1
|
Ursem R, Groen JL, Malessy MJA, Briaire-de Bruijn I, McDonnell LA, Heijs BPAM, Bovee JVMG. Spatial Lipidomics Reveals Myelin Defects and Protumor Macrophage Infiltration in Malignant Peripheral Nerve Sheath Tumor Adjacent Nerves. J Transl Med 2025; 105:102186. [PMID: 39542102 DOI: 10.1016/j.labinv.2024.102186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/28/2024] [Accepted: 11/06/2024] [Indexed: 11/17/2024] Open
Abstract
Malignant peripheral nerve sheath tumors (MPNSTs) are aggressive sarcomas arising from peripheral nerves, accounting for 3% to 5% of soft tissue sarcomas. MPNSTs often recur locally, leading to poor survival. Achieving tumor-free surgical margins is essential to prevent recurrence, but current methods for determining tumor margins are limited, highlighting the need for improved biomarkers. In this study we investigated the degree to which MPNST extends into nerves adjacent to tumors. Alterations to the lipidome of MPNST and adjacent peripheral nerves were assessed using spatial lipidomics. Tissue samples from 5 patients with MPNST were analyzed, revealing alterations of the lipid profile extending into the peripheral nerves beyond what was expected based on macroscopic and histologic observations. Integration of spatial lipidomics and high-resolution accurate-mass profiling identified distinct lipid profiles associated with healthy nerves, connective tissue, and tumors. Notably, histologically normal nerves exhibited myelin degradation and infiltration of protumoral M2 macrophages, particularly near the tumor. Furthermore, aberrant osmium staining patterns and loss of H3K27me3 staining in the absence of atypia were observed in a case with tumor recurrence. This exploratory study thereby highlights the changes occurring in the nerves affected by MPNST beyond what is visible on hematoxylin and eosin staining and provides leads for further biomarker studies, including aberrant osmium staining, to assess resection margins in MPNST.
Collapse
Affiliation(s)
- Rick Ursem
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands; Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Justus L Groen
- Department of Neurosurgery, Leiden University Medical Center, Leiden, The Netherlands
| | - Martijn J A Malessy
- Department of Neurosurgery, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Liam A McDonnell
- Laboratory of Proteomics and Metabolomics, Fondazione Pisana per la Scienza ONLUS, San Giuliano Terme, Italy
| | - Bram P A M Heijs
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Judith V M G Bovee
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
2
|
Tang S, Wang H, Zhang H, Zhang M, Xu J, Yang C, Chen X, Guo X. Simultaneous Determination of the Position and Cis- Trans Configuration of Lipid C═C Bonds via Asymmetric Derivatization and Ion Mobility-Mass Spectrometry. J Am Chem Soc 2024; 146:29503-29512. [PMID: 39412160 DOI: 10.1021/jacs.4c08980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2024]
Abstract
The position and cis-trans configuration of C═C bonds in unsaturated lipids significantly affect their biological activities. Simultaneous identification of the position and cis-trans configuration of C═C bonds in unsaturated lipids is important; nonetheless, it still remains a challenging task. Herein, a stereoselective asymmetric reaction was used to recognize cis-trans isomers of the C═C bonds, and the derivatized precursor ions and product ions were subjected to tandem ion mobility-mass spectrometry (IM-MS) analysis. The theoretical calculation revealed that the formation of intramolecular hydrogen bonds after the cyclization reaction amplified the structural difference between diastereomers and increased the separation efficiency in IM. Consequently, a simple, sensitive, and highly selective platform for simultaneous determination of the position and cis-trans configuration of various C═C bonds in unsaturated lipids was established. It was then successfully applied to pinpoint the cis-trans geometry conversion of the located C═C bonds in lipids of the bacterial membrane under environmental stress and track the heterogeneous distribution of unsaturated lipids in rats after spinal cord injury. The present study also offers new insights into the application of IM-MS technology in resolving molecular structures and demonstrates the potential as a platform for a broad range of applications.
Collapse
Affiliation(s)
- Shuai Tang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Hao Wang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Huihui Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Mingyu Zhang
- Department of Orthopaedic Surgery, China-Japan Union Hospital of Jilin University, Changchun 130033, China
| | - Jiancheng Xu
- Department of Laboratory Medicine, The First Hospital of Jilin University, Changchun 130021, China
| | - Chun Yang
- Department of Laboratory Medicine, The First Hospital of Jilin University, Changchun 130021, China
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Xinhua Guo
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, College of Life Science, Jilin University, Changchun 130012, China
| |
Collapse
|
3
|
Calvo I, Montilla A, Huergo C, Martín-Saiz L, Martín-Allende J, Tepavcevic V, Domercq M, Fernández JA. Combining imaging mass spectrometry and immunohistochemistry to analyse the lipidome of spinal cord inflammation. Anal Bioanal Chem 2024; 416:1923-1933. [PMID: 38326664 PMCID: PMC10902057 DOI: 10.1007/s00216-024-05190-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/10/2024] [Accepted: 01/29/2024] [Indexed: 02/09/2024]
Abstract
Inflammation is a complex process that accompanies many pathologies. Actually, dysregulation of the inflammatory process is behind many autoimmune diseases. Thus, treatment of such pathologies may benefit from in-depth knowledge of the metabolic changes associated with inflammation. Here, we developed a strategy to characterize the lipid fingerprint of inflammation in a mouse model of spinal cord injury. Using lipid imaging mass spectrometry (LIMS), we scanned spinal cord sections from nine animals injected with lysophosphatidylcholine, a chemical model of demyelination. The lesions were demonstrated to be highly heterogeneous, and therefore, comparison with immunofluorescence experiments carried out in the same section scanned by LIMS was required to accurately identify the morphology of the lesion. Following this protocol, three main areas were defined: the lesion core, the peri-lesion, which is the front of the lesion and is rich in infiltrating cells, and the uninvolved tissue. Segmentation of the LIMS experiments allowed us to isolate the lipid fingerprint of each area in a precise way, as demonstrated by the analysis using classification models. A clear difference in lipid signature was observed between the lesion front and the epicentre, where the damage was maximized. This study is a first step to unravel the changes in the lipidome associated with inflammation in the context of diverse pathologies, such as multiple sclerosis.
Collapse
Affiliation(s)
- Ibai Calvo
- Department of Physical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Bº Sarriena s/n, 48940, Leioa, Spain
| | - Alejandro Montilla
- Achucarro Basque Center for Neurosciencie, Bº Sarriena s/n, 48940, Leioa, Spain
- Department Neuroscience, Faculty of Medicine, University of the Basque Country (UPV/EHU), Bº Sarriena s/n, 48940, Leioa, Spain
| | - Cristina Huergo
- Department of Physical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Bº Sarriena s/n, 48940, Leioa, Spain
| | - Lucía Martín-Saiz
- Department of Physical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Bº Sarriena s/n, 48940, Leioa, Spain
| | - Javier Martín-Allende
- Department of Languages and Computer Systems, School of Engineering, University of the Basque Country (UPV/EHU), Paseo Rafael Moreno "Pitxitxi", n. 2/3, 48013, Bilbao, Spain
| | - Vanja Tepavcevic
- Achucarro Basque Center for Neurosciencie, Bº Sarriena s/n, 48940, Leioa, Spain
| | - María Domercq
- Achucarro Basque Center for Neurosciencie, Bº Sarriena s/n, 48940, Leioa, Spain.
- Department Neuroscience, Faculty of Medicine, University of the Basque Country (UPV/EHU), Bº Sarriena s/n, 48940, Leioa, Spain.
| | - José A Fernández
- Department of Physical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Bº Sarriena s/n, 48940, Leioa, Spain.
| |
Collapse
|
4
|
Pathak Z, Jadav T, Roy A, Chopra M, Singh N, Sengupta P, Kumar H. Maresin-1 prevents blood-spinal cord barrier disruption associated with TRPV4 elevation in the experimental model of spinal cord injury. Biochim Biophys Acta Mol Cell Biol Lipids 2023; 1868:159395. [PMID: 37729963 DOI: 10.1016/j.bbalip.2023.159395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 09/05/2023] [Accepted: 09/08/2023] [Indexed: 09/22/2023]
Abstract
Recently, we reported the TRPV4 ion channel activation and its association with secondary damage after spinal cord injury (SCI). TRPV4 activation is linked with blood-spinal cord barrier (BSCB) disruption, endothelial damage, and inflammation after SCI. Specialized pro-resolving mediators (SPM) are endogenous lipid mediators released for inflammation resolution. Studies suggest that SPM could act as an endogenous antagonist of ion channels directly or indirectly at the plasma membrane. Herein, we studied the effect of maresin-1, a docosahexaenoic acid (DHA)-derived SPM, in SCI-induced TRPV4 expression and subsequent associated damage. First, employing a particular agonist (4αPDD) in endothelial and neuronal cell lines, we examined the potential of maresin-1 to block TRPV4 activation. Then we quantify the DHA levels in plasma and epicenter of the spinal cord in sham and at 1, 3, 7, 14, 21, and 28-days post-injury (DPI) using LC-MS. Then, we exogenously administered maresin-1 using two dosing regimens i.e., single-dose (1 μg) and multiple-dose (1 μg/day for seven days), to confirm its role in the TRPV4 inhibition and its linked damage. After SCI, DHA levels decrease in the spinal cord epicenter area as well as in the plasma. Treatment with maresin-1 attenuates TRPV4 expression, inflammatory cytokines, and chemokines and impedes neutrophil infiltration. Furthermore, treatment with maresin-1 prevents BSCB disruption, alleviates glial scar formation, and improves functional recovery. Thus, our results suggest that maresin-1 could modulate TRPV4 expression and could be a safe and promising approach to target inflammation and BSCB damage after SCI.
Collapse
Affiliation(s)
- Zarna Pathak
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat 382355, India
| | - Tarang Jadav
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat 382355, India
| | - Abhishek Roy
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat 382355, India
| | - Manjeet Chopra
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat 382355, India
| | - Nidhi Singh
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat 382355, India
| | - Pinaki Sengupta
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat 382355, India
| | - Hemant Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat 382355, India.
| |
Collapse
|
5
|
Garcia E, Buzoianu-Anguiano V, Silva-Garcia R, Esparza-Salazar F, Arriero-Cabañero A, Escandon A, Doncel-Pérez E, Ibarra A. Use of Cells, Supplements, and Peptides as Therapeutic Strategies for Modulating Inflammation after Spinal Cord Injury: An Update. Int J Mol Sci 2023; 24:13946. [PMID: 37762251 PMCID: PMC10531377 DOI: 10.3390/ijms241813946] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/02/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
Spinal cord injury is a traumatic lesion that causes a catastrophic condition in patients, resulting in neuronal deficit and loss of motor and sensory function. That loss is caused by secondary injury events following mechanical damage, which results in cell death. One of the most important events is inflammation, which activates molecules like proinflammatory cytokines (IL-1β, IFN-γ, and TNF-α) that provoke a toxic environment, inhibiting axonal growth and exacerbating CNS damage. As there is no effective treatment, one of the developed therapies is neuroprotection of the tissue to preserve healthy tissue. Among the strategies that have been developed are the use of cell therapy, the use of peptides, and molecules or supplements that have been shown to favor an anti-inflammatory environment that helps to preserve tissue and cells at the site of injury, thus favoring axonal growth and improved locomotor function. In this review, we will explain some of these strategies used in different animal models of spinal cord injury, their activity as modulators of the immune system, and the benefits they have shown.
Collapse
Affiliation(s)
- Elisa Garcia
- Centro de Investigación en Ciencias de la Salud (CICSA), FCS, Universidad Anáhuac México Campus Norte, Huixquilucan 52786, Mexico; (E.G.); (F.E.-S.); (A.E.)
| | - Vinnitsa Buzoianu-Anguiano
- Grupo Regeneración Neural, Hospital Nacional de Parapléjicos, SESCAM, 45071 Toledo, Spain; (V.B.-A.); (A.A.-C.)
| | - Raúl Silva-Garcia
- Unidad de Investigación Médica en Inmunología Hospital de Pediatría, CMN-SXXI, IMSS, Mexico City 06720, Mexico;
| | - Felipe Esparza-Salazar
- Centro de Investigación en Ciencias de la Salud (CICSA), FCS, Universidad Anáhuac México Campus Norte, Huixquilucan 52786, Mexico; (E.G.); (F.E.-S.); (A.E.)
| | - Alejandro Arriero-Cabañero
- Grupo Regeneración Neural, Hospital Nacional de Parapléjicos, SESCAM, 45071 Toledo, Spain; (V.B.-A.); (A.A.-C.)
| | - Adela Escandon
- Centro de Investigación en Ciencias de la Salud (CICSA), FCS, Universidad Anáhuac México Campus Norte, Huixquilucan 52786, Mexico; (E.G.); (F.E.-S.); (A.E.)
| | - Ernesto Doncel-Pérez
- Grupo Regeneración Neural, Hospital Nacional de Parapléjicos, SESCAM, 45071 Toledo, Spain; (V.B.-A.); (A.A.-C.)
| | - Antonio Ibarra
- Centro de Investigación en Ciencias de la Salud (CICSA), FCS, Universidad Anáhuac México Campus Norte, Huixquilucan 52786, Mexico; (E.G.); (F.E.-S.); (A.E.)
| |
Collapse
|
6
|
David S, López-Vales R. Bioactive Lipid Mediators in the Initiation and Resolution of Inflammation after Spinal Cord Injury. Neuroscience 2021; 466:273-297. [PMID: 33951502 DOI: 10.1016/j.neuroscience.2021.04.026] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 12/12/2022]
Abstract
Neuroinflammation is a prominent feature of the response to CNS trauma. It is also an important hallmark of various neurodegenerative diseases in which inflammation contributes to the progression of pathology. Inflammation in the CNS can contribute to secondary damage and is therefore an excellent therapeutic target for a range of neurological conditions. Inflammation in the nervous system is complex and varies in its fine details in different conditions. It involves a wide variety of secreted factors such as chemokines and cytokines, cell adhesion molecules, and different cell types that include resident cell of the CNS, as well as immune cells recruited from the peripheral circulation. Added to this complexity is the fact that some aspects of inflammation are beneficial, while other aspects can induce secondary damage in the acute, subacute and chronic phases. Understanding these aspects of the inflammatory profile is essential for developing effective therapies. Bioactive lipids constitute a large group of molecules that modulate the initiation and the resolution of inflammation. Dysregulation of these bioactive lipid pathways can lead to excessive acute inflammation, and failure to resolve this by specialized pro-resolution lipid mediators can lead to the development of chronic inflammation. The focus of this review is to discuss the effects of bioactive lipids in spinal cord trauma and their potential for therapies.
Collapse
Affiliation(s)
- Samuel David
- Centre for Research in Neuroscience, BRaIN Program, The Research Institute of the McGill University Health Centre, 1650 Cedar Avenue, Montreal, Quebec H3G 1A4, Canada.
| | - Rubén López-Vales
- Departament de Biologia Cellular, Fisiologia i Inmunologia, Institut de Neurociències, Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Universitat Autònoma de Barcelona, 08193 Bellaterra, Catalonia, Spain
| |
Collapse
|
7
|
Kopper TJ, Zhang B, Bailey WM, Bethel KE, Gensel JC. The effects of myelin on macrophage activation are phenotypic specific via cPLA 2 in the context of spinal cord injury inflammation. Sci Rep 2021; 11:6341. [PMID: 33737707 PMCID: PMC7973514 DOI: 10.1038/s41598-021-85863-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 03/05/2021] [Indexed: 01/31/2023] Open
Abstract
Spinal cord injury (SCI) produces chronic, pro-inflammatory macrophage activation that impairs recovery. The mechanisms driving this chronic inflammation are not well understood. Here, we detail the effects of myelin debris on macrophage physiology and demonstrate a novel, activation state-dependent role for cytosolic phospholipase-A2 (cPLA2) in myelin-mediated potentiation of pro-inflammatory macrophage activation. We hypothesized that cPLA2 and myelin debris are key mediators of persistent pro-inflammatory macrophage responses after SCI. To test this, we examined spinal cord tissue 28-days after thoracic contusion SCI in 3-month-old female mice and observed both cPLA2 activation and intracellular accumulation of lipid-rich myelin debris in macrophages. In vitro, we utilized bone marrow-derived macrophages to determine myelin's effects across a spectrum of activation states. We observed phenotype-specific responses with myelin potentiating only pro-inflammatory (LPS + INF-γ; M1) macrophage activation, whereas myelin did not induce pro-inflammatory responses in unstimulated or anti-inflammatory (IL-4; M2) macrophages. Specifically, myelin increased levels of pro-inflammatory cytokines, reactive oxygen species, and nitric oxide production in M1 macrophages as well as M1-mediated neurotoxicity. PACOCF3 (cPLA2 inhibitor) blocked myelin's detrimental effects. Collectively, we provide novel spatiotemporal evidence that myelin and cPLA2 play an important role in the pathophysiology of SCI inflammation and the phenotype-specific response to myelin implicate diverse roles of myelin in neuroinflammatory conditions.
Collapse
Affiliation(s)
- Timothy J Kopper
- Department of Physiology, Spinal Cord and Brain Injury Research Center, University of Kentucky College of Medicine, Lexington, KY, 40536, USA
| | - Bei Zhang
- Department of Physiology, Spinal Cord and Brain Injury Research Center, University of Kentucky College of Medicine, Lexington, KY, 40536, USA
| | - William M Bailey
- Department of Physiology, Spinal Cord and Brain Injury Research Center, University of Kentucky College of Medicine, Lexington, KY, 40536, USA
| | - Kara E Bethel
- Department of Physiology, Spinal Cord and Brain Injury Research Center, University of Kentucky College of Medicine, Lexington, KY, 40536, USA
| | - John C Gensel
- Department of Physiology, Spinal Cord and Brain Injury Research Center, University of Kentucky College of Medicine, Lexington, KY, 40536, USA.
| |
Collapse
|
8
|
Sekera ER, Saraswat D, Zemaitis KJ, Sim FJ, Wood TD. MALDI Mass Spectrometry Imaging in a Primary Demyelination Model of Murine Spinal Cord. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2020; 31:2462-2468. [PMID: 32926612 PMCID: PMC8628303 DOI: 10.1021/jasms.0c00187] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Destruction of myelin, or demyelination, is a characteristic of traumatic spinal cord injury and pathognomonic for primary demyelinating pathologies such as multiple sclerosis (MS). The regenerative process known as remyelination, which can occur following demyelination, fails as MS progresses. Models of focal demyelination by local injection of gliotoxins have provided important biological insights into the demyelination/remyelination process. Here, injection of lysolecithin to induce spinal cord demyelination is investigated using matrix-assisted laser desorption/ionization mass spectrometry imaging. A segmentation analysis revealed changes to the lipid composition during lysolecithin-induced demyelination at the lesion site and subsequent remyelination over time. The results of this study can be utilized to identify potential myelin-repair mechanisms and in the design of therapeutic strategies to enhance myelin repair.
Collapse
Affiliation(s)
- Emily R Sekera
- Department of Chemistry, Natural Sciences Complex, University at Buffalo State University of New York, Buffalo, New York 14260-3000, United States
| | - Darpan Saraswat
- Department of Pharmacology & Toxicology, Jacobs School of Medicine and Biomedical Sciences, 955 Main Street, University at Buffalo State University of New York, Buffalo, New York 14203, United States
| | - Kevin J Zemaitis
- Department of Chemistry, Natural Sciences Complex, University at Buffalo State University of New York, Buffalo, New York 14260-3000, United States
| | - Fraser J Sim
- Department of Pharmacology & Toxicology, Jacobs School of Medicine and Biomedical Sciences, 955 Main Street, University at Buffalo State University of New York, Buffalo, New York 14203, United States
| | - Troy D Wood
- Department of Chemistry, Natural Sciences Complex, University at Buffalo State University of New York, Buffalo, New York 14260-3000, United States
| |
Collapse
|
9
|
Tian Z, Chu T, Shields LBE, Zhu Q, Zhang YP, Kong M, Barnes GN, Wang Y, Shields CB, Cai J. Platelet-Activating Factor Deteriorates Lysophosphatidylcholine-Induced Demyelination Via Its Receptor-Dependent and -Independent Effects. Mol Neurobiol 2020; 57:4069-4081. [PMID: 32661728 DOI: 10.1007/s12035-020-02003-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 06/26/2020] [Indexed: 11/30/2022]
Abstract
Accumulating evidence suggests that platelet-activating factor (PAF) increases the inflammatory response in demyelinating diseases such as multiple sclerosis. However, PAF receptor (PAFR) antagonists do not show therapeutic efficacy for MS, and its underlying mechanisms remain poorly understood. In the present study, we investigated the effects of PAF on an ex vivo demyelination cerebellar model following lysophosphatidylcholine (LPC, 0.5 mg/mL) application using wild-type and PAFR conventional knockout (PAFR-KO) mice. Demyelination was induced in cerebellar slices that were cultured with LPC for 18 h. Exogenous PAF (1 μM) acting on cerebellar slices alone did not cause demyelination but increased the severity of LPC-induced demyelination in both wild-type and PAFR-KO mice. LPC inhibited the expression of PAF-AH, MBP, TNF-α, and TGF-β1 but facilitated the expression of IL-1β and IL-6 in wild-type preparations. Of note, exogenous PAF stimulated microglial activation in both wild-type and PAFR-KO mice. The subsequent inflammatory cytokines TNFα, IL-1β, and IL-6 as well as the anti-inflammatory cytokine TGF-β1 demonstrated a diverse transcriptional profile with or without LPC treatment. PAF promoted TNF-α expression and suppressed TGF-β1 expression indiscriminately in wild-type and knockout slices; however, transcription of IL-1β and IL-6 was not significantly affected in both slices. The syntheses of IL-1β and IL-6 were significantly increased in LPC-induced demyelination preparations without PAF but showed a redundancy in PAF-treated wild-type and knockout slices. These data suggest that PAF can play a detrimental role in LPC-induced demyelination probably due to a redundant response of PAFR-dependent and PAFR-independent effects on inflammatory cytokines.
Collapse
Affiliation(s)
- Zhisen Tian
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, 130033, People's Republic of China.,Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY, 40202, USA
| | - Tianci Chu
- Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY, 40202, USA
| | - Lisa B E Shields
- Norton Neuroscience Institute, Norton Healthcare, Louisville, KY, 40202, USA
| | - Qingsan Zhu
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, 130033, People's Republic of China.
| | - Yi Ping Zhang
- Norton Neuroscience Institute, Norton Healthcare, Louisville, KY, 40202, USA
| | - Maiying Kong
- Department of Bioinformatics and Biostatistics, University of Louisville School of Public Health & Information Sciences, Louisville, KY, 40202, USA
| | - Gregory N Barnes
- Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY, 40202, USA.,Department of Neurology, University of Louisville School of Medicine, Louisville, KY, 40202, USA.,Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, 40202, USA
| | - Yuanyi Wang
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, 130021, People's Republic of China.
| | - Christopher B Shields
- Norton Neuroscience Institute, Norton Healthcare, Louisville, KY, 40202, USA.,Department of Neurosurgery, University of Louisville School of Medicine, Louisville, KY, 40202, USA
| | - Jun Cai
- Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY, 40202, USA. .,Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, 40202, USA.
| |
Collapse
|
10
|
Abstract
Toxic peripheral neuropathies are an important form of acquired polyneuropathy produced by a variety of xenobiotics and different exposure scenarios. Delineating the mechanisms of neurotoxicants and determining the degenerative biological pathways triggered by peripheral neurotoxicants will facilitate the development of sensitive and specific biochemical-based methods for identifying neurotoxicants, designing therapeutic interventions, and developing structure-activity relationships for predicting potential neurotoxicants. This review presents an overview of the general concepts of toxic peripheral neuropathies with the goal of providing insight into why certain agents target the peripheral nervous system and produce their associated lesions. Experimental data and the main hypotheses for the mechanisms of selected agents that produce neuronopathies, axonopathies, or myelinopathies including covalent or noncovalent modifications, compromised energy or protein biosynthesis, and oxidative injury and disruption of ionic gradients across membranes are presented. The relevance of signaling between the main components of peripheral nerve, that is, glia, neuronal perikaryon, and axon, as a target for neurotoxicants and the contribution of active programmed degenerative pathways to the lesions observed in toxic peripheral neuropathies is also discussed.
Collapse
|
11
|
Bredehöft J, Bhandari DR, Pflieger FJ, Schulz S, Kang JX, Layé S, Roth J, Gerstberger R, Mayer K, Spengler B, Rummel C. Visualizing and Profiling Lipids in the OVLT of Fat-1 and Wild Type Mouse Brains during LPS-Induced Systemic Inflammation Using AP-SMALDI MSI. ACS Chem Neurosci 2019; 10:4394-4406. [PMID: 31513369 DOI: 10.1021/acschemneuro.9b00435] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Lipids, including omega-3 polyunsaturated fatty acids (n-3-PUFAs), modulate brain-intrinsic inflammation during systemic inflammation. The vascular organ of the lamina terminalis (OVLT) is a brain structure important for immune-to-brain communication. We, therefore, aimed to profile the distribution of several lipids (e.g., phosphatidyl-choline/ethanolamine, PC/PE), including n-3-PUFA-carrying lipids (esterified in phospholipids), in the OVLT during systemic lipopolysaccharide(LPS)-induced inflammation. We injected wild type and endogenously n-3-PUFA producing fat-1 transgenic mice with LPS (i.p., 2.5 mg/kg) or PBS. Brain samples were analyzed using immunohistochemistry and high-resolution atmospheric-pressure scanning microprobe matrix-assisted laser desorption/ionization orbital trapping mass spectrometry imaging (AP-SMALDI-MSI) for spatial resolution of lipids. Depending on genotype and treatment, several distinct distribution patterns were observed for lipids [e.g., lyso(L)PC (16:0)/(18:0)] proposed to be involved in inflammation. The distribution patterns ranged from being homogeneously disseminated [LPC (18:1)], absent/reduced signaling within the OVLT relative to adjacent preoptic tissue [PE (38:6)], either treatment- and genotype-dependent or independent low signal intensities [LPC (18:0)], treatment- and genotype-dependent [PC 38:6)] or independent accumulation in the OVLT [PC (38:7)], and accumulation in commissures, e.g., nerve fibers like the optic nerve [LPE (18:1)]. Overall, screening of lipid distribution patterns revealed distinct inflammation-induced changes in the OVLT, highlighting the prominent role of lipid metabolism in brain inflammation. Moreover, known and novel candidates for brain inflammation and immune-to-brain communication were detected specifically within this pivotal brain structure, a window between the periphery and the brain. The biological significance of these newly identified lipids abundant in the OVLT and the adjacent preoptic area remains to be further analyzed.
Collapse
Affiliation(s)
- Janne Bredehöft
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University Giessen, Frankfurter Strasse 100, D-35392 Giessen, Germany
| | - Dhaka Ram Bhandari
- Institute of Inorganic and Analytical Chemistry, Justus Liebig University Giessen, Heinrich-Buff-Ring 17, D-35392 Giessen, Germany
| | - Fabian Johannes Pflieger
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University Giessen, Frankfurter Strasse 100, D-35392 Giessen, Germany
| | - Sabine Schulz
- Institute of Inorganic and Analytical Chemistry, Justus Liebig University Giessen, Heinrich-Buff-Ring 17, D-35392 Giessen, Germany
| | - Jing X. Kang
- Laboratory for Lipid Medicine and Technology, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, 149 13th Street, Charlestown, Massachusetts 02129, United States
| | - Sophie Layé
- UMR 1286, NutriNeuro: Laboratoire Nutrition et Neurobiologie Intégrée, Institut National de la Recherche Agronomique, Université de Bordeaux, Bordeaux 33076, France
| | - Joachim Roth
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University Giessen, Frankfurter Strasse 100, D-35392 Giessen, Germany
- Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Marburg 35032, Germany
| | - Rüdiger Gerstberger
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University Giessen, Frankfurter Strasse 100, D-35392 Giessen, Germany
| | - Konstantin Mayer
- University of Giessen and Marburg Lung Center (UGMLC), Justus Liebig University Giessen, Klinikstrasse 33, Giessen D-35392, Germany
| | - Bernhard Spengler
- Institute of Inorganic and Analytical Chemistry, Justus Liebig University Giessen, Heinrich-Buff-Ring 17, D-35392 Giessen, Germany
| | - Christoph Rummel
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University Giessen, Frankfurter Strasse 100, D-35392 Giessen, Germany
- Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Marburg 35032, Germany
| |
Collapse
|
12
|
Mihara Y, Horikawa M, Sato S, Eto F, Hanada M, Banno T, Arima H, Ushirozako H, Yamada T, Xu D, Okamoto A, Yamazaki F, Takei S, Omura T, Yao I, Matsuyama Y, Setou M. Lysophosphatidic acid precursor levels decrease and an arachidonic acid-containing phosphatidylcholine level increases in the dorsal root ganglion of mice after peripheral nerve injury. Neurosci Lett 2019; 698:69-75. [DOI: 10.1016/j.neulet.2018.12.035] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Revised: 12/17/2018] [Accepted: 12/22/2018] [Indexed: 12/12/2022]
|
13
|
Maganti RJ, Hronowski XL, Dunstan RW, Wipke BT, Zhang X, Jandreski L, Hamann S, Juhasz P. Defining Changes in the Spatial Distribution and Composition of Brain Lipids in the Shiverer and Cuprizone Mouse Models of Myelin Disease. J Histochem Cytochem 2018; 67:203-219. [PMID: 30501365 PMCID: PMC6393840 DOI: 10.1369/0022155418815860] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Myelin is composed primarily of lipids and diseases affecting myelin are associated with alterations in its lipid composition. However, correlation of the spatial (in situ) distribution of lipids with the disease-associated compositional and morphological changes is not well defined. Herein we applied high resolution matrix-assisted laser desorption ionization imaging mass spectrometry (MALDI-IMS), immunohistochemistry (IHC), and liquid chromatography–electrospray ionization–mass spectrometry (LC-ESI-MS) to evaluate brain lipid alterations in the dysmyelinating shiverer (Shi) mouse and cuprizone (Cz) mouse model of reversible demyelination. MALDI-IMS revealed a decrease in the spatial distribution of sulfatide (SHexCer) species, SHexCer (d42:2), and a phosphatidylcholine (PC) species, PC (36:1), in white matter regions like corpus callosum (CC) both in the Shi mouse and Cz mouse model. Changes in these lipid species were restored albeit not entirely upon spontaneous remyelination after demyelination in the Cz mouse model. Lipid distribution changes correlated with the local morphological changes as confirmed by IHC. LC-ESI-MS analyses of CC extracts confirmed the MALDI-IMS derived reductions in SHexCer and PC species. These findings highlight the role of SHexCer and PC in preserving the normal myelin architecture and our experimental approaches provide a morphological basis to define lipid abnormalities relevant to myelin diseases.
Collapse
Affiliation(s)
| | | | - Robert W Dunstan
- Biogen, Cambridge, Massachusetts.,AbbVie, Worcester, Massachusetts
| | | | | | | | | | | |
Collapse
|
14
|
3D MALDI mass spectrometry imaging reveals specific localization of long-chain acylcarnitines within a 10-day time window of spinal cord injury. Sci Rep 2018; 8:16083. [PMID: 30382158 PMCID: PMC6208337 DOI: 10.1038/s41598-018-34518-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 10/19/2018] [Indexed: 12/14/2022] Open
Abstract
We report, for the first time, the detection and specific localization of long-chain acylcarnitines (LC ACs) along the lesion margins in an experimental model of spinal cord injury (SCI) using 3D mass spectrometry imaging (MSI). Acylcarnitines palmitoylcarnitine (AC(16:0)), palmitoleoylcarnitine (AC(16:1)), elaidic carnitine (AC(18:1)) and tetradecanoylcarnitine (AC(14:1)) were detected as early as 3 days post injury, and were present along the lesion margins 7 and 10 days after SCI induced by balloon compression technique in the rat. 3D MSI revealed the heterogeneous distribution of these lipids across the injured spinal cord, appearing well-defined at the lesion margins rostral to the lesion center, and becoming widespread and less confined to the margins at the region located caudally. The assigned acylcarnitines co-localize with resident microglia/macrophages detected along the lesion margins by immunofluorescence. Given the reported pro-inflammatory role of these acylcarnitines, their specific spatial localization along the lesion margin could hint at their potential pathophysiological roles in the progression of SCI.
Collapse
|
15
|
Plemel JR, Michaels NJ, Weishaupt N, Caprariello AV, Keough MB, Rogers JA, Yukseloglu A, Lim J, Patel VV, Rawji KS, Jensen SK, Teo W, Heyne B, Whitehead SN, Stys PK, Yong VW. Mechanisms of lysophosphatidylcholine-induced demyelination: A primary lipid disrupting myelinopathy. Glia 2017; 66:327-347. [PMID: 29068088 DOI: 10.1002/glia.23245] [Citation(s) in RCA: 125] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 08/28/2017] [Accepted: 09/25/2017] [Indexed: 12/21/2022]
Abstract
For decades lysophosphatidylcholine (LPC, lysolecithin) has been used to induce demyelination, without a clear understanding of its mechanisms. LPC is an endogenous lysophospholipid so it may cause demyelination in certain diseases. We investigated whether known receptor systems, inflammation or nonspecific lipid disruption mediates LPC-demyelination in mice. We found that LPC nonspecifically disrupted myelin lipids. LPC integrated into cellular membranes and rapidly induced cell membrane permeability; in mice, LPC injury was phenocopied by other lipid disrupting agents. Interestingly, following its injection into white matter, LPC was cleared within 24 hr but by five days there was an elevation of endogenous LPC that was not associated with damage. This elevation of LPC in the absence of injury raises the possibility that the brain has mechanisms to buffer LPC. In support, LPC injury in culture was significantly ameliorated by albumin buffering. These results shed light on the mechanisms of LPC injury and homeostasis.
Collapse
Affiliation(s)
- Jason R Plemel
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, T2N4N4, Canada
| | - Nathan J Michaels
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, T2N4N4, Canada
| | - Nina Weishaupt
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, N6A5C1, Canada
| | - Andrew V Caprariello
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, T2N4N4, Canada
| | - Michael B Keough
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, T2N4N4, Canada
| | - James A Rogers
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, T2N4N4, Canada
| | - Aran Yukseloglu
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, T2N4N4, Canada
| | - Jaehyun Lim
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, T2N4N4, Canada
| | - Vikas V Patel
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, N6A5C1, Canada
| | - Khalil S Rawji
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, T2N4N4, Canada
| | - Samuel K Jensen
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, T2N4N4, Canada
| | - Wulin Teo
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, T2N4N4, Canada
| | - Belinda Heyne
- Department of Chemistry, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, T2N4N4, Canada
| | - Shawn N Whitehead
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, N6A5C1, Canada
| | - Peter K Stys
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, T2N4N4, Canada
| | - V Wee Yong
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, T2N4N4, Canada
| |
Collapse
|
16
|
Fernández R, González P, Lage S, Garate J, Maqueda A, Marcaida I, Maguregui M, Ochoa B, Rodríguez FJ, Fernández JA. Influence of the Cation Adducts in the Analysis of Matrix-Assisted Laser Desorption Ionization Imaging Mass Spectrometry Data from Injury Models of Rat Spinal Cord. Anal Chem 2017; 89:8565-8573. [DOI: 10.1021/acs.analchem.7b02650] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Roberto Fernández
- Department
of Physical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940, Leioa, Spain
| | - Pau González
- Laboratory
of Molecular Neurology, Hospital Nacional de Parapléjicos (HNP), Finca la Peraleda s/n, 45071 Toledo, Spain
| | - Sergio Lage
- Department
of Physical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940, Leioa, Spain
| | - Jone Garate
- Department
of Physical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940, Leioa, Spain
| | - Alfredo Maqueda
- Laboratory
of Molecular Neurology, Hospital Nacional de Parapléjicos (HNP), Finca la Peraleda s/n, 45071 Toledo, Spain
| | - Iker Marcaida
- Department
of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940, Leioa, Spain
| | - Maite Maguregui
- Department
of Analytical Chemistry, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006, Vitoria-Gasteiz, Spain
| | - Begoña Ochoa
- Department
of Physiology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940, Leioa, Spain
| | - F. Javier Rodríguez
- Laboratory
of Molecular Neurology, Hospital Nacional de Parapléjicos (HNP), Finca la Peraleda s/n, 45071 Toledo, Spain
| | - José A. Fernández
- Department
of Physical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940, Leioa, Spain
| |
Collapse
|
17
|
Sui P, Watanabe H, Artemenko K, Sun W, Bakalkin G, Andersson M, Bergquist J. Neuropeptide imaging in rat spinal cord with MALDI-TOF MS: Method development for the application in pain-related disease studies. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2017; 23:105-115. [PMID: 28657437 DOI: 10.1177/1469066717703272] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Spinal cord as a connection between brain and peripheral nervous system is an essential material for studying neural transmission, especially in pain-related research. This study was the first to investigate pain-related neuropeptide distribution in rat spinal cord using a matrix-assisted laser desorption ionization-time of flight imaging mass spectrometry (MALDI TOF MS) approach. The imaging workflow was evaluated and showed that MALDI TOF MS provides efficient resolution and robustness for neuropeptide imaging in rat spinal cord tissue. The imaging result showed that in naive rat spinal cord the molecular distribution of haeme, phosphatidylcholine, substance P and thymosin beta 4 were well in line with histological features. Three groups of pain-related neuropeptides, which are cleaved from prodynorphin, proenkephalin and protachykinin-1 proteins were detected. All these neuropeptides were found predominantly localized in the dorsal spinal cord and each group had unique distribution pattern. This study set the stage for future MALDI TOF MS application to elucidate signalling mechanism of pain-related diseases in small animal models.
Collapse
Affiliation(s)
- Ping Sui
- 1 Analytical Chemistry, Department of Chemistry - BMC, Uppsala University, Uppsala, Sweden
| | - Hiroyuki Watanabe
- 2 Molecular Neuropsychopharmacology, Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Konstantin Artemenko
- 1 Analytical Chemistry, Department of Chemistry - BMC, Uppsala University, Uppsala, Sweden
| | - Wei Sun
- 2 Molecular Neuropsychopharmacology, Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Georgy Bakalkin
- 2 Molecular Neuropsychopharmacology, Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Malin Andersson
- 3 Drug Safety and Toxicology, Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Jonas Bergquist
- 1 Analytical Chemistry, Department of Chemistry - BMC, Uppsala University, Uppsala, Sweden
| |
Collapse
|
18
|
Arachidonic acid containing phosphatidylcholine increases due to microglial activation in ipsilateral spinal dorsal horn following spared sciatic nerve injury. PLoS One 2017; 12:e0177595. [PMID: 28542572 PMCID: PMC5443509 DOI: 10.1371/journal.pone.0177595] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 04/28/2017] [Indexed: 12/18/2022] Open
Abstract
Peripheral nerve injury induces substantial molecular changes in the somatosensory system that leads to maladaptive plasticity and cause neuropathic pain. Understanding the molecular pathways responsible for the development of neuropathic pain is essential to the development of novel rationally designed therapeutics. Although lipids make up to half of the dry weight of the spinal cord, their relation with the development of neuropathic pain is poorly understood. We aimed to elucidate the regulation of spinal lipids in response to neuropathic peripheral nerve injury in mice by utilizing matrix-assisted laser desorption/ionization imaging mass spectrometry, which allows visualization of lipid distribution within the cord. We found that arachidonic acid (AA) containing [PC(diacyl-16:0/20:4)+K]+ was increased temporarily at superficial ipsilateral dorsal horn seven days after spared nerve injury (SNI). The spatiotemporal changes in lipid concentration resembled microglia activation as defined by ionized calcium binding adaptor molecule 1 (Iba1) immunohistochemistry. Suppression of microglial function through minocycline administration resulted in attenuation of hypersensitivity and reduces [PC(diacyl-16:0/20:4)+K]+ elevation in the spinal dorsal horn. These data suggested that AA containing [PC(diacyl-16:0/20:4)+K]+ is related to hypersensitivity evoked by SNI and implicate microglial cell activation in this lipid production.
Collapse
|
19
|
The Distribution of Phosphatidylcholine Species in Superficial-Type Pharyngeal Carcinoma. BIOMED RESEARCH INTERNATIONAL 2017; 2017:5387913. [PMID: 28373982 PMCID: PMC5360943 DOI: 10.1155/2017/5387913] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 02/23/2017] [Indexed: 12/21/2022]
Abstract
Objectives. Superficial-type pharyngeal squamous cell carcinoma (STPSCC) is defined as carcinoma in situ or microinvasive squamous cell carcinoma without invasion to the muscular layer. An exploration of the biological characteristics of STPSCC could uncover the invasion mechanism of this carcinoma. Phosphatidylcholine (PC) in combination with fatty acids is considered to play an important role in cell motility. Imaging mass spectrometry (IMS) is especially suitable for phospholipid analysis because this technique can distinguish even fatty acid compositions. Study Design. IMS analysis of frozen human specimens. Methods. IMS analysis was conducted to elucidate the distribution of PC species in STPSCC tissues. STPSCC tissue sections from five patients were analyzed, and we identified the signals that showed significant increases in the subepithelial invasive region relative to the superficial region. Results. Three kinds of PC species containing arachidonic acid, that is, PC (16:0/20:4), PC (18:1/20:4), and PC (18:0/20:4), were increased in the subepithelial invasive region. Conclusion. These results may be associated with the invasion mechanism of hypopharyngeal carcinoma.
Collapse
|
20
|
Mass spectrometry imaging of biomarker lipids for phagocytosis and signalling during focal cerebral ischaemia. Sci Rep 2016; 6:39571. [PMID: 28004822 PMCID: PMC5177920 DOI: 10.1038/srep39571] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 11/08/2016] [Indexed: 12/15/2022] Open
Abstract
Focal cerebral ischaemia has an initial phase of inflammation and tissue injury followed by a later phase of resolution and repair. Mass spectrometry imaging (desorption electrospray ionization and matrix assisted laser desorption ionization) was applied on brain sections from mice 2 h, 24 h, 5d, 7d, and 20d after permanent focal cerebral ischaemia. Within 24 h, N-acyl-phosphatidylethanolamines, lysophosphatidylcholine, and ceramide accumulated, while sphingomyelin disappeared. At the later resolution stages, bis(monoacylglycero)phosphate (BMP(22:6/22:6)), 2-arachidonoyl-glycerol, ceramide-phosphate, sphingosine-1-phosphate, lysophosphatidylserine, and cholesteryl ester appeared. At day 5 to 7, dihydroxy derivates of docosahexaenoic and docosapentaenoic acid, some of which may be pro-resolving mediators, e.g. resolvins, were found in the injured area, and BMP(22:6/22:6) co-localized with the macrophage biomarker CD11b, and probably with cholesteryl ester. Mass spectrometry imaging can visualize spatiotemporal changes in the lipidome during the progression and resolution of focal cerebral inflammation and suggests that BMP(22:6/22:6) and N-acyl-phosphatidylethanolamines can be used as biomarkers for phagocytizing macrophages/microglia cells and dead neurones, respectively.
Collapse
|
21
|
Xu D, Omura T, Masaki N, Arima H, Banno T, Okamoto A, Hanada M, Takei S, Matsushita S, Sugiyama E, Setou M, Matsuyama Y. Increased arachidonic acid-containing phosphatidylcholine is associated with reactive microglia and astrocytes in the spinal cord after peripheral nerve injury. Sci Rep 2016; 6:26427. [PMID: 27210057 PMCID: PMC4876408 DOI: 10.1038/srep26427] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 04/28/2016] [Indexed: 12/30/2022] Open
Abstract
Peripheral nerve injury (PNI) triggers cellular and molecular changes in the spinal cord. However, little is known about how the polyunsaturated fatty acid-containing phosphatidylcholines (PUFA-PCs) are regulated in the spinal cord after PNI and the association of PUFA-PCs with the non-neuronal cells within in the central nervous system (CNS). In this study, we found that arachidonic acid-containing phosphatidylcholine (AA-PC), [PC(16:0/20:4)+K](+), was significantly increased in the ipsilateral ventral and dorsal horns of the spinal cord after sciatic nerve transection, and the increased expression of [PC(16:0/20:4)+K](+) spatiotemporally resembled the increase of reactive microglia and the astrocytes. From the lipidomics point of view, we conclude that [PC(16:0/20:4)+K](+) could be the main phospholipid in the spinal cord influenced by PNI, and the regulation of specific phospholipid molecule in the CNS after PNI is associated with the reactive microglia and astrocytes.
Collapse
Affiliation(s)
- Dongmin Xu
- Department of Orthopaedic Surgery, Hamamatsu University School of Medicine, 1-20-1, Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan
| | - Takao Omura
- Department of Orthopaedic Surgery, Hamamatsu University School of Medicine, 1-20-1, Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan
| | - Noritaka Masaki
- Department of Cell Biology and Anatomy, Hamamatsu University School of Medicine, 1-20-1, Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan
| | - Hideyuki Arima
- Department of Orthopaedic Surgery, Hamamatsu University School of Medicine, 1-20-1, Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan
| | - Tomohiro Banno
- Department of Orthopaedic Surgery, Hamamatsu University School of Medicine, 1-20-1, Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan
| | - Ayako Okamoto
- Department of Orthopaedic Surgery, Hamamatsu University School of Medicine, 1-20-1, Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan
| | - Mitsuru Hanada
- Department of Orthopaedic Surgery, Hamamatsu University School of Medicine, 1-20-1, Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan
| | - Shiro Takei
- Department of Cell Biology and Anatomy, Hamamatsu University School of Medicine, 1-20-1, Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan
| | - Shoko Matsushita
- Department of Cell Biology and Anatomy, Hamamatsu University School of Medicine, 1-20-1, Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan
| | - Eiji Sugiyama
- Department of Cell Biology and Anatomy, Hamamatsu University School of Medicine, 1-20-1, Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan
| | - Mitsutoshi Setou
- Department of Cell Biology and Anatomy, Hamamatsu University School of Medicine, 1-20-1, Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan
- Department of Systems Molecular Anatomy, Institute for Medical Photonics Research, Preeminent Medical Photonics Education & Research Center, Hamamatsu University School of Medicine, 1-20-1, Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan
- The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
- Department of Anatomy, The University of Hong Kong, Pokfulam, Hong Kong, 999077 China
- Division of Neural Systematics, National Institute for Physiological Sciences, 38 Nishigonaka Myodaiji, Okazaki, Aichi, 444-8585, Japan
| | - Yukihiro Matsuyama
- Department of Orthopaedic Surgery, Hamamatsu University School of Medicine, 1-20-1, Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan
| |
Collapse
|
22
|
Miyawaki S, Imai H, Hayasaka T, Masaki N, Ono H, Ochi T, Ito A, Nakatomi H, Setou M, Saito N. Imaging mass spectrometry detects dynamic changes of phosphatidylcholine in rat hippocampal CA1 after transient global ischemia. Neuroscience 2016; 322:66-77. [DOI: 10.1016/j.neuroscience.2016.02.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Revised: 02/02/2016] [Accepted: 02/02/2016] [Indexed: 11/16/2022]
|
23
|
Labombarda F, Jure I, Gonzalez S, Lima A, Roig P, Guennoun R, Schumacher M, De Nicola AF. A functional progesterone receptor is required for immunomodulation, reduction of reactive gliosis and survival of oligodendrocyte precursors in the injured spinal cord. J Steroid Biochem Mol Biol 2015; 154:274-84. [PMID: 26369614 DOI: 10.1016/j.jsbmb.2015.09.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 08/26/2015] [Accepted: 09/08/2015] [Indexed: 12/22/2022]
Abstract
The anti-inflammatory effects of progesterone have been increasingly recognized in several neuropathological models, including spinal cord inflammation. In the present investigation, we explored the regulation of proinflammatory factors and enzymes by progesterone at several time points after spinal cord injury (SCI) in male rats. We also demonstrated the role of the progesterone receptor (PR) in inhibiting inflammation and reactive gliosis, and in enhancing the survival of oligodendrocyte progenitors cells (OPC) in injured PR knockout (PRKO) mice receiving progesterone. First, after SCI in rats, progesterone greatly attenuated the injury-induced hyperexpression of the mRNAs of interleukin 1β (IL1β), IL6, tumor necrosis factor alpha (TNFα), inducible nitric oxide synthase (iNOS) and cyclooxygenase 2 (COX-2), all involved in oligodendrocyte damage. Second, the role of the PR was investigated in PRKO mice after SCI, in which progesterone failed to reduce the high expression of IL1β, IL6, TNFα and IκB-α mRNAs, the latter being considered an index of reduced NF-κB transactivation. These effects occurred in a time framework coincident with a reduction in the astrocyte and microglial responses. In contrast to wild-type mice, progesterone did not increase the density of OPC and did not prevent apoptotic death of these cells in PRKO mice. Our results support a role of PR in: (a) the anti-inflammatory effects of progesterone; (b) the modulation of astrocyte and microglial responses and (c) the prevention of OPC apoptosis, a mechanism that would enhance the commitment of progenitors to the remyelination pathway in the injured spinal cord.
Collapse
Affiliation(s)
- Florencia Labombarda
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biologia y Medicina Experimental, Buenos Aires, Argentina; Dept. of Human Biochemistry, Faculty of Medicine, University of Buenos Aires, Buenos Aires, Argentina
| | - Ignacio Jure
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biologia y Medicina Experimental, Buenos Aires, Argentina
| | - Susana Gonzalez
- Dept. of Human Biochemistry, Faculty of Medicine, University of Buenos Aires, Buenos Aires, Argentina; Laboratory of Nociception and Neuropathic Pain, Instituto de Biologia y Medicina Experimental, Buenos Aires, Argentina
| | - Analia Lima
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biologia y Medicina Experimental, Buenos Aires, Argentina
| | - Paulina Roig
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biologia y Medicina Experimental, Buenos Aires, Argentina
| | - Rachida Guennoun
- U1195 Inserm and Université Paris-Sud, 94276 Le Kremlin-Bicêtre, France
| | | | - Alejandro F De Nicola
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biologia y Medicina Experimental, Buenos Aires, Argentina; Dept. of Human Biochemistry, Faculty of Medicine, University of Buenos Aires, Buenos Aires, Argentina.
| |
Collapse
|
24
|
Sugiura Y, Honda K, Suematsu M. Development of an Imaging Mass Spectrometry Technique for Visualizing Localized Cellular Signaling Mediators in Tissues. ACTA ACUST UNITED AC 2015; 4:A0040. [PMID: 26819911 DOI: 10.5702/massspectrometry.a0040] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 06/02/2015] [Indexed: 11/23/2022]
Abstract
In vivo concentrations of cellular signaling mediators such as inflammatory mediators are normally maintained at very low levels due to their strong ability to induce a biological response. The production, diffusion, and decomposition of such mediators are spatio-temporally regulated. Therefore, in order to understand biochemical basis of disease progression and develop new therapeutic strategies, it is important to understand the spatiotemporal dynamics of the signaling mediators in vivo, during the progression of disorders, e.g., chronic inflammatory diseases; however, the lack of effective imaging technology has made it difficult to determine their localizations in vivo. Such characterization requires technical breakthroughs, including molecular imaging methods that are sensitive enough to detect low levels of metabolites in the heterogeneous tissue regions in diseased organs. We and other groups have attempted to fill this technical gap by developing highly sensitive imaging mass spectrometry (IMS) technologies. To date, we have established two key techniques toward this goal, including (i) a sample preparation procedure that has eliminated the problem of the postmortem degradation of labile metabolites, and (ii) on-tissue derivatization of metabolites, which can enhance analyte ionization efficiency. Here, we review recent progress in the development of these technologies as well as how the highly sensitive IMS technique has contributed to increasing understanding of the biochemical basis of disease mechanisms, discovery of new diagnostic markers, and development of new therapies.
Collapse
Affiliation(s)
- Yuki Sugiura
- Department of Biochemistry, Keio University School of Medicine; JST Precursory Research for Embryonic Science and Technology (PRESTO) Project
| | - Kurara Honda
- Department of Biochemistry, Keio University School of Medicine
| | - Makoto Suematsu
- Department of Biochemistry, Keio University School of Medicine; Japan Science and Technology Agency, Exploratory Research for Advanced Technology (ERATO)
Suematsu Gas Biology Project
| |
Collapse
|
25
|
Reductions of docosahexaenoic acid-containing phosphatidylcholine levels in the anterior horn of an ALS mouse model. Neuroscience 2015; 297:127-36. [PMID: 25841322 DOI: 10.1016/j.neuroscience.2015.03.060] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 03/19/2015] [Accepted: 03/25/2015] [Indexed: 12/31/2022]
Abstract
In this study, we analyzed the spatiotemporal alterations of phospholipid composition in the spinal cord of an amyotrophic lateral sclerosis (ALS) mouse model (G93A-mutated human superoxide dismutase 1 transgenic mice [SOD1(G93A) mice]) using imaging mass spectrometry (IMS), a powerful method to visualize spatial distributions of various types of molecules in situ. Using this technique, we deciphered the phospholipid distribution in the pre-symptomatic stage, early stage after disease onset, and terminal stages of disease in female SOD1(G93A) mouse spinal cords. These experiments revealed a significant decrease in levels of docosahexaenoic acid (DHA)-containing phosphatidylcholines (PCs), such as PC (diacyl-16:0/22:6), PC (diacyl-18:0/22:6), and PC (diacyl-18:1/22:6) in the L5 anterior horns of terminal stage (22-week-old) SOD1(G93A) mice. The reduction in PC (diacyl-16:0/22:6) level could be reflecting the loss of motor neurons themselves in the anterior horn of the spinal cord in ALS model mice. In contrast, other PCs, such as PC (diacyl-16:0/16:0), were observed specifically in the L5 dorsal horn gray matter, and their levels did not vary between ALS model mice and controls. Thus, our study showed a significant decrease in DHA-containing PCs, but not other PCs, in the terminal stage of ALS in model mice, which is likely to be a reflection of neuronal loss in the anterior horns of the spinal cords. Given its enrichment in dorsal sensory regions, the preservation of PC (diacyl-16:0/16:0) may be the result of spinal sensory neurons being unaffected in ALS. Taken together, these findings suggest that ALS spinal cords show significant alterations in PC metabolism only at the terminal stage of the disease, and that these changes are confined to specific anatomical regions and cell types.
Collapse
|
26
|
Saigusa D, Okudaira M, Wang J, Kano K, Kurano M, Uranbileg B, Ikeda H, Yatomi Y, Motohashi H, Aoki J. Simultaneous Quantification of Sphingolipids in Small Quantities of Liver by LC-MS/MS. ACTA ACUST UNITED AC 2015; 3:S0046. [PMID: 26819890 DOI: 10.5702/massspectrometry.s0046] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 11/28/2014] [Indexed: 12/18/2022]
Abstract
Sph, S1P, and Cer, derived from the membrane sphingolipids, act as intracellular and intercellular mediators, involved in various (path) physiological functions. Accordingly, determining the distributions and concentrations of these sphingolipid mediators in body tissues is an important task. Consequently, a method for determination of sphingolipids in small quantities of tissue is required. Sphingolipids analysis has been dependent on improvements in mass spectrometry (MS) technology. Additionally, decomposition of sphingosine-1-phosphate (S1P) in the tissue samples before preparation for MS has hindered analysis. In the present study, a method for stabilization of liver samples before MS preparation was developed using a heat stabilizer (Stabilizor™ T1). Then, a LC-MS/MS method using a triple-quadrupole mass spectrometer with a C8 column was developed for simultaneous determination of sphingolipids in small quantities of liver specimens. This method showed good separation and validation results. Separation was performed with a gradient elution of solvent A (5 mmol L(-1) ammonium formate in water, pH 4.0) and solvent B (5 mmol L(-1) ammonium formate in 95% acetonitrile, pH 4.0) at 300 μL min(-1). The lower limit of quantification was less than 132 pmol L(-1), and this method was accurate (∼13.5%) and precise (∼7.13%) for S1P analysis. The method can be used to show the tissue distribution of sphingolipids.
Collapse
Affiliation(s)
- Daisuke Saigusa
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University; Tohoku University School of Medicine; CREST, Japan Science and Technology Corporation (JST)
| | - Michiyo Okudaira
- Department of Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University
| | - Jiao Wang
- Department of Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University
| | - Kuniyuki Kano
- Department of Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University
| | - Makoto Kurano
- Department of Clinical Laboratory, Medicine Graduate School of Medicine, The University of Tokyo
| | - Baasanjav Uranbileg
- Department of Clinical Laboratory, Medicine Graduate School of Medicine, The University of Tokyo
| | - Hitoshi Ikeda
- Department of Clinical Laboratory, Medicine Graduate School of Medicine, The University of Tokyo
| | - Yutaka Yatomi
- Department of Clinical Laboratory, Medicine Graduate School of Medicine, The University of Tokyo
| | - Hozumi Motohashi
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University; Department of Gene Expression Regulation, Institute of Development, Aging and Cancer, Tohoku University
| | - Junken Aoki
- CREST, Japan Science and Technology Corporation (JST); Department of Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University
| |
Collapse
|
27
|
Hanada M, Tsutsumi K, Arima H, Shinjo R, Sugiura Y, Imagama S, Ishiguro N, Matsuyama Y. Evaluation of the effect of tranilast on rats with spinal cord injury. J Neurol Sci 2014; 346:209-15. [PMID: 25194634 DOI: 10.1016/j.jns.2014.08.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 07/17/2014] [Accepted: 08/20/2014] [Indexed: 01/30/2023]
Abstract
BACKGROUND Glial and fibrotic scars inhibit neural regeneration after spinal cord injury (SCI). N-[3,4-dimethoxycinnamoyl]-anthranilic acid (tranilast) inhibits transforming growth factor β, alleviates allergic reactions, and decreases hypertrophic skin scars. We evaluated its ability to improve motor function and inhibit the spread of tissue damage in rats with SCI. METHODS Rats with SCI were divided into groups that received tranilast (30 mg/[kg · day]) by intravenous administration (group IV), tranilast (200mg/[kg · day]) by oral administration (group OR), and saline injections (control). Motor functions were assessed by determining Basso, Beattie, and Bresnahan (BBB) scores and %grip tests for 8 weeks after SCI. Histological evaluation of ionized calcium binding adaptor molecule 1 (Iba1) at 1 week after SCI and glial fibrillary acidic protein (GFAP), fibronectin, and chondroitin sulfate (CS) at week 8 was performed. RESULTS Motor function recovery, BBB score, and the %grip test were significantly higher in the tranilast-treated groups than in the control group. At week 1 after SCI, inflammatory-cell invasion was more severe and Iba1 expression was significantly higher in the control group. At week 8, although the number of GFAP-positive cells increased greatly from the impaction site to the proximal and distal sites in the control group, these cells were confined around a cavity in the tranilast-treated groups. GFAP distribution coincided with that of fibronectin. Anti-CS antibody level in the tranilast-treated groups was significantly lower than that in the control group. CONCLUSIONS Tranilast inhibits inflammation in the acute phase of SCI and reduces glial and fibrotic scars and could present a new method for treating SCI.
Collapse
Affiliation(s)
- Mitsuru Hanada
- Department of Orthopaedic Surgery, Hamamatsu University School of Medicine, Handayama 1-20-1, Hamamatsu, Shizuoka 431-3192, Japan.
| | - Koji Tsutsumi
- Division of Cell Biology, Department of Biosciences, School of Science, Kitasato University, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa 252-0373, Japan
| | - Hideyuki Arima
- Department of Orthopaedic Surgery, Hamamatsu University School of Medicine, Handayama 1-20-1, Hamamatsu, Shizuoka 431-3192, Japan
| | - Ryuichi Shinjo
- Department of Orthopedics, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Yuki Sugiura
- Department of Biochemistry, Keio University School of Medicine, Tokyo 160-8582, Japan; JST Precursory Research for Embryonic Science and Technology (PRESTO) Project, Japan
| | - Shiro Imagama
- Department of Orthopedics, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Naoki Ishiguro
- Department of Orthopedics, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Yukihiro Matsuyama
- Department of Orthopaedic Surgery, Hamamatsu University School of Medicine, Handayama 1-20-1, Hamamatsu, Shizuoka 431-3192, Japan.
| |
Collapse
|
28
|
Anderson DMG, Ablonczy Z, Koutalos Y, Spraggins J, Crouch RK, Caprioli RM, Schey KL. High resolution MALDI imaging mass spectrometry of retinal tissue lipids. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2014; 25:1394-403. [PMID: 24819461 PMCID: PMC4180438 DOI: 10.1007/s13361-014-0883-2] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 03/05/2014] [Accepted: 03/14/2014] [Indexed: 05/11/2023]
Abstract
Matrix assisted laser desorption ionization imaging mass spectrometry (MALDI IMS) has the ability to provide an enormous amount of information on the abundances and spatial distributions of molecules within biological tissues. The rapid progress in the development of this technology significantly improves our ability to analyze smaller and smaller areas and features within tissues. The mammalian eye has evolved over millions of years to become an essential asset for survival, providing important sensory input of an organism's surroundings. The highly complex sensory retina of the eye is comprised of numerous cell types organized into specific layers with varying dimensions, the thinnest of which is the 10 μm retinal pigment epithelium (RPE). This single cell layer and the photoreceptor layer contain the complex biochemical machinery required to convert photons of light into electrical signals that are transported to the brain by axons of retinal ganglion cells. Diseases of the retina, including age-related macular degeneration (AMD), retinitis pigmentosa, and diabetic retinopathy, occur when the functions of these cells are interrupted by molecular processes that are not fully understood. In this report, we demonstrate the use of high spatial resolution MALDI IMS and FT-ICR tandem mass spectrometry in the Abca4(-/-) knockout mouse model of Stargardt disease, a juvenile onset form of macular degeneration. The spatial distributions and identity of lipid and retinoid metabolites are shown to be unique to specific retinal cell layers.
Collapse
Affiliation(s)
- David M. G. Anderson
- Mass Spectrometry Research Center and Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN
| | - Zsolt Ablonczy
- Department of Ophthalmology, Storm Eye Institute, Medical University of South Carolina, Charleston, SC
| | - Yiannis Koutalos
- Department of Ophthalmology, Storm Eye Institute, Medical University of South Carolina, Charleston, SC
| | - Jeffrey Spraggins
- Mass Spectrometry Research Center and Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN
| | - Rosalie K. Crouch
- Department of Ophthalmology, Storm Eye Institute, Medical University of South Carolina, Charleston, SC
| | - Richard M. Caprioli
- Mass Spectrometry Research Center and Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN
- Department of Chemistry, Pharmacology and Medicine, Vanderbilt University, Nashville, TN
| | - Kevin L. Schey
- Mass Spectrometry Research Center and Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN
| |
Collapse
|
29
|
Arima H, Hanada M, Hayasaka T, Masaki N, Omura T, Xu D, Hasegawa T, Togawa D, Yamato Y, Kobayashi S, Yasuda T, Matsuyama Y, Setou M. Blockade of IL-6 signaling by MR16-1 inhibits reduction of docosahexaenoic acid-containing phosphatidylcholine levels in a mouse model of spinal cord injury. Neuroscience 2014; 269:1-10. [DOI: 10.1016/j.neuroscience.2014.03.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 02/08/2014] [Accepted: 03/09/2014] [Indexed: 12/18/2022]
|
30
|
Integrative biological analysis for neuropsychopharmacology. Neuropsychopharmacology 2014; 39:5-23. [PMID: 23800968 PMCID: PMC3857644 DOI: 10.1038/npp.2013.156] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2013] [Revised: 04/18/2013] [Accepted: 04/19/2013] [Indexed: 01/24/2023]
Abstract
Although advances in psychotherapy have been made in recent years, drug discovery for brain diseases such as schizophrenia and mood disorders has stagnated. The need for new biomarkers and validated therapeutic targets in the field of neuropsychopharmacology is widely unmet. The brain is the most complex part of human anatomy from the standpoint of number and types of cells, their interconnections, and circuitry. To better meet patient needs, improved methods to approach brain studies by understanding functional networks that interact with the genome are being developed. The integrated biological approaches--proteomics, transcriptomics, metabolomics, and glycomics--have a strong record in several areas of biomedicine, including neurochemistry and neuro-oncology. Published applications of an integrated approach to projects of neurological, psychiatric, and pharmacological natures are still few but show promise to provide deep biological knowledge derived from cells, animal models, and clinical materials. Future studies that yield insights based on integrated analyses promise to deliver new therapeutic targets and biomarkers for personalized medicine.
Collapse
|
31
|
Yano R, Ma L, Nagai J, Ueda H. Interleukin-1β plays key roles in LPA-induced amplification of LPA production in neuropathic pain model. Cell Mol Neurobiol 2013; 33:1033-41. [PMID: 23949386 DOI: 10.1007/s10571-013-9970-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2013] [Accepted: 07/31/2013] [Indexed: 11/28/2022]
Abstract
Lysophosphatidic acid (LPA) is a bioactive lipid mediator that exerts a wide range of biological actions. In recent decades, LPA has been demonstrated as an important initiator of neuropathic pain based on the mechanisms of LPA-induced feed-forward LPA amplification. In this study, we examined the possible involvement of interleukin (IL)-1β in such LPA production. Intrathecal (i.t.) LPA injection rapidly increased the expression of IL-1β mRNA in the spinal dorsal horn as early as 0.5 h after injection, and the level reached peak at 2 h. Through a developed quantitative mass spectrometry for detecting LPA species, the elevated levels of 18:1, 16:0, and 18:0 LPA in the spinal dorsal horn were observed at 3 h after 18:1 LPA injection and this elevation was completely blocked by the pretreatment of IL-1β-neutralizing antibody. Moreover, enzyme assay experiments showed that LPA (i.t.) significantly activated calcium-independent phospholipase A2 (iPLA2) and cytosolic phospholipase A2 (cPLA2) in the spinal dorsal horn at 1 and 2 h, respectively, and these biochemical changes were also significantly inhibited by IL-1β-neutralizing antibody. Similarly, IL-1β-neutralizing antibody reversed LPA-induced neuropathic pain-like behavior. These findings suggest that the early release of IL-1β is involved in LPA-induced amplification of LPA production, which underlies the initial mechanisms of LPA-induced neuropathic pain.
Collapse
Affiliation(s)
- Ryo Yano
- Department of Molecular Pharmacology and Neuroscience, Nagasaki University Graduate School of Biomedical Sciences, 1-14 Bunkyo-machi, Nagasaki, 852-8521, Japan
| | | | | | | |
Collapse
|
32
|
Ma L, Nagai J, Chun J, Ueda H. An LPA species (18:1 LPA) plays key roles in the self-amplification of spinal LPA production in the peripheral neuropathic pain model. Mol Pain 2013; 9:29. [PMID: 23773289 PMCID: PMC3691926 DOI: 10.1186/1744-8069-9-29] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 06/12/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND We previously reported that nerve injury-induced neuropathic pain is initiated by newly produced lysophosphatidic acid (LPA). RESULTS In this study, we developed a quantitative mass spectrometry for detecting LPA species by using Phos-tag. Following nerve injury, the levels of 18:1, 16:0 and 18:0 LPA in the spinal dorsal horn significantly increased at 3 h and declined at 6 h. Among them, 18:1 LPA level was the most abundant. In the same preparation, there were significant elevations in the activities of cytosolic phospholipase A2 (cPLA2) and calcium-independent phospholipase A2 (iPLA2), key enzymes for LPA synthesis, at 1 h, while there was no significant change in phospholipase A1 activity. Pharmacological studies revealed that NMDA and neurokinin 1 receptors, cPLA2, iPLA2 and microglial activation, as well as LPA1 and LPA3 receptors were all involved in the nerve injury-induced LPA production, and underlying cPLA2 and iPLA2 activations. In the cells expressing LPA1 or LPA3 receptor, the receptor-mediated calcium mobilization was most potent with 18:1 LPA, compared with 16:0 or 18:0 LPA. Moreover, the intrathecal injection of 18:1 LPA, but not 16:0 or 18:0 LPA, caused a spinal LPA production and neuropathic pain-like behavior. CONCLUSION These results suggest that 18:1 LPA is the predominant ligand responsible for LPA1 and LPA3 receptors-mediated amplification of LPA production through microglial activation.
Collapse
|
33
|
Matrix-assisted laser desorption/ionization imaging mass spectrometry revealed traces of dental problem associated with dental structure. Anal Bioanal Chem 2013; 406:1355-63. [PMID: 23727733 DOI: 10.1007/s00216-013-7075-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 05/16/2013] [Accepted: 05/16/2013] [Indexed: 02/06/2023]
Abstract
Periodontal disease is a serious dental problem because it does not heal naturally and leads to tooth loss. In periodontal disease, inflammation at periodontal tissue is thought as predominant, and its effect against tooth itself remains unclear. In this study, we applied matrix-assisted laser desorption/ionization imaging mass spectrometry (IMS) to teeth for the first time. By comparing anatomical structure of tooth affected with periodontal disease with normal ones, we analyzed traces of the disease on tooth. We found signals characteristic of enamel, dentin, and dental pulp, respectively, in mass spectra obtained from normal teeth. Ion images reconstructed using these signals showed anatomical structures of the tooth clearly. Next, we performed IMS upon teeth of periodontal disease. Overall characteristic of the mass spectrum appeared similar to normal ones. However, ion images reconstructed using signals from the tooth of periodontal disease revealed loss of periodontal ligament visualized together with dental pulp in normal teeth. Moreover, ion image clearly depicted an accumulation of signal at m/z 496.3 at root surface. Such an accumulation that cannot be examined only from mass spectrum was revealed by utilization of IMS. Recent studies about inflammation revealed that the signal at m/z 496.3 reflects lyso-phosphatidylcholine (LPC). Infiltration of the signal is statistically significant, and its intensity profile exhibited the influence has reached deeply into the tooth. This suggests that influence of periodontal disease is not only inflammation of periodontal tissue but also infiltration of LPC to root surface, and therefore, anti-inflammatory treatment is required besides conventional treatments.
Collapse
|
34
|
Uchiyama Y, Hayasaka T, Masaki N, Watanabe Y, Masumoto K, Nagata T, Katou F, Setou M. Imaging mass spectrometry distinguished the cancer and stromal regions of oral squamous cell carcinoma by visualizing phosphatidylcholine (16:0/16:1) and phosphatidylcholine (18:1/20:4). Anal Bioanal Chem 2013; 406:1307-16. [PMID: 23728729 DOI: 10.1007/s00216-013-7062-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Revised: 04/22/2013] [Accepted: 05/10/2013] [Indexed: 12/28/2022]
Abstract
Most oral cancers are oral squamous cell carcinoma (OSCC). The anatomical features of OSCC have been histochemically evaluated with hematoxylin and eosin. However, the border between the cancer and stromal regions is unclear and large portions of the cancer and stromal regions are resected in surgery. To reduce the resected area and maintain oral function, a new method of diagnosis is needed. In this study, we tried to clearly distinguish the border on the basis of biomolecule distributions visualized by imaging mass spectrometry (IMS). In the IMS dataset, eleven signals were significantly different in intensity (p < 0.01) between the cancer and stromal regions. Two signals at m/z 770.5 and m/z 846.6 were distributed in each region, and a clear border was revealed. Tandem mass spectrometric (MS/MS) analysis identified these signals as phosphatidylcholine (PC) (16:0/16:1) at m/z 770.5 in the cancer region and PC (18:1/20:4) at m/z 846.6 in the stromal region. Moreover, the distribution of PC species containing arachidonic acid in the stromal region suggests that lymphocytes accumulated in response to the inflammation caused by cancer invasion. In conclusion, the cancer and stromal regions of OSCCs were clearly distinguished by use of these PC species and IMS analysis, and this molecular identification can provide important information to elucidate the mechanism of cancer invasion.
Collapse
Affiliation(s)
- Yoshiyuki Uchiyama
- Department of Oral and Maxillofacial Surgery, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka, 431-3192, Japan
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Hanrieder J, Ekegren T, Andersson M, Bergquist J. MALDI imaging of post-mortem human spinal cord in amyotrophic lateral sclerosis. J Neurochem 2013; 124:695-707. [PMID: 22994484 DOI: 10.1111/jnc.12019] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Revised: 07/02/2012] [Accepted: 08/28/2012] [Indexed: 12/14/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating, rapidly progressing disease of the central nervous system that is characterized by motor neuron degeneration in the brainstem and the spinal cord. Matrix-assisted laser desorption/ionization (MALDI) imaging mass spectrometry is an emerging powerful technique that allows for spatially resolved, comprehensive, and specific characterization of molecular species in situ. In this study, we report for the first time the MALDI imaging-based spatial protein profiling and relative quantification of post-mortem human spinal cord samples obtained from ALS patients and controls. In normal spinal cord, protein distribution patterns were well in line with histological features. For example, thymosin beta 4, ubiquitin, histone proteins, acyl-CoA-binding protein, and macrophage inhibitory factor were predominantly localized to the gray matter. Furthermore, unsupervised statistics revealed a significant reduction of two protein species in ALS gray matter. One of these proteins (m/z 8451) corresponds to an endogenous truncated form of ubiquitin (Ubc 1-76), with both C-terminal glycine residues removed (Ubc-T/Ubc 1-74). This region-specific ubiquitin processing suggests a disease-related change in protease activity. These results highlight the importance of MALDI mass spectrometry as a versatile approach to elucidate molecular mechanisms of neurodegenerative diseases.
Collapse
Affiliation(s)
- Jörg Hanrieder
- Department of Chemical and Biological Engineering, Analytical Chemistry, Chalmers University of Technology, Gothenburg, Sweden.
| | | | | | | |
Collapse
|
36
|
|
37
|
Ye H, Gemperline E, Li L. A vision for better health: mass spectrometry imaging for clinical diagnostics. Clin Chim Acta 2012; 420:11-22. [PMID: 23078851 DOI: 10.1016/j.cca.2012.10.018] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2012] [Accepted: 10/09/2012] [Indexed: 12/13/2022]
Abstract
BACKGROUND Mass spectrometry imaging (MSI) is a powerful tool that grants the ability to investigate a broad mass range of molecules from small molecules to large proteins by creating detailed distribution maps of selected compounds. Its usefulness in biomarker discovery towards clinical applications has obtained success by correlating the molecular expression of tissues acquired from MSI with well-established histology. RESULTS To date, MSI has demonstrated its versatility in clinical applications, such as biomarker diagnostics of different diseases, prognostics of disease severities and metabolic response to drug treatment, etc. These studies have provided significant insight in clinical studies over the years and current technical advances are further facilitating the improvement of this field. Although the underlying concept is simple, factors such as choice of ionization method, sample preparation, instrumentation and data analysis must be taken into account for successful applications of MSI. Herein, we briefly reviewed these key elements yet focused on the clinical applications of MSI that cannot be addressed by other means. CONCLUSIONS Challenges and future perspectives in this field are also discussed to conclude that the ever-growing applications with continuous development of this powerful analytical tool will lead to a better understanding of the biology of diseases and improvements in clinical diagnostics.
Collapse
Affiliation(s)
- Hui Ye
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705-2222, USA
| | | | | |
Collapse
|