1
|
Makwakwa TA, Moema ED, Makudali Msagati TA. Method development and optimization for dispersive liquid-liquid microextraction factors using the response surface methodology with desirability function for the ultra-high performance liquid chromatography quadrupole time of flight mass spectrometry determination of organic contaminants in water samples: risk and greenness assessment. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024. [PMID: 39382484 DOI: 10.1039/d4ay01462f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
A simple, cost effective, and efficient dispersive liquid-liquid microextraction method was developed and optimized for the determination of organic contaminants in different environmental water matrices followed by UHPLC-QTOF-MS analysis. In the preliminary experiments, the univariate optimization approach was used to select tetrachloroethylene and acetonitrile as extraction and disperser solvents, respectively. The significant factors influencing DLLME were screened using full factorial design, and the optimal values for each variable were then derived through further optimization using central composite design with desirability function. The optimal conditions were achieved with 195 μL of tetrachloroethylene as the extraction solvent, 1439 μL of acetonitrile as the disperser solvent, and a sample pH of 5.8. Under these conditions, the method provided detection limits ranging from 0.11-0.48 μg L-1 and recoveries ranging from 23.32-145.43% across all samples. The enrichment factors obtained ranged from 11.66-72.72. The proposed method was then successfully applied in real water samples. Only benzophenone was detected in the concentration range of 0.79-0.88 μg L-1 across all the water samples. The calculated risk quotient resulting from benzophenone exposure in water samples showed a low potential risk to human health and the aquatic ecosystem. The method was also evaluated for its environmental friendliness using various metrics tools such as Analytical Eco-Scale (AES), Green Analytical Procedure Index (GAPI), Analytical GREEnness (AGREE), Analytical Greenness for Sample Preparation (AGREEprep), and Sample Preparation Metric of Sustainability (SPMS). Only AES qualified the method as green while it was considered acceptable and sustainable when assessed using SPMS.
Collapse
Affiliation(s)
- Tlou Auguston Makwakwa
- Department of Chemistry, College of Science, Engineering and Technology, University of South Africa, Johannesburg, Florida, 1709, South Africa
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering and Technology, University of South Africa, Johannesburg, Florida, 1709, South Africa.
| | - Elsie Dineo Moema
- Department of Chemistry, College of Science, Engineering and Technology, University of South Africa, Johannesburg, Florida, 1709, South Africa
| | - Titus Alfred Makudali Msagati
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering and Technology, University of South Africa, Johannesburg, Florida, 1709, South Africa.
| |
Collapse
|
2
|
Makwakwa TA, Moema DE, Msagati TAM. Multi-criteria decision analysis: technique for order of preference by similarity to ideal solution for selecting greener analytical method in the determination of mifepristone in environmental water samples. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:29460-29471. [PMID: 38578593 PMCID: PMC11058867 DOI: 10.1007/s11356-024-32961-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 03/13/2024] [Indexed: 04/06/2024]
Abstract
This work proposes the use of multi-criteria decision analysis (MCDA) to select a more environmentally friendly analytical procedure. TOPSIS, which stands for Technique for Order of Preference by Similarity to Ideal Solution, is an example of a MCDA method that may be used to rank or select best alternative based on various criteria. Thirteen analytical procedures were used in this study as TOPSIS input choices for mifepristone determination in water samples. The input data, which consisted of these choices, was described using assessment criteria based on 12 principles of green analytical chemistry (GAC). Based on the objective mean weighting (MW), the weights for each criterion were assigned equally. The most preferred analytical method according to the ranking was solid phase extraction with micellar electrokinetic chromatography (SPE-MEKC), while solid phase extraction combined with ultra-high performance liquid chromatography tandem mass spectrometry (SPE-UHPLC-MS/MS) was ranked last. TOPSIS ranking results were also compared to the green metrics NEMI, Eco-Scale, GAPI, AGREE, and AGREEprep that were used to assess the greenness of thirteen analytical methods for mifepristone determination. The results demonstrated that only the AGREE metric tool correlated with TOPSIS; however, there was no correlation with other metric tools. The analysis results suggest that TOPSIS is a very useful tool for ranking or selecting the analytical procedure in terms of its greenness and that it can be easily integrated with other green metrics tools for method greenness assessment.
Collapse
Affiliation(s)
- Tlou A Makwakwa
- Department of Chemistry, College of Science, Engineering and Technology, University of South Africa, Johannesburg, 1709, Florida, South Africa
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering and Technology, University of South Africa, Johannesburg, 1709, Florida, South Africa
| | - Dineo E Moema
- Department of Chemistry, College of Science, Engineering and Technology, University of South Africa, Johannesburg, 1709, Florida, South Africa
| | - Titus A M Msagati
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering and Technology, University of South Africa, Johannesburg, 1709, Florida, South Africa.
| |
Collapse
|
3
|
Castellano-Hinojosa A, Gallardo-Altamirano MJ, González-López J, González-Martínez A. Anticancer drugs in wastewater and natural environments: A review on their occurrence, environmental persistence, treatment, and ecological risks. JOURNAL OF HAZARDOUS MATERIALS 2023; 447:130818. [PMID: 36680899 DOI: 10.1016/j.jhazmat.2023.130818] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/15/2023] [Accepted: 01/16/2023] [Indexed: 06/17/2023]
Abstract
The consumption of anticancer drugs (also known as chemotherapy drugs or antineoplastic drugs) has augmented over the last decades due to increased cancer incidence. Although there is an increasing concern about the presence of pharmaceutical compounds in natural environments and urban/domestic wastewater, anticancer drugs used in chemotherapy and anticancer medication have received less attention. In this review, the occurrence, environmental persistence, and known and potential ecological impacts of anticancer drugs is discussed. This review shows that these compounds are being increasingly detected in effluents of hospitals, influents and effluents of wastewater treatment plants, river surface water and sediments, groundwater, and even drinking water. Anticancer drugs can impact aquatic organisms such as algae, crustaceans, rotifers, and fish and may promote changes in soil and water microbial communities that may alter ecosystem functioning. Our knowledge of technologies for the removal of anticancer drugs is still limited, and these drugs can be dispersed in nature in a diffuse way in an uncontrolled manner. For this reason, an improved understanding of the presence, persistence, and ecological impacts of anticancer drugs in wastewater and natural environments is needed to help design management strategies, protect aquatic microorganisms, and mitigate potential ecological impacts.
Collapse
Affiliation(s)
| | | | - Jesús González-López
- Institute of Water Research, University of Granada, C/Ramon y Cajal, 4, 18071 Granada, Spain
| | | |
Collapse
|
4
|
Electrochemical Oxidation of Anastrozole over a BDD Electrode: Role of Operating Parameters and Water Matrix. Processes (Basel) 2022. [DOI: 10.3390/pr10112391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The electrochemical oxidation (EO) of the breast-cancer drug anastrozole (ANZ) is studied in this work. The role of various operating parameters, such as current density (6.25 and 12.5 mA cm−2), pH (3–10), ANZ concentration (0.5–2 mg L−1), nature of supporting electrolytes, water composition, and water matrix, have been evaluated. ANZ removal of 82.4% was achieved at 1 mg L−1 initial concentration after 90 min of reaction at 6.25 mA cm−2 and 0.1 M Na2SO4. The degradation follows pseudo-first-order kinetics with the apparent rate constant, kapp, equal to 0.022 min−1. The kapp increases with increasing current density and decreasing solution pH. The addition of chloride in the range 0–250 mg L−1 positively affects the removal of ANZ. However, chloride concentrations above 250 mg L−1 have a detrimental effect. The presence of bicarbonate or organic matter has a slightly negative but not significant effect on the process. The EO of ANZ is compared to its degradation by solar photo-Fenton, and a preliminary economic analysis is also performed.
Collapse
|
5
|
Poirier Larabie S, Jutras M, Leclair G, St-Jean I, Kleinert C, Gagné F, Gagnon C. Evaluation of uptake of the cytostatic methotrexate in Elliptio complanata mussels by LC-MS/MS. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:45303-45313. [PMID: 35146607 PMCID: PMC9209350 DOI: 10.1007/s11356-022-19064-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 02/01/2022] [Indexed: 05/04/2023]
Abstract
Aquatic organisms are continuously exposed to emerging contaminants coming from urban effluents of wastewater treatment plants. The contamination of surface water by those effluents poses a number of environmental risks, and pharmaceuticals are part of this class of effluent contaminants. Various classes of pharmaceuticals are not treated by wastewater treatment plants and anticancer drugs are part of them. The chemotherapy drug methotrexate (MTX) is an emerging contaminant and its growing use with the increase in cancer cases worldwide raises potential risk to aquatic organisms exposed to effluent discharges. However, chemical analyses in exposed freshwater aquatic organisms for ecotoxicological studies are rarely available and no studies have been done yet to accompany ecotoxicological data of exposed filter-feeding organisms. The purpose of this study was to develop a specific and sensitive analytical LC-MS/MS method for the quantification of methotrexate uptake in mussels exposed at different concentrations of the drug. A solid/liquid extraction followed by solid phase extraction (SPE) using an MCX phase purification scheme was optimized. The optimal recovery of 65% and matrix effect of 38% allowed to achieve a limit of quantification of 0.25 ng g-1, with an accuracy of 99-106%, a precision of no more than 3% RSD, and linearity ranging from 0.25 to 25 ng g-1. This methodology was tested with mussels exposed for 96 h at different concentrations (4 to 100 µg L-1) of MTX. The data revealed tissue uptake at concentrations ranging from 0 to 2.53 ng g-1. This suggests that this drug has low uptake potential and this methodology could be used to examine tissue levels of this drug in organisms continuously exposed to urban pollution.
Collapse
Affiliation(s)
- Sylvie Poirier Larabie
- Environment and Climate Change Canada, Aquatic Contaminants Research Division, 105 McGill St., 8th floor, Montréal, Québec, H2Y 2E7, Canada
| | - Martin Jutras
- Faculté de Pharmacie, Université de Montréal, Plateforme de biopharmacieC.P. 6128, succ. Centre-ville, Montréal, Québec, H3C 3J7, Canada
| | - Grégoire Leclair
- Faculté de Pharmacie, Université de Montréal, Plateforme de biopharmacieC.P. 6128, succ. Centre-ville, Montréal, Québec, H3C 3J7, Canada
| | - Isabelle St-Jean
- Faculté de Pharmacie, Université de Montréal, Plateforme de biopharmacieC.P. 6128, succ. Centre-ville, Montréal, Québec, H3C 3J7, Canada
| | - Christine Kleinert
- Environment and Climate Change Canada, Aquatic Contaminants Research Division, 105 McGill St., 8th floor, Montréal, Québec, H2Y 2E7, Canada
| | - François Gagné
- Environment and Climate Change Canada, Aquatic Contaminants Research Division, 105 McGill St., 8th floor, Montréal, Québec, H2Y 2E7, Canada
| | - Christian Gagnon
- Environment and Climate Change Canada, Aquatic Contaminants Research Division, 105 McGill St., 8th floor, Montréal, Québec, H2Y 2E7, Canada.
| |
Collapse
|
6
|
Abstract
The uncontrolled release of pharmaceutical drugs into the environment raised serious concerns in the last decades as they can potentially exert adverse effects on living organisms even at the low concentrations at which they are typically found. Among them, platinum based cytostatic drugs (Pt CDs) are among the most used drugs in cancer treatments which are administered via intravenous infusion and released partially intact or as transformation products. In this review, the studies on environmental occurrence, transformation, potential ecotoxicity, and possible treatment for the removal of platinum cytostatic compounds are revised. The analysis of the literature highlighted the generally low total platinum concentration values (from a few tens of ng L−1 to a few hundred μg L−1) found in hospital effluents. Additionally, several studies highlighted how hospitals are sources of a minor fraction of the total Pt CDs found in the environment due to the slow excretion rate which is longer than the usual treatment durations. Only some data about the impact of the exposure to low levels of Pt CDs on the health of flora and fauna are present in literature. In some cases, adverse effects have been shown to occur in living organisms, even at low concentrations. Further ecotoxicity data are needed to support or exclude their chronic effects on the ecosystem. Finally, fundamental understanding is required on the platinum drugs removal by MBR, AOPs, technologies, and adsorption.
Collapse
|
7
|
Sanabria P, Scunderlick D, Wilde ML, Lüdtke DS, Sirtori C. Solar photo-Fenton treatment of the anti-cancer drug anastrozole in different aqueous matrices at near-neutral pH: Transformation products identification, pathways proposal, and in silico (Q)SAR risk assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 754:142300. [PMID: 33254902 DOI: 10.1016/j.scitotenv.2020.142300] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 09/02/2020] [Accepted: 09/07/2020] [Indexed: 06/12/2023]
Abstract
Anastrozole (ANZ) is a breast cancer drug that was introduced onto the pharmaceutical market in the 1990s and is still one of the most widely consumed cytotoxic compounds. Due to the persistence of the drug, its continued presence after passing through wastewater treatment plants can lead to harm to aquatic environments. The present study investigates use of the solar photo-Fenton (SPF) process applied for ANZ degradation, considering the fate of ANZ and its transformation products (TPs). The SPF process was performed using different concentrations of ferrous iron (Fe2+) and H2O2 in solutions produced with deionized water (DW) and hospital wastewater (HWW), at pH close to neutrality. When solar irradiation in the SPF process was carried out the best ANZ removal rates were found under the following conditions: (i) for the DW matrix, [ANZ]0 = 50 μg L-1, [Fe2+] = 5 mg L-1, and [H2O2]0 = 25 mg L-1, achieving 95% primary ANZ elimination; (ii) for the HWW matrix, [ANZ]0 = 50 μg L-1, [Fe2+] = 10 mg L-1(multiple additions), and [H2O2]0 = 25 mg L-1, achieving 51% primary ANZ elimination. LC-QTOF MS analysis allowed to identify tentatively five transformation products (TPs) formed during the ANZ degradation process in DW, and two TPs when HWW was used. The main proposed degradation pathways were demethylation and hydroxylation. Different in silico models free available (quantitative) structure-activity relationship ((Q)SAR) software were used to predict the ecotoxicities and environmental fates of ANZ and the TPs. The in silico (Q)SAR predictions indicated that ANZ and the TPs were non-biodegradable compounds. In silico (Q)SAR predictions for mutagenicity and carcinogenicity end-points identified some TPs that require further study. Attention is drawn to the formation of several TPs for which statistical and rule-based positive alerts for mutagenic activities were found, requiring further confirmatory in vitro validation tests.
Collapse
Affiliation(s)
- Pedro Sanabria
- Instituto de Química-UFRGS, Av. Bento Gonçalves 9500, CEP 91501-970 Porto Alegre, RS, Brazil
| | - Davi Scunderlick
- Instituto de Química-UFRGS, Av. Bento Gonçalves 9500, CEP 91501-970 Porto Alegre, RS, Brazil
| | - Marcelo L Wilde
- Instituto de Química-UFRGS, Av. Bento Gonçalves 9500, CEP 91501-970 Porto Alegre, RS, Brazil
| | - Diogo S Lüdtke
- Instituto de Química-UFRGS, Av. Bento Gonçalves 9500, CEP 91501-970 Porto Alegre, RS, Brazil
| | - Carla Sirtori
- Instituto de Química-UFRGS, Av. Bento Gonçalves 9500, CEP 91501-970 Porto Alegre, RS, Brazil.
| |
Collapse
|
8
|
Kröner P, Heinkele G, Kerb R, Igel S, Schwab M, Mürdter TE. Stereoselective quantification of phase 1 and 2 metabolites of clomiphene in human plasma and urine. Talanta 2021; 221:121658. [DOI: 10.1016/j.talanta.2020.121658] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 09/09/2020] [Accepted: 09/10/2020] [Indexed: 01/21/2023]
|
9
|
Yadav A, Rene ER, Mandal MK, Dubey KK. Threat and sustainable technological solution for antineoplastic drugs pollution: Review on a persisting global issue. CHEMOSPHERE 2021; 263:128285. [PMID: 33297229 DOI: 10.1016/j.chemosphere.2020.128285] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 08/31/2020] [Accepted: 09/06/2020] [Indexed: 06/12/2023]
Abstract
In the past 20 years, the discharge of pharmaceuticals and their presence in the aquatic environment have been continuously increasing and this has caused serious public health and environmental concerns. Antineoplastic drugs are used in chemotherapy, in large quantities worldwide, for the treatment of continuously increasing cancer cases. Antineoplastic drugs also contaminate water sources and possess mutagenic, cytostatic and eco-toxicological effects on microorganisms present in the aquatic environment as well as on human health. Due to the recalcitrant nature of antineoplastic drugs, the commonly used wastewater treatment processes are not able to eliminate these drugs. Globally, various anticancer drugs are being consumed during chemotherapy in hospitals and households by out-patients. These anti-cancer agents enter the water bodies in their original form or as metabolites via urine and faeces of the out-patients or the patients admitted in hospitals. Due to its high lipid solubility, the antineoplastic drugs accumulate in the fatty tissues of the organisms. These drugs enter through the food chain and cause adverse health effects on humans due to their cytotoxic and genotoxic properties. The United States Environmental Protection Agency (US-EPA) and the Organization for Economic Cooperation and Development (OECD) elucidated new regulations for the management of hazardous pharmaceuticals in the water environment. In this paper, the role of antineoplastic agents as emerging water contaminants, its transfer through the food chain, its eco-toxicological properties and effects, technological solutions and management aspects were reviewed.
Collapse
Affiliation(s)
- Ankush Yadav
- Bioprocess Engineering Laboratory, Department of Biotechnology, Central University of Haryana, Mahendergarh, 123031, Haryana, India
| | - Eldon R Rene
- Department of Water Supply, Sanitation and Environmental Engineering, IHE Delft Institute for Water Education, Westvest 7, 2611AX, Delft, the Netherlands
| | - Mrinal Kanti Mandal
- Department of Chemical Engineering, NIT Durgapur, Durgapur, 713209, West Bengal, India
| | - Kashyap Kumar Dubey
- Bioprocess Engineering Laboratory, Department of Biotechnology, Central University of Haryana, Mahendergarh, 123031, Haryana, India; Bioprocess Engineering Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
10
|
Electrochemical anticancer drug sensor for determination of raloxifene in the presence of tamoxifen using graphene-CuO-polypyrrole nanocomposite structure modified pencil graphite electrode: Theoretical and experimental investigation. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113314] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
11
|
Wormington AM, De María M, Kurita HG, Bisesi JH, Denslow ND, Martyniuk CJ. Antineoplastic Agents: Environmental Prevalence and Adverse Outcomes in Aquatic Organisms. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2020; 39:967-985. [PMID: 32266737 DOI: 10.1002/etc.4687] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 11/04/2019] [Accepted: 02/06/2020] [Indexed: 06/11/2023]
Abstract
Cancer is the second leading cause of death worldwide, with 9.6 million cancer-related deaths in 2018. Cancer incidence has increased over time, and so has the prescription rate of chemotherapeutic drugs. These pharmaceuticals, known as antineoplastic agents, enter the aquatic environment via human excretion and wastewater. The objectives of the present critical review were to investigate the risk of antineoplastics to aquatic species and to summarize the current state of knowledge regarding their levels in the environment, because many antineoplastics are not adequately removed during wastewater treatment. We conducted 2 separate literature reviews to synthesize data on the global environmental prevalence and toxicity of antineoplastics. The antineoplastics most frequently detected in the environment included cyclophosphamide, ifosfamide, tamoxifen, methotrexate, and 5-fluorouracil; all were detectable in multiple water sources, including effluent and surface waters. These antineoplastics span 3 different mechanistic classes, with cyclophosphamide and ifosfamide classified as alkylating agents, tamoxifen as a hormonal agent, and methotrexate and 5-fluorouracil as antimetabolites. Studies that characterize the risk of antineoplastics released into aquatic environments are scarce. We summarize the biological impacts of the most environmentally prevalent antineoplastics on aquatic organisms and propose an adverse outcome pathway for cyclophosphamide and ifosfamide, 2 widely prescribed drugs with a similar immunotoxic mode of action. Acute and chronic ecotoxicity studies using aquatic models are needed for risk characterization of antineoplastics. Environ Toxicol Chem 2020;39:967-985. © 2020 SETAC.
Collapse
Affiliation(s)
- Alexis M Wormington
- Center for Environmental and Human Toxicology, University of Florida, Gainesville, Florida, USA
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, Florida, USA
| | - Maite De María
- Center for Environmental and Human Toxicology, University of Florida, Gainesville, Florida, USA
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida, USA
| | - Hajime G Kurita
- Center for Environmental and Human Toxicology, University of Florida, Gainesville, Florida, USA
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida, USA
| | - Joseph H Bisesi
- Center for Environmental and Human Toxicology, University of Florida, Gainesville, Florida, USA
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, Florida, USA
| | - Nancy D Denslow
- Center for Environmental and Human Toxicology, University of Florida, Gainesville, Florida, USA
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida, USA
- University of Florida Genetics Institute, Gainesville, Florida, USA
| | - Christopher J Martyniuk
- Center for Environmental and Human Toxicology, University of Florida, Gainesville, Florida, USA
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida, USA
- University of Florida Genetics Institute, Gainesville, Florida, USA
- Interdisciplinary Program in Biomedical Sciences Neuroscience, Gainesville, Florida, USA
| |
Collapse
|
12
|
Nassour C, Barton SJ, Nabhani-Gebara S, Saab Y, Barker J. Occurrence of anticancer drugs in the aquatic environment: a systematic review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:1339-1347. [PMID: 31832963 PMCID: PMC6994516 DOI: 10.1007/s11356-019-07045-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Accepted: 11/12/2019] [Indexed: 06/01/2023]
Abstract
Water contamination with pharmaceutical products is a well-studied problem. Numerous studies have demonstrated the presence of anticancer drugs in different water resources that failed to be eliminated by conventional wastewater treatment plants. The purpose of this report was to conduct a systematic review of anticancer drugs in the aquatic environment. The methodology adopted was carried out in compliance with the PRISMA guidelines. From the 75 studies that met the specific requirements for inclusion, data extracted showed that the most common anticancer drugs studied are cyclophosphamide, tamoxifen, ifosfamide and methotrexate with concentrations measured ranging between 0.01 and 86,200 ng/L. There was significant variation in the methodologies employed due to lack of available guidelines to address sampling techniques, seasonal variability and analytical strategy. The most routinely used technique for quantitative determination was found to be solid-phase extraction followed by LC-MS analysis. The lowest reported recovery percentage was 11%, and the highest limit of detection was 1700 ng/L. This indicated the inadequacy of some methods to analyse anticancer drugs and the failure to obtain reliable results. The significant heterogeneity within methodologies made it difficult to compare results and draw conclusions, nevertheless, this study aids in the extrapolation of proposed recommendations to guide future studies and reviews. Graphical abstract.
Collapse
Affiliation(s)
- Carla Nassour
- School of Life Sciences, Pharmacy and Chemistry, Kingston University, Penrhyn Road, Kingston Upon Thames, KT1 2EE, UK.
| | - Stephen J Barton
- School of Life Sciences, Pharmacy and Chemistry, Kingston University, Penrhyn Road, Kingston Upon Thames, KT1 2EE, UK
| | - Shereen Nabhani-Gebara
- School of Life Sciences, Pharmacy and Chemistry, Kingston University, Penrhyn Road, Kingston Upon Thames, KT1 2EE, UK
| | - Yolande Saab
- School of Pharmacy, Lebanese American University, Beirut, Lebanon
| | - James Barker
- School of Life Sciences, Pharmacy and Chemistry, Kingston University, Penrhyn Road, Kingston Upon Thames, KT1 2EE, UK
| |
Collapse
|
13
|
Cai J, Li L, Song L, Xie L, Luo F, Sun S, Chakraborty T, Zhou L, Wang D. Effects of long term antiprogestine mifepristone (RU486) exposure on sexually dimorphic lncRNA expression and gonadal masculinization in Nile tilapia (Oreochromis niloticus). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 215:105289. [PMID: 31491707 DOI: 10.1016/j.aquatox.2019.105289] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 08/27/2019] [Accepted: 08/27/2019] [Indexed: 06/10/2023]
Abstract
Mifepristone (RU486), a clinical abortion agent and potential endocrine disruptor, binds to progestin and glucocorticoid receptors and has multiple functional importance in reproductive physiology. A long-term exposure of RU486 resulted in masculinization of female fish, however, the epigenetic landscape remains elusive. Recent studies demonstrated that long non-coding RNAs (lncRNAs) might play potential roles in epigenetic modulation of sex differentiation, ovarian cancer and germline stem cell survival. To further understand the influence of RU486 exposure on epigenetic regulation, we performed a comparative investigation on sex-biased gonadal lncRNAs profiles using control XX/XY and RU486-induced sex reversed XX Nile tilapia (Oreochromis niloticus) by RNA-seq. In total, 962 sexually differentially expressed lncRNAs and their target genes were screened from the gonads of control and sex reversed fish. In comparison with the control XX group, sex reversal induced by RU486 treatment led to significant up-regulation of 757 lncRNAs and down-regulation of 221 lncRNAs. Hierarchical clustering analysis revealed that global lncRNA expression profiles in RU486-treated XX group clustered into the same branch with the control XY, whereas XX control group formed a separate branch. The KEGG pathway enrichment analysis showed that the cis-target genes between RU486-XX and control-XX were concentrated in NOD - like receptor signaling pathway, Cell adhesion molecules (CAMs) and Biosynthesis of amino acids. Real-time PCR and in situ hybridization experiments demonstrate that lncRNAs showing intense fluctuation during RU486 treatment are also sexually dimorphic during early sex differentiation, which further proves the intimate relationship between lncRNAs and sex differentiation and sexual transdifferentiation. Taken together, our data strongly indicates that a long-term exposure of RU486 resulted in sex reversal of XX female fish and the altered expression of sexually dimorphic lncRNAs might partially account for the sex reversal via epigenetic modification.
Collapse
Affiliation(s)
- Jing Cai
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, 400715, China; High School of Tongnan, Tongnan, Chongqing, 402660, China
| | - Lu Li
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Lingyun Song
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Lang Xie
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Feng Luo
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, 400715, China; Experimental High School of Fuling, Chongqing, 400800, China
| | - Shaohua Sun
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Tapas Chakraborty
- South Ehime Fisheries Research Center, Ehime University, 798-4206, Japan.
| | - Linyan Zhou
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, 400715, China.
| | - Deshou Wang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
14
|
Fabbrocini A, Coccia E, D’Adamo R, Faggio C, Paolucci M. Mifepristone affects fertility and development in the sea urchin
Paracentrotus lividus. Mol Reprod Dev 2019; 86:1348-1356. [DOI: 10.1002/mrd.23112] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Accepted: 01/11/2019] [Indexed: 11/10/2022]
Affiliation(s)
- Adele Fabbrocini
- National Research Council (CNR) Institute of Marine Sciences, UOS Napoli, Calata Porta di Massa Napoli Italy
- Institute for Biological Resources and Marine BiotechnologiesUOS Lesina Lesina (FG) Italy
| | - Elena Coccia
- Department of Sciences and TechnologyUniversity of Sannio Benevento Italy
| | - Raffaele D’Adamo
- National Research Council (CNR) Institute of Marine Sciences, UOS Napoli, Calata Porta di Massa Napoli Italy
- Institute for Biological Resources and Marine BiotechnologiesUOS Lesina Lesina (FG) Italy
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental SciencesViale Ferdinando Stagno d'Alcontres Messina Italy
| | - Marina Paolucci
- Department of Sciences and TechnologyUniversity of Sannio Benevento Italy
- National Research Council (CNR) Institute of Food Science Avellino Italy
| |
Collapse
|
15
|
Šauer P, Bořík A, Golovko O, Grabic R, Staňová AV, Valentová O, Stará A, Šandová M, Kocour Kroupová H. Do progestins contribute to (anti-)androgenic activities in aquatic environments? ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 242:417-425. [PMID: 29990947 DOI: 10.1016/j.envpol.2018.06.104] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 06/28/2018] [Accepted: 06/30/2018] [Indexed: 06/08/2023]
Abstract
Unknown compounds with (anti-)androgenic activities enter the aquatic environment via municipal wastewater treatment plants (WWTPs). Progestins are well-known environmental contaminants capable of interfering with androgen receptor (AR) signaling pathway. The aim of the present study was to determine if 15 selected progestins have potential to contribute to (anti-)androgenic activities in municipal wastewaters and the respective recipient surface waters. AR-specific Chemically Activated LUciferase gene eXpression bioassay in agonistic (AR-CALUX) and antagonistic (anti-AR-CALUX) modes and liquid chromatography tandem atmospheric pressure chemical ionization/atmospheric photoionization with hybrid quadrupole/orbital trap mass spectrometry operated in high resolution product scan mode (LC-APCI/APPI-HRPS) methods were used to assess (anti-)androgenic activity and to detect the target compounds, respectively. The contribution of progestins to (anti-)androgenic activities was evaluated by means of a biologically and chemically derived toxicity equivalent approach. Androgenic (0.08-59 ng/L dihydrotestosterone equivalents - DHT EQs) and anti-androgenic (2.4-26 μg/L flutamide equivalents - FLU EQs) activities and progestins (0.19-75 ng/L) were detected in selected aquatic environments. Progestins displayed androgenic potencies (0.01-0.22 fold of dihydrotestosterone) and strong anti-androgenic potencies (9-62 fold of flutamide). Although they accounted to some extent for androgenic (0.3-29%) and anti-androgenic (4.6-27%) activities in influents, the progestins' contribution to (anti-)androgenic activities was negligible (≤2.1%) in effluents and surface waters. We also tested joint effect of equimolar mixtures of target compounds and the results indicate that compounds interact in an additive manner. Even if progestins possess relatively strong (anti-)androgenic activities, when considering their low concentrations (sub-ng/L to ng/L) it seems unlikely that they would be the drivers of (anti-)androgenic effects in Czech aquatic environments.
Collapse
Affiliation(s)
- Pavel Šauer
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrocenoses, Zátiší 728/II, 389 25 Vodňany, Czech Republic.
| | - Adam Bořík
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrocenoses, Zátiší 728/II, 389 25 Vodňany, Czech Republic
| | - Oksana Golovko
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrocenoses, Zátiší 728/II, 389 25 Vodňany, Czech Republic
| | - Roman Grabic
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrocenoses, Zátiší 728/II, 389 25 Vodňany, Czech Republic
| | - Andrea Vojs Staňová
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrocenoses, Zátiší 728/II, 389 25 Vodňany, Czech Republic
| | - Olga Valentová
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrocenoses, Zátiší 728/II, 389 25 Vodňany, Czech Republic
| | - Alžběta Stará
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrocenoses, Zátiší 728/II, 389 25 Vodňany, Czech Republic
| | - Marie Šandová
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrocenoses, Zátiší 728/II, 389 25 Vodňany, Czech Republic
| | - Hana Kocour Kroupová
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrocenoses, Zátiší 728/II, 389 25 Vodňany, Czech Republic
| |
Collapse
|
16
|
Distribution of Anticancer Drugs in River Waters and Sediments of the Yodo River Basin, Japan. APPLIED SCIENCES-BASEL 2018. [DOI: 10.3390/app8112043] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
This article reviews the pollution status of anticancer drugs present in the Yodo River basin located in the Kansai district of Japan, covering both the soluble and insoluble (adsorbed on the river sediments and suspended solids) levels. Procedures ranging from sampling in the field and instrumental analytical methods to the data processing for mass balance estimation of the target basin are also described. All anticancer drugs concerned with this article were detected in sewage and river waters, where the presence of bicalutamide (BLT) was identified at considerably high concentrations (maximum 254 ng/L in the main stream, 151 ng/L in tributaries, and 1032 ng/L in sewage treatment plant (STP) effluents). In addition, sorption distribution coefficient (logKd) values showed a tendency to become higher in the silty sediments at Suita Bridge than in the sandy sediments at Hirakata Bridge; these trends were supported by the results of the laboratory-scale sorption experiment. STPs were concluded to be the main sources of the anticancer drug load in the river, and a mass flux evaluation revealed that the effect of attenuation in the river environment was small. The effectiveness of ozonation in the sewage treatment process for removal of these anticancer drugs was further confirmed. The present article should be of value for facilitating the environmental risk assessment of a wide range of drugs in a broader geographical area.
Collapse
|
17
|
Rucins M, Baron D, Plotniece A, Petr J. Determination of Hormone Antagonists in Waste-Water Samples by Micellar Electrokinetic Chromatography. Chromatographia 2018. [DOI: 10.1007/s10337-018-3631-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
18
|
Olalla A, Negreira N, López de Alda M, Barceló D, Valcárcel Y. A case study to identify priority cytostatic contaminants in hospital effluents. CHEMOSPHERE 2018; 190:417-430. [PMID: 29024886 DOI: 10.1016/j.chemosphere.2017.09.129] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 09/20/2017] [Accepted: 09/26/2017] [Indexed: 05/24/2023]
Abstract
This study analyses the presence of 17 cytostatic agents from seven different groups, based on their different mechanisms of action, in the effluent from a medium-sized hospital located in eastern Spain. Analysis of the compounds found in the effluents studied involved solidphase extraction (SPE) coupled on-line to a high performance liquid chromatograph tandem mass spectrometer (HPLC-MS/MS). The environmental risk of the compounds studied was then assessed by calculating the hazard quotient (HQ), combining the measured environmental concentrations (MECs) with dose-response data based on the predicted no effect concentrations (PNECs). In addition, the environmental hazard associated was evaluated in accordance with their intrinsic characteristics by calculating the PBT (Persistence Bioaccumulation Toxicity) index. The results of this study showed the presence of seven of the 17 compounds analysed in a range of between 25 and 4761 ng/L. The highest concentrations corresponded to ifosfamide (58-4761 ng/L), methotrexate (394-4756 ng/L) and cyclophosphamide (46-3000 ng/L). Assessment of the environmental hazard showed that the three hormonal agents (tamoxifen and its metabolites endoxifen and hydroxytamoxifen) exhibited a maximum PBT value of 9 due to their inherent harm to the environment resulting from their characteristics of persistence, bioaccumulation and toxicity. A combined evaluation of the risk and environmental hazard showed that three of the 17 compounds studied, namely, ifosfamide, imatinib and irinotecan, all of which exhibited HQ values higher than 10 and PBT indices of 6, indicative of a particularly high potential to harm the environment, deserve special attention.
Collapse
Affiliation(s)
- A Olalla
- Research Group in Environmental Toxicology and Risk Assessment (TAyER), Rey Juan Carlos University, Avda Tulipán. s/n, 28933 Móstoles, Madrid, Spain.
| | - N Negreira
- Water and Soil Quality Research Group, Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain; International Iberian Nanotechnology Laboratory (INL), Avda, Mestre José Veiga s/n, 4715 Braga, Portugal
| | - M López de Alda
- Water and Soil Quality Research Group, Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain
| | - D Barceló
- Water and Soil Quality Research Group, Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain; Catalan Institute for Water Research (ICRA), H2O Building, Scientific and Technological Park of the University of Girona, Emili Grahit 101, 17003 Girona, Spain
| | - Y Valcárcel
- Research Group in Environmental Toxicology and Risk Assessment (TAyER), Rey Juan Carlos University, Avda Tulipán. s/n, 28933 Móstoles, Madrid, Spain; Department of Medicine and Surgery, Psychology, Preventive Medicine and Public Health, Immunology and Medical Microbiology, Faculty of Health Sciences, Rey Juan Carlos University, Avda. Atenas, s/n, 28922 Alcorcón, Madrid, Spain.
| |
Collapse
|
19
|
Wilkinson J, Hooda PS, Barker J, Barton S, Swinden J. Occurrence, fate and transformation of emerging contaminants in water: An overarching review of the field. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 231:954-970. [PMID: 28888213 DOI: 10.1016/j.envpol.2017.08.032] [Citation(s) in RCA: 298] [Impact Index Per Article: 42.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Revised: 08/08/2017] [Accepted: 08/09/2017] [Indexed: 05/03/2023]
Abstract
Many of the products and drugs used commonly contain chemical components which may persist through sewage treatment works (STW) and eventually enter the aquatic environment as parent compounds, metabolites, or transformation products. Pharmaceuticals and personal care products (PPCPs) and other emerging contaminants (ECs) have been detected in waters (typically ng/L) as well as more recently bound to sediment and plastic particles (typically ng/g). Despite significant advancement of knowledge since the late 1990s, the fate of these contaminants/transformation products once introduced into the aquatic environment remains relatively unresolved. This review provides a unique focus on the fate of seven major groups of PPCPs/ECs in the aquatic environment, which is frequently not found in similar works which are often compound or topic-specific and limited in background knowledge. Key findings include: a) some replacements for regulation precluded/banned chemicals may be similarly persistent in the environment as those they replace, b) the adsorption of potentially bioactive chemicals to micro- and nanoplastics is a significant topic with risks to aquatic organisms potentially greater than previously thought, and c) micro-/nanoplastics are likely to remain of significant concern for centuries after regulatory limitations on their use become active due to the slow degradation of macro-plastics into smaller components. An interdisciplinary perspective on recent advances in the field is presented here in a unique way which highlights both the principle science and direction of research needed to elucidate the fate and transport patterns of aquatic PPCPs/ECs. Unlike similar reviews, which are often topic-specific, here we aim to present an overarching review of the field with focus on the occurrence, transformation and fate of emerging contaminants. Environmental presence of seven major classes of contaminants (analygesics, antibiotics, antineoplastics, beta-blockers, perfluorinated compounds, personal care products and plasticisers), factors affecting contaminant fate, association with plastic micro-/nanoparticles and photochemical transformation are comprehensively evaluated.
Collapse
Affiliation(s)
- John Wilkinson
- Kingston University London, School of Natural and Built Environments, Kingston-Upon-Thames, Surrey, UK; University of York, Environment Department, York, UK.
| | - Peter S Hooda
- Kingston University London, School of Natural and Built Environments, Kingston-Upon-Thames, Surrey, UK
| | - James Barker
- Kingston University London, School of Life Sciences, Pharmacy and Chemistry, Kingston-Upon-Thames, Surrey, UK
| | - Stephen Barton
- Kingston University London, School of Life Sciences, Pharmacy and Chemistry, Kingston-Upon-Thames, Surrey, UK
| | - Julian Swinden
- Kingston University London, School of Life Sciences, Pharmacy and Chemistry, Kingston-Upon-Thames, Surrey, UK
| |
Collapse
|
20
|
Fonseca TG, Morais MB, Rocha T, Abessa DMS, Aureliano M, Bebianno MJ. Ecotoxicological assessment of the anticancer drug cisplatin in the polychaete Nereis diversicolor. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 575:162-172. [PMID: 27744150 DOI: 10.1016/j.scitotenv.2016.09.185] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Revised: 09/22/2016] [Accepted: 09/22/2016] [Indexed: 02/07/2023]
Abstract
Anticancer drugs are designed to inhibit tumor cell proliferation by interacting with DNA and altering cellular growth factors. When released into the waterbodies of municipal and hospital effluents these pharmaceutical compounds may pose a risk to non-target aquatic organisms, due to their mode of action (cytotoxic, genotoxic, mutagenic and teratogenic). The present study aimed to assess the ecotoxicological potential of the alkylating agent cisplatin (CisPt) to the polychaete Nereis diversicolor, at a range of relevant environmental concentrations (i.e. 0.1, 10 and 100ngPtL-1). Behavioural impairment (burrowing kinetic impairment), ion pump effects (SR Ca2+-ATPase), neurotoxicity (AChE activity), oxidative stress (SOD, CAT and GPXs activities), metal exposure (metallothionein-like proteins - MTLP), biotransformation (GST), oxidative damage (LPO) and genotoxicity (DNA damage), were selected as endpoints to evaluate the sublethal responses of the ragworms after 14-days of exposure in a water-sediment system. Significant burrowing impairment occurred in worms exposed to the highest CisPt concentration (100ngPtL-1) along with neurotoxic effects. The activity of antioxidant enzymes (SOD, CAT) and second phase biotransformation enzyme (GST) was inhibited but such effects were compensated by MTLP induction. Furthermore, LPO levels also increased. Results showed that the mode of action of cisplatin may pose a risk to this aquatic species even at the range of ngL-1.
Collapse
Affiliation(s)
- T G Fonseca
- CIMA, Centre for Marine and Environmental Research, University of Algarve, Campus Gambelas, 8005-135 Faro, Portugal; NEPEA, Núcleo de Estudos em Poluição e Ecotoxicologia. Aquática, São Paulo State University - UNESP, Campus Experimental do Litoral Paulista, Praça Infante Dom Henrique, s/n, 11330-900, São Vicente, SP, Brazil
| | - M B Morais
- CIMA, Centre for Marine and Environmental Research, University of Algarve, Campus Gambelas, 8005-135 Faro, Portugal
| | - T Rocha
- CIMA, Centre for Marine and Environmental Research, University of Algarve, Campus Gambelas, 8005-135 Faro, Portugal
| | - D M S Abessa
- NEPEA, Núcleo de Estudos em Poluição e Ecotoxicologia. Aquática, São Paulo State University - UNESP, Campus Experimental do Litoral Paulista, Praça Infante Dom Henrique, s/n, 11330-900, São Vicente, SP, Brazil
| | - M Aureliano
- CCMar, Centre of Marine Sciences, University of Algarve, Campus de Gambelas, 8005-135 Faro, Portugal
| | - M J Bebianno
- CIMA, Centre for Marine and Environmental Research, University of Algarve, Campus Gambelas, 8005-135 Faro, Portugal.
| |
Collapse
|
21
|
Escudero-Oñate C, Ferrando-Climent L, Rodríguez-Mozaz S, Santos LHMLM. Occurrence and Risks of Contrast Agents, Cytostatics, and Antibiotics in Hospital Effluents. THE HANDBOOK OF ENVIRONMENTAL CHEMISTRY 2017. [DOI: 10.1007/698_2017_12] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
22
|
Aguirre-Martínez GV, Okello C, Salamanca MJ, Garrido C, Del Valls TA, Martín-Díaz ML. Is the step-wise tiered approach for ERA of pharmaceuticals useful for the assessment of cancer therapeutic drugs present in marine environment? ENVIRONMENTAL RESEARCH 2016; 144:43-59. [PMID: 26555843 DOI: 10.1016/j.envres.2015.10.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 10/25/2015] [Accepted: 10/27/2015] [Indexed: 06/05/2023]
Abstract
Methotrexate (MTX) and tamoxifen (TMX) cancer therapeutic drugs have been detected within the aquatic environment. Nevertheless, MTX and TMX research is essentially bio-medically orientated, with few studies addressing the question of its toxicity in fresh water organisms, and none to its' effect in the marine environment. To the authors' knowledge, Environmental Risk Assessments (ERA) for pharmaceuticals has mainly been designed for freshwater and terrestrial environments (European Medicines Agency-EMEA guideline, 2006). Therefore, the purpose of this research was (1) to assess effect of MTX and TMX in marine organism using the EMEA guideline, (2) to develop an ERA methodology for marine environment, and (3) to evaluate the suitability of including a biomarker approach in Phase III. To reach these aims, a risk assessment of MTX and TMX was performed following EMEA guideline, including a 2-tier approach during Phase III, applying lysosomal membrane stability (LMS) as a screening biomarker in tier-1 and a battery of biochemical biomarkers in tier-2. Results from Phase II indicated that MTX was not toxic for bacteria, microalgae and sea urchin at the concentrations tested, thus no further assessment was required, while TMX indicated a possible risk. Therefore, Phase III was performed for only TMX. Ruditapes philippinarum were exposed during 14 days to TMX (0.1, 1, 10, 50 μg L(-1)). At the end of the experiment, clams exposed to environmental concentration indicated significant changes in LMS compared to the control (p<0.01); thus a second tier was applied. A significant induction of biomarkers (activity of Ethoxyresorufin O-deethylase [EROD], glutathione S-transferase [GST], glutathione peroxidase [GPX], and lipid peroxidation [LPO] levels) was observed in digestive gland tissues of clams compared with control (p<0.01). Finally, this study indicated that MTX was not toxic at an environmental concentration, whilst TMX was potentially toxic for marine biota. This study has shown the necessity to create specific guidelines in order to evaluate effects of pharmaceuticals in marine environment which includes sensitive endpoints. The inadequacy of current EMEA guideline to predict chemotherapy agents toxicity in Phase II was displayed whilst the usefulness of other tests were demonstrated. The 2-tier approach, applied in Phase III, appears to be suitable for an ERA of cancer therapeutic drugs in the marine environment.
Collapse
Affiliation(s)
- G V Aguirre-Martínez
- Department of Physical-Chemistry, Faculty of Marine and Environmental Sciences, University of Cadiz, Campus of International Excellence of the Sea (CEIMAR), Polígono Río San Pedro s/n, Puerto Real, 11510 Cádiz, Spain; Andalusian Center of Marine Science and Technology Puerto Real Campus, Río San Pedro , Puerto Real, 11510 Cádiz, Spain.
| | - C Okello
- Department of Physical-Chemistry, Faculty of Marine and Environmental Sciences, University of Cadiz, Campus of International Excellence of the Sea (CEIMAR), Polígono Río San Pedro s/n, Puerto Real, 11510 Cádiz, Spain; Integrated Geoscience Research Group (IGRG), Interdepartmental Centre for Environmental Sciences Research (CIRSA), Ravenna Campus, University of Bologna, Via S. Alberto 163, 48100 Ravenna, Italy
| | - M J Salamanca
- Department of Physical-Chemistry, Faculty of Marine and Environmental Sciences, University of Cadiz, Campus of International Excellence of the Sea (CEIMAR), Polígono Río San Pedro s/n, Puerto Real, 11510 Cádiz, Spain
| | - C Garrido
- Andalusian Center of Marine Science and Technology Puerto Real Campus, Río San Pedro , Puerto Real, 11510 Cádiz, Spain
| | - T A Del Valls
- Department of Physical-Chemistry, Faculty of Marine and Environmental Sciences, University of Cadiz, Campus of International Excellence of the Sea (CEIMAR), Polígono Río San Pedro s/n, Puerto Real, 11510 Cádiz, Spain
| | - M L Martín-Díaz
- Department of Physical-Chemistry, Faculty of Marine and Environmental Sciences, University of Cadiz, Campus of International Excellence of the Sea (CEIMAR), Polígono Río San Pedro s/n, Puerto Real, 11510 Cádiz, Spain; Andalusian Center of Marine Science and Technology Puerto Real Campus, Río San Pedro , Puerto Real, 11510 Cádiz, Spain
| |
Collapse
|
23
|
Yu M, Liu W, Wang J, Qin J, Wang Y, Wang Y. Effects of tamoxifen on autosomal genes regulating ovary maintenance in adult mice. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:20234-20244. [PMID: 26304810 DOI: 10.1007/s11356-015-5245-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 08/13/2015] [Indexed: 06/04/2023]
Abstract
Environmental endocrine-disrupting chemicals (EDCs), known to bind to estrogen/androgen receptors and mimic native estrogens, have been implicated as a main source for increasing human reproductive and developmental deficiencies and diseases. Tamoxifen (TAM) is one of the most well-known antiestrogens with defined adverse effects on the female reproductive tract, but the mechanisms related to autosomal gene regulation governing ovary maintenance in mammals remain unclear. The expression pattern and levels of key genes and proteins involved in maintaining the ovarian phenotype in mice were analyzed. The results showed that TAM induced significant upregulation of Sox9, which is the testis-determining factor gene. The results showed that TAM induced significant upregulation of Sox9, the testis-determining factor gene, and the expression level of Sox9 mRNA in the ovaries of mice exposed to 75 or 225 mg/kg bw TAM was 2- and 10-fold that in the control group, respectively (p < 0.001). Furthermore, the testicular fibroblast growth factor gene, Fgf9, was also elevated in TAM-treated ovaries. Accordingly, expression of the ovary development marker, forkhead transcription factor (FOXL2), and WNT4/FST signaling, were depressed. The levels of protein expression changed consistently with the target genes. Moreover, the detection of platelet/endothelial cell adhesion molecule 1 (PECAM-1) in TAM-treated ovaries suggested the formation of vascular endothelial cells, which is a further evidence for the differentiation of the ovaries to a testis-like phenotype. During this period, the level of 17β-estradiol, progesterone, and luteinizing hormone decreased, while that of testosterone increased by 3.3-fold (p = 0.013). The activation of a testis-specific molecular signaling cascade was a potentially important mechanism contributing to the gender disorder induced by TAM, which resulted in the differentiation of the ovaries to a testis-like phenotype in adult mice. Limited with a relatively higher exposure, the present study provided preliminary molecular insights into the sexual disorder induced by antiestrogens and compounds that interrupted estrogen signaling by other modes of action.
Collapse
Affiliation(s)
- Mingxi Yu
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, No. 2 Linggong Road, 116024, Dalian, Liaoning, China
| | - Wei Liu
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, No. 2 Linggong Road, 116024, Dalian, Liaoning, China
| | - Jingyun Wang
- School of Life Science and Biotechnology, Dalian University of Technology, No. 2 Linggong Road, 116024, Dalian, Liaoning, China.
| | - Junwen Qin
- Department of Developmental and Regenerative Biology, Key Laboratory for Regenerative Medicine (MOE), Jinan University, No. 601 West Huangpu Road, 510632, Guangzhou, Guangdong, China
| | - Yongan Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, No. 2 Linggong Road, 116024, Dalian, Liaoning, China
| | - Yu Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, No. 2 Linggong Road, 116024, Dalian, Liaoning, China
| |
Collapse
|
24
|
Azuma T, Ishiuchi H, Inoyama T, Teranishi Y, Yamaoka M, Sato T, Mino Y. Occurrence and fate of selected anticancer, antimicrobial, and psychotropic pharmaceuticals in an urban river in a subcatchment of the Yodo River basin, Japan. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:18676-86. [PMID: 26178832 DOI: 10.1007/s11356-015-5013-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 07/01/2015] [Indexed: 05/21/2023]
Abstract
Pollution status of six anticancer agents in the river water and effluents of sewage treatment plants (STPs) in Japan was surveyed with comparative analysis of the levels of four microbial and one psychotropic pharmaceuticals widely used for therapeutic medication. The area of survey is located in the Kanzaki-Ai River basin which is a major subcatchment of the Yodo River basin and is centered on a highly populated area that includes the middle and downstream reaches of the Yodo River. Selected cancer agents were bicalutamide, capecitabine, cyclophosphamide, doxifluridine, tamoxifen, and tegafur. A combination of strong anion solid-phase extraction cartridge under pH 11 for adsorption and optimization of liquid chromatography-tandem mass spectroscopy (LC-MS/MS) system was necessary to ensure high recovery rates (63-124% for river water and 52-115% for STP effluent). The year-round survey of these compounds in four seasons showed that all anticancer compounds were detected at median concentrations ranged from not detected to 32 ng/L in the river water and from not detected to 245 ng/L in the effluents of sewage treatment plants not using ozonation. In the case of bicalutamide (an active antiandrogen used to treat prostate cancer), the maximum concentration detected was 254 ng/L in river water and 1032 ng/L in non-ozonated sewage treatment plant effluents. Based on the mass balance, sewage treatment plants were the primary sources of anticancer compounds as well as the other pharmaceuticals in the river, and the attenuation effect of the river water was small. Ozonation at sewage treatment plants was effective in removing these compounds. To the best of our knowledge, this study is the first to report the existence of bicalutamide, doxifluridine, and tegafur in the river environment.
Collapse
Affiliation(s)
- Takashi Azuma
- Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka, 569-1094, Japan.
| | - Hirotaka Ishiuchi
- Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka, 569-1094, Japan
| | - Tomomi Inoyama
- Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka, 569-1094, Japan
| | - Yusuke Teranishi
- Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka, 569-1094, Japan
| | - Misato Yamaoka
- Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka, 569-1094, Japan
| | - Takaji Sato
- Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka, 569-1094, Japan
| | - Yoshiki Mino
- Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka, 569-1094, Japan
| |
Collapse
|
25
|
Negreira N, Regueiro J, López de Alda M, Barceló D. Transformation of tamoxifen and its major metabolites during water chlorination: Identification and in silico toxicity assessment of their disinfection byproducts. WATER RESEARCH 2015; 85:199-207. [PMID: 26320721 DOI: 10.1016/j.watres.2015.08.036] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2015] [Revised: 08/19/2015] [Accepted: 08/20/2015] [Indexed: 05/04/2023]
Abstract
The selective estrogen receptor modulator tamoxifen is the most commonly used drug for the treatment and prevention of breast cancer. Tamoxifen is considered as a pro-drug since it is known to exert its pharmacological effect through its major active metabolites, 4-hydroxy-tamoxifen and 4-hydroxy-N-desmethyl-tamoxifen, which are mainly excreted in the urine in the days following administration. In the present work, the reactivity of tamoxifen and its major active metabolites in free chlorine-containing water was investigated for the first time. Under the studied chlorination conditions, tamoxifen was fairly stable whereas its metabolites were quickly degraded. A total of thirteen chlorinated byproducts were tentatively identified by ultra-high performance liquid chromatography coupled to high-resolution hybrid quadrupole-Orbitrap tandem mass spectrometry. Time-course profiles of the identified byproducts were followed in real wastewater samples under conditions that simulate wastewater disinfection. A preliminary assessment of their acute aquatic toxicity at two trophic levels by means of quantitative structure-activity relationship models showed that the identified byproducts were up to 110-fold more toxic than the parent compounds.
Collapse
Affiliation(s)
- Noelia Negreira
- Water and Soil Quality Research Group, Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona 18-26, E-08034 Barcelona, Spain
| | - Jorge Regueiro
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, Ourense Campus, University of Vigo, E-32004 Ourense, Spain
| | - Miren López de Alda
- Water and Soil Quality Research Group, Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona 18-26, E-08034 Barcelona, Spain.
| | - Damià Barceló
- Water and Soil Quality Research Group, Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona 18-26, E-08034 Barcelona, Spain; Catalan Institute for Water Research (ICRA), H2O Building, Scientific and Technological Park of the University of Girona, Emili Grahit 101, E-17003 Girona, Spain
| |
Collapse
|
26
|
Ferrando-Climent L, Cruz-Morató C, Marco-Urrea E, Vicent T, Sarrà M, Rodriguez-Mozaz S, Barceló D. Non conventional biological treatment based on Trametes versicolor for the elimination of recalcitrant anticancer drugs in hospital wastewater. CHEMOSPHERE 2015; 136:9-19. [PMID: 25911328 DOI: 10.1016/j.chemosphere.2015.03.051] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 03/16/2015] [Accepted: 03/24/2015] [Indexed: 06/04/2023]
Abstract
This work presents a study about the elimination of anticancer drugs, a group of pollutants considered recalcitrant during conventional activated sludge wastewater treatment, using a biological treatment based on the fungus Trametes versicolor. A 10-L fluidized bed bioreactor inoculated with this fungus was set up in order to evaluate the removal of 10 selected anticancer drugs in real hospital wastewater. Almost all the tested anticancer drugs were completely removed from the wastewater at the end of the batch experiment (8 days) with the exception of Ifosfamide and Tamoxifen. These two recalcitrant compounds, together with Cyclophosphamide, were selected for further studies to test their degradability by T. versicolor under optimal growth conditions. Cyclophosphamide and Ifosfamide were inalterable during batch experiments both at high and low concentration, whereas Tamoxifen exhibited a decrease in its concentration along the treatment. Two positional isomers of a hydroxylated form of Tamoxifen were identified during this experiment using a high resolution mass spectrometry based on ultra-high performance chromatography coupled to an Orbitrap detector (LTQ-Velos Orbitrap). Finally the identified transformation products of Tamoxifen were monitored in the bioreactor run with real hospital wastewater.
Collapse
Affiliation(s)
- Laura Ferrando-Climent
- Catalan Institute for Water Research (ICRA), H2O Building, Scientific and Technological Park of the University of Girona, 101-E-17003 Girona, Spain
| | - Carles Cruz-Morató
- Departament d'Enginyeria Química, Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Spain
| | - Ernest Marco-Urrea
- Departament d'Enginyeria Química, Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Spain
| | - Teresa Vicent
- Departament d'Enginyeria Química, Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Spain
| | - Montserrat Sarrà
- Departament d'Enginyeria Química, Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Spain
| | - Sara Rodriguez-Mozaz
- Catalan Institute for Water Research (ICRA), H2O Building, Scientific and Technological Park of the University of Girona, 101-E-17003 Girona, Spain
| | - Damià Barceló
- Catalan Institute for Water Research (ICRA), H2O Building, Scientific and Technological Park of the University of Girona, 101-E-17003 Girona, Spain; Water and Soil Quality Research Group, Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18-26, 08034 Barcelona, Spain
| |
Collapse
|
27
|
Developing analytical approaches to explore the connection between endocrine-active pharmaceuticals in water to effects in fish. Anal Bioanal Chem 2015; 407:6481-92. [DOI: 10.1007/s00216-015-8813-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 05/06/2015] [Accepted: 05/28/2015] [Indexed: 12/16/2022]
|
28
|
Negreira N, de Alda ML, Barceló D. Cytostatic drugs and metabolites in municipal and hospital wastewaters in Spain: filtration, occurrence, and environmental risk. THE SCIENCE OF THE TOTAL ENVIRONMENT 2014; 497-498:68-77. [PMID: 25124055 DOI: 10.1016/j.scitotenv.2014.07.101] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2014] [Revised: 07/23/2014] [Accepted: 07/28/2014] [Indexed: 06/03/2023]
Abstract
Concerns about cytostatic anticancer drugs in the environment are increasing, mainly due to the lack of knowledge about the fate and impact of these cytotoxic compounds in the water cycle. In this context, the present work investigated the occurrence of 13 cytostatics and 4 metabolites in wastewater samples from various wastewater treatment plants (WWTPs) and from a large hospital from Spain. The target compounds belong to five different classes according to the Anatomical Therapeutic Classification (ATC), namely, alkylating agents, antimetabolites, plant alkaloids and other natural products, cytotoxic antibiotics and related substances, and other antineoplastic agents. Some of them have been classified as carcinogens in humans by the International Agency for Research on Cancer (IARC). These compounds were determined by an automated on line solid-phase extraction-liquid chromatography-tandem mass spectrometry (SPE-LC-MS/MS) method. Results showed the presence of methotrexate (MET), ifosfamide (IF), cyclophosphamide (CP), irinotecan (IRI), doxorubicin (DOX), capecitabine (CAP), tamoxifen (TAM) and the metabolites endoxifen (OH-D-TAM), hydroxytamoxifen (OH-TAM) and hydroxypaclitaxel (OH-PAC) at levels ranging from 2 ng L(-1) (for MET) to 180 ng L(-1) (for TAM). Some of these compounds were found to be efficiently removed after wastewater treatment, e.g. MET, DOX and IRI, whereas other compounds, such as TAM, CP and IF remained largely unaltered. The behaviour of the target compounds during the common filtration step of the water samples was also investigated with the finding that some compounds are strongly adsorbed to nylon filters, while cellulose acetate appears as the best choice for the filter material. The aquatic environmental risk associated to the detected compounds was also assessed. To the best of the authors' knowledge, this is the first report of the presence of the metabolites OH-D-TAM and OH-TAM in the water cycle.
Collapse
Affiliation(s)
- Noelia Negreira
- Water and Soil Quality Research Group, Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona 18-26, E-08034 Barcelona, Spain
| | - Miren López de Alda
- Water and Soil Quality Research Group, Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona 18-26, E-08034 Barcelona, Spain.
| | - Damià Barceló
- Water and Soil Quality Research Group, Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona 18-26, E-08034 Barcelona, Spain; Catalan Institute for Water Research (ICRA), H2O Building, Scientific and Technological Park of the University of Girona, Emili Grahit 101, 17003 Girona, Spain
| |
Collapse
|
29
|
Ferrando-Climent L, Rodriguez-Mozaz S, Barceló D. Incidence of anticancer drugs in an aquatic urban system: from hospital effluents through urban wastewater to natural environment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2014; 193:216-223. [PMID: 25062279 DOI: 10.1016/j.envpol.2014.07.002] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2014] [Revised: 06/19/2014] [Accepted: 07/01/2014] [Indexed: 05/21/2023]
Abstract
The presence of 10 anticancer drugs was studied along the entire urban water cycle -from hospital effluents through urban wastewater treatment plant till surface waters- and their potential environmental risk was assessed. Azathioprine, etoposide, docetaxel, paclitaxel, methotrexate, cyclophosphamide, tamoxifen and ciprofloxacin were detected in hospital effluent and in the urban influent of the sewage treatment plant although most of them were totally eliminated after WWTP. Only cyclophosphamide, tamoxifen and ciprofloxacin were found in both WWTP effluent and in the receiving river at a concentration range between nd-20 ng L(-1), 25-38 ng L(-1) and 7-103 ng L(-1) respectively. Tamoxifen and ciprofloxacin, commonly used for veterinary practices, were also detected in the river upstream the sewage discharge. In addition, they both were considered to pose a potential risk to the environment based on the levels found in the WWTP effluent together with their ecotoxicological impact in selected organisms.
Collapse
Affiliation(s)
- L Ferrando-Climent
- Catalan Institute for Water Research (ICRA), H2O Building, Scientific and Technological Park of the University of Girona, Emili Grahit 101, 17003 Girona, Spain
| | - S Rodriguez-Mozaz
- Catalan Institute for Water Research (ICRA), H2O Building, Scientific and Technological Park of the University of Girona, Emili Grahit 101, 17003 Girona, Spain.
| | - D Barceló
- Catalan Institute for Water Research (ICRA), H2O Building, Scientific and Technological Park of the University of Girona, Emili Grahit 101, 17003 Girona, Spain; Water and Soil Quality Research Group, Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18-26, 08034 Barcelona, Spain
| |
Collapse
|
30
|
Liao PH, Chu SH, Tu TY, Wang XH, Lin AYC, Chen PJ. Persistent endocrine disruption effects in medaka fish with early life-stage exposure to a triazole-containing aromatase inhibitor (letrozole). JOURNAL OF HAZARDOUS MATERIALS 2014; 277:141-149. [PMID: 24613401 DOI: 10.1016/j.jhazmat.2014.02.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 01/28/2014] [Accepted: 02/11/2014] [Indexed: 06/03/2023]
Abstract
Letrozole (LET) is a triazole-containing drug that can inhibit the activity of cytochrome P450 aromatase. It is an environmentally emerging pollutant because of its broad use in medicine and frequent occurrence in aquifers receiving the effluent of municipal or hospital wastewater. However, the toxic impact of LET on fish populations remains unclear. We exposed medaka fish (Oryzias latipes) at an early stage of sexual development to a continuous chronic LET at environmentally relevant concentrations and assessed the endocrine disruption effects in adulthood and the next generation. LET exposure at an early life stage persistently altered phenotypic sex development and reproduction in adults and skewed the sex ratio in progeny. As well, LET exposure led to a gender-different endocrine disruption as seen by the interruption in gene expression responsible for estrogen synthesis and metabolism and fish reproduction. LET interfering with the aromatase system in early life stages of medaka can disrupt hormone homeostasis and reproduction. This potent aromatase inhibitor has potential ecotoxicological impact on fish populations in aquatic environments.
Collapse
Affiliation(s)
- Pei-Han Liao
- Department of Agricultural Chemistry, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Szu-Hung Chu
- Department of Agricultural Chemistry, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Tzu-Yi Tu
- Department of Agricultural Chemistry, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Xiao-Huan Wang
- Institute of Environmental Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Angela Yu-Chen Lin
- Institute of Environmental Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Pei-Jen Chen
- Department of Agricultural Chemistry, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan.
| |
Collapse
|
31
|
Blüthgen N, Sumpter JP, Odermatt A, Fent K. Effects of low concentrations of the antiprogestin mifepristone (RU486) in adults and embryos of zebrafish (Danio rerio): 2. Gene expression analysis and in vitro activity. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2013; 144-145:96-104. [PMID: 24177212 DOI: 10.1016/j.aquatox.2013.09.030] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Revised: 09/22/2013] [Accepted: 09/28/2013] [Indexed: 06/02/2023]
Abstract
Here, we analyzed the transcriptional effects of the antiprogestin mifepristone (MIF, RU486) and progesterone (P4) in zebrafish as well as their in vitro activities in yeast-based reporter gene assays. This study is associated with the reproduction study in adult zebrafish and embryos exposed for 21 days to 5, 39, 77 ng/L MIF, and 25 ng/L P4 (Blüthgen et al., 2013a). The in vitro activities of MIF and P4 were investigated using a series of recombinant yeast-based assays (YES, YAS, YPS) and compared to transcriptional alterations obtained in fish tissues and embryos from the exposure study. MIF elicited antiestrogenic, androgenic and progestogenic activities in recombinant yeast, similar to P4, and no antiprogestogenic activity in vitro. The transcriptional alterations of steroid hormone receptors were similar in adult males and females, and more pronounced in embryos. MIF tended to transcriptionally down-regulate the androgen (ar), progesterone (pgr) and glucocorticoid (gr) receptors in adult fish and embryos. Transcripts of the estrogen receptor (esr1) and vitellogenin (vtg1) were not significantly altered. A trend for down-regulation was observed for transcripts of genes belonging to steroidogenic enzymes including 17β-hydroxysteroid dehydrogenase type 3 (hsd17b3), 3 β-hydroxysteroid dehydrogenase (hsd3b), P450 aromatase A (cyp19a) and 11β-hydroxylase (cyp11b). P4 resulted in similar transcriptional alterations as MIF. The data indicate that gene expression changes (here and later gene expression is taken as synonym to gene transcription) and in vitro activities match only in part including the lack of antiprogestogenic activity of MIF. Additionally, effects on reproduction and gonad histology described in the associated report (Blüthgen et al., 2013a) can only partly be explained by gene expression data presented here.
Collapse
Affiliation(s)
- Nancy Blüthgen
- University of Applied Sciences Northwestern Switzerland, School of Life Sciences, Institute for Ecopreneurship, Gründenstrasse 40, 4132 Muttenz, Switzerland; University of Basel, Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | | | | | | |
Collapse
|
32
|
Blüthgen N, Castiglioni S, Sumpter JP, Fent K. Effects of low concentrations of the antiprogestin mifepristone (RU486) in adults and embryos of zebrafish (Danio rerio): 1. Reproductive and early developmental effects. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2013; 144-145:83-95. [PMID: 24161497 DOI: 10.1016/j.aquatox.2013.09.033] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Revised: 09/22/2013] [Accepted: 09/27/2013] [Indexed: 06/02/2023]
Abstract
Effects of synthetic progestins have recently been reported in fish, but potential effects of the synthetic antiprogestin mifepristone (MIF), also called RU486, have not been studied. The present study provides first insights into reproductive effects of MIF in zebrafish in comparison to the progesterone receptor agonist, progesterone (P4). We carried out a reproductive study using breeding groups of adult zebrafish. After a 14 day pre-exposure, zebrafish were exposed for 21 days to 5, 39, 77 ng/L MIF, 25 ng/L P4 and water and solvent controls. In addition, embryos originating from exposed adult fish were continuously exposed to 3, 15, 26 ng/L MIF, and 254 ng/L P4, respectively, for 96 h post fertilization. We found a significant U-shaped increase in egg production after exposure to 5 and 77 ng/L MIF, but no effects at 25 ng/L P4. Levels of sex steroid hormones in blood plasma of adult males (11-ketotestosterone) and females (17 β-estradiol) were not altered. In addition to an increase of mature vitellogenic oocytes in ovaries of females exposed to MIF and P4, we observed several histopathological changes in ovaries, including post-ovulatory follicles, atretic follicles and proteinaceous fluid. Male gonads showed no or less alterations and no histopathological effects. Fertility of eggs and hatching success of embryos (F1 generation) was not affected at 3-26 ng/L MIF and 254 ng/L P4, respectively. The data lead to the conclusion that trace quantities of MIF affect reproduction of zebrafish and ovaries of female zebrafish. Effects on transcriptional changes in adult and embryonic zebrafish of this study in comparison to in vitro effects are reported in the associated report (Blüthgen et al., 2013a).
Collapse
Affiliation(s)
- Nancy Blüthgen
- University of Applied Sciences Northwestern Switzerland, School of Life Sciences, Institute for Ecopreneurship, Gründenstrasse 40, 4132 Muttenz, Switzerland; University of Basel, Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | | | | | | |
Collapse
|
33
|
Orias F, Perrodin Y. Characterisation of the ecotoxicity of hospital effluents: a review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2013; 454-455:250-76. [PMID: 23545489 DOI: 10.1016/j.scitotenv.2013.02.064] [Citation(s) in RCA: 127] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Revised: 02/21/2013] [Accepted: 02/22/2013] [Indexed: 05/12/2023]
Abstract
The multiple activities that take place in hospitals (surgery, drug treatments, radiology, cleaning of premises and linen, chemical and biological analysis laboratories, etc.), are a major source of pollutant emissions into the environment (disinfectants, detergents, drug residues, etc.). Most of these pollutants can be found in hospital effluents (HWW), then in urban sewer networks and WWTP (weakly adapted for their treatment) and finally in aquatic environments. In view to evaluating the impact of these pollutants on aquatic ecosystems, it is necessary to characterise their ecotoxicity. Several reviews have focused on the quantitative and qualitative characterisation of pollutants present in HWW. However, none have focused specifically on the characterisation of their experimental ecotoxicity. We have evaluated this according to two complementary approaches: (i) a "substance" approach based on the identification of the experimental data in the literature for different substances found in hospital effluents, and on the calculation of their PNEC (Predicted Non Effect Concentration), (ii) a "matrix" approach for which we have synthesised ecotoxicity data obtained from the hospital effluents directly. This work first highlights the diversity of the substances present within hospital effluents, and the very high ecotoxicity of some of them (minimum PNEC observed close to 0,01 pg/L). We also observed that the consumption of drugs in hospitals was a predominant factor chosen by authors to prioritise the compounds to be sought. Other criteria such as biodegradability, excretion rate and the bioaccumulability of pollutants are considered, though more rarely. Studies of the ecotoxicity of the particulate phase of effluents must also be taken into account. It is also necessary to monitor the effluents of each of the specialised departments of the hospital studied. These steps is necessary to define realistic environmental management policies for hospitals (replacement of toxic products by less pollutant ones, etc.).
Collapse
Affiliation(s)
- Frédéric Orias
- Université de Lyon, ENTPE, CNRS, UMR 5023 LEHNA, 2 Rue Maurice Audin, 69518 Vaulx-en-Velin, France
| | | |
Collapse
|
34
|
Ferrando-Climent L, Rodriguez-Mozaz S, Barceló D. Development of a UPLC-MS/MS method for the determination of ten anticancer drugs in hospital and urban wastewaters, and its application for the screening of human metabolites assisted by information-dependent acquisition tool (IDA) in sewage samples. Anal Bioanal Chem 2013; 405:5937-52. [DOI: 10.1007/s00216-013-6794-4] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Revised: 01/12/2013] [Accepted: 01/25/2013] [Indexed: 12/18/2022]
|
35
|
López-Serna R, Petrović M, Barceló D. Occurrence and distribution of multi-class pharmaceuticals and their active metabolites and transformation products in the Ebro river basin (NE Spain). THE SCIENCE OF THE TOTAL ENVIRONMENT 2012; 440:280-289. [PMID: 22809787 DOI: 10.1016/j.scitotenv.2012.06.027] [Citation(s) in RCA: 152] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Revised: 06/05/2012] [Accepted: 06/05/2012] [Indexed: 06/01/2023]
Abstract
The present work reports the occurrence of pharmaceuticals and their metabolites and transformation products (TPs) in the Ebro river basin (NE Spain). Twenty-four samples of water collected along the basin were analysed using a fully automated method based on on-line turbulent chromatography-liquid chromatography-tandem mass spectrometry (TFC-LC-MS/MS). In total, 17 metabolites, 7 of them with remaining pharmacologic activity, and 2 transformation products, along with 58 parent pharmaceuticals are analysed. Metabolites and TPs were found at concentrations of the same order of magnitude as their corresponding parent pharmaceuticals, with the exception of 10,11-epoxi-carbamazepine which was found at approximately 10 times higher concentration than its corresponding parent pharmaceutical carbamazepine. In general, levels of all target compounds were below 100 ng L(-1), with the exception of 14 compounds; among them the aforementioned 10,11-epoxicarbamazepine with a maximum concentration of more than 1600 ng L(-1). The analgesic propyphenazone, the psychiatric drug carbamazepine, the antibiotics clarithromycin and sulfadiazine, the cardiovascular drug propranolol, the antineoplastic tamoxifen and 1 pharmacologically active metabolite salicylic acid were found to be ubiquitous (detected in all samples). Smaller tributaries generally show higher concentrations than the main river Ebro, due to lower dilution of WWTP effluents discharged.
Collapse
Affiliation(s)
- Rebeca López-Serna
- Department of Environmental Chemistry, IDAEA-CSIC, C/Jordi Girona 18-26, 08034 Barcelona, Spain
| | | | | |
Collapse
|
36
|
Zucchi S, Castiglioni S, Fent K. Progestins and antiprogestins affect gene expression in early development in zebrafish (Danio rerio) at environmental concentrations. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2012; 46:5183-5192. [PMID: 22475373 DOI: 10.1021/es300231y] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Progesterone (P4) and synthetic progestins (gestagens) from contraceptives and hormone therapy occur in treated wastewater and surface water, and they may have adverse effects on aquatic organisms. Little is known about the molecular and reproductive effects of P4 and synthetic progestins in fish, and effects of the antiprogestin mifepristone (RU486, an abortive) are unknown. We aimed at elucidating effects on the hormone system by quantitative determination of transcriptional changes of target genes induced by 2, 20, and 200 ng/L P4, RU486, norethindrone (NET), and levonorgestrel (LNG). We exposed zebrafish embryos for 144 h post fertilization (hpf) to these compounds and analyzed expressional changes of ar, esr1, vtg1, hsd17ß3, and progesterone (pgr), mineralo- (mr), and glucocorticoid (gr) receptors, each at 48, 96, and 144 hpf. Concentrations of NET and LNG were constant during exposure, while P4 and RU486 decreased. P4 and RU486 were the most potent steroids. Significant up to 4-fold induction of pgr, ar, mr, and hsd17b3 occurred at 2 ng/L P4 and higher, while RU484 inhibited pgr expression. NET and LNG modulated some transcripts mainly above 2 ng/L. The expressional chances occurring at environmental levels may translate to negative interference with differentiation of brain and gonads, and consequently reproduction.
Collapse
Affiliation(s)
- Sara Zucchi
- University of Applied Sciences Northwestern Switzerland, School of Life Sciences, Gründenstrasse 40, CH-4132 Muttenz, Switzerland
| | | | | |
Collapse
|
37
|
Besse JP, Latour JF, Garric J. Anticancer drugs in surface waters: what can we say about the occurrence and environmental significance of cytotoxic, cytostatic and endocrine therapy drugs? ENVIRONMENT INTERNATIONAL 2012; 39:73-86. [PMID: 22208745 DOI: 10.1016/j.envint.2011.10.002] [Citation(s) in RCA: 236] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Revised: 09/29/2011] [Accepted: 10/06/2011] [Indexed: 05/31/2023]
Abstract
This study considers the implications and research needs arising from anticancer (also referred to as antineoplastic) drugs being released into the aquatic environment, for the entire therapeutic classes used: cytotoxic, cytostatic and endocrine therapy drugs. A categorization approach, based on French consumption amounts, allowed to highlight parent molecules and several metabolites on which further occurrence and ecotoxicological studies should be conducted. Investigations of consumption trends at a national and a local scale show an increase in the use of anticancer drugs between 2004 and 2008, thus leading to increased levels released in the environment. It therefore appears necessary to continue surveying their presence in surface waters and in wastewater treatment plant (WWTP) effluents. Furthermore, due to the rise of anticancer home treatments, most of the prescribed molecules are now available in town pharmacies. Consequently, hospital effluents are no longer the main expected entry route of anticancer drugs into the aquatic environment. Concerning ecotoxicological risks, current knowledge remains insufficient to support a definitive conclusion. Risk posed by cytotoxic molecules is still not well documented and it is not possible to conclude on their long-term effects on non-target organisms. To date, ecotoxicological effects have been assessed using standardized or in vitro assays. Such tests however may not be suitable for anticancer drugs, and further work should focus on full-life cycle or even multigenerational tests. Environmental significance (i.e. occurrence and effects) of cytostatics (protein kinases inhibitors and monoclonal antibodies), if any, is not documented. Protein kinases inhibitors, in particular, deserve further investigation due to their universal mode of action. Finally, concerning endocrine therapy drugs, molecules such as antiestrogen Tamoxifen and its active metabolites, could be of concern. Overall, to accurately assess the ecotoxicological risk of anticancer drugs, we discuss the need to break away from tests on isolated molecules and to test effects of mixtures at the low ng.l(-1) range.
Collapse
Affiliation(s)
- Jean-Philippe Besse
- Cemagref, UR Milieux Aquatiques Ecologie et Pollution (MAEP), Laboratoire d'écotoxicologie/Laboratoire d'analyses physico-chimiques des milieux aquatiques, 3 bis quai Chauveau, CP 220, F-69226 Lyon, France.
| | | | | |
Collapse
|
38
|
Liu ZH, Ogejo JA, Pruden A, Knowlton KF. Occurrence, fate and removal of synthetic oral contraceptives (SOCs) in the natural environment: a review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2011; 409:5149-61. [PMID: 21975000 DOI: 10.1016/j.scitotenv.2011.08.047] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Revised: 08/04/2011] [Accepted: 08/14/2011] [Indexed: 05/14/2023]
Abstract
Synthetic oral contraceptives (SOCs) are a group of compounds with progestagenic and/or androgenic activities, with some also possessing estrogenic activities. Recent research has documented that some of these emerging contaminants have adverse effects on aquatic organisms at very low concentrations. To facilitate the evaluation of their latent risks, published works on their occurrence and fate in the environment are reviewed. Androgenic/progestagenic relative potencies or relative binding affinity of these SOCs as well as their physicochemical properties and toxicity are summarized. Appropriate analytical methods are outlined for various environmental sample types, including methods of sample preparation and limit of detection/quantification (LOD/LOQ). Finally results on their occurrence and fate in wastewater treatment plants (WWTPs) and other environments are critically examined.
Collapse
MESH Headings
- Androgens/analysis
- Androgens/chemistry
- Androgens/metabolism
- Androgens/toxicity
- Animals
- Aquatic Organisms/chemistry
- Aquatic Organisms/drug effects
- Contraceptives, Oral, Synthetic/analysis
- Contraceptives, Oral, Synthetic/chemistry
- Contraceptives, Oral, Synthetic/metabolism
- Contraceptives, Oral, Synthetic/toxicity
- Environmental Monitoring/methods
- Estrogens/analysis
- Estrogens/chemistry
- Estrogens/metabolism
- Estrogens/toxicity
- Humans
- Limit of Detection
- Molecular Structure
- Progestins/analysis
- Progestins/chemistry
- Progestins/metabolism
- Progestins/toxicity
- Waste Disposal, Fluid/methods
- Water Pollutants, Chemical/analysis
- Water Pollutants, Chemical/chemistry
- Water Pollutants, Chemical/metabolism
- Water Pollutants, Chemical/toxicity
Collapse
Affiliation(s)
- Ze-hua Liu
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, VA 24061, United States.
| | | | | | | |
Collapse
|
39
|
Yang Y, Fu J, Peng H, Hou L, Liu M, Zhou JL. Occurrence and phase distribution of selected pharmaceuticals in the Yangtze Estuary and its coastal zone. JOURNAL OF HAZARDOUS MATERIALS 2011; 190:588-96. [PMID: 21497014 DOI: 10.1016/j.jhazmat.2011.03.092] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2011] [Revised: 03/23/2011] [Accepted: 03/23/2011] [Indexed: 05/07/2023]
Abstract
The occurrence and geochemical behavior of nine pharmaceutical compounds were investigated along the Yangtze River Estuary and its coastal area, by sampling and analysis of pharmaceuticals in sediment, suspended particulate matter (SPM), colloidal and soluble phases. In addition, the impact of sewage input was examined by sampling from sewage treatment plants (STP) effluent and its upstream and downstream in the Yangtze River. Although at relatively low concentrations in SPM and sediments, several pharmaceuticals were found at elevated concentration in filtered water samples from STP-affected sites. STP is therefore an important input of pharmaceuticals in the study area. Colloidal phase was further separated from bulk water samples using cross-flow ultrafiltration (CFUF), confirming it being an effective sorbent for pharmaceuticals with high sorption capacity which are 2-4 orders of magnitude higher than SPM. Moreover, mass balance calculations showed that significant percentages of selected pharmaceutical compounds were associated with aquatic colloids, indicating colloids as a reservoir for these contaminants in the Yangtze estuarine system.
Collapse
Affiliation(s)
- Y Yang
- School of Resources and Environmental Sciences, East China Normal University, Shanghai 200062, China
| | | | | | | | | | | |
Collapse
|
40
|
Quantification of clomiphene metabolite isomers in human plasma by rapid-resolution liquid chromatography–electrospray ionization–tandem mass spectrometry. Anal Bioanal Chem 2011; 400:3429-41. [DOI: 10.1007/s00216-011-5045-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Revised: 04/18/2011] [Accepted: 04/19/2011] [Indexed: 10/18/2022]
|
41
|
Nagarnaik P, Batt A, Boulanger B. Source characterization of nervous system active pharmaceutical ingredients in healthcare facility wastewaters. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2011; 92:872-877. [PMID: 21094579 DOI: 10.1016/j.jenvman.2010.10.058] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Revised: 10/06/2010] [Accepted: 10/20/2010] [Indexed: 05/30/2023]
Abstract
Nervous system active pharmaceutical ingredients (APIs), including anti-depressants and opioids, are important clinically administered pharmaceuticals within healthcare facilities. This study provides source characterization data describing the composition and magnitude of nervous system APIs present in healthcare facility wastewaters. Concentrations and mass loadings of ten nervous system APIs and three nervous system API metabolites are reported for wastewaters from a hospital, nursing, assisted living, and independent living facility within a single municipality. Concentrations of nervous system APIs ranged from non-detectable levels for alprazolam in all four facility wastewaters to a high of 290 ng/L amitriptyline in nursing facility wastewater. The summed mean concentration of all thirteen analytes ranged from 402 ng/L in independent living facility wastewater to 624 ng/L in assisted living facility wastewater. Wastewater flow rates from each facility were combined with concentration data to estimate the daily mass loading of nervous system APIs leaving each facility through wastewater discharge to the municipal sewer system. The total mass loading of all thirteen analytes for the hospital, nursing, assisted living, and independent living facility was 228, 44, 29.5, and 28.1 mg/day, respectively. The total mass loading of nervous system APIs contributed to the municipality's wastewater from all four facilities was 330 mg/day.
Collapse
Affiliation(s)
- Pranav Nagarnaik
- Env. & Water Resources Division, Department of Civil Engineering, Texas A&M University, College Station, TX 77843, USA
| | | | | |
Collapse
|
42
|
Teunissen S, Rosing H, Schinkel A, Schellens J, Beijnen J. Bioanalytical methods for determination of tamoxifen and its phase I metabolites: A review. Anal Chim Acta 2010; 683:21-37. [DOI: 10.1016/j.aca.2010.10.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Revised: 10/06/2010] [Accepted: 10/08/2010] [Indexed: 10/18/2022]
|