil; (S.N.L.); (M.M.P.); (P.M.G.d.C.); (V.C.R.); (M.S.C.); (M.F.d.M.-F.); (L.F.P.); (A.A.V.d.C.)
| | - Luis F. Ponsoni
- Research Group on Development of Pharmaceutical Products (P & DProFar), Center for Biological and Health Sciences, Federal University of Western Bahia, Rua Bertioga, 892, Morada Nobre II, Barreiras CEP 47810-059, BA, Brazil; (S.N.L.); (M.M.P.); (P.M.G.d.C.); (V.C.R.); (M.S.C.); (M.F.d.M.-F.); (L.F.P.); (A.A.V.d.C.)
| | - Adryano Augustto Valladao de Carvalho
- Research Group on Development of Pharmaceutical Products (P & DProFar), Center for Biological and Health Sciences, Federal University of Western Bahia, Rua Bertioga, 892, Morada Nobre II, Barreiras CEP 47810-059, BA, Brazil; (S.N.L.); (M.M.P.); (P.M.G.d.C.); (V.C.R.); (M.S.C.); (M.F.d.M.-F.); (L.F.P.); (A.A.V.d.C.)
| | - Roseli B. de Lacerda
- Department of Pharmacology, Center for Biological Sciences, Federal University of Paraná, Jardim das Américas, Caixa. postal 19031, Curitiba CEP 81531-990, PR, Brazil;
| | - Lais da S. Leite
- Collegiate Biomedicine, SulAmérica College, Rua Gláuber Rocha, 66, Jardim Paraíso, Luís Eduardo Magalhães CEP 47850-000, BA, Brazil;
| | - Matheus da S. Tavares-Henriques
- Laboratory of Pharmacology of Toxins (LabTox), Graduate Program in Pharmacology and Medicinal Chemistry (PPGFQM), Institute of Biomedical Sciences (ICB) Federal Universityof Rio de Janeiro (UFRJ), Avenida Carlos Chagas Filho, 373, Cidade Universitária, Rio de Janeiro CEP 21941-590, RJ, Brazil;
| | - Luiz A. F. Lopes
- Teaching and Research Manager at the University Hospital—Federal University of Grande Dourados (HU/EBSERH-UFGD), Federal University of Grande Dourados, Rua Ivo Alves da Rocha, 558, Altos do Indaiá, Dourados CEP 79823-501, MS, Brazil;
| | - Luiz G. R. Oliveira
- Nucleus of Studies on Infectious Agents and Vectors (Naive), Federal University of Western Bahia, Rua Bertioga, 892, Morada Nobre II, Barreiras CEP 47810-059, BA, Brazil;
| | - Saulo E. Silva-Filho
- Pharmaceutical Sciences, Food and Nutrition College, Federal University of Mato Grosso do Sul, Avenida Costa e Silva, s/n°, Bairro Universitário, Campo Grande CEP 79070-900, MS, Brazil;
| | - Ana P. S. da Silveira
- Faculty of Biological and Health Sciences, Unigran Capital University Center, RuaBalbina de Matos, 2121, Jarddim Universitário, Dourados CEP 79.824-900, MS, Brazil;
| | - Roberto K. N. Cuman
- Department of Pharmacology and Therapeutics, State University of Maringá, Avenida Colombo, n° 5790, Jardim Universitário, Maringá CEP 87020-900, PR, Brazil; (R.K.N.C.); (F.M.d.S.S.-C.)
| | - Francielli M. de S. Silva-Comar
- Department of Pharmacology and Therapeutics, State University of Maringá, Avenida Colombo, n° 5790, Jardim Universitário, Maringá CEP 87020-900, PR, Brazil; (R.K.N.C.); (F.M.d.S.S.-C.)
| | - Jurandir F. Comar
- Department of Biochemistry, State Universityof Maringá, Avenida Colombo, n° 5790, Jardim Universitário, Maringá CEP 87020-900, PR, Brazil;
| | - Luana do A. Brasileiro
- Nacional Cancer Institute (INCA), Rua Visconde de Santa Isabel, 274, Rio de Janeiro CEP 20560-121, RJ, Brazil;
| | | | - William R. de Freitas
- Research Group on Biodiversity and Health (BIOSA), Center for Training in Health Sciences, Federal University of Southern Bahia, Praça Joana Angélica, 58, São José, Teixeira de Freitas CEP 45988-058, BA, Brazil;
| | - Katyuscya V. Leão
- Pharmacy Department, Federal University of Western Bahia, Rua Bertioga, 892, Morada Nobre II, Barreiras CEP 47810-059, BA, Brazil; (K.V.L.); (J.G.d.S.); (R.C.K.); (M.H.F.K.)
| | - Jonatas G. da Silva
- Pharmacy Department, Federal University of Western Bahia, Rua Bertioga, 892, Morada Nobre II, Barreiras CEP 47810-059, BA, Brazil; (K.V.L.); (J.G.d.S.); (R.C.K.); (M.H.F.K.)
| | - Raphael C. Klein
- Pharmacy Department, Federal University of Western Bahia, Rua Bertioga, 892, Morada Nobre II, Barreiras CEP 47810-059, BA, Brazil; (K.V.L.); (J.G.d.S.); (R.C.K.); (M.H.F.K.)
| | - Mary H. F. Klein
- Pharmacy Department, Federal University of Western Bahia, Rua Bertioga, 892, Morada Nobre II, Barreiras CEP 47810-059, BA, Brazil; (K.V.L.); (J.G.d.S.); (R.C.K.); (M.H.F.K.)
| | - Bruno H. da S. Ramos
- Institute of the Spine and Pain Clinic, Rua Dr. Renato Gonçalves, 108, Renato Gonçalves, Barreiras CEP 47806-021, BA, Brazil;
| | - Cristiane K. C. Fernandes
- University Center of Montes Belos, Av. Hermógenes Coelho s/n, Setor Universitário, São Luís de Montes Belos CEP 76100-000, GO, Brazil;
| | - Dayane G. de L. Ribas
- Gaus College and Course, Rua Severino Vieira, 60, Centro, Barreiras CEP 47800-160, BA, Brazil;
| | - Silvia A. Oesterreich
- Faculty of Health Sciences, Federal University of Grande Dourados, Dourados Rodovia Dourados, Itahum Km 12, Cidade Universitaria, Caixa postal 364, Dourados CEP 79804-970, MS, Brazil;
| |
Collapse
|
11
|
Liu WG, Zhang LM, Yao JQ, Yin YY, Zhang XY, Li YF, Cao JB. Anti-PTSD Effects of Hypidone Hydrochloride (YL-0919): A Novel Combined Selective 5-HT Reuptake Inhibitor/5-HT 1A Receptor Partial Agonist/5-HT 6 Receptor Full Agonist. Front Pharmacol 2021; 12:625547. [PMID: 33643051 PMCID: PMC7902863 DOI: 10.3389/fphar.2021.625547] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 01/06/2021] [Indexed: 01/17/2023] Open
Abstract
Posttraumatic stress disorder (PTSD) is a debilitating trauma and stressor-related disorder that has become a major neuropsychiatric problem, leading to substantial disruptions in individual health and societal costs. Our previous studies have demonstrated that hypidone hydrochloride (YL-0919), a novel combined selective 5-HT reuptake inhibitor/5-HT1A receptor partial agonist/5-HT6 receptor full agonist, exerts notable antidepressant- and anxiolytic-like as well as procognitive effects. However, whether YL-0919 exerts anti-PTSD effects and its underlying mechanisms are still unclear. In the present study, we showed that repeated treatment with YL-0919 caused significant suppression of contextual fear, enhanced anxiety and cognitive dysfunction induced by the time-dependent sensitization (TDS) procedure in rats and by inescapable electric foot-shock in a mouse model of PTSD. Furthermore, we found that repeated treatment with YL-0919 significantly reversed the accompanying decreased expression of the brain-derived neurotrophic factor (BDNF) and the synaptic proteins (synapsin1 and GluA1), and ameliorated the neuroplasticity disruption in the prefrontal cortex (PFC), including the dendritic complexity and spine density of pyramidal neurons. Taken together, the current study indicated that YL-0919 exerts clear anti-PTSD effects, which might be partially mediated by ameliorating the structural neuroplasticity by increasing the expression of BDNF and the formation of synaptic proteins in the PFC.
Collapse
Affiliation(s)
- Wen-Gang Liu
- Medical School of Chinese PLA, Beijing, China.,Department of Anesthesiology, the First Medical Center, Chinese PLA General Hospital, Beijing, China.,Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing, China
| | - Li-Ming Zhang
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing, China
| | - Jun-Qi Yao
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing, China
| | - Yong-Yu Yin
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing, China
| | - Xiao-Ying Zhang
- Department of Anesthesiology, the First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Yun-Feng Li
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing, China.,Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Jiang-Bei Cao
- Department of Anesthesiology, the First Medical Center, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
12
|
Wesołowska A, Rychtyk J, Gdula-Argasińska J, Górecka K, Wilczyńska-Zawal N, Jastrzębska-Więsek M, Partyka A. Effect of 5-HT 6 Receptor Ligands Combined with Haloperidol or Risperidone on Antidepressant-/Anxiolytic-Like Behavior and BDNF Regulation in Hippocampus and Prefrontal Cortex of Rats. Neuropsychiatr Dis Treat 2021; 17:2105-2127. [PMID: 34211274 PMCID: PMC8240864 DOI: 10.2147/ndt.s309818] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 05/19/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The presence of depressive and anxiety symptoms in patients with schizophrenia may have an important impact on treatment and compliance. Hence, interventions addressing such comorbidity in schizophrenia should be explored. One target may be a serotonergic 5-HT6 receptor (5-HT6R) since its ligands displayed antidepressant- and anxiolytic-like activities in preclinical experiments. METHODS Acute and chronic (21 days) administration of haloperidol or risperidone in combination with a selective 5-HT6R agonist (WAY-181187) or antagonist (SB-742457) to rats was performed for detecting antidepressant- and anxiolytic-like behaviors. In addition, the level of brain-derived neurotrophic factor (BDNF) protein and its gene expression in hippocampus and prefrontal cortex were determined. RESULTS Both single and chronic administration of WAY-181187 with haloperidol produced antidepressant- and anxiolytic-like activities. SB-742457 did not provide full benefits in terms of improvement of haloperidol-induced adverse mood effects. However, the administration of SB-742457 with risperidone triggered its anxiolytic-like activity. Both 5-HT6R ligands evoked no changes in haloperidol-induced effects on BDNF level. WAY-181187 induced repression of the BDNF gene while SB-742457 increased its expression in both structures. 5-HT6R ligands, when combined with risperidone, did not change BDNF protein level and increased gene expression in the hippocampus, while they elevated BDNF level and potentiated gene expression in the prefrontal cortex. CONCLUSION The combined administration of WAY-181187 and haloperidol provided the greatest benefits, which were manifested by antidepressant-like effects and suppression of the anxiogenic-like properties. The combined administration of risperidone with both agonist and antagonist resulted only in an anxiolytic-like effect. It seems that the anxiolytic-like effects induced by haloperidol or risperidone with the addition of 5-HT6R ligands are task-specific. The data on BDNF protein and gene expression did not fully correspond with the behavioral outcomes, and thus it appears that other factors/mechanisms are involved in the observed antidepressant- and/or anxiolytic-like effects.
Collapse
Affiliation(s)
- Anna Wesołowska
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
| | - Joanna Rychtyk
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
| | - Joanna Gdula-Argasińska
- Department of Radioligands, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
| | - Katarzyna Górecka
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
| | - Natalia Wilczyńska-Zawal
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
| | | | - Anna Partyka
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
| |
Collapse
|
13
|
Zhu C, Lin R, Liu C, Huang M, Lin F, Zhang G, Zhang Y, Miao J, Lin W, Huang H. The Antagonism of 5-HT6 Receptor Attenuates Current-Induced Spikes and Improves Long-Term Potentiation via the Regulation of M-Currents in a Pilocarpine-Induced Epilepsy Model. Front Pharmacol 2020; 11:475. [PMID: 32425770 PMCID: PMC7212420 DOI: 10.3389/fphar.2020.00475] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 03/26/2020] [Indexed: 12/02/2022] Open
Abstract
Recent studies have documented that reduced M-current promotes epileptogenesis and attenuates synaptic remodeling. Neurite growth is closely related to the level of 5-HT6 receptor (5-HT6R) in the central nervous system. However, little research is available regarding the relation between 5-HT6R and M-current and the role of 5-HT6R in M-current regulation. Herein, we found that the expression of 5-HT6R was notably increased and the expression of KNCQ2/3, the main components of the M channel, was decreased in a time-dependent manner in pilocarpine-induced chronic epileptic hippocampus. Interestingly, antagonism of 5-HT6R by SB271046 upregulated the expression of KCNQ2 but not KCNQ3. SB271046 greatly alleviated excitatory/inhibitory imbalance and improved the impaired LTP in the chronic epileptic hippocampus. Further mechanism exploration revealed that the above effects of SB271046 can be reversed by the M-channel inhibitor XE991, which also confirmed that SB271046 can indeed improve abnormal M current. These data indicate that the antagonism of 5-HT6R may decrease the excitability of hippocampal pyramidal neurons in chronic epileptic rats and improve the impaired long-term potentiation by upregulating the expression of KCNQ2 in the M-channel.
Collapse
Affiliation(s)
- Chaofeng Zhu
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Rong Lin
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Changyun Liu
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Mingzhu Huang
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Feng Lin
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Gan Zhang
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Yuying Zhang
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Junjie Miao
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Wanhui Lin
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Huapin Huang
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China.,Department of Electrophysiology, Fujian Key Laboratory of Molecular Neurology, Fuzhou, China.,Department of Geriatrics, Fujian Medical University Union Hospital, Fuzhou, China
| |
Collapse
|
14
|
De Deurwaerdère P, Bharatiya R, Chagraoui A, Di Giovanni G. Constitutive activity of 5-HT receptors: Factual analysis. Neuropharmacology 2020; 168:107967. [DOI: 10.1016/j.neuropharm.2020.107967] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/26/2019] [Accepted: 01/12/2020] [Indexed: 12/16/2022]
|
15
|
5-HT6 receptor antagonism reduces defecation in rat: A potential treatment strategy for irritable bowel syndrome with diarrhea. Eur J Pharmacol 2019; 864:172718. [DOI: 10.1016/j.ejphar.2019.172718] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 10/01/2019] [Accepted: 10/02/2019] [Indexed: 12/14/2022]
|
16
|
de Assis Brasil ES, Guerino Furini CR, da Silva Rodrigues F, Nachtigall EG, Kielbovicz Behling JA, Saenger BF, Farias CP, de Carvalho Myskiw J, Izquierdo I. The blockade of the serotoninergic receptors 5-HT5A, 5-HT6 and 5-HT7 in the basolateral amygdala, but not in the hippocampus facilitate the extinction of fear memory. Behav Brain Res 2019; 372:112055. [DOI: 10.1016/j.bbr.2019.112055] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 05/27/2019] [Accepted: 06/20/2019] [Indexed: 01/20/2023]
|
17
|
Yokokura M, Terada T, Bunai T, Nakaizumi K, Kato Y, Yoshikawa E, Futatsubashi M, Suzuki K, Yamasue H, Ouchi Y. Alterations in serotonin transporter and body image-related cognition in anorexia nervosa. NEUROIMAGE-CLINICAL 2019; 23:101928. [PMID: 31491815 PMCID: PMC6627582 DOI: 10.1016/j.nicl.2019.101928] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 06/17/2019] [Accepted: 07/01/2019] [Indexed: 01/09/2023]
Abstract
The serotonin system has been implicated in the pathophysiology of anorexia nervosa (AN). A recent report proposed that body image distortion (BID), a core symptom of AN, may relate to abnormalities of the serotonin system, especially the serotonin transporter (5HTT). Positron emission tomography (PET) studies of underweight patients with active AN reported alterations in serotonin receptors, but not 5HTT. Here, we aimed to disclose the clinicopathophysiology of AN by focusing on 5HTT and cognitive functions, including BID, in groups with active AN. Twenty-two underweight female patients with AN (12 restricting-type AN (ANR); 10 binge-eating/purging-type AN (ANBP)) and 20 age-matched healthy female subjects underwent PET with a 5HTT radioligand [11C]DASB. The binding potential (BPND) of [11C]DASB was estimated semiquantitatively, and clinical data from Raven's colored progressive matrices for general intelligence, the Stroop test for focused attention, the Iowa gambling task for decision making and a dot-probe task designed for BID were compared with the levels of BPND in different groups. [11C]DASB BPND was significantly decreased in the medial parietal cortex in patients with AN and in the dorsal raphe in patients with ANR compared with healthy subjects (p < .05 corrected). Patients with ANR showed a significantly negative correlation between [11C]DASB BPND in the dorsal raphe and performance on the dot-probe task (p < .05 corrected). While reduced 5HTT in the medial parietal cortex (the somatosensory association area) is pathophysiologically important in AN in general, additional 5HTT reduction in the dorsal raphe as seen in ANR is implicated for the clinicopathophysiological relevance. 5HTT decreased in the parietal cortex in patients with AN. 5HTT decreased in the parietal cortex in patients with ANBP. 5HTT decreased in the parietal cortex and the dorsal raphe in patients with ANR. Patients with AN were poor at responding to the test for body image distortion (BID). 5HTT in the dorsal raphe was associated with cognitive performance of BID.
Collapse
Affiliation(s)
- Masamichi Yokokura
- Department of Psychiatry, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Tatsuhiro Terada
- Department of Biofunctional Imaging, Preeminent Medical Photonics Education & Research Center, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Tomoyasu Bunai
- Department of Biofunctional Imaging, Preeminent Medical Photonics Education & Research Center, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Kyoko Nakaizumi
- Department of Psychiatry, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Yasuhiko Kato
- Department of Psychiatry, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Etsuji Yoshikawa
- Central Research Laboratory, Hamamatsu Photonics K.K., Hamamatsu, Japan
| | - Masami Futatsubashi
- Hamamatsu PET Imaging Center, Hamamatsu Medical Photonics Foundation, Hamamatsu, Japan
| | - Katsuaki Suzuki
- Department of Biofunctional Imaging, Preeminent Medical Photonics Education & Research Center, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Hidenori Yamasue
- Department of Psychiatry, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Yasuomi Ouchi
- Department of Biofunctional Imaging, Preeminent Medical Photonics Education & Research Center, Hamamatsu University School of Medicine, Hamamatsu, Japan.
| |
Collapse
|
18
|
Dorsomedial prefrontal cortex 5-HT6 receptors regulate anxiety-like behavior. COGNITIVE AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2019; 18:58-67. [PMID: 29204799 DOI: 10.3758/s13415-017-0552-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The dorsomedial prefrontal cortex (dmPFC) plays a very important role in decision-related and anxiety-related information processing. It has enriched 5-HT6 receptors; however, the precise role of dmPFC 5-HT6 receptors in anxiety remains to be fully investigated. In this study, we injected dmPFC with the 5-HT6 receptor agonist EMD 386088 and antagonist SB 271046 using stereotactic technology. 5-HT6 receptor activation in mice increased time spent in the center area on the open-field test, increased exploration of the open arms on the elevated plus maze test, and increased ratio on the social interaction test. 5-HT6 receptor inactivation induced the opposite effects. In brain slices, EMD 386088 decreased both spontaneous inhibitory postsynaptic currents (sIPSC) and spontaneous excitatory postsynaptic currents (sEPSC), while SB 271046 only increased sEPSC. These effects of EMD 386088 and SB 271046 could be reversed by the GABAA receptor antagonist bicuculline (BMI) and positive allosteric modulator clonazepam (CLZ), respectively. Our results suggest that neurotransmission in the dmPFC by 5-HT6 receptor activation and inhibition may play an important role in anxiety-like behavior, and may provide new insight into the pathological mechanism and potential target of anxiety disorders.
Collapse
|
19
|
Liu KC, Guo Y, Zhang J, Chen L, Liu YW, Lv SX, Xie W, Wang HS, Zhang YM, Zhang L. Activation and blockade of dorsal hippocampal Serotonin6 receptors regulate anxiety-like behaviors in a unilateral 6-hydroxydopamine rat model of Parkinson’s disease. Neurol Res 2019; 41:791-801. [PMID: 31056008 DOI: 10.1080/01616412.2019.1611204] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Kun Cheng Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
- Department of Neurology, West China Hospital, SiChuan University, Chengdu, China
| | - Yuan Guo
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Jin Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Li Chen
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Yi Wei Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Shu Xuan Lv
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Wen Xie
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Hui Sheng Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Yu Ming Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
- Department of Anesthesiology, Shaanxi Provincial People’s Hospital, Xi’an, China
| | - Li Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
| |
Collapse
|
20
|
Jaśkowska J, Zaręba P, Śliwa P, Pindelska E, Satała G, Majka Z. Microwave-Assisted Synthesis of Trazodone and Its Derivatives as New 5-HT 1A Ligands: Binding and Docking Studies. Molecules 2019; 24:molecules24081609. [PMID: 31018618 PMCID: PMC6515286 DOI: 10.3390/molecules24081609] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 04/13/2019] [Accepted: 04/19/2019] [Indexed: 11/17/2022] Open
Abstract
Trazodone, a well-known antidepressant drug widely used throughout the world, works as a 5-hydroxytryptamine (5-HT2) and α1-adrenergic receptor antagonist and a serotonin reuptake inhibitor. Our research aimed to develop a new method for the synthesis of trazodone and its derivatives. In the known methods of the synthesis of trazodone and its derivatives, organic and toxic solvents are used, and the synthesis time varies from several to several dozen hours. Our research shows that trazodone and its derivatives can be successfully obtained in the presence of potassium carbonate as a reaction medium in the microwave field in a few minutes. As a result of the research work, 17 derivatives of trazodone were obtained, including compounds that exhibit the characteristics of 5-HT1A receptor ligands. Molecular modeling studies were performed to understand the differences in the activity toward 5-HT1A and 5-HT2A receptors between ligand 10a (2-(6-(4-(3-chlorophenyl)piperazin-1-yl)hexyl)-[1,2,4]triazolo[4,3-a]pyridin-3(2H)-one) (5-HT1AKi = 16 nM) and trazodone. The docking results indicate the lack of the binding of ligand 10a to 5-HT2AR, which is consistent with the in vitro studies. On the other hand, the docking results for the 5-HT1A receptor indicate two possible binding modes. Crystallographic studies support the hypothesis of an extended conformation.
Collapse
Affiliation(s)
- Jolanta Jaśkowska
- Institute of Organic Chemistry and Technology, Faculty of Chemical and Engineering and Technology, Cracow University of Technology, 24 Warszawska Street, 31-155 Cracow, Poland.
| | - Przemysław Zaręba
- Institute of Organic Chemistry and Technology, Faculty of Chemical and Engineering and Technology, Cracow University of Technology, 24 Warszawska Street, 31-155 Cracow, Poland.
| | - Paweł Śliwa
- Institute of Organic Chemistry and Technology, Faculty of Chemical and Engineering and Technology, Cracow University of Technology, 24 Warszawska Street, 31-155 Cracow, Poland.
| | - Edyta Pindelska
- Department of Analytical Chemistry and Biomaterials, Faculty of Pharmacy with the Laboratory Medicine Division, Medical University of Warsaw, Banacha 1, 02-093 Warsaw, Poland.
| | - Grzegorz Satała
- Department of Medicinal Chemistry, Institute of Pharmacology-Polish Academy of Sciences, 12 Smętna Street, 31-343 Cracow, Poland.
| | - Zbigniew Majka
- TM Labs Sp. z o.o., Al. W. Beliny-Prażmowskiego 14, 31-514 Kraków, Poland.
| |
Collapse
|
21
|
Kim SH, Seo M, Hwang H, Moon DM, Son GH, Kim K, Rhim H. Physical and Functional Interaction between 5-HT 6 Receptor and Nova-1. Exp Neurobiol 2019; 28:17-29. [PMID: 30853821 PMCID: PMC6401546 DOI: 10.5607/en.2019.28.1.17] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 12/17/2018] [Accepted: 01/04/2019] [Indexed: 01/22/2023] Open
Abstract
5-HT6 receptor (5-HT6R) is implicated in cognitive dysfunction, mood disorder, psychosis, and eating disorders. However, despite its significant role in regulating the brain functions, regulation of 5-HT6R at the molecular level is poorly understood. Here, using yeast two-hybrid assay, we found that human 5-HT6R directly binds to neuro-oncological ventral antigen 1 (Nova-1), a brain-enriched splicing regulator. The interaction between 5-HT6R and Nova-1 was confirmed using GST pull-down and co-immunoprecipitation assays in cell lines and rat brain. The splicing activity of Nova-1 was decreased upon overexpression of 5-HT6R, which was examined by detecting the spliced intermediates of gonadotropin-releasing hormone (GnRH), a known pre-mRNA target of Nova-1, using RT-PCR. In addition, overexpression of 5-HT6R induced the translocation of Nova-1 from the nucleus to cytoplasm, resulting in the reduced splicing activity of Nova-1. In contrast, overexpression of Nova-1 reduced the activity and the total protein levels of 5-HT6R. Taken together, these results indicate that when the expression levels of 5-HT6R or Nova-1 protein are not properly regulated, it may also deteriorate the function of the other.
Collapse
Affiliation(s)
- Soon-Hee Kim
- Center for Neuroscience, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea
| | - Misun Seo
- Center for Neuroscience, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea
| | - Hongik Hwang
- Center for Neuroscience, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea
| | - Dong-Min Moon
- Center for Neuroscience, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea
| | - Gi Hoon Son
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul 02841, Korea
| | - Kyungjin Kim
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea
| | - Hyewhon Rhim
- Center for Neuroscience, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea.,Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Korea
| |
Collapse
|
22
|
Combined Fluoxetine and Metformin Treatment Potentiates Antidepressant Efficacy Increasing IGF2 Expression in the Dorsal Hippocampus. Neural Plast 2019; 2019:4651031. [PMID: 30804991 PMCID: PMC6360645 DOI: 10.1155/2019/4651031] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 11/08/2018] [Accepted: 11/18/2018] [Indexed: 12/13/2022] Open
Abstract
An increasing number of studies show that selective serotonin reuptake inhibitors (SSRIs) exert their therapeutic action, at least in part, by amplifying the influence of the living environment on mood. As a consequence, when administered in a favorable environment, SSRIs lead to a reduction of symptoms, but in stressful conditions, they show limited efficacy. Therefore, novel therapeutic approaches able to neutralize the influence of the stressful environment on treatment are needed. The aim of our study was to test whether, in a mouse model of depression, the combined administration of SSRI fluoxetine and metformin, a drug able to improve the metabolic profile, counteracts the limited efficacy of fluoxetine alone when administered in stressful conditions. Indeed, metabolic alterations are associated to both the onset of major depression and the antidepressant efficacy. To this goal, adult C57BL/6 male mice were exposed to stress for 6 weeks; the first two weeks was aimed at generating a mouse model of depression. During the remaining 4 weeks, mice received one of the following treatments: vehicle, fluoxetine, metformin, or a combination of fluoxetine and metformin. We measured liking- and wanting-type anhedonia as behavioral phenotypes of depression and assessed the expression levels of selected genes involved in major depressive disorder and antidepressant response in the dorsal and ventral hippocampus, which are differently involved in the depressive symptomatology. The combined treatment was more effective than fluoxetine alone in ameliorating the depressive phenotype after one week of treatment. This was associated to an increase in IGF2 mRNA expression and enhanced long-term potentiation, specifically in the dorsal hippocampus, at the end of treatment. Overall, the present results show that, when administered in stressful conditions, the combined fluoxetine and metformin treatment may represent a more effective approach than fluoxetine alone in a short term. Finally, our findings highlight the relevance of polypharmacological strategy as effective interventions to increase the efficacy of the antidepressant drugs currently available.
Collapse
|
23
|
Turner CA, Lyons DM, Buckmaster CL, Aurbach EL, Watson SJ, Schatzberg AF, Akil H. Neural cell adhesion molecule peptide mimetics modulate emotionality: pharmacokinetic and behavioral studies in rats and non-human primates. Neuropsychopharmacology 2019; 44:356-363. [PMID: 29703997 PMCID: PMC6300554 DOI: 10.1038/s41386-018-0052-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 03/19/2018] [Accepted: 03/20/2018] [Indexed: 12/17/2022]
Abstract
Recent evidence highlights the fibroblast growth factor (FGF) family in emotion modulation. Although ligands that activate FGF receptors have antidepressant and anxiolytic effects in animal models, FGF ligands have a broad range of actions both in the brain and the periphery. Therefore, identifying molecular partners that may function as allosteric modulators could offer new avenues for drug development. Since neural cell adhesion molecule (NCAM) activates FGF receptors, we asked whether peripherally administered NCAM peptide mimetics penetrate the brain and alter the behavior of standardized tests that have predictive validity for drug treatments of anxiety or depression. The NCAM peptide mimetic, plannexin, acutely increased and chronically decreased anxiety, but did not have antidepressant effects in rats. Another NCAM peptide mimetic, FGLL, had acute anxiogenic effects and chronic antidepressant effects in rats. A related NCAM peptide mimetic, FGLS, had antidepressant effects without modulating anxiety-like behavior, and these antidepressant effects were blocked by an AMPA receptor antagonist. Cisternal cerebrospinal fluid (CSF) levels of FGLs correlated with blood plasma levels in rats and non-human primates, and CSF-to-blood ratios of FGLS were comparable in both species. Results indicate that NCAM peptide mimetics penetrate the brain and support the suggestion that FGLS may be a candidate for further development as a novel treatment for major depressive disorder in humans.
Collapse
Affiliation(s)
- Cortney A. Turner
- 0000000086837370grid.214458.eMolecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109 USA
| | - David M. Lyons
- 0000000419368956grid.168010.eDepartment of Psychiatry and Behavioral Sciences, Stanford University, Palo Alto, CA 94305 USA
| | - Christine L. Buckmaster
- 0000000419368956grid.168010.eDepartment of Psychiatry and Behavioral Sciences, Stanford University, Palo Alto, CA 94305 USA
| | - Elyse L. Aurbach
- 0000000086837370grid.214458.eMolecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109 USA
| | - Stanley J. Watson
- 0000000086837370grid.214458.eMolecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109 USA ,0000000086837370grid.214458.eDepartment of Psychiatry, University of Michigan, Ann Arbor, MI 48109 USA
| | - Alan F. Schatzberg
- 0000000419368956grid.168010.eDepartment of Psychiatry and Behavioral Sciences, Stanford University, Palo Alto, CA 94305 USA
| | - Huda Akil
- 0000000086837370grid.214458.eMolecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109 USA ,0000000086837370grid.214458.eDepartment of Psychiatry, University of Michigan, Ann Arbor, MI 48109 USA
| |
Collapse
|
24
|
Jastrzębska-Więsek M, Gdula-Argasińska J, Siwek A, Partyka A, Szewczyk B, Kołaczkowski M, Wesołowska A. Chronic antidepressant-like effect of EMD386088, a partial 5-HT 6 receptor agonist, in olfactory bulbectomy model may be connected with BDNF and/or CREB signalling pathway. Pharmacol Rep 2018; 70:1047-1056. [PMID: 30292720 DOI: 10.1016/j.pharep.2018.05.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 05/09/2018] [Accepted: 05/23/2018] [Indexed: 12/27/2022]
Abstract
BACKGROUND The removal of the olfactory bulbs has been attributed to behavioral changes and neuroplasticity manifesting themselves among others like increases in brain neurotrophin expression and neurogenesis. Earlier data presented that EMD386088, a 5-HT6 receptor partial agonist, exerts antidepressant-like properties after chronic administration in olfactory bulbectomy (OB) model as was it compared with amitriptyline (AMI). The aim of this study was to compare acute and chronic biochemical effects of EMD386088, administered in its antidepressant active (2.5mg/kg) and non-active (1.25mg/kg) doses, found in the open field test in OB rats, with those of AMI (10mg/kg). The levels of 5-HT6 receptor protein and selected neurotrophins in prefrontal cortex (PFC) and hippocampus (Hp) of rats have been examined. METHODS 5-HT6 receptor protein and selected neurotrophins: brain-derived neurotrophic factor (BDNF), cAMP-response element binding protein (CREB), the product of the immediate early gene c-fos (cFos) protein levels were assessed using a Western blot analysis in PFC and Hp of bulbectomized rats after acute or chronic (14-day) EMD386088 or AMI intraperitoneal (ip) treatment. RESULTS The acute treatment with EMD386088 caused significant increases in CREB and BDNF protein levels in PFC, and an increase in BDNF in Hp of OB rats, while AMI injection decreased CREB and did not change BDNF levels. After the chronic administration of EMD386088, the increasing levels of BDNF and CREB were still observed in PFC and Hp. CONCLUSIONS The antidepressant-like effect of EMD386088 may be associated with the neuroplasticity activation in PFC and Hp in rats.
Collapse
Affiliation(s)
| | | | - Agata Siwek
- Department of Pharmacobiology, Jagiellonian University Medical College, Kraków, Poland
| | - Anna Partyka
- Department of Clinical Pharmacy, Jagiellonian University Medical College, Kraków, Poland
| | - Bernadeta Szewczyk
- Department of Neurobiology, Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Marcin Kołaczkowski
- Department of Pharmaceutical Chemistry, Jagiellonian University Medical College, Kraków, Poland; Adamed Ltd. Pienków 149, Czosnów, Poland
| | - Anna Wesołowska
- Department of Clinical Pharmacy, Jagiellonian University Medical College, Kraków, Poland
| |
Collapse
|
25
|
5-HT6 receptor agonist EMD386088 impairs behavioral flexibility and working memory. Behav Brain Res 2018; 349:8-15. [DOI: 10.1016/j.bbr.2018.04.032] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 04/19/2018] [Accepted: 04/20/2018] [Indexed: 12/12/2022]
|
26
|
Sun YN, Yao L, Li LB, Wang Y, Du CX, Guo Y, Liu J. Activation and blockade of basolateral amygdala 5-HT6 receptor produce anxiolytic-like behaviors in an experimental model of Parkinson’s disease. Neuropharmacology 2018; 137:275-285. [DOI: 10.1016/j.neuropharm.2018.05.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 04/16/2018] [Accepted: 05/11/2018] [Indexed: 10/16/2022]
|
27
|
Lesiak AJ, Brodsky M, Cohenca N, Croicu AG, Neumaier JF. Restoration of Physiological Expression of 5-HT 6 Receptor into the Primary Cilia of Null Mutant Neurons Lengthens Both Primary Cilia and Dendrites. Mol Pharmacol 2018; 94:731-742. [PMID: 29678909 DOI: 10.1124/mol.117.111583] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 04/13/2018] [Indexed: 12/14/2022] Open
Abstract
5-HT6 (serotonin) receptors are promising targets for a variety of neuropsychiatric disorders and have been linked to several cellular signaling cascades. Endogenous 5-HT6 receptors are restricted to the primary neuronal cilium, a small sensory organelle stemming from the cell body that receives numerous extrasynaptic signals. Inhibition of 5-HT6 receptors decreases cilia length in primary neuronal cultures, but the signaling mechanisms involved are still unclear. Intense overexpression of exogenous 5-HT6 receptors increases the probability for receptors to localize outside the primary cilium and have been associated with changes in cilia morphology and dendritic outgrowth. In the present study, we explore the role of 5-HT6R rescue on neuronal morphology in primary neuronal cultures from 5-HT6R-KO mice, at the same time maintaining a more physiologic level of expression, wherein the receptor localizes to cilia in 80%-90% of neurons (similar to endogenous 5-HT6R localization). We found that rescue of 5-HT6R expression is sufficient to increase cilia length and dendritic outgrowth, but primarily in neurons in which the receptor is located exclusively in the primary cilia. Additionally, we found that expression of 5-HT6R mutants deficient in agonist-stimulated cAMP or without the predicted Fyn kinase binding domain maintained constitutive activity for stimulating cAMP and still increased the length of cilia, and that the proposed Fyn kinase domain was required for stimulating dendritic outgrowth. These findings highlight the complexity of 5-HT6R function and localization, particularly with the use of exogenous overexpression, and provide greater understanding and potential mechanisms for 5-HT6R drug therapies.
Collapse
Affiliation(s)
- Atom J Lesiak
- Department of Psychiatry and Behavioral Science, Department of Pharmacology, University of Washington, Seattle, Washington
| | - Matthew Brodsky
- Department of Psychiatry and Behavioral Science, Department of Pharmacology, University of Washington, Seattle, Washington
| | - Nathalie Cohenca
- Department of Psychiatry and Behavioral Science, Department of Pharmacology, University of Washington, Seattle, Washington
| | - Alexandra G Croicu
- Department of Psychiatry and Behavioral Science, Department of Pharmacology, University of Washington, Seattle, Washington
| | - John F Neumaier
- Department of Psychiatry and Behavioral Science, Department of Pharmacology, University of Washington, Seattle, Washington
| |
Collapse
|
28
|
Study on the effect of EMD386088, a 5-HT 6 receptor partial agonist, in enhancing the anti-immobility action of some antidepressants in rats. Naunyn Schmiedebergs Arch Pharmacol 2017; 391:37-49. [PMID: 29079874 PMCID: PMC5748433 DOI: 10.1007/s00210-017-1431-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 10/10/2017] [Indexed: 01/08/2023]
Abstract
The effect of some antidepressants co-administered with EMD386088 in the modified forced swim test in rats was investigated. Additionally, the pharmacokinetics, metabolic stability, and the effect of EMD386088 on P450 cytochromes were determined. Intraperitoneal (i.p.) coadministration of EMD386088 (2.5 mg/kg) and imipramine (15 mg/kg), reboxetine (5 mg/kg), moclobemide (10 mg/kg), or bupropion (10 mg/kg) evoked significant antidepressant-like activity, whereas no effect was observed after joint administration of EMD386088 with s-citalopram (10 mg/kg). Pharmacokinetic in vivo investigation showed a rapid absorption of EMD386088 (2.5 and 5 mg/kg) with t1/2 = 67 min (tmax = 5 min). Large volume of distribution (Vd/F = 102 L/kg) indicated its penetration into peripheral compartments. The most active coadministration of EMD386088 (2.5 mg/kg) with imipramine (15 mg/kg) resulted in slower absorption of the compound (Cmax = 60 min) and decrease in the volume of distribution (Vd/F = 32.2 L/kg). EMD386088 penetrates the blood–brain barrier with a high brain/plasma ratio of about 19 (2.5 mg/kg) and 7.5 for coadministration with imipramine. The in silico and in vitro studies on EMD386088 metabolic stability showed the dehydrogenation of tetrahydropyridine moiety as its main metabolic pathway. EMD386088 did not influence on CYP3A4 activity, and it has been classified as a very weak CYP2D6 inhibitor (IC50 = 2.25 μM). The results obtained from the forced swim test in rats indicate that an activation of 5HT6 receptor may facilitate antidepressant-like activity of some antidepressants. The pharmacokinetic results suggest that the interaction between EMD386088 and imipramine could not have been pharmacokinetic in nature.
Collapse
|
29
|
Agonist E-6837 and antagonist SB-271046 of 5-HT6 receptors both reverse the depressive-like effect induced in mice by subchronic ketamine administration. Behav Pharmacol 2017; 28:582-585. [DOI: 10.1097/fbp.0000000000000327] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
30
|
Abstract
Depression is a polygenic and highly complex psychiatric disorder that remains a major burden on society. Antidepressants, such as selective serotonin reuptake inhibitors (SSRIs), are some of the most commonly prescribed drugs worldwide. In this review, we will discuss the evidence that links serotonin and serotonin receptors to the etiology of depression and the mechanisms underlying response to antidepressant treatment. We will then revisit the role of serotonin in three distinct hypotheses that have been proposed over the last several decades to explain the pathophysiology of depression: the monoamine, neurotrophic, and neurogenic hypotheses. Finally, we will discuss how recent studies into serotonin receptors have implicated specific neural circuitry in mediating the antidepressant response, with a focus being placed on the hippocampus.
Collapse
Affiliation(s)
- Christine N Yohn
- Department of Psychology, Behavioral & Systems Neuroscience Area, Rutgers, The State University of New Jersey, 152 Frelinghuysen Rd., Room 215, Piscataway, NJ, 08816, USA
| | - Mark M Gergues
- Department of Psychology, Behavioral & Systems Neuroscience Area, Rutgers, The State University of New Jersey, 152 Frelinghuysen Rd., Room 215, Piscataway, NJ, 08816, USA
| | - Benjamin Adam Samuels
- Department of Psychology, Behavioral & Systems Neuroscience Area, Rutgers, The State University of New Jersey, 152 Frelinghuysen Rd., Room 215, Piscataway, NJ, 08816, USA.
| |
Collapse
|
31
|
Łażewska D, Kurczab R, Więcek M, Kamińska K, Satała G, Jastrzębska-Więsek M, Partyka A, Bojarski AJ, Wesołowska A, Kieć-Kononowicz K, Handzlik J. The computer-aided discovery of novel family of the 5-HT 6 serotonin receptor ligands among derivatives of 4-benzyl-1,3,5-triazine. Eur J Med Chem 2017; 135:117-124. [PMID: 28441580 DOI: 10.1016/j.ejmech.2017.04.033] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Revised: 03/16/2017] [Accepted: 04/12/2017] [Indexed: 01/14/2023]
Abstract
The work describes a discovery of new chemical family of potent ligands for the 5-HT6 serotonin receptors. During the search for new histamine H4 receptor antagonists among 1,3,5-triazine derivatives, compound 2 (4-benzyl-6-(4-methylpiperazin-1-yl)-1,3,5-triazin-2-amine) was found. Compound 2, weakly active for the H4 receptor but fitted in 3/4 of pharmacophore features of the 5-HT6R ligand, occurred to be a moderate 5-HT6R agent, useful as a lead structure for further modifications. A series of new derivatives (3-19) of the lead 2 was synthesized, evaluated in the radioligand binding assay (RBA) and explored in comprehensive molecular modelling, including both pharmacophore- and structure-based approaches with docking to the homology model of 5-HT6R. The most active compounds displayed a potent affinity for the 5-HT6R in the nanomolar range (Ki = 20-30 nM), some of them (4, 11 and 19) were tested in the rat forced swim test that revealed their antidepressant-like effect. SAR-analysis on the basis of both, RBA and docking results, indicated that action on the receptor is related to the hydrophobicity and the size of aromatic moiety substituted by a methylene linker at the position 4 of 1,3,5-triazine.
Collapse
Affiliation(s)
- Dorota Łażewska
- Department of Technology and Biotechnology of Drugs, Jagiellonian University, Medical College, Medyczna 9, PL 30-688 Kraków, Poland.
| | - Rafał Kurczab
- Department of Medicinal Chemistry Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, PL 31-343 Kraków, Poland
| | - Małgorzata Więcek
- Department of Technology and Biotechnology of Drugs, Jagiellonian University, Medical College, Medyczna 9, PL 30-688 Kraków, Poland
| | - Katarzyna Kamińska
- Department of Technology and Biotechnology of Drugs, Jagiellonian University, Medical College, Medyczna 9, PL 30-688 Kraków, Poland
| | - Grzegorz Satała
- Department of Medicinal Chemistry Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, PL 31-343 Kraków, Poland
| | | | - Anna Partyka
- Department of Clinical Pharmacy, Jagiellonian University, Medical College, Medyczna 9, PL 30-688 Kraków, Poland
| | - Andrzej J Bojarski
- Department of Medicinal Chemistry Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, PL 31-343 Kraków, Poland
| | - Anna Wesołowska
- Department of Clinical Pharmacy, Jagiellonian University, Medical College, Medyczna 9, PL 30-688 Kraków, Poland
| | - Katarzyna Kieć-Kononowicz
- Department of Technology and Biotechnology of Drugs, Jagiellonian University, Medical College, Medyczna 9, PL 30-688 Kraków, Poland
| | - Jadwiga Handzlik
- Department of Technology and Biotechnology of Drugs, Jagiellonian University, Medical College, Medyczna 9, PL 30-688 Kraków, Poland.
| |
Collapse
|
32
|
Abstract
The role of serotonin in major depressive disorder (MDD) is the focus of accumulating clinical and preclinical research. The results of these studies reflect the complexity of serotonin signaling through many receptors, in a large number of brain regions, and throughout the lifespan. The role of the serotonin transporter in MDD has been highlighted in gene by environment association studies as well as its role as a critical player in the mechanism of the most effective antidepressant treatments – selective serotonin reuptake inhibitors. While the majority of the 15 known receptors for serotonin have been implicated in depression or depressive-like behavior, the serotonin 1A (5-HT
1A) and 1B (5-HT
1B) receptors are among the most studied. Human brain imaging and genetic studies point to the involvement of 5-HT
1A and 5-HT
1B receptors in MDD and the response to antidepressant treatment. In rodents, the availability of tissue-specific and inducible knockout mouse lines has made possible the identification of the involvement of 5-HT
1A and 5-HT
1B receptors throughout development and in a cell-type specific manner. This, and other preclinical pharmacology work, shows that autoreceptor and heteroreceptor populations of these receptors have divergent roles in modulating depression-related behavior as well as responses to antidepressants and also have different functions during early postnatal development compared to during adulthood.
Collapse
Affiliation(s)
- Katherine M Nautiyal
- Division of Integrative Neuroscience, New York State Psychiatric Institute, and Department of Psychiatry, Columbia University, NY, USA
| | - René Hen
- Division of Integrative Neuroscience, New York State Psychiatric Institute, and Department of Psychiatry, Columbia University, NY, USA; Departments of Neuroscience and Pharmacology, Columbia University, NY, USA
| |
Collapse
|
33
|
Serotonin 5-HT 6 Receptor Antagonists in Alzheimer's Disease: Therapeutic Rationale and Current Development Status. CNS Drugs 2017; 31:19-32. [PMID: 27914038 DOI: 10.1007/s40263-016-0399-3] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Alzheimer's disease (AD) is the most common cause of dementia in elderly people. Because of the lack of effective treatments for this illness, research focused on identifying compounds that restore cognition and functional impairments in patients with AD is a very active field. Since its discovery in 1993, the serotonin 5-HT6 receptor has received increasing attention, and a growing number of studies supported 5-HT6 receptor antagonism as a target for improving cognitive dysfunction in AD. This article reviews the rationale behind investigations into the targeting of 5-HT6 receptors as a symptomatic treatment for cognitive and/or behavioral symptoms of AD. In addition to describing the available clinical evidence, this article also describes the purported biochemical and neurochemical mechanisms of action by which 5-HT6 receptor antagonists could influence cognition, and the preclinical data supporting this therapeutic approach to AD. A large number of publications describing the development of ligands for this receptor have come to light and preclinical data indicate the procognitive efficacy of 5-HT6 receptor antagonists. Subsequently, the number of patents protecting 5-HT6 chemical entities has continuously grown. Some of these compounds have successfully undergone phase I clinical studies and have been further evaluated in clinical phase II trials with variable success. Phase II studies have also revealed the potential of combining 5-HT6 receptor antagonism and cholinesterase inhibition. Two of these antagonists, idalopirdine and RVT-101, have been further developed into ongoing phase III clinical trials. Overall, 5-HT6 receptor antagonists can reasonably be regarded as potential drug candidates for the treatment of AD.
Collapse
|
34
|
Activation and blockade of prelimbic 5-HT6 receptors produce different effects on depressive-like behaviors in unilateral 6-hydroxydopamine-induced Parkinson's rats. Neuropharmacology 2016; 110:25-36. [DOI: 10.1016/j.neuropharm.2016.07.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 07/10/2016] [Accepted: 07/12/2016] [Indexed: 11/15/2022]
|
35
|
White SL, Vassoler FM, Schmidt HD, Pierce RC, Wimmer ME. Enhanced anxiety in the male offspring of sires that self-administered cocaine. Addict Biol 2016; 21:802-810. [PMID: 25923597 DOI: 10.1111/adb.12258] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We previously showed that paternal cocaine exposure reduced the reinforcing efficacy of cocaine in male offspring. Here, we sought to determine whether paternal cocaine experience could also influence anxiety levels in offspring. Male rats were allowed to self-administer cocaine (controls received saline passively) for 60 days and then were bred with naïve females. Measures of anxiety and cocaine-induced anxiogenic effects were assessed in the adult offspring. Cocaine-sired male offspring exhibited increased anxiety-like behaviors, as measured using the novelty-induced hypophagia and defensive burying tasks, relative to saline-sired males. In contrast, sire cocaine experience had no effect on anxiety-like behaviors in female offspring. When challenged with an anxiogenic (but not anorectic) dose of cocaine (2.5 mg/kg, i.p.), anxiety-like behavior was enhanced in all animals to an equal degree regardless of sire drug experience. Since anxiety and depression are often co-morbid, we also assessed measures of depressive-like behavior. Sire cocaine experience had no effect on depression-like behaviors, as measured by the forced swim task, among male offspring. In a separate group of naïve littermates, select neuronal correlates of anxiety were measured. Male offspring of cocaine-experienced sires showed increased mRNA and protein expression of corticotropin-releasing factor receptor 2 in the hippocampus. Together, these results indicate that cocaine-experienced sires produce male progeny that have increased baseline anxiety, which is unaltered by subsequent cocaine exposure.
Collapse
Affiliation(s)
- Samantha L. White
- Center for Neurobiology and Behavior; Department of Psychiatry; Perelman School of Medicine; University of Pennsylvania; Philadelphia PA USA
| | - Fair M. Vassoler
- Center for Neurobiology and Behavior; Department of Psychiatry; Perelman School of Medicine; University of Pennsylvania; Philadelphia PA USA
| | - Heath D. Schmidt
- Center for Neurobiology and Behavior; Department of Psychiatry; Perelman School of Medicine; University of Pennsylvania; Philadelphia PA USA
| | - R. Christopher Pierce
- Center for Neurobiology and Behavior; Department of Psychiatry; Perelman School of Medicine; University of Pennsylvania; Philadelphia PA USA
| | - Mathieu E. Wimmer
- Center for Neurobiology and Behavior; Department of Psychiatry; Perelman School of Medicine; University of Pennsylvania; Philadelphia PA USA
| |
Collapse
|
36
|
Wang HY, Lu CW, Lin TY, Kuo JR, Wang SJ. WAY208466 inhibits glutamate release at hippocampal nerve terminals. Eur J Pharmacol 2016; 781:117-27. [DOI: 10.1016/j.ejphar.2016.04.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 03/09/2016] [Accepted: 04/07/2016] [Indexed: 01/09/2023]
|
37
|
Study of a mechanism responsible for potential antidepressant activity of EMD 386088, a 5-HT6 partial agonist in rats. Naunyn Schmiedebergs Arch Pharmacol 2016; 389:839-49. [PMID: 27106213 PMCID: PMC4939156 DOI: 10.1007/s00210-016-1245-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 04/06/2016] [Indexed: 12/02/2022]
Abstract
It was shown that 5-HT6 receptor agonists can exert pharmacological activity due to various modifications in monoamines’ level and metabolism activity in rats’ brain structures. This finding was correlated with antidepressant- or anxiolytic-like properties of these compounds. The study was designed to establish a possible mechanism of the antidepressant-like activity of the partial 5-HT6 receptor agonist EMD386088 (5-chloro-2-methyl-3-(1,2,3,6-tetrahydro-4-pyridinyl)-1H-indole hydrochloride) in rats. The concentrations of monoamines (dopamine (DA), noradrenaline (NA), and serotonin (5-HT)) and the rate of their metabolism were measured ex vivo in the brain structures (hippocampus, nucleus accumbens, striatum) using high-performance liquid chromatography (HPLC). The rats were killed after the forced swim test (FST); the collected tissue samples were used to ex vivo experiments. The potency of EMD386088 to blockade dopamine transporter (DAT) was tested in a functional in vitro study. FST was used to assess the involvement of D1- and D2-like receptor subfamilies in antidepressant-like properties of EMD386088. Neurochemical data from ex vivo experiments showed that antiimmobility activity of EMD386088 may be connected with the activation of dopaminergic system, while neither noradrenergic nor serotonergic ones are involved in its effect. EMD386088 also possesses a significant affinity for DAT which may be a mechanism in the abovementioned effect. Behavioral data seem to confirm the importance of dopaminergic system activation in antidepressant-like activity of EMD386088, since this effect, observed in the FST, was abolished by the preferential D1- and D2-like receptor subfamily antagonists SCH23390 and sulpiride, respectively. Dopaminergic system is involved in antidepressant-like activity of EMD386088.
Collapse
|
38
|
Hu B, Doods H, Treede RD, Ceci A. Duloxetine and 8-OH-DPAT, but not fluoxetine, reduce depression-like behaviour in an animal model of chronic neuropathic pain. Neurosci Lett 2016; 619:162-7. [DOI: 10.1016/j.neulet.2016.03.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 03/08/2016] [Accepted: 03/09/2016] [Indexed: 01/02/2023]
|
39
|
Kubacka M, Mogilski S, Bednarski M, Nowiński L, Dudek M, Żmudzka E, Siwek A, Waszkielewicz AM, Marona H, Satała G, Bojarski A, Filipek B, Pytka K. Antidepressant-like activity of aroxyalkyl derivatives of 2-methoxyphenylpiperazine and evidence for the involvement of serotonin receptor subtypes in their mechanism of action. Pharmacol Biochem Behav 2015; 141:28-41. [PMID: 26647362 DOI: 10.1016/j.pbb.2015.11.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 11/24/2015] [Accepted: 11/27/2015] [Indexed: 10/22/2022]
Abstract
Since serotonin (5-HT) is strongly involved in the etiology and pathophysiology of depression, the development of new antidepressants is still based on the serotonergic system. The complexity of serotonergic system provides an opportunity for the development of compounds with multiple and complementary mechanism of action. This study describes serotonin receptor profile, functional characterization, and pharmacological in vivo evaluation of new aroxyalkyl derivatives of 2-methoxyphenylpiperazine. The obtained results allowed for the identification of compound 3, (1-[3-(2,6-dimethylphenoxy)propyl]-4-(2-methoxyphenyl)piperazine hydrochloride), a partial 5-HT1A receptor agonist, and 5-HT2A receptor antagonist, with high affinity toward 5-HT7 receptors, showing antidepressant- and anxiolytic-like properties. Moreover, 5-HT1A receptor activation is crucial for the antidepressant-like activity of compound 3. The rest of the compounds (except compounds 1 and 9) showed antidepressant but not anxiolytic-like properties, which did not result from 5-HT1A receptors activation. Furthermore, the compounds are 5-HT1A and weak 5-HT3 receptors antagonists, and some of them 5-HT2A antagonists. Moreover, none of the studied compounds impaired motor coordination at antidepressant-like doses. Since the studied compounds exhibited activity in behavioral assays and interacted with various receptors, the results of our experiments are very promising and require further studies.
Collapse
Affiliation(s)
- Monika Kubacka
- Department of Pharmacodynamics, Faculty of Pharmacy, Medical College, Jagiellonian University, Medyczna 9, 30-688 Krakow, Poland.
| | - Szczepan Mogilski
- Department of Pharmacodynamics, Faculty of Pharmacy, Medical College, Jagiellonian University, Medyczna 9, 30-688 Krakow, Poland.
| | - Marek Bednarski
- Department of Pharmacological Screening, Faculty of Pharmacy, Medical College, Jagiellonian University, Medyczna 9, 30-688 Krakow, Poland.
| | - Leszek Nowiński
- Department of Pharmacological Screening, Faculty of Pharmacy, Medical College, Jagiellonian University, Medyczna 9, 30-688 Krakow, Poland.
| | - Magdalena Dudek
- Department of Pharmacological Screening, Faculty of Pharmacy, Medical College, Jagiellonian University, Medyczna 9, 30-688 Krakow, Poland.
| | - Elżbieta Żmudzka
- Department of Pharmacological Screening, Faculty of Pharmacy, Medical College, Jagiellonian University, Medyczna 9, 30-688 Krakow, Poland.
| | - Agata Siwek
- Department of Pharmacobiology, Faculty of Pharmacy, Medical College, Jagiellonian University, Medyczna 9, 30-688 Krakow, Poland.
| | - Anna M Waszkielewicz
- Department of Bioorganic Chemistry, Chair of Organic Chemistry, Faculty of Pharmacy, Medical College, Jagiellonian University, Medyczna 9, 30-688 Krakow, Poland.
| | - Henryk Marona
- Department of Bioorganic Chemistry, Chair of Organic Chemistry, Faculty of Pharmacy, Medical College, Jagiellonian University, Medyczna 9, 30-688 Krakow, Poland.
| | - Grzegorz Satała
- Department of Medicinal Chemistry, Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Krakow, Poland.
| | - Andrzej Bojarski
- Department of Medicinal Chemistry, Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Krakow, Poland.
| | - Barbara Filipek
- Department of Pharmacodynamics, Faculty of Pharmacy, Medical College, Jagiellonian University, Medyczna 9, 30-688 Krakow, Poland.
| | - Karolina Pytka
- Department of Pharmacodynamics, Faculty of Pharmacy, Medical College, Jagiellonian University, Medyczna 9, 30-688 Krakow, Poland.
| |
Collapse
|
40
|
Wicke K, Haupt A, Bespalov A. Investigational drugs targeting 5-HT6 receptors for the treatment of Alzheimer’s disease. Expert Opin Investig Drugs 2015; 24:1515-28. [DOI: 10.1517/13543784.2015.1102884] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
41
|
Pharmacological profile of encounter-induced hyperactivity in isolation-reared mice. Behav Pharmacol 2015; 26:681-90. [DOI: 10.1097/fbp.0000000000000140] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
42
|
Pereira M, Martynhak BJ, Andreatini R, Svenningsson P. 5-HT6 receptor agonism facilitates emotional learning. Front Pharmacol 2015; 6:200. [PMID: 26441657 PMCID: PMC4584947 DOI: 10.3389/fphar.2015.00200] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 08/31/2015] [Indexed: 01/18/2023] Open
Abstract
Serotonin (5-HT) and its receptors play crucial roles in various aspects of mood and cognitive functions. However, the role of specific 5-HT receptors in these processes remains to be better understood. Here, we examined the effects of the selective and potent 5-HT6 agonist (WAY208466) on mood, anxiety and emotional learning in mice. Male C57Bl/6J mice were therefore tested in the forced swim test (FST), elevated plus-maze (EPM), and passive avoidance tests (PA), respectively. In a dose-response experiment, mice were treated intraperitoneally with WAY208466 at 3, 9, or 27 mg/kg and examined in an open field arena open field test (OFT) followed by the FST. 9 mg/kg of WAY208466 reduced immobility in the FST, without impairing the locomotion. Thus, the dose of 9 mg/kg was subsequently used for tests of anxiety and emotional learning. There was no significant effect of WAY208466 in the EPM. In the PA, mice were trained 30 min before the treatment with saline or WAY208466. Two separate sets of animals were used for short term memory (tested 1 h post-training) or long term memory (tested 24 h post-training). WAY208466 improved both short and long term memories, evaluated by the latency to enter the dark compartment, in the PA. The WAY208466-treated animals also showed more grooming and rearing in the light compartment. To better understand the molecular mechanisms and brain regions involved in the facilitation of emotional learning by WAY208466, we studied its effects on signal transduction and immediate early gene expression. WAY208466 increased the levels of phospho-Ser845-GluA1 and phospho-Ser217/221-MEK in the caudate-putamen. Levels of phospho-Thr202/204-Erk1/2 and the ratio mature BDNF/proBDNF were increased in the hippocampus. Moreover, WAY208466 increased c-fos in the hippocampus and Arc expression in both hippocampus and prefrontal cortex (PFC). The results indicate antidepressant efficacy and facilitation of emotional learning by 5-HT6 receptor agonism via mechanisms that promote neuronal plasticity in caudate putamen, hippocampus, and PFC.
Collapse
Affiliation(s)
- Marcela Pereira
- Section of Translational Neuropharmacology, Department of Clinical Neuroscience, Center of Molecular Medicine, Karolinska Institute Stockholm, Sweden
| | - Bruno J Martynhak
- Section of Translational Neuropharmacology, Department of Clinical Neuroscience, Center of Molecular Medicine, Karolinska Institute Stockholm, Sweden
| | - Roberto Andreatini
- Department of Pharmacology, Federal University of Paraná Curitiba, Brazil
| | - Per Svenningsson
- Section of Translational Neuropharmacology, Department of Clinical Neuroscience, Center of Molecular Medicine, Karolinska Institute Stockholm, Sweden
| |
Collapse
|
43
|
Liu KC, Li JY, Tan HH, Du CX, Xie W, Zhang YM, Ma WL, Zhang L. Serotonin6 receptors in the dorsal hippocampus regulate depressive-like behaviors in unilateral 6-hydroxydopamine-lesioned Parkinson's rats. Neuropharmacology 2015; 95:290-8. [DOI: 10.1016/j.neuropharm.2015.03.031] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2015] [Revised: 03/21/2015] [Accepted: 03/23/2015] [Indexed: 12/20/2022]
|
44
|
Brouard JT, Schweimer JV, Houlton R, Burnham KE, Quérée P, Sharp T. Pharmacological Evidence for 5-HT6 Receptor Modulation of 5-HT Neuron Firing in Vivo. ACS Chem Neurosci 2015; 6:1241-7. [PMID: 25837696 DOI: 10.1021/acschemneuro.5b00061] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
5-Hydroxytryptamine (5-HT) neurons in the midbrain dorsal raphe nucleus (DRN) are implicated in the drug treatment and pathophysiology of a wide variety of neuropsychiatric disorders. Accumulating evidence suggests that 5-HT6 receptors may be located and functional in the DRN; therefore, 5-HT6 receptor ligands may have potential as novel modulators of 5-HT neurotransmission. The current study investigated the effect of intravenous (i.v.) administration of the selective 5-HT6 receptor agonist, WAY-181187, and antagonist, SB-399885, on the firing of 5-HT neurons in the DRN in vivo. Extracellular recordings were made in the DRN of anesthetized rats, and single 5-HT neurons were identified on the basis of electrophysiological properties combined with juxtacellular labeling and postmortem immunohistochemical analysis. WAY-181187 (1-4 mg/kg i.v.) caused a dose-dependent increase in 5-HT neuron firing rate. In comparison, SB-399885 (0.125-1 mg/kg i.v.) caused a dose-dependent decrease in 5-HT neuron firing rate, an effect reversed by WAY-181187 (3 mg/kg i.v.). These effects of WAY-181187 and SB-399885 were observed in two separate sets of experiments. In summary, the current data show the modulation of 5-HT neuronal firing by the 5-HT6 ligands WAY-181187 and SB-399885 and are consistent with the presence of 5-HT6 receptor-mediated positive feedback control of 5-HT neurons.
Collapse
Affiliation(s)
- Julia T. Brouard
- Department
of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, United Kingdom
| | - Judith V. Schweimer
- Department
of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, United Kingdom
| | - Rachel Houlton
- Department
of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, United Kingdom
| | - Katherine E. Burnham
- Department
of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, United Kingdom
| | - Philip Quérée
- Department
of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, United Kingdom
| | - Trevor Sharp
- Department
of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, United Kingdom
| |
Collapse
|
45
|
Karila D, Freret T, Bouet V, Boulouard M, Dallemagne P, Rochais C. Therapeutic Potential of 5-HT6 Receptor Agonists. J Med Chem 2015; 58:7901-12. [PMID: 26099069 DOI: 10.1021/acs.jmedchem.5b00179] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Given its predominant expression in the central nervous system (CNS), 5-hydroxytryptamine (5-HT: serotonin) subtype 6 receptor (5-HT6R) has been considered as a valuable target for the development of CNS drugs with limited side effects. After 2 decades of intense research, numerous selective ligands have been developed to target this receptor; this holds potential interest for the treatment of neuropathological disorders. In fact, some agents (mainly antagonists) are currently undergoing clinical trial. More recently, a series of potent and selective agonists have been developed, and preclinical studies have been conducted that suggest the therapeutic interest of 5-HT6R agonists. This review details the medicinal chemistry of these agonists, highlights their activities, and discusses their potential for treating cognitive issues associated with Alzheimer's disease (AD), depression, or obesity. Surprisingly, some studies have shown that both 5-HT6R agonists and antagonists exert similar procognitive activities. This article summarizes the hypotheses that could explain this paradox.
Collapse
Affiliation(s)
- Delphine Karila
- UNICAEN, CERMN (Centre d'Etudes et de Recherche sur le Médicament de Normandie), Université de Caen Basse-Normandie , F-14032 Caen, France
| | - Thomas Freret
- UNICAEN, GMPc (Groupe Mémoire et Plasticité Comportementale), Université de Caen Basse-Normandie , F-14032 Caen, France
| | - Valentine Bouet
- UNICAEN, GMPc (Groupe Mémoire et Plasticité Comportementale), Université de Caen Basse-Normandie , F-14032 Caen, France
| | - Michel Boulouard
- UNICAEN, GMPc (Groupe Mémoire et Plasticité Comportementale), Université de Caen Basse-Normandie , F-14032 Caen, France
| | - Patrick Dallemagne
- UNICAEN, CERMN (Centre d'Etudes et de Recherche sur le Médicament de Normandie), Université de Caen Basse-Normandie , F-14032 Caen, France
| | - Christophe Rochais
- UNICAEN, CERMN (Centre d'Etudes et de Recherche sur le Médicament de Normandie), Université de Caen Basse-Normandie , F-14032 Caen, France
| |
Collapse
|
46
|
Antidepressant-like activity of EMD 386088, a 5-HT6 receptor partial agonist, following systemic acute and chronic administration to rats. Naunyn Schmiedebergs Arch Pharmacol 2015; 388:1079-88. [DOI: 10.1007/s00210-015-1141-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 06/02/2015] [Indexed: 01/20/2023]
|
47
|
Jastrzębska-Więsek M, Siwek A, Partyka A, Kubacka M, Mogilski S, Wasik A, Kołaczkowski M, Wesołowska A. Pharmacological evaluation of the anxiolytic-like effects of EMD 386088, a partial 5-HT6 receptor agonist, in the rat elevated plus-maze and Vogel conflict tests. Neuropharmacology 2014; 85:253-62. [DOI: 10.1016/j.neuropharm.2014.05.036] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 05/19/2014] [Accepted: 05/21/2014] [Indexed: 11/24/2022]
|
48
|
Kim HJ, Kang S, Kim HJ, Choi SH, Shin S, Lee HH, Rhim H, Shin KH. Effect of acute and chronic electroconvulsive shock on 5-hydroxytrypamine 6 receptor immunoreactivity in rat hippocampus. Exp Neurobiol 2014; 23:231-7. [PMID: 25258570 PMCID: PMC4174614 DOI: 10.5607/en.2014.23.3.231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 05/30/2014] [Accepted: 06/02/2014] [Indexed: 11/30/2022] Open
Abstract
Electroconvulsive shock (ECS) induces not only an antidepressant effect but also adverse effects such as amnesia. One potential mechanism underlying both the antidepressant and amnesia effect of ECS may involve the regulation of serotonin (5-hydroxytryptamine) 6 (5-HT6) receptor, but less is known about the effects of acute ECS on the changes in 5-HT6 receptor expression in the hippocampus. In addition, as regulation of 5-HT receptor expression is influenced by the number of ECS treatment and by interval between ECS treatment and sacrifice, it is probable that magnitude and time-dependent changes in 5-HT6 receptor expression could be influenced by repeated ECS exposure. To explore this possibility, we observed and compared the changes of 5-HT6 receptor immunoreactivity (5-HT6 IR) in rat hippocampus at 1, 8, 24, or 72 h after the treatment with either a single ECS (acute ECS) or daily ECS for 10 days (chronic ECS). We found that acute ECS increased 5-HT6 IR in the CA1, CA3, and granule cell layer of hippocampus, reaching peak levels at 8 h and returning to basal levels 72 h later. The magnitude and time-dependent changes in 5-HT6 IR observed after acute ECS were not affected by chronic ECS. These results demonstrate that both acute and chronic ECS transiently increase the 5-HT6 IR in rat hippocampus, and suggest that the magnitude and time-dependent changes in 5-HT6 IR in the hippocampus appear not to be influenced by repeated ECS treatment.
Collapse
Affiliation(s)
- Hyun Jung Kim
- Department of Pharmacology, Korea University College of Medicine, Seoul 136-705, Korea
| | - Seungwoo Kang
- Department of Pharmacology, Korea University College of Medicine, Seoul 136-705, Korea
| | - Hyun Ju Kim
- Department of Pharmacology, Korea University College of Medicine, Seoul 136-705, Korea
| | - Sun-Hye Choi
- Department of Pharmacology, Korea University College of Medicine, Seoul 136-705, Korea
| | - Seungkeun Shin
- Department of Pharmacology, Korea University College of Medicine, Seoul 136-705, Korea
| | - Hyung Ha Lee
- Department of Pharmacology, Korea University College of Medicine, Seoul 136-705, Korea
| | - Hyewhon Rhim
- Center for Neuroscience, Korea Institute of Science and Technology, Seoul 136-791, Korea
| | - Kyung Ho Shin
- Department of Pharmacology, Korea University College of Medicine, Seoul 136-705, Korea
| |
Collapse
|
49
|
O'Leary OF, O'Brien FE, O'Connor RM, Cryan JF. Drugs, genes and the blues: Pharmacogenetics of the antidepressant response from mouse to man. Pharmacol Biochem Behav 2014; 123:55-76. [PMID: 24161683 DOI: 10.1016/j.pbb.2013.10.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 10/04/2013] [Accepted: 10/16/2013] [Indexed: 12/11/2022]
|
50
|
Kołaczkowski M, Mierzejewski P, Bienkowski P, Wesołowska A, Newman-Tancredi A. Antipsychotic, antidepressant, and cognitive-impairment properties of antipsychotics: rat profile and implications for behavioral and psychological symptoms of dementia. Naunyn Schmiedebergs Arch Pharmacol 2014; 387:545-57. [PMID: 24599316 PMCID: PMC4019826 DOI: 10.1007/s00210-014-0966-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 02/17/2014] [Indexed: 12/28/2022]
Abstract
Many dementia patients exhibit behavioral and psychological symptoms (BPSD), including psychosis and depression. Although antipsychotics are frequently prescribed off-label, they can have marked side effects. In addition, comparative preclinical studies of their effects are surprisingly scarce, and strategies for discovery of novel pharmacotherapeutics are lacking. We therefore compared eight antipsychotics in rat behavioral tests of psychosis, antidepressant-like activity, and cognitive impairment as a basis for preclinical evaluation of new drug candidates. The methods used in this study include inhibition of MK-801-induced hyperactivity, forced swim test (FST), passive avoidance (PA), spontaneous locomotor activity, and catalepsy. The drugs exhibited antipsychotic-like activity in the MK-801 test but with diverse profiles in the other models. Risperidone impaired PA performance, but with some dose separation versus its actions in the MK-801 test. In contrast, clozapine, olanzapine, lurasidone, and asenapine showed little or no dose separation in these tests. Aripiprazole did not impair PA performance but was poorly active in the MK-801 test. Diverse effects were also observed in the FST: chlorpromazine was inactive and most other drugs reduced immobility over narrow dose ranges, whereas clozapine reduced immobility over a wider dose range, overlapping with antipsychotic activity. Although the propensity of second-generation antipsychotics to produce catalepsy was lower, they all elicited pronounced sedation. Consistent with clinical data, most currently available second-generation antipsychotics induced cognitive and motor side effects with little separation from therapeutic-like doses. This study provides a uniform in vivo comparative basis on which to evaluate future early-stage drug candidates intended for potential pharmacotherapy of BPSD.
Collapse
|