1
|
Liu Y, Chen L, Lin L, Xu C, Xiong Y, Qiu H, Li X, Li S, Cao H. Unveiling the hidden pathways: Exploring astrocytes as a key target for depression therapy. J Psychiatr Res 2024; 174:101-113. [PMID: 38626560 DOI: 10.1016/j.jpsychires.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 03/07/2024] [Accepted: 04/02/2024] [Indexed: 04/18/2024]
Abstract
Depressive disorders are widely debilitating psychiatric disease. Despite the considerable progress in the field of depression therapy, extensive research spanning many decades has failed to uncover pathogenic pathways that might aid in the creation of long-acting and rapid-acting antidepressants. Consequently, it is imperative to reconsider existing approaches and explore other targets to improve this area of study. In contemporary times, several scholarly investigations have unveiled that persons who have received a diagnosis of depression, as well as animal models employed to study depression, demonstrate a decrease in both the quantity as well as density of astrocytes, accompanied by alterations in gene expression and morphological attributes. Astrocytes rely on a diverse array of channels and receptors to facilitate their neurotransmitter transmission inside tripartite synapses. This study aimed to investigate the potential processes behind the development of depression, specifically focusing on astrocyte-associated neuroinflammation and the involvement of several molecular components such as connexin 43, potassium channel Kir4.1, aquaporin 4, glutamatergic aspartic acid transporter protein, SLC1A2 or GLT-1, glucocorticoid receptors, 5-hydroxytryptamine receptor 2B, and autophagy, that localized on the surface of astrocytes. The study also explores novel approaches in the treatment of depression, with a focus on astrocytes, offering innovative perspectives on potential antidepressant medications.
Collapse
Affiliation(s)
- Ying Liu
- Department of Psychiatry, The School of Clinical Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China; Department of Psychiatry, Brain Hospital of Hunan Province (The Second People's Hospital of Hunan Province), Changsha, Hunan, 410007, China.
| | - Lu Chen
- Department of Gastroenterology, The School of Clinical Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China; Department of Gastroenterology, Brain Hospital of Hunan Province (The Second People's Hospital of Hunan Province), Changsha, Hunan, 410007, China.
| | - Lin Lin
- Scientific Research Management Department, Brain Hospital of Hunan Province (The Second People's Hospital of Hunan Province), Changsha, Hunan, 410007, China.
| | - Caijuan Xu
- Department of Psychiatry, The School of Clinical Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China; Department of Psychiatry, Brain Hospital of Hunan Province (The Second People's Hospital of Hunan Province), Changsha, Hunan, 410007, China.
| | - Yifan Xiong
- Department of Psychiatry, The School of Clinical Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China; Department of Psychiatry, Brain Hospital of Hunan Province (The Second People's Hospital of Hunan Province), Changsha, Hunan, 410007, China.
| | - Huiwen Qiu
- Department of Psychiatry, The School of Clinical Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China; Department of Psychiatry, Brain Hospital of Hunan Province (The Second People's Hospital of Hunan Province), Changsha, Hunan, 410007, China.
| | - Xinyu Li
- Department of Psychiatry, The School of Clinical Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China; Department of Psychiatry, Brain Hospital of Hunan Province (The Second People's Hospital of Hunan Province), Changsha, Hunan, 410007, China.
| | - Sixin Li
- Department of Psychiatry, The School of Clinical Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China; Department of Psychiatry, Brain Hospital of Hunan Province (The Second People's Hospital of Hunan Province), Changsha, Hunan, 410007, China.
| | - Hui Cao
- Department of Psychiatry, The School of Clinical Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China; Department of Psychiatry, Brain Hospital of Hunan Province (The Second People's Hospital of Hunan Province), Changsha, Hunan, 410007, China.
| |
Collapse
|
2
|
Tóth KF, Ádám D, Arany J, Ramirez YA, Bíró T, Drake JI, O'Mahony A, Szöllősi AG, Póliska S, Kilić A, Soeberdt M, Abels C, Oláh A. Fluoxetine exerts anti-inflammatory effects on human epidermal keratinocytes and suppresses their endothelin release. Exp Dermatol 2024; 33:e14988. [PMID: 38284184 DOI: 10.1111/exd.14988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 11/08/2023] [Accepted: 11/22/2023] [Indexed: 01/30/2024]
Abstract
Fluoxetine is a safe antidepressant with remarkable anti-inflammatory actions; therefore, we aimed to investigate its effects on immortalized (HaCaT) as well as primary human epidermal keratinocytes in a polyinosinic-polycytidylic acid (p(I:C))-induced inflammatory model. We found that a non-cytotoxic concentration (MTT-assay, CyQUANT-assay) of fluoxetine significantly suppressed p(I:C)-induced expression and release of several pro-inflammatory cytokines (Q-PCR, cytokine array, ELISA), and it decreased the release of the itch mediator endothelins (ELISA). These effects were not mediated by the inhibition of the NF-κB or p38 MAPK pathways (western blot), or by the suppression of the p(I:C)-induced elevation of mitochondrial ROS production (MitoSOX Red labeling). Instead, unbiased activity profiling revealed that they were most likely mediated via the inhibition of the phosphoinositide 3-kinase (PI3K) pathway. Importantly, the PI3K-inhibitor GDC0941 fully mimicked the effects of fluoxetine (Q-PCR, ELISA). Although fluoxetine was able to occupy the binding site of GDC0941 (in silico molecular docking), and exerted direct inhibitory effect on PI3K (cell-free PI3K activity assay), it exhibited much lower potency and efficacy as compared to GDC0941. Finally, RNA-Seq analysis revealed that fluoxetine deeply influenced the transcriptional alterations induced by p(I:C)-treatment, and exerted an overall anti-inflammatory activity. Collectively, our findings demonstrate that fluoxetine exerts potent anti-inflammatory effects, and suppresses the release of the endogenous itch mediator endothelins in human keratinocytes, most likely via interfering with the PI3K pathway. Thus, clinical studies are encouraged to explore whether the currently reported beneficial effects translate in vivo following its topical administration in inflammatory and pruritic dermatoses.
Collapse
Affiliation(s)
- Kinga Fanni Tóth
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- University of Debrecen, Doctoral School of Molecular Medicine, Debrecen, Hungary
| | - Dorottya Ádám
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- University of Debrecen, Doctoral School of Molecular Medicine, Debrecen, Hungary
| | - József Arany
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- University of Debrecen, Doctoral School of Molecular Medicine, Debrecen, Hungary
| | - Yesid A Ramirez
- Design and Applied Sciences, School of Applied Sciences and Sustainable Industry, Department of Pharmaceutical and Chemical Sciences, Faculty of Engineering, Universidad Icesi, Cali, Valle del Cauca, Colombia
- Cannaflos-Gesellschaft für medizinisches Cannabis mbH, Köln, Germany
| | - Tamás Bíró
- Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | | | - Alison O'Mahony
- Eurofins Discovery, St. Charles, Missouri, USA
- Recursion, Salt Lake City, Utah, USA
| | - Attila Gábor Szöllősi
- Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Szilárd Póliska
- Genomic Medicine and Bioinformatics Core Facility, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Ana Kilić
- Dr. August Wolff GmbH & Co. KG Arzneimittel, Bielefeld, Germany
| | - Michael Soeberdt
- Dr. August Wolff GmbH & Co. KG Arzneimittel, Bielefeld, Germany
- Bionorica SE, Neumarkt, Germany
| | - Christoph Abels
- Dr. August Wolff GmbH & Co. KG Arzneimittel, Bielefeld, Germany
- Bionorica SE, Neumarkt, Germany
| | - Attila Oláh
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
3
|
Fehsel K, Christl J. Comorbidity of osteoporosis and Alzheimer's disease: Is `AKT `-ing on cellular glucose uptake the missing link? Ageing Res Rev 2022; 76:101592. [PMID: 35192961 DOI: 10.1016/j.arr.2022.101592] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 02/14/2022] [Accepted: 02/16/2022] [Indexed: 02/08/2023]
Abstract
Osteoporosis and Alzheimer's disease (AD) are both degenerative diseases. Osteoporosis often proceeds cognitive deficits, and multiple studies have revealed common triggers that lead to energy deficits in brain and bone. Risk factors for osteoporosis and AD, such as obesity, type 2 diabetes, aging, chemotherapy, vitamin deficiency, alcohol abuse, and apolipoprotein Eε4 and/or Il-6 gene variants, reduce cellular glucose uptake, and protective factors, such as estrogen, insulin, exercise, mammalian target of rapamycin inhibitors, hydrogen sulfide, and most phytochemicals, increase uptake. Glucose uptake is a fine-tuned process that depends on an abundance of glucose transporters (Gluts) on the cell surface. Gluts are stored in vesicles under the plasma membrane, and protective factors cause these vesicles to fuse with the membrane, resulting in presentation of Gluts on the cell surface. This translocation depends mainly on AKT kinase signaling and can be affected by a range of factors. Reduced AKT kinase signaling results in intracellular glucose deprivation, which causes endoplasmic reticulum stress and iron depletion, leading to activation of HIF-1α, the transcription factor necessary for higher Glut expression. The link between diseases and aging is a topic of growing interest. Here, we show that diseases that affect the same biochemical pathways tend to co-occur, which may explain why osteoporosis and/or diabetes are often associated with AD.
Collapse
|
4
|
Cordner ZA, Marshall-Thomas I, Boersma GJ, Lee RS, Potash JB, Tamashiro KL. Fluoxetine and environmental enrichment similarly reverse chronic social stress-related depression- and anxiety-like behavior, but have differential effects on amygdala gene expression. Neurobiol Stress 2021; 15:100392. [PMID: 34568521 PMCID: PMC8449130 DOI: 10.1016/j.ynstr.2021.100392] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/20/2021] [Accepted: 09/08/2021] [Indexed: 01/26/2023] Open
Abstract
The adverse effects of stress on brain and behavior have long been known and well-studied, with abundant evidence linking stress to, among other things, mood and anxiety disorders. Likewise, many have investigated potential treatments for stress-related mood and anxiety phenotypes and demonstrated good response to standard antidepressant medications like selective serotonin reuptake inhibitors (SSRIs), as well as environmental manipulations like exercise or enrichment. However, the extent to which stress and various treatments act on overlapping pathways in the brain is less well understood. Here, we used a widely studied social defeat stress paradigm to induce a robust depression- and anxiety-like phenotype and chronic corticosterone elevation that persisted for at least 4 weeks in wild type male mice. When mice were treated with either the SSRI fluoxetine or an enriched environment, both led to similar behavioral recovery from social defeat. We then focused on the amygdala and assessed the effects of social defeat, fluoxetine, and enrichment on 168 genes broadly related to synaptic plasticity or oxidative stress. We found 24 differentially expressed genes in response to social defeat stress. Interestingly, fluoxetine led to broad normalization of the stress-induced expression pattern while enrichment led to expression changes in a separate set of genes. Together, this study provides additional insight into the chronic effects of social defeat stress on behavior and gene expression in the amygdala. The findings also suggest that, for a subset of genes assessed, fluoxetine and environmental enrichment have strikingly divergent effects on expression in the amygdala, despite leading to similar behavioral outcomes.
Collapse
Affiliation(s)
- Zachary A. Cordner
- Department of Psychiatry & Behavioral Sciences, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Ross 618, Baltimore, MD, 21205, USA
| | - Isaiah Marshall-Thomas
- Department of Psychiatry & Behavioral Sciences, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Ross 618, Baltimore, MD, 21205, USA
| | - Gretha J. Boersma
- Department of Psychiatry & Behavioral Sciences, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Ross 618, Baltimore, MD, 21205, USA
| | - Richard S. Lee
- Department of Psychiatry & Behavioral Sciences, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Ross 618, Baltimore, MD, 21205, USA
| | - James B. Potash
- Department of Psychiatry & Behavioral Sciences, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Ross 618, Baltimore, MD, 21205, USA
| | - Kellie L.K. Tamashiro
- Department of Psychiatry & Behavioral Sciences, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Ross 618, Baltimore, MD, 21205, USA
- Cellular & Molecular Medicine Program, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Ross 618, Baltimore, MD, 21205, USA
- Corresponding author. Department of Psychiatry & Behavioral Sciences Johns Hopkins University School of Medicine, 720 Rutland Avenue, Ross 618, Baltimore, MD, 21205, USA.
| |
Collapse
|
5
|
Petit JM, Eren-Koçak E, Karatas H, Magistretti P, Dalkara T. Brain glycogen metabolism: A possible link between sleep disturbances, headache and depression. Sleep Med Rev 2021; 59:101449. [PMID: 33618186 DOI: 10.1016/j.smrv.2021.101449] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 11/26/2020] [Accepted: 11/27/2020] [Indexed: 12/27/2022]
Abstract
The functions of sleep and its links with neuropsychiatric diseases have long been questioned. Among the numerous hypotheses on sleep function, early studies proposed that sleep helps to replenish glycogen stores consumed during waking. Later studies found increased brain glycogen after sleep deprivation, leading to "glycogenetic" hypothesis, which states that there is a parallel increase in synthesis and utilization of glycogen during wakefulness, whereas decrease in the excitatory transmission creates an imbalance causing accumulation of glycogen during sleep. Glycogen is a vital energy reservoir to match the synaptic demand particularly for re-uptake of potassium and glutamate during intense glutamatergic transmission. Therefore, sleep deprivation-induced transcriptional changes may trigger migraine by reducing glycogen availability, which slows clearance of extracellular potassium and glutamate, hence, creates susceptibility to cortical spreading depolarization, the electrophysiological correlate of migraine aura. Interestingly, chronic stress accompanied by increased glucocorticoid levels and locus coeruleus activity and leading to mood disorders in which sleep disturbances are prevalent, also affects brain glycogen turnover via glucocorticoids, noradrenaline, serotonin and adenosine. These observations altogether suggest that inadequate astrocytic glycogen turnover may be one of the mechanisms linking migraine, mood disorders and sleep.
Collapse
Affiliation(s)
- J-M Petit
- Lausanne University Hospital, Center for Psychiatric Neuroscience, Prilly, Switzerland.
| | - E Eren-Koçak
- Hacettepe University, Institute of Neurological Sciences and Psychiatry, and Faculty of Medicine, Department of Psychiatry, Ankara, Turkey.
| | - H Karatas
- Hacettepe University, Institute of Neurological Sciences and Psychiatry, Ankara, Turkey.
| | - P Magistretti
- King Abdullah University of Science and Technology, Saudi Arabia.
| | - T Dalkara
- Hacettepe University, Institute of Neurological Sciences and Psychiatry, Ankara, Turkey.
| |
Collapse
|
6
|
Resilience in the LPS-induced acute depressive-like behaviors: Increase of CRMP2 neuroprotection and microtubule dynamics in hippocampus. Brain Res Bull 2020; 162:261-270. [DOI: 10.1016/j.brainresbull.2020.06.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/24/2020] [Accepted: 06/22/2020] [Indexed: 12/11/2022]
|
7
|
Qi X, Sun L, Wan J, Xu R, He S, Zhu X. Tensin4 promotes invasion and migration of gastric cancer cells via regulating AKT/GSK-3β/snail signaling pathway. Pathol Res Pract 2020; 216:153001. [PMID: 32534709 DOI: 10.1016/j.prp.2020.153001] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 04/06/2020] [Accepted: 05/07/2020] [Indexed: 12/24/2022]
Abstract
Gastric cancer (GC) remains one of the most lethal human malignancies, and exploring novel therapeutic targets for the treatment has been a major focus. The molecular mechanism of invasion and migration of GC cells remains unclear. The present study aimed to investigate the role of Tensin 4 and the associated molecular signaling pathways in the process of invasion and metastasis of GC. The expression of Tensin 4 protein and phosphorylated AKT (p-AKT) were evaluated in GC and normal adjacent tissues of 80 patients using immunohistochemistry staining. The expression of Tensin4 mRNA was analyzed in 10 GC tissues and 3 GC cell lines (SGC7901, MKN45, and MKN28) by qPCR. Cell proliferation, migration, and invasion were assessed using CCK-8 and Transwell assays in the Tensin 4 siRNA transfected SGC7901 cells and Tensin 4 plasmid transfected MKN28 cells. Additionally, protein expressions of Tensin 4, E-cadherin, vimentin, AKT, p-AKT, GSK-3β, p-GSK-3β, and Snail were analyzed by western blotting. The results demonstrated that the expression of Tensin 4 was significantly up-regulated in the GC tissues and cell lines, especially in the SGC7901 cells. The expression of Tensin 4 positively correlated with p-AKT in GC tissues and with GC progression, and was an independent risk factor for the prognosis of GC. Tensin 4 promoted the invasion and migration abilities of GC cells, but had no significant effect on GC cell proliferation. Tensin 4 promoted the occurrence of epithelial mesenchymal transition (EMT) through up-regulating the expression of p-AKT, p-GSK-3β, and snail. Overall, this study suggests that the activation of AKT/GSK-3β/Snail signaling pathway promoted by Tensin 4 plays an important role in the progression of GC. Therefore, Tensin 4 may serve as a potential target in GC treatment.
Collapse
Affiliation(s)
- Xiumin Qi
- Department of General Surgery, The First Affiliated Hospital of Soochow University, 188 ShiZi Street, Suzhou 215006, China; Department of Pathology, Nanjing Medical University Affiliated Wuxi Second Hospital, China
| | - Liang Sun
- Department of General Surgery, The First Affiliated Hospital of Soochow University, 188 ShiZi Street, Suzhou 215006, China
| | - Jiayi Wan
- Department of Pathology, Nanjing Medical University Affiliated Wuxi Second Hospital, China
| | - Rongrong Xu
- Department of Pathology, Nanjing Medical University Affiliated Wuxi Second Hospital, China
| | - Songbing He
- Department of General Surgery, The First Affiliated Hospital of Soochow University, 188 ShiZi Street, Suzhou 215006, China.
| | - Xinguo Zhu
- Department of General Surgery, The First Affiliated Hospital of Soochow University, 188 ShiZi Street, Suzhou 215006, China.
| |
Collapse
|
8
|
Frazier TW. Autism Spectrum Disorder Associated with Germline Heterozygous PTEN Mutations. Cold Spring Harb Perspect Med 2019; 9:a037002. [PMID: 31307976 PMCID: PMC6771360 DOI: 10.1101/cshperspect.a037002] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
This review examines our current understanding of autism spectrum disorder (ASD), its prevalence, impact, behavioral treatment, and outcomes. Building on this knowledge, ASD associated with PTEN mutations is introduced and recent human studies of neurobehavioral and neuroimaging findings in patients with PTEN mutations with and without ASD are reviewed. In doing so, we present evidence supporting a model of PTEN loss leading to neurobehavioral deficits, including ASD and intellectual disability. Next, we describe the neurobehavioral spectrum observed across PTEN mutation cases, adding specificity where possible, based on data from recent studies of child and adult PTEN patients. Finally, we end with a discussion of potential clinical recommendations for improving interventions and supports for people with PTEN-ASD and future research avenues for understanding and treating the functional and cognitive deficits in PTEN-ASD.
Collapse
|
9
|
Steardo L, de Filippis R, Carbone EA, Segura-Garcia C, Verkhratsky A, De Fazio P. Sleep Disturbance in Bipolar Disorder: Neuroglia and Circadian Rhythms. Front Psychiatry 2019; 10:501. [PMID: 31379620 PMCID: PMC6656854 DOI: 10.3389/fpsyt.2019.00501] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 06/25/2019] [Indexed: 12/22/2022] Open
Abstract
The worldwide prevalence of sleep disorders is approximately 50%, with an even higher occurrence in a psychiatric population. Bipolar disorder (BD) is a severe mental illness characterized by shifts in mood and activity. The BD syndrome also involves heterogeneous symptomatology, including cognitive dysfunctions and impairments of the autonomic nervous system. Sleep abnormalities are frequently associated with BD and are often a good predictor of a mood swing. Preservation of stable sleep-wake cycles is therefore a key to the maintenance of stability in BD, indicating the crucial role of circadian rhythms in this syndrome. The symptom most widespread in BD is insomnia, followed by excessive daytime sleepiness, nightmares, difficulty falling asleep or maintaining sleep, poor sleep quality, sleep talking, sleep walking, and obstructive sleep apnea. Alterations in the structure or duration of sleep are reported in all phases of BD. Understanding the role of neuroglia in BD and in various aspects of sleep is in nascent state. Contributions of the different types of glial cells to BD and sleep abnormalities are discussed in this paper.
Collapse
Affiliation(s)
- Luca Steardo
- Psychiatric Unit, Department of Health Sciences, University Magna Graecia, Catanzaro, Italy
| | - Renato de Filippis
- Psychiatric Unit, Department of Health Sciences, University Magna Graecia, Catanzaro, Italy
| | - Elvira Anna Carbone
- Psychiatric Unit, Department of Health Sciences, University Magna Graecia, Catanzaro, Italy
| | - Cristina Segura-Garcia
- Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
- Achucarro Center for Neuroscience, IKERBASQUE, Bilbao, Spain
| | - Pasquale De Fazio
- Psychiatric Unit, Department of Health Sciences, University Magna Graecia, Catanzaro, Italy
| |
Collapse
|
10
|
PI3K/Akt/NF-κB signaling pathway regulates behaviors in adolescent female rats following with neonatal maternal deprivation and chronic mild stress. Behav Brain Res 2019; 362:199-207. [PMID: 30630016 DOI: 10.1016/j.bbr.2019.01.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 01/07/2019] [Accepted: 01/07/2019] [Indexed: 12/11/2022]
Abstract
The early-life aversive experiences are associated with the increased risk for adolescent neuropsychiatric disorders and neuroinflammation. So, we used neonatal maternal deprivation (NMD) and chronic mild stress (CMS) to build adolescent depression model and investigate the role of microglia activation, PI3K/Akt/NF-κB pathway in female rats. Pups in NMD group were separated from mothers for 3 h each day from postnatal day (PND) 2 to PND 21 and rats in CMS group were subjected to one mild stressor each day from PND 22 to PND 42. Sucrose preference test (SPT), open field test (OFT), novel objective recognition test (NORT), Elevated-plus maze (EPM), marble burying test (MBT) and forced swimming test (FST) were performed from PND 42 to PND 50. Iba-1, pPI3K/PI3K, pAkt/Akt, and NF-κB expressions in the prefrontal cortex (PFC) and hippocampus (HIP) were detected by Western-Blot. Contents of IL-6, IL-1β and TNF-α were detected by ELISA method. It was found NMD + CMS increased the immobility time, buried marble number, inflammatory cytokines release and reduced the sucrose consumption ratio, time ratio and distance ratio in open arm, crossing times, rearing times. Furthermore, it decreased the discrimination ratio (DR) and discrimination index (DI) in T2 phase. NMD + CMS upregulated the expression of Iba-1, pPI3K/PI3K, pacts/Akt, and NF-κB in PFC and HIP. NMD or CMS solely didn't affect all these behaviors in rats. Sertraline treatment reversed these changes after NMD + CMS. In view of our findings we propose the NMD + CMS procedure as a potentially useful animal model to analyze developmental emotional behaviors and cognitive dysfunction in adolescent female rats, which may be related with microglial activation and PI3k/Akt/NF-κB pathway upregulation.
Collapse
|
11
|
Pederson BA. Structure and Regulation of Glycogen Synthase in the Brain. ADVANCES IN NEUROBIOLOGY 2019; 23:83-123. [PMID: 31667806 DOI: 10.1007/978-3-030-27480-1_3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Brain glycogen synthesis is a regulated, multi-step process that begins with glucose transport across the blood brain barrier and culminates with the actions of glycogen synthase and the glycogen branching enzyme to elongate glucose chains and introduce branch points in a growing glycogen molecule. This review focuses on the synthesis of glycogen in the brain, with an emphasis on glycogen synthase, but draws on salient studies in mammalian muscle and liver as well as baker's yeast, with the goal of providing a more comprehensive view of glycogen synthesis and highlighting potential areas for further study in the brain. In addition, deficiencies in the glycogen biosynthetic enzymes which lead to glycogen storage diseases in humans are discussed, highlighting effects on the brain and discussing findings in genetically modified animal models that recapitulate these diseases. Finally, implications of glycogen synthesis in neurodegenerative and other diseases that impact the brain are presented.
Collapse
|
12
|
|
13
|
Zhao W, Lin Y, Xiong J, Wang Y, Huang G, Deng Q, Yao L, Yu C, Dong H, Cai S, Zhao H. RAGE mediates β-catenin stabilization via activation of the Src/p-Cav-1 axis in a chemical-induced asthma model. Toxicol Lett 2018; 299:149-158. [PMID: 30261222 DOI: 10.1016/j.toxlet.2018.09.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 09/06/2018] [Accepted: 09/18/2018] [Indexed: 01/09/2023]
Abstract
We previously demonstrated receptor for advanced glycation end products (RAGE) was required for β-catenin stabilization in a toluene diisocyanate (TDI)-induced asthma model, suggesting it plays an important role in TDI-induced airway inflammation. The aim of this study was to examine whether RAGE mediates β-catenin stabilization via activation of the Src/p-Cav-1 axis in TDI-induced asthma model. To generate a chemical-induced asthma model, male BALB/c mice were sensitized and challenged with TDI. Before each challenge, FPS-ZM1 (RAGE inhibitor) and PP2 (Src inhibitor) was given via intraperitoneal injection. In the TDI-exposed mice, airway reactivity, airway inflammation, goblet cell metaplasia, and the release of Th2 cytokines and IgE increased significantly. The level of membrane β-catenin decreased but was increased in the cytoplasm. Increased expression of RAGE, p-Src, and p-Cav-1 was also detected in TDI-exposed lungs. However, all these changes were inhibited by FPS-ZM1 and PP2. In TDI-HSA stimulated human airway epithelial (16HBE) cells, the expression of p-Src and p-Cav-1, and the abnormal distribution of β-catenin were significantly increased, and then inhibited in RAGE knockdown cells. Similarly, PP2 or non-phosphorylatable Cav-1 mutant (Y14F-Cav-1) treated 16HBE cells had the same effect on the distribution of β-catenin. In addition, blockage of RAGE signaling and phosphorylation of Cav-1 eliminated the translocation of β-catenin from cytomembrane to cytoplasm. Our results showed that RAGE modulates β-catenin aberrant distribution via activation of Src/p-Cav-1 in a chemical-induced asthma model.
Collapse
Affiliation(s)
- Wenqu Zhao
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nangfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Yun Lin
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nangfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Jing Xiong
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nangfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Yanhong Wang
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nangfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Guohua Huang
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nangfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Qiuhua Deng
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nangfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Lihong Yao
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nangfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Changhui Yu
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nangfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Hangming Dong
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nangfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Shaoxi Cai
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nangfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Haijin Zhao
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nangfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
14
|
Jia S, Li B, Huang J, Verkhratsky A, Peng L. Regulation of Glycogen Content in Astrocytes via Cav-1/PTEN/AKT/GSK-3β Pathway by Three Anti-bipolar Drugs. Neurochem Res 2018; 43:1692-1701. [DOI: 10.1007/s11064-018-2585-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 06/15/2018] [Accepted: 06/20/2018] [Indexed: 12/27/2022]
|
15
|
Abstract
Introduction: Astroglia represent the main cellular homeostatic system of the central nervous system (CNS). Astrocytes are intimately involved in regulation and maintenance of neurotransmission by regulating neurotransmitters removal and turnover and by supplying neurons with neurotransmitters precursors. Astroglial cells are fundamental elements of monoaminergic transmission in the brain and in the spinal cord. Astrocytes receive monoaminergic inputs and control catabolism of monoamines through dedicated transporters and intracellular enzymatic pathways.Areas covered: Astroglial cells express serotonergic receptors; in this review, we provide an in-depth characterization of 5-HT2B receptors. Activation of these receptors triggers numerous intracellular signaling cascades that regulate expression of multiple genes. Astroglial 5-HT2B receptors are activated by serotonin-specific reuptake inhibitors, such as major anti-depressant fluoxetine. Expression of astroglial serotonin receptors undergoes remarkable changes in depression disorders, and these changes can be corrected by chronic treatment with anti-depressant drugs.Expert commentary: Depressive behaviors, which occur in rodents following chronic stress or in neurotoxic models of Parkinson disease, are associated with significant changes in the expression of astroglial, but not neuronal 5-HT2B receptors; while therapy with anti-depressants normalizes both receptors expression and depressive behavioral phenotype. In summary, astroglial serotonin receptors are linked to mood disorders and may represent a novel target for cell- and molecule-specific therapies of depression and mood disorders.
Collapse
Affiliation(s)
- Liang Peng
- Laboratory of Metabolic Brain Diseases, Institute of Metabolic Disease Research and Drug Development, China Medical University, Shenyang, PR China
| | - Dan Song
- Laboratory of Metabolic Brain Diseases, Institute of Metabolic Disease Research and Drug Development, China Medical University, Shenyang, PR China
| | - Baoman Li
- Laboratory of Metabolic Brain Diseases, Institute of Metabolic Disease Research and Drug Development, China Medical University, Shenyang, PR China
| | - Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.,Achucarro Center for Neuroscience, Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
16
|
Pinto CB, Saleh Velez FG, Lopes F, de Toledo Piza PV, Dipietro L, Wang QM, Mazwi NL, Camargo EC, Black-Schaffer R, Fregni F. SSRI and Motor Recovery in Stroke: Reestablishment of Inhibitory Neural Network Tonus. Front Neurosci 2017; 11:637. [PMID: 29200995 PMCID: PMC5696576 DOI: 10.3389/fnins.2017.00637] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 11/02/2017] [Indexed: 12/23/2022] Open
Abstract
Selective serotonin reuptake inhibitors (SSRIs) are currently widely used in the field of the neuromodulation not only because of their anti-depressive effects but also due to their ability to promote plasticity and enhance motor recovery in patients with stroke. Recent studies showed that fluoxetine promotes motor recovery after stroke through its effects on the serotonergic system enhancing motor outputs and facilitating long term potentiation, key factors in motor neural plasticity. However, little is known in regards of the exact mechanisms underlying these effects and several aspects of it remain poorly understood. In this manuscript, we discuss evidence supporting the hypothesis that SSRIs, and in particular fluoxetine, modulate inhibitory pathways, and that this modulation enhances reorganization and reestablishment of excitatory-inhibitory control; these effects play a key role in learning induced plasticity in neural circuits involved in the promotion of motor recovery after stroke. This discussion aims to provide important insights and rationale for the development of novel strategies for stroke motor rehabilitation.
Collapse
Affiliation(s)
- Camila B. Pinto
- Laboratory of Neuromodulation and Center for Clinical Research Learning, Department of Physical Medicine and Rehabilitation, Harvard Medical School, Spaulding Rehabilitation Hospital, Harvard University, Boston, MA, United States
- Department of Neuroscience and Behavior, Psychology Institute, University of São Paulo, São Paulo, Brazil
| | - Faddi G. Saleh Velez
- Laboratory of Neuromodulation and Center for Clinical Research Learning, Department of Physical Medicine and Rehabilitation, Harvard Medical School, Spaulding Rehabilitation Hospital, Harvard University, Boston, MA, United States
| | - Fernanda Lopes
- Laboratory of Neuromodulation and Center for Clinical Research Learning, Department of Physical Medicine and Rehabilitation, Harvard Medical School, Spaulding Rehabilitation Hospital, Harvard University, Boston, MA, United States
| | - Polyana V. de Toledo Piza
- Laboratory of Neuromodulation and Center for Clinical Research Learning, Department of Physical Medicine and Rehabilitation, Harvard Medical School, Spaulding Rehabilitation Hospital, Harvard University, Boston, MA, United States
- Department of Severe Patients, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | | | - Qing M. Wang
- Stroke Biological Recovery Laboratory, Department of Physical Medicine and Rehabilitation, Harvard Medical School, Spaulding Rehabilitation Hospital, Harvard University, Boston, MA, United States
| | - Nicole L. Mazwi
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Spaulding Rehabilitation Hospital, Harvard University, Boston, MA, United States
| | - Erica C. Camargo
- Department of Neurology, Harvard Medical School, Massachusetts General Hospital, Harvard University, Boston, MA, United States
| | - Randie Black-Schaffer
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Spaulding Rehabilitation Hospital, Harvard University, Boston, MA, United States
| | - Felipe Fregni
- Laboratory of Neuromodulation and Center for Clinical Research Learning, Department of Physical Medicine and Rehabilitation, Harvard Medical School, Spaulding Rehabilitation Hospital, Harvard University, Boston, MA, United States
| |
Collapse
|
17
|
Li B, Jia S, Yue T, Yang L, Huang C, Verkhratsky A, Peng L. Biphasic Regulation of Caveolin-1 Gene Expression by Fluoxetine in Astrocytes: Opposite Effects of PI3K/AKT and MAPK/ERK Signaling Pathways on c-fos. Front Cell Neurosci 2017; 11:335. [PMID: 29163047 PMCID: PMC5671492 DOI: 10.3389/fncel.2017.00335] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 10/11/2017] [Indexed: 11/13/2022] Open
Abstract
Previously, we reported that fluoxetine acts on 5-HT2B receptor and induces epidermal growth factor receptor (EGFR) transactivation in astrocytes. Recently, we have found that chronic treatment with fluoxetine regulates Caveolin-1 (Cav-1)/PTEN/PI3K/AKT/glycogen synthase kinase 3β (GSK-3β) signaling pathway and glycogen content in primary cultures of astrocytes with bi-phasic concentration dependence. At low concentrations fluoxetine down-regulates Cav-1 gene expression, decreases membrane content of PTEN, increases PI3K activity and increases phosphorylation of GSK-3β and increases its activity; at high concentrations fluoxetine acts on PTEN/PI3K/AKT/GSK-3β in an inverse fashion. Here, we present the data indicating that acute treatment with fluoxetine at lower concentrations down-regulates c-Fos gene expression via PI3K/AKT signaling pathway; in contrast at higher concentrations fluoxetine up-regulates c-Fos gene expression via MAPK/extracellular-regulated kinase (ERK) signaling pathway. However, acute treatment with fluoxetine has no effect on Cav-1 protein content. Similarly, chronic effects of fluoxetine on Cav-1 gene expression are suppressed by inhibitor of PI3K at lower concentrations, but by inhibitor of MAPK at higher concentrations, indicating that the mechanism underlying bi-phasic regulation of Cav-1 gene expression by fluoxetine is opposing effects of PI3K/AKT and MAPK/ERK signal pathways on c-Fos gene expression. The effects of fluoxetine on Cav-1 gene expression at both lower and higher concentrations are abolished by AG1478, an inhibitor of EGFR, indicating the involvement of 5-HT2B receptor induced EGFR transactivation as we reported previously. However, PP1, an inhibitor of Src only abolished the effect by lower concentrations, suggesting the relevance of Src with PI3K/AKT signal pathway during activation of EGFR.
Collapse
Affiliation(s)
- Baoman Li
- Laboratory of Metabolic Brain Diseases, Institute of Metabolic Disease Research and Drug Development, China Medical University, Shenyang, China
| | - Shu Jia
- Laboratory of Metabolic Brain Diseases, Institute of Metabolic Disease Research and Drug Development, China Medical University, Shenyang, China
| | - Tingting Yue
- Laboratory of Metabolic Brain Diseases, Institute of Metabolic Disease Research and Drug Development, China Medical University, Shenyang, China
| | - Li Yang
- Laboratory of Metabolic Brain Diseases, Institute of Metabolic Disease Research and Drug Development, China Medical University, Shenyang, China
| | - Chen Huang
- Laboratory of Metabolic Brain Diseases, Institute of Metabolic Disease Research and Drug Development, China Medical University, Shenyang, China
| | - Alexej Verkhratsky
- Faculty of Life Science, The University of Manchester, Manchester, United Kingdom.,Achucarro Center for Neuroscience, IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Liang Peng
- Laboratory of Metabolic Brain Diseases, Institute of Metabolic Disease Research and Drug Development, China Medical University, Shenyang, China
| |
Collapse
|
18
|
Hertz L, Chen Y. Glycogenolysis, an Astrocyte-Specific Reaction, is Essential for Both Astrocytic and Neuronal Activities Involved in Learning. Neuroscience 2017; 370:27-36. [PMID: 28668486 DOI: 10.1016/j.neuroscience.2017.06.025] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 06/10/2017] [Accepted: 06/19/2017] [Indexed: 01/26/2023]
Abstract
In brain glycogen, formed from glucose, is degraded (glycogenolysis) in astrocytes but not in neurons. Although most of the degradation follows the same pathway as glucose, its breakdown product, l-lactate, is released from astrocytes in larger amounts than glucose when glycogenolysis is activated by noradrenaline. However, this is not the case when glycogenolysis is activated by high potassium ion (K+) concentrations - possibly because noradrenaline in contrast to high K+ stimulates glycogenolysis by an increase not only in free cytosolic Ca2+ concentration ([Ca2+]i) but also in cyclic AMP (c-AMP), which may increase the expression of the monocarboxylate transporter through which it is released. Several transmitters activate glycogenolysis in astrocytes and do so at different time points after training. This stimulation is essential for memory consolidation because glycogenolysis is necessary for uptake of K+ and stimulates formation of glutamate from glucose, and therefore is needed both for removal of increased extracellular K+ following neuronal excitation (which initially occurs into astrocytes) and for formation of transmitter glutamate and GABA. In addition the released l-lactate has effects on neurons which are essential for learning and for learning-related long-term potentiation (LTP), including induction of the neuronal gene Arc/Arg3.1 and activation of gene cascades mediated by CREB and cofilin. Inhibition of glycogenolysis blocks learning, LTP and all related molecular events, but all changes can be reversed by injection of l-lactate. The effect of extracellular l-lactate is due to both astrocyte-mediated signaling which activates noradrenergic activity on all brain cells and to a minor uptake, possibly into dendritic spines.
Collapse
Affiliation(s)
- Leif Hertz
- Laboratory of Metabolic Brain Diseases, Institute of Metabolic Disease Research and Drug Development, China Medical University, Shenyang, PR China
| | - Ye Chen
- Henry M. Jackson Foundation, Bethesda, MD 20817, USA.
| |
Collapse
|