1
|
Dean B. IUPHAR Review on muscarinic M1 and M4 receptors as drug treatment targets relevant to the molecular pathology of schizophrenia. Pharmacol Res 2024; 210:107510. [PMID: 39566671 DOI: 10.1016/j.phrs.2024.107510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/13/2024] [Accepted: 11/16/2024] [Indexed: 11/22/2024]
Abstract
Cobenfy, a co-formulation of xanomeline and trospium, is the first drug not acting on the dopaminergic system of the CNS approved for the treatment of schizophrenia by the FDA. Xanomeline is a muscarinic M1 and M4 receptor (CHRM1 and CHRM4) agonist whilst trospium is a peripherally active CHRM antagonist that reduces the unwanted peripheral side-effects of xanomeline. Relevant to this exciting development, this review details the human CNS cholinergic systems and how those systems are affected by the molecular pathology of schizophrenia in a way suggesting activating the CHRM1 and 4 would be beneficial in treating the disorder. The CNS distribution of CHRMs is presented along with findings using CHRM knockout mice and mice treated with drugs that activate the CHRM1 and / or M4, these data explain why these CHRMs could be involved in the genesis of the symptoms of schizophrenia. Next, the process leading to the formulation of Cobenfy and the preclinical data on xanomeline are reviewed showing why Cobenfy was expected to be useful in treating schizophrenia. The pipeline of drugs targeting CHRM1 and /or M4 receptors to treat schizophrenia are discussed. Finally, the molecular pathology of two sub-groups within schizophrenia, separated based on the presence or absence of a deficit of cortical CHRM1, are reviewed to show how such approaches could identify new drug targets. In conclusion, the history of the development of Cobenfy highlights how a growing understanding the pathophysiology of schizophrenia will suggest new treatment targets for the disorder and that pharmacologists can synthesise drugs to target these sites.
Collapse
Affiliation(s)
- Brian Dean
- The Florey Institute for Neuroscience and Mental Health, Parkville, Victoria, Australia.
| |
Collapse
|
2
|
Nguyen HTM, van der Westhuizen ET, Langmead CJ, Tobin AB, Sexton PM, Christopoulos A, Valant C. Opportunities and challenges for the development of M 1 muscarinic receptor positive allosteric modulators in the treatment for neurocognitive deficits. Br J Pharmacol 2024; 181:2114-2142. [PMID: 36355830 DOI: 10.1111/bph.15982] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/22/2022] [Accepted: 10/18/2022] [Indexed: 11/12/2022] Open
Abstract
Targeting allosteric sites of M1 muscarinic acetylcholine receptors (M1 receptors) is a promising strategy to treat neurocognitive disorders, such as Alzheimer's disease and schizophrenia. Indeed, the last two decades have seen an impressive body of work focussing on the design and development of positive allosteric modulators (PAMs) for the M1 receptor. This has led to the identification of a structurally diverse range of highly selective M1 PAMs. In preclinical models, M1 PAMs have shown rescue of cognitive deficits and improvement of endpoints predictive of symptom domains of schizophrenia. Yet, to date only a few M1 PAMs have reached early-stage clinical trials, with many of them failing to progress further due to on-target mediated cholinergic adverse effects that have plagued the development of this class of ligand. This review covers the recent preclinical and clinical studies in the field of M1 receptor drug discovery for the treatment of Alzheimer's disease and schizophrenia, with a specific focus on M1 PAM, highlighting both the undoubted potential but also key challenges for the successful translation of M1 PAMs from bench-side to bedside. LINKED ARTICLES: This article is part of a themed issue Therapeutic Targeting of G Protein-Coupled Receptors: hot topics from the Australasian Society of Clinical and Experimental Pharmacologists and Toxicologists 2021 Virtual Annual Scientific Meeting. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v181.14/issuetoc.
Collapse
Affiliation(s)
- Huong T M Nguyen
- Drug Discovery Biology, Monash University, Parkville, Melbourne, VIC, Australia
- Department of Biochemistry, Hanoi University of Pharmacy, Hanoi, Vietnam
| | | | - Christopher J Langmead
- Drug Discovery Biology, Monash University, Parkville, Melbourne, VIC, Australia
- Neuromedicines Discovery Centre, Monash University, Parkville, Melbourne, VIC, Australia
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash University, Parkville, Melbourne, VIC, Australia
| | - Andrew B Tobin
- Centre for Translational Pharmacology, University of Glasgow, Glasgow, UK
| | - Patrick M Sexton
- Drug Discovery Biology, Monash University, Parkville, Melbourne, VIC, Australia
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash University, Parkville, Melbourne, VIC, Australia
| | - Arthur Christopoulos
- Drug Discovery Biology, Monash University, Parkville, Melbourne, VIC, Australia
- Neuromedicines Discovery Centre, Monash University, Parkville, Melbourne, VIC, Australia
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash University, Parkville, Melbourne, VIC, Australia
| | - Celine Valant
- Drug Discovery Biology, Monash University, Parkville, Melbourne, VIC, Australia
- Neuromedicines Discovery Centre, Monash University, Parkville, Melbourne, VIC, Australia
| |
Collapse
|
3
|
Galbo-Thomma LK, Epperly PM, Blough BE, Landavazo A, Saldaña SJ, Carroll FI, Czoty PW. Cognitive-Enhancing Effects of Acetylcholine Receptor Agonists in Group-Housed Cynomolgus Monkeys Who Drink Ethanol. J Pharmacol Exp Ther 2024; 389:258-267. [PMID: 38135508 PMCID: PMC11125785 DOI: 10.1124/jpet.123.001854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/20/2023] [Accepted: 11/30/2023] [Indexed: 12/24/2023] Open
Abstract
The cognitive impairments that are often observed in patients with alcohol use disorder (AUD) partially contribute to the extremely low rates of treatment initiation and adherence. Brain acetylcholine receptors (AChR) mediate and modulate cognitive and reward-related behavior, and their distribution can be altered by long-term heavy drinking. Therefore, AChRs are promising pharmacotherapeutic targets for treating the cognitive symptoms of AUD. In the present study, the procognitive efficacy of two AChR agonists, xanomeline and varenicline, were evaluated in group-housed monkeys who self-administered ethanol for more than 1 year. The muscarinic AChR antagonist scopolamine was used to disrupt performance of a serial stimulus discrimination and reversal (SDR) task designed to probe cognitive flexibility, defined as the ability to modify a previously learned behavior in response to a change in reinforcement contingencies. The ability of xanomeline and varenicline to remediate the disruptive effects of scopolamine was compared between socially dominant and subordinate monkeys, with lighter and heavier drinking histories, respectively. We hypothesized that subordinate monkeys would be more sensitive to all three drugs. Scopolamine dose-dependently impaired performance on the serial SDR task in all monkeys at doses lower than those that produced nonspecific impairments (e.g., sedation); its potency did not differ between dominant and subordinate monkeys. However, both AChR agonists were effective in remediating the scopolamine-induced deficit in subordinate monkeys but not in dominant monkeys. These findings suggest xanomeline and varenicline may be effective for enhancing cognitive flexibility in individuals with a history of heavy drinking. SIGNIFICANCE STATEMENT: Procognitive effects of two acetylcholine (ACh) receptor agonists were assessed in group-housed monkeys who had several years' experience drinking ethanol. The muscarinic ACh receptor agonist xanomeline and the nicotinic ACh receptor agonist varenicline reversed a cognitive deficit induced by the muscarinic ACh receptor antagonist scopolamine. However, this effect was observed only in lower-ranking (subordinate) monkeys and not higher-ranking (dominant monkeys). Results suggest that ACh agonists may effectively remediate alcohol-induced cognitive deficits in a subpopulation of those with alcohol use disorder.
Collapse
Affiliation(s)
- Lindsey K Galbo-Thomma
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, North Carolina (L.K.G.-T., P.M.E., S.J.S., P.W.C.) and Center for Drug Discovery, Research Triangle Institute, Research Triangle Park, North Carolina (B.E.B., A.L., F.I.C.)
| | - Phillip M Epperly
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, North Carolina (L.K.G.-T., P.M.E., S.J.S., P.W.C.) and Center for Drug Discovery, Research Triangle Institute, Research Triangle Park, North Carolina (B.E.B., A.L., F.I.C.)
| | - Bruce E Blough
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, North Carolina (L.K.G.-T., P.M.E., S.J.S., P.W.C.) and Center for Drug Discovery, Research Triangle Institute, Research Triangle Park, North Carolina (B.E.B., A.L., F.I.C.)
| | - Antonio Landavazo
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, North Carolina (L.K.G.-T., P.M.E., S.J.S., P.W.C.) and Center for Drug Discovery, Research Triangle Institute, Research Triangle Park, North Carolina (B.E.B., A.L., F.I.C.)
| | - Santiago J Saldaña
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, North Carolina (L.K.G.-T., P.M.E., S.J.S., P.W.C.) and Center for Drug Discovery, Research Triangle Institute, Research Triangle Park, North Carolina (B.E.B., A.L., F.I.C.)
| | - F Ivy Carroll
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, North Carolina (L.K.G.-T., P.M.E., S.J.S., P.W.C.) and Center for Drug Discovery, Research Triangle Institute, Research Triangle Park, North Carolina (B.E.B., A.L., F.I.C.)
| | - Paul W Czoty
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, North Carolina (L.K.G.-T., P.M.E., S.J.S., P.W.C.) and Center for Drug Discovery, Research Triangle Institute, Research Triangle Park, North Carolina (B.E.B., A.L., F.I.C.)
| |
Collapse
|
4
|
Hassani SA, Lendor S, Neumann A, Sinha Roy K, Banaie Boroujeni K, Hoffman KL, Pawliszyn J, Womelsdorf T. Dose-Dependent Dissociation of Pro-cognitive Effects of Donepezil on Attention and Cognitive Flexibility in Rhesus Monkeys. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2023; 3:68-77. [PMID: 36712561 PMCID: PMC9874073 DOI: 10.1016/j.bpsgos.2021.11.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 11/16/2021] [Accepted: 11/22/2021] [Indexed: 02/01/2023] Open
Abstract
Background Donepezil exerts pro-cognitive effects by nonselectively enhancing acetylcholine (ACh) across multiple brain systems. Two brain systems that mediate pro-cognitive effects of attentional control and cognitive flexibility are the prefrontal cortex and the anterior striatum, which have different pharmacokinetic sensitivities to ACh modulation. We speculated that these area-specific ACh profiles lead to distinct optimal dose ranges for donepezil to enhance the cognitive domains of attention and flexible learning. Methods To test for dose-specific effects of donepezil on different cognitive domains, we devised a multitask paradigm for nonhuman primates that assessed attention and cognitive flexibility. The nonhuman primates received either vehicle or variable doses of donepezil before task performance. We measured intracerebral donepezil and its strength in preventing the breakdown of ACh within the prefrontal cortex and anterior striatum using solid phase microextraction neurochemistry. Results The highest administered donepezil dose improved attention and made the subjects more robust against distractor interference, but it did not improve flexible learning. In contrast, only a lower dose range of donepezil improved flexible learning and reduced perseveration, but without distractor-dependent attentional improvement. Neurochemical measurements confirmed a dose-dependent increase of extracellular donepezil and decreases in choline within the prefrontal cortex and the striatum. Conclusions The donepezil dose for maximally improving attention differed from the dose range that enhanced cognitive flexibility despite the availability of the drug in two major brain systems supporting these functions. These results suggest that in our cohort of adult monkeys, donepezil traded improvements in attention for improvements in cognitive flexibility at a given dose range.
Collapse
Affiliation(s)
- Seyed A. Hassani
- Department of Psychology, Vanderbilt University, Nashville, Tennessee
| | - Sofia Lendor
- Department of Chemistry, University of Waterloo, Waterloo, Ontario, Canada
| | - Adam Neumann
- Department of Psychology, Vanderbilt University, Nashville, Tennessee
| | - Kanchan Sinha Roy
- Department of Chemistry, University of Waterloo, Waterloo, Ontario, Canada
| | | | - Kari L. Hoffman
- Department of Psychology, Vanderbilt University, Nashville, Tennessee
| | - Janusz Pawliszyn
- Department of Chemistry, University of Waterloo, Waterloo, Ontario, Canada
| | - Thilo Womelsdorf
- Department of Psychology, Vanderbilt University, Nashville, Tennessee
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee
| |
Collapse
|
5
|
Sawagashira R, Tanaka M. Nicotine promotes the utility of short-term memory during visual search in macaque monkeys. Psychopharmacology (Berl) 2022; 239:3019-3029. [PMID: 35802143 DOI: 10.1007/s00213-022-06186-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 06/27/2022] [Indexed: 10/17/2022]
Abstract
RATIONALE The central cholinergic system is a major therapeutic target for restoring cognitive functions. Although manipulation of cholinergic signaling is known to alter working memory (WM), the underlying mechanism remains unclear. It is widely accepted that WM consists of multiple functional modules, one storing short-term memory and the other manipulating and utilizing it. A recently developed visual search task and a relevant model can be used to assess multiple components of WM during administration of acetylcholine receptor (AChR)-related substances. OBJECTIVES The effects of systemic administration of AChR-related agents on WM and eye movements were examined during the oculomotor foraging task. METHODS Three monkeys performing the task received an intramuscular injection of saline or the following AChR-related agents: nicotine (24 or 56 μg/kg), mecamylamine (nicotinic AChR antagonist, 1.0 mg/kg), oxotremorine (muscarinic AChR agonist, 3.0 µg/kg), and scopolamine (muscarinic AChR antagonist, 20 μg/kg). The task was to find a target among 15 identical objects by making eye movements within 6 s. The data were analyzed according to the foraging model that incorporated three parameters. RESULTS Nicotine and mecamylamine significantly increased the utility but not the capacity of short-term memory, while muscarinic AChR-related agents did not alter any WM parameters. Further regression analyses with a mixed-effect model showed that the beneficial effect of nicotine on memory utility remained after considering eye movement variability, but the beneficial effect of mecamylamine disappeared. CONCLUSIONS Nicotine improves visual search, mainly by increasing the utility of short-term memory, with minimal changes in oculomotor parameters.
Collapse
Affiliation(s)
- Ryo Sawagashira
- Department of Physiology, Hokkaido University School of Medicine, Sapporo, 060-8638, Japan. .,Department of Psychiatry, Hokkaido University School of Medicine, Sapporo, 060-8638, Japan.
| | - Masaki Tanaka
- Department of Physiology, Hokkaido University School of Medicine, Sapporo, 060-8638, Japan.
| |
Collapse
|
6
|
Dwomoh L, Tejeda G, Tobin A. Targeting the M1 muscarinic acetylcholine receptor in Alzheimer's disease. Neuronal Signal 2022; 6:NS20210004. [PMID: 35571495 PMCID: PMC9069568 DOI: 10.1042/ns20210004] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 04/01/2022] [Accepted: 04/04/2022] [Indexed: 11/17/2022] Open
Abstract
Alzheimer's disease (AD) remains a major cause of morbidity and mortality worldwide, and despite extensive research, only a few drugs are available for management of the disease. One strategy has been to up-regulate cholinergic neurotransmission to improve cognitive function, but this approach has dose-limiting adverse effects. To avoid these adverse effects, new drugs that target specific receptor subtypes of the cholinergic system are needed, and the M1 subtype of muscarinic acetylcholine receptor (M1-mAChR) has been shown to be a good target for this approach. By using several strategies, M1-mAChR ligands have been developed and trialled in preclinical animal models and in human studies, with varying degrees of success. This article reviews the different approaches to targeting the M1-mAChR in AD and discusses the advantages and limitations of these strategies. The factors to consider in targeting the M1-mAChR in AD are also discussed.
Collapse
Affiliation(s)
- Louis Dwomoh
- The Centre for Translational Pharmacology, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Gonzalo S. Tejeda
- The Centre for Translational Pharmacology, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Andrew B. Tobin
- The Centre for Translational Pharmacology, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
7
|
Li W, Wang Y, Lohith TG, Zeng Z, Tong L, Mazzola R, Riffel K, Miller P, Purcell M, Holahan M, Haley H, Gantert L, Hesk D, Ren S, Morrow J, Uslaner J, Struyk A, Wai JMC, Rudd MT, Tellers DM, McAvoy T, Bormans G, Koole M, Van Laere K, Serdons K, de Hoon J, Declercq R, De Lepeleire I, Pascual MB, Zanotti-Fregonara P, Yu M, Arbones V, Masdeu JC, Cheng A, Hussain A, Bueters T, Anderson MS, Hostetler ED, Basile AS. The PET tracer [ 11C]MK-6884 quantifies M4 muscarinic receptor in rhesus monkeys and patients with Alzheimer's disease. Sci Transl Med 2022; 14:eabg3684. [PMID: 35020407 DOI: 10.1126/scitranslmed.abg3684] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Wenping Li
- MRL, Merck & Co. Inc., Kenilworth, NJ 07033, USA
| | - Yuchuan Wang
- MRL, Merck & Co. Inc., Kenilworth, NJ 07033, USA
| | | | - Zhizhen Zeng
- MRL, Merck & Co. Inc., Kenilworth, NJ 07033, USA
| | - Ling Tong
- MRL, Merck & Co. Inc., Kenilworth, NJ 07033, USA
| | | | - Kerry Riffel
- MRL, Merck & Co. Inc., Kenilworth, NJ 07033, USA
| | | | - Mona Purcell
- MRL, Merck & Co. Inc., Kenilworth, NJ 07033, USA
| | | | - Hyking Haley
- MRL, Merck & Co. Inc., Kenilworth, NJ 07033, USA
| | - Liza Gantert
- MRL, Merck & Co. Inc., Kenilworth, NJ 07033, USA
| | - David Hesk
- MRL, Merck & Co. Inc., Kenilworth, NJ 07033, USA
| | - Sumei Ren
- MRL, Merck & Co. Inc., Kenilworth, NJ 07033, USA
| | - John Morrow
- MRL, Merck & Co. Inc., Kenilworth, NJ 07033, USA
| | | | - Arie Struyk
- MRL, Merck & Co. Inc., Kenilworth, NJ 07033, USA
| | | | | | | | | | - Guy Bormans
- Laboratory for Radiopharmaceutical Research, KU Leuven, 3001 Leuven, Belgium
| | - Michel Koole
- Nuclear Medicine and Molecular Imaging, KU Leuven and University Hospital Leuven, 3001 Leuven, Belgium
| | - Koen Van Laere
- Nuclear Medicine and Molecular Imaging, KU Leuven and University Hospital Leuven, 3001 Leuven, Belgium
| | - Kim Serdons
- Nuclear Medicine and Molecular Imaging, KU Leuven and University Hospital Leuven, 3001 Leuven, Belgium
| | - Jan de Hoon
- Center for Clinical Pharmacology, KU Leuven, 3001 Leuven, Belgium
| | - Ruben Declercq
- Translational Pharmacology Europe, MSD (Europe) Inc., 1200 Brussels, Belgium
| | - Inge De Lepeleire
- Translational Pharmacology Europe, MSD (Europe) Inc., 1200 Brussels, Belgium
| | - Maria B Pascual
- Nantz National Alzheimer Center, Houston Methodist Neurological Institute, Houston, TX 77030, USA.,Department of Neurology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Paolo Zanotti-Fregonara
- Nantz National Alzheimer Center, Houston Methodist Neurological Institute, Houston, TX 77030, USA.,Department of Neurology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Meixiang Yu
- Nantz National Alzheimer Center, Houston Methodist Neurological Institute, Houston, TX 77030, USA.,Department of Neurology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Victoria Arbones
- Nantz National Alzheimer Center, Houston Methodist Neurological Institute, Houston, TX 77030, USA
| | - Joseph C Masdeu
- Nantz National Alzheimer Center, Houston Methodist Neurological Institute, Houston, TX 77030, USA.,Department of Neurology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Amy Cheng
- MRL, Merck & Co. Inc., Kenilworth, NJ 07033, USA
| | | | | | | | | | | |
Collapse
|
8
|
Patel AV, Codeluppi SA, Ervin KSJ, St-Denis MB, Choleris E, Bailey CDC. Developmental Age and Biological Sex Influence Muscarinic Receptor Function and Neuron Morphology within Layer VI of the Medial Prefrontal Cortex. Cereb Cortex 2021; 32:3137-3158. [PMID: 34864929 DOI: 10.1093/cercor/bhab406] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 10/12/2021] [Accepted: 10/13/2021] [Indexed: 01/15/2023] Open
Abstract
Acetylcholine (ACh) neurotransmission within the medial prefrontal cortex (mPFC) plays an important modulatory role to support mPFC-dependent cognitive functions. This role is mediated by ACh activation of its nicotinic (nAChR) and muscarinic (mAChR) classes of receptors, which are both present on mPFC layer VI pyramidal neurons. While the expression and function of nAChRs have been characterized thoroughly for rodent mPFC layer VI neurons during postnatal development, mAChRs have not been characterized in detail. We employed whole-cell electrophysiology with biocytin filling to demonstrate that mAChR function is greater during the juvenile period of development than in adulthood for both sexes. Pharmacological experiments suggest that each of the M1, M2, and M3 mAChR subtypes contributes to ACh responses in these neurons in a sex-dependent manner. Analysis of dendrite morphology identified effects of age more often in males, as the amount of dendrite matter was greatest during the juvenile period. Interestingly, a number of positive correlations were identified between the magnitude of ACh/mAChR responses and dendrite morphology in juvenile mice that were not present in adulthood. To our knowledge, this work describes the first detailed characterization of mAChR function and its correlation with neuron morphology within layer VI of the mPFC.
Collapse
Affiliation(s)
- Ashutosh V Patel
- Department of Biomedical Sciences, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Sierra A Codeluppi
- Department of Biomedical Sciences, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Kelsy S J Ervin
- Department of Psychology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Myles B St-Denis
- Department of Biomedical Sciences, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Elena Choleris
- Department of Psychology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Craig D C Bailey
- Department of Biomedical Sciences, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| |
Collapse
|
9
|
Effects of a novel M4 muscarinic positive allosteric modulator on behavior and cognitive deficits relevant to Alzheimer's disease and schizophrenia in rhesus monkey. Neuropharmacology 2021; 197:108754. [PMID: 34389398 DOI: 10.1016/j.neuropharm.2021.108754] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 07/19/2021] [Accepted: 08/08/2021] [Indexed: 11/22/2022]
Abstract
Alzheimer's disease (AD) is a profoundly debilitating neurodegenerative disorder characterized most notably by progressive cognitive decline, but also agitation and behavioral disturbances that are extremely disruptive to patient and caregiver. Current pharmacological treatments for these symptoms have limited efficacy and significant side effects. We have recently reported the discovery of Compound 24, an M4 positive allosteric modulator (PAM) that is potent, highly selective, and devoid of cholinergic-like side effects in rats. In order to further evaluate the translatability of the effects of compound 24 in primates, here we describe the effect of Compound 24 on three behavioral and cognition assays in rhesus monkeys, the stimulant induced motor activity (SIMA) assay, the object retrieval detour task (ORD), and the visuo-spatial paired-associates learning (vsPAL) task. As far as we know, this is the first such characterization of an M4 PAM in non-human primate. Compound 24 and the clinical standard olanzapine attenuated amphetamine induced hyperactivity to a similar degree. In addition, Compound 24 demonstrated procognitive effects in scopolamine-impaired ORD and vsPAL, and these effects were of similar magnitude to donepezil. These findings suggest that M4 PAMs may be beneficial to diseases such as Alzheimer's disease and schizophrenia, which are marked by behavioral disturbances as well as deficits in cognitive function.
Collapse
|
10
|
Volpato D, Kauk M, Messerer R, Bermudez M, Wolber G, Bock A, Hoffmann C, Holzgrabe U. The Role of Orthosteric Building Blocks of Bitopic Ligands for Muscarinic M1 Receptors. ACS OMEGA 2020; 5:31706-31715. [PMID: 33344823 PMCID: PMC7745449 DOI: 10.1021/acsomega.0c04220] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 11/16/2020] [Indexed: 05/13/2023]
Abstract
The muscarinic M1 acetylcholine receptor is an important drug target for the treatment of various neurological disorders. Designing M1 receptor-selective drugs has proven challenging, mainly due to the high conservation of the acetylcholine binding site among muscarinic receptor subtypes. Therefore, less conserved and topographically distinct allosteric binding sites have been explored to increase M1 receptor selectivity. In this line, bitopic ligands, which target orthosteric and allosteric binding sites simultaneously, may provide a promising strategy. Here, we explore the allosteric, M1-selective BQCAd scaffold derived from BQCA as a starting point for the design, synthesis, and pharmacological evaluation of a series of novel bitopic ligands in which the orthosteric moieties and linker lengths are systematically varied. Since β-arrestin recruitment seems to be favorable to therapeutic implication, all the compounds were investigated by G protein and β-arrestin assays. Some bitopic ligands are partial to full agonists for G protein activation, some activate β-arrestin recruitment, and the degree of β-arrestin recruitment varies according to the respective modification. The allosteric BQCAd scaffold controls the positioning of the orthosteric ammonium group of all ligands, suggesting that this interaction is essential for stimulating G protein activation. However, β-arrestin recruitment is not affected. The novel set of bitopic ligands may constitute a toolbox to study the requirements of β-arrestin recruitment during ligand design for therapeutic usage.
Collapse
Affiliation(s)
- Daniela Volpato
- Department
of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Michael Kauk
- Institute
for Molecular Cell Biology, CMB-Center for Molecular Biomedicine,
University Hospital Jena, Friedrich-Schiller University Jena, Hans-Knöll-Straße 2, 07745 Jena, Germany
| | - Regina Messerer
- Department
of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Marcel Bermudez
- Institute
of Pharmacy, Freie Universitaet Berlin, Königin-Luise-Str. 2-4 in 14195 Berlin-Dahlem, Germany
| | - Gerhard Wolber
- Institute
of Pharmacy, Freie Universitaet Berlin, Königin-Luise-Str. 2-4 in 14195 Berlin-Dahlem, Germany
| | - Andreas Bock
- Max
Delbrück Center for Molecular Medicine, Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Carsten Hoffmann
- Institute
for Molecular Cell Biology, CMB-Center for Molecular Biomedicine,
University Hospital Jena, Friedrich-Schiller University Jena, Hans-Knöll-Straße 2, 07745 Jena, Germany
| | - Ulrike Holzgrabe
- Department
of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
- . Tel.: +49 931 31-85460
| |
Collapse
|
11
|
Modulation of arousal and sleep/wake architecture by M 1 PAM VU0453595 across young and aged rodents and nonhuman primates. Neuropsychopharmacology 2020; 45:2219-2228. [PMID: 32868847 PMCID: PMC7784923 DOI: 10.1038/s41386-020-00812-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 08/13/2020] [Indexed: 02/01/2023]
Abstract
Degeneration of basal forebrain cholinergic circuitry represents an early event in the development of Alzheimer's disease (AD). These alterations in central cholinergic function are associated with disruptions in arousal, sleep/wake architecture, and cognition. Changes in sleep/wake architecture are also present in normal aging and may represent a significant risk factor for AD. M1 muscarinic acetylcholine receptor (mAChR) positive allosteric modulators (PAMs) have been reported to enhance cognition across preclinical species and may also provide beneficial effects for age- and/or neurodegenerative disease-related changes in arousal and sleep. In the present study, electroencephalography was conducted in young animals (mice, rats and nonhuman primates [NHPs]) and in aged mice to examine the effects of the selective M1 PAM VU0453595 in comparison with the acetylcholinesterase inhibitor donepezil, M1/M4 agonist xanomeline (in NHPs), and M1 PAM BQCA (in rats) on sleep/wake architecture and arousal. In young wildtype mice, rats, and NHPs, but not in M1 mAChR KO mice, VU0453595 produced dose-related increases in high frequency gamma power, a correlate of arousal and cognition enhancement, without altering duration of time across all sleep/wake stages. Effects of VU0453595 in NHPs were observed within a dose range that did not induce cholinergic-mediated adverse effects. In contrast, donepezil and xanomeline increased time awake in rodents and engendered dose-limiting adverse effects in NHPs. Finally, VU0453595 attenuated age-related decreases in REM sleep duration in aged wildtype mice. Development of M1 PAMs represents a viable strategy for attenuating age-related and dementia-related pathological disturbances of sleep and arousal.
Collapse
|
12
|
Wang X, Daley C, Gakhar V, Lange HS, Vardigan JD, Pearson M, Zhou X, Warren L, Miller CO, Belden M, Harvey AJ, Grishin AA, Coles CJ, O'Connor SM, Thomson F, Duffy JL, Bell IM, Uslaner JM. Pharmacological Characterization of the Novel and Selective α7 Nicotinic Acetylcholine Receptor-Positive Allosteric Modulator BNC375. J Pharmacol Exp Ther 2020; 373:311-324. [PMID: 32094294 DOI: 10.1124/jpet.119.263483] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 02/17/2020] [Indexed: 12/28/2022] Open
Abstract
Treatments for cognitive deficits associated with central nervous system (CNS) disorders such as Alzheimer disease and schizophrenia remain significant unmet medical needs that incur substantial pressure on the health care system. The α7 nicotinic acetylcholine receptor (nAChR) has garnered substantial attention as a target for cognitive deficits based on receptor localization, robust preclinical effects, genetics implicating its involvement in cognitive disorders, and encouraging, albeit mixed, clinical data with α7 nAChR orthosteric agonists. Importantly, previous orthosteric agonists at this receptor suffered from off-target activity, receptor desensitization, and an inverted U-shaped dose-effect curve in preclinical assays that limit their clinical utility. To overcome the challenges with orthosteric agonists, we have identified a novel selective α7 positive allosteric modulator (PAM), BNC375. This compound is selective over related receptors and potentiates acetylcholine-evoked α7 currents with only marginal effect on the receptor desensitization kinetics. In addition, BNC375 enhances long-term potentiation of electrically evoked synaptic responses in rat hippocampal slices and in vivo. Systemic administration of BNC375 reverses scopolamine-induced cognitive deficits in rat novel object recognition and rhesus monkey object retrieval detour (ORD) task over a wide range of exposures, showing no evidence of an inverted U-shaped dose-effect curve. The compound also improves performance in the ORD task in aged African green monkeys. Moreover, ex vivo 13C-NMR analysis indicates that BNC375 treatment can enhance neurotransmitter release in rat medial prefrontal cortex. These findings suggest that α7 nAChR PAMs have multiple advantages over orthosteric α7 nAChR agonists for the treatment of cognitive dysfunction associated with CNS diseases. SIGNIFICANCE STATEMENT: BNC375 is a novel and selective α7 nicotinic acetylcholine receptor (nAChR) positive allosteric modulator (PAM) that potentiates acetylcholine-evoked α7 currents in in vitro assays with little to no effect on the desensitization kinetics. In vivo, BNC375 demonstrated robust procognitive effects in multiple preclinical models across a wide exposure range. These results suggest that α7 nAChR PAMs have therapeutic potential in central nervous system diseases with cognitive impairments.
Collapse
Affiliation(s)
- Xiaohai Wang
- Merck Research Laboratories, Merck & Co., Inc., Kenilworth, New Jersey (X.W., C.D., V.G., H.S.L., J.D.V., M.P., X.Z., L.W., C.O.M., M.B., F.T., J.L.D., I.M.B., J.M.U.) and Bionomics Limited, Thebarton, Australia (A.J.H., A.A.G., C.J.C., S.M.O.)
| | - Christopher Daley
- Merck Research Laboratories, Merck & Co., Inc., Kenilworth, New Jersey (X.W., C.D., V.G., H.S.L., J.D.V., M.P., X.Z., L.W., C.O.M., M.B., F.T., J.L.D., I.M.B., J.M.U.) and Bionomics Limited, Thebarton, Australia (A.J.H., A.A.G., C.J.C., S.M.O.)
| | - Vanita Gakhar
- Merck Research Laboratories, Merck & Co., Inc., Kenilworth, New Jersey (X.W., C.D., V.G., H.S.L., J.D.V., M.P., X.Z., L.W., C.O.M., M.B., F.T., J.L.D., I.M.B., J.M.U.) and Bionomics Limited, Thebarton, Australia (A.J.H., A.A.G., C.J.C., S.M.O.)
| | - Henry S Lange
- Merck Research Laboratories, Merck & Co., Inc., Kenilworth, New Jersey (X.W., C.D., V.G., H.S.L., J.D.V., M.P., X.Z., L.W., C.O.M., M.B., F.T., J.L.D., I.M.B., J.M.U.) and Bionomics Limited, Thebarton, Australia (A.J.H., A.A.G., C.J.C., S.M.O.)
| | - Joshua D Vardigan
- Merck Research Laboratories, Merck & Co., Inc., Kenilworth, New Jersey (X.W., C.D., V.G., H.S.L., J.D.V., M.P., X.Z., L.W., C.O.M., M.B., F.T., J.L.D., I.M.B., J.M.U.) and Bionomics Limited, Thebarton, Australia (A.J.H., A.A.G., C.J.C., S.M.O.)
| | - Michelle Pearson
- Merck Research Laboratories, Merck & Co., Inc., Kenilworth, New Jersey (X.W., C.D., V.G., H.S.L., J.D.V., M.P., X.Z., L.W., C.O.M., M.B., F.T., J.L.D., I.M.B., J.M.U.) and Bionomics Limited, Thebarton, Australia (A.J.H., A.A.G., C.J.C., S.M.O.)
| | - Xiaoping Zhou
- Merck Research Laboratories, Merck & Co., Inc., Kenilworth, New Jersey (X.W., C.D., V.G., H.S.L., J.D.V., M.P., X.Z., L.W., C.O.M., M.B., F.T., J.L.D., I.M.B., J.M.U.) and Bionomics Limited, Thebarton, Australia (A.J.H., A.A.G., C.J.C., S.M.O.)
| | - Lee Warren
- Merck Research Laboratories, Merck & Co., Inc., Kenilworth, New Jersey (X.W., C.D., V.G., H.S.L., J.D.V., M.P., X.Z., L.W., C.O.M., M.B., F.T., J.L.D., I.M.B., J.M.U.) and Bionomics Limited, Thebarton, Australia (A.J.H., A.A.G., C.J.C., S.M.O.)
| | - Corin O Miller
- Merck Research Laboratories, Merck & Co., Inc., Kenilworth, New Jersey (X.W., C.D., V.G., H.S.L., J.D.V., M.P., X.Z., L.W., C.O.M., M.B., F.T., J.L.D., I.M.B., J.M.U.) and Bionomics Limited, Thebarton, Australia (A.J.H., A.A.G., C.J.C., S.M.O.)
| | - Michelle Belden
- Merck Research Laboratories, Merck & Co., Inc., Kenilworth, New Jersey (X.W., C.D., V.G., H.S.L., J.D.V., M.P., X.Z., L.W., C.O.M., M.B., F.T., J.L.D., I.M.B., J.M.U.) and Bionomics Limited, Thebarton, Australia (A.J.H., A.A.G., C.J.C., S.M.O.)
| | - Andrew J Harvey
- Merck Research Laboratories, Merck & Co., Inc., Kenilworth, New Jersey (X.W., C.D., V.G., H.S.L., J.D.V., M.P., X.Z., L.W., C.O.M., M.B., F.T., J.L.D., I.M.B., J.M.U.) and Bionomics Limited, Thebarton, Australia (A.J.H., A.A.G., C.J.C., S.M.O.)
| | - Anton A Grishin
- Merck Research Laboratories, Merck & Co., Inc., Kenilworth, New Jersey (X.W., C.D., V.G., H.S.L., J.D.V., M.P., X.Z., L.W., C.O.M., M.B., F.T., J.L.D., I.M.B., J.M.U.) and Bionomics Limited, Thebarton, Australia (A.J.H., A.A.G., C.J.C., S.M.O.)
| | - Carolyn J Coles
- Merck Research Laboratories, Merck & Co., Inc., Kenilworth, New Jersey (X.W., C.D., V.G., H.S.L., J.D.V., M.P., X.Z., L.W., C.O.M., M.B., F.T., J.L.D., I.M.B., J.M.U.) and Bionomics Limited, Thebarton, Australia (A.J.H., A.A.G., C.J.C., S.M.O.)
| | - Susan M O'Connor
- Merck Research Laboratories, Merck & Co., Inc., Kenilworth, New Jersey (X.W., C.D., V.G., H.S.L., J.D.V., M.P., X.Z., L.W., C.O.M., M.B., F.T., J.L.D., I.M.B., J.M.U.) and Bionomics Limited, Thebarton, Australia (A.J.H., A.A.G., C.J.C., S.M.O.)
| | - Fiona Thomson
- Merck Research Laboratories, Merck & Co., Inc., Kenilworth, New Jersey (X.W., C.D., V.G., H.S.L., J.D.V., M.P., X.Z., L.W., C.O.M., M.B., F.T., J.L.D., I.M.B., J.M.U.) and Bionomics Limited, Thebarton, Australia (A.J.H., A.A.G., C.J.C., S.M.O.)
| | - Joseph L Duffy
- Merck Research Laboratories, Merck & Co., Inc., Kenilworth, New Jersey (X.W., C.D., V.G., H.S.L., J.D.V., M.P., X.Z., L.W., C.O.M., M.B., F.T., J.L.D., I.M.B., J.M.U.) and Bionomics Limited, Thebarton, Australia (A.J.H., A.A.G., C.J.C., S.M.O.)
| | - Ian M Bell
- Merck Research Laboratories, Merck & Co., Inc., Kenilworth, New Jersey (X.W., C.D., V.G., H.S.L., J.D.V., M.P., X.Z., L.W., C.O.M., M.B., F.T., J.L.D., I.M.B., J.M.U.) and Bionomics Limited, Thebarton, Australia (A.J.H., A.A.G., C.J.C., S.M.O.)
| | - Jason M Uslaner
- Merck Research Laboratories, Merck & Co., Inc., Kenilworth, New Jersey (X.W., C.D., V.G., H.S.L., J.D.V., M.P., X.Z., L.W., C.O.M., M.B., F.T., J.L.D., I.M.B., J.M.U.) and Bionomics Limited, Thebarton, Australia (A.J.H., A.A.G., C.J.C., S.M.O.)
| |
Collapse
|
13
|
Mandai T, Sako Y, Kurimoto E, Shimizu Y, Nakamura M, Fushimi M, Maeda R, Miyamoto M, Kimura H. T-495, a novel low cooperative M 1 receptor positive allosteric modulator, improves memory deficits associated with cholinergic dysfunction and is characterized by low gastrointestinal side effect risk. Pharmacol Res Perspect 2020; 8:e00560. [PMID: 31990455 PMCID: PMC6986443 DOI: 10.1002/prp2.560] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 12/20/2019] [Indexed: 12/20/2022] Open
Abstract
M1 muscarinic acetylcholine receptor (M1 R) activation can be a new therapeutic approach for the treatment of cognitive deficits associated with cholinergic hypofunction. However, M1 R activation causes gastrointestinal (GI) side effects in animals. We previously found that an M1 R positive allosteric modulator (PAM) with lower cooperativity (α-value) has a limited impact on ileum contraction and can produce a wider margin between cognitive improvement and GI side effects. In fact, TAK-071, a novel M1 R PAM with low cooperativity (α-value of 199), improved scopolamine-induced cognitive deficits with a wider margin against GI side effects than a high cooperative M1 R PAM, T-662 (α-value of 1786), in rats. Here, we describe the pharmacological characteristics of a novel low cooperative M1 R PAM T-495 (α-value of 170), using the clinically tested higher cooperative M1 R PAM MK-7622 (α-value of 511) as a control. In rats, T-495 caused diarrhea at a 100-fold higher dose than that required for the improvement of scopolamine-induced memory deficits. Contrastingly, MK-7622 showed memory improvement and induction of diarrhea at an equal dose. Combination of T-495, but not of MK-7622, and donepezil at each sub-effective dose improved scopolamine-induced memory deficits. Additionally, in mice with reduced acetylcholine levels in the forebrain via overexpression of A53T α-synuclein (ie, a mouse model of dementia with Lewy bodies and Parkinson's disease with dementia), T-495, like donepezil, reversed the memory deficits in the contextual fear conditioning test and Y-maze task. Thus, low cooperative M1 R PAMs are promising agents for the treatment of memory deficits associated with cholinergic dysfunction.
Collapse
Affiliation(s)
- Takao Mandai
- Neuroscience Drug Discovery Unit, Research, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| | - Yuu Sako
- Neuroscience Drug Discovery Unit, Research, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| | - Emi Kurimoto
- Neuroscience Drug Discovery Unit, Research, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| | - Yuji Shimizu
- Neuroscience Drug Discovery Unit, Research, Takeda Pharmaceutical Company Limited, Fujisawa, Japan.,Biomolecular Research Laboratories, Research, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| | - Minoru Nakamura
- Neuroscience Drug Discovery Unit, Research, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| | - Makoto Fushimi
- Neuroscience Drug Discovery Unit, Research, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| | - Ryouta Maeda
- Neuroscience Drug Discovery Unit, Research, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| | - Maki Miyamoto
- Drug Metabolism and Pharmacokinetics Research Laboratories, Research, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| | - Haruhide Kimura
- Neuroscience Drug Discovery Unit, Research, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| |
Collapse
|
14
|
Scarpa M, Hesse S, Bradley SJ. M1 muscarinic acetylcholine receptors: A therapeutic strategy for symptomatic and disease-modifying effects in Alzheimer's disease? ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2020; 88:277-310. [PMID: 32416870 DOI: 10.1016/bs.apha.2019.12.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The M1 muscarinic acetylcholine receptor (mAChR) plays a crucial role in learning and memory processes and has long been identified as a promising therapeutic target for the improvement of cognitive decline in Alzheimer's disease (AD). As such, clinical trials with xanomeline, a mAChR orthosteric agonist, showed an improvement in cognitive and behavioral symptoms associated with AD. Despite this, the clinical utility of xanomeline was hampered by a lack of M1 receptor selectivity and adverse cholinergic responses attributed to activation of peripheral M2 and M3 mAChRs. More recently, efforts have focused on developing more selective M1 compounds via targeting the less-conserved allosteric binding pockets. As such, positive allosteric modulators (PAMs) have emerged as an exciting strategy to achieve exquisite selectivity for the M1 mAChR in order to deliver improvements in cognitive function in AD. Furthermore, over recent years it has become increasingly apparent that M1 therapeutics may also offer disease-modifying effects in AD, due to the modulation of pathogenic amyloid processing. This article will review the progress made in the development of M1 selective ligands for the treatment of cognitive decline in AD, and will discuss the current evidence that selective targeting of the M1 mAChR could also have the potential to modify AD progression.
Collapse
Affiliation(s)
- Miriam Scarpa
- The Centre for Translational Pharmacology, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Sarah Hesse
- The Centre for Translational Pharmacology, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Sophie J Bradley
- The Centre for Translational Pharmacology, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom.
| |
Collapse
|
15
|
Moran SP, Xiang Z, Doyle CA, Maksymetz J, Lv X, Faltin S, Fisher NM, Niswender CM, Rook JM, Lindsley CW, Conn PJ. Biased M 1 receptor-positive allosteric modulators reveal role of phospholipase D in M 1-dependent rodent cortical plasticity. Sci Signal 2019; 12:12/610/eaax2057. [PMID: 31796631 DOI: 10.1126/scisignal.aax2057] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Highly selective, positive allosteric modulators (PAMs) of the M1 subtype of muscarinic acetylcholine receptor have emerged as an exciting new approach to potentially improve cognitive function in patients suffering from Alzheimer's disease and schizophrenia. Discovery programs have produced a structurally diverse range of M1 receptor PAMs with distinct pharmacological properties, including different extents of agonist activity and differences in signal bias. This includes biased M1 receptor PAMs that can potentiate coupling of the receptor to activation of phospholipase C (PLC) but not phospholipase D (PLD). However, little is known about the role of PLD in M1 receptor signaling in native systems, and it is not clear whether biased M1 PAMs display differences in modulating M1-mediated responses in native tissue. Using PLD inhibitors and PLD knockout mice, we showed that PLD was necessary for the induction of M1-dependent long-term depression (LTD) in the prefrontal cortex (PFC). Furthermore, biased M1 PAMs that did not couple to PLD not only failed to potentiate orthosteric agonist-induced LTD but also blocked M1-dependent LTD in the PFC. In contrast, biased and nonbiased M1 PAMs acted similarly in potentiating M1-dependent electrophysiological responses that were PLD independent. These findings demonstrate that PLD plays a critical role in the ability of M1 PAMs to modulate certain central nervous system (CNS) functions and that biased M1 PAMs function differently in brain regions implicated in cognition.
Collapse
Affiliation(s)
- Sean P Moran
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37232, USA.,Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA.,Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA
| | - Zixiu Xiang
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA.,Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA
| | - Catherine A Doyle
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA
| | - James Maksymetz
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA.,Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA
| | - Xiaohui Lv
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA
| | - Sehr Faltin
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA
| | - Nicole M Fisher
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA.,Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA
| | - Colleen M Niswender
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA.,Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA.,Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, TN 37240, USA
| | - Jerri M Rook
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37232, USA.,Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA.,Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA
| | - Craig W Lindsley
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA.,Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA.,Department of Chemistry, Vanderbilt University, Nashville, TN 37232, USA
| | - P Jeffrey Conn
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37232, USA. .,Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA.,Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA.,Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, TN 37240, USA
| |
Collapse
|
16
|
Moran SP, Maksymetz J, Conn PJ. Targeting Muscarinic Acetylcholine Receptors for the Treatment of Psychiatric and Neurological Disorders. Trends Pharmacol Sci 2019; 40:1006-1020. [PMID: 31711626 DOI: 10.1016/j.tips.2019.10.007] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 10/17/2019] [Accepted: 10/17/2019] [Indexed: 12/12/2022]
Abstract
Muscarinic acetylcholine receptors (mAChR) play important roles in regulating complex behaviors such as cognition, movement, and reward, making them ideally situated as potential drug targets for the treatment of several brain disorders. Recent advances in the discovery of subtype-selective allosteric modulators for mAChRs has provided an unprecedented opportunity for highly specific modulation of signaling by individual mAChR subtypes in the brain. Recently, mAChR allosteric modulators have entered clinical development for Alzheimer's disease (AD) and schizophrenia, and have potential utility for other brain disorders. However, mAChR allosteric modulators can display a diverse array of pharmacological properties, and a more nuanced understanding of the mAChR will be necessary to best translate preclinical findings into successful clinical treatments.
Collapse
Affiliation(s)
- Sean P Moran
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA; Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA
| | - James Maksymetz
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA; Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA
| | - P Jeffrey Conn
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA; Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA.
| |
Collapse
|
17
|
Pustovit RV, Itomi Y, Ringuet M, Diwakarla S, Chai XY, McQuade RM, Tsukimi Y, Furness JB. Muscarinic receptor 1 allosteric modulators stimulate colorectal emptying in dog, mouse and rat and resolve constipation. Neurogastroenterol Motil 2019; 31:e13692. [PMID: 31374156 DOI: 10.1111/nmo.13692] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Accepted: 07/19/2019] [Indexed: 01/15/2023]
Abstract
BACKGROUND Because M1 muscarinic receptors are expressed by enteric neurons, we investigated whether positive allosteric modulators of these receptors (M1PAMs) would enhance colorectal propulsion and defecation in dogs, mice, and rats. METHODS The potencies of the M1PAMs, T662 or T523, were investigated using M1 receptor-expressing CHO cells. Effectiveness of M1PAMs on defecation was investigated by oral administration in mice and rats, by recording propulsive contractions in anaesthetized rats and by recording high amplitude propagating contractions in dogs. KEY RESULTS PAM EC50 values in M1 receptor-expressing CHO cells were 0.7-1.8 nmol/L for T662 and 8-10 nmol/L for T523. The compounds had 1000-fold lower potencies as agonists. In anesthetized rats, both compounds elicited propulsive colorectal contractions, and in dogs, mice, and rats, oral administration increased fecal output. No adverse effects were observed in conscious animals. M1PAMs triggered propagated high amplitude contractions and caused defecation in dogs. Nerve-mediated contractions were enhanced in the isolated mouse colon. M1PAMs were equi-effective in rats with or without the pelvic nerves being severed. In two models of constipation in mice, opiate-induced constipation and constipation of aging, defecation was induced and constipation was reversed. CONCLUSION AND INFERENCES M1PAMs act at targets sites in the colorectum to enhance colorectal propulsion. They are effective across species, and they reverse experimentally induced constipation. Previous studies have shown that they are safe in human. Because they provide an enhancement of physiological control rather than being direct agonists, they are predicted to provide effective treatment for constipation.
Collapse
Affiliation(s)
- Ruslan V Pustovit
- Florey Institute of Neuroscience and Mental Health, Parkville, Vic., Australia.,Department of Anatomy & Neuroscience, University of Melbourne, Parkville, Vic., Australia
| | - Yasuo Itomi
- Gastroenterology Drug Discovery Unit, Takeda Pharmaceutical Company Limited, Kanagawa, Japan
| | - Mitchell Ringuet
- Florey Institute of Neuroscience and Mental Health, Parkville, Vic., Australia.,Department of Anatomy & Neuroscience, University of Melbourne, Parkville, Vic., Australia
| | - Shanti Diwakarla
- Florey Institute of Neuroscience and Mental Health, Parkville, Vic., Australia.,Department of Anatomy & Neuroscience, University of Melbourne, Parkville, Vic., Australia
| | - Xin-Yi Chai
- Florey Institute of Neuroscience and Mental Health, Parkville, Vic., Australia.,Department of Anatomy & Neuroscience, University of Melbourne, Parkville, Vic., Australia
| | - Rachel M McQuade
- Florey Institute of Neuroscience and Mental Health, Parkville, Vic., Australia.,Department of Anatomy & Neuroscience, University of Melbourne, Parkville, Vic., Australia
| | - Yasuhiro Tsukimi
- Gastroenterology Drug Discovery Unit, Takeda Pharmaceutical Company Limited, Kanagawa, Japan
| | - John B Furness
- Florey Institute of Neuroscience and Mental Health, Parkville, Vic., Australia.,Department of Anatomy & Neuroscience, University of Melbourne, Parkville, Vic., Australia
| |
Collapse
|
18
|
Mandai T, Kasahara M, Kurimoto E, Tanaka M, Suzuki M, Nakatani A, Kimura H. In Vivo Pharmacological Comparison of TAK-071, a Positive Allosteric Modulator of Muscarinic M 1 Receptor, and Xanomeline, an Agonist of Muscarinic M 1/M 4 Receptor, in Rodents. Neuroscience 2019; 414:60-76. [PMID: 31299348 DOI: 10.1016/j.neuroscience.2019.07.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 06/28/2019] [Accepted: 07/01/2019] [Indexed: 01/07/2023]
Abstract
Activation of the M1 muscarinic acetylcholine receptor (M1R) may be an effective therapeutic approach for Alzheimer's disease (AD), dementia with Lewy bodies, and schizophrenia. Previously, the M1R/M4R agonist xanomeline was shown to improve cognitive function and exert antipsychotic effects in patients with AD and schizophrenia. However, its clinical development was discontinued because of its cholinomimetic side effects. We compared in vivo pharmacological profiles of a novel M1R-selective positive allosteric modulator, TAK-071, and xanomeline in rodents. Xanomeline suppressed both methamphetamine- and MK-801-induced hyperlocomotion in mice, whereas TAK-071 suppressed only MK-801-induced hyperlocomotion. In a previous study, we showed that TAK-071 improved scopolamine-induced cognitive deficits in a rat novel object recognition task (NORT) with 33-fold margins versus cholinergic side effects (diarrhea). Xanomeline also improved scopolamine-induced cognitive impairments in a NORT; however, it had no margin versus cholinergic side effects (e.g., diarrhea, salivation, and hypoactivity) in rats. These side effects were observed even in M1R knockout mice. Evaluation of c-Fos expression as a marker of neural activation revealed that xanomeline increased the number of c-Fos-positive cells in several cortical areas, the hippocampal formation, amygdala, and nucleus accumbens. Other than in the orbital cortex and claustrum, TAK-071 induced similar c-Fos expression patterns. When donepezil was co-administered to increase the levels of acetylcholine, the number of TAK-071-induced c-Fos-positive cells in these brain regions was increased. TAK-071, through induction of similar neural activation as that seen with xanomeline, may produce procognitive and antipsychotic effects with improved cholinergic side effects.
Collapse
Affiliation(s)
- Takao Mandai
- Neuroscience Drug Discovery Unit, Research, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Maki Kasahara
- Neuroscience Drug Discovery Unit, Research, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Emi Kurimoto
- Neuroscience Drug Discovery Unit, Research, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Maiko Tanaka
- Neuroscience Drug Discovery Unit, Research, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Motohisa Suzuki
- Neuroscience Drug Discovery Unit, Research, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Atsushi Nakatani
- Neuroscience Drug Discovery Unit, Research, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Haruhide Kimura
- Neuroscience Drug Discovery Unit, Research, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan.
| |
Collapse
|
19
|
Molecular pharmacology of metabotropic receptors targeted by neuropsychiatric drugs. Nat Struct Mol Biol 2019; 26:535-544. [PMID: 31270468 DOI: 10.1038/s41594-019-0252-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 05/15/2019] [Indexed: 12/30/2022]
Abstract
Metabotropic receptors are responsible for so-called 'slow synaptic transmission' and mediate the effects of hundreds of peptide and non-peptide neurotransmitters and neuromodulators. Over the past decade or so, a revolution in membrane-protein structural determination has clarified the molecular determinants responsible for the actions of these receptors. This Review focuses on the G protein-coupled receptors (GPCRs) that are targets of neuropsychiatric drugs and shows how insights into the structure and function of these important synaptic proteins are accelerating understanding of their actions. Notably, elucidating the structure and function of GPCRs should enhance the structure-guided discovery of novel chemical tools with which to manipulate and understand these synaptic proteins.
Collapse
|
20
|
Thorn CA, Moon J, Bourbonais CA, Harms J, Edgerton JR, Stark E, Steyn SJ, Butter CR, Lazzaro JT, O’Connor RE, Popiolek M. Striatal, Hippocampal, and Cortical Networks Are Differentially Responsive to the M4- and M1-Muscarinic Acetylcholine Receptor Mediated Effects of Xanomeline. ACS Chem Neurosci 2019; 10:1753-1764. [PMID: 30480428 DOI: 10.1021/acschemneuro.8b00625] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Preclinical and clinical data suggest that muscarinic acetylcholine receptor activation may be therapeutically beneficial for the treatment of schizophrenia and Alzheimer's diseases. This is best exemplified by clinical observations with xanomeline, the efficacy of which is thought to be mediated through co-activation of the M1 and M4 muscarinic acetylcholine receptors (mAChRs). Here we examined the impact of treatment with xanomeline and compared it to the actions of selective M1 and M4 mAChR activators on in vivo intracellular signaling cascades in mice, including 3'-5'-cyclic adenosine monophosphate response element binding protein (CREB) phosphorylation and inositol phosphate-1 (IP1) accumulation in the striatum, hippocampus, and prefrontal cortex. We additionally assessed the effects of xanomeline on hippocampal electrophysiological signatures in rats using ex vivo recordings from CA1 (Cornu Ammonis 1) as well as in vivo hippocampal theta. As expected, xanomeline's effects across these readouts were consistent with activation of both M1 and M4 mAChRs; however, differences were observed across different brain regions, suggesting non-uniform activation of these receptor subtypes in the central nervous system. Interestingly, despite having nearly equal in vitro potency at the M1 and the M4 mAChRs, during in vivo assays xanomeline produced M4-like effects at significantly lower brain exposures than those at which M1-like effects were observed. Our results raise the possibility that clinical efficacy observed with xanomeline was driven, in part, through its non-uniform activation of mAChR subtypes in the central nervous system and, at lower doses, through preferential agonism of the M4 mAChR.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - John T. Lazzaro
- Primary Pharmacology Group, Pfizer Worldwide Research and Development, Groton, Connecticut 06340, United States
| | - Rebecca E. O’Connor
- Primary Pharmacology Group, Pfizer Worldwide Research and Development, Groton, Connecticut 06340, United States
| | | |
Collapse
|
21
|
TAK-071, a muscarinic M1 receptor positive allosteric modulator, attenuates scopolamine-induced quantitative electroencephalogram power spectral changes in cynomolgus monkeys. PLoS One 2019; 14:e0207969. [PMID: 30856192 PMCID: PMC6411103 DOI: 10.1371/journal.pone.0207969] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 02/26/2019] [Indexed: 12/22/2022] Open
Abstract
Activation of the muscarinic M1 receptor is a promising approach to improve cognitive deficits associated with cholinergic dysfunction in Alzheimer’s disease, dementia with Lewy bodies, and schizophrenia. TAK-071 is an M1-selective positive allosteric modulator that improves cognitive deficits induced by scopolamine, a non-selective muscarinic receptor antagonist, with reduced side effects on gastrointestinal function in rats. In this study, we explored changes in quantitative electroencephalography (qEEG) power bands, with or without scopolamine challenge, as a non-invasive translational biomarker for the effect of TAK-071 in cynomolgus monkeys. Scopolamine has been reported to increase theta and delta power bands and decrease alpha power band in healthy volunteers. In line with the clinical observations, scopolamine (25–100 μg/kg, subcutaneous administration [s.c.]) increased theta and delta power bands in cynomolgus monkeys in a dose-dependent manner, whereas it had the opposite effect on alpha power band. The effects of TAK-071 on scopolamine (25 μg/kg, s.c.)-induced qEEG spectral changes were examined using an acetylcholinesterase inhibitor donepezil and a muscarinic M1/M4 receptor agonist xanomeline as comparative cholinomimetics. TAK-071 (0.3–3 mg/kg, oral administration [p.o.]), donepezil (3 mg/kg, p.o.), and xanomeline (1 mg/kg, s.c.) suppressed the scopolamine-induced increases in alpha, theta, and delta power bands. These results suggest that changes in specific qEEG power bands, in particular theta and delta power bands in the context of scopolamine challenge, could be used as translational biomarkers for the evaluation of TAK-071 in clinical studies.
Collapse
|
22
|
Broad LM, Sanger HE, Mogg AJ, Colvin EM, Zwart R, Evans DA, Pasqui F, Sher E, Wishart GN, Barth VN, Felder CC, Goldsmith PJ. Identification and pharmacological profile of SPP1, a potent, functionally selective and brain penetrant agonist at muscarinic M 1 receptors. Br J Pharmacol 2019; 176:110-126. [PMID: 30276808 PMCID: PMC6284335 DOI: 10.1111/bph.14510] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 09/14/2018] [Accepted: 09/18/2018] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND PURPOSE We aimed to identify and develop novel, selective muscarinic M1 receptor agonists as potential therapeutic agents for the symptomatic treatment of Alzheimer's disease. EXPERIMENTAL APPROACH We developed and utilized a novel M1 receptor occupancy assay to drive a structure activity relationship in a relevant brain region while simultaneously tracking drug levels in plasma and brain to optimize for central penetration. Functional activity was tracked in relevant native in vitro assays allowing translational (rat-human) benchmarking of structure-activity relationship molecules to clinical comparators. KEY RESULTS Using this paradigm, we identified a series of M1 receptor selective molecules displaying desirable in vitro and in vivo properties and optimized key features, such as central penetration while maintaining selectivity and a partial agonist profile. From these compounds, we selected spiropiperidine 1 (SPP1). In vitro, SPP1 is a potent, partial agonist of cortical and hippocampal M1 receptors with activity conserved across species. SPP1 displays high functional selectivity for M1 receptors over native M2 and M3 receptor anti-targets and over a panel of other targets. Assessment of central target engagement by receptor occupancy reveals SPP1 significantly and dose-dependently occupies rodent cortical M1 receptors. CONCLUSIONS AND IMPLICATIONS We report the discovery of SPP1, a novel, functionally selective, brain penetrant partial orthosteric agonist at M1 receptors, identified by a novel receptor occupancy assay. SPP1 is amenable to in vitro and in vivo study and provides a valuable research tool to further probe the role of M1 receptors in physiology and disease.
Collapse
Affiliation(s)
- Lisa M Broad
- Eli Lilly and Company, Lilly Research CentreWindleshamSurreyUK
| | - Helen E Sanger
- Eli Lilly and Company, Lilly Research CentreWindleshamSurreyUK
| | - Adrian J Mogg
- Eli Lilly and Company, Lilly Research CentreWindleshamSurreyUK
| | - Ellen M Colvin
- Eli Lilly and Company, Lilly Research CentreWindleshamSurreyUK
| | - Ruud Zwart
- Eli Lilly and Company, Lilly Research CentreWindleshamSurreyUK
| | - David A Evans
- Eli Lilly and Company, Lilly Research CentreWindleshamSurreyUK
| | | | - Emanuele Sher
- Eli Lilly and Company, Lilly Research CentreWindleshamSurreyUK
| | | | - Vanessa N Barth
- Eli Lilly and Company, Lilly Corporate CenterIndianapolisINUSA
| | | | | |
Collapse
|
23
|
Rook JM, Bertron JL, Cho HP, Garcia-Barrantes PM, Moran SP, Maksymetz JT, Nance KD, Dickerson JW, Remke DH, Chang S, Harp JM, Blobaum AL, Niswender CM, Jones CK, Stauffer SR, Conn PJ, Lindsley CW. A Novel M 1 PAM VU0486846 Exerts Efficacy in Cognition Models without Displaying Agonist Activity or Cholinergic Toxicity. ACS Chem Neurosci 2018; 9:2274-2285. [PMID: 29701957 PMCID: PMC6146057 DOI: 10.1021/acschemneuro.8b00131] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Selective activation of the M1 subtype of muscarinic acetylcholine receptor, via positive allosteric modulation (PAM), is an exciting strategy to improve cognition in schizophrenia and Alzheimer's disease patients. However, highly potent M1 ago-PAMs, such as MK-7622, PF-06764427, and PF-06827443, can engender excessive activation of M1, leading to agonist actions in the prefrontal cortex (PFC) that impair cognitive function, induce behavioral convulsions, and result in other classic cholinergic adverse events (AEs). Here, we report a fundamentally new and highly selective M1 PAM, VU0486846. VU0486846 possesses only weak agonist activity in M1-expressing cell lines with high receptor reserve and is devoid of agonist actions in the PFC, unlike previously reported ago-PAMs MK-7622, PF-06764427, and PF-06827443. Moreover, VU0486846 shows no interaction with antagonist binding at the orthosteric acetylcholine (ACh) site (e.g., neither bitopic nor displaying negative cooperativity with [3H]-NMS binding at the orthosteric site), no seizure liability at high brain exposures, and no cholinergic AEs. However, as opposed to ago-PAMs, VU0486846 produces robust efficacy in the novel object recognition model of cognitive function. Importantly, we show for the first time that an M1 PAM can reverse the cognitive deficits induced by atypical antipsychotics, such as risperidone. These findings further strengthen the argument that compounds with modest in vitro M1 PAM activity (EC50 > 100 nM) and pure-PAM activity in native tissues display robust procognitive efficacy without AEs mediated by excessive activation of M1. Overall, the combination of compound assessment with recombinant in vitro assays (mindful of receptor reserve), native tissue systems (PFC), and phenotypic screens (behavioral convulsions) is essential to fully understand and evaluate lead compounds and enhance success in clinical development.
Collapse
Affiliation(s)
- Jerri M. Rook
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232-6600, United States
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232-6600, United States
| | - Jeanette L. Bertron
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37232-6600, United States
| | - Hyekyung P. Cho
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232-6600, United States
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232-6600, United States
| | - Pedro M. Garcia-Barrantes
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232-6600, United States
| | - Sean P. Moran
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232-6600, United States
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232-6600, United States
| | - James T. Maksymetz
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232-6600, United States
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232-6600, United States
| | - Kellie D. Nance
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232-6600, United States
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232-6600, United States
| | - Jonathan W. Dickerson
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232-6600, United States
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232-6600, United States
| | - Daniel H. Remke
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232-6600, United States
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232-6600, United States
| | - Sichen Chang
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232-6600, United States
| | - Joel M. Harp
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee 37232-6600, United States
| | - Anna L. Blobaum
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232-6600, United States
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232-6600, United States
| | - Colleen M. Niswender
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232-6600, United States
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232-6600, United States
- Vanderbilt Kennedy Center, Vanderbilt University, Nashville, Tennessee 37232-6600, United States
| | - Carrie K. Jones
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232-6600, United States
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232-6600, United States
| | - Shaun R. Stauffer
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232-6600, United States
| | - P. Jeffrey Conn
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232-6600, United States
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232-6600, United States
- Vanderbilt Kennedy Center, Vanderbilt University, Nashville, Tennessee 37232-6600, United States
| | - Craig W. Lindsley
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232-6600, United States
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37232-6600, United States
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee 37232-6600, United States
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232-6600, United States
| |
Collapse
|
24
|
M 1-positive allosteric modulators lacking agonist activity provide the optimal profile for enhancing cognition. Neuropsychopharmacology 2018; 43:1763-1771. [PMID: 29581537 PMCID: PMC6006294 DOI: 10.1038/s41386-018-0033-9] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 02/11/2018] [Accepted: 02/16/2018] [Indexed: 11/09/2022]
Abstract
Highly selective positive allosteric modulators (PAMs) of the M1 subtype of muscarinic acetylcholine receptor have emerged as an exciting new approach for improving cognitive function in patients suffering from Alzheimer's disease and schizophrenia. However, excessive activation of M1 is known to induce seizure activity and have actions in the prefrontal cortex (PFC) that could impair cognitive function. We now report a series of pharmacological, electrophysiological, and behavioral studies in which we find that recently reported M1 PAMs, PF-06764427 and MK-7622, have robust agonist activity in cell lines and agonist effects in the mouse PFC, and have the potential to overactivate the M1 receptor and disrupt PFC function. In contrast, structurally distinct M1 PAMs (VU0453595 and VU0550164) are devoid of agonist activity in cell lines and maintain activity dependence of M1 activation in the PFC. Consistent with the previously reported effect of PF-06764427, the ago-PAM MK-7622 induces severe behavioral convulsions in mice. In contrast, VU0453595 does not induce behavioral convulsions at doses well above those required for maximal efficacy in enhancing cognitive function. Furthermore, in contrast to the robust efficacy of VU0453595, the ago-PAM MK-7622 failed to improve novel object recognition, a rodent assay of cognitive function. These findings suggest that in vivo cognition-enhancing efficacy of M1 PAMs can be observed with PAMs lacking intrinsic agonist activity and that intrinsic agonist activity of M1 PAMs may contribute to adverse effects and reduced efficacy in improving cognitive function.
Collapse
|
25
|
Vijayraghavan S, Major AJ, Everling S. Muscarinic M1 Receptor Overstimulation Disrupts Working Memory Activity for Rules in Primate Prefrontal Cortex. Neuron 2018; 98:1256-1268.e4. [PMID: 29887340 DOI: 10.1016/j.neuron.2018.05.027] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Revised: 04/10/2018] [Accepted: 05/17/2018] [Indexed: 10/14/2022]
Abstract
Acetylcholine release in the prefrontal cortex (PFC), acting through muscarinic receptors, has an essential role in regulating flexible behavior and working memory (WM). General muscarinic receptor blockade disrupts PFC WM representations, while selective stimulation of muscarinic receptor subtypes is of great interest for the treatment of cognitive dysfunction in Alzheimer's disease. Here, we tested selective stimulation and blockade of muscarinic M1 receptors (M1Rs) in macaque PFC, during performance of a cognitive control task in which rules maintained in WM specified saccadic responses. We hypothesized that M1R blockade and stimulation would disrupt and enhance rule representation in WM, respectively. Unexpectedly, M1R blockade did not consistently affect PFC neuronal rule selectivity. Moreover, M1R stimulation suppressed PFC activity, and at higher doses, degraded rule representations. Our results suggest that, in primates, the deleterious effects of general muscarinic blockade on PFC WM activity are not mediated by M1Rs, while their overstimulation deteriorates PFC rule maintenance.
Collapse
Affiliation(s)
- Susheel Vijayraghavan
- Department of Physiology and Pharmacology, The University of Western Ontario, London, ON N6A 5B7, Canada; Robarts Research Institute, The University of Western Ontario, London, ON N6A 5B7, Canada
| | - Alex James Major
- Graduate Program in Neuroscience, The University of Western Ontario, London, ON N6A 5B7, Canada
| | - Stefan Everling
- Department of Physiology and Pharmacology, The University of Western Ontario, London, ON N6A 5B7, Canada; Robarts Research Institute, The University of Western Ontario, London, ON N6A 5B7, Canada; Graduate Program in Neuroscience, The University of Western Ontario, London, ON N6A 5B7, Canada.
| |
Collapse
|
26
|
Bradley SJ, Molloy C, Bundgaard C, Mogg AJ, Thompson KJ, Dwomoh L, Sanger HE, Crabtree MD, Brooke SM, Sexton PM, Felder CC, Christopoulos A, Broad LM, Tobin AB, Langmead CJ. Bitopic Binding Mode of an M 1 Muscarinic Acetylcholine Receptor Agonist Associated with Adverse Clinical Trial Outcomes. Mol Pharmacol 2018; 93:645-656. [PMID: 29695609 PMCID: PMC5963591 DOI: 10.1124/mol.118.111872] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 03/27/2018] [Indexed: 12/30/2022] Open
Abstract
The realization of the therapeutic potential of targeting the M1
muscarinic acetylcholine receptor (mAChR) for the treatment of cognitive decline in
Alzheimer’s disease has prompted the discovery of M1 mAChR ligands
showing efficacy in alleviating cognitive dysfunction in both rodents and humans.
Among these is GSK1034702
(7-fluoro-5-methyl-3-[1-(oxan-4-yl)piperidin-4-yl]-1H-benzimidazol-2-one),
described previously as a potent M1 receptor allosteric agonist, which
showed procognitive effects in rodents and improved immediate memory in a clinical
nicotine withdrawal test but induced significant side effects. Here we provide
evidence using ligand binding, chemical biology and functional assays to establish
that rather than the allosteric mechanism claimed, GSK1034702 interacts in a bitopic
manner at the M1 mAChR such that it can concomitantly span both the
orthosteric and an allosteric binding site. The bitopic nature of GSK1034702,
together with the intrinsic agonist activity and a lack of muscarinic receptor
subtype selectivity reported here, all likely contribute to the adverse effects of
this molecule in clinical trials. Although they impart beneficial effects on learning
and memory, we conclude that these properties are undesirable in a clinical candidate
due to the likelihood of adverse side effects. Rather, our data support the notion
that “pure” positive allosteric modulators showing selectivity for the
M1 mAChR with low levels of intrinsic activity would be preferable to
provide clinical efficacy with low adverse responses.
Collapse
Affiliation(s)
- Sophie J Bradley
- The Centre for Translational Pharmacology, Institute of Molecular, Cell, and Systems Biology, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow, Scotland (S.J.B., C.M., K.J.T., L.D., S.M.B., A.B.T.); Eli Lilly & Co. Neuroscience, Windlesham, Surrey, United Kingdom (C.B., A.J.M., H.E.S., M.D.C., L.M.B.); Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (P.M.S., A.C., C.J.L.); and Eli Lilly & Co. Neuroscience, Indianapolis, Indiana (C.C.F.)
| | - Colin Molloy
- The Centre for Translational Pharmacology, Institute of Molecular, Cell, and Systems Biology, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow, Scotland (S.J.B., C.M., K.J.T., L.D., S.M.B., A.B.T.); Eli Lilly & Co. Neuroscience, Windlesham, Surrey, United Kingdom (C.B., A.J.M., H.E.S., M.D.C., L.M.B.); Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (P.M.S., A.C., C.J.L.); and Eli Lilly & Co. Neuroscience, Indianapolis, Indiana (C.C.F.)
| | - Christoffer Bundgaard
- The Centre for Translational Pharmacology, Institute of Molecular, Cell, and Systems Biology, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow, Scotland (S.J.B., C.M., K.J.T., L.D., S.M.B., A.B.T.); Eli Lilly & Co. Neuroscience, Windlesham, Surrey, United Kingdom (C.B., A.J.M., H.E.S., M.D.C., L.M.B.); Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (P.M.S., A.C., C.J.L.); and Eli Lilly & Co. Neuroscience, Indianapolis, Indiana (C.C.F.)
| | - Adrian J Mogg
- The Centre for Translational Pharmacology, Institute of Molecular, Cell, and Systems Biology, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow, Scotland (S.J.B., C.M., K.J.T., L.D., S.M.B., A.B.T.); Eli Lilly & Co. Neuroscience, Windlesham, Surrey, United Kingdom (C.B., A.J.M., H.E.S., M.D.C., L.M.B.); Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (P.M.S., A.C., C.J.L.); and Eli Lilly & Co. Neuroscience, Indianapolis, Indiana (C.C.F.)
| | - Karen J Thompson
- The Centre for Translational Pharmacology, Institute of Molecular, Cell, and Systems Biology, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow, Scotland (S.J.B., C.M., K.J.T., L.D., S.M.B., A.B.T.); Eli Lilly & Co. Neuroscience, Windlesham, Surrey, United Kingdom (C.B., A.J.M., H.E.S., M.D.C., L.M.B.); Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (P.M.S., A.C., C.J.L.); and Eli Lilly & Co. Neuroscience, Indianapolis, Indiana (C.C.F.)
| | - Louis Dwomoh
- The Centre for Translational Pharmacology, Institute of Molecular, Cell, and Systems Biology, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow, Scotland (S.J.B., C.M., K.J.T., L.D., S.M.B., A.B.T.); Eli Lilly & Co. Neuroscience, Windlesham, Surrey, United Kingdom (C.B., A.J.M., H.E.S., M.D.C., L.M.B.); Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (P.M.S., A.C., C.J.L.); and Eli Lilly & Co. Neuroscience, Indianapolis, Indiana (C.C.F.)
| | - Helen E Sanger
- The Centre for Translational Pharmacology, Institute of Molecular, Cell, and Systems Biology, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow, Scotland (S.J.B., C.M., K.J.T., L.D., S.M.B., A.B.T.); Eli Lilly & Co. Neuroscience, Windlesham, Surrey, United Kingdom (C.B., A.J.M., H.E.S., M.D.C., L.M.B.); Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (P.M.S., A.C., C.J.L.); and Eli Lilly & Co. Neuroscience, Indianapolis, Indiana (C.C.F.)
| | - Michael D Crabtree
- The Centre for Translational Pharmacology, Institute of Molecular, Cell, and Systems Biology, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow, Scotland (S.J.B., C.M., K.J.T., L.D., S.M.B., A.B.T.); Eli Lilly & Co. Neuroscience, Windlesham, Surrey, United Kingdom (C.B., A.J.M., H.E.S., M.D.C., L.M.B.); Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (P.M.S., A.C., C.J.L.); and Eli Lilly & Co. Neuroscience, Indianapolis, Indiana (C.C.F.)
| | - Simon M Brooke
- The Centre for Translational Pharmacology, Institute of Molecular, Cell, and Systems Biology, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow, Scotland (S.J.B., C.M., K.J.T., L.D., S.M.B., A.B.T.); Eli Lilly & Co. Neuroscience, Windlesham, Surrey, United Kingdom (C.B., A.J.M., H.E.S., M.D.C., L.M.B.); Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (P.M.S., A.C., C.J.L.); and Eli Lilly & Co. Neuroscience, Indianapolis, Indiana (C.C.F.)
| | - Patrick M Sexton
- The Centre for Translational Pharmacology, Institute of Molecular, Cell, and Systems Biology, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow, Scotland (S.J.B., C.M., K.J.T., L.D., S.M.B., A.B.T.); Eli Lilly & Co. Neuroscience, Windlesham, Surrey, United Kingdom (C.B., A.J.M., H.E.S., M.D.C., L.M.B.); Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (P.M.S., A.C., C.J.L.); and Eli Lilly & Co. Neuroscience, Indianapolis, Indiana (C.C.F.)
| | - Christian C Felder
- The Centre for Translational Pharmacology, Institute of Molecular, Cell, and Systems Biology, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow, Scotland (S.J.B., C.M., K.J.T., L.D., S.M.B., A.B.T.); Eli Lilly & Co. Neuroscience, Windlesham, Surrey, United Kingdom (C.B., A.J.M., H.E.S., M.D.C., L.M.B.); Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (P.M.S., A.C., C.J.L.); and Eli Lilly & Co. Neuroscience, Indianapolis, Indiana (C.C.F.)
| | - Arthur Christopoulos
- The Centre for Translational Pharmacology, Institute of Molecular, Cell, and Systems Biology, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow, Scotland (S.J.B., C.M., K.J.T., L.D., S.M.B., A.B.T.); Eli Lilly & Co. Neuroscience, Windlesham, Surrey, United Kingdom (C.B., A.J.M., H.E.S., M.D.C., L.M.B.); Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (P.M.S., A.C., C.J.L.); and Eli Lilly & Co. Neuroscience, Indianapolis, Indiana (C.C.F.)
| | - Lisa M Broad
- The Centre for Translational Pharmacology, Institute of Molecular, Cell, and Systems Biology, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow, Scotland (S.J.B., C.M., K.J.T., L.D., S.M.B., A.B.T.); Eli Lilly & Co. Neuroscience, Windlesham, Surrey, United Kingdom (C.B., A.J.M., H.E.S., M.D.C., L.M.B.); Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (P.M.S., A.C., C.J.L.); and Eli Lilly & Co. Neuroscience, Indianapolis, Indiana (C.C.F.)
| | - Andrew B Tobin
- The Centre for Translational Pharmacology, Institute of Molecular, Cell, and Systems Biology, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow, Scotland (S.J.B., C.M., K.J.T., L.D., S.M.B., A.B.T.); Eli Lilly & Co. Neuroscience, Windlesham, Surrey, United Kingdom (C.B., A.J.M., H.E.S., M.D.C., L.M.B.); Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (P.M.S., A.C., C.J.L.); and Eli Lilly & Co. Neuroscience, Indianapolis, Indiana (C.C.F.)
| | - Christopher J Langmead
- The Centre for Translational Pharmacology, Institute of Molecular, Cell, and Systems Biology, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow, Scotland (S.J.B., C.M., K.J.T., L.D., S.M.B., A.B.T.); Eli Lilly & Co. Neuroscience, Windlesham, Surrey, United Kingdom (C.B., A.J.M., H.E.S., M.D.C., L.M.B.); Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (P.M.S., A.C., C.J.L.); and Eli Lilly & Co. Neuroscience, Indianapolis, Indiana (C.C.F.)
| |
Collapse
|
27
|
Mogg AJ, Eessalu T, Johnson M, Wright R, Sanger HE, Xiao H, Crabtree MG, Smith A, Colvin EM, Schober D, Gehlert D, Jesudason C, Goldsmith PJ, Johnson MP, Felder CC, Barth VN, Broad LM. In Vitro Pharmacological Characterization and In Vivo Validation of LSN3172176 a Novel M1 Selective Muscarinic Receptor Agonist Tracer Molecule for Positron Emission Tomography. J Pharmacol Exp Ther 2018; 365:602-613. [PMID: 29643252 DOI: 10.1124/jpet.117.246454] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Accepted: 04/05/2018] [Indexed: 12/20/2022] Open
Abstract
In the search for improved symptomatic treatment options for neurodegenerative and neuropsychiatric diseases, muscarinic acetylcholine M1 receptors (M1 mAChRs) have received significant attention. Drug development efforts have identified a number of novel ligands, some of which have advanced to the clinic. However, a significant issue for progressing these therapeutics is the lack of robust, translatable, and validated biomarkers. One valuable approach to assessing target engagement is to use positron emission tomography (PET) tracers. In this study we describe the pharmacological characterization of a selective M1 agonist amenable for in vivo tracer studies. We used a novel direct binding assay to identify nonradiolabeled ligands, including LSN3172176, with the favorable characteristics required for a PET tracer. In vitro functional and radioligand binding experiments revealed that LSN3172176 was a potent partial agonist (EC50 2.4-7.0 nM, Emax 43%-73%), displaying binding selectivity for M1 mAChRs (Kd = 1.5 nM) that was conserved across species (native tissue Kd = 1.02, 2.66, 8, and 1.03 at mouse, rat, monkey, and human, respectively). Overall selectivity of LSN3172176 appeared to be a product of potency and stabilization of the high-affinity state of the M1 receptor, relative to other mAChR subtypes (M1 > M2, M4, M5 > M3). In vivo, use of wild-type and mAChR knockout mice further supported the M1-preferring selectivity profile of LSN3172176 for the M1 receptor (78% reduction in cortical occupancy in M1 KO mice). These findings support the development of LSN3172176 as a potential PET tracer for assessment of M1 mAChR target engagement in the clinic and to further elucidate the function of M1 mAChRs in health and disease.
Collapse
Affiliation(s)
- Adrian J Mogg
- Eli Lilly & Co. Ltd., Lilly Research Centre, Windlesham, Surrey, United Kingdom (A.J.M., H.E.S., M.G.C., A.S., E.M.C., P.J.G., L.M.B.) and Eli Lilly & Co. Ltd., Lilly Corporate Center, Indianapolis, Indiana (T.E., M.J., R.W., H.X., D.S., D.G., C.J., M.P.J., C.C.F., V.N.B.)
| | - Thomas Eessalu
- Eli Lilly & Co. Ltd., Lilly Research Centre, Windlesham, Surrey, United Kingdom (A.J.M., H.E.S., M.G.C., A.S., E.M.C., P.J.G., L.M.B.) and Eli Lilly & Co. Ltd., Lilly Corporate Center, Indianapolis, Indiana (T.E., M.J., R.W., H.X., D.S., D.G., C.J., M.P.J., C.C.F., V.N.B.)
| | - Megan Johnson
- Eli Lilly & Co. Ltd., Lilly Research Centre, Windlesham, Surrey, United Kingdom (A.J.M., H.E.S., M.G.C., A.S., E.M.C., P.J.G., L.M.B.) and Eli Lilly & Co. Ltd., Lilly Corporate Center, Indianapolis, Indiana (T.E., M.J., R.W., H.X., D.S., D.G., C.J., M.P.J., C.C.F., V.N.B.)
| | - Rebecca Wright
- Eli Lilly & Co. Ltd., Lilly Research Centre, Windlesham, Surrey, United Kingdom (A.J.M., H.E.S., M.G.C., A.S., E.M.C., P.J.G., L.M.B.) and Eli Lilly & Co. Ltd., Lilly Corporate Center, Indianapolis, Indiana (T.E., M.J., R.W., H.X., D.S., D.G., C.J., M.P.J., C.C.F., V.N.B.)
| | - Helen E Sanger
- Eli Lilly & Co. Ltd., Lilly Research Centre, Windlesham, Surrey, United Kingdom (A.J.M., H.E.S., M.G.C., A.S., E.M.C., P.J.G., L.M.B.) and Eli Lilly & Co. Ltd., Lilly Corporate Center, Indianapolis, Indiana (T.E., M.J., R.W., H.X., D.S., D.G., C.J., M.P.J., C.C.F., V.N.B.)
| | - Hongling Xiao
- Eli Lilly & Co. Ltd., Lilly Research Centre, Windlesham, Surrey, United Kingdom (A.J.M., H.E.S., M.G.C., A.S., E.M.C., P.J.G., L.M.B.) and Eli Lilly & Co. Ltd., Lilly Corporate Center, Indianapolis, Indiana (T.E., M.J., R.W., H.X., D.S., D.G., C.J., M.P.J., C.C.F., V.N.B.)
| | - Michael G Crabtree
- Eli Lilly & Co. Ltd., Lilly Research Centre, Windlesham, Surrey, United Kingdom (A.J.M., H.E.S., M.G.C., A.S., E.M.C., P.J.G., L.M.B.) and Eli Lilly & Co. Ltd., Lilly Corporate Center, Indianapolis, Indiana (T.E., M.J., R.W., H.X., D.S., D.G., C.J., M.P.J., C.C.F., V.N.B.)
| | - Alex Smith
- Eli Lilly & Co. Ltd., Lilly Research Centre, Windlesham, Surrey, United Kingdom (A.J.M., H.E.S., M.G.C., A.S., E.M.C., P.J.G., L.M.B.) and Eli Lilly & Co. Ltd., Lilly Corporate Center, Indianapolis, Indiana (T.E., M.J., R.W., H.X., D.S., D.G., C.J., M.P.J., C.C.F., V.N.B.)
| | - Ellen M Colvin
- Eli Lilly & Co. Ltd., Lilly Research Centre, Windlesham, Surrey, United Kingdom (A.J.M., H.E.S., M.G.C., A.S., E.M.C., P.J.G., L.M.B.) and Eli Lilly & Co. Ltd., Lilly Corporate Center, Indianapolis, Indiana (T.E., M.J., R.W., H.X., D.S., D.G., C.J., M.P.J., C.C.F., V.N.B.)
| | - Douglas Schober
- Eli Lilly & Co. Ltd., Lilly Research Centre, Windlesham, Surrey, United Kingdom (A.J.M., H.E.S., M.G.C., A.S., E.M.C., P.J.G., L.M.B.) and Eli Lilly & Co. Ltd., Lilly Corporate Center, Indianapolis, Indiana (T.E., M.J., R.W., H.X., D.S., D.G., C.J., M.P.J., C.C.F., V.N.B.)
| | - Donald Gehlert
- Eli Lilly & Co. Ltd., Lilly Research Centre, Windlesham, Surrey, United Kingdom (A.J.M., H.E.S., M.G.C., A.S., E.M.C., P.J.G., L.M.B.) and Eli Lilly & Co. Ltd., Lilly Corporate Center, Indianapolis, Indiana (T.E., M.J., R.W., H.X., D.S., D.G., C.J., M.P.J., C.C.F., V.N.B.)
| | - Cynthia Jesudason
- Eli Lilly & Co. Ltd., Lilly Research Centre, Windlesham, Surrey, United Kingdom (A.J.M., H.E.S., M.G.C., A.S., E.M.C., P.J.G., L.M.B.) and Eli Lilly & Co. Ltd., Lilly Corporate Center, Indianapolis, Indiana (T.E., M.J., R.W., H.X., D.S., D.G., C.J., M.P.J., C.C.F., V.N.B.)
| | - Paul J Goldsmith
- Eli Lilly & Co. Ltd., Lilly Research Centre, Windlesham, Surrey, United Kingdom (A.J.M., H.E.S., M.G.C., A.S., E.M.C., P.J.G., L.M.B.) and Eli Lilly & Co. Ltd., Lilly Corporate Center, Indianapolis, Indiana (T.E., M.J., R.W., H.X., D.S., D.G., C.J., M.P.J., C.C.F., V.N.B.)
| | - Michael P Johnson
- Eli Lilly & Co. Ltd., Lilly Research Centre, Windlesham, Surrey, United Kingdom (A.J.M., H.E.S., M.G.C., A.S., E.M.C., P.J.G., L.M.B.) and Eli Lilly & Co. Ltd., Lilly Corporate Center, Indianapolis, Indiana (T.E., M.J., R.W., H.X., D.S., D.G., C.J., M.P.J., C.C.F., V.N.B.)
| | - Christian C Felder
- Eli Lilly & Co. Ltd., Lilly Research Centre, Windlesham, Surrey, United Kingdom (A.J.M., H.E.S., M.G.C., A.S., E.M.C., P.J.G., L.M.B.) and Eli Lilly & Co. Ltd., Lilly Corporate Center, Indianapolis, Indiana (T.E., M.J., R.W., H.X., D.S., D.G., C.J., M.P.J., C.C.F., V.N.B.)
| | - Vanessa N Barth
- Eli Lilly & Co. Ltd., Lilly Research Centre, Windlesham, Surrey, United Kingdom (A.J.M., H.E.S., M.G.C., A.S., E.M.C., P.J.G., L.M.B.) and Eli Lilly & Co. Ltd., Lilly Corporate Center, Indianapolis, Indiana (T.E., M.J., R.W., H.X., D.S., D.G., C.J., M.P.J., C.C.F., V.N.B.)
| | - Lisa M Broad
- Eli Lilly & Co. Ltd., Lilly Research Centre, Windlesham, Surrey, United Kingdom (A.J.M., H.E.S., M.G.C., A.S., E.M.C., P.J.G., L.M.B.) and Eli Lilly & Co. Ltd., Lilly Corporate Center, Indianapolis, Indiana (T.E., M.J., R.W., H.X., D.S., D.G., C.J., M.P.J., C.C.F., V.N.B.)
| |
Collapse
|
28
|
Cramer PE, Gentzel RC, Tanis KQ, Vardigan J, Wang Y, Connolly B, Manfre P, Lodge K, Renger JJ, Zerbinatti C, Uslaner JM. Aging African green monkeys manifest transcriptional, pathological, and cognitive hallmarks of human Alzheimer's disease. Neurobiol Aging 2018; 64:92-106. [DOI: 10.1016/j.neurobiolaging.2017.12.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 12/12/2017] [Accepted: 12/12/2017] [Indexed: 12/20/2022]
|
29
|
Uslaner JM, Kuduk SD, Wittmann M, Lange HS, Fox SV, Min C, Pajkovic N, Harris D, Cilissen C, Mahon C, Mostoller K, Warrington S, Beshore DC. Preclinical to Human Translational Pharmacology of the Novel M1 Positive Allosteric Modulator MK-7622. J Pharmacol Exp Ther 2018; 365:556-566. [DOI: 10.1124/jpet.117.245894] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 03/16/2018] [Indexed: 11/22/2022] Open
|
30
|
Current status of muscarinic M1 and M4 receptors as drug targets for neurodegenerative diseases. Neuropharmacology 2018; 136:449-458. [PMID: 29374561 DOI: 10.1016/j.neuropharm.2018.01.028] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 01/09/2018] [Accepted: 01/21/2018] [Indexed: 01/17/2023]
Abstract
The cholinergic signalling system has been an attractive pathway to seek targets for modulation of arousal, cognition, and attention which are compromised in neurodegenerative and neuropsychiatric diseases. The acetylcholine muscarinic receptor M1 and M4 subtypes which are highly expressed in the central nervous system, in cortex, hippocampus and striatum, key areas of cognitive and neuropsychiatric control, have received particular attention. Historical muscarinic drug development yielded first generation agonists with modest selectivity for these two receptor targets over M2 and M3 receptors, the major peripheral sub-types hypothesised to underlie the dose-limiting clinical side effects. More recent compound screening and medicinal chemistry optimization of orthosteric and allosteric agonists, and positive allosteric modulators binding to sites distinct from the highly homologous acetylcholine binding pocket have yielded a collection of highly selective tool compounds for preclinical validation studies. Several M1 selective ligands have progressed to early clinical development and in time will hopefully lead to useful therapeutics for treating symptoms of Alzheimer's disease and related disorders. This article is part of the Special Issue entitled 'Neuropharmacology on Muscarinic Receptors'.
Collapse
|
31
|
Košak U, Brus B, Knez D, Žakelj S, Trontelj J, Pišlar A, Šink R, Jukič M, Živin M, Podkowa A, Nachon F, Brazzolotto X, Stojan J, Kos J, Coquelle N, Sałat K, Colletier JP, Gobec S. The Magic of Crystal Structure-Based Inhibitor Optimization: Development of a Butyrylcholinesterase Inhibitor with Picomolar Affinity and in Vivo Activity. J Med Chem 2017; 61:119-139. [DOI: 10.1021/acs.jmedchem.7b01086] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Urban Košak
- Faculty
of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia
| | - Boris Brus
- Faculty
of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia
| | - Damijan Knez
- Faculty
of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia
| | - Simon Žakelj
- Faculty
of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia
| | - Jurij Trontelj
- Faculty
of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia
| | - Anja Pišlar
- Faculty
of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia
| | - Roman Šink
- Faculty
of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia
| | - Marko Jukič
- Faculty
of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia
| | - Marko Živin
- Institute
of Pathological Physiology, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia
| | - Adrian Podkowa
- Faculty
of Pharmacy, Jagiellonian University, Medyczna 9 St., 30-688 Krakow, Poland
| | - Florian Nachon
- Institut de Recherche Biomédicale des Armées, 91223 Brétigny
sur Orge, France
| | - Xavier Brazzolotto
- Institut de Recherche Biomédicale des Armées, 91223 Brétigny
sur Orge, France
| | - Jure Stojan
- Institute
of Biochemistry, Faculty of Medicine, University of Ljubljana, Vrazov
trg 2, 1000 Ljubljana, Slovenia
| | - Janko Kos
- Faculty
of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia
| | - Nicolas Coquelle
- University Grenoble Alpes, and CNRS and CEA, IBS, F-38044 Grenoble, France
| | - Kinga Sałat
- Faculty
of Pharmacy, Jagiellonian University, Medyczna 9 St., 30-688 Krakow, Poland
| | | | - Stanislav Gobec
- Faculty
of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia
| |
Collapse
|
32
|
Kurimoto E, Matsuda S, Shimizu Y, Sako Y, Mandai T, Sugimoto T, Sakamoto H, Kimura H. An Approach to Discovering Novel Muscarinic M1 Receptor Positive Allosteric Modulators with Potent Cognitive Improvement and Minimized Gastrointestinal Dysfunction. J Pharmacol Exp Ther 2017; 364:28-37. [DOI: 10.1124/jpet.117.243774] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 10/09/2017] [Indexed: 11/22/2022] Open
|
33
|
Foster DJ, Conn PJ. Allosteric Modulation of GPCRs: New Insights and Potential Utility for Treatment of Schizophrenia and Other CNS Disorders. Neuron 2017; 94:431-446. [PMID: 28472649 PMCID: PMC5482176 DOI: 10.1016/j.neuron.2017.03.016] [Citation(s) in RCA: 174] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 03/02/2017] [Accepted: 03/09/2017] [Indexed: 01/11/2023]
Abstract
G-protein-coupled receptors (GPCRs) play critical roles in regulating brain function. Recent advances have greatly expanded our understanding of these receptors as complex signaling machines that can adopt numerous conformations and modulate multiple downstream signaling pathways. While agonists and antagonists have traditionally been pursued to target GPCRs, allosteric modulators provide several mechanistic advantages, including the ability to distinguish between closely related receptor subtypes. Recently, the discovery of allosteric ligands that confer bias and modulate some, but not all, of a given receptor's downstream signaling pathways can provide pharmacological modulation of brain circuitry with remarkable precision. In addition, allosteric modulators with unprecedented specificity have been developed that can differentiate between subpopulations of a given receptor subtype based on the receptor's dimerization state. These advances are not only providing insight into the biological roles of specific receptor populations, but hold great promise for treating numerous CNS disorders.
Collapse
Affiliation(s)
- Daniel J Foster
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA; Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA
| | - P Jeffrey Conn
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA; Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA.
| |
Collapse
|
34
|
Van Dam D, De Deyn PP. Non human primate models for Alzheimer’s disease-related research and drug discovery. Expert Opin Drug Discov 2016; 12:187-200. [DOI: 10.1080/17460441.2017.1271320] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Debby Van Dam
- Laboratory of Neurochemistry and Behavior, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
- Department of Neurology and Alzheimer Research Center, University of Groningen, University Medical Center Groningen (UMCG), Groningen, The Netherlands
| | - Peter Paul De Deyn
- Laboratory of Neurochemistry and Behavior, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
- Department of Neurology and Alzheimer Research Center, University of Groningen, University Medical Center Groningen (UMCG), Groningen, The Netherlands
- Department of Neurology and Memory Clinic, Hospital Network Antwerp (ZNA) Middelheim and Hoge Beuken, Antwerp, Belgium
- Biobank, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
35
|
Košak U, Brus B, Knez D, Šink R, Žakelj S, Trontelj J, Pišlar A, Šlenc J, Gobec M, Živin M, Tratnjek L, Perše M, Sałat K, Podkowa A, Filipek B, Nachon F, Brazzolotto X, Więckowska A, Malawska B, Stojan J, Raščan IM, Kos J, Coquelle N, Colletier JP, Gobec S. Development of an in-vivo active reversible butyrylcholinesterase inhibitor. Sci Rep 2016; 6:39495. [PMID: 28000737 PMCID: PMC5175178 DOI: 10.1038/srep39495] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 11/21/2016] [Indexed: 01/16/2023] Open
Abstract
Alzheimer’s disease (AD) is characterized by severe basal forebrain cholinergic deficit, which results in progressive and chronic deterioration of memory and cognitive functions. Similar to acetylcholinesterase, butyrylcholinesterase (BChE) contributes to the termination of cholinergic neurotransmission. Its enzymatic activity increases with the disease progression, thus classifying BChE as a viable therapeutic target in advanced AD. Potent, selective and reversible human BChE inhibitors were developed. The solved crystal structure of human BChE in complex with the most potent inhibitor reveals its binding mode and provides the molecular basis of its low nanomolar potency. Additionally, this compound is noncytotoxic and has neuroprotective properties. Furthermore, this inhibitor moderately crosses the blood-brain barrier and improves memory, cognitive functions and learning abilities of mice in a model of the cholinergic deficit that characterizes AD, without producing acute cholinergic adverse effects. Our study provides an advanced lead compound for developing drugs for alleviating symptoms caused by cholinergic hypofunction in advanced AD.
Collapse
Affiliation(s)
- Urban Košak
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia
| | - Boris Brus
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia
| | - Damijan Knez
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia
| | - Roman Šink
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia
| | - Simon Žakelj
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia
| | - Jurij Trontelj
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia
| | - Anja Pišlar
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia
| | - Jasna Šlenc
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia
| | - Martina Gobec
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia
| | - Marko Živin
- Institute of Pathological Physiology, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia
| | - Larisa Tratnjek
- Institute of Pathological Physiology, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia
| | - Martina Perše
- Institute of Pathology, Faculty of Medicine, University of Ljubljana, Korytkova 2, 1000 Ljubljana, Slovenia
| | - Kinga Sałat
- Faculty of Pharmacy, Jagiellonian University, Medyczna 9 St., 30-688 Krakow, Poland
| | - Adrian Podkowa
- Faculty of Pharmacy, Jagiellonian University, Medyczna 9 St., 30-688 Krakow, Poland
| | - Barbara Filipek
- Faculty of Pharmacy, Jagiellonian University, Medyczna 9 St., 30-688 Krakow, Poland
| | - Florian Nachon
- Institut de Recherche Biomédicale des Armées, 91223 Brétigny sur Orge, France
| | - Xavier Brazzolotto
- Institut de Recherche Biomédicale des Armées, 91223 Brétigny sur Orge, France
| | - Anna Więckowska
- Faculty of Pharmacy, Jagiellonian University, Medyczna 9 St., 30-688 Krakow, Poland
| | - Barbara Malawska
- Faculty of Pharmacy, Jagiellonian University, Medyczna 9 St., 30-688 Krakow, Poland
| | - Jure Stojan
- Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia
| | | | - Janko Kos
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia
| | - Nicolas Coquelle
- University Grenoble Alpes, IBS, F-38044 Grenoble, France.,CNRS, IBS, F-38044 Grenoble, France.,CEA, IBS, F-38044 Grenoble, France
| | - Jacques-Philippe Colletier
- University Grenoble Alpes, IBS, F-38044 Grenoble, France.,CNRS, IBS, F-38044 Grenoble, France.,CEA, IBS, F-38044 Grenoble, France
| | - Stanislav Gobec
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia
| |
Collapse
|
36
|
Bradley SJ, Bourgognon JM, Sanger HE, Verity N, Mogg AJ, White DJ, Butcher AJ, Moreno JA, Molloy C, Macedo-Hatch T, Edwards JM, Wess J, Pawlak R, Read DJ, Sexton PM, Broad LM, Steinert JR, Mallucci GR, Christopoulos A, Felder CC, Tobin AB. M1 muscarinic allosteric modulators slow prion neurodegeneration and restore memory loss. J Clin Invest 2016; 127:487-499. [PMID: 27991860 PMCID: PMC5272187 DOI: 10.1172/jci87526] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 11/03/2016] [Indexed: 11/17/2022] Open
Abstract
The current frontline symptomatic treatment for Alzheimer's disease (AD) is whole-body upregulation of cholinergic transmission via inhibition of acetylcholinesterase. This approach leads to profound dose-related adverse effects. An alternative strategy is to selectively target muscarinic acetylcholine receptors, particularly the M1 muscarinic acetylcholine receptor (M1 mAChR), which was previously shown to have procognitive activity. However, developing M1 mAChR-selective orthosteric ligands has proven challenging. Here, we have shown that mouse prion disease shows many of the hallmarks of human AD, including progressive terminal neurodegeneration and memory deficits due to a disruption of hippocampal cholinergic innervation. The fact that we also show that muscarinic signaling is maintained in both AD and mouse prion disease points to the latter as an excellent model for testing the efficacy of muscarinic pharmacological entities. The memory deficits we observed in mouse prion disease were completely restored by treatment with benzyl quinolone carboxylic acid (BQCA) and benzoquinazoline-12 (BQZ-12), two highly selective positive allosteric modulators (PAMs) of M1 mAChRs. Furthermore, prolonged exposure to BQCA markedly extended the lifespan of diseased mice. Thus, enhancing hippocampal muscarinic signaling using M1 mAChR PAMs restored memory loss and slowed the progression of mouse prion disease, indicating that this ligand type may have clinical benefit in diseases showing defective cholinergic transmission, such as AD.
Collapse
Affiliation(s)
- Sophie J. Bradley
- The Centre for Translational Pharmacology, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | | | - Helen E. Sanger
- Eli Lilly and Co., Neuroscience, Windlesham, Surrey, United Kingdom
| | - Nicholas Verity
- MRC Toxicology Unit, University of Leicester, Leicester, United Kingdom
| | - Adrian J. Mogg
- Eli Lilly and Co., Neuroscience, Windlesham, Surrey, United Kingdom
| | - David J. White
- Central Research Facility, University of Leicester, Leicester, United Kingdom
| | - Adrian J. Butcher
- MRC Toxicology Unit, University of Leicester, Leicester, United Kingdom
| | - Julie A. Moreno
- MRC Toxicology Unit, University of Leicester, Leicester, United Kingdom
| | - Colin Molloy
- The Centre for Translational Pharmacology, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | | | | | - Jurgen Wess
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland, USA
| | - Robert Pawlak
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, University of Exeter, Exeter, United Kingdom
| | - David J. Read
- MRC Toxicology Unit, University of Leicester, Leicester, United Kingdom
| | - Patrick M. Sexton
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria, Australia
| | - Lisa M. Broad
- Eli Lilly and Co., Neuroscience, Windlesham, Surrey, United Kingdom
| | - Joern R. Steinert
- MRC Toxicology Unit, University of Leicester, Leicester, United Kingdom
| | - Giovanna R. Mallucci
- MRC Toxicology Unit, University of Leicester, Leicester, United Kingdom
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Arthur Christopoulos
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria, Australia
| | - Christian C. Felder
- Eli Lilly and Co., Neuroscience, Lilly Corporate Center, Indianapolis, Indiana, USA
| | - Andrew B. Tobin
- The Centre for Translational Pharmacology, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
37
|
Popiolek M, Nguyen DP, Reinhart V, Edgerton JR, Harms J, Lotarski SM, Steyn SJ, Davoren JE, Grimwood S. Inositol Phosphate Accumulation in Vivo Provides a Measure of Muscarinic M 1 Receptor Activation. Biochemistry 2016; 55:7073-7085. [PMID: 27958713 DOI: 10.1021/acs.biochem.6b00688] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The rationale for using M1 selective muscarinic acetylcholine receptor activators for the treatment of cognitive impairment associated with psychiatric and neurodegenerative disease is well-established in the literature. Here, we investigate measurement of inositol phosphate accumulation, an end point immediately downstream of the M1 muscarinic acetylcholine receptor signaling cascade, as an in vivo biochemical readout for M1 muscarinic acetylcholine receptor activation. Five brain penetrant M1-subtype selective activators from three structurally distinct chemical series were pharmacologically profiled for functional activity in vitro using recombinant cell calcium mobilization and inositol phosphate assays, and a native tissue hippocampal slice electrophysiology assay, to show that all five compounds presented a positive allosteric modulator agonist profile, within a narrow range of potencies. In vivo characterization using an amphetamine-stimulated locomotor activity behavioral assay and the inositol phosphate accumulation biochemical assay demonstrated that the latter has utility for assessing functional potency of M1 activators. Efficacy measured by inositol phosphate accumulation in mouse striatum compared favorably to efficacy in reversing amphetamine-induced locomotor activity, suggesting that the inositol phosphate accumulation assay has utility for the evaluation of M1 muscarinic acetylcholine receptor activators in vivo. The benefits of this in vivo biochemical approach include a wide response window, interrogation of specific brain circuit activation, an ability to model responses in the context of brain exposure, an ability to rank order compounds based on in vivo efficacy, and minimization of animal use.
Collapse
Affiliation(s)
- Michael Popiolek
- Neuroscience and Pain Research Unit, ‡Pharmacokinetics, Dynamics and Metabolism, and §Worldwide Medicinal Chemistry, Pfizer Worldwide Research and Development , Cambridge, Massachusetts 02139, United States
| | - David P Nguyen
- Neuroscience and Pain Research Unit, ‡Pharmacokinetics, Dynamics and Metabolism, and §Worldwide Medicinal Chemistry, Pfizer Worldwide Research and Development , Cambridge, Massachusetts 02139, United States
| | - Veronica Reinhart
- Neuroscience and Pain Research Unit, ‡Pharmacokinetics, Dynamics and Metabolism, and §Worldwide Medicinal Chemistry, Pfizer Worldwide Research and Development , Cambridge, Massachusetts 02139, United States
| | - Jeremy R Edgerton
- Neuroscience and Pain Research Unit, ‡Pharmacokinetics, Dynamics and Metabolism, and §Worldwide Medicinal Chemistry, Pfizer Worldwide Research and Development , Cambridge, Massachusetts 02139, United States
| | - John Harms
- Neuroscience and Pain Research Unit, ‡Pharmacokinetics, Dynamics and Metabolism, and §Worldwide Medicinal Chemistry, Pfizer Worldwide Research and Development , Cambridge, Massachusetts 02139, United States
| | - Susan M Lotarski
- Neuroscience and Pain Research Unit, ‡Pharmacokinetics, Dynamics and Metabolism, and §Worldwide Medicinal Chemistry, Pfizer Worldwide Research and Development , Cambridge, Massachusetts 02139, United States
| | - Stefanus J Steyn
- Neuroscience and Pain Research Unit, ‡Pharmacokinetics, Dynamics and Metabolism, and §Worldwide Medicinal Chemistry, Pfizer Worldwide Research and Development , Cambridge, Massachusetts 02139, United States
| | - Jennifer E Davoren
- Neuroscience and Pain Research Unit, ‡Pharmacokinetics, Dynamics and Metabolism, and §Worldwide Medicinal Chemistry, Pfizer Worldwide Research and Development , Cambridge, Massachusetts 02139, United States
| | - Sarah Grimwood
- Neuroscience and Pain Research Unit, ‡Pharmacokinetics, Dynamics and Metabolism, and §Worldwide Medicinal Chemistry, Pfizer Worldwide Research and Development , Cambridge, Massachusetts 02139, United States
| |
Collapse
|
38
|
Blokland A, Sambeth A, Prickaerts J, Riedel WJ. Why an M1 Antagonist Could Be a More Selective Model for Memory Impairment than Scopolamine. Front Neurol 2016; 7:167. [PMID: 27746762 PMCID: PMC5042959 DOI: 10.3389/fneur.2016.00167] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 09/16/2016] [Indexed: 12/11/2022] Open
Affiliation(s)
| | - Anke Sambeth
- Maastricht University , Maastricht , Netherlands
| | | | - Wim J Riedel
- Maastricht University , Maastricht , Netherlands
| |
Collapse
|
39
|
Smith DL, Davoren JE, Edgerton JR, Lazzaro JT, Lee CW, Neal S, Zhang L, Grimwood S. Characterization of a Novel M1 Muscarinic Acetylcholine Receptor Positive Allosteric Modulator Radioligand, [3H]PT-1284. Mol Pharmacol 2016; 90:177-87. [DOI: 10.1124/mol.116.104737] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 06/30/2016] [Indexed: 12/18/2022] Open
|
40
|
Davoren JE, Lee CW, Garnsey M, Brodney MA, Cordes J, Dlugolenski K, Edgerton JR, Harris AR, Helal CJ, Jenkinson S, Kauffman GW, Kenakin TP, Lazzaro JT, Lotarski SM, Mao Y, Nason DM, Northcott C, Nottebaum L, O’Neil SV, Pettersen B, Popiolek M, Reinhart V, Salomon-Ferrer R, Steyn SJ, Webb D, Zhang L, Grimwood S. Discovery of the Potent and Selective M1 PAM-Agonist N-[(3R,4S)-3-Hydroxytetrahydro-2H-pyran-4-yl]-5-methyl-4-[4-(1,3-thiazol-4-yl)benzyl]pyridine-2-carboxamide (PF-06767832): Evaluation of Efficacy and Cholinergic Side Effects. J Med Chem 2016; 59:6313-28. [DOI: 10.1021/acs.jmedchem.6b00544] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Stephen Jenkinson
- Drug
Safety Research and Development, Pfizer Worldwide Research and Development, La Jolla, California 92121, United States
| | | | - Terrence P. Kenakin
- Department
of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599, United States
| | | | | | | | | | | | - Lisa Nottebaum
- Drug
Safety Research and Development, Pfizer Worldwide Research and Development, La Jolla, California 92121, United States
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
van Amelsvoort T, Hernaus D. Effect of Pharmacological Interventions on the Fronto-Cingulo-Parietal Cognitive Control Network in Psychiatric Disorders: A Transdiagnostic Systematic Review of fMRI Studies. Front Psychiatry 2016; 7:82. [PMID: 27242552 PMCID: PMC4870274 DOI: 10.3389/fpsyt.2016.00082] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 04/26/2016] [Indexed: 01/10/2023] Open
Abstract
Executive function deficits, such as working memory, decision-making, and attention problems, are a common feature of several psychiatric disorders for which no satisfactory treatment exists. Here, we transdiagnostically investigate the effects of pharmacological interventions (other than methylphenidate) on the fronto-cingulo-parietal cognitive control network, in order to identify functional brain markers for future procognitive pharmacological interventions. Twenty-nine manuscripts investigated the effect of pharmacological treatment on executive function-related brain correlates in psychotic disorders (n = 11), depression (n = 4), bipolar disorder (n = 4), ADHD (n = 4), OCD (n = 2), smoking dependence (n = 2), alcohol dependence (n = 1), and pathological gambling (n = 1). In terms of impact on the fronto-cingulo-parietal network, the preliminary evidence for catechol-O-methyl-transferase inhibitors, nicotinic receptor agonists, and atomoxetine was relatively consistent, the data for atypical antipsychotics and anticonvulsants moderate, and interpretation of the data for antidepressants was hampered by the employed study designs. Increased activity in task-relevant areas and decreased activity in task-irrelevant areas were the most common transdiagnostic effects of pharmacological treatment. These markers showed good positive and moderate negative predictive value. It is concluded that fronto-cingulo-parietal activity changes can serve as a marker for future procognitive interventions. Future recommendations include the use of randomized double-blind designs and selective cholinergic and glutamatergic compounds.
Collapse
Affiliation(s)
- Thérèse van Amelsvoort
- Department of Psychiatry and Neuropsychology, South Limburg Mental Health Research and Teaching Network, EURON, School for Mental Health and NeuroScience MHeNS Maastricht University , Maastricht , Netherlands
| | - Dennis Hernaus
- Department of Psychiatry and Neuropsychology, South Limburg Mental Health Research and Teaching Network, EURON, School for Mental Health and NeuroScience MHeNS Maastricht University , Maastricht , Netherlands
| |
Collapse
|
42
|
Alt A, Pendri A, Bertekap RL, Li G, Benitex Y, Nophsker M, Rockwell KL, Burford NT, Sum CS, Chen J, Herbst JJ, Ferrante M, Hendricson A, Cvijic ME, Westphal RS, OConnell J, Banks M, Zhang L, Gentles RG, Jenkins S, Loy J, Macor JE. Evidence for Classical Cholinergic Toxicity Associated with Selective Activation of M1 Muscarinic Receptors. ACTA ACUST UNITED AC 2015; 356:293-304. [DOI: 10.1124/jpet.115.226910] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 11/17/2015] [Indexed: 11/22/2022]
|
43
|
Lange HS, Cannon CE, Drott JT, Kuduk SD, Uslaner JM. The M1 Muscarinic Positive Allosteric Modulator PQCA Improves Performance on Translatable Tests of Memory and Attention in Rhesus Monkeys. J Pharmacol Exp Ther 2015; 355:442-50. [DOI: 10.1124/jpet.115.226712] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 10/06/2015] [Indexed: 12/28/2022] Open
|