1
|
Inan S, Meissler JJ, Shekarabi A, Foss J, Wiah S, Eisenstein TK, Rawls SM. Cyanidin prevents MDPV withdrawal-induced anxiety-like effects and dysregulation of cytokine systems in rats. Brain Res 2023; 1806:148310. [PMID: 36871847 PMCID: PMC10190163 DOI: 10.1016/j.brainres.2023.148310] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/21/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023]
Abstract
Psychostimulant exposure and withdrawal cause neuroimmune dysregulation and anxiety that contributes to dependence and relapse. Here, we tested the hypothesis that withdrawal from the synthetic cathinone MDPV (methylenedioxypyrovalerone) produces anxiety-like effects and enhanced levels of mesocorticolimbic cytokines that are inhibited by cyanidin, an anti-inflammatory flavonoid and nonselective blocker of IL-17A signaling. For comparison, we tested effects on glutamate transporter systems that are also dysregulated during psychostimulant free period. Rats injected for 9 d with MDPV (1 mg/kg, IP) or saline were pretreated daily with cyanidin (0.5 mg/kg, IP) or saline, followed by behavioral testing on the elevated zero maze (EZM) 72 h after the last MDPV injection. MDPV withdrawal caused a reduction in time spent on the open arm of the EZM that was prevented by cyanidin. Cyanidin itself did not affect locomotor activity or time spent on the open arm, or cause aversive or rewarding effects in place preference experiments. MDPV withdrawal caused enhancement of cytokine levels (IL-17A, IL-1β, IL-6, TNF=α, IL-10, and CCL2) in the ventral tegmental area, but not amygdala, nucleus accumbens, or prefrontal cortex, that was prevented by cyanidin. During MDPV withdrawal, mRNA levels of glutamate aspartate transporter (GLAST) and glutamate transporter subtype 1 (GLT-1) in the amygdala were also elevated but normalized by cyanidin treatment. These results show that MDPV withdrawal induced anxiety, and brain-region specific dysregulation of cytokine and glutamate systems, that are both prevented by cyanidin, thus identifying cyanidin for further investigation in the context of psychostimulant dependence and relapse.
Collapse
Affiliation(s)
- Saadet Inan
- Center for Substance Abuse Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA; Department of Neural Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA.
| | - Joseph J Meissler
- Center for Substance Abuse Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA; Department of Neural Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Aryan Shekarabi
- Center for Substance Abuse Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA; Department of Neural Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Jeffrey Foss
- Center for Substance Abuse Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Sonita Wiah
- Center for Substance Abuse Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA; Department of Neural Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Toby K Eisenstein
- Center for Substance Abuse Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA; Department of Neural Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Scott M Rawls
- Center for Substance Abuse Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA; Department of Neural Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| |
Collapse
|
2
|
Mantsch JR. Corticotropin releasing factor and drug seeking in substance use disorders: Preclinical evidence and translational limitations. ADDICTION NEUROSCIENCE 2022; 4:100038. [PMID: 36531188 PMCID: PMC9757758 DOI: 10.1016/j.addicn.2022.100038] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The neuropeptide, corticotropin releasing factor (CRF), has been an enigmatic target for the development of medications aimed at treating stress-related disorders. Despite a large body of evidence from preclinical studies in rodents demonstrating that CRF receptor antagonists prevent stressor-induced drug seeking, medications targeting the CRF-R1 have failed in clinical trials. Here, we provide an overview of the abundant findings from preclinical rodent studies suggesting that CRF signaling is involved in stressor-induced relapse. The scientific literature that has defined the receptors, mechanisms and neurocircuits through which CRF contributes to stressor-induced reinstatement of drug seeking following self-administration and conditioned place preference in rodents is reviewed. Evidence that CRF signaling is recruited with repeated drug use in a manner that heightens susceptibility to stressor-induced drug seeking in rodents is presented. Factors that may determine the influence of CRF signaling in substance use disorders, including developmental windows, biological sex, and genetics are examined. Finally, we discuss the translational failure of medications targeting CRF signaling as interventions for substance use disorders and other stress-related conditions. We conclude that new perspectives and research directions are needed to unravel the mysterious role of CRF in substance use disorders.
Collapse
Affiliation(s)
- John R Mantsch
- Department of Pharmacology & Toxicology, Medical College of Wisconsin, 8701 W Watertown Plank Rd, Milwaukee, WI 53226, United States
| |
Collapse
|
3
|
Jensen KL, Jensen SB, Madsen KL. A mechanistic overview of approaches for the treatment of psychostimulant dependence. Front Pharmacol 2022; 13:854176. [PMID: 36160447 PMCID: PMC9493975 DOI: 10.3389/fphar.2022.854176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 07/21/2022] [Indexed: 11/13/2022] Open
Abstract
Psychostimulant use disorder is a major health issue around the world with enormous individual, family-related and societal consequences, yet there are no effective pharmacological treatments available. In this review, a target-based overview of pharmacological treatments toward psychostimulant addiction will be presented. We will go through therapeutic approaches targeting different aspects of psychostimulant addiction with focus on three major areas; 1) drugs targeting signalling, and metabolism of the dopamine system, 2) drugs targeting either AMPA receptors or metabotropic glutamate receptors of the glutamate system and 3) drugs targeting the severe side-effects of quitting long-term psychostimulant use. For each of these major modes of intervention, findings from pre-clinical studies in rodents to clinical trials in humans will be listed, and future perspectives of the different treatment strategies as well as their potential side-effects will be discussed. Pharmaceuticals modulating the dopamine system, such as antipsychotics, DAT-inhibitors, and disulfiram, have shown some promising results. Cognitive enhancers have been found to increase aspects of behavioural control, and drugs targeting the glutamate system such as modulators of metabotropic glutamate receptors and AMPA receptors have provided interesting changes in relapse behaviour. Furthermore, CRF-antagonists directed toward alleviating the symptoms of the withdrawal stage have been examined with interesting resulting changes in behaviour. There are promising results investigating therapeutics for psychostimulant addiction, but further preclinical work and additional human studies with a more stratified patient selection are needed to prove sufficient evidence of efficacy and tolerability.
Collapse
|
4
|
Bjorness TE, Greene RW. Arousal-Mediated Sleep Disturbance Persists During Cocaine Abstinence in Male Mice. Front Neurosci 2022; 16:868049. [PMID: 35812231 PMCID: PMC9260276 DOI: 10.3389/fnins.2022.868049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 06/06/2022] [Indexed: 11/13/2022] Open
Abstract
Acute cocaine disturbs sleep on a dose-dependent basis; however, the consequences of chronic cocaine remain unclear. While the arousal promotion following cocaine has been well-established, effects of cocaine on sleep after termination of chronic cocaine exposure appear variable in human subjects with few studies in non-human subjects. Here, a within-subjects design (outcomes normalized to baseline, undisturbed behavior) and between-subjects design (repeated experimenter-administered cocaine vs. experimenter-administered saline) was used to investigate sleep homeostasis and sleep/waking under repeated cocaine/saline exposure and prolonged forced abstinence conditions in mice. Overall, during the forced abstinence period increases in arousal, as determined by sleep latency and gamma energy, persisted for 2 weeks. However, the sleep response to externally enforced sleep deprivation was unchanged suggesting that sleep disruptions during the forced abstinence period were driven by enhancement of arousal in the absence of changes in sleep homeostatic responses.
Collapse
Affiliation(s)
- Theresa E. Bjorness
- Research Service, Veterans Affairs (VA) North Texas Health Care System, Dallas, TX, United States
- Department of Psychiatry, Peter O’Donnell Jr. Brain Institute, University of Texas Southwestern, Dallas, TX, United States
- *Correspondence: Theresa E. Bjorness,
| | - Robert W. Greene
- Department of Psychiatry, Peter O’Donnell Jr. Brain Institute, University of Texas Southwestern, Dallas, TX, United States
- Department of Neuroscience, Peter O’Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, United States
- International Institute for Integrative Sleep Medicine, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
5
|
Barbee BR, Gourley SL. Brain systems in cocaine abstinence-induced anxiety-like behavior in rodents: A review. ADDICTION NEUROSCIENCE 2022; 2:100012. [PMID: 37485439 PMCID: PMC10361393 DOI: 10.1016/j.addicn.2022.100012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Cocaine use disorder (CUD) is a significant public health issue that generates substantial personal, familial, and economic burdens. Still, there are no FDA-approved pharmacotherapies for CUD. Cocaine-dependent individuals report anxiety during withdrawal, and alleviation of anxiety and other negative affective states may be critical for maintaining drug abstinence. However, the neurobiological mechanisms underlying abstinence-related anxiety in humans or anxiety-like behavior in rodents are not fully understood. This review summarizes investigations regarding anxiety-like behavior in mice and rats undergoing cocaine abstinence, as assessed using four of the most common anxiety-related assays: the elevated plus (or its derivative, the elevated zero) maze, open field test, light-dark transition test, and defensive burying task. We first summarize available evidence that cocaine abstinence generates anxiety-like behavior that persists throughout protracted abstinence. Then, we examine investigations concerning neuropeptide, neurotransmitter, and neuromodulator systems in cocaine abstinence-induced anxiety-like behavior. Throughout, we discuss how differences in sex, rodent strain, cocaine dose and dosing strategy and abstinence duration interact to generate anxiety-like behavior.
Collapse
Affiliation(s)
- Britton R. Barbee
- Graduate Program in Molecular and Systems Pharmacology,
Emory University
- Department of Pediatrics, Emory University School of
Medicine; Yerkes National Primate Research Center
| | - Shannon L. Gourley
- Graduate Program in Molecular and Systems Pharmacology,
Emory University
- Department of Pediatrics, Emory University School of
Medicine; Yerkes National Primate Research Center
| |
Collapse
|
6
|
Nicolas C, Russell TI, Shaham Y, Ikemoto S. Dissociation Between Incubation of Cocaine Craving and Anxiety-Related Behaviors After Continuous and Intermittent Access Self-Administration. Front Neurosci 2022; 15:824741. [PMID: 35197820 PMCID: PMC8859112 DOI: 10.3389/fnins.2021.824741] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 12/27/2021] [Indexed: 12/01/2022] Open
Abstract
Studies using either continuous or intermittent access cocaine self-administration procedures showed that cocaine seeking increases during abstinence (incubation of cocaine craving), and that this effect is higher after intermittent cocaine access. Other studies showed that cocaine abstinence is characterized by the emergence of stress- and anxiety-related states which were hypothesized to increase relapse vulnerability. We examined whether incubation of cocaine craving and anxiety-related behaviors are correlated and whether intermittent cocaine self-administration would potentiate these behaviors during abstinence. Male rats self-administered cocaine either continuously (6 h/day) or intermittently (5 min ON, 25 min OFF × 12) for 14 days, followed by relapse tests after 1 or 21 abstinence days. A group of rats that self-administered saline served as a control. Anxiety-related behaviors were measured on the same abstinence days, using the novelty induced-hypophagia test. Finally, motivation for cocaine was measured using a progressive ratio reinforcement schedule. Lever-presses after 21 abstinence days were higher than after 1 day and this incubation effect was higher in the intermittent access group. Progressive ratio responding was also higher after intermittent cocaine access. Intermittent and continuous cocaine access did not induce anxiety-like responses in the novelty-induced hypophagia test after 1 or 21 abstinence days. Independent of the access condition, incubation of cocaine seeking was not correlated with the novelty-induced hypophagia measures. Results suggest that cocaine-induced anxiety-related states during protracted abstinence do not contribute to incubation of cocaine craving. However, this conclusion is tentative because we used a single anxiety-related measure and did not test female rats.
Collapse
|
7
|
Simmons SJ, Oliver CF, McCloskey NS, Reitz AB, Nayak SU, Watson MN, Rawls SM. Paradoxical anxiolytic effect of the 'bath salt' synthetic cathinone MDPV during early abstinence is inhibited by a chemokine CXCR4 or CCR5 receptor antagonist. Drug Alcohol Depend 2022; 230:109204. [PMID: 34871976 PMCID: PMC8729820 DOI: 10.1016/j.drugalcdep.2021.109204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 01/03/2023]
Abstract
Chemokine CXCR4 and CCR5 receptors are best known as HIV co-entry receptors, but evidence that CXCR4 or CCR5 blockade reduces rewarding and locomotor-stimulant effects of psychostimulants in rats suggests a role in psychostimulant use disorders. We investigated the impact of CXCR4 or CCR5 receptor antagonism on anxiety-related effects of the synthetic cathinone 3,4-methylenedioxypyrovalerone (MDPV) in the elevated zero-maze (EZM) assay. Rats exposed to a 4-day MDPV binge dosing paradigm and tested 24 or 72 h post-treatment spent more time in the open compartment at the 24-h time point but less time at the 72-h post-binge time point. Daily administration of AMD 3100, a CXCR4 antagonist (10 mg/kg), or maraviroc, a CCR5 antagonist (2.5 mg/kg), during MDPV treatment inhibited the MDPV-induced increase in time spent in the open compartment. Neither antagonist affected the MDPV-induced reduction in time spent in the open compartment at the 72-h post-binge time point. Cocaine, administered in the same paradigm as MDPV, did not increase time spent in the open compartment 24-h post-binge, suggesting specificity to MDPV. The present results identify a surprising anxiolytic-like effect of MDPV 24 h after cessation of repeated exposure that is sensitive to chemokine CXCR4 and CCR5 receptor activity.
Collapse
Affiliation(s)
- Steven J. Simmons
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Chicora F. Oliver
- Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY, USA
| | - Nicholas S. McCloskey
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Allen B. Reitz
- Fox Chase Chemical Diversity Center Inc., Doylestown, PA, USA
| | - Sunil U. Nayak
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Mia N. Watson
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Scott M. Rawls
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA,Department of Neural Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| |
Collapse
|
8
|
Repeated cocaine exposure prior to fear conditioning induces persistency of PTSD-like symptoms and enhancement of hippocampal and amygdala cell density in male rats. Brain Struct Funct 2021; 226:2219-2241. [PMID: 34195855 DOI: 10.1007/s00429-021-02320-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 06/11/2021] [Indexed: 12/29/2022]
Abstract
Pre- and post-trauma drug use can interfere with recovery from post-traumatic stress disorder (PTSD). However, the biological underpinnings of this interference are poorly understood. Here we examined the effect of pre-fear conditioning cocaine self-administration on PTSD-like symptoms in male rats, and defined impairment of fear extinction as difficulty to recover from PTSD. We also examined cell density changes in brain regions suspected of being involved in resistance to PTSD recovery. Before footshock stress testing, rats were trained to self-administer cocaine during 20 consecutive days, after which they were exposed to footshocks, while other rats continued to self-administer cocaine until the end of the experiment. Upon assessment of three PTSD-like symptoms (fear during situational reminders, anxiety-like behavior, and impairment of recognition memory) and fear extinction learning and memory, changes in cell density were measured in the medial prefrontal cortex, hippocampus, and amygdala. Results show that pre-footshock cocaine exposure did not affect fear during situational reminders. Fear conditioning did not lead to an increase in cocaine consumption. However, in footshock stressed rats, cocaine induced a reduction of anxiety-like behavior, an aggravation of recognition memory decline, and an impairment of extinction memory. These behavioral alterations were associated with increased cell density in the hippocampal CA1, CA2, and CA3 regions and basolateral amygdala, but not in the medial prefrontal cortex. Our findings suggest that enhancement of cell density in the hippocampus and amygdala may be changes associated with drug use, interfering with PTSD recovery.
Collapse
|
9
|
Converging vulnerability factors for compulsive food and drug use. Neuropharmacology 2021; 196:108556. [PMID: 33862029 DOI: 10.1016/j.neuropharm.2021.108556] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 03/29/2021] [Accepted: 04/03/2021] [Indexed: 12/12/2022]
Abstract
Highly palatable foods and substance of abuse have intersecting neurobiological, metabolic and behavioral effects relevant for understanding vulnerability to conditions related to food (e.g., obesity, binge eating disorder) and drug (e.g., substance use disorder) misuse. Here, we review data from animal models, clinical populations and epidemiological evidence in behavioral, genetic, pathophysiologic and therapeutic domains. Results suggest that consumption of highly palatable food and drugs of abuse both impact and conversely are regulated by metabolic hormones and metabolic status. Palatable foods high in fat and/or sugar can elicit adaptation in brain reward and withdrawal circuitry akin to substances of abuse. Intake of or withdrawal from palatable food can impact behavioral sensitivity to drugs of abuse and vice versa. A robust literature suggests common substrates and roles for negative reinforcement, negative affect, negative urgency, and impulse control deficits, with both highly palatable foods and substances of abuse. Candidate genetic risk loci shared by obesity and alcohol use disorders have been identified in molecules classically associated with both metabolic and motivational functions. Finally, certain drugs may have overlapping therapeutic potential to treat obesity, diabetes, binge-related eating disorders and substance use disorders. Taken together, data are consistent with the hypotheses that compulsive food and substance use share overlapping, interacting substrates at neurobiological and metabolic levels and that motivated behavior associated with feeding or substance use might constitute vulnerability factors for one another. This article is part of the special issue on 'Vulnerabilities to Substance Abuse'.
Collapse
|
10
|
Drug addiction co-morbidity with alcohol: Neurobiological insights. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2021; 157:409-472. [PMID: 33648675 DOI: 10.1016/bs.irn.2020.11.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Addiction is a chronic disorder that consists of a three-stage cycle of binge/intoxication, withdrawal/negative affect, and preoccupation/anticipation. These stages involve, respectively, neuroadaptations in brain circuits involved in incentive salience and habit formation, stress surfeit and reward deficit, and executive function. Much research on addiction focuses on the neurobiology underlying single drug use. However, alcohol use disorder (AUD) can be co-morbid with substance use disorder (SUD), called dual dependence. The limited epidemiological data on dual dependence indicates that there is a large population of individuals suffering from addiction who are dependent on more than one drug and/or alcohol, yet dual dependence remains understudied in addiction research. Here, we review neurobiological data on neurotransmitter and neuropeptide systems that are known to contribute to addiction pathology and how the involvement of these systems is consistent or divergent across drug classes. In particular, we highlight the dopamine, opioid, corticotropin-releasing factor, norepinephrine, hypocretin/orexin, glucocorticoid, neuroimmune signaling, endocannabinoid, glutamate, and GABA systems. We also discuss the limited research on these systems in dual dependence. Collectively, these studies demonstrate that the use of multiple drugs can produce neuroadaptations that are distinct from single drug use. Further investigation into the neurobiology of dual dependence is necessary to develop effective treatments for addiction to multiple drugs.
Collapse
|
11
|
McKendrick G, Graziane NM. Drug-Induced Conditioned Place Preference and Its Practical Use in Substance Use Disorder Research. Front Behav Neurosci 2020; 14:582147. [PMID: 33132862 PMCID: PMC7550834 DOI: 10.3389/fnbeh.2020.582147] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 09/02/2020] [Indexed: 12/25/2022] Open
Abstract
The conditioned place preference (CPP) paradigm is a well-established model utilized to study the role of context associations in reward-related behaviors, including both natural rewards and drugs of abuse. In this review article, we discuss the basic history, various uses, and considerations that are tied to this technique. There are many potential takeaway implications of this model, including negative affective states, conditioned drug effects, memory, and motivation, which are all considered here. We also discuss the neurobiology of CPP including relevant brain regions, molecular signaling cascades, and neuromodulatory systems. We further examine some of our prior findings and how they integrate CPP with self-administration paradigms. Overall, by describing the fundamentals of CPP, findings from the past few decades, and implications of using CPP as a research paradigm, we have endeavored to support the case that the CPP method is specifically advantageous for studying the role of a form of Pavlovian learning that associates drug use with the surrounding environment.
Collapse
Affiliation(s)
- Greer McKendrick
- Neuroscience Graduate Program, Penn State College of Medicine, Hershey, PA, United States.,Department of Anesthesiology and Perioperative Medicine, Penn State College of Medicine, Hershey, PA, United States
| | - Nicholas M Graziane
- Departments of Anesthesiology and Perioperative Medicine and Pharmacology, Penn State College of Medicine, Hershey, PA, United States
| |
Collapse
|
12
|
Cannella N, Ubaldi M, Masi A, Bramucci M, Roberto M, Bifone A, Ciccocioppo R. Building better strategies to develop new medications in Alcohol Use Disorder: Learning from past success and failure to shape a brighter future. Neurosci Biobehav Rev 2019; 103:384-398. [PMID: 31112713 DOI: 10.1016/j.neubiorev.2019.05.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 05/10/2019] [Accepted: 05/15/2019] [Indexed: 12/11/2022]
Abstract
Alcohol Use Disorder (AUD) is a chronic disease that develops over the years. The complexity of the neurobiological processes contributing to the emergence of AUD and the neuroadaptive changes occurring during disease progression make it difficult to improve treatments. On the other hand, this complexity offers researchers the possibility to explore new targets. Over years of intense research several molecules were tested in AUD; in most cases, despite promising preclinical data, the clinical efficacy appeared insufficient to justify futher development. A prototypical example is that of corticotropin releasing factor type 1 receptor (CRF1R) antagonists that showed significant effectiveness in animal models of AUD but were largely ineffective in humans. The present article attempts to analyze the most recent venues in the development of new medications in AUD with a focus on the most promising drug targets under current exploration. Moreover, we delineate the importance of using a more integrated translational framework approach to correlate preclinical findings and early clinical data to enhance the probability to validate biological targets of interest.
Collapse
Affiliation(s)
- Nazzareno Cannella
- School of Pharmacy, Pharmacology Unit, University of Camerino, 62032 Camerino, Italy
| | - Massimo Ubaldi
- School of Pharmacy, Pharmacology Unit, University of Camerino, 62032 Camerino, Italy
| | - Alessio Masi
- School of Pharmacy, Pharmacology Unit, University of Camerino, 62032 Camerino, Italy
| | - Massimo Bramucci
- School of Pharmacy, Pharmacology Unit, University of Camerino, 62032 Camerino, Italy
| | - Marisa Roberto
- The Scripps Research Institute, Department of Neuroscience, La Jolla, CA, USA
| | - Angelo Bifone
- Center for Neuroscience and Cognitive Systems @UniTn, Istituto Italiano di Tecnologia, Corso Bettini 31, 38068 Rovereto, Italy; Department of Molecular Biotechnology and Health Science, University of Torino, Italy
| | - Roberto Ciccocioppo
- School of Pharmacy, Pharmacology Unit, University of Camerino, 62032 Camerino, Italy.
| |
Collapse
|
13
|
Activation of lateral hypothalamic group III metabotropic glutamate receptors suppresses cocaine-seeking following abstinence and normalizes drug-associated increases in excitatory drive to orexin/hypocretin cells. Neuropharmacology 2018; 154:22-33. [PMID: 30253175 DOI: 10.1016/j.neuropharm.2018.09.033] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 09/18/2018] [Accepted: 09/21/2018] [Indexed: 12/22/2022]
Abstract
The perifornical/lateral hypothalamic area (LHA) orexin (hypocretin) system is involved in drug-seeking behavior elicited by drug-associated stimuli. Cocaine exposure is associated with presynaptic plasticity at LHA orexin cells such that excitatory input to orexin cells is enhanced acutely and into withdrawal. These changes may augment orexin cell reactivity to drug-related cues during abstinence and contribute to relapse-like behavior. Studies in hypothalamic slices from drug-naïve animals indicate that agonism of group III metabotropic glutamate receptors (mGluRs) reduces presynaptic glutamate release onto orexin cells. Therefore, we examined the group III mGluR system as a potential target to reduce orexin cell excitability in-vivo, including in animals with cocaine experience. First, we verified that group III mGluRs regulate orexin cell activity in behaving animals by showing that intra-LHA infusions of the selective agonist L-(+)-2-Amino-4-phosphonobutyric acid (L-AP4) reduces c-fos expression in orexin cells following 24 h food deprivation. Next, we extended these findings to show that intra-LHA L-AP4 infusions reduced discriminative stimulus-driven cocaine-seeking following withdrawal. Importantly, L-AP4 had no effect on lever pressing for sucrose pellets or general motoric behavior. Finally, using whole-cell patch-clamp recordings from identified orexin cells in orexin-GFP transgenic mice, we show enhanced presynaptic drive to orexin cells following 14d withdrawal and that this plasticity can be normalized by L-AP4. Together, these data indicate that activation of group III mGluRs in LHA reduces orexin cell activity in vivo and may be an effective strategy to suppress cocaine-seeking behavior following withdrawal. These effects are likely mediated, at least in part, by normalization of presynaptic plasticity at orexin cells that occurs as a result of cocaine exposure. This article is part of the Special Issue entitled 'Hypothalamic Control of Homeostasis'.
Collapse
|
14
|
Abstract
Drug addiction or substance-use disorder is a chronically relapsing disorder that progresses through binge/intoxication, withdrawal/negative affect and preoccupation/anticipation stages. These stages represent diverse neurobiological mechanisms that are differentially involved in the transition from recreational to compulsive drug use and from positive to negative reinforcement. The progression from recreational to compulsive substance use is associated with downregulation of the brain reward systems and upregulation of the brain stress systems. Individual differences in the neurobiological systems that underlie the processing of reward, incentive salience, habits, stress, pain, and executive function may explain (i) the vulnerability to substance-use disorder; (ii) the diversity of emotional, motivational, and cognitive profiles of individuals with substance-use disorders; and (iii) heterogeneous responses to cognitive and pharmacological treatments. Characterization of the neuropsychological mechanisms that underlie individual differences in addiction-like behaviors is the key to understanding the mechanisms of addiction and development of personalized pharmacotherapy.
Collapse
Affiliation(s)
- Olivier George
- Department of Neuroscience, The Scripps Research Institute, La Jolla, California, USA
| | - George F Koob
- National Institute on Alcohol Abuse and Alcoholism, Rockville, Maryland, USA
| |
Collapse
|
15
|
Verheij MMM, Contet C, Karel P, Latour J, van der Doelen RHA, Geenen B, van Hulten JA, Meyer F, Kozicz T, George O, Koob GF, Homberg JR. Median and Dorsal Raphe Serotonergic Neurons Control Moderate Versus Compulsive Cocaine Intake. Biol Psychiatry 2018; 83:1024-1035. [PMID: 29357981 PMCID: PMC5960600 DOI: 10.1016/j.biopsych.2017.10.031] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 10/12/2017] [Accepted: 10/18/2017] [Indexed: 01/30/2023]
Abstract
BACKGROUND Reduced expression of the serotonin transporter (SERT) promotes anxiety and cocaine intake in both humans and rats. We tested the hypothesis that median raphe nucleus (MRN) and dorsal raphe nucleus (DRN) serotonergic projections differentially mediate these phenotypes. METHODS We used virally mediated RNA interference to locally downregulate SERT expression and compared the results with those of constitutive SERT knockout. Rats were allowed either short access (ShA) (1 hour) or long access (LgA) (6 hours) to cocaine self-administration to model moderate versus compulsive-like cocaine taking. RESULTS SERT knockdown in the MRN increased cocaine intake selectively under ShA conditions and, like ShA cocaine self-administration, reduced corticotropin-releasing factor (CRF) immunodensity in the paraventricular nucleus of the hypothalamus. In contrast, SERT knockdown in the DRN increased cocaine intake selectively under LgA conditions and, like LgA cocaine self-administration, reduced CRF immunodensity in the central nucleus of the amygdala. SERT knockdown in the MRN or DRN produced anxiety-like behavior, as did withdrawal from ShA or LgA cocaine self-administration. The phenotype of SERT knockout rats was a summation of the phenotypes generated by MRN- and DRN-specific SERT knockdown. CONCLUSIONS Our results highlight a differential role of serotonergic projections arising from the MRN and DRN in the regulation of cocaine intake. We propose that a cocaine-induced shift from MRN-driven serotonergic control of CRF levels in the hypothalamus to DRN-driven serotonergic control of CRF levels in the amygdala may contribute to the transition from moderate to compulsive intake of cocaine.
Collapse
Affiliation(s)
- Michel M M Verheij
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, the Netherlands; Department of Molecular and Animal Physiology, Nijmegen Center for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, the Netherlands.
| | - Candice Contet
- Department of Molecular and Animal Physiology, Nijmegen Center for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, the Netherlands
| | - Peter Karel
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, the Netherlands
| | - Judith Latour
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, the Netherlands
| | - Rick H A van der Doelen
- Department of Anatomy, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, the Netherlands
| | - Bram Geenen
- Department of Anatomy, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, the Netherlands
| | | | - Francisca Meyer
- Department of Neuroscience, Scripps Research Institute, La Jolla, California
| | - Tamas Kozicz
- Department of Anatomy, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, the Netherlands
| | - Olivier George
- Department of Molecular and Animal Physiology, Nijmegen Center for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, the Netherlands
| | - George F Koob
- Neurobiology of Addiction Section, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland
| | - Judith R Homberg
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, the Netherlands
| |
Collapse
|
16
|
Robison LS, Popescu DL, Anderson ME, Beigelman SI, Fitzgerald SM, Kuzmina AE, Lituma DA, Subzwari S, Michaelos M, Anderson BJ, Van Nostrand WE, Robinson JK. The effects of volume versus intensity of long-term voluntary exercise on physiology and behavior in C57/Bl6 mice. Physiol Behav 2018; 194:218-232. [PMID: 29879399 DOI: 10.1016/j.physbeh.2018.06.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 05/30/2018] [Accepted: 06/01/2018] [Indexed: 12/22/2022]
Abstract
Cardiovascular exercise (CVE) is associated with healthy aging and reduced risk of disease in humans, with similar benefits seen in animals. Most rodent studies, however, have used shorter intervention periods of a few weeks to a few months, begging questions as to the effects of longer-term, or even life-long, exercise. Additionally, most animal studies have utilized a single exercise treatment group - usually unlimited running wheel access - resulting in large volumes of exercise that are not clinically relevant. It is therefore incumbent to determine the physiological and cognitive/behavioral effects of a range of exercise intensities and volumes over a long-term period that model a lifelong commitment to CVE. In the current study, C57/Bl6 mice remained sedentary or were allowed either 1, 3, or 12 h of access to a running wheel per day, 5 days/weeks, beginning at 3.5-4 months of age. Following an eight-month intervention period, animals underwent a battery of behavioral testing, then euthanized and blood and tissue were collected. Longer access to a running wheel resulted in greater volume and higher running speed, but more breaks in running. All exercise groups showed similarly reduced body weight, increased muscle mass, improved motor function on the rotarod, and reduced anxiety in the open field. While all exercise groups showed increased food intake, this was greatest in the 12 h group but did not differ between 1 h and 3 h mice. While exercise dose-dependently increased working memory performance in the y-maze, the 1 h and 12 h groups showed the largest changes in the mass of many organs, as well as alterations in several behaviors including social interaction, novel object recognition, and Barnes maze performance. These findings suggest that long-term exercise has widespread effects on physiology, behavior, and cognition, which vary by "dose" and measure, and that even relatively small amounts of daily exercise can provide benefits.
Collapse
Affiliation(s)
- Lisa S Robison
- Department of Psychology, Stony Brook University, 100 Nicolls Road, Stony Brook, NY 11794, United States.
| | - Dominique L Popescu
- Department of Psychology, Stony Brook University, 100 Nicolls Road, Stony Brook, NY 11794, United States
| | - Maria E Anderson
- Department of Psychology, Stony Brook University, 100 Nicolls Road, Stony Brook, NY 11794, United States
| | - Steven I Beigelman
- Department of Psychology, Stony Brook University, 100 Nicolls Road, Stony Brook, NY 11794, United States
| | - Shannon M Fitzgerald
- Department of Psychology, Stony Brook University, 100 Nicolls Road, Stony Brook, NY 11794, United States
| | - Antonina E Kuzmina
- Department of Psychology, Stony Brook University, 100 Nicolls Road, Stony Brook, NY 11794, United States
| | - David A Lituma
- Department of Psychology, Stony Brook University, 100 Nicolls Road, Stony Brook, NY 11794, United States
| | - Sarima Subzwari
- Department of Psychology, Stony Brook University, 100 Nicolls Road, Stony Brook, NY 11794, United States
| | - Michalis Michaelos
- Department of Psychology, Stony Brook University, 100 Nicolls Road, Stony Brook, NY 11794, United States
| | - Brenda J Anderson
- Department of Psychology, Stony Brook University, 100 Nicolls Road, Stony Brook, NY 11794, United States
| | - William E Van Nostrand
- Department of Neurosurgery, Stony Brook University, 100 Nicolls Road, Stony Brook, NY 11794, United States
| | - John K Robinson
- Department of Psychology, Stony Brook University, 100 Nicolls Road, Stony Brook, NY 11794, United States
| |
Collapse
|
17
|
Morisot N, Monier R, Le Moine C, Millan MJ, Contarino A. Corticotropin-releasing factor receptor 2-deficiency eliminates social behaviour deficits and vulnerability induced by cocaine. Br J Pharmacol 2018; 175:1504-1518. [PMID: 29406581 DOI: 10.1111/bph.14159] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 01/15/2018] [Accepted: 01/19/2018] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND AND PURPOSE Poor social behaviour and vulnerability to stress are major clinical features of stimulant use disorders. The corticotropin-releasing factor (CRF) system mediates stress responses and might underlie substance use disorders; however, its involvement in social impairment induced by stimulant substances remains unknown. CRF signalling is mediated by two receptor types, CRF1 and CRF2 . In the present study we investigated the role of the CRF2 receptor in social behaviour deficits, vulnerability to stress and related brain alterations induced by cocaine administration and withdrawal. EXPERIMENTAL APPROACH CRF2 receptor-deficient (CRF2 -/-) and littermate wild-type mice were repeatedly tested in the three-chamber task for sociability (i.e. preference for an unfamiliar conspecific vs. an object) and social novelty preference (SNP; i.e. preference for a novel vs. a familiar conspecific) before and after chronic cocaine administration. An in situ hybridization assay was used to assess gene expression of the stress-responsive arginine vasopressin (AVP) and oxytocin (OT) neuropeptides in the hypothalamus. KEY RESULTS CRF2 receptor deficiency eliminated the sociability deficit induced by cocaine withdrawal. Moreover, CRF2 -/- mice did not show either the stress-induced sociability deficit or the increased AVP and OT expression associated with long-term cocaine withdrawal, indicating resilience to stress. Throughout, wild-type and CRF2 -/- mice displayed SNP, suggesting that cocaine withdrawal-induced sociability deficits were not due to impaired detection of social stimuli. CONCLUSIONS AND IMPLICATIONS These findings demonstrate a central role for the CRF2 receptor in social behaviour deficits and biomarkers of vulnerability induced by cocaine withdrawal, suggesting new therapeutic strategies for stimulant use disorders.
Collapse
Affiliation(s)
- Nadège Morisot
- INCIA, UMR 5287, Univ. Bordeaux, Bordeaux, France.,INCIA, UMR 5287, CNRS, Bordeaux, France
| | - Romain Monier
- INCIA, UMR 5287, Univ. Bordeaux, Bordeaux, France.,INCIA, UMR 5287, CNRS, Bordeaux, France
| | - Catherine Le Moine
- INCIA, UMR 5287, Univ. Bordeaux, Bordeaux, France.,INCIA, UMR 5287, CNRS, Bordeaux, France
| | - Mark J Millan
- Centre for Therapeutic Innovation in Neuropsychiatry, Institut de Recherches Servier, Croissy-sur-Seine, France
| | - Angelo Contarino
- INCIA, UMR 5287, Univ. Bordeaux, Bordeaux, France.,INCIA, UMR 5287, CNRS, Bordeaux, France
| |
Collapse
|
18
|
Pexacerfont as a CRF1 antagonist for the treatment of withdrawal symptoms in men with heroin/methamphetamine dependence: a randomized, double-blind, placebo-controlled clinical trial. Int Clin Psychopharmacol 2018; 33:111-119. [PMID: 29064909 DOI: 10.1097/yic.0000000000000200] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
We assessed the efficacy of pexacerfont, a CRF1 antagonist, for the treatment of withdrawal symptoms. In this randomized, double-blind, placebo-controlled clinical trial, male patients with amphetamine or opioid dependence, on the basis of the Diagnostic and Statistical Manual of Mental Disorders, 4th ed., Text Revision (DSM-IV-TR), in the age range 18-55 years, received either pexacerfont or placebo (300, 200, and 100 mg/day in the first, second, and third week, respectively). No antidepressants, behavioral interventions, or substitution therapy were administered. Candidates were excluded if they had DSM-IV-TR axis I or II disorders (other than depressive/anxiety disorders). The primary outcomes were difference in the distribution of positive urine test results for heroin and methamphetamine at the end of the trial, and the mean difference in the change in the Visual Analog Scale (VAS) score for craving from the baseline to the endpoint between the two groups. No significant difference was detected for urine test results, but a significant difference was observed for craving scores. Also, significant time×treatment interactions were found for all the scales including VAS craving, VAS temptation severity, frequency of temptation, Clinical Opiate Withdrawal Scale, Amphetamine Withdrawal Questionnaire, Beck Anxiety Inventory, and Beck Depression Inventory II. Our findings favor pexacerfont as a potential treatment for withdrawal from drug dependence; however, further comprehensive studies are warranted.
Collapse
|
19
|
Anderson E, McWaters M, McFadden L, Matuszewich L. Defensive burying as an ethological approach to studying anxiety: Influence of juvenile methamphetamine on adult defensive burying behavior in rats. LEARNING AND MOTIVATION 2018. [DOI: 10.1016/j.lmot.2017.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
20
|
Binge-pattern cocaine administration causes long-lasting behavioral hyperarousal but does not enhance vulnerability to single prolonged stress in rats. Psychiatry Res 2017; 257:95-101. [PMID: 28750215 DOI: 10.1016/j.psychres.2017.07.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 06/05/2017] [Accepted: 07/13/2017] [Indexed: 11/21/2022]
Abstract
Cocaine use disorder and post-traumatic stress disorder (PTSD) commonly co-occur. This could be due to vulnerability to post-traumatic symptoms conferred by previous exposure to cocaine. Therefore, we combined chronic binge-pattern cocaine with a model of psychological trauma (single prolonged stress) to determine whether the behavioral effects of psychological trauma are enhanced in cocaine-sensitized individuals. Adult male Sprague Dawley rats received 14 days of cocaine (15mg/kg/injection) or saline in a binge pattern (3 injections per day, 1h apart). Seven days after the last injection animals were exposed to traumatic stress or a control procedure. Seven days after stress, activity and anxiety-like behaviors were measured. Binge-pattern cocaine increased locomotor activity in the open field and elevated plus maze, and both cocaine and SPS exposure increased the rapidity with which rats moved through grooming sequences. Neither binge-pattern cocaine nor SPS increased anxiety-like behaviors, and no interactions were found between binge-pattern cocaine exposure and SPS exposure. A behavioral phenotype categorization approach demonstrated that cocaine-exposed groups expressed a high incidence of hyperactivity-like symptoms. These results suggest that binge-pattern cocaine exposure causes a long-lasting hyper-exploratory phenotype but does not make individuals more vulnerable to a later traumatic stress exposure.
Collapse
|
21
|
Vinzant N, Scholl JL, Wu CM, Kindle T, Koodali R, Forster GL. Iron Oxide Nanoparticle Delivery of Peptides to the Brain: Reversal of Anxiety during Drug Withdrawal. Front Neurosci 2017; 11:608. [PMID: 29163012 PMCID: PMC5672019 DOI: 10.3389/fnins.2017.00608] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Accepted: 10/18/2017] [Indexed: 01/19/2023] Open
Abstract
Targeting neuropeptide systems is important for future advancements in treatment of neurological and psychiatric illnesses. However, many of the peptides and their analogs do not cross the blood-brain barrier (BBB) efficiently. Nanoparticles such as iron oxide can cross the BBB, and here we describe a novel method for the conjugation of a peptide antisauvagine-30 (ASV-30) to iron oxide nanoparticles. Previous research has shown that direct infusion of ASV-30 into the brain reduces anxiety-like behavior in animal models via actions on corticotropin releasing factor type 2 (CRF2) receptors. Therefore, we tested whether iron oxide+ASV-30 complexes cross the BBB of rats and then determined whether iron oxide+ASV-30 nanoparticles are localized with CRF2-expressing neurons. Finally we tested the hypothesis that systemic infusion of iron oxide+ASV-30 can reduce anxiety-like behavior. First we describe the synthesis and demonstrate the stability of iron oxide-peptide nanoparticle complexes. Next, nanoparticles (87.7 μg/kg Fe2O3) with or without ASV-30 (200 μg/kg, ip) were injected into male rats 30 min prior to transcardial perfusion and brain fixation for immunohistochemical analysis, or before testing on the elevated plus maze (EPM) in an amphetamine withdrawal model of anxiety. Systemically administered iron oxide+ASV-30 particles were present in the brain and associated with neurons, including those that express CRF2 receptors, but did not localize with the iron storage protein ferritin. Furthermore, systemic administration of ironoxide+ASV-30 reduced amphetamine withdrawal-induced anxiety without affecting locomotion, suggesting that the anxiolytic effects of ASV-30 were preserved and the bioavailability of ASV-30 was sufficient. The findings demonstrate a novel approach to peptide delivery across the BBB and provide insight as to the neural distribution and efficacy of this nanotechnology.
Collapse
Affiliation(s)
- Nathan Vinzant
- Division of Basic Biomedical Sciences, Center for Brain and Behavior Research, Sanford School of Medicine, University of South Dakota, Vermillion, SD, United States
| | - Jamie L Scholl
- Division of Basic Biomedical Sciences, Center for Brain and Behavior Research, Sanford School of Medicine, University of South Dakota, Vermillion, SD, United States
| | - Chia-Ming Wu
- Department of Chemistry, University of South Dakota, Vermillion, SD, United States
| | - Trevor Kindle
- Department of Chemistry, University of South Dakota, Vermillion, SD, United States
| | - Ranjit Koodali
- Department of Chemistry, University of South Dakota, Vermillion, SD, United States
| | - Gina L Forster
- Division of Basic Biomedical Sciences, Center for Brain and Behavior Research, Sanford School of Medicine, University of South Dakota, Vermillion, SD, United States
| |
Collapse
|
22
|
Riley AL, Hempel BJ, Clasen MM. Sex as a biological variable: Drug use and abuse. Physiol Behav 2017; 187:79-96. [PMID: 29030249 DOI: 10.1016/j.physbeh.2017.10.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 09/15/2017] [Accepted: 10/07/2017] [Indexed: 01/11/2023]
Abstract
The study of sex as a biological variable is a necessary emphasis across a wide array of endpoints, including basic neuroscience, medicine, mental health, physiology and behavior. The present review summarizes work from clinical and preclinical populations on sex differences in drug use and abuse, ranging from initiation to escalation/dysregulation and from drug cessation/abstinence to relapse. These differences are analyzed in the context of the addiction cycle conceptualization of Koob and his colleagues and address patterns of drug use (binge/intoxication), motivation underlying its use (withdrawal/negative affect) and likelihood and causes of craving and relapse of drug taking (preoccupation/anticipation). Following this overview, an assessment of the basis for the reported sex differences is discussed in the context of the affective (rewarding and aversive) properties of drugs of abuse and how such properties and their balance vary with sex and contribute to drug intake. Finally, the interaction of sex with several experiential (drug history) and subject (age) factors and how these interactions affect reward and aversion are discussed to highlight the importance of understanding such interactions in predicting drug use and abuse. We note that sex as a biological variable remains one of critical evaluation and that such investigations of sex differences in drug use and abuse continue and be expanded to assess all facets of their mediation, including these affective properties, how their balance may be impacted by the multiple conditions under which drugs are taken and how this overall balance affects drug use and addiction vulnerability.
Collapse
Affiliation(s)
- Anthony L Riley
- Psychopharmacology Laboratory, Center for Behavioral Neuroscience, American University, 4400 Massachusetts Ave, NW, Washington, D.C. 20016, USA.
| | - Briana J Hempel
- Psychopharmacology Laboratory, Center for Behavioral Neuroscience, American University, 4400 Massachusetts Ave, NW, Washington, D.C. 20016, USA
| | - Matthew M Clasen
- Psychopharmacology Laboratory, Center for Behavioral Neuroscience, American University, 4400 Massachusetts Ave, NW, Washington, D.C. 20016, USA
| |
Collapse
|
23
|
Roberto M, Spierling SR, Kirson D, Zorrilla EP. Corticotropin-Releasing Factor (CRF) and Addictive Behaviors. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2017; 136:5-51. [PMID: 29056155 PMCID: PMC6155477 DOI: 10.1016/bs.irn.2017.06.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Drug addiction is a complex disorder that is characterized by compulsivity to seek and take the drug, loss of control in limiting intake of the drug, and emergence of a withdrawal syndrome in the absence of the drug. The transition from casual drug use to dependence is mediated by changes in reward and brain stress functions and has been linked to a shift from positive reinforcement to negative reinforcement. The recruitment of brain stress systems mediates the negative emotional state produced by dependence that drives drug seeking through negative reinforcement mechanisms, defined as the "dark side" of addiction. In this chapter we focus on behavioral and cellular neuropharmacological studies that have implicated brain stress systems (i.e., corticotropin-releasing factor [CRF]) in the transition to addiction and the predominant brain regions involved. We also discuss the implication of CRF recruitment in compulsive eating disorders.
Collapse
Affiliation(s)
- Marisa Roberto
- The Scripps Research Institute, La Jolla, CA, United States.
| | | | - Dean Kirson
- The Scripps Research Institute, La Jolla, CA, United States
| | | |
Collapse
|
24
|
White SL, Vassoler FM, Schmidt HD, Pierce RC, Wimmer ME. Enhanced anxiety in the male offspring of sires that self-administered cocaine. Addict Biol 2016; 21:802-810. [PMID: 25923597 DOI: 10.1111/adb.12258] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We previously showed that paternal cocaine exposure reduced the reinforcing efficacy of cocaine in male offspring. Here, we sought to determine whether paternal cocaine experience could also influence anxiety levels in offspring. Male rats were allowed to self-administer cocaine (controls received saline passively) for 60 days and then were bred with naïve females. Measures of anxiety and cocaine-induced anxiogenic effects were assessed in the adult offspring. Cocaine-sired male offspring exhibited increased anxiety-like behaviors, as measured using the novelty-induced hypophagia and defensive burying tasks, relative to saline-sired males. In contrast, sire cocaine experience had no effect on anxiety-like behaviors in female offspring. When challenged with an anxiogenic (but not anorectic) dose of cocaine (2.5 mg/kg, i.p.), anxiety-like behavior was enhanced in all animals to an equal degree regardless of sire drug experience. Since anxiety and depression are often co-morbid, we also assessed measures of depressive-like behavior. Sire cocaine experience had no effect on depression-like behaviors, as measured by the forced swim task, among male offspring. In a separate group of naïve littermates, select neuronal correlates of anxiety were measured. Male offspring of cocaine-experienced sires showed increased mRNA and protein expression of corticotropin-releasing factor receptor 2 in the hippocampus. Together, these results indicate that cocaine-experienced sires produce male progeny that have increased baseline anxiety, which is unaltered by subsequent cocaine exposure.
Collapse
Affiliation(s)
- Samantha L. White
- Center for Neurobiology and Behavior; Department of Psychiatry; Perelman School of Medicine; University of Pennsylvania; Philadelphia PA USA
| | - Fair M. Vassoler
- Center for Neurobiology and Behavior; Department of Psychiatry; Perelman School of Medicine; University of Pennsylvania; Philadelphia PA USA
| | - Heath D. Schmidt
- Center for Neurobiology and Behavior; Department of Psychiatry; Perelman School of Medicine; University of Pennsylvania; Philadelphia PA USA
| | - R. Christopher Pierce
- Center for Neurobiology and Behavior; Department of Psychiatry; Perelman School of Medicine; University of Pennsylvania; Philadelphia PA USA
| | - Mathieu E. Wimmer
- Center for Neurobiology and Behavior; Department of Psychiatry; Perelman School of Medicine; University of Pennsylvania; Philadelphia PA USA
| |
Collapse
|
25
|
Fosnocht AQ, Briand LA. Substance use modulates stress reactivity: Behavioral and physiological outcomes. Physiol Behav 2016; 166:32-42. [PMID: 26907955 DOI: 10.1016/j.physbeh.2016.02.024] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 02/11/2016] [Accepted: 02/15/2016] [Indexed: 01/01/2023]
Abstract
Drug addiction is a major public health concern in the United States costing taxpayers billions in health care costs, lost productivity and law enforcement. However, the availability of effective treatment options remains limited. The development of novel therapeutics will not be possible without a better understanding of the addicted brain. Studies in both clinical and preclinical models indicate that chronic drug use leads to alterations in the body and brain's response to stress. Dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis may shed light on the ability of stress to increase vulnerability to relapse. Further, within both the HPA axis and limbic brain regions, corticotropin-releasing factor (CRF) is critically involved in the brain's response to stress. Alterations in both central and peripheral CRF activity seen following chronic drug use provide a mechanism by which substance use can alter stress reactivity, thus mediating addictive phenotypes. While many reviews have focused on how stress alters drug-mediated changes in physiology and behavior, the goal of this review is to focus on how substance use alters responses to stress.
Collapse
Affiliation(s)
| | - Lisa A Briand
- Department of Psychology, Temple University, United States.
| |
Collapse
|
26
|
Ubaldi M, Cannella N, Ciccocioppo R. Emerging targets for addiction neuropharmacology: From mechanisms to therapeutics. PROGRESS IN BRAIN RESEARCH 2015; 224:251-84. [PMID: 26822362 DOI: 10.1016/bs.pbr.2015.07.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Drug abuse represents a considerable burden of disease and has enormous economic impacts on societies. Over the years, few medications have been developed for clinical use. Their utilization is endowed with several limitations, including partial efficacy or significant side effects. On the other hand, the successful advancement of these compounds provides an important proof of concept for the feasibility of drug development programs in addiction. In recent years, a wealth of information has been generated on the psychological mechanisms, genetic or epigenetic predisposing factors, and neurobiological adaptations induced by drug consumption that interact with each other to contribute to disease progression. It is now clear that addiction develops through phases, from initial recreational use to excessive consumption and compulsive drug seeking, with a shift from positive to negative reinforcement driving motivated behaviors. A greater understanding of these mechanisms has opened new vistas in drug development programs. Researchers' attention has been shifted from investigation of classical targets associated with reward to biological substrates responsible for negative reinforcement, impulse loss of control, and maladaptive mechanisms resulting from protracted drug use. From this research, several new biological targets for the development of innovative therapies have started to emerge. This chapter offers an overview of targets currently under scrutiny for the development of new medications for addiction. This work is not exhaustive but rather it provides a few examples of how this research has advanced in recent years by virtue of studies carried out in our laboratory.
Collapse
Affiliation(s)
- Massimo Ubaldi
- School of Pharmacy, Pharmacology Unit, University of Camerino, Camerino, Italy
| | - Nazzareno Cannella
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Mannheim, Germany
| | - Roberto Ciccocioppo
- School of Pharmacy, Pharmacology Unit, University of Camerino, Camerino, Italy.
| |
Collapse
|
27
|
Abstract
One of the major challenges of cocaine addiction is the high rate of relapse to drug use after periods of withdrawal. During the first few weeks of withdrawal, cue-induced cocaine craving intensifies, or "incubates," and persists over extended periods of time. Although several brain regions and molecular mechanisms were found to be involved in this process, the underlying epigenetic mechanisms are still unknown. Herein, we used a rat model of incubation of cocaine craving, in which rats were trained to self-administer cocaine (0.75 mg/kg, 6 h/d, 10 d), and cue-induced cocaine-seeking was examined in an extinction test after 1 or 30 d of withdrawal. We show that the withdrawal periods, as well as cue-induced cocaine seeking, are associated with broad, time-dependent enhancement of DNA methylation alterations in the nucleus accumbens (NAc). These gene methylation alterations were partly negatively correlated with gene expression changes. Furthermore, intra-NAc injections of a DNA methyltransferase inhibitor (RG108, 100 μm) abolished cue-induced cocaine seeking on day 30, an effect that persisted 1 month, whereas the methyl donor S-adenosylmethionine (500 μm) had an opposite effect on cocaine seeking. We then targeted two proteins whose genes were demethylated by RG108-estrogen receptor 1 (ESR1) and cyclin-dependent kinase 5 (CDK5). Treatment with an intra-NAc injection of the ESR1 agonist propyl pyrazole triol (10 nm) or the CDK5 inhibitor roscovitine (28 μm) on day 30 of withdrawal significantly decreased cue-induced cocaine seeking. These results demonstrate a role for NAc DNA methylation, and downstream targets of DNA demethylation, in incubation of cocaine craving.
Collapse
|
28
|
Wellman LL, Yang L, Sanford LD. Effects of corticotropin releasing factor (CRF) on sleep and temperature following predictable controllable and uncontrollable stress in mice. Front Neurosci 2015; 9:258. [PMID: 26283899 PMCID: PMC4519684 DOI: 10.3389/fnins.2015.00258] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 07/10/2015] [Indexed: 02/05/2023] Open
Abstract
Corticotropin releasing factor (CRF) is a major mediator of central nervous system responses to stressors, including alterations in wakefulness and sleep. However, its role in mediating stress-induced alterations in sleep has not been fully delineated. In this study, we assessed the role of CRF and the non-specific CRF antagonist, astressin (AST), in regulating changes in sleep produced by signaled, escapable shock (SES) and signaled inescapable shock (SIS), two stressors that can increase or decrease sleep, respectively. Male BALB/cJ mice were surgically implanted with transmitters (DataSciences ETA10-F20) for recording EEG, activity and core body temperature by telemetry and a cannula for intracerebroventricular (ICV) microinjections. After baseline (Base) sleep recording, mice were presented tones (90 dB, 2 kHz) that started 5.0 s prior to and co-terminated with footshock (0.5 mA; 5.0 s maximum duration). SES mice (n = 9) always received shock but could terminate it by moving to the non-occupied chamber in a shuttlebox. Yoked SIS mice (n = 9) were treated identically, but could not alter shock duration. Training with SES or SIS was conducted over 2 days to stabilize responses. Afterwards, the mice received saline, CRF [0.4 μg (0.42 mM) or AST (1.0 μg (1.4 mM)] prior to SES or SIS. Sleep was analyzed over 20 h post-stress recordings. After administration of saline, REM was significantly greater in SES mice than in SIS mice whereas after CRF or AST, REM was similar in both groups. Total 20 h NREM did not vary across condition or group. However, after administration of saline and CRF, NREM episode duration was significantly decreased, and NREM episode number significantly increased, in SIS mice compared to SES animals. SES and SIS mice showed similar stress induced hyperthermia (SIH) across all conditions. These data demonstrate that CRF can mediate stress-induced changes in sleep independently of SIH, an index of hypothalamic-pituitary-adrenal axis activation.
Collapse
Affiliation(s)
- Laurie L Wellman
- Sleep Research Laboratory, Department of Pathology and Anatomy, Eastern Virginia Medical School Norfolk, VA, USA
| | - Linghui Yang
- West China Hospital of Sichuan University Sichuan, China
| | - Larry D Sanford
- Sleep Research Laboratory, Department of Pathology and Anatomy, Eastern Virginia Medical School Norfolk, VA, USA
| |
Collapse
|
29
|
Morisot N, Rouibi K, Contarino A. CRF2 Receptor Deficiency Eliminates the Long-Lasting Vulnerability of Motivational States Induced by Opiate Withdrawal. Neuropsychopharmacology 2015; 40:1990-2000. [PMID: 25672976 PMCID: PMC4839523 DOI: 10.1038/npp.2015.49] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 02/06/2015] [Accepted: 02/08/2015] [Indexed: 01/07/2023]
Abstract
Vulnerability to stressful life events is a hallmark of drug dependence that may persist long after cessation of drug intake and dramatically fuel key clinical features, such as deregulated up-shifted motivational states and craving. However, to date, no effective therapy is available for reducing vulnerability to stressful events in former drug users and drug-dependent patients, mostly because of poor knowledge of the mechanisms underlying it. In this study, we report that genetic inactivation of the stress-responsive corticotropin-releasing factor receptor-2 (CRF2-/-) completely eliminates the reemergence of increased nonrewarded nose-pokes, reflecting up-shifted motivational states, triggered by ethological environmental stressors long after cessation of morphine administration in mice. Accordingly, CRF2 receptor deficiency completely abolishes the increase in biomarkers of synthesis of major brain motivational substrates, such as ventral tegmental area (VTA) dopamine (DA) and amygdala γ-aminobutyric acid (GABA) systems, associated with the stress-induced reemergence of up-shifted motivational states long after opiate withdrawal. Nevertheless, neither CRF2 receptor deficiency nor long-term opiate withdrawal affects amygdala CRF or hypothalamus CRF expression, indicating preserved brain stress-coping systems. Moreover, CRF2 receptor deficiency does not influence the locomotor or the anxiety-like effect of long-term opiate withdrawal. Thus, the present results reveal an essential and specific role for the CRF2 receptor in the stress-induced reemergence of up-shifted motivational states and related alterations in brain motivational systems long after opiate withdrawal. These findings suggest new strategies for the treatment of the severe and long-lasting vulnerability that inexorably follows drug withdrawal and hinder drug abstinence.
Collapse
Affiliation(s)
- Nadège Morisot
- Université Bordeaux, INCIA, UMR 5287, Bordeaux, France,CNRS, INCIA, UMR 5287, Bordeaux, France
| | - Khalil Rouibi
- Université Bordeaux, INCIA, UMR 5287, Bordeaux, France,CNRS, INCIA, UMR 5287, Bordeaux, France
| | - Angelo Contarino
- Université Bordeaux, INCIA, UMR 5287, Bordeaux, France,CNRS, INCIA, UMR 5287, Bordeaux, France,Université Bordeaux, INCIA, UMR 5287, 146 rue Léo Saignat, F-33076 Bordeaux, Cedex France, Tel: +33 5 57 57 95 27, Fax: +33 5 56 90 14 21, E-mail:
| |
Collapse
|
30
|
Koob GF. The dark side of emotion: the addiction perspective. Eur J Pharmacol 2015; 753:73-87. [PMID: 25583178 PMCID: PMC4380644 DOI: 10.1016/j.ejphar.2014.11.044] [Citation(s) in RCA: 232] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 11/06/2014] [Accepted: 11/26/2014] [Indexed: 01/04/2023]
Abstract
Emotions are "feeling" states and classic physiological emotive responses that are interpreted based on the history of the organism and the context. Motivation is a persistent state that leads to organized activity. Both are intervening variables and intimately related and have neural representations in the brain. The present thesis is that drugs of abuse elicit powerful emotions that can be interwoven conceptually into this framework. Such emotions range from pronounced euphoria to a devastating negative emotional state that in the extreme can create a break with homeostasis and thus an allostatic hedonic state that has been considered key to the etiology and maintenance of the pathophysiology of addiction. Drug addiction can be defined as a three-stage cycle-binge/intoxication, withdrawal/negative affect, and preoccupation/anticipation-that involves allostatic changes in the brain reward and stress systems. Two primary sources of reinforcement, positive and negative reinforcement, have been hypothesized to play a role in this allostatic process. The negative emotional state that drives negative reinforcement is hypothesized to derive from dysregulation of key neurochemical elements involved in the brain incentive salience and stress systems. Specific neurochemical elements in these structures include not only decreases in incentive salience system function in the ventral striatum (within-system opponent processes) but also recruitment of the brain stress systems mediated by corticotropin-releasing factor (CRF), dynorphin-κ opioid systems, and norepinephrine, vasopressin, hypocretin, and substance P in the extended amygdala (between-system opponent processes). Neuropeptide Y, a powerful anti-stress neurotransmitter, has a profile of action on compulsive-like responding for drugs similar to a CRF1 receptor antagonist. Other stress buffers include nociceptin and endocannabinoids, which may also work through interactions with the extended amygdala. The thesis argued here is that the brain has specific neurochemical neurocircuitry coded by the hedonic extremes of pleasant and unpleasant emotions that have been identified through the study of opponent processes in the domain of addiction. These neurochemical systems need to be considered in the context of the framework that emotions involve the specific brain regions now identified to differentially interpreting emotive physiological expression.
Collapse
Affiliation(s)
- George F Koob
- National Institute on Alcohol Abuse and Alcoholism, Washington, DC, USA.
| |
Collapse
|
31
|
Abstract
Drug withdrawal is often conceptualized as an aversive state that motivates drug-seeking and drug-taking behaviors in humans. Stress is more difficult to define, but is also frequently associated with aversive states. Here we describe evidence for the simple theory that drug withdrawal is a stress-like state, on the basis of common effects on behavioral, neurochemical, and molecular endpoints. We also describe data suggesting a more complex relationship between drug withdrawal and stress. As one example, we will highlight evidence that, depending on drug class, components of withdrawal can produce effects that have characteristics consistent with mood elevation. In addition, some stressors can act as positive reinforcers, defined as having the ability to increase the probability of a behavior that produces it. As such, accumulating evidence supports the general principles of opponent process theory, whereby processes that have an affective valence are followed in time by an opponent process that has the opposite valence. Throughout, we identify gaps in knowledge and propose future directions for research. A better understanding of the similarities, differences, and overlaps between drug withdrawal and stress will lead to the development of improved treatments for addiction, as well as for a vast array of neuropsychiatric conditions that are triggered or exacerbated by stress.
Collapse
|
32
|
Sollozo-Dupont I, Estrada-Camarena E, Carro-Juárez M, López-Rubalcava C. GABAA/benzodiazepine receptor complex mediates the anxiolytic-like effect of Montanoa tomentosa. JOURNAL OF ETHNOPHARMACOLOGY 2015; 162:278-286. [PMID: 25582489 DOI: 10.1016/j.jep.2014.12.070] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 12/29/2014] [Accepted: 12/30/2014] [Indexed: 06/04/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Montanoa tomentosa also named Cihuapatli is a native plant of Mexico that has been used in traditional medicine for the last five centuries mainly as a remedy for reproductive impairments. However, there are reports indicating that this plant was also consumed by Mexican ancient people for its relaxing properties. In order to corroborate this information, the present study was conducted to evaluate the effect of Montanoa tomentosa lyophilisate (MT) on rat׳s anxiety-like behavior and to analyze its mechanism of action. MATERIALS AND METHODS The anxiolytic-like action of MT (1.5, 3.0, 6.0 and 12.0 mg/kg) was investigated in male Wistar rats tested in three animal models of anxiety: the burying behavior, the elevated plus maze and the hole-board tests. As a positive control, the anti-anxiety effects of different doses of the selective GABAA receptor agonist muscimol were also analyzed. In order to evaluate the participation of the GABAA and oxytocin receptors in the anxiolytic-like actions of MT, the GABAA receptors blockers picrotoxin (0.25 and 0.50 mg/kg), bicuculline (2.0 mg/kg) and flumazenil (5.00 and 10.0 mg/kg), the neurosteroid inhibitor finasteride (50.0 and 100 mg/kg) and the oxytocin receptor antagonist atosiban (0.25 µg) were used. Finally, to evaluate general activity, and motor coordination, the open field and rota-rod tests were used. RESULTS MT at 3.0 mg/kg showed anxiolytic-like effects in the three anxiety paradigms without affecting reactivity, general motor activity or motor coordination; however, at higher doses sedative effects were observed. Picrotoxin (0.25 and 0.50 mg/kg), flumazenil (10.0 mg/kg) and finasteride (100 mg/kg) antagonized the anxiolytic-like actions of MT in the burying behavior test. In the plus maze and hole-board tests bicuculline (2.0 mg/kg) blocked the effects of the plant as well. Atosiban (0.25 µg) did not antagonize the anxiolytic-like actions of MT. CONCLUSIONS The results corroborate the anxiolytic-like actions of Montanoa tomentosa and suggest that this effect is mediated through GABAA receptors but not oxytocin receptors.
Collapse
Affiliation(s)
- Isabel Sollozo-Dupont
- Departamento de Farmacobiología, Centro de Investigación y Estudios Avanzados (CINVESTAV), Calzada de los Tenorios 235, Col. Granjas Coapa, C.P. 14330 México, D.F., Mexico
| | - Erika Estrada-Camarena
- Laboratorio de Neuropsicofarmacología, Neurociencias Instituto Nacional de Psiquiatría "Ramón de la Fuente", Calzada México Xochimilco 101, Col. San Lorenzo Huipulco, C.P 14370, México, D.F., Mexico
| | - Miguel Carro-Juárez
- Laboratorio de Comportamiento Reproductivo, Escuela de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Tlaxcala, Tlaxcala C.P. 90000, Tlaxcala, Mexico
| | - Carolina López-Rubalcava
- Departamento de Farmacobiología, Centro de Investigación y Estudios Avanzados (CINVESTAV), Calzada de los Tenorios 235, Col. Granjas Coapa, C.P. 14330 México, D.F., Mexico.
| |
Collapse
|
33
|
Polymorphism in the corticotropin-releasing factor receptor 1 (CRF1-R) gene plays a role in shaping the high anxious phenotype of Marchigian Sardinian alcohol-preferring (msP) rats. Psychopharmacology (Berl) 2015; 232:1083-93. [PMID: 25260340 PMCID: PMC4339612 DOI: 10.1007/s00213-014-3743-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Accepted: 09/10/2014] [Indexed: 10/24/2022]
Abstract
INTRODUCTION Marchigian Sardinian alcohol-preferring (msP) rats exhibit innate preference for alcohol along with anxious phenotype. In these animals, two single-nucleotide polymorphisms in position -1,836 and -2,097 from the first start codon of the CRF1-R transcript have been found. MATERIALS AND METHODS Here, we examined whether these point mutations account for the heightened anxiety-like behavior and stress responsiveness of msP rats. We rederived the msP rats to obtain two distinct lines carrying the wild-type (GG) and point mutations (AA), respectively. RESULTS CRF1-R gene expression analysis revealed significant dysregulation of the system in the extended amygdala of AA rats. At the behavioral level, using the elevated plus maze, we found that both AA and GG lines had higher basal anxiety compared to Wistar rats. In the defensive burying test, AA rats showed decreased burying behavior compared to the GG and the unselected Wistar lines. Freezing/immobility did not differ among AA and GG but was higher than that of Wistars. The selective CRF1-R antagonist antalarmin (0, 10, and 20 mg/kg) reduced burying behavior in Wistar animals. However, antalarmin (10 mg/kg) tended to increase rather than reducing this behavior when tested in the msP lines, an effect that appeared more marked in the GG as compared to the AA line. CONCLUSION The present data suggest that rats with msP genetic background are more anxious and show different sensitivity to stress and CRF1-R blockade than Wistars. The point mutations occurring in the CRF1-R gene do not seem to influence basal anxiety while they appear to affect active responses to stress.
Collapse
|
34
|
Craige CP, Lewandowski S, Kirby LG, Unterwald EM. Dorsal raphe 5-HT(2C) receptor and GABA networks regulate anxiety produced by cocaine withdrawal. Neuropharmacology 2015; 93:41-51. [PMID: 25656481 DOI: 10.1016/j.neuropharm.2015.01.021] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 01/21/2015] [Accepted: 01/22/2015] [Indexed: 01/17/2023]
Abstract
The serotonin system is intimately linked to both the mediation of anxiety and long-term effects of cocaine, potentially through interaction of inhibitory 5-HT2C receptor and gamma-aminobutyric acid (GABA) networks. This study characterized the function of the dorsal raphe (DR) 5-HT2C receptor and GABA network in anxiety produced by chronic cocaine withdrawal. C57BL/6 mice were injected with saline or cocaine (15 mg/kg) 3 times daily for 10 days, and tested on the elevated plus maze 30 min, 25 h, or 7 days after the last injection. Cocaine-withdrawn mice showed heightened anxiety-like behavior at 25 h of withdrawal, as compared to saline controls. Anxiety-like behavior was not different when mice were tested 30 min or 7 days after the last cocaine injection. Electrophysiology data revealed that serotonin cells from cocaine-withdrawn mice exhibited increased GABA inhibitory postsynaptic currents (IPSCs) in specific DR subregions dependent on withdrawal time (25 h or 7 d), an effect that was absent in cells from non-withdrawn mice (30 min after the last cocaine injection). Increased IPSC activity was restored to baseline levels following bath application of the 5-HT2C receptor antagonist, SB 242084. In a separate cohort of cocaine-injected mice at 25 h of withdrawal, both global and intra-DR blockade of 5-HT2C receptors prior to elevated plus maze testing attenuated anxiety-like behavior. This study demonstrates that DR 5-HT2C receptor blockade prevents anxiety-like behavior produced by cocaine withdrawal, potentially through attenuation of heightened GABA activity, supporting a role for the 5-HT2C receptor in mediating anxiety produced by cocaine withdrawal.
Collapse
Affiliation(s)
- Caryne P Craige
- Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA, USA; Center for Substance Abuse Research, Temple University School of Medicine, Philadelphia, PA, USA.
| | - Stacia Lewandowski
- Center for Substance Abuse Research, Temple University School of Medicine, Philadelphia, PA, USA
| | - Lynn G Kirby
- Department of Anatomy and Cell Biology, Temple University School of Medicine, Philadelphia, PA, USA; Center for Substance Abuse Research, Temple University School of Medicine, Philadelphia, PA, USA
| | - Ellen M Unterwald
- Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA, USA; Center for Substance Abuse Research, Temple University School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
35
|
Cohen A, Treweek J, Edwards S, Leão RM, Schulteis G, Koob GF, George O. Extended access to nicotine leads to a CRF1 receptor dependent increase in anxiety-like behavior and hyperalgesia in rats. Addict Biol 2015; 20:56-68. [PMID: 23869743 DOI: 10.1111/adb.12077] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Tobacco dependence is associated with the emergence of negative emotional states during withdrawal, including anxiety and nociceptive hypersensitivity. However, the current animal models of nicotine dependence have focused on the mechanisms that mediate the acute reinforcing effects of nicotine and failed to link increased anxiety and pain during abstinence with excessive nicotine self-administration. Here, we tested the hypothesis that the activation of corticotropin-releasing factor-1 (CRF1 ) receptors and emergence of the affective and motivational effects of nicotine abstinence only occur in rats with long access (>21 hours/day, LgA) and not short (1 hour/day, ShA) access to nicotine self-administration. ShA and LgA rats were tested for anxiety-like behavior, nociceptive thresholds, somatic signs of withdrawal and nicotine intake after 3 days of abstinence. The role of CRF1 receptors during abstinence was tested using systemic or intracerebral infusion of MPZP (N,N-bis(2-methoxyethyl)-3-(4-methoxy-2-methylphenyl)-2,5-dimethyl-pyrazolo(1,5α)pyrimidin-7-amine), a CRF1 receptor antagonist, in the central nucleus of the amygdala (CeA). LgA but not ShA rats exhibited abstinence-induced increases in anxiety-like behavior and nociceptive hypersensitivity, which both predicted subsequent excessive nicotine intake and were prevented by systemic administration of MPZP. Intra-CeA MPZP infusion prevented abstinence-induced increases in nicotine intake and nociceptive hypersensitivity. These findings demonstrate that the model of short access to nicotine self-administration has limited validity for tobacco dependence, highlight the translational relevance of the model of extended-intermittent access to nicotine self-administration for tobacco dependence and demonstrate that activation of CRF1 receptors is required for the emergence of abstinence-induced anxiety-like behavior, hyperalgesia and excessive nicotine intake.
Collapse
Affiliation(s)
- Ami Cohen
- The Scripps Research Institute; La Jolla CA USA
| | | | | | | | - Gery Schulteis
- Research Service; VA San Diego Healthcare System; San Diego CA USA
- Department of Anesthesiology; University of California San Diego School of Medicine; La Jolla CA USA
| | | | | |
Collapse
|
36
|
Abstract
Drug addiction is a syndrome of dysregulated motivation, evidenced by intense drug craving and compulsive drug-seeking behavior. In the search for 'common neurobiological substrates of addiction to different classes of drugs, behavioral neuroscientists have attempted to determine the neural basis for a number of motivational concepts and describe how they are changed by repeated drug use. Here, we describe these concepts and summarize previous work describing three major neural systems that play distinct roles in different conceptual aspects of motivation: (1) a nigrostriatal system that is involved in two forms of instrumental learning, (2) a ventral striatal system that is involved in Pavlovian incentive motivation and negative reinforcement, and (3) frontal cortical areas that regulate decision making and motivational processes. Within striatal systems, drug addiction can involve a transition from goal-oriented, incentive processes to automatic, habit-based responding. In the cortex, weak inhibitory control is a predisposing factor to, as well as a consequence of, repeated drug intake. However, these transitions are not absolute, and addiction can occur without a transition to habit-based responding, occurring as a result of the overvaluation of drug outcomes and hypersensitivity to incentive properties of drug-associated cues. Finally, we point out that addiction is not monolithic and can depend not only on individual differences between addicts, but also on the neurochernical action of specific drug classes.
Collapse
|
37
|
Abstract
Stress is considered to be an important cause of disrupted sleep and insomnia. However, controlled and experimental studies in rodents indicate that effects of stress on sleep-wake regulation are complex and may strongly depend on the nature of the stressor. While most stressors are associated with at least a brief period of arousal and wakefulness, the subsequent amount and architecture of recovery sleep can vary dramatically across conditions even though classical markers of acute stress such as corticosterone are virtually the same. Sleep after stress appears to be highly influenced by situational variables including whether the stressor was controllable and/or predictable, whether the individual had the possibility to learn and adapt, and by the relative resilience and vulnerability of the individual experiencing stress. There are multiple brain regions and neurochemical systems linking stress and sleep, and the specific balance and interactions between these systems may ultimately determine the alterations in sleep-wake architecture. Factors that appear to play an important role in stress-induced wakefulness and sleep changes include various monominergic neurotransmitters, hypocretins, corticotropin releasing factor, and prolactin. In addition to the brain regions directly involved in stress responses such as the hypothalamus, the locus coeruleus, and the amygdala, differential effects of stressor controllability on behavior and sleep may be mediated by the medial prefrontal cortex. These various brain regions interact and influence each other and in turn affect the activity of sleep-wake controlling centers in the brain. Also, these regions likely play significant roles in memory processes and participate in the way stressful memories may affect arousal and sleep. Finally, stress-induced changes in sleep-architecture may affect sleep-related neuronal plasticity processes and thereby contribute to cognitive dysfunction and psychiatric disorders.
Collapse
Affiliation(s)
- Larry D Sanford
- Department of Pathology and Anatomy, Eastern Virginia Medical School, P.O. Box 1980, Norfolk, VA, 23507, USA,
| | | | | |
Collapse
|
38
|
CRF₂ receptor-deficiency reduces recognition memory deficits and vulnerability to stress induced by cocaine withdrawal. Int J Neuropsychopharmacol 2014; 17:1969-79. [PMID: 24800964 DOI: 10.1017/s1461145714000625] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Psychostimulant drug abuse, dependence and withdrawal are associated with cognitive dysfunction and impact stress-sensitive systems. The corticotropin-releasing factor (CRF) system orchestrates stress responses via CRF1 and CRF2 receptors and is implicated in substance use disorders. However, CRF2 role in psychostimulant drug-induced cognitive dysfunction remains to be elucidated. In the present study, wild-type and CRF2-/- mice are injected with cocaine and memory assessed by the novel object recognition (NOR) task throughout relatively long periods of drug withdrawal. Following recovery from the drug-induced memory deficits, the mice are stressed prior to the NOR task and brain gene expression evaluated by in situ hybridization. Cocaine impairs NOR memory in wild-type and CRF2-/- mice. However, following cocaine withdrawal NOR memory deficits last less time in CRF2-/- than in wild-type mice. Furthermore, a relatively mild stressor induces the re-emergence of NOR deficits in long-term cocaine-withdrawn wild-type but not CRF2-/- mice. Cocaine-withdrawn mice show a genotype-independent higher c-fos expression in the NOR memory-relevant perirhinal cortex than drug-naïve mice. However neither genotype nor drug withdrawal affect the expression of tyrosine hydroxylase in the ventral tegmental area or the locus coeruleus and CRF in the central nucleus of the amygdala or the paraventricular nucleus of the hypothalamus, brain regions implicated in stress and drug responses. These data indicate a new role for the CRF2 receptor in cognitive deficits induced by cocaine withdrawal, both as regards to their duration and their re-induction by stress. Interestingly, prototypical brain stress systems other than CRF do not appear to be involved.
Collapse
|
39
|
Anxiolytic effects of oxytocin in cue-induced cocaine seeking behavior in rats. Psychopharmacology (Berl) 2014; 231:4145-55. [PMID: 24760374 DOI: 10.1007/s00213-014-3553-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2013] [Accepted: 03/20/2014] [Indexed: 11/27/2022]
Abstract
RATIONALE Oxytocin (OT) is a neuropeptide previously related to reward, learning, memory, and stress, events associated with cocaine addiction. OT has shown anxiolytic properties in different animal models of anxiety. Moreover, previous data have demonstrated an increase in mRNA OT levels within the nucleus accumbens (NAc) following acute and chronic cocaine exposure in rats. Therefore, OT might play a modulatory role in the rewarding properties of cocaine. OBJECTIVES The present set of experiments aims to examine the role of OT on environmentally elicited cocaine-seeking behavior and whether OT could reduce anxiety associated with this behavior. METHODS Separate groups of rats were trained in a cue-elicited cocaine-seeking behavior paradigm. Prior to the reinstatement phase, animals received microinfusions of artificial cerebrospinal fluid (aCSF), OT, OT agonist (TgOT), or OT antagonist (OTA) within the intracerebral ventricular intracerebroventricular (ICV) system. To test OT anxiolytic effects in reinstatement behavior, separate groups of animals were trained in a cue-elicited cocaine-seeking behavior protocol or in a cocaine-conditioning paradigm. At the end of each behavioral training, all animals were ICV pretreated with aCSF or OT, and then exposed to an elevated plus maze. RESULTS Results showed that OT and TgOT pretreatment significantly reduced reinstatement of cocaine-seeking behavior. Most significantly, OT treatment reduced the anxiety triggered by cue-induced reinstatement conditions and cocaine-paired conditioned locomotion. CONCLUSIONS The present study demonstrates for the first time that OT actions within the brain mediate the anxiety response triggered by cues previously paired with cocaine intake.
Collapse
|
40
|
Lifelong, central corticotropin-releasing factor (CRF) overexpression is associated with individual differences in cocaine-induced conditioned place preference. Eur J Pharmacol 2014; 753:151-7. [PMID: 25094033 DOI: 10.1016/j.ejphar.2014.07.050] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 07/24/2014] [Indexed: 11/20/2022]
Abstract
Stress, through corticotropin-releasing factor (CRF), influences all aspects of cocaine addiction. Earlier studies suggest that individual differences in responsivity to stress affect susceptibility to develop addiction. We have previously found that CRF over-expression alters individual differences in behavioural responses to novelty stress in mice. Therefore, we hypothesised that post-natal, long-term over-expression of brain CRF may alter the rewarding effects of cocaine in a manner that is sensitive to individual differences. In this study we specifically investigated cocaine-induced conditioned place preference (CPP) in transgenic mice over-expressing CRF (CRF-OE) and in wild-type (WT) littermates after determining their individual locomotor and emotional responsivity to inescapable novelty. CRF-OE mice showed decreased overall locomotor activity and increased anxiety-like behaviour in response to novelty compared to WT mice. Low behavioural reactivity to novelty (LR) was associated with heightened anxiety-like behaviour in CRF-OE, but not in WT, mice. WT and CRF-OE mice developed CPP equally to both low (5mg/kg) and high (20mg/kg) doses of cocaine. However, LR CRF-OE mice expressed significantly stronger cocaine CPP than transgenic mice with high locomotor response to novelty (HR). In WT mice, on the other hand, stronger CPP induced by 20mg/kg of cocaine was found in the HR animals. Furthermore, there was a strong negative correlation between locomotor reactivity to novelty and CPP in CRF-OE, but not in WT, mice. Collectively, these results suggest that long-term, post-natal CRF over-expression increases the rewarding effects of cocaine in individuals with high emotional response to stress.
Collapse
|
41
|
Corticotropin releasing factor: a key role in the neurobiology of addiction. Front Neuroendocrinol 2014; 35:234-44. [PMID: 24456850 PMCID: PMC4213066 DOI: 10.1016/j.yfrne.2014.01.001] [Citation(s) in RCA: 176] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 01/03/2014] [Accepted: 01/06/2014] [Indexed: 11/20/2022]
Abstract
Drug addiction is a chronically relapsing disorder characterized by loss of control over intake and dysregulation of stress-related brain emotional systems. Since the discovery by Wylie Vale and his colleagues of corticotropin-releasing factor (CRF) and the structurally-related urocortins, CRF systems have emerged as mediators of the body's response to stress. Relatedly, CRF systems have a prominent role in driving addiction via actions in the central extended amygdala, producing anxiety-like behavior, reward deficits, excessive, compulsive-like drug self-administration and stress-induced reinstatement of drug seeking. CRF neuron activation in the medial prefrontal cortex may also contribute to the loss of control. Polymorphisms in CRF system molecules are associated with drug use phenotypes in humans, often in interaction with stress history. Drug discovery efforts have yielded brain-penetrant CRF1 antagonists with activity in preclinical models of addiction. The results support the hypothesis that brain CRF-CRF1 systems contribute to the etiology and maintenance of addiction.
Collapse
|
42
|
McReynolds JR, Peña DF, Blacktop JM, Mantsch JR. Neurobiological mechanisms underlying relapse to cocaine use: contributions of CRF and noradrenergic systems and regulation by glucocorticoids. Stress 2014; 17:22-38. [PMID: 24328808 DOI: 10.3109/10253890.2013.872617] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Considering its pervasive and uncontrollable influence in drug addicts, understanding the neurobiological processes through which stress contributes to drug use is a critical goal for addiction researchers and will likely be important for the development of effective medications aimed at relapse prevention. In this paper, we review work from our laboratory and others focused on determining the neurobiological mechanisms that underlie and contribute to stress-induced relapse of cocaine use with an emphasis on the actions of corticotropin-releasing factor in the ventral tegmental area (VTA) and a key pathway from the bed nucleus of the stria terminalis to the VTA that is regulated by norepinephrine and beta adrenergic receptors. Additionally, we discuss work suggesting that the influence of stress in cocaine addiction changes and intensifies with repeated cocaine use in an intake-dependent manner and examine the potential role of glucocorticoid hormones in the underlying drug-induced neuroadaptations. It is our hope that research in this area will inform clinical practice and medication development aimed at minimizing the contribution of stress to the addiction cycle, thereby improving treatment outcomes and reducing the societal costs of addiction.
Collapse
Affiliation(s)
- Jayme R McReynolds
- Department of Biomedical Sciences, Marquette University , Milwaukee, WI , USA
| | | | | | | |
Collapse
|
43
|
Koob GF, Buck CL, Cohen A, Edwards S, Park PE, Schlosburg JE, Schmeichel B, Vendruscolo LF, Wade CL, Whitfield TW, George O. Addiction as a stress surfeit disorder. Neuropharmacology 2014; 76 Pt B:370-82. [PMID: 23747571 PMCID: PMC3830720 DOI: 10.1016/j.neuropharm.2013.05.024] [Citation(s) in RCA: 350] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 05/22/2013] [Accepted: 05/28/2013] [Indexed: 12/15/2022]
Abstract
Drug addiction has been conceptualized as a chronically relapsing disorder of compulsive drug seeking and taking that progresses through three stages: binge/intoxication, withdrawal/negative affect, and preoccupation/anticipation. Drug addiction impacts multiple motivational mechanisms and can be conceptualized as a disorder that progresses from positive reinforcement (binge/intoxication stage) to negative reinforcement (withdrawal/negative affect stage). The construct of negative reinforcement is defined as drug taking that alleviates a negative emotional state. Our hypothesis is that the negative emotional state that drives such negative reinforcement is derived from dysregulation of key neurochemical elements involved in the brain stress systems within the frontal cortex, ventral striatum, and extended amygdala. Specific neurochemical elements in these structures include not only recruitment of the classic stress axis mediated by corticotropin-releasing factor (CRF) in the extended amygdala as previously hypothesized but also recruitment of dynorphin-κ opioid aversive systems in the ventral striatum and extended amygdala. Additionally, we hypothesized that these brain stress systems may be engaged in the frontal cortex early in the addiction process. Excessive drug taking engages activation of CRF not only in the extended amygdala, accompanied by anxiety-like states, but also in the medial prefrontal cortex, accompanied by deficits in executive function that may facilitate the transition to compulsive-like responding. Excessive activation of the nucleus accumbens via the release of mesocorticolimbic dopamine or activation of opioid receptors has long been hypothesized to subsequently activate the dynorphin-κ opioid system, which in turn can decrease dopaminergic activity in the mesocorticolimbic dopamine system. Blockade of the κ opioid system can also block anxiety-like and reward deficits associated with withdrawal from drugs of abuse and block the development of compulsive-like responding during extended access to drugs of abuse, suggesting another powerful brain stress/anti-reward system that contributes to compulsive drug seeking. Thus, brain stress response systems are hypothesized to be activated by acute excessive drug intake, to be sensitized during repeated withdrawal, to persist into protracted abstinence, and to contribute to the development and persistence of addiction. The recruitment of anti-reward systems provides a powerful neurochemical basis for the negative emotional states that are responsible for the dark side of addiction. This article is part of a Special Issue entitled 'NIDA 40th Anniversary Issue'.
Collapse
Affiliation(s)
- George F Koob
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, 10550 North Torrey Pines Road, SP30-2400, La Jolla, CA 92037, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Rimonabant precipitates anxiety in rats withdrawn from palatable food: role of the central amygdala. Neuropsychopharmacology 2013; 38:2498-507. [PMID: 23793355 PMCID: PMC3799070 DOI: 10.1038/npp.2013.153] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2012] [Revised: 06/15/2013] [Accepted: 06/17/2013] [Indexed: 01/03/2023]
Abstract
The anti-obesity medication rimonabant, an antagonist of cannabinoid type-1 (CB(1)) receptor, was withdrawn from the market because of adverse psychiatric side effects, including a negative affective state. We investigated whether rimonabant precipitates a negative emotional state in rats withdrawn from palatable food cycling. The effects of systemic administration of rimonabant on anxiety-like behavior, food intake, body weight, and adrenocortical activation were assessed in female rats during withdrawal from chronic palatable diet cycling. The levels of the endocannabinoids, anandamide and 2-arachidonoylglycerol (2-AG), and the CB(1) receptor mRNA and the protein in the central nucleus of the amygdala (CeA) were also investigated. Finally, the effects of microinfusion of rimonabant in the CeA on anxiety-like behavior, and food intake were assessed. Systemic administration of rimonabant precipitated anxiety-like behavior and anorexia of the regular chow diet in rats withdrawn from palatable diet cycling, independently from the degree of adrenocortical activation. These behavioral observations were accompanied by increased 2-AG, CB(1) receptor mRNA, and protein levels selectively in the CeA. Finally, rimonabant, microinfused directly into the CeA, precipitated anxiety-like behavior and anorexia. Our data show that (i) the 2-AG-CB(1) receptor system within the CeA is recruited during abstinence from palatable diet cycling as a compensatory mechanism to dampen anxiety, and (ii) rimonabant precipitates a negative emotional state by blocking the beneficial heightened 2-AG-CB(1) receptor signaling in this brain area. These findings help elucidate the link between compulsive eating and anxiety, and it will be valuable to develop better pharmacological treatments for eating disorders and obesity.
Collapse
|
45
|
Filip M, Frankowska M, Jastrzębska J, Wydra K, Przegaliński E. Preclinical studies on comorbidity between depression and psychostimulant addiction. Pharmacol Rep 2013; 65:1529-34. [DOI: 10.1016/s1734-1140(13)71514-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Revised: 10/08/2013] [Indexed: 12/14/2022]
|
46
|
Elman I, Borsook D, Volkow ND. Pain and suicidality: insights from reward and addiction neuroscience. Prog Neurobiol 2013; 109:1-27. [PMID: 23827972 PMCID: PMC4827340 DOI: 10.1016/j.pneurobio.2013.06.003] [Citation(s) in RCA: 150] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 06/03/2013] [Accepted: 06/18/2013] [Indexed: 01/09/2023]
Abstract
Suicidality is exceedingly prevalent in pain patients. Although the pathophysiology of this link remains unclear, it may be potentially related to the partial congruence of physical and emotional pain systems. The latter system's role in suicide is also conspicuous during setbacks and losses sustained in the context of social attachments. Here we propose a model based on the neural pathways mediating reward and anti-reward (i.e., allostatic adjustment to recurrent activation of the reward circuitry); both are relevant etiologic factors in pain, suicide and social attachments. A comprehensive literature search on neurobiology of pain and suicidality was performed. The collected articles were critically reviewed and relevant data were extracted and summarized within four key areas: (1) physical and emotional pain, (2) emotional pain and social attachments, (3) pain- and suicide-related alterations of the reward and anti-reward circuits as compared to addiction, which is the premier probe for dysfunction of these circuits and (4) mechanistically informed treatments of co-occurring pain and suicidality. Pain-, stress- and analgesic drugs-induced opponent and proponent states of the mesolimbic dopaminergic pathways may render reward and anti-reward systems vulnerable to sensitization, cross-sensitization and aberrant learning of contents and contexts associated with suicidal acts and behaviors. These findings suggest that pain patients exhibit alterations in the brain circuits mediating reward (depressed function) and anti-reward (sensitized function) that may affect their proclivity for suicide and support pain and suicidality classification among other "reward deficiency syndromes" and a new proposal for "enhanced anti-reward syndromes". We suggest that interventions aimed at restoring the balance between the reward and anti-reward networks in patients with chronic pain may help decreasing their suicide risk.
Collapse
Affiliation(s)
- Igor Elman
- Providence VA Medical Center and Cambridge Health Alliance, Harvard Medical School, 26 Central Street, Somerville, MA 02143, USA.
| | | | | |
Collapse
|
47
|
Van't Veer A, Carlezon WA. Role of kappa-opioid receptors in stress and anxiety-related behavior. Psychopharmacology (Berl) 2013; 229:435-52. [PMID: 23836029 PMCID: PMC3770816 DOI: 10.1007/s00213-013-3195-5] [Citation(s) in RCA: 206] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Accepted: 06/17/2013] [Indexed: 12/15/2022]
Abstract
RATIONALE Accumulating evidence indicates that brain kappa-opioid receptors (KORs) and dynorphin, the endogenous ligand that binds at these receptors, are involved in regulating states of motivation and emotion. These findings have stimulated interest in the development of KOR-targeted ligands as therapeutic agents. As one example, it has been suggested that KOR antagonists might have a wide range of indications, including the treatment of depressive, anxiety, and addictive disorders, as well as conditions characterized by co-morbidity of these disorders (e.g., post-traumatic stress disorder) A general effect of reducing the impact of stress may explain how KOR antagonists can have efficacy in such a variety of animal models that would appear to represent different disease states. OBJECTIVE Here, we review evidence that disruption of KOR function attenuates prominent effects of stress. We will describe behavioral and molecular endpoints including those from studies that characterize the effects of KOR antagonists and KOR ablation on the effects of stress itself, as well as on the effects of exogenously delivered corticotropin-releasing factor, a brain peptide that mediates key effects of stress. CONCLUSION Collectively, available data suggest that KOR disruption produces anti-stress effects and under some conditions can prevent the development of stress-induced adaptations. As such, KOR antagonists may have unique potential as therapeutic agents for the treatment and even prevention of stress-related psychiatric illness, a therapeutic niche that is currently unfilled.
Collapse
MESH Headings
- Animals
- Anti-Anxiety Agents/pharmacology
- Anti-Anxiety Agents/therapeutic use
- Anxiety Disorders/drug therapy
- Anxiety Disorders/metabolism
- Anxiety Disorders/psychology
- Behavior, Animal/drug effects
- Brain/drug effects
- Brain/metabolism
- Brain/physiopathology
- Corticotropin-Releasing Hormone/metabolism
- Dynorphins/genetics
- Dynorphins/metabolism
- Humans
- Ligands
- Receptors, Opioid, kappa/antagonists & inhibitors
- Receptors, Opioid, kappa/genetics
- Receptors, Opioid, kappa/metabolism
- Stress, Psychological/drug therapy
- Stress, Psychological/metabolism
- Stress, Psychological/psychology
Collapse
Affiliation(s)
- Ashlee Van't Veer
- Department of Psychiatry, Harvard Medical School, McLean Hospital, MRC 217, 115 Mill Street, Belmont, MA, 02478, USA
| | | |
Collapse
|
48
|
Shen H, Mohammad A, Ramroop J, Smith SS. A stress steroid triggers anxiety via increased expression of α4βδ GABAA receptors in methamphetamine dependence. Neuroscience 2013; 254:452-75. [PMID: 23994152 DOI: 10.1016/j.neuroscience.2013.08.033] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Revised: 08/13/2013] [Accepted: 08/20/2013] [Indexed: 10/26/2022]
Abstract
Methamphetamine (METH) is an addictive stimulant drug. In addition to drug craving and lethargy, METH withdrawal is associated with stress-triggered anxiety. However, the cellular basis for this stress-triggered anxiety is not understood. The present results suggest that during METH withdrawal (24h) following chronic exposure (3mg/kg, i.p. for 3-5weeks) of adult, male mice, the effect of one neurosteroid released by stress, 3α,5α-THP (3α-OH-5α-pregnan-20-one), and its 3α,5β isomer reverse to trigger anxiety assessed by the acoustic startle response (ASR), in contrast to their usual anti-anxiety effects. This novel effect of 3α,5β-THP was due to increased (three-fold) hippocampal expression of α4βδ GABAA receptors (GABARs) during METH withdrawal (24h-4weeks) because anxiogenic effects of 3α,5β-THP were not seen in α4-/- mice. 3α,5β-THP reduces current at these receptors when it is hyperpolarizing, as observed during METH withdrawal. As a result, 3α,5β-THP (30nM) increased neuronal excitability, assessed with current clamp and cell-attached recordings in CA1hippocampus, one CNS site which regulates anxiety. α4βδ GABARs were first increased 1h after METH exposure and recovered 6weeks after METH withdrawal. Similar increases in α4βδ GABARs and anxiogenic effects of 3α,5β-THP were noted in rats during METH withdrawal (24h). In contrast, the ASR was increased by chronic METH treatment in the absence of 3α,5β-THP administration due to its stimulant effect. Although α4βδ GABARs were increased by chronic METH treatment, the GABAergic current recorded from hippocampal neurons at this time was a depolarizing, shunting inhibition, which was potentiated by 3α,5β-THP. This steroid reduced neuronal excitability and anxiety during chronic METH treatment, consistent with its typical effect. Flumazenil (10mg/kg, i.p., 3×) reduced α4βδ expression and prevented the anxiogenic effect of 3α,5β-THP after METH withdrawal. Our findings suggest a novel mechanism underlying stress-triggered anxiety after METH withdrawal mediated by α4βδ GABARs.
Collapse
Affiliation(s)
- H Shen
- Department of Physiology and Pharmacology, SUNY Downstate Medical Center, 450 Clarkson Avenue, Brooklyn, NY 11203, United States
| | | | | | | |
Collapse
|
49
|
The role of galanin system in modulating depression, anxiety, and addiction-like behaviors after chronic restraint stress. Neuroscience 2013; 246:82-93. [DOI: 10.1016/j.neuroscience.2013.04.046] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2013] [Revised: 04/19/2013] [Accepted: 04/22/2013] [Indexed: 11/21/2022]
|
50
|
Abstract
Drug addiction can be defined by a three-stage cycle - binge/intoxication, withdrawal/negative affect, and preoccupation/anticipation - that involves allostatic changes in the brain reward and stress systems. Two primary sources of reinforcement, positive and negative reinforcement, have been hypothesized to play a role in this allostatic process. The negative emotional state that drives negative reinforcement is hypothesized to derive from dysregulation of key neurochemical elements involved in the brain reward and stress systems. Specific neurochemical elements in these structures include not only decreases in reward system function (within-system opponent processes) but also recruitment of the brain stress systems mediated by corticotropin-releasing factor (CRF) and dynorphin-κ opioid systems in the ventral striatum, extended amygdala, and frontal cortex (both between-system opponent processes). CRF antagonists block anxiety-like responses associated with withdrawal, block increases in reward thresholds produced by withdrawal from drugs of abuse, and block compulsive-like drug taking during extended access. Excessive drug taking also engages the activation of CRF in the medial prefrontal cortex, paralleled by deficits in executive function that may facilitate the transition to compulsive-like responding. Neuropeptide Y, a powerful anti-stress neurotransmitter, has a profile of action on compulsive-like responding for ethanol similar to a CRF1 antagonist. Blockade of the κ opioid system can also block dysphoric-like effects associated with withdrawal from drugs of abuse and block the development of compulsive-like responding during extended access to drugs of abuse, suggesting another powerful brain stress system that contributes to compulsive drug seeking. The loss of reward function and recruitment of brain systems provide a powerful neurochemical basis that drives the compulsivity of addiction.
Collapse
Affiliation(s)
- George F. Koob
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, CA, USA
| |
Collapse
|