1
|
Santana-Coelho D. Does the kynurenine pathway play a pathogenic role in autism spectrum disorder? Brain Behav Immun Health 2024; 40:100839. [PMID: 39263315 PMCID: PMC11387593 DOI: 10.1016/j.bbih.2024.100839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 05/28/2024] [Accepted: 08/01/2024] [Indexed: 09/13/2024] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by deficits in communication, sociability, and repetitive/stereotyped behavior. The etiology of autism is diverse, with genetic susceptibility playing an important role alongside environmental insults and conditions. Human and preclinical studies have shown that ASD is commonly accompanied by inflammation, and inhibition of the inflammatory response can ameliorate, or prevent the phenotype in preclinical studies. The kynurenine pathway, responsible for tryptophan metabolism, is upregulated by inflammation. Hence, this metabolic route has drawn the attention of investigators across different disciplines such as cancer, immunology, and neuroscience. Over the past decade, studies have identified evidence that the kynurenine pathway is also altered in autism spectrum disorders. In this mini review, we will explore the current status quo of the link between the kynurenine pathway and ASD, shedding light on the compelling but still preliminary evidence of this relationship.
Collapse
|
2
|
Marszalek-Grabska M, Gawel K, Kosheva N, Kocki T, Turski WA. Developmental Exposure to Kynurenine Affects Zebrafish and Rat Behavior. Cells 2023; 12:2224. [PMID: 37759447 PMCID: PMC10526278 DOI: 10.3390/cells12182224] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Proper nutrition and supplementation during pregnancy and breastfeeding are crucial for the development of offspring. Kynurenine (KYN) is the central metabolite of the kynurenine pathway and a direct precursor of other metabolites that possess immunoprotective or neuroactive properties, with the ultimate effect on fetal neurodevelopment. To date, no studies have evaluated the effects of KYN on early embryonic development. Thus, the aim of our study was to determine the effect of incubation of larvae with KYN in different developmental periods on the behavior of 5-day-old zebrafish. Additionally, the effects exerted by KYN administered on embryonic days 1-7 (ED 1-7) on the behavior of adult offspring of rats were elucidated. Our study revealed that the incubation with KYN induced changes in zebrafish behavior, especially when zebrafish embryos or larvae were incubated with KYN from 1 to 72 h post-fertilization (hpf) and from 49 to 72 hpf. KYN administered early during pregnancy induced subtle differences in the neurobehavioral development of adult offspring. Further research is required to understand the mechanism of these changes. The larval zebrafish model can be useful for studying disturbances in early brain development processes and their late behavioral consequences. The zebrafish-medium system may be applicable in monitoring drug metabolism in zebrafish.
Collapse
Affiliation(s)
- Marta Marszalek-Grabska
- Department of Experimental and Clinical Pharmacology, Medical University, Jaczewskiego 8b, 20-090 Lublin, Poland; (K.G.); (N.K.); (T.K.); (W.A.T.)
| | | | | | | | | |
Collapse
|
3
|
Battaglia MR, Di Fazio C, Battaglia S. Activated Tryptophan-Kynurenine metabolic system in the human brain is associated with learned fear. Front Mol Neurosci 2023; 16:1217090. [PMID: 37575966 PMCID: PMC10416643 DOI: 10.3389/fnmol.2023.1217090] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/10/2023] [Indexed: 08/15/2023] Open
Affiliation(s)
- Maria Rita Battaglia
- Istituto di Ricovero e Cura a Carattere Scientifico Azienda Ospedaliero-Universitaria di Bologna, Policlinico S. Orsola, Bologna, Italy
| | - Chiara Di Fazio
- Department of Psychology, Center for Studies and Research in Cognitive Neuroscience, University of Bologna, Bologna, Italy
| | - Simone Battaglia
- Department of Psychology, Center for Studies and Research in Cognitive Neuroscience, University of Bologna, Bologna, Italy
- Department of Psychology, University of Turin, Turin, Italy
| |
Collapse
|
4
|
Murakami Y, Imamura Y, Kasahara Y, Yoshida C, Momono Y, Fang K, Sakai D, Konishi Y, Nishiyama T. Maternal Inflammation with Elevated Kynurenine Metabolites Is Related to the Risk of Abnormal Brain Development and Behavioral Changes in Autism Spectrum Disorder. Cells 2023; 12:1087. [PMID: 37048160 PMCID: PMC10093447 DOI: 10.3390/cells12071087] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/27/2023] [Accepted: 03/31/2023] [Indexed: 04/14/2023] Open
Abstract
Several studies show that genetic and environmental factors contribute to the onset and progression of neurodevelopmental disorders. Maternal immune activation (MIA) during gestation is considered one of the major environmental factors driving this process. The kynurenine pathway (KP) is a major route of the essential amino acid L-tryptophan (Trp) catabolism in mammalian cells. Activation of the KP following neuro-inflammation can generate various endogenous neuroactive metabolites that may impact brain functions and behaviors. Additionally, neurotoxic metabolites and excitotoxicity cause long-term changes in the trophic support, glutamatergic system, and synaptic function following KP activation. Therefore, investigating the role of KP metabolites during neurodevelopment will likely promote further understanding of additional pathophysiology of neurodevelopmental disorders, including autism spectrum disorder (ASD). In this review, we describe the changes in KP metabolism in the brain during pregnancy and represent how maternal inflammation and genetic factors influence the KP during development. We overview the patients with ASD clinical data and animal models designed to verify the role of perinatal KP elevation in long-lasting biochemical, neuropathological, and behavioral deficits later in life. Our review will help shed light on new therapeutic strategies and interventions targeting the KP for neurodevelopmental disorders.
Collapse
Affiliation(s)
- Yuki Murakami
- Department of Hygiene and Public Health, Kansai Medical University, Hirakata 573-1010, Japan
| | - Yukio Imamura
- Department of Architecture and Architectual Systems Engineering, Graduate School of Engineering, Kyoto University, Kyoto 615-8530, Japan
- Department of Traumatology and Acute Critical Medicine, Graduate School of Medicine/Faculty of Medicine, Osaka University, Suita 565-0871, Japan
| | - Yoshiyuki Kasahara
- Department of Maternal and Fetal Therapeutics, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Chihiro Yoshida
- Department of Maternal and Fetal Therapeutics, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Yuta Momono
- Department of Maternal and Fetal Therapeutics, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Ke Fang
- Department of Hygiene and Public Health, Kansai Medical University, Hirakata 573-1010, Japan
| | - Daisuke Sakai
- Department of Biology, Kanazawa Medical University, Kanazawa 920-0293, Japan
| | - Yukuo Konishi
- Center for Baby Science, Doshisha University, Kyotanabe 619-0225, Japan
- Healthcare and Medical Data Multi-Level Integration Platform Group, RIKEN Medical Sciences Innovation Hub Program, Yokohama 230-0045, Japan
| | - Toshimasa Nishiyama
- Department of Hygiene and Public Health, Kansai Medical University, Hirakata 573-1010, Japan
| |
Collapse
|
5
|
Milosavljevic S, Smith AK, Wright CJ, Valafar H, Pocivavsek A. Kynurenine aminotransferase II inhibition promotes sleep and rescues impairments induced by neurodevelopmental insult. Transl Psychiatry 2023; 13:106. [PMID: 37002202 PMCID: PMC10066394 DOI: 10.1038/s41398-023-02399-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 03/14/2023] [Accepted: 03/16/2023] [Indexed: 04/03/2023] Open
Abstract
Dysregulated sleep is commonly reported in individuals with neuropsychiatric disorders, including schizophrenia (SCZ) and bipolar disorder (BPD). Physiology and pathogenesis of these disorders points to aberrant metabolism, during neurodevelopment and adulthood, of tryptophan via the kynurenine pathway (KP). Kynurenic acid (KYNA), a neuroactive KP metabolite derived from its precursor kynurenine by kynurenine aminotransferase II (KAT II), is increased in the brains of individuals with SCZ and BPD. We hypothesize that elevated KYNA, an inhibitor of glutamatergic and cholinergic neurotransmission, contributes to sleep dysfunction. Employing the embryonic kynurenine (EKyn) paradigm to elevate fetal brain KYNA, we presently examined pharmacological inhibition of KAT II to reduce KYNA in adulthood to improve sleep quality. Pregnant Wistar rats were fed either kynurenine (100 mg/day)(EKyn) or control (ECon) diet from embryonic day (ED) 15 to ED 22. Adult male (N = 24) and female (N = 23) offspring were implanted with devices to record electroencephalogram (EEG) and electromyogram (EMG) telemetrically for sleep-wake data acquisition. Each subject was treated with either vehicle or PF-04859989 (30 mg/kg, s.c.), an irreversible KAT II inhibitor, at zeitgeber time (ZT) 0 or ZT 12. KAT II inhibitor improved sleep architecture maintaining entrainment of the light-dark cycle; ZT 0 treatment with PF-04859989 induced transient improvements in rapid eye movement (REM) and non-REM (NREM) sleep during the immediate light phase, while the impact of ZT 12 treatment was delayed until the subsequent light phase. PF-04859989 administration at ZT 0 enhanced NREM delta spectral power and reduced activity and body temperature. In conclusion, reducing de novo KYNA production alleviated sleep disturbances and increased sleep quality in EKyn, while also improving sleep outcomes in ECon offspring. Our findings place attention on KAT II inhibition as a novel mechanistic approach to treating disrupted sleep behavior with potential translational implications for patients with neurodevelopmental and neuropsychiatric disorders.
Collapse
Affiliation(s)
- Snezana Milosavljevic
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA
| | - Andrew K Smith
- Department of Computer Science and Engineering, University of South Carolina, Columbia, SC, USA
| | - Courtney J Wright
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA
| | - Homayoun Valafar
- Department of Computer Science and Engineering, University of South Carolina, Columbia, SC, USA
| | - Ana Pocivavsek
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA.
| |
Collapse
|
6
|
van Zundert SKM, Broekhuizen M, Smit AJP, van Rossem L, Mirzaian M, Willemsen SP, Danser AHJ, De Rijke YB, Reiss IKM, Merkus D, Steegers-Theunissen RPM. The Role of the Kynurenine Pathway in the (Patho) physiology of Maternal Pregnancy and Fetal Outcomes: A Systematic Review. Int J Tryptophan Res 2022; 15:11786469221135545. [PMID: 36467775 PMCID: PMC9716456 DOI: 10.1177/11786469221135545] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 10/10/2022] [Indexed: 08/04/2023] Open
Abstract
INTRODUCTION Tryptophan is the precursor of kynurenine pathway (KP) metabolites which regulate immune tolerance, energy metabolism, and vascular tone. Since these processes are important during pregnancy, changes in KP metabolite concentrations may play a role in the pathophysiology of pregnancy complications. We hypothesize that KP metabolites can serve as novel biomarkers and preventive therapeutic targets. This review aimed to provide more insight into associations between KP metabolite concentrations in maternal and fetal blood, and in the placenta, and adverse maternal pregnancy and fetal outcomes. METHODS A systematic search was performed on 18 February 2022 comprising all KP metabolites, and keywords related to maternal pregnancy and fetal outcomes. English-written human studies measuring KP metabolite(s) in maternal or fetal blood or in the placenta in relation to pregnancy complications, were included. Methodological quality was assessed using the ErasmusAGE quality score (QS) (range: 0-10). A meta-analysis of the mean maternal tryptophan and kynurenine concentrations in uncomplicated pregnancies was conducted. RESULTS Of the 6262 unique records, 37 were included (median QS = 5). Tryptophan was investigated in most studies, followed by kynurenine, predominantly in maternal blood (n = 28/37), and in the second and third trimester of pregnancy (n = 29/37). Compared to uncomplicated pregnancies, decreased tryptophan in maternal blood was associated with an increased prevalence of depression, gestational diabetes mellitus, fetal growth restriction, spontaneous abortion, and preterm birth. Elevated tryptophan was only observed in women with pregnancy-induced hypertension compared to normotensive pregnant women. In women with preeclampsia, only kynurenic acid was altered; elevated in the first trimester of pregnancy, and positively associated with proteinuria in the third trimester of pregnancy. CONCLUSIONS KP metabolite concentrations were altered in a variety of maternal pregnancy and fetal complications. This review implies that physiological pregnancy requires a tight balance of KP metabolites, and that disturbances in either direction are associated with adverse maternal pregnancy and fetal outcomes.
Collapse
Affiliation(s)
- Sofie KM van Zundert
- Department of Obstetrics and
Gynecology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
- Department of Clinical Chemistry,
Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Michelle Broekhuizen
- Division of Neonatology, Department of
Pediatrics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
- Division of Pharmacology and Vascular
Medicine, Department of Internal Medicine, Erasmus MC University Medical Center,
Rotterdam, The Netherlands
- Division of Experimental Cardiology,
Department of Cardiology, Erasmus MC University Medical Center, Rotterdam, The
Netherlands
| | - Ashley JP Smit
- Department of Obstetrics and
Gynecology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Lenie van Rossem
- Department of Obstetrics and
Gynecology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Mina Mirzaian
- Department of Clinical Chemistry,
Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Sten P Willemsen
- Department of Obstetrics and
Gynecology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
- Department of Biostatistics, Erasmus MC
University Medical Center, Rotterdam, The Netherlands
| | - AH Jan Danser
- Division of Pharmacology and Vascular
Medicine, Department of Internal Medicine, Erasmus MC University Medical Center,
Rotterdam, The Netherlands
| | - Yolanda B De Rijke
- Department of Clinical Chemistry,
Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Irwin KM Reiss
- Division of Neonatology, Department of
Pediatrics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Daphne Merkus
- Division of Experimental Cardiology,
Department of Cardiology, Erasmus MC University Medical Center, Rotterdam, The
Netherlands
- Walter Brendel Center of Experimental
Medicine, University Clinic Munich, Ludwig Maximillian University Munich, Munich,
Germany
| | | |
Collapse
|
7
|
Marszalek-Grabska M, Walczak K, Gawel K, Wicha-Komsta K, Wnorowska S, Wnorowski A, Turski WA. Kynurenine emerges from the shadows – Current knowledge on its fate and function. Pharmacol Ther 2021; 225:107845. [DOI: 10.1016/j.pharmthera.2021.107845] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 03/29/2021] [Indexed: 12/12/2022]
|
8
|
Notarangelo FM, Schwarcz R. A single prenatal lipopolysaccharide injection has acute, but not long-lasting, effects on cerebral kynurenine pathway metabolism in mice. Eur J Neurosci 2021; 54:5968-5981. [PMID: 34363411 DOI: 10.1111/ejn.15416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/26/2021] [Accepted: 08/03/2021] [Indexed: 11/28/2022]
Abstract
In rodents, a single injection of lipopolysaccharide (LPS) during gestation causes chemical and functional abnormalities in the offspring. These effects may involve changes in the kynurenine pathway (KP) of tryptophan degradation and may provide insights into the pathophysiology of psychiatric diseases. Using CD1 mice, we examined acute and long-term effects of prenatal LPS treatment on the levels of kynurenine and its neuroactive downstream products kynurenic acid (KYNA), 3-hydroxykynurenine (3-HK) and quinolinic acid. To this end, LPS (100 μg/kg, i.p.) was administered on gestational day 15, and KP metabolites were measured 4 and 24 h later or in adulthood. After 4 h, kynurenine, KYNA and 3-HK levels were elevated in the fetal brain, 3-HK and KYNA levels were increased in the maternal plasma, and kynurenine was increased in the maternal brain, whereas no changes were seen in the placenta. These effects were less prominent after 24 h, and prenatal LPS did not affect the basal levels of KP metabolites in the forebrain of adult animals. In addition, a second LPS injection (1 mg/kg) in adulthood in the offspring of prenatally saline- and LPS-treated mice caused a similar elevation in 3-HK levels in both groups after 24 h, but the effect was significantly more pronounced in male mice. Thus, acute immune activation during pregnancy has only short-lasting effects on KP metabolism and does not cause cerebral KP metabolites to be disproportionally affected by a second immune challenge in adulthood. However, prenatal KYNA elevations still contribute to functional abnormalities in the offspring.
Collapse
Affiliation(s)
- Francesca M Notarangelo
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Robert Schwarcz
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
9
|
Kelly JR, Minuto C, Cryan JF, Clarke G, Dinan TG. The role of the gut microbiome in the development of schizophrenia. Schizophr Res 2021; 234:4-23. [PMID: 32336581 DOI: 10.1016/j.schres.2020.02.010] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 02/22/2020] [Accepted: 02/25/2020] [Indexed: 02/07/2023]
Abstract
Schizophrenia is a heterogeneous neurodevelopmental disorder involving the convergence of a complex and dynamic bidirectional interaction of genetic expression and the accumulation of prenatal and postnatal environmental risk factors. The development of the neural circuitry underlying social, cognitive and emotional domains requires precise regulation from molecular signalling pathways, especially during critical periods or "windows", when the brain is particularly sensitive to the influence of environmental input signalling. Many of the brain regions involved, and the molecular substrates sub-serving these domains are responsive to life-long microbiota-gut-brain (MGB) axis signalling. This intricate microbial signalling system communicates with the brain via the vagus nerve, immune system, enteric nervous system, enteroendocrine signalling and production of microbial metabolites, such as short-chain fatty acids. Preclinical data has demonstrated that MGB axis signalling influences neurotransmission, neurogenesis, myelination, dendrite formation and blood brain barrier development, and modulates cognitive function and behaviour patterns, such as, social interaction, stress management and locomotor activity. Furthermore, preliminary clinical studies suggest altered gut microbiota profiles in schizophrenia. Unravelling MGB axis signalling in the context of an evolving dimensional framework in schizophrenia may provide a more complete understanding of the neurobiological architecture of this complex condition and offers the possibility of translational interventions.
Collapse
Affiliation(s)
- John R Kelly
- Department of Psychiatry, Trinity College Dublin, Ireland
| | - Chiara Minuto
- Department of Psychiatry and Neurobehavioral Science, University College Cork, Ireland
| | - John F Cryan
- APC Microbiome Ireland, University College Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Ireland
| | - Gerard Clarke
- Department of Psychiatry and Neurobehavioral Science, University College Cork, Ireland; APC Microbiome Ireland, University College Cork, Ireland
| | - Timothy G Dinan
- Department of Psychiatry and Neurobehavioral Science, University College Cork, Ireland; APC Microbiome Ireland, University College Cork, Ireland.
| |
Collapse
|
10
|
Murakami Y, Imamura Y, Kasahara Y, Yoshida C, Momono Y, Fang K, Nishiyama T, Sakai D, Konishi Y. The Effects of Maternal Interleukin-17A on Social Behavior, Cognitive Function, and Depression-Like Behavior in Mice with Altered Kynurenine Metabolites. Int J Tryptophan Res 2021; 14:11786469211026639. [PMID: 34262289 PMCID: PMC8243115 DOI: 10.1177/11786469211026639] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 05/31/2021] [Indexed: 01/03/2023] Open
Abstract
Viral infection and chronic maternal inflammation during pregnancy are correlated
with a higher prevalence of autism spectrum disorder (ASD). However, the
pathoetiology of ASD is not fully understood; moreover, the key molecules that
can cross the placenta following maternal inflammation and contribute to the
development of ASD have not been identified. Recently, the pro-inflammatory
cytokine, interleukin-17A (IL-17A) was identified as a potential mediator of
these effects. To investigate the impact of maternal IL-17A on offspring,
C57BL/6J dams were injected with IL-17A-expressing plasmids via
the tail vein on embryonic day 12.5 (E12.5), and maternal IL-17A was expressed
continuously throughout pregnancy. By adulthood, IL-17A-injected offspring
exhibited behavioral abnormalities, including social and cognitive defects.
Additionally, maternal IL-17A promoted metabolism of the essential amino acid
tryptophan, which produces several neuroactive compounds and may affect fetal
neurodevelopment. We observed significantly increased levels of kynurenine in
maternal serum and fetal plasma. Thus, we investigated the effects of high
maternal concentration of kynurenine on offspring by continuously administering
mouse dams with kynurenine from E12.5 during gestation. Obviously, maternal
kynurenine administration rapidly increased kynurenine levels in the fetal
plasma and brain, pointing to the ability of kynurenine to cross the placenta
and change the KP metabolites which are affected as neuroactive compounds in the
fetal brain. Notably, the offspring of kynurenine-injected mice exhibited
behavioral abnormalities similar to those observed in offspring of
IL-17A-conditioned mice. Several tryptophan metabolites were significantly
altered in the prefrontal cortex of the IL-17A-conditioned and
kynurenine-injected adult mice, but not in the hippocampus. Even though we
cannot exclude the possibility or other molecules being related to ASD
pathogenesis and the presence of a much lower degree of pathway activation, our
results suggest that increased kynurenine following maternal inflammation may be
a key factor in changing the balance of KP metabolites in fetal brain during
neuronal development and represents a therapeutic target for
inflammation-induced ASD-like phenotypes.
Collapse
Affiliation(s)
- Yuki Murakami
- Department of Hygiene and Public Health, Kansai Medical University, Osaka, Japan
| | - Yukio Imamura
- Organization for Research Initiatives and Development, Doshisha University, Kyoto, Japan.,Department of Traumatology and Acute Critical Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yoshiyuki Kasahara
- Department of Maternal and Fetal Therapeutics, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Chihiro Yoshida
- Department of Maternal and Fetal Therapeutics, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Yuta Momono
- Department of Maternal and Fetal Therapeutics, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Ke Fang
- Department of Hygiene and Public Health, Kansai Medical University, Osaka, Japan
| | - Toshimasa Nishiyama
- Department of Hygiene and Public Health, Kansai Medical University, Osaka, Japan
| | - Daisuke Sakai
- Department of Biology, Kanazawa Medical University, Ishikawa, Japan
| | - Yukuo Konishi
- Center for Baby Science, Doshisha University, Kyoto, Japan.,Healthcare and Medical Data Multi-level Integration Platform Group, RIKEN Medical Sciences Innovation Hub Program, Kanagawa, Japan
| |
Collapse
|
11
|
Wright CJ, Rentschler KM, Wagner NTJ, Lewis AM, Beggiato S, Pocivavsek A. Time of Day-Dependent Alterations in Hippocampal Kynurenic Acid, Glutamate, and GABA in Adult Rats Exposed to Elevated Kynurenic Acid During Neurodevelopment. Front Psychiatry 2021; 12:734984. [PMID: 34603109 PMCID: PMC8484637 DOI: 10.3389/fpsyt.2021.734984] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 08/23/2021] [Indexed: 01/09/2023] Open
Abstract
Hypofunction of glutamatergic signaling is causally linked to neurodevelopmental disorders, including psychotic disorders like schizophrenia and bipolar disorder. Kynurenic acid (KYNA) has been found to be elevated in postmortem brain tissue and cerebrospinal fluid of patients with psychotic illnesses and may be involved in the hypoglutamatergia and cognitive dysfunction experienced by these patients. As insults during the prenatal period are hypothesized to be linked to the pathophysiology of psychotic disorders, we presently utilized the embryonic kynurenine (EKyn) paradigm to induce a prenatal hit. Pregnant Wistar dams were fed chow laced with kynurenine to stimulate fetal brain KYNA elevation from embryonic day 15 to embryonic day 22. Control dams (ECon) were fed unlaced chow. Plasma and hippocampal tissue from young adult (postnatal day 56) ECon and EKyn male and female offspring were collected at the beginning of the light (Zeitgeber time, ZT 0) and dark (ZT 12) phases to assess kynurenine pathway metabolites. Hippocampal tissue was also collected at ZT 6 and ZT 18. In separate animals, in vivo microdialysis was conducted in the dorsal hippocampus to assess extracellular KYNA, glutamate, and γ-aminobutyric acid (GABA). Biochemical analyses revealed no changes in peripheral metabolites, yet hippocampal tissue KYNA levels were significantly impacted by EKyn treatment, and increased in male EKyn offspring at ZT 6. Interestingly, extracellular hippocampal KYNA levels were only elevated in male EKyn offspring during the light phase. Decreases in extracellular glutamate levels were found in the dorsal hippocampus of EKyn male and female offspring, while decreased GABA levels were present only in males during the dark phase. The current findings suggest that the EKyn paradigm may be a useful tool for investigation of sex- and time-dependent changes in hippocampal neuromodulation elicited by prenatal KYNA elevation, which may influence behavioral phenotypes and have translational relevance to psychotic disorders.
Collapse
Affiliation(s)
- Courtney J Wright
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, United States
| | - Katherine M Rentschler
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, United States
| | - Nathan T J Wagner
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, United States
| | - Ashley M Lewis
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, United States
| | - Sarah Beggiato
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, Chieti, Italy
| | - Ana Pocivavsek
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, United States
| |
Collapse
|
12
|
Jorratt P, Hoschl C, Ovsepian SV. Endogenous antagonists of N-methyl-d-aspartate receptor in schizophrenia. Alzheimers Dement 2020; 17:888-905. [PMID: 33336545 DOI: 10.1002/alz.12244] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 10/24/2020] [Indexed: 12/28/2022]
Abstract
Schizophrenia is a chronic neuropsychiatric brain disorder that has devastating personal impact and rising healthcare costs. Dysregulation of glutamatergic neurotransmission has been implicated in the pathobiology of the disease, attributed largely to the hypofunction of the N-methyl-d-aspartate (NMDA) receptor. Currently, there is a major gap in mechanistic analysis as to how endogenous modulators of the NMDA receptors contribute to the onset and progression of the disease. We present a systematic review of the neurobiology and the role of endogenous NMDA receptor antagonists in animal models of schizophrenia, and in patients. We discuss their neurochemical origin, release from neurons and glia with action mechanisms, and functional effects, which might contribute toward the impairment of neuronal processes underlying this complex pathological state. We consider clinical evidence suggesting dysregulations of endogenous NMDA receptor in schizophrenia, and highlight the pressing need in future studies and emerging directions, to restore the NMDA receptor functions for therapeutic benefits.
Collapse
Affiliation(s)
- Pascal Jorratt
- Department of Experimental Neurobiology, National Institute of Mental Health, Klecany, Czech Republic.,Department of Psychiatry and Medical Psychology, Third Faculty of Medicine, Charles University, Prague 10, Czech Republic
| | - Cyril Hoschl
- Department of Experimental Neurobiology, National Institute of Mental Health, Klecany, Czech Republic.,Department of Psychiatry and Medical Psychology, Third Faculty of Medicine, Charles University, Prague 10, Czech Republic
| | - Saak V Ovsepian
- Department of Experimental Neurobiology, National Institute of Mental Health, Klecany, Czech Republic.,Department of Psychiatry and Medical Psychology, Third Faculty of Medicine, Charles University, Prague 10, Czech Republic
| |
Collapse
|
13
|
Buck SA, Baratta AM, Pocivavsek A. Exposure to elevated embryonic kynurenine in rats: Sex-dependent learning and memory impairments in adult offspring. Neurobiol Learn Mem 2020; 174:107282. [PMID: 32738461 PMCID: PMC7506508 DOI: 10.1016/j.nlm.2020.107282] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 07/21/2020] [Accepted: 07/25/2020] [Indexed: 12/14/2022]
Abstract
Distinct abnormalities in kynurenine pathway (KP) metabolism have been reported in various psychiatric disorders, including schizophrenia (SZ). Kynurenic acid (KYNA), a neuroactive metabolite of the KP, is elevated in individuals diagnosed with SZ and has been linked to cognitive impairments seen in the disorder. To further understand the role of KYNA in SZ etiology, we developed a prenatal insult model where kynurenine (100 mg/day) is fed to pregnant Wistar rats from embryonic day (ED) 15 to ED 22. As sex differences in the prevalence and severity of SZ have been observed, we presently investigated the impact of prenatal kynurenine exposure on KP metabolism and spatial learning and memory in male and female offspring. Specifically, brain tissue and plasma from offspring (control: ECon; kynurenine-treated: EKyn) in prepuberty (postnatal day (PD) 21), adolescence (PD 32-35), and adulthood (PD 56-85) were collected. Separate cohorts of adult offspring were tested in the Barnes maze to assess hippocampus- and prefrontal cortex-mediated learning and memory. Plasma tryptophan, kynurenine, and KYNA were unchanged between ECon and EKyn offspring across all three ages. Hippocampal and frontal cortex KYNA were elevated in male EKyn offspring only in adulthood, compared to ECon, while brain KYNA levels were unchanged in adult females. Male EKyn offspring were significantly impaired during acquisition of the Barnes maze and during reversal learning in the task. In female EKyn offspring, learning and memory remained relatively intact. Taken together, our data demonstrate that exposure to elevated kynurenine during the last week of gestation results in intriguing sex differences and further support the EKyn model as an attractive tool to study the pathophysiology of schizophrenia.
Collapse
Affiliation(s)
- Silas A Buck
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Annalisa M Baratta
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Ana Pocivavsek
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA; Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA.
| |
Collapse
|
14
|
Kynurenine Pathway as a New Target of Cognitive Impairment Induced by Lead Toxicity During the Lactation. Sci Rep 2020; 10:3184. [PMID: 32081969 PMCID: PMC7035386 DOI: 10.1038/s41598-020-60159-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 02/07/2020] [Indexed: 12/31/2022] Open
Abstract
The immature brain is especially vulnerable to lead (Pb2+) toxicity, which is considered an environmental neurotoxin. Pb2+ exposure during development compromises the cognitive and behavioral attributes which persist even later in adulthood, but the mechanisms involved in this effect are still unknown. On the other hand, the kynurenine pathway metabolites are modulators of different receptors and neurotransmitters related to cognition; specifically, high kynurenic acid levels has been involved with cognitive impairment, including deficits in spatial working memory and attention process. The aim of this study was to evaluate the relationship between the neurocognitive impairment induced by Pb2+ toxicity and the kynurenine pathway. The dams were divided in control group and Pb2+ group, which were given tap water or 500 ppm of lead acetate in drinking water ad libitum, respectively, from 0 to 23 postnatal day (PND). The poison was withdrawn, and tap water was given until 60 PND of the progeny. The locomotor activity in open field, redox environment, cellular function, kynurenic acid (KYNA) and 3-hydroxykynurenine (3-HK) levels as well as kynurenine aminotransferase (KAT) and kynurenine monooxygenase (KMO) activities were evaluated at both 23 and 60 PND. Additionally, learning and memory through buried food location test and expression of KAT and KMO, and cellular damage were evaluated at 60 PND. Pb2+ group showed redox environment alterations, cellular dysfunction and KYNA and 3-HK levels increased. No changes were observed in KAT activity. KMO activity increased at 23 PND and decreased at 60 PND. No changes in KAT and KMO expression in control and Pb2+ group were observed, however the number of positive cells expressing KMO and KAT increased in relation to control, which correlated with the loss of neuronal population. Cognitive impairment was observed in Pb2+ group which was correlated with KYNA levels. These results suggest that the increase in KYNA levels could be a mechanism by which Pb2+ induces cognitive impairment in adult mice, hence the modulation of kynurenine pathway represents a potential target to improve behavioural alterations produced by this environmental toxin.
Collapse
|
15
|
Moench KM, Breach MR, Wellman CL. Prior stress followed by a novel stress challenge results in sex-specific deficits in behavioral flexibility and changes in gene expression in rat medial prefrontal cortex. Horm Behav 2020; 117:104615. [PMID: 31634476 PMCID: PMC6980662 DOI: 10.1016/j.yhbeh.2019.104615] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 10/08/2019] [Accepted: 10/10/2019] [Indexed: 12/19/2022]
Abstract
Chronic stress leads to sex-specific changes in the structure and function of rat medial prefrontal cortex (mPFC). Little is known about whether these effects persist following the cessation of chronic stress, or how these initial effects may impact responses to future stressors. Here we examined attentional set-shifting in male and female rats following chronic restraint stress, a post-chronic stress rest period, and an acute novel stress challenge. Chronic stress resulted in a reversible impairment in extradimensional set-shifting in males, but had no effect on attentional set-shifting in females. Surprisingly, chronically stressed female, but not male, rats had impaired extradimensional set-shifting following a novel stress challenge. Alterations in the balance of excitation and inhibition of mPFC have been implicated in behavioral deficits following chronic stress. Thus, in a separate group of rats, we examined changes in the expression of genes related to glutamatergic (NR1, NR2A, NR2B, GluR1) and GABAergic (Gad67, parvalbumin, somatostatin) neurotransmission in mPFC after acute and chronic stress, rest, and their combination. Stress significantly altered the expression of NR1, GluR1, Gad67, and parvalbumin. Notably, the pattern of stress effects on NR1, Gad67, and parvalbumin expression differed between males and females. In males, these genes were upregulated following the post-chronic stress rest period, while minimal changes were found in females. In contrast, both males and females had greater GluR1 expression following a rest period. These findings suggest that chronic stress leads to sex-specific stress adaptation mechanisms that may contribute to sex differences in response to subsequent stress exposure.
Collapse
Affiliation(s)
- Kelly M Moench
- Department of Psychological & Brain Sciences, Indiana University, Bloomington, IN, USA; Program in Neuroscience, Indiana University, Bloomington, IN, USA; Center for the Integrative Study of Animal Behavior, Bloomington, IN, USA; Indiana University, Bloomington, IN, USA
| | - Michaela R Breach
- Department of Psychological & Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Cara L Wellman
- Department of Psychological & Brain Sciences, Indiana University, Bloomington, IN, USA; Program in Neuroscience, Indiana University, Bloomington, IN, USA; Center for the Integrative Study of Animal Behavior, Bloomington, IN, USA; Indiana University, Bloomington, IN, USA.
| |
Collapse
|
16
|
Ogbechi J, Clanchy FI, Huang YS, Topping LM, Stone TW, Williams RO. IDO activation, inflammation and musculoskeletal disease. Exp Gerontol 2019; 131:110820. [PMID: 31884118 DOI: 10.1016/j.exger.2019.110820] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 12/17/2019] [Accepted: 12/18/2019] [Indexed: 12/11/2022]
Abstract
The IDO/kynurenine pathway is now established as a major regulator of immune system function. The initial enzyme, indoleamine 2,3-dioxygenase (IDO1) is induced by IFNγ, while tryptophan-2,3-dioxygenase (TDO) is induced by corticosteroids. The pathway is therefore positioned to mediate the effects of systemic inflammation or stress-induced steroids on tissue function and its expression increases with age. Disorders of the musculoskeletal system are a common feature of ageing and many of these conditions are characterized by an inflammatory state. In inflammatory arthritis and related disorders, kynurenine protects against the development of disease, while inhibition or deletion of IDO1 increases its severity. The long-term regulation of autoimmune disorders may be influenced by the epigenetic modulation of kynurenine pathway genes, with recent data suggesting that methylation of IDO may be involved. Osteoporosis is also associated with abnormalities of the kynurenine pathway, reflected in an inversion of the ratio between blood levels of the metabolites anthranilic acid and 3-hydroxy-anthranilic acid. This review discusses evidence to date on the role of the IDO/kynurenine pathway and the highly prevalent age-related disorders of osteoporosis and rheumatoid arthritis and identifies key areas that require further research.
Collapse
Affiliation(s)
- Joy Ogbechi
- The Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford OX3 7FY, UK
| | - Felix I Clanchy
- The Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford OX3 7FY, UK
| | - Yi-Shu Huang
- The Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford OX3 7FY, UK
| | - Louise M Topping
- The Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford OX3 7FY, UK
| | - Trevor W Stone
- The Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford OX3 7FY, UK
| | - Richard O Williams
- The Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford OX3 7FY, UK.
| |
Collapse
|
17
|
Baratta AM, Kanyuch NR, Cole CA, Valafar H, Deslauriers J, Pocivavsek A. Acute sleep deprivation during pregnancy in rats: Rapid elevation of placental and fetal inflammation and kynurenic acid. Neurobiol Stress 2019; 12:100204. [PMID: 32258253 PMCID: PMC7109515 DOI: 10.1016/j.ynstr.2019.100204] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 11/27/2019] [Accepted: 12/11/2019] [Indexed: 01/19/2023] Open
Abstract
The kynurenine pathway (KP) is the dominant pathway for tryptophan degradation in the mammalian body and emerging evidence suggests that acute episodes of sleep deprivation (SD) disrupt tryptophan metabolism via the KP. Increases in the neuroactive KP metabolite kynurenic acid (KYNA) during pregnancy may lead to a higher risk for disrupted neurodevelopment in the offspring. As pregnancy is a critical period during which several factors, including sleep disruptions, could disrupt the fetal environment, we presently explored the relationship between maternal SD and KP metabolism and immune pathways in maternal, placenta, and fetal tissues. Pregnant Wistar rat dams were sleep deprived by gentle handling for 5 h from zeitgeber time (ZT) 0 to ZT 5. Experimental cohorts included: i) controls, ii) one session of SD on embryonic day (ED) 18 or iii) three sessions of SD occurring daily on ED 16, ED 17 and ED 18. Maternal (plasma, brain), placental and fetal (plasma, brain) tissues were collected immediately after the last session of SD or after 24 h of recovery from SD. Respective controls were euthanized at ZT 5 on ED 18 or ED 19. Maternal plasma corticosterone and fetal brain KYNA were significantly elevated only after one session of SD on ED 18. Importantly, maternal plasma corticosterone levels correlated significantly with fetal brain KYNA levels. In addition, placental levels of the proinflammatory cytokines interleukin-1β (IL-1β) and interleukin-6 (IL-6) were increased following maternal SD, suggesting a relationship between placental immune response to SD and fetal brain KYNA accumulation. Collectively, our results demonstrate that sleep loss during the last week of gestation can adversely impact maternal stress, placental immune function, and fetal brain KYNA levels. We introduce KYNA as a novel molecular target influenced by sleep loss during pregnancy. Prenatal sleep deprivation influences kynurenine pathway metabolism in utero. Fetal brain kynurenic acid (KYNA) is elevated after maternal sleep deprivation. Maternal plasma corticosterone is increased after sleep deprivation. Prenatal sleep deprivation induces placental and fetal brain cytokines. These data support an interplay with stress, in utero inflammation, and KYNA.
Collapse
Affiliation(s)
- Annalisa M Baratta
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Nickole R Kanyuch
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Casey A Cole
- College of Engineering and Computing, University of South Carolina, Columba, South Carolina, USA
| | - Homayoun Valafar
- College of Engineering and Computing, University of South Carolina, Columba, South Carolina, USA
| | - Jessica Deslauriers
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA.,Center of Excellence for Stress and Mental Health, Veterans Affairs Hospital, La Jolla, CA, USA
| | - Ana Pocivavsek
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA.,Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA
| |
Collapse
|
18
|
Notarangelo FM, Beggiato S, Schwarcz R. Assessment of Prenatal Kynurenine Metabolism Using Tissue Slices: Focus on the Neosynthesis of Kynurenic Acid in Mice. Dev Neurosci 2019; 41:102-111. [PMID: 31117076 DOI: 10.1159/000499736] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 03/19/2019] [Indexed: 01/17/2023] Open
Abstract
Several lines of evidence support the hypothesis that abnormally elevated brain levels of kynurenic acid (KYNA), a metabolite of the kynurenine pathway (KP) of tryptophan degradation, play a pathophysiologically significant role in schizophrenia and other major neurodevelopmental disorders. Studies in experimental animal models suggest that KP impairments in these diseases may originate already in utero since prenatal administration of KYNA's bioprecursor, kynurenine, leads to biochemical and structural abnormalities as well as distinct cognitive impairments in adulthood. As KP metabolism during pregnancy is still insufficiently understood, we designed this study to examine the de novo synthesis of KYNA and 3-hydroxykynurenine (3-HK), an alternative biologically active product of kynurenine degradation, in tissue slices obtained from pregnant mice on gestational day (GD) 18. Fetal brain and liver, placenta, and maternal brain and liver were collected, and the tissues were incubated in vitroin the absence or presence of micromolar concentrations of kynurenine. KYNA and 3-HK were measured in the extracellular milieu. Basal and newly produced KYNA was detected in all cases. As KYNA formation exceeded 3-HK production by 2-3 orders of magnitude in the placenta and maternal brain, and as very little 3-HK neosynthesis was detectable in fetal brain tissue, detailed follow-up experiments focused on KYNA only. The fetal brain produced 3-4 times more KYNA than the maternal brain and placenta, though less than the maternal and fetal liver. No significant differences were observed when using tissues obtained on GD 14 and GD 18. Pharmacological inhibition of KYNA's main biosynthetic enzymes, kynurenine aminotransferase (KAT) I and KAT II, revealed qualitative and quantitative differences between the tissues, with a preferential role of KAT I in the fetal and maternal brain and of KAT II in the fetal and maternal liver. Findings using tissue slices from KAT II knockout mice confirmed these conclusions. Together, these results clarify the dynamics of KP metabolism during pregnancy and provide the basis for the conceptualization of interventions aimed at manipulating cerebral KP function in the prenatal period.
Collapse
Affiliation(s)
- Francesca M Notarangelo
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, Maryland, USA,
| | - Sarah Beggiato
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Robert Schwarcz
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
19
|
Beggiato S, Notarangelo FM, Sathyasaikumar KV, Giorgini F, Schwarcz R. Maternal genotype determines kynurenic acid levels in the fetal brain: Implications for the pathophysiology of schizophrenia. J Psychopharmacol 2018; 32:1223-1232. [PMID: 30354938 DOI: 10.1177/0269881118805492] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
BACKGROUND Several studies suggest a pathophysiologically relevant association between increased brain levels of the neuroinhibitory tryptophan metabolite kynurenic acid and cognitive dysfunctions in people with schizophrenia. Elevated kynurenic acid in schizophrenia may be secondary to a genetic alteration of kynurenine 3-monooxygenase, a pivotal enzyme in the kynurenine pathway of tryptophan degradation. In rats, prenatal exposure to kynurenine, the direct bioprecursor of kynurenic acid, induces cognitive impairments reminiscent of schizophrenia in adulthood, suggesting a developmental dimension to the link between kynurenic acid and schizophrenia. AIM The purpose of this study was to explore the possible impact of the maternal genotype on kynurenine pathway metabolism. METHODS We exposed pregnant wild-type ( Kmo+/+ ) and heterozygous ( Kmo+/-) mice to kynurenine (10 mg/day) during the last week of gestation and determined the levels of kynurenic acid and two other neuroactive kynurenine pathway metabolites, 3-hydroxykynurenine and quinolinic acid, in fetal brain and placenta on embryonic day 17/18. RESULTS Maternal kynurenine treatment raised kynurenic acid levels significantly more in the brain of heterozygous offspring of Kmo+/- than in the brain of Kmo+/+ offspring. Conversely, 3-hydroxykynurenine and quinolinic acid levels in the fetal brain tended to be lower in heterozygous animals derived from kynurenine-treated Kmo+/- mice than in corresponding Kmo+/+ offspring. Genotype-related effects on the placenta were qualitatively similar but less pronounced. Kynurenine treatment also caused a preferential elevation in cerebral kynurenic acid levels in Kmo+/- compared to Kmo+/+ dams. CONCLUSIONS The disproportionate kynurenic acid increase in the brain of Kmo+/- animals indicates that the maternal Kmo genotype may play a key role in the pathophysiology of schizophrenia.
Collapse
Affiliation(s)
- Sarah Beggiato
- 1 Department of Life Sciences and Biotechnologies, University of Ferrara, Ferrara, Italy.,2 Laboratory for the Technology of Advanced Therapies (LTTA Centre), University of Ferrara, Ferrara, Italy
| | - Francesca M Notarangelo
- 3 Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | | | - Flaviano Giorgini
- 4 Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - Robert Schwarcz
- 3 Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
20
|
Hahn B, Reneski CH, Pocivavsek A, Schwarcz R. Prenatal kynurenine treatment in rats causes schizophrenia-like broad monitoring deficits in adulthood. Psychopharmacology (Berl) 2018; 235:651-661. [PMID: 29128872 PMCID: PMC5823752 DOI: 10.1007/s00213-017-4780-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 11/01/2017] [Indexed: 12/12/2022]
Abstract
RATIONALE Elevated brain kynurenic acid (KYNA) levels are implicated in the pathology and neurodevelopmental pathogenesis of schizophrenia. In rats, embryonic treatment with kynurenine (EKyn) causes elevated brain KYNA levels in adulthood and cognitive deficits reminiscent of schizophrenia. OBJECTIVES Growing evidence suggests that people with schizophrenia have a narrowed attentional focus, and we aimed at establishing whether these abnormalities may be related to KYNA dysregulation. METHODS To test whether EKyn rats display broad monitoring deficits, kynurenine was added to the chow of pregnant Wistar dams on embryonic days 15-22. As adults, 20 EKyn and 20 control rats were trained to stable performance on the five-choice serial reaction time task, requiring the localization of 1-s light stimuli presented randomly across five apertures horizontally arranged along a curved wall, equating the locomotor demands of reaching each hole. RESULTS EKyn rats displayed elevated omission errors and reduced anticipatory responses relative to control rats, indicative of a lower response rate, and showed reduced locomotor activity. The ability to spread attention broadly was measured by parsing performance by stimulus location. Both groups displayed poorer stimulus detection with greater target location eccentricity, but this effect was significantly more pronounced in the EKyn group. Specifically, the groups differed in the spatial distribution of correct but not incorrect responses. This pattern cannot be explained by differences in response rate and is indicative of a narrowed attentional focus. CONCLUSIONS The findings suggest a potential etiology of broad monitoring deficits in schizophrenia, which may constitute a core cognitive deficit.
Collapse
Affiliation(s)
- Britta Hahn
- Maryland Psychiatric Research Center, University of Maryland School of Medicine, P.O. Box 21247, Baltimore, MD, 21228, USA.
| | | | | | | |
Collapse
|
21
|
Quantitative Analysis of Kynurenine Aminotransferase II in the Adult Rat Brain Reveals High Expression in Proliferative Zones and Corpus Callosum. Neuroscience 2017; 369:1-14. [PMID: 29126954 DOI: 10.1016/j.neuroscience.2017.11.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 10/06/2017] [Accepted: 11/01/2017] [Indexed: 12/27/2022]
Abstract
Kynurenic acid, a metabolite of the kynurenine pathway of tryptophan degradation, acts as an endogenous antagonist of alpha7 nicotinic and NMDA receptors and is implicated in a number of neurophysiological and neuropathological processes including cognition and neurodegenerative events. Therefore, kynurenine aminotransferase II (KAT II/AADAT), the enzyme responsible for the formation of the majority of neuroactive kynurenic acid in the brain, has prompted significant interest. Using immunohistochemistry, this enzyme was localized primarily in astrocytes throughout the adult rat brain, but detailed neuroanatomical studies are lacking. Here, we employed quantitative in situ hybridization to analyze the relative expression of KAT II mRNA in the brain of rats under normal conditions and 6 h after the administration of lipopolysaccharides (LPSs). Specific hybridization signals for KAT II were detected, with the highest expression in the subventricular zone (SVZ), the rostral migratory stream and the floor of the third ventricle followed by the corpus callosum and the hippocampus. This pattern of mRNA expression was paralleled by differential protein expression, determined by serial dilutions of antibodies (up to 1:1 million), and was confirmed to be primarily astrocytic in nature. The mRNA signal in the SVZ and the hippocampus was substantially increased by the LPS treatment without detectable changes elsewhere. These results demonstrate that KAT II is expressed in the rat brain in a region-specific manner and that gene expression is sensitive to inflammatory processes. This suggests an unrecognized role for kynurenic acid in the brain's germinal zones.
Collapse
|
22
|
Brown AG, Tulina NM, Barila GO, Hester MS, Elovitz MA. Exposure to intrauterine inflammation alters metabolomic profiles in the amniotic fluid, fetal and neonatal brain in the mouse. PLoS One 2017; 12:e0186656. [PMID: 29049352 PMCID: PMC5648237 DOI: 10.1371/journal.pone.0186656] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 10/04/2017] [Indexed: 11/18/2022] Open
Abstract
INTRODUCTION Exposure to prenatal inflammation is associated with diverse adverse neurobehavioral outcomes in exposed offspring. The mechanism by which inflammation negatively impacts the developing brain is poorly understood. Metabolomic profiling provides an opportunity to identify specific metabolites, and novel pathways, which may reveal mechanisms by which exposure to intrauterine inflammation promotes fetal and neonatal brain injury. Therefore, we investigated whether exposure to intrauterine inflammation altered the metabolome of the amniotic fluid, fetal and neonatal brain. Additionally, we explored whether changes in the metabolomic profile from exposure to prenatal inflammation occurs in a sex-specific manner in the neonatal brain. METHODS CD-1, timed pregnant mice received an intrauterine injection of lipopolysaccharide (50 μg/dam) or saline on embryonic day 15. Six and 48 hours later mice were sacrificed and amniotic fluid, and fetal brains were collected (n = 8/group). Postnatal brains were collected on day of life 1 (n = 6/group/sex). Global biochemical profiles were determined using ultra performance liquid chromatography/tandem mass spectrometry (Metabolon Inc.). Statistical analyses were performed by comparing samples from lipopolysaccharide and saline treated animals at each time point. For the P1 brains, analyses were stratified by sex. RESULTS/CONCLUSIONS Exposure to intrauterine inflammation induced unique, temporally regulated changes in the metabolic profiles of amniotic fluid, fetal brain and postnatal brain. Six hours after exposure to intrauterine inflammation, the amniotic fluid and the fetal brain metabolomes were dramatically altered with significant enhancements of amino acid and purine metabolites. The amniotic fluid had enhanced levels of several members of the (hypo) xanthine pathway and this compound was validated as a potential biomarker. By 48 hours, the number of altered biochemicals in both the fetal brain and the amniotic fluid had declined, yet unique profiles existed. Neonatal pups exposed to intrauterine inflammation have significant alterations in their lipid metabolites, in particular, fatty acids. These sex-specific metabolic changes within the newborn brain offer an explanation regarding the sexual dimorphism of certain psychiatric and neurobehavioral disorders associated with exposure to prenatal inflammation.
Collapse
Affiliation(s)
- Amy G. Brown
- Maternal Child Health Research Center, Department of Obstetrics and Gynecology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| | - Natalia M. Tulina
- Maternal Child Health Research Center, Department of Obstetrics and Gynecology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Guillermo O. Barila
- Maternal Child Health Research Center, Department of Obstetrics and Gynecology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Michael S. Hester
- Maternal Child Health Research Center, Department of Obstetrics and Gynecology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Michal A. Elovitz
- Maternal Child Health Research Center, Department of Obstetrics and Gynecology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
23
|
Kelly JR, Minuto C, Cryan JF, Clarke G, Dinan TG. Cross Talk: The Microbiota and Neurodevelopmental Disorders. Front Neurosci 2017; 11:490. [PMID: 28966571 PMCID: PMC5605633 DOI: 10.3389/fnins.2017.00490] [Citation(s) in RCA: 152] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 08/17/2017] [Indexed: 12/11/2022] Open
Abstract
Humans evolved within a microbial ecosystem resulting in an interlinked physiology. The gut microbiota can signal to the brain via the immune system, the vagus nerve or other host-microbe interactions facilitated by gut hormones, regulation of tryptophan metabolism and microbial metabolites such as short chain fatty acids (SCFA), to influence brain development, function and behavior. Emerging evidence suggests that the gut microbiota may play a role in shaping cognitive networks encompassing emotional and social domains in neurodevelopmental disorders. Drawing upon pre-clinical and clinical evidence, we review the potential role of the gut microbiota in the origins and development of social and emotional domains related to Autism spectrum disorders (ASD) and schizophrenia. Small preliminary clinical studies have demonstrated gut microbiota alterations in both ASD and schizophrenia compared to healthy controls. However, we await the further development of mechanistic insights, together with large scale longitudinal clinical trials, that encompass a systems level dimensional approach, to investigate whether promising pre-clinical and initial clinical findings lead to clinical relevance.
Collapse
Affiliation(s)
- John R Kelly
- Department of Psychiatry and Neurobehavioural Science, University College CorkCork, Ireland.,APC Microbiome Institute, University College CorkCork, Ireland
| | - Chiara Minuto
- Department of Psychiatry and Neurobehavioural Science, University College CorkCork, Ireland.,APC Microbiome Institute, University College CorkCork, Ireland
| | - John F Cryan
- APC Microbiome Institute, University College CorkCork, Ireland.,Department of Anatomy and Neuroscience, University College CorkCork, Ireland
| | - Gerard Clarke
- Department of Psychiatry and Neurobehavioural Science, University College CorkCork, Ireland.,APC Microbiome Institute, University College CorkCork, Ireland
| | - Timothy G Dinan
- Department of Psychiatry and Neurobehavioural Science, University College CorkCork, Ireland.,APC Microbiome Institute, University College CorkCork, Ireland
| |
Collapse
|
24
|
Preferential Disruption of Prefrontal GABAergic Function by Nanomolar Concentrations of the α7nACh Negative Modulator Kynurenic Acid. J Neurosci 2017; 37:7921-7929. [PMID: 28729445 DOI: 10.1523/jneurosci.0932-17.2017] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 06/20/2017] [Accepted: 07/11/2017] [Indexed: 12/27/2022] Open
Abstract
Increased concentrations of kynurenic acid (KYNA) in the prefrontal cortex (PFC) are thought to contribute to the development of cognitive deficits observed in schizophrenia. Although this view is consistent with preclinical studies showing a negative impact of prefrontal KYNA elevation on executive function, the mechanism underlying such a disruption remains unclear. Here, we measured changes in local field potential (LFP) responses to ventral hippocampal stimulation in vivo and conducted whole-cell patch-clamp recordings in brain slices to reveal how nanomolar concentrations of KYNA alter synaptic transmission in the PFC of male adult rats. Our data show that prefrontal infusions of KYNA attenuated the inhibitory component of PFC LFP responses, a disruption that resulted from local blockade of α7-nicotinic acetylcholine receptors (α7nAChR). At the cellular level, we found that the inhibitory action exerted by KYNA in the PFC occurred primarily at local GABAergic synapses through an α7nAChR-dependent presynaptic mechanism. As a result, the excitatory-inhibitory ratio of synaptic transmission becomes imbalanced in a manner that correlates highly with the level of GABAergic suppression by KYNA. Finally, prefrontal infusion of a GABAAR positive allosteric modulator was sufficient to overcome the disrupting effect of KYNA and normalized the pattern of LFP inhibition in the PFC. Thus, the preferential inhibitory effect of KYNA on prefrontal GABAergic transmission could contribute to the onset of cognitive deficits observed in schizophrenia because proper GABAergic control of PFC output is one key mechanism for supporting such cortical functions.SIGNIFICANCE STATEMENT Brain kynurenic acid (KYNA) is an astrocyte-derived metabolite and its abnormal elevation in the prefrontal cortex (PFC) is thought to impair cognitive functions in individuals with schizophrenia. However, the mechanism underlying the disrupting effect of KYNA remains unclear. Here we found that KYNA biases the excitatory-inhibitory balance of prefrontal synaptic activity toward a state of disinhibition. Such disruption emerges as a result of a preferential suppression of local GABAergic transmission by KYNA via presynaptic inhibition of α7-nicotinic acetylcholine receptor signaling. Therefore, the degree of GABAergic dysregulation in the PFC could be a clinically relevant contributing factor for the onset of cognitive deficits resulting from abnormal increases of cortical KYNA.
Collapse
|
25
|
Bortz DM, Wu HQ, Schwarcz R, Bruno JP. Oral administration of a specific kynurenic acid synthesis (KAT II) inhibitor attenuates evoked glutamate release in rat prefrontal cortex. Neuropharmacology 2017; 121:69-78. [PMID: 28419874 PMCID: PMC5803791 DOI: 10.1016/j.neuropharm.2017.04.023] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Revised: 03/22/2017] [Accepted: 04/14/2017] [Indexed: 11/20/2022]
Abstract
Cognitive deficits represent core symptoms in schizophrenia (SZ) and predict patient outcome; however, they remain poorly treated by current antipsychotic drugs. Elevated levels of the endogenous alpha7 nicotinic receptor negative allosteric modulator and NMDA receptor antagonist, kynurenic acid (KYNA), are commonly seen in post-mortem tissue and cerebrospinal fluid of patients with SZ. When acutely or chronically elevated in rodents, KYNA produces cognitive deficits similar to those seen in the disease, making down-regulation of KYNA, via inhibition of kynurenine aminotransferase II (KAT II), a potential treatment strategy. We determined, in adult Wistar rats, if the orally available KAT II inhibitor BFF816 a) prevents KYNA elevations in prefrontal cortex (PFC) after a systemic kynurenine injection and b) reverses the kynurenine-induced attenuation of evoked prefrontal glutamate release caused by stimulation of the nucleus accumbens shell (NAcSh). Systemic injection of kynurenine (25 or 100 mg/kg, i.p.) increased KYNA levels in PFC (532% and 1104% of baseline, respectively). NMDA infusions (0.15 μg/0.5 μL) into NAcSh raised prefrontal glutamate levels more than 30-fold above baseline. The two doses of kynurenine reduced evoked glutamate release in PFC (by 43% and 94%, respectively, compared to NMDA alone). Co-administration of BFF816 (30 or 100 mg/kg, p.o.) with kynurenine (25 mg/kg, i.p.) attenuated the neosynthesis of KYNA and dose-dependently restored NMDA-stimulated glutamate release in the PFC (16% and 69%, respectively). The ability to prevent KYNA neosynthesis and to normalize evoked glutamate release in PFC justifies further development of KAT II inhibitors for the treatment of cognitive deficits in SZ.
Collapse
Affiliation(s)
- D M Bortz
- Dept. of Psychology, The Ohio State University, Columbus, OH, United States
| | - H-Q Wu
- Maryland Psychiatric Research Center, Dept. of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, United States
| | - R Schwarcz
- Maryland Psychiatric Research Center, Dept. of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, United States
| | - J P Bruno
- Dept. of Psychology, The Ohio State University, Columbus, OH, United States; Dept. of Neuroscience, The Ohio State University, Columbus, OH, United States.
| |
Collapse
|