1
|
Dai S, Luo M, Jiang T, Lu M, Zhou X, Zhu S, Han X, Yang F, Wang H, Xu D. Dexamethasone as an emerging environmental pollutant: Disruption of cholesterol-dependent synaptogenesis in the hippocampus and subsequent neurobehavioral impacts in offspring. ENVIRONMENT INTERNATIONAL 2024; 192:109064. [PMID: 39413532 DOI: 10.1016/j.envint.2024.109064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/26/2024] [Accepted: 10/08/2024] [Indexed: 10/18/2024]
Abstract
When fetuses are exposed to abnormally high levels of glucocorticoids in utero, irreversible damage to neuronal synaptogenesis occurs, leading to long-term cognitive and emotional behavioral abnormalities after birth. In this study, we investigated how maternal exposure to a novel environmental pollutant-synthetic glucocorticoid dexamethasone-affects offspring cognitive and emotional behaviors enduringly. We noted that offspring subjected to maternal dexamethasone exposure (MDE) displayed cognitive and emotional neurobehavioral deficits beginning in infancy, and these impairments persisted into adulthood. The principal mechanism involves MDE-induced damage to hippocampal neuronal synapse formation in the offspring, primarily due to a cholesterol deficiency which destabilizes neuronal membranes, thereby affecting normal synapse formation and ultimately leading to cognitive and emotional deficiencies. Specifically, we demonstrated abnormal activation of glucocorticoid receptors in hippocampal astroglial cells of MDE offspring, which triggers changes in the miR-450a-3p/HAT1/ABCG1 signaling axis, causing impaired cholesterol efflux in astroglial cells and insufficient cholesterol supply to neurons, further impairing synaptogenesis. This research not only underscores the significant impact of prenatal environmental pollutants on long-term health outcomes in offspring but also broadens our understanding of how prenatal exposure to glucocorticoids affects brain development in the progeny, providing new insights for interventions in neurodevelopmental and psychiatric disorders of fetal origin.
Collapse
Affiliation(s)
- Shiyun Dai
- Department of Obstetrics, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China; National Health Commission Key Laboratory of Clinical Research for Cardiovascular Medications, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Mingcui Luo
- Department of Obstetrics, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Tao Jiang
- Department of Obstetrics, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Mengxi Lu
- Department of Obstetrics, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Xinli Zhou
- Department of Pharmacology, Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan 430071, China
| | - Sen Zhu
- Department of Obstetrics, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Xiaoyi Han
- Department of Obstetrics, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Fang Yang
- Department of Obstetrics, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Hui Wang
- Department of Pharmacology, Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China
| | - Dan Xu
- Department of Obstetrics, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China.
| |
Collapse
|
2
|
Mosharaf MK, Gomes RL, Cook S, Alam MS, Rasmusssen A. Wastewater reuse and pharmaceutical pollution in agriculture: Uptake, transport, accumulation and metabolism of pharmaceutical pollutants within plants. CHEMOSPHERE 2024; 364:143055. [PMID: 39127189 DOI: 10.1016/j.chemosphere.2024.143055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/02/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
The presence of pharmaceutical pollutants in water sources has become a growing concern due to its potential impacts on human health and other organisms. The physicochemical properties of pharmaceuticals based on their intended therapeutical application, which include antibiotics, hormones, analgesics, and antidepressants, is quite diverse. Their presence in wastewater, sewerage water, surface water, ground water and even in drinking water is reported by many researchers throughout the world. Human exposure to these pollutants through drinking water or consumption of aquatic and terrestrial organisms has raised concerns about potential adverse effects, such as endocrine disruption, antibiotic resistance, and developmental abnormalities. Once in the environment, they can persist, undergo transformation, or degrade, leading to a complex mixture of contaminants. Application of treated wastewater, compost, manures or biosolids in agricultural fields introduce pharmaceutical pollutants in the environment. As pharmaceuticals are diverse in nature, significant differences are observed during their uptake and accumulation in plants. While there have been extensive studies on aquatic ecosystems, the effect on agricultural land is more disparate. As of now, there are few reports available on the potential of plant uptake and transportation of pharmaceuticals within and between plant organs. This review summarizes the occurrence of pharmaceuticals in aquatic water bodies at a range of concentrations and their uptake, accumulation, and transport within plant tissues. Research gaps on pharmaceutical pollutants' specific effect on plant growth and future research scopes are highlighted. The factors affecting uptake of pharmaceuticals including hydrophobicity, ionization, physicochemical properties (pKa, logKow, pH, Henry's law constant) are discussed. Finally, metabolism of pharmaceuticals within plant cells through metabolism phase enzymes and plant responses to pharmaceuticals are reviewed.
Collapse
Affiliation(s)
- Md Khaled Mosharaf
- Agriculture and Environmental Sciences Division, School of Biosciences, Sutton Bonington, University of Nottingham, LE12 5RD, United Kingdom; Department of Environmental Science, Faculty of Agriculture, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh.
| | - Rachel L Gomes
- Food Water Waste Research Group, Faculty of Engineering, University of Nottingham, NG7 2RD, United Kingdom
| | - Sarah Cook
- Water and Environmental Engineering, School of Engineering, University of Warwick, Coventry, CV4 7AL, United Kingdom
| | - Mohammed S Alam
- Agriculture and Environmental Sciences Division, School of Biosciences, Sutton Bonington, University of Nottingham, LE12 5RD, United Kingdom
| | - Amanda Rasmusssen
- Agriculture and Environmental Sciences Division, School of Biosciences, Sutton Bonington, University of Nottingham, LE12 5RD, United Kingdom
| |
Collapse
|
3
|
Gutierrez-Noya VM, Gómez-Oliván LM, Orozco-Hernández JM, Rosales-Pérez KE, Casas-Hinojosa I, Elizalde-Velázquez GA, Gracía-Medina S, Galar-Martínez M, Orozco-Hernández LA. Eco-endocrinological dynamics: Unraveling dexamethasone's influence on the interrenal axis in juvenile carp Cyprinus carpio. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 931:172947. [PMID: 38703837 DOI: 10.1016/j.scitotenv.2024.172947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/27/2024] [Accepted: 05/01/2024] [Indexed: 05/06/2024]
Abstract
This study delves into the eco-endocrinological dynamics concerning the impact of dexamethasone (DXE) on the interrenal axis in juvenile carp, Cyprinus carpio. Through a comprehensive analysis, we investigated the effects of DXE exposure on oxidative stress, biochemical biomarkers, gene expression, and bioaccumulation within the interrenal axis. Results revealed a concentration-dependent escalation of cellular oxidation biomarkers, including 1) hydroperoxides content (HPC), 2) lipid peroxidation level (LPX), and 3) protein carbonyl content (PCC), indicative of heightened oxidative stress. Concurrently, the activity of critical antioxidant enzymes, superoxide dismutase (SOD), and catalase (CAT), significantly increased, underscoring the organism's response to oxidative insult. Notable alterations were observed in biochemical biomarkers, particularly Gamma-glutamyl-transpeptidase (GGT) and alkaline phosphatase (ALP) activity, with GGT displaying a significant decrease with increasing DXE concentrations. Gene expression analysis revealed a significant upregulation of stress and inflammation response genes, as well as those associated with sensitivity to superoxide ion presence and calcium signaling, in response to DXE exposure. Furthermore, DXE demonstrated a concentration-dependent presence in interrenal tissue, with consistent bioconcentration factors observed across all concentrations tested. These findings shed light on the physiological and molecular responses of juvenile carp to DXE exposure, emphasizing the potential ecological implications of DXE contamination in aquatic environments. Understanding these dynamics is crucial for assessing the environmental impact of glucocorticoid pollutants and developing effective management strategies to mitigate their adverse effects on aquatic ecosystems.
Collapse
Affiliation(s)
- Veronica Margarita Gutierrez-Noya
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120 Toluca, Estado de México, Mexico
| | - Leobardo Manuel Gómez-Oliván
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120 Toluca, Estado de México, Mexico.
| | - José Manuel Orozco-Hernández
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120 Toluca, Estado de México, Mexico
| | - Karina Elisa Rosales-Pérez
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120 Toluca, Estado de México, Mexico
| | - Idalia Casas-Hinojosa
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120 Toluca, Estado de México, Mexico
| | - Gustavo Axel Elizalde-Velázquez
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120 Toluca, Estado de México, Mexico
| | - Sandra Gracía-Medina
- Laboratorio de Toxicología Acuática, Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, Av. Wilfrido Massieu s/n y cerrada Manuel Stampa, Col. Industrial Vallejo, Ciudad de México, CP, 07700, Mexico
| | - Marcela Galar-Martínez
- Laboratorio de Toxicología Acuática, Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, Av. Wilfrido Massieu s/n y cerrada Manuel Stampa, Col. Industrial Vallejo, Ciudad de México, CP, 07700, Mexico
| | - Luis Alberto Orozco-Hernández
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120 Toluca, Estado de México, Mexico
| |
Collapse
|
4
|
Mohd Hanafiah Z, Wan Mohtar WHM, Wan-Mohtar WAAQI, Bithi AS, Rohani R, Indarto A, Yaseen ZM, Sharil S, Binti Abdul Manan TS. Removal of pharmaceutical compounds and toxicology study in wastewater using Malaysian fungal Ganoderma lucidum. CHEMOSPHERE 2024; 358:142209. [PMID: 38697564 DOI: 10.1016/j.chemosphere.2024.142209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/24/2024] [Accepted: 04/29/2024] [Indexed: 05/05/2024]
Abstract
Elevated usage of pharmaceutical products leads to the accumulation of emerging contaminants in sewage. In the current work, Ganoderma lucidum (GL) was used to remove pharmaceutical compounds (PCs), proposed as a tertiary method in sewage treatment plants (STPs). The PCs consisted of a group of painkillers (ketoprofen, diclofenac, and dexamethasone), psychiatrists (carbamazepine, venlafaxine, and citalopram), beta-blockers (atenolol, metoprolol, and propranolol), and anti-hypertensives (losartan and valsartan). The performance of 800 mL of synthetic water, effluent STP, and hospital wastewater (HWW) was evaluated. Parameters, including treatment time, inoculum volume, and mechanical agitation speed, have been tested. The toxicity of the GL after treatment is being studied based on exposure levels to zebrafish embryos (ZFET) and the morphology of the GL has been observed via Field Emission Scanning Electron Microscopy (FESEM). The findings conclude that GL can reduce PCs from <10% to >90%. Diclofenac and valsartan are the highest (>90%) in the synthetic model, while citalopram and propranolol (>80%) are in the real wastewater. GL effectively removed pollutants in 48 h, 1% of the inoculum volume, and 50 rpm. The ZFET showed GL is non-toxic (LC50 is 209.95 mg/mL). In the morphology observation, pellets GL do not show major differences after treatment, showing potential to be used for a longer treatment time and to be re-useable in the system. GL offers advantages to removing PCs in water due to their non-specific extracellular enzymes that allow for the biodegradation of PCs and indicates a good potential in real-world applications as a favourable alternative treatment.
Collapse
Affiliation(s)
- Zarimah Mohd Hanafiah
- Department of Civil Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, UKM, Bangi, Selangor, Malaysia; Functional Omics and Bioprocess Development Laboratory, Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Wan Hanna Melini Wan Mohtar
- Department of Civil Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, UKM, Bangi, Selangor, Malaysia; Environmental Management Centre, Institute of Climate Change, Universiti Kebangsaan Malaysia, 43600, UKM, Bangi, Selangor, Malaysia.
| | - Wan Abd Al Qadr Imad Wan-Mohtar
- Functional Omics and Bioprocess Development Laboratory, Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Aziza Sultana Bithi
- Department of Civil Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, UKM, Bangi, Selangor, Malaysia
| | - Rosiah Rohani
- Department of Chemical & Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, UKM, Bangi, Selangor, Malaysia
| | - Antonius Indarto
- Department of Chemical Engineering, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung, 40132, Indonesia
| | - Zaher Mundher Yaseen
- Civil and Environmental Engineering Department, King Fahd University of Petroleum & Minerals, Dhahran, Saudi Arabia
| | - Suraya Sharil
- Department of Civil Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, UKM, Bangi, Selangor, Malaysia
| | - Teh Sabariah Binti Abdul Manan
- Institute of Tropical Biodiversity and Sustainable Development, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
| |
Collapse
|
5
|
Makwakwa TA, Moema DE, Msagati TAM. Multi-criteria decision analysis: technique for order of preference by similarity to ideal solution for selecting greener analytical method in the determination of mifepristone in environmental water samples. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:29460-29471. [PMID: 38578593 PMCID: PMC11058867 DOI: 10.1007/s11356-024-32961-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 03/13/2024] [Indexed: 04/06/2024]
Abstract
This work proposes the use of multi-criteria decision analysis (MCDA) to select a more environmentally friendly analytical procedure. TOPSIS, which stands for Technique for Order of Preference by Similarity to Ideal Solution, is an example of a MCDA method that may be used to rank or select best alternative based on various criteria. Thirteen analytical procedures were used in this study as TOPSIS input choices for mifepristone determination in water samples. The input data, which consisted of these choices, was described using assessment criteria based on 12 principles of green analytical chemistry (GAC). Based on the objective mean weighting (MW), the weights for each criterion were assigned equally. The most preferred analytical method according to the ranking was solid phase extraction with micellar electrokinetic chromatography (SPE-MEKC), while solid phase extraction combined with ultra-high performance liquid chromatography tandem mass spectrometry (SPE-UHPLC-MS/MS) was ranked last. TOPSIS ranking results were also compared to the green metrics NEMI, Eco-Scale, GAPI, AGREE, and AGREEprep that were used to assess the greenness of thirteen analytical methods for mifepristone determination. The results demonstrated that only the AGREE metric tool correlated with TOPSIS; however, there was no correlation with other metric tools. The analysis results suggest that TOPSIS is a very useful tool for ranking or selecting the analytical procedure in terms of its greenness and that it can be easily integrated with other green metrics tools for method greenness assessment.
Collapse
Affiliation(s)
- Tlou A Makwakwa
- Department of Chemistry, College of Science, Engineering and Technology, University of South Africa, Johannesburg, 1709, Florida, South Africa
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering and Technology, University of South Africa, Johannesburg, 1709, Florida, South Africa
| | - Dineo E Moema
- Department of Chemistry, College of Science, Engineering and Technology, University of South Africa, Johannesburg, 1709, Florida, South Africa
| | - Titus A M Msagati
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering and Technology, University of South Africa, Johannesburg, 1709, Florida, South Africa.
| |
Collapse
|
6
|
Chaúque BJM, Jank L, Benetti AD, Rott MB. Preliminary insights on the development of a continuous-flow solar system for the photocatalytic degradation of contaminants of emerging concern in water. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:26984-26996. [PMID: 38499929 DOI: 10.1007/s11356-024-32879-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 03/09/2024] [Indexed: 03/20/2024]
Abstract
The ubiquity and impact of pharmaceuticals and pesticides, as well as their residues in environmental compartments, particularly in water, have raised human and environmental health concerns. This emphasizes the need of developing sustainable methods for their removal. Solar-driven photocatalytic degradation has emerged as a promising approach for the chemical decontamination of water, sparking intensive scientific research in this field. Advancements in photocatalytic materials have driven the need for solar reactors that efficiently integrate photocatalysts for real-world water treatment. This study reports preliminary results from the development and evaluation of a solar system for TiO2-based photocatalytic degradation of intermittently flowing water contaminated with doxycycline (DXC), sulfamethoxazole (SMX), dexamethasone (DXM), and carbendazim (CBZ). The system consisted of a Fresnel-type UV solar concentrator that focused on the opening and focal point of a parabolic trough concentrator, within which tubular quartz glass reactors were fixed. Concentric springs coated with TiO2, arranged one inside the other, were fixed inside the quartz reactors. The reactors are connected to a raw water tank at the inlet and a check valve at the outlet. Rotating wheels at the collector base enable solar tracking in two axes. The substances (SMX, DXC, and CBZ) were dissolved in dechlorinated tap water at a concentration of 1.0 mg/L, except DXM (0.8 mg/L). The water underwent sequential batch (~ 3 L each, without recirculation) processing with retention times of 15, 30, 60, 90, and 120 min. After 15 min, the degradation rates were as follows: DXC 87%, SMX 35.5%, DXM 32%, and CBZ 31.8%. The system processed 101 L of water daily, simultaneously removing 870, 355, 256, and 318 µg/L of DXC, SMX, DXM, and CBZ, respectively, showcasing its potential for real-world chemical water decontamination application. Further enhancements that enable continuous-flow operation and integrate highly effective adsorbents and photocatalytic materials can significantly enhance system performance.
Collapse
Affiliation(s)
- Beni Jequicene Mussengue Chaúque
- Laboratory of Protozoology, Department of Microbiology, Immunology, and Parasitology, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Sarmento Leite Street, N 500, Porto Alegre, Rio Grande do Sul, 90050-170, Brazil
- Postgraduate Program in Biological Sciences: Pharmacology and Therapeutics, UFRGS, Rio Grande do Sul, Brazil
- Center of Studies in Science and Technology (NECET), Biology Course, Universidade Rovuma, Niassa Branch, Lichinga, Mozambique
| | - Louise Jank
- Ministério da Agricultura, Pecuária e Abastecimento (MAPA), Porto Alegre, Rio Grande do Sul, Brazil
| | | | - Marilise Brittes Rott
- Laboratory of Protozoology, Department of Microbiology, Immunology, and Parasitology, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Sarmento Leite Street, N 500, Porto Alegre, Rio Grande do Sul, 90050-170, Brazil.
| |
Collapse
|
7
|
Mofijur M, Hasan MM, Ahmed SF, Djavanroodi F, Fattah IMR, Silitonga AS, Kalam MA, Zhou JL, Khan TMY. Advances in identifying and managing emerging contaminants in aquatic ecosystems: Analytical approaches, toxicity assessment, transformation pathways, environmental fate, and remediation strategies. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 341:122889. [PMID: 37972679 DOI: 10.1016/j.envpol.2023.122889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 10/30/2023] [Accepted: 11/05/2023] [Indexed: 11/19/2023]
Abstract
Emerging contaminants (ECs) are increasingly recognized as threats to human health and ecosystems. This review evaluates advanced analytical methods, particularly mass spectrometry, for detecting ECs and understanding their toxicity, transformation pathways, and environmental distribution. Our findings underscore the reliability of current techniques and the potential of upcoming methods. The adverse effects of ECs on aquatic life necessitate both in vitro and in vivo toxicity assessments. Evaluating the distribution and degradation of ECs reveals that they undergo physical, chemical, and biological transformations. Remediation strategies such as advanced oxidation, adsorption, and membrane bioreactors effectively treat EC-contaminated waters, with combinations of these techniques showing the highest efficacy. To minimize the impact of ECs, a proactive approach involving monitoring, regulations, and public education is vital. Future research should prioritize the refining of detection methods and formulation of robust policies for EC management.
Collapse
Affiliation(s)
- M Mofijur
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW, 2007, Australia.
| | - M M Hasan
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW, 2007, Australia; School of Engineering and Technology, Central Queensland University, QLD, 4701, Australia
| | - Shams Forruque Ahmed
- Science and Math Program, Asian University for Women, Chattogram, 4000, Bangladesh
| | - F Djavanroodi
- Mechanical Engineering Department, Prince Mohammad Bin Fahd University, Al Khobar, 31952, Saudi Arabia
| | - I M R Fattah
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - A S Silitonga
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - M A Kalam
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - John L Zhou
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW, 2007, Australia; Centre for Green Technology, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - T M Yunus Khan
- Mechanical Engineering Department, College of Engineering, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
8
|
Luckner B, Essfeld F, Ayobahan SU, Richling E, Eilebrecht E, Eilebrecht S. Transcriptomic profiling of TLR-7-mediated immune-challenge in zebrafish embryos in the presence and absence of glucocorticoid-induced immunosuppression. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 266:115570. [PMID: 37844410 DOI: 10.1016/j.ecoenv.2023.115570] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/28/2023] [Accepted: 10/08/2023] [Indexed: 10/18/2023]
Abstract
Although numerous studies imply a correlation between chemical contamination and an impaired immunocompetence of wildlife populations, the assessment of immunomodulatory modes of action is currently not covered in the regulatory requirements for the approval of new substances. This is not least due to the complexity of the immune system and a lack of standardised methods and validated biomarkers. To tackle this issue, in this study, the transcriptomic profiles of zebrafish embryos were analysed in response to the immunosuppressive compound clobetasol propionate, a synthetic glucocorticoid, and/or the immunostimulatory compound imiquimod (IMQ), a TLR-7 agonist. Using IMQ, known for its potential to induce psoriasis-like effects in mice and human, this study additionally aimed at evaluating the usability of the zebrafish embryo model as an alternative and 3R conform system for the IMQ-induced psoriasis mouse model. Our study substantiates the suitability of previously proposed genes as possible biomarkers for immunotoxicity, such as socs3, nfkbia, anxa1c, fkbp5 and irg1l. Likewise, however, our findings indicate that these genes may be less suitable to distinguish a suppressive from stimulating fashion of action. In contrast, based on a differential regulation in opposite direction in response to both compounds, krt17, rtn4a, and1, smhyc1 and gmpr were identified as potential novel biomarkers with said power to differentiate. Observed IMQ-induced alterations in the expression of genes previously associated with the pathogenesis of psoriasis such as krt17, nfkbia, parp1, pparg, nfil3-6, per2, stat4, klf2, rtn4a, anxa1c and nr1d2 indicate the inducibility of psoriatic effects in the zebrafish embryo. Our work contributes to the establishment of an approach for a 3R-compliant investigation of immunotoxic mechanisms of action in aquatic vertebrates. The validated and newly identified biomarker candidates of specific immunotoxic effects can be used in future studies in the context of environmental hazard assessment of substances or also for human-relevant immunotoxicological questions.
Collapse
Affiliation(s)
- Benedikt Luckner
- Department Ecotoxicogenomics, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Schmallenberg, Germany
| | - Fabian Essfeld
- Department Ecotoxicogenomics, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Schmallenberg, Germany; Computational Biology, Faculty of Biology, Bielefeld University, Bielefeld, Germany
| | - Steve U Ayobahan
- Department Ecotoxicogenomics, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Schmallenberg, Germany
| | - Elke Richling
- Food Chemistry and Toxicology, Department of Chemistry, RPTU Kaiserslautern-Landau, Germany
| | - Elke Eilebrecht
- Department Ecotoxicology, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Schmallenberg, Germany
| | - Sebastian Eilebrecht
- Department Ecotoxicogenomics, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Schmallenberg, Germany.
| |
Collapse
|
9
|
Wang C, Li M, Gui W, Shi H, Wang P, Chen J, Fent K, Zhang K, Dai J, Li X, Zhao Y. Prednisolone Accelerates Embryonic Development of Zebrafish via Glucocorticoid Receptor Signaling at Low Concentrations. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:15794-15805. [PMID: 37812749 DOI: 10.1021/acs.est.3c02658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
Synthetic glucocorticoids have been widely detected in aquatic ecosystems and may pose a toxicological risk to fish. In the present study, we described multiple end point responses of zebrafish to a commonly prescribed glucocorticoid, prednisolone (PREL), at concentrations between 0.001 and 9.26 μg/L. Of 23 end points monitored, 7 were affected significantly. Significant increases in the frequency of yolk extension formation, spontaneous contraction, heart rate, and ocular melanin density and significant decreases of ear-eye distance at PREL concentrations of 0.001 μg/L and above clearly pointed to the acceleration of embryonic development of zebrafish by PREL. Further confirmation came from the alterations in somite numbers, head-trunk angle, and yolk sac size, as well as outcomes obtained via RNA sequencing, in which signaling pathways involved in tissue/organ growth and development were highly enriched in embryos upon PREL exposure. In addition, the crucial role of glucocorticoid receptor (GR) for PREL-induced effects was confirmed by both, the coexposure to antagonist mifepristone (RU486) and GR-/- mutant zebrafish experiments. We further demonstrated similar accelerations of embryonic development of zebrafish upon exposure to 11 additional glucocorticoids, indicating generic adverse effect characteristics. Overall, our results revealed developmental alterations of PREL in fish embryos at low concentrations and thus provided novel insights into the understanding of the potential environmental risks of glucocorticoids.
Collapse
Affiliation(s)
- Congcong Wang
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Meng Li
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Wanying Gui
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Haochun Shi
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Peng Wang
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Jierong Chen
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Karl Fent
- Institute of Biogeochemistry and Pollution Dynamics, Department of Environmental Systems Science, ETH Zürich, CH-8092 Zürich, Switzerland
| | - Kun Zhang
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Jiayin Dai
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Xi Li
- Center of Clinical Research, The Affiliated Kangning Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Yanbin Zhao
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| |
Collapse
|
10
|
Abajo Z, Jimenez A, Domingo-Echaburu S, Valcárcel Y, Segura Y, Orive G, Lertxundi U. Analyzing the potential environmental impact of NIOSH list of hazardous drugs (group 2). THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 873:162280. [PMID: 36822426 DOI: 10.1016/j.scitotenv.2023.162280] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 02/12/2023] [Accepted: 02/12/2023] [Indexed: 06/18/2023]
Abstract
For the first time, several pharmaceuticals have been defined as priority substances in the new proposal of the revision of the Water Framework Directive (WFD). Consequently, environmental quality standards have been determined for several drugs. This is the case with the antiepileptic carbamazepine, which is considered as hazardous in healthcare settings by The National Institute for Occupational Safety and Health (NIOSH). This organism considers as such drugs that have shown teratogenicity, carcinogenicity, genotoxicity or other developmental, reproductive, or organ toxicity at low doses in studies with animals or humans. This study has been focused on the non-carcinogenic drugs classified in group 2, and their presence in the environment. This group contains many different therapeutic agents such as antineoplastics, psychoactive drugs, immunosuppressants and antivirals, among others. Of the 116 drugs included in the list, 26 have been found in aquatic environmental matrices. Certain drugs have received most attention (e.g., the antiepileptic carbamazepine, progesterone and the antidepressant paroxetine) while others completely lack environmental monitoring. Carbamazepine, fluconazole, paroxetine and warfarin have been found in invertebrates' tissues, whereas carbamazepine, oxazepam and paroxetine have been found in fish tissues. The main aim of the NIOSH's hazardous drug list is to inform healthcare professionals about adequate protection measures to prevent occupational exposure to these pharmaceuticals. However, this list contains useful information for other professionals and researchers such as environmental scientists. The paucity of relevant environmental data of certain hazardous pharmaceuticals might be important to help in the prioritization of compounds that may demand further research.
Collapse
Affiliation(s)
- Z Abajo
- Bioaraba Health Research Institute
| | - A Jimenez
- School of Pharmacy, University of the Basque Country
| | - S Domingo-Echaburu
- Osakidetza Basque Health Service, Debagoiena Integrated Health Organisation, Pharmacy Service, Nafarroa Hiribidea 16, 20500 Arrasate, Gipuzkoa, Spain
| | - Y Valcárcel
- Health and Environment Risk Assessment Group, (RiSAMA), University Rey Juan Carlos, Avda Tulipán sn, Móstoles, Madrid, Spain; Department of Medical Specialties and Public Health, Faculty of Health Sciences, Rey Juan Carlos University, Avda. Atenas s/n, 28922, Alcorcón, Madrid, Spain
| | - Y Segura
- Chemical and Environmental Technology Department, University Rey Juan Carlos, 28933 Madrid, Spain
| | - G Orive
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, Vitoria-Gasteiz 01006, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain; University Institute for Regenerative Medicine and Oral Implantology-UIRMI (UPV/EHU-Fundación Eduardo Anitua), Vitoria, Spain; Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower, Singapore; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain.
| | - U Lertxundi
- Bioaraba Health Research Institute, Vitoria-Gasteiz, Spain. Osakidetza Basque Health Service, Araba Mental Health Network, Araba Psychiatric Hospital, Pharmacy Service, c/Alava 43, 01006 Vitoria-Gasteiz, Álava, Spain.
| |
Collapse
|
11
|
Liang YQ, Zhong L, Jiang M, Lu M, Li C, Dong Z, Lin Z. Physiological and transcriptional effects in the male western mosquitofish (Gambusia affinis) following exposure to dexamethasone. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 254:114722. [PMID: 36870310 DOI: 10.1016/j.ecoenv.2023.114722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/20/2023] [Accepted: 02/28/2023] [Indexed: 06/18/2023]
Abstract
Dexamethasone (DEX) is a synthetic glucocorticoid widely found in a variety of aquatic environments and has potential adverse effects on aquatic organisms. This study was to assess the toxic effects of exposure to different concentrations (0, 5 and 50 μg/L) of DEX for 60 days on adult male mosquitofish (Gambusia affinis). Morphological analyses of skeleton and anal fin, histological effects of testes and livers, and transcriptional expression levels of genes related to reproductive and immune system were determined. The results showed that exposure to DEX significantly increased 14L and 14D values of hemal spines, which suggested DEX could affect skeleton development and result in more masculine characteristics in male fish. In addition, the damage to testis and liver tissue was observed after DEX treatment. It also enhanced mRNA expression of Erβ gene in the brain and Hsd11b1 gene in the testis. The findings of this study reveal physiological and transcriptional effects of DEX on male mosquitofish.
Collapse
Affiliation(s)
- Yan-Qiu Liang
- Faculty of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Lishan Zhong
- Faculty of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Manli Jiang
- Faculty of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Mixue Lu
- Faculty of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Chengyong Li
- Faculty of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Zhongdian Dong
- College of Fishery, Guangdong Ocean University, Zhanjiang 524088, PR China.
| | - Zhong Lin
- Faculty of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang 524088, PR China.
| |
Collapse
|
12
|
Dong Z, Li X, Chen Y, Zhang N, Wang Z, Liang YQ, Guo Y. Short-term exposure to norethisterone affected swimming behavior and antioxidant enzyme activity of medaka larvae, and led to masculinization in the adult population. CHEMOSPHERE 2023; 310:136844. [PMID: 36252902 DOI: 10.1016/j.chemosphere.2022.136844] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 09/27/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
Norethisterone (NET), one of the synthetic progestins, is detected with increasing frequency in the water environment and distributed in the ocean, with a potential toxicity risk to marine organisms. However, current studies on the adverse effects of progestins (including NET) in aquatic environments have focused on freshwater organisms, mainly fish. In the present, marine medaka (Oryzias melastigma) larvae were exposed to 91.31 ng/L NET for 10 days, and then the swimming behavior, oxidation-antioxidant-related enzyme activities, sex and thyroid hormone levels, and the gene transcription patterns of the larvae were measured. After NET treatment, medaka larvae were raised in artificial seawater until 5 months of age, and the sex ratio was counted. Ten-day exposure to 91.31 ng/L NET inhibited swimming behavior, of marine medaka larvae, which showed that the time in the resting state was significantly prolonged, while the time in the large motor state was significantly reduced; disrupted oxidative-antioxidant system, significantly up-regulated the enzymatic activities of reactive oxygen species (ROS), malondialdehyde (MDA), and glutathione peroxidase (GSH-Px); affected the hormone levels of larvae, lowered 11- keto testosterone (11-KT) and triiodothyronine (T3) concentrations. RNA-seq results showed that 91.31 ng/L NET exposure for 10 days changed the transcript levels of 275 genes, of which 28 were up-regulated and 247 were down-regulated. Differentially expressed genes (DEGs) were mainly significantly enriched in piwi interacting RNA (piRNA), gonadal development, gametogenesis, and steroidogenesis biological processes, etc. After removing NET exposure and returning to breeding for 140 days, a significant increase in male proportions (69.67%) was observed in sexually mature medaka populations in the NET-treated group. These results show that exposure to 91.31 ng/L NET for 10 days can lead to various adverse effects on marine medaka larvae. These findings shed light on the potential ecological risks of synthetic progestins to marine organisms.
Collapse
Affiliation(s)
- Zhongdian Dong
- Key Laboratory of Aquaculture in the South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, PR China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, PR China.
| | - Xueyou Li
- Key Laboratory of Aquaculture in the South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, PR China.
| | - Yuebi Chen
- Key Laboratory of Aquaculture in the South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, PR China.
| | - Ning Zhang
- Key Laboratory of Aquaculture in the South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, PR China.
| | - Zhongduo Wang
- Key Laboratory of Aquaculture in the South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, PR China; State Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University School, Changsha, 410081, PR China.
| | - Yan-Qiu Liang
- Faculty of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang, 524088, PR China.
| | - Yusong Guo
- Key Laboratory of Aquaculture in the South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, PR China.
| |
Collapse
|
13
|
Yan L, Rong Q, Zhang H, Jones KC, Li Y, Luo J. Evaluation and Application of a Novel Diffusive Gradients in Thin-Films Technique for In Situ Monitoring of Glucocorticoids in Natural Waters. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:15499-15507. [PMID: 36256587 DOI: 10.1021/acs.est.2c00834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The potential environmental risks of glucocorticoids (GCs) have attracted attention in the past few decades. In this study, a novel diffusive gradients in thin-films (DGT) device and analytical technique based on the second generation of polar enhanced phase (PEP-2), PEP-2-DGT, were developed for sampling and quantifying natural and synthetic GCs in aquatic systems. The capacity of PEP-2 gels for accumulating all target compounds was >600 μg per disc, sufficient for long-term passive sampling of selected GCs, even in wastewaters. Systematic tests were carried out to verify the application of DGT in natural waters and wastewaters. The performance of PEP-2-DGT devices was independent (CDGT/Csoln was in the acceptable range of 0.9-1.1) of a wide range of environmental conditions: ionic strength (0.001-0.5 mol L-1), dissolved organic matter (0-20 mg L-1), and pH (3.06-9.02). It was tested for various diffusive layer thicknesses (0.565-2.065 mm) and different deployment times (10-168 h). Diffusion coefficients (D) of selected GCs through an agarose-based diffusive gel were determined for the first time (3.80-4.85 × 10-6 cm-2 s -1 at 25 °C). Linear correlations between D and log Kow were established for three groups of target GCs (R2 = 0.96-0.99). This could enable prediction of D values for other GCs with similar structures in the future, which will help for rapid screening and emergency monitoring. Concentrations and distribution patterns of analytes obtained by PEP-2-DGT devices in five rivers after 7- and 14-day deployments were in accordance with those measured from grab samples, with total GC concentrations ranging from 7 to 27 ng L-1 at all sampling sites, confirming the reliability and robustness of the DGT devices for monitoring GCs in natural waters. The development of the new DGT technique will help improve understanding of the behavior and fate of these compounds in the aquatic environments.
Collapse
Affiliation(s)
- Liying Yan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu210023, P. R. China
| | - Qiuyu Rong
- Lancaster Environment Centre, Lancaster University, LancasterLA1 4YQ, United Kingdom
| | - Hao Zhang
- Lancaster Environment Centre, Lancaster University, LancasterLA1 4YQ, United Kingdom
| | - Kevin C Jones
- Lancaster Environment Centre, Lancaster University, LancasterLA1 4YQ, United Kingdom
| | - Yanying Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu210023, P. R. China
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian, Liaoning116023, P. R. China
| | - Jun Luo
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu210023, P. R. China
| |
Collapse
|
14
|
Dong Z, Chen Y, Li X, Zhang N, Guo Y, Liang YQ, Wang Z. Norethindrone alters growth, sex differentiation and gene expression in marine medaka (Oryzias melastigma). ENVIRONMENTAL TOXICOLOGY 2022; 37:1211-1221. [PMID: 35098644 DOI: 10.1002/tox.23477] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 12/27/2021] [Accepted: 01/16/2022] [Indexed: 06/14/2023]
Abstract
Norethindrone (NET) is a widely used synthetic progestin, which appears in water environments and threatens aquatic organisms. In this study, marine medaka (Oryzias melastigma) larvae were exposed to 7.6 and 80.1 ng/L NET for 190 days. The effects of NET on growth, sex differentiation, gonad histology and transcriptional expression profiles of hypothalamic-pituitary-gonadal (HPG) axis-related genes were determined. The results showed that exposure to 80.1 ng/L NET caused an all-male marine medaka population and significantly decreased the growth of males. Exposure to 7.6 ng/L NET increased the ratio of males/females in the marine medaka population, decreased the growth of males and delayed the ovary maturation in females. However, the sperm maturation was accelerated by 7.6 or 80.1 ng/L NET. In females, the transcription levels of cytochrome P450 aromatase (cyp19a1a) and progesterone receptor (pgr) in ovaries, glucocorticoid receptor (gr) and vitellogenin (vtg) in livers were suppressed after exposure to 7.6 ng/L NET, which may cause delayed ovary maturation. In males, NET significantly decreased the transcription levels of follicle stimulating hormone β (fshβ) and Luteinizing hormone β (lhβ)in the brain, Estrogen receptor β (erβ),gr and pgr in the liver, and vitellogenin receptor (vtgr) in the testes, while NET of 80.1 ng/L led to a significant up-regulation of steroidogenic acute regulatory protein (star) in the testes of males. These results showed that NET could influence growth, sex differentiation and gonadal maturation and significantly alter the transcriptional expression levels of HPG axis-related genes.
Collapse
Affiliation(s)
- Zhongdian Dong
- Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, College of Fishery, Guangdong Ocean University, Zhanjiang, China
- Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, College of Fishery, Guangdong Ocean University, Zhanjiang, China
| | - Yuebi Chen
- Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, College of Fishery, Guangdong Ocean University, Zhanjiang, China
| | - Xueyou Li
- Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, College of Fishery, Guangdong Ocean University, Zhanjiang, China
| | - Ning Zhang
- Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, College of Fishery, Guangdong Ocean University, Zhanjiang, China
| | - Yusong Guo
- Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, College of Fishery, Guangdong Ocean University, Zhanjiang, China
| | - Yan-Qiu Liang
- Faculty of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang, China
| | - Zhongduo Wang
- Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, College of Fishery, Guangdong Ocean University, Zhanjiang, China
- State Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University School, Changsha, China
| |
Collapse
|
15
|
Hamilton CM, Winter MJ, Margiotta-Casaluci L, Owen SF, Tyler CR. Are synthetic glucocorticoids in the aquatic environment a risk to fish? ENVIRONMENT INTERNATIONAL 2022; 162:107163. [PMID: 35240385 DOI: 10.1016/j.envint.2022.107163] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 02/21/2022] [Accepted: 02/22/2022] [Indexed: 05/27/2023]
Abstract
The glucocorticosteroid, or glucocorticoid (GC), system is largely conserved across vertebrates and plays a central role in numerous vital physiological processes including bone development, immunomodulation, and modification of glucose metabolism and the induction of stress-related behaviours. As a result of their wide-ranging actions, synthetic GCs are widely prescribed for numerous human and veterinary therapeutic purposes and consequently have been detected extensively within the aquatic environment. Synthetic GCs designed for humans are pharmacologically active in non-mammalian vertebrates, including fish, however they are generally detected in surface waters at low (ng/L) concentrations. In this review, we assess the potential environmental risk of synthetic GCs to fish by comparing available experimental data and effect levels in fish with those in mammals. We found the majority of compounds were predicted to have insignificant risk to fish, however some compounds were predicted to be of moderate and high risk to fish, although the dataset of compounds used for this analysis was small. Given the common mode of action and high level of inter-species target conservation exhibited amongst the GCs, we also give due consideration to the potential for mixture effects, which may be particularly significant when considering the potential for environmental impact from this class of pharmaceuticals. Finally, we also provide recommendations for further research to more fully understand the potential environmental impact of this relatively understudied group of commonly prescribed human and veterinary drugs.
Collapse
Affiliation(s)
- Charles M Hamilton
- Biosciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter, Devon EX4 4QD, UK
| | - Matthew J Winter
- Biosciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter, Devon EX4 4QD, UK
| | - Luigi Margiotta-Casaluci
- Department of Analytical, Environmental & Forensic Sciences, School of Cancer & Pharmaceutical Sciences, King's College London, London SE1 9NH, UK
| | - Stewart F Owen
- AstraZeneca, Global Environment, Macclesfield, Cheshire SK10 2NA, UK
| | - Charles R Tyler
- Biosciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter, Devon EX4 4QD, UK.
| |
Collapse
|
16
|
Svigruha R, Fodor I, Padisak J, Pirger Z. Progestogen-induced alterations and their ecological relevance in different embryonic and adult behaviours of an invertebrate model species, the great pond snail (Lymnaea stagnalis). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:59391-59402. [PMID: 33349911 PMCID: PMC8542004 DOI: 10.1007/s11356-020-12094-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 12/14/2020] [Indexed: 05/19/2023]
Abstract
The presence of oral contraceptives (basically applying estrogens and/or progestogens) poses a challenge to animals living in aquatic ecosystems and reflects a rapidly growing concern worldwide. However, there is still a lack in knowledge about the behavioural effects induced by progestogens on the non-target species including molluscs. In the present study, environmental progestogen concentrations were summarised. Knowing this data, we exposed a well-established invertebrate model species, the great pond snail (Lymnaea stagnalis) to relevant equi-concentrations (1, 10, 100, and 500 ng L-1) of mixtures of four progestogens (progesterone, drospirenone, gestodene, levonorgestrel) for 21 days. Significant alterations were observed in the embryonic development time, heart rate, feeding, and gliding activities of the embryos as well as in the feeding and locomotion activity of the adult specimens. All of the mixtures accelerated the embryonic development time and the gliding activity. Furthermore, the 10, 100, and 500 ng L-1 mixtures increased the heart rate and feeding activity of the embryos. The 10, 100, and 500 ng L-1 mixtures affected the feeding activity as well as the 1, 10, and 100 ng L-1 mixtures influenced the locomotion of the adult specimens. The differences of these adult behaviours showed a biphasic response to the progestogen exposure; however, they changed approximately in the opposite way. In case of feeding activity, this dose-response phenomenon can be identified as a hormesis response. Based on the authors' best knowledge, this is the first study to investigate the non-reproductive effects of progestogens occurring also in the environment on molluscan species. Our findings contribute to the global understanding of the effects of human progestogens, as these potential disruptors can influence the behavioural activities of non-target aquatic species. Future research should aim to understand the potential mechanisms (e.g., receptors, signal pathways) of progestogens induced behavioural alterations.
Collapse
Affiliation(s)
- Reka Svigruha
- Department of Limnology, University of Pannonia, Veszprém, 8200, Hungary
- NAP Adaptive Neuroethology Research Group, Department of Experimental Zoology, Balaton Limnological Institute, Centre for Ecological Research, Tihany, 8237, Hungary
| | - Istvan Fodor
- NAP Adaptive Neuroethology Research Group, Department of Experimental Zoology, Balaton Limnological Institute, Centre for Ecological Research, Tihany, 8237, Hungary
| | - Judit Padisak
- Department of Limnology, University of Pannonia, Veszprém, 8200, Hungary
| | - Zsolt Pirger
- NAP Adaptive Neuroethology Research Group, Department of Experimental Zoology, Balaton Limnological Institute, Centre for Ecological Research, Tihany, 8237, Hungary.
| |
Collapse
|
17
|
Musee N, Kebaabetswe LP, Tichapondwa S, Tubatsi G, Mahaye N, Leareng SK, Nomngongo PN. Occurrence, Fate, Effects, and Risks of Dexamethasone: Ecological Implications Post-COVID-19. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182111291. [PMID: 34769808 PMCID: PMC8583091 DOI: 10.3390/ijerph182111291] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/15/2021] [Accepted: 10/19/2021] [Indexed: 01/08/2023]
Abstract
The recent outbreak of respiratory syndrome-coronavirus-2 (SARS-CoV-2), which causes coronavirus disease (COVID-19), has led to the widespread use of therapeutics, including dexamethasone (DEXA). DEXA, a synthetic glucocorticoid, is among the widely administered drugs used to treat hospitalized COVID-19 patients. The global COVID-19 surge in infections, consequent increasing hospitalizations, and other DEXA applications have raised concerns on eminent adverse ecological implications to aquatic ecosystems. Here, we aim to summarize published studies on DEXA occurrence, fate, and effects on organisms in natural and engineered systems as, pre-COVID, the drug has been identified as an emerging environmental contaminant. The results demonstrated a significant reduction of DEXA in wastewater treatment plants, with a small portion, including its transformation products (TPs), being released into downstream waters. Fish and crustaceans are the most susceptible species to DEXA exposure in the parts-per-billion range, suggesting potential deleterious ecological effects. However, there are data deficits on the implications of DEXA to marine and estuarine systems and wildlife. To improve DEXA management, toxicological outcomes of DEXA and formed TPs should entail long-term studies from whole organisms to molecular effects in actual environmental matrices and at realistic exposure concentrations. This can aid in striking a fine balance of saving human lives and protecting ecological integrity.
Collapse
Affiliation(s)
- Ndeke Musee
- Emerging Contaminants Ecological Risk Assessment (ECERA) Group, Department of Chemical Engineering, University of Pretoria, Pretoria 0002, South Africa; (N.M.); (S.K.L.)
- Correspondence: or
| | - Lemme Prica Kebaabetswe
- Department of Biological Sciences and Biotechnology, Botswana International University of Science and Technology, Palapye, Botswana; (L.P.K.); (G.T.)
| | - Shepherd Tichapondwa
- Department of Chemical Engineering, Water Utilization and Environmental Engineering Division, University of Pretoria, Pretoria 0002, South Africa;
| | - Gosaitse Tubatsi
- Department of Biological Sciences and Biotechnology, Botswana International University of Science and Technology, Palapye, Botswana; (L.P.K.); (G.T.)
| | - Ntombikayise Mahaye
- Emerging Contaminants Ecological Risk Assessment (ECERA) Group, Department of Chemical Engineering, University of Pretoria, Pretoria 0002, South Africa; (N.M.); (S.K.L.)
| | - Samuel Keeng Leareng
- Emerging Contaminants Ecological Risk Assessment (ECERA) Group, Department of Chemical Engineering, University of Pretoria, Pretoria 0002, South Africa; (N.M.); (S.K.L.)
| | - Philiswa Nosizo Nomngongo
- Department of Science and Innovation (DSI)/National Research Foundation (NRF) South African Research Chair Initiative (SARChI), Nanotechnology for Water, University of Johannesburg, Doornfontein 2028, South Africa;
| |
Collapse
|
18
|
Ojoghoro JO, Scrimshaw MD, Sumpter JP. Steroid hormones in the aquatic environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 792:148306. [PMID: 34157532 DOI: 10.1016/j.scitotenv.2021.148306] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/03/2021] [Accepted: 06/03/2021] [Indexed: 05/16/2023]
Abstract
Steroid hormones are extremely important natural hormones in all vertebrates. They control a wide range of physiological processes, including osmoregulation, sexual maturity, reproduction and stress responses. In addition, many synthetic steroid hormones are in widespread and general use, both as human and veterinary pharmaceuticals. Recent advances in environmental analytical chemistry have enabled concentrations of steroid hormones in rivers to be determined. Many different steroid hormones, both natural and synthetic, including transformation products, have been identified and quantified, demonstrating that they are widespread aquatic contaminants. Laboratory ecotoxicology experiments, mainly conducted with fish, but also amphibians, have shown that some steroid hormones, both natural and synthetic, can adversely affect reproduction when present in the water at extremely low concentrations: even sub-ng/L. Recent research has demonstrated that mixtures of different steroid hormones can inhibit reproduction even when each individual hormone is present at a concentration below which it would not invoke a measurable effect on its own. Limited field studies have supported the conclusions of the laboratory studies that steroid hormones may be environmental pollutants of significant concern. Further research is required to identify the main sources of steroid hormones entering the aquatic environment, better describe the complex mixtures of steroid hormones now known to be ubiquitously present, and determine the impacts of environmentally-realistic mixtures of steroid hormones on aquatic vertebrates, especially fish. Only once that research is completed can a robust aquatic risk assessment of steroid hormones be concluded.
Collapse
Affiliation(s)
- J O Ojoghoro
- Department of Botany, Faculty of Science, Delta State University Abraka, Delta State, Nigeria
| | - M D Scrimshaw
- Division of Environmental Science, Department of Life Sciences, Brunel University London, Uxbridge, Middlesex UB8 3PH, United Kingdom.
| | - J P Sumpter
- Division of Environmental Science, Department of Life Sciences, Brunel University London, Uxbridge, Middlesex UB8 3PH, United Kingdom.
| |
Collapse
|
19
|
Mauro M, Lazzara V, Arizza V, Luparello C, Ferrantelli V, Cammilleri G, Inguglia L, Vazzana M. Human Drug Pollution in the Aquatic System: The Biochemical Responses of Danio rerio Adults. BIOLOGY 2021; 10:biology10101064. [PMID: 34681162 PMCID: PMC8533377 DOI: 10.3390/biology10101064] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/08/2021] [Accepted: 10/12/2021] [Indexed: 12/26/2022]
Abstract
Simple Summary The release of medicinal products for human use in the aquatic environment is now a serious problem, and can be fatal for the organisms that live there. Danio rerio is a freshwater fish that provides the possibility to study the effects of these pollutants on the health of aquatic organisms. The results of the various existing scientific studies are scarce and conflicting. Here, we review the scientific studies that have analyzed these effects, highlighting that the impacts of drugs are evident in the biochemical responses of these animals. Abstract To date, drug pollution in aquatic systems is an urgent issue, and Danio rerio is a model organism to study the toxicological effects of environmental pollutants. The scientific literature has analyzed the effect of human drug pollution on the biochemical responses in the tissues of D. rerio adults. However, the information is still scarce and conflicting, making it difficult to understand its real impact. The scientific studies are not consistent with each other and, until now, no one has grouped their results to create a baseline of knowledge of the possible impacts. In this review, the analysis of literature data highlights that the effects of drugs on adult zebrafishes depend on various factors, such as the tissue analyzed, the drug concentration and the sex of the individuals. Furthermore, the most influenced biochemical responses concern enzymes (e.g., antioxidants and hydrolase enzymes) and total protein and hormonal levels. Pinpointing the situation to date would improve the understanding of the chronic effects of human drug pollution, helping both to reduce it in the aquatic systems and then to draw up regulations to control this type of pollution.
Collapse
Affiliation(s)
- Manuela Mauro
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, 90128 Palermo, Italy; (V.L.); (V.A.); (C.L.); (L.I.); (M.V.)
- Correspondence: (M.M.); (V.F.)
| | - Valentina Lazzara
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, 90128 Palermo, Italy; (V.L.); (V.A.); (C.L.); (L.I.); (M.V.)
| | - Vincenzo Arizza
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, 90128 Palermo, Italy; (V.L.); (V.A.); (C.L.); (L.I.); (M.V.)
| | - Claudio Luparello
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, 90128 Palermo, Italy; (V.L.); (V.A.); (C.L.); (L.I.); (M.V.)
| | - Vincenzo Ferrantelli
- Istituto Zooprofilattico Sperimentale della Sicilia A. Mirri, 90129 Palermo, Italy;
- Correspondence: (M.M.); (V.F.)
| | - Gaetano Cammilleri
- Istituto Zooprofilattico Sperimentale della Sicilia A. Mirri, 90129 Palermo, Italy;
| | - Luigi Inguglia
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, 90128 Palermo, Italy; (V.L.); (V.A.); (C.L.); (L.I.); (M.V.)
| | - Mirella Vazzana
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, 90128 Palermo, Italy; (V.L.); (V.A.); (C.L.); (L.I.); (M.V.)
| |
Collapse
|
20
|
Zhong L, Liang YQ, Lu M, Pan CG, Dong Z, Zhao H, Li C, Lin Z, Yao L. Effects of dexamethasone on the morphology, gene expression and hepatic histology in adult female mosquitofish (Gambusia affinis). CHEMOSPHERE 2021; 274:129797. [PMID: 33545586 DOI: 10.1016/j.chemosphere.2021.129797] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/22/2021] [Accepted: 01/24/2021] [Indexed: 05/27/2023]
Abstract
Glucocorticoids (GCs), including natural hormones as well as synthetic chemicals, can pose influences on physiological performance, development and reproduction of fish. Dexamethasone (DEX) is a synthetic glucocorticoid widely used as pharmaceutical and usually exists in effluents with varying degrees of concentrations. In this study, adult female mosquitofish (Gambusia affinis) were treated by DEX at concentrations of 0, 0.5, 5 and 50 μg/L for 60 days. Morphological parameters of anal fin and skeleton, mRNA expression abundance, and histological alterations of liver were investigated to assess effects of DEX on mosquitofish. The results showed that DEX increased number of sections of ray 3 in anal fin and decreased 16L, 15D and 16D in skeletal parameters, which indicates DEX could potentially lead to weak masculinization. Furthermore, transcriptional expression levels of ARα, ARβ, ERβ, VTGC and CYP19A genes were notably down-regulated by DEX, which will contribute to weak masculinization in females. In addition, the damage to liver tissue was also induced by DEX. Taken together, this research demonstrated that aquatic environments contaminated by DEX have negative effects on mosquitofish at a population level.
Collapse
Affiliation(s)
- Lishan Zhong
- Faculty of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang, 524088, PR China
| | - Yan-Qiu Liang
- Faculty of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang, 524088, PR China; Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, 524000, PR China.
| | - Mixue Lu
- Faculty of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang, 524088, PR China
| | - Chang-Gui Pan
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning, 530004, PR China
| | - Zhongdian Dong
- College of Fishery, Guangdong Ocean University, Zhanjiang, 524088, PR China
| | - Hui Zhao
- Faculty of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang, 524088, PR China; Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, 524000, PR China
| | - Chengyong Li
- Faculty of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang, 524088, PR China
| | - Zhong Lin
- Faculty of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang, 524088, PR China
| | - Li Yao
- Guangdong Institute of Analysis (China National Analytical Center), Guangdong Academy of Sciences, Guangzhou, 510070, PR China
| |
Collapse
|
21
|
Duarte B, Gameiro C, Matos AR, Figueiredo A, Silva MS, Cordeiro C, Caçador I, Reis-Santos P, Fonseca V, Cabrita MT. First screening of biocides, persistent organic pollutants, pharmaceutical and personal care products in Antarctic phytoplankton from Deception Island by FT-ICR-MS. CHEMOSPHERE 2021; 274:129860. [PMID: 33607598 DOI: 10.1016/j.chemosphere.2021.129860] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 01/27/2021] [Accepted: 02/01/2021] [Indexed: 05/26/2023]
Abstract
In recent years, the Antarctic territory has seen a rise in the number of tourists and scientists. This has led to an increase in the anthropogenic footprint in Antarctic ecosystems, namely in terms of emerging contaminants, such as Biocides, Persistent Organic Pollutants (POPs) as well as Pharmaceutical and Personal Care Products (PPCPs). Yet scarce information on the presence of these emerging contaminants is available for trophic compartments, especially the phytoplankton community. Using high resolution Fourier-transform ion cyclotron-resonance mass spectrometry (FT-ICR-MS), an untargeted screening of the metabolome of the phytoplankton community was performed. Seventy different contaminant compounds were found to be present in phytoplankton collected at two sites in Port Foster Bay at Deception Island. These emerging contaminants included 1 polycyclic aromatic hydrocarbon (PAH), 10 biocides (acaricides, fungicides, herbicides, insecticides and nematicides), 11 POPs (flame retardants, paints and dyes, polychlorinated biphenyl (PCB), phthalates and plastic components), 5 PCPs (cosmetic, detergents and dietary compounds), 40 pharmaceutical compounds and 3 illicit drugs. Pharmaceutical compounds were, by far, the largest group of emerging contaminants found in phytoplankton cells (anticonvulsants, antihypertensives and beta-blockers, antibiotics, analgesic and anti-inflammatory drugs). The detection of several of these potentially toxic compounds at the basis of the marine food web has potentially severe impacts for the whole ecosystem trophic structure. Additionally, the present findings also point out that the guidelines proposed by the Antarctic Treaty and Protocol on Environmental Protection to the Antarctic Treaty should be revisited to avoid the proliferation of these and other PPCPs in such sensitive environments.
Collapse
Affiliation(s)
- Bernardo Duarte
- MARE - Marine and Environmental Sciences Centre, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal; Departamento de Biologia Vegetal, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal.
| | - Carla Gameiro
- MARE - Marine and Environmental Sciences Centre, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal; Instituto Do Mar e da Atmosfera (IPMA), Rua Alfredo Magalhães Ramalho, 6, 1495-006, Algés, Lisboa, Portugal
| | - Ana Rita Matos
- BioISI - Biosystems and Integrative Sciences Institute, Plant Functional Genomics Group, Departamento de Biologia Vegetal, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal; Departamento de Biologia Vegetal, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal
| | - Andreia Figueiredo
- BioISI - Biosystems and Integrative Sciences Institute, Plant Functional Genomics Group, Departamento de Biologia Vegetal, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal; Departamento de Biologia Vegetal, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal
| | - Marta Sousa Silva
- Laboratório de FT-ICR e Espectrometria de Massa Estrutural, Faculdade de Ciências da Universidade de Lisboa, Campo-Grande, 1749-016, Lisboa, Portugal; Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal
| | - Carlos Cordeiro
- Laboratório de FT-ICR e Espectrometria de Massa Estrutural, Faculdade de Ciências da Universidade de Lisboa, Campo-Grande, 1749-016, Lisboa, Portugal; Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal
| | - Isabel Caçador
- MARE - Marine and Environmental Sciences Centre, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal; Departamento de Biologia Vegetal, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal
| | - Patrick Reis-Santos
- MARE - Marine and Environmental Sciences Centre, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal; Southern Seas Ecology Laboratories, School of Biological Sciences, The University of Adelaide, SA, 5005, Australia
| | - Vanessa Fonseca
- MARE - Marine and Environmental Sciences Centre, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal; Departamento de Biologia Animal, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal
| | - Maria Teresa Cabrita
- Centro de Estudos Geográficos (CEG), Instituto de Geografia e Ordenamento Do Território (IGOT), Universidade de Lisboa, Rua Branca Edmée Marques, 1600-276, Lisboa, Portugal
| |
Collapse
|
22
|
Mirmont E, Bœuf A, Charmel M, Vaslin-Reimann S, Lalère B, Laprévote O, Lardy-Fontan S. Development and implementation of an analytical procedure for the quantification of natural and synthetic steroid hormones in whole surface waters. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1175:122732. [PMID: 33992977 DOI: 10.1016/j.jchromb.2021.122732] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 03/25/2021] [Accepted: 04/21/2021] [Indexed: 10/21/2022]
Abstract
Natural and synthetic steroid hormones are chronically released into aquatic spheres. Whereas knowledge on their combined mode of action and the cocktail effect are needed, only few multi-class methods address the challenge of their trace quantification in surface waters. The current study describes a sensitive multi-residue analytical strategy aiming to quantify 23 steroid hormones belonging to androgens, estrogens, glucocorticoids and progestogens in whole surface waters. The procedure relies on a two-step solid-phase extraction followed by an ultra-performance liquid chromatography separation coupled to tandem mass spectrometry detection (UPLC-MS/MS). Isotope dilution was implemented when possible in order to ensure the reliability of the measurement. The procedure was optimized toward the reliable quantification of the 23 target compounds at the predicted no-effect concentrations when existing or below the ng L-1 level. Satisfactory absolute global recoveries ≥ 77% were obtained for almost all compounds (21 out of 23) in intermediate precision conditions. Measurement errors were comprised between -27% and +17% for the great majority of compounds (21 out of 23) with standard deviations < 20% in intermediate precision conditions. Despite signal suppression was observed in water samples, satisfactory limits of quantification were achieved, ranging from 0.035 ng L-1 for 17alpha-ethinylestradiol to 1 ng L-1 for 6beta-hydroxycortisol and 6beta-hydroxydexamethasone. Abiotic stability was demonstrated for the great majority of target compounds (22 out of 23) in reference water samples stored at 4 ± 3 °C during 48 h, driving our sampling strategy. To demonstrate its fitness for purpose, the procedure was implemented in a preliminary monitoring survey of Belgian surface waters. As a result, 6 out of 23 target compounds were detected or quantified, showing a contamination by some estrogens and glucocorticoids at levels ranging from 0.1 to 0.9 ng L-1.
Collapse
Affiliation(s)
- E Mirmont
- Laboratoire National de métrologie et d'Essais (LNE), 1 rue Gaston Boissier, 75724 Paris, France; UMR CNRS 8038 CiTCoM, Chimie-Toxicologie Analytique et Cellulaire, Université de Paris, Faculté de Pharmacie de Paris, 4 avenue de l'Observatoire, 75006 Paris, France
| | - A Bœuf
- Laboratoire National de métrologie et d'Essais (LNE), 1 rue Gaston Boissier, 75724 Paris, France
| | - M Charmel
- Laboratoire National de métrologie et d'Essais (LNE), 1 rue Gaston Boissier, 75724 Paris, France
| | - S Vaslin-Reimann
- Laboratoire National de métrologie et d'Essais (LNE), 1 rue Gaston Boissier, 75724 Paris, France
| | - B Lalère
- Laboratoire National de métrologie et d'Essais (LNE), 1 rue Gaston Boissier, 75724 Paris, France
| | - O Laprévote
- UMR CNRS 8038 CiTCoM, Chimie-Toxicologie Analytique et Cellulaire, Université de Paris, Faculté de Pharmacie de Paris, 4 avenue de l'Observatoire, 75006 Paris, France; Hôpital Européen Georges Pompidou, AP-HP, Service de Biochimie, 24 rue Leblanc, 75015 Paris, France
| | - S Lardy-Fontan
- Laboratoire National de métrologie et d'Essais (LNE), 1 rue Gaston Boissier, 75724 Paris, France.
| |
Collapse
|
23
|
Accelerated solvent extraction-gel permeation chromatography-gas chromatography-tandem mass spectrometry to rapid detection of clotrimazole residue in animal-derived food. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111248] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
24
|
Overview of Sample Preparation and Chromatographic Methods to Analysis Pharmaceutical Active Compounds in Waters Matrices. SEPARATIONS 2021. [DOI: 10.3390/separations8020016] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
In the environment, pharmaceutical residues are a field of particular interest due to the adverse effects to either human health or aquatic and soil environment. Because of the diversity of these compounds, at least 3000 substances were identified and categorized into 49 different therapeutic classes, and several actions are urgently required at multiple steps, the main ones: (i) occurrence studies of pharmaceutical active compounds (PhACs) in the water cycle; (ii) the analysis of the potential impact of their introduction into the aquatic environment; (iii) the removal/degradation of the pharmaceutical compounds; and, (iv) the development of more sensible and selective analytical methods to their monitorization. This review aims to present the current state-of-the-art sample preparation methods and chromatographic analysis applied to the study of PhACs in water matrices by pinpointing their advantages and drawbacks. Because it is almost impossible to be comprehensive in all PhACs, instruments, extraction techniques, and applications, this overview focuses on works that were published in the last ten years, mainly those applicable to water matrices.
Collapse
|
25
|
Aborkhees G, Raina-Fulton R, Thirunavokkarasu O. Determination of Endocrine Disrupting Chemicals in Water and Wastewater Samples by Liquid Chromatography-Negative Ion Electrospray Ionization-Tandem Mass Spectrometry. Molecules 2020; 25:molecules25173906. [PMID: 32867135 PMCID: PMC7503312 DOI: 10.3390/molecules25173906] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 08/24/2020] [Accepted: 08/24/2020] [Indexed: 11/16/2022] Open
Abstract
A liquid chromatography-negative ion electrospray ionization-tandem mass spectrometry method was developed for the simultaneous analysis of bisphenol A, 4-octylphenol, 4-nonylphenol, diethylstilbestrol, 17β-estradiol, estriol, estrone, 17α-ethinylestradiol, prednisone, and prednisolone. This method used solid-phase extraction with an elution solvent of acetonitrile to improve the stability of the analytes. To maintain the stability of analytes analyses were completed within five days. The recoveries ranged from 84 to 112% and the relative standard deviation of analysis of duplicate samples was <10%. The limits of quantitation were 1–10 ng/L. Surface water and wastewater were obtained from five wastewater treatment plants in Saskatchewan. Matrix effects were moderate to severe. Using standard addition calibration, all analytes except diethylstilbestrol and 17α-ethinyl estradiol were detected. There was a low frequency of detection of the target analytes in upstream and downstream water, indicating good removal efficiency during the wastewater treatment process. Bisphenol A and 4-nonylphenol were the only analytes detected downstream. Bisphenol A was the most frequently detected in raw wastewater (133 to 403 ng/L). Estriol was detected more often in raw wastewater than estrone or 17β-estradiol. This is the first Canadian study with the detection of prednisone and prednisolone with concentrations at 198–350 ng/L in raw wastewater at 60% of the wastewater treatment plants.
Collapse
Affiliation(s)
- Ghada Aborkhees
- Department of Chemistry & Biochemistry and Trace Analysis Facility, University of Regina, Regina, SK S4S 0A2, Canada;
| | - Renata Raina-Fulton
- Department of Chemistry & Biochemistry and Trace Analysis Facility, University of Regina, Regina, SK S4S 0A2, Canada;
- Correspondence: ; Tel.: +1-306-585-4012
| | | |
Collapse
|
26
|
Schmid S, Willi RA, Salgueiro-González N, Fent K. Effects of new generation progestins, including as mixtures and in combination with other classes of steroid hormones, on zebrafish early life stages. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 709:136262. [PMID: 31905574 DOI: 10.1016/j.scitotenv.2019.136262] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 12/11/2019] [Accepted: 12/19/2019] [Indexed: 05/12/2023]
Abstract
Fish are exposed to progestins and steroid mixtures in contaminated waters but the ecotoxicological implications are not sufficiently known. Here we analyze effects of the new generation progestin dienogest (DNG) followed by investigating effects of mixtures of new generation progestins containing DNG, cyproterone acetate and drospirenone and the hormone progesterone. Furthermore, effects of this mixture were studied after adding 17β-estradiol (E2) and clobetasol propionate (CLO) in zebrafish embryos and larvae at concentrations between 0.01 and 10 μg/L. DNG showed only very minor transcriptional alterations among the 24 assessed genes with downregulation of the fshb transcript only. The progestin mixture caused weak induction of the lhb, cyp2k22 and sult2st3 transcripts. Addition of E2 to the mixture caused strong induction vtg1, cyp19b, esr1 and lhb, as well as downregulation of fshb from 0.01 μg/L onwards. Besides altering the same transcripts, addition of CLO altered glucocorticoid regulated genes mmp-9, mmp-13, g6pca, fkbp5 and irg1l. While each steroid class exhibited its specific activity independently in the mixture, sult2st3 and cyp2k22 were regulated by both E2 and CLO. Furthermore, CLO alone and in mixtures decreased spontaneous muscle contractions, increased heartrate and induced edema. Our study highlights the prominent effects of E2 and CLO in environmental steroid mixtures, while new generation progestins show relatively low activity.
Collapse
Affiliation(s)
- Simon Schmid
- University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences, Hofackerstrasse 30, CH-4132 Muttenz, Switzerland
| | - Raffael Alois Willi
- University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences, Hofackerstrasse 30, CH-4132 Muttenz, Switzerland
| | - Noelia Salgueiro-González
- Istituto di Ricerche Farmacologiche Mario Negri, IRCCS, Department of Environmental Health Sciences, Via Mario Negri 2, 20156 Milan, Italy
| | - Karl Fent
- University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences, Hofackerstrasse 30, CH-4132 Muttenz, Switzerland; Swiss Federal Institute of Technology (ETH Zürich), Institute of Biogeochemistry and Pollution Dynamics, Department of Environmental Systems Science, CH-8092 Zürich, Switzerland.
| |
Collapse
|
27
|
Lin C, Gong J, Zhou Y, Chen D, Chen Y, Yang J, Li Q, Wu C, Tang H. Spatiotemporal distribution, source apportionment, and ecological risk of corticosteroids in the urbanized river system of Guangzhou, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 706:135693. [PMID: 31791762 DOI: 10.1016/j.scitotenv.2019.135693] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 11/15/2019] [Accepted: 11/21/2019] [Indexed: 06/10/2023]
Abstract
We investigated the occurrence and distribution of 24 selected corticosteroids (CSs) in the surface water of the Zhujiang River (ZR) system in Guangzhou, a highly urbanized river system receiving both treated and untreated municipal wastewater effluents. Twenty-two and sixteen CSs were detected in the tributaries and the main stream of the ZR system, and their concentrations ranged from less than the method quantification limit (fluticasone propionate) to 94 ng/L (clobetasone butyrate) and from 0.24 ng/L (cortisol) to 7.2 ng/L (clobetasone butyrate), respectively. We observed higher total CSs (∑CSs) concentrations in the tributaries (11-396 ng/L) relative to the main stream (5.5-33 ng/L) due to their proximity to densely populated residential areas. ∑CSs concentrations in the dry season were generally higher than those in the wet season due to low dilution from decreased river discharge. Principal component analysis and multiple linear regression analysis identified untreated domestic sewage to be the dominant source of CSs (t2, contribution rate: 42.7%) in the urban rivers. Additional source contributions were from naturally attenuated treated and/or raw sewage (t1, 21.5%) and effluents from wastewater treatment plants (t3, 26.7%). CSs contribution was dominated by t2 in the dry season, and the contributions from t1, t2, and t3 showed no significant difference in the wet season. Risk assessment inferred that the ZR system is at medium to high ecological risk from CSs and is therefore a potential threat to the health of aquatic ecosystems. To prevent CSs pollution, our results demonstrate the need to develop effective control strategies to minimize the discharge of untreated waste to nearby rivers and to improve the capacity of wastewater treatment plants in Guangzhou. Further, we demonstrate that the concentrations of cortisone and fludrocortisone acetate are effective chemical indicators to estimate the level of natural and synthetic CSs contamination in urban rivers.
Collapse
Affiliation(s)
- Canyuan Lin
- Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China; Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Jian Gong
- Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China; Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China.
| | - Yongshun Zhou
- Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China; Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Diyun Chen
- Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China; Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Yongheng Chen
- Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China; Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Juan Yang
- Institute of Environmental Remediation and Human Health, Southwest Forestry University, Kunming 650224, China.
| | - Qiang Li
- School of life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Cuiqin Wu
- Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China; Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Hongmei Tang
- Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China; Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| |
Collapse
|
28
|
Willi RA, Castiglioni S, Salgueiro-González N, Furia N, Mastroianni S, Faltermann S, Fent K. Physiological and Transcriptional Effects of Mixtures of Environmental Estrogens, Androgens, Progestins, and Glucocorticoids in Zebrafish. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:1092-1101. [PMID: 31829580 DOI: 10.1021/acs.est.9b05834] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Fishes are exposed to mixtures of different classes of steroids, but ecotoxicological implications are not sufficiently known. Here, we systematically analyze effects of different combinations of steroid mixtures in zebrafish embryos to assess their joint activities on physiology and transcriptional alterations of steroid-specific target genes at 96 and 120 h post fertilization. In binary mixtures of clobetasol propionate (CLO) with estradiol (E2) or androstenedione (A4), each steroid exhibited its own expression profile. This was also the case in mixtures of 5-, 8-, and 13-different classes of steroids in exposure concentrations of 10-10,000 ng/L. The transcriptional expression of most genes in different mixtures was steroid-specific except for genes encoding aromatase (cyp19b), sulfotransferase (sult2st3), and cyp2k22 that were induced by androgens, progestins, and glucocorticoids. Marked alterations occurred for sult2st3 in binary mixtures of CLO + E2 and CLO + A4. Glucocorticoids increased the heart rate and muscle contractions. In mixtures containing estrogens, induction of the cyp19b transcript occurred at 10 ng/L and protc from the anticoagulation system at 100 ng/L. Our study demonstrates that steroids can act independently in mixtures; the sum of individual steroid profiles is expressed. However, some genes, including cyp19b, sult2st3, and cyp2k22, are regulated by several steroids. This joint effect on different pathways may be of concern for fish development.
Collapse
Affiliation(s)
- Raffael Alois Willi
- School of Life Sciences , University of Applied Sciences and Arts Northwestern Switzerland , Hofackerstrasse 30 , CH-4132 Muttenz , Switzerland
| | - Sara Castiglioni
- Department of Environmental Health Sciences , Istituto di Ricerche Farmacologiche Mario Negri, IRCCS , Via Mario Negri 2 , 20156 Milan , Italy
| | - Noelia Salgueiro-González
- Department of Environmental Health Sciences , Istituto di Ricerche Farmacologiche Mario Negri, IRCCS , Via Mario Negri 2 , 20156 Milan , Italy
| | - Nathan Furia
- School of Life Sciences , University of Applied Sciences and Arts Northwestern Switzerland , Hofackerstrasse 30 , CH-4132 Muttenz , Switzerland
| | - Sarah Mastroianni
- School of Life Sciences , University of Applied Sciences and Arts Northwestern Switzerland , Hofackerstrasse 30 , CH-4132 Muttenz , Switzerland
| | - Susanne Faltermann
- School of Life Sciences , University of Applied Sciences and Arts Northwestern Switzerland , Hofackerstrasse 30 , CH-4132 Muttenz , Switzerland
| | - Karl Fent
- School of Life Sciences , University of Applied Sciences and Arts Northwestern Switzerland , Hofackerstrasse 30 , CH-4132 Muttenz , Switzerland
- Department of Environmental Systems Science , Swiss Federal Institute of Technology (ETH Zürich), Institute of Biogeochemistry and Pollution Dynamics , CH-8092 Zürich , Switzerland
| |
Collapse
|
29
|
Faltermann S, Hettich T, Küng N, Fent K. Effects of the glucocorticoid clobetasol propionate and its mixture with cortisol and different class steroids in adult female zebrafish. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2020; 218:105372. [PMID: 31812088 DOI: 10.1016/j.aquatox.2019.105372] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 11/13/2019] [Accepted: 11/21/2019] [Indexed: 05/27/2023]
Abstract
Ecotoxicological effects of glucocorticoids and steroid mixtures in the environment are not sufficiently known. Here we investigate effects of 11-14 days exposure of female zebrafish to the glucocorticoid clobetasol propionate (Clo), cortisol (Cs), their mixture and mixtures with five different class steroids (Clo + triamcinolone + estradiol + androstenedione + progesterone) in liver, brain and gonads. Cs showed little activity, while Clo reduced the condition factor at 0.57 and 6.35 μg/L. Clo induced differential expression of genes in the liver at 0.07-6.35 μg/L, which were related to circadian rhythm (per1, nr1d2), glucose metabolism (g6pca, pepck1), immune system response (fkbp 5, socs3, gilz), nuclear steroid receptors (pgr and pxr), steroidogeneses and steroid metabolism (hsd11b2, cyp2k22). Clo caused strong transcriptional down-regulation of vtg. Similar upregulations occurred in the brain for pepck1, fkbp5, socs3, gilz, hsd11b2, and nr1d2a, while cyp19b was down-regulated. Effects of Clo + Cs mixtures were similar to Clo alone. Transcriptional alterations were different in mixtures of five steroids with no alteration of vtg in the liver due to counteraction of Clo and estradiol. Induction of fkbp5 (brain) and sult2st3 (liver) and downregulation of cyp19a (gonads) occurred at 1 μg/L. Histological effects of the five steroids mixture in gonads were characterized by a decrease of mature oocytes. Our data indicate that effects of steroids of different classes sum up to an overall joint effect driven by the most potent steroid Clo.
Collapse
Affiliation(s)
- Susanne Faltermann
- University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences, Hofackerstrasse 30, CH-4132, Muttenz, Switzerland
| | - Timm Hettich
- University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences, Hofackerstrasse 30, CH-4132, Muttenz, Switzerland
| | - Noemi Küng
- University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences, Hofackerstrasse 30, CH-4132, Muttenz, Switzerland
| | - Karl Fent
- University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences, Hofackerstrasse 30, CH-4132, Muttenz, Switzerland; Swiss Federal Institute of Technology (ETH Zürich), Institute of Biogeochemistry and Pollution Dynamics, Department of Environmental Systems Science, CH-8092, Zürich, Switzerland.
| |
Collapse
|
30
|
Hashmi MAK, Krauss M, Escher BI, Teodorovic I, Brack W. Effect-Directed Analysis of Progestogens and Glucocorticoids at Trace Concentrations in River Water. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2020; 39:189-199. [PMID: 31614391 DOI: 10.1002/etc.4609] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 09/18/2019] [Accepted: 10/01/2019] [Indexed: 05/07/2023]
Abstract
Effect-based monitoring is increasingly applied to detect and-in conjunction with chemical analysis-to identify endocrine-disrupting compounds (EDCs) in the environment. Although this approach of effect-directed analysis has been successfully demonstrated for estrogenicity and androgenicity, data on progestogens and glucocorticoids driving endocrine disruption are quite limited. We investigated progestogenic and glucocorticoid activities in Danube River water receiving untreated wastewater from Novi Sad, Serbia. After a 2-step fractionation, all fractions were tested with reporter gene bioassays for agonistic and antagonistic hormonal responses at progestogenic and glucocorticoid hormone receptors as well as with target and nontarget analytical screening of active fractions by liquid chromatography-high-resolution mass spectrometry. Due to masking by cytotoxic mixture components, the effects could not be detected in the raw water extract but were unraveled only after fractionation. Target chemical screening of the fraction that was active in the progesterone receptor (PR) assay revealed that progesterone and megestrol acetate were predominant drivers of PR-mediated activity along with medroxyprogesterone, dihydrotestosterone, androsterone, and epiandrosterone. Hydrocortisone was detected at sub-ng/L concentration in the active fraction in the glucocorticoid receptor (GR) assay but could not explain a significant fraction of the observed GR activity. The present study indicates that effect-based monitoring is a powerful tool to detect EDCs in the aquatic environment but that fractionation may be required to avoid masking effects of mixture components. Future effect-directed analysis studies are required to better understand the occurrence of EDCs and masking compounds in different lipophilicity windows, to finally reduce fractionation requirements for monitoring to a smart clean-up. Environ Toxicol Chem 2019;39:189-199. © 2019 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals, Inc. on behalf of SETAC.
Collapse
Affiliation(s)
- Muhammad Arslan Kamal Hashmi
- Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
- Department of Ecosystem Analysis, Institute for Environmental Research (Biology V), RWTH Aachen University Aachen, Germany
| | - Martin Krauss
- Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Beate I Escher
- Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
- Environmental Toxicology, Center for Applied Geoscience, Eberhard Karls University Tübingen, Tübingen, Germany
| | | | - Werner Brack
- Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
- Department of Ecosystem Analysis, Institute for Environmental Research (Biology V), RWTH Aachen University Aachen, Germany
| |
Collapse
|
31
|
Shen X, Chang H, Sun Y, Wan Y. Determination and occurrence of natural and synthetic glucocorticoids in surface waters. ENVIRONMENT INTERNATIONAL 2020; 134:105278. [PMID: 33387883 DOI: 10.1016/j.envint.2019.105278] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 10/16/2019] [Accepted: 10/17/2019] [Indexed: 05/07/2023]
Abstract
Glucocorticoids (GCs) have been increasingly reported to have adverse effects on aquatic organisms, but the lack of comprehensive analytical methods for a broad number of GCs has limited the effective management of pollution by these molecules in surface and coastal waters. In this study, we developed an original analytical method for simultaneously monitoring 25 natural GCs, and 43 synthetic GCs (4 hydrocortisone types, 6 acetonide types, 8 betamethasone types, 14 halogenated esters, and 11 labile prodrug esters) in water samples. Of the river samples investigated, 15 natural and 25 synthetic compounds were detected with the concentrations ranging from 0.13 ng/L (11-epitetrahydrocortisol) to 433 ng/L (cortisone) and from 0.05 (clobetasol) to 94 ng/L (prednisolone), respectively. Thirteen natural metabolites of cortisol (CRL) were first detected, and their concentrations were up to 36 times higher than that of CRL. Hydrocortisone-type GCs were the dominant synthetic compounds (≤154 ng/L), followed by halogenated esters (≤81 ng/L), acetonide type GCs (≤57 ng/L), betamethasone type GCs (≤32 ng/L), and labile prodrug esters (≤22 ng/L). Considering the relative potencies for detected GCs compared to dexamethasone, halogenated esters predominantly contributed to the GC activities in the samples. Notably, this is the first report of the halogenated esters 11-oxo fluticasone propionate (OFP) and cloticasone propionate (CTP) in environmental waters. Untreated wastewater is the main source of GCs in the studied waters, and the concentration ratios between natural and synthetic GCs can be used as potential indicators of sewage input. Because of the high detected concentrations and bioactivity potency of halogenated GCs, they are the main contributors to GC activities in the studied waters, and deserved more study in the future.
Collapse
Affiliation(s)
- Xiaoyan Shen
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Sciences & Engineering, Beijing Forestry University, Beijing 100083, China
| | - Hong Chang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Sciences & Engineering, Beijing Forestry University, Beijing 100083, China.
| | - Yu Sun
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Sciences & Engineering, Beijing Forestry University, Beijing 100083, China
| | - Yi Wan
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
32
|
Abdulsattar JO, Greenway GM. A sensitive chemiluminescence based immunoassay for the detection of cortisol and cortisone as stress biomarkers. J Anal Sci Technol 2019. [DOI: 10.1186/s40543-019-0196-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AbstractAn electrochemically based antibody immobilization was used to perform environmentally and clinically relevant immunoassays for stress hormones biomarkers (cortisol and cortisone) using chemiluminescence (CL) detection. To achieve CL detection, the ferrocene tag on the antibodies was first oxidised, and this then acted as a catalyst for the luminol and hydrogen peroxide CL reaction. The conditions were optimised and measurements were made with an incubation time of 30 min. Using this approach limits of detection were obtained of 0.47 pg ml−1and 0.34 pg ml−1alsoR20.9912 and 0.9902 for cortisol and cortisone respectively with a linear concentration from 0 to 50 ng ml−1. The method was then applied to Zebrafish whole body and artificial saliva samples. For the Zebrafish sample recoveries of 91.0% and 90.0% were obtained with samples spiked with cortisol and cortisone, for artificial saliva the recoveries were 92.59% and 90.73% respectively. Interference studies showed only minor effects on the measurement of the analyte. A comparison between this procedure and the standard enzyme-linked immunosorbent assay (ELISA) procedure gave approximately the sameR2values.
Collapse
|
33
|
Gong J, Lin C, Xiong X, Chen D, Chen Y, Zhou Y, Wu C, Du Y. Occurrence, distribution, and potential risks of environmental corticosteroids in surface waters from the Pearl River Delta, South China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 251:102-109. [PMID: 31071626 DOI: 10.1016/j.envpol.2019.04.110] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 04/23/2019] [Accepted: 04/23/2019] [Indexed: 05/25/2023]
Abstract
The occurrence, spatiotemporal distribution, and potential risks of 21 glucocorticoids (GCs) and 3 mineralocorticoids (MCs) in four rivers were studied by investigating the surface waters from the Pearl River Delta (PRD), South China. These environmental corticosteroids (ECs) were commonly present in the river surface waters with average concentrations varying from <0.17 ng/L for fluticasone propionate to 5.6 ng/L for clobetasone butyrate; and cortisone had the highest concentration, 32.9 ng/L. The total ECs ranged in concentration from undetectable to 83.3 ng/L, with a mean and median of 8.1 ng/L and 4.8 ng/L, respectively. Spatially the total EC concentration levels in the Pearl River system occurred in the following order: Zhujiang River (ZR) > Dongjiang River (DR) > Shiziyang waterway (SW) > Beijiang River (BR). These levels generally demonstrated a trend of increasing from upstream to midstream or downstream then attenuating toward the estuary. Considerable seasonal variations in the ECs differed among rivers. Higher ECs concentrations in winter were mostly found in the ZR, whereas lower levels were found in the DR. Moreover, the temporal variations of the ECs were marginal in the BR and SW. These spatiotemporal distributions of the ECs might have been simultaneously influenced by pollution sources derived from anthropogenic activities and river hydrologic conditions. Correlation analyses indicated that dissolved organic carbon (DOC) could play a key role in the occurrence and distribution of ECs in an aquatic environment. Risk assessment demonstrated that the occurrence of ECs might have posed medium to high risk to aquatic organisms in the Pearl River.
Collapse
Affiliation(s)
- Jian Gong
- Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China; Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China.
| | - Canyuan Lin
- Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China; Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Xiaoping Xiong
- Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China; Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Diyun Chen
- Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China; Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Yongheng Chen
- Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China; Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Yongshun Zhou
- Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China; Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Cuiqin Wu
- Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China; Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Yongming Du
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| |
Collapse
|
34
|
Willi RA, Salgueiro-González N, Carcaiso G, Fent K. Glucocorticoid mixtures of fluticasone propionate, triamcinolone acetonide and clobetasol propionate induce additive effects in zebrafish embryos. JOURNAL OF HAZARDOUS MATERIALS 2019; 374:101-109. [PMID: 30981015 DOI: 10.1016/j.jhazmat.2019.04.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 03/26/2019] [Accepted: 04/03/2019] [Indexed: 06/09/2023]
Abstract
Many synthetic glucocorticoids from medical applications occur in the aquatic environment. Whether they pose a risk for fish health is poorly known. Here we investigate effects of glucocorticoids fluticasone propionate (FLU) and triamcinolone acetonide (TRI) as single steroids and as ternary mixtures with clobetasol propionate (CLO) in zebrafish embryos. Exposure to FLU and TRI in a range of concentrations between 0.099 and 120.08 μg/L led to concentration-related decrease in muscle contractions and increase in heart rate at 0.98 and 1.05 μg/L, respectively, and higher. Genes encoding for proteins related to glucose metabolism (g6pca, pepck1), immune system regulation (fkbp5, irg1l, socs3, gilz) and matrix metalloproteinases mmp-9 and mmp-13 showed expressional alterations, as well as genes encoding for the progestin receptor (pgr) and corticosteroid dehydrogenase (hsd11b2). FLU accelerated hatching and led to embryotoxicity (immobilization and edema). Ternary mixtures (FLU + TRI + CLO) induced the same physiological and toxicological effects at concentrations of individual glucocorticoids of 11.1-16.37 μg/L and higher. Heart rate was increased in the mixture at concentrations as low as 0.0885-0.11 μg/L of each steroid. Glucocorticoids in mixtures showed additive activity; the fold-changes of transcripts of 19 target genes were additive. Together, our data show that glucocorticoids act additively and their joint activity may be of concern for developing fish in contaminated environments.
Collapse
Affiliation(s)
- Raffael Alois Willi
- University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences, Gründenstrasse 40, CH-4132 Muttenz, Switzerland
| | - Noelia Salgueiro-González
- Istituto di Ricerche Farmacologiche Mario Negri - IRCCS, Department of Environmental Health Sciences, Via La Masa 19, 20156 Milan, Italy
| | - Giulia Carcaiso
- University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences, Gründenstrasse 40, CH-4132 Muttenz, Switzerland
| | - Karl Fent
- University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences, Gründenstrasse 40, CH-4132 Muttenz, Switzerland; Swiss Federal Institute of Technology (ETH Zürich), Institute of Biogeochemistry and Pollution Dynamics, Department of Environmental Systems Science, CH-8092 Zürich, Switzerland.
| |
Collapse
|
35
|
Willi RA, Salgueiro-González N, Faltermann S, Hettich T, Fent K. Environmental glucocorticoids corticosterone, betamethasone and flumethasone induce more potent physiological than transcriptional effects in zebrafish embryos. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 672:183-191. [PMID: 30954817 DOI: 10.1016/j.scitotenv.2019.03.426] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 03/19/2019] [Accepted: 03/26/2019] [Indexed: 06/09/2023]
Abstract
Many glucocorticoids occur in the aquatic environments but their adverse effects to fish are poorly known. Here we investigate effects of the natural glucocorticoid corticosterone and the synthetic glucocorticoids betamethasone and flumethasone in zebrafish embryos. Besides studying the effects of each steroid, we compared effects of natural with synthetic glucocorticoids, used as drugs. Exposure at concentrations of 1 μg/L and higher led to concentration-related decrease in spontaneous muscle contractions at 24 h post fertilization (hpf) and increase in heart rate at 48 hpf. Betamethasone showed a significant increase at 0.11 μg/L in heart rate. Corticosterone also accelerated hatching at 60 hpf at 0.085 μg/L. Transcription of up to 24 genes associated with different pathways showed alterations at 96 and 120 hpf for all glucocorticoids, although with low potency. Corticosterone caused transcriptional induction of interleukin-17, while betamethasone caused transcriptional down-regulation of the androgen receptor, aromatase and hsd11b2, indicating an effect on the sex hormone system. Furthermore, transcripts encoding proteins related to immune system regulation (irg1l, gilz) and fkbp5 were differentially expressed by corticosterone and betamethasone, while flumethasone caused only little effects, mainly alteration of the irg1l transcript. Our study shows that these glucocorticoids caused more potent physiological effects in early embryos than transcriptional alterations in hatched embryos, likely due to increased metabolism in later developmental stages. Thus, these glucocorticoids may be of concern for early stages of fish embryos in contaminated aquatic environments.
Collapse
Affiliation(s)
- Raffael Alois Willi
- University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences, Langackerstrasse 30, CH -4132 Muttenz, Switzerland
| | - Noelia Salgueiro-González
- Istituto di Ricerche Farmacologiche Mario Negri - IRCCS, Department of Environmental Health Sciences, Via La Masa 19, 20156 Milan, Italy
| | - Susanne Faltermann
- University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences, Langackerstrasse 30, CH -4132 Muttenz, Switzerland
| | - Timm Hettich
- University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences, Langackerstrasse 30, CH -4132 Muttenz, Switzerland
| | - Karl Fent
- University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences, Langackerstrasse 30, CH -4132 Muttenz, Switzerland; Swiss Federal Institute of Technology (ETH Zürich), Institute of Biogeochemistry and Pollution Dynamics, Department of Environmental System Sciences, CH -8092 Zürich, Switzerland.
| |
Collapse
|
36
|
Daniels KD, VanDervort D, Wu S, Leusch FDL, van de Merwe JP, Jia A, Snyder SA. Downstream trends of in vitro bioassay responses in a wastewater effluent-dominated river. CHEMOSPHERE 2018; 212:182-192. [PMID: 30144679 DOI: 10.1016/j.chemosphere.2018.07.190] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 07/18/2018] [Accepted: 07/31/2018] [Indexed: 06/08/2023]
Abstract
Surface waters are becoming increasingly influenced by wastewater effluents due to drought conditions, growing populations, and urbanization. These effluents contain mixtures of trace organic compounds (TOrCs), including bioactive constituents, which are not fully attenuated by conventional wastewater treatment systems. This study investigated the occurrence of glucocorticoid receptor (GR), aryl hydrocarbon receptor (AhR), and estrogen receptor (ER) activity, as well as the overall toxicity to bacteria (BLT-Screen), in the effluent of two wastewater reclamation facilities (WRF) and downstream of the Lower Santa Cruz River, Pima County, Arizona USA, which is dominated by the WRF effluents. The GR, AhR, and ER activities and toxicity to bacteria were determined by in vitro bioassays during four seasons. Bioassay results showed the highest activities at the wastewater outfalls, with activities decreasing downstream of the river. Biological equivalent concentrations ranged from 9 to 170 ng/L dexamethasone-equivalents (DexEQ), 0.1-0.8 ng/L 2,3,7,8-tetrachlorodibenzo-p-dioxin-equivalents (TCDDEQ), and <0.005-0.8 ng/L estradiol equivalents (EEQ) for GR-, AhR- and ER-mediated activity, respectively. This level of biological activity at times exceeded the relevant effects-based trigger value for environmental effects, indicating a potential risk to the receiving environment. Toxicity to bacteria was low at all sites, well below the trigger value of 1.0 TUIC20, which represents an undiluted water sample causing 20% toxicity in the assay. The potential inducing glucocorticoid agonists were further analysed by liquid chromatography coupled to tandem mass spectrometry. Analytical results reveal triamcinolone acetonide as the most abundant glucocorticoid with concentrations up to 38 ng/L. Similar results for DexEQ concentrations calculated from both chemical and bioassay data indicate a successful mass balance for glucocorticoids. This mass balance illustrated lower DexEQ during summer months, which could be due to an increased attenuation from photodegradation.
Collapse
Affiliation(s)
- Kevin D Daniels
- University of Arizona, Department of Environmental and Chemical Engineering, 1133 E. James E. Rogers Way, Harshbarger108, Tucson, AZ, 85721, USA
| | - Darcy VanDervort
- University of Arizona, Department of Environmental and Chemical Engineering, 1133 E. James E. Rogers Way, Harshbarger108, Tucson, AZ, 85721, USA
| | - Shimin Wu
- University of Arizona, Department of Environmental and Chemical Engineering, 1133 E. James E. Rogers Way, Harshbarger108, Tucson, AZ, 85721, USA
| | - Frederic D L Leusch
- Australian Rivers Institute, Griffith School of Environment, Griffith University, Southport, Qld 4222, Australia
| | - Jason P van de Merwe
- Australian Rivers Institute, Griffith School of Environment, Griffith University, Southport, Qld 4222, Australia
| | - Ai Jia
- University of Arizona, Department of Environmental and Chemical Engineering, 1133 E. James E. Rogers Way, Harshbarger108, Tucson, AZ, 85721, USA
| | - Shane A Snyder
- University of Arizona, Department of Environmental and Chemical Engineering, 1133 E. James E. Rogers Way, Harshbarger108, Tucson, AZ, 85721, USA; Nanyang Technological University Singapore, Nanyang Environment & Water Research Institute (NEWRI), 1 CleanTech Loop, CleanTech One, #06-08, 637141 Singapore.
| |
Collapse
|
37
|
Trace analysis of corticosteroids (CSs) in environmental waters by liquid chromatography-tandem mass spectrometry. Talanta 2018; 195:830-840. [PMID: 30625625 DOI: 10.1016/j.talanta.2018.11.113] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 11/28/2018] [Accepted: 11/29/2018] [Indexed: 11/20/2022]
Abstract
Natural and synthetic corticosteroids (CSs) are a class of steroid hormones which could potentially disturb the corticosteroid signaling pathways in wildlife and humans. In this study, a sensitive and robust analytical method using solid phase extraction (SPE) and liquid chromatography-tandem mass spectrometry (LC-MS/MS) was developed for simultaneous analysis of sub-ng/L concentrations of 26 CSs in highly complex natural water matrices. The method performance was validated for WWTP influent, effluent, surface water and finished drinking water. Low practical quantification levels (PQLs) were achieved as 0.008-0.16 ng/L in finished drinking water, 0.019-0.50 ng/L in surface water, 0.047-1.5 ng/L in WWTP effluent, and 0.10-3.1 ng/L in WWTP influent, respectively, with the recoveries ranging from 70% to 130%. The cleanup performance and matrix interferences were also evaluated. This method was then applied to the analysis of target CSs in WWTP influent and effluent samples collected from a local WWTP, as well as surface water downstream of the WWTP outfall, detecting an average summed CS concentration of 744 ng/L in influent, 23.4 ng/L in effluent and 10.9 ng/L in surface water. Four synthetic CSs (triamcinolone acetonide, fluocinolone acetonide, clobetasol propionate, and fluticasone propionate) were found poorly removed in the WWTP. The developed method provides a tool to obtain occurrence data of corticosteroids in environmental waters, which will permit assessing their risk to environmental organisms.
Collapse
|
38
|
Sonavane M, Schollée JE, Hidasi AO, Creusot N, Brion F, Suter MJF, Hollender J, Aїt-Aїssa S. An integrative approach combining passive sampling, bioassays, and effect-directed analysis to assess the impact of wastewater effluent. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2018; 37:2079-2088. [PMID: 29667746 DOI: 10.1002/etc.4155] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 12/31/2017] [Accepted: 04/16/2018] [Indexed: 05/07/2023]
Abstract
Wastewater treatment plant (WWTP) effluents are major sources of endocrine-disrupting chemicals (EDCs) and other chemicals of toxicological concern for the aquatic environment. In the present study, we used an integrated strategy combining passive sampling (Chemcatcher®), developmental toxicity, and mechanism-based in vitro and in vivo bioassays to monitor the impacts of a WWTP on a river. In vitro screening revealed the WWTP effluent as a source of estrogen, glucocorticoid, and aryl hydrocarbon (AhR) receptor-mediated activities impacting the downstream river site where significant activities were also measured, albeit to a lesser extent than in the effluent. Effect-directed analysis of the effluent successfully identified the presence of potent estrogens (estrone, 17α-ethinylestradiol, and 17β-estradiol) and glucocorticoids (clobetasol propionate and fluticasone propionate) as the major contributors to the observed in vitro activities, even though other unidentified active chemicals were likely present. The impact of the WWTP was also assessed using zebrafish embryo assays, highlighting its ability to induce estrogenic response through up-regulation of the aromatase promoter-dependent reporter gene in the transgenic (cyp19a1b-green fluorescent protein [GFP]) zebrafish assay and to generate teratogenic effects at nonlethal concentrations in the zebrafish embryo toxicity test. The present study argues for the use of such an integrated approach, combining passive sampling, bioassays, and effect-directed analysis, to comprehensively identify endocrine active compounds and associated hazards of WTTP effluents. Environ Toxicol Chem 2018;37:2079-2088. © 2018 SETAC.
Collapse
Affiliation(s)
- Manoj Sonavane
- Institut National de l'Environnement Industriel et des risques (INERIS), Verneuil-en-Halatte, France
| | - Jennifer E Schollée
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
- Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich, Zürich, Switzerland
| | - Anita O Hidasi
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
- Swiss Federal Institute of Technology (EPF Lausanne), Lausanne, Switzerland
| | - Nicolas Creusot
- Institut National de l'Environnement Industriel et des risques (INERIS), Verneuil-en-Halatte, France
| | - François Brion
- Institut National de l'Environnement Industriel et des risques (INERIS), Verneuil-en-Halatte, France
| | - Marc J-F Suter
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
- Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich, Zürich, Switzerland
| | - Juliane Hollender
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
- Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich, Zürich, Switzerland
| | - Selim Aїt-Aїssa
- Institut National de l'Environnement Industriel et des risques (INERIS), Verneuil-en-Halatte, France
| |
Collapse
|
39
|
Weizel A, Schlüsener MP, Dierkes G, Ternes TA. Occurrence of Glucocorticoids, Mineralocorticoids, and Progestogens in Various Treated Wastewater, Rivers, and Streams. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:5296-5307. [PMID: 29580053 DOI: 10.1021/acs.est.7b06147] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
In the current study a high sensitive analytical method was developed for the determination of 60 steroids including glucocorticoids (GC), mineralocorticoids (MC), and progestogens (PG) in WWTP effluents and surface water using liquid chromatography with tandem mass spectrometry detection (LC-MS/MS). The limits of quantification (LOQ) ranged between 0.02 ng/L (cortisone) to 0.5 ng/L (drospirenone) in surface water and from 0.05 ng/L (betamethasone) to 5 ng/L (chlormadinone) in treated wastewater. After optimization, the developed method was applied to WWTP effluents, rivers, and streams around Germany. Numerous steroids have been detected during the sampling campaign and predominant analytes from all steroid types were determined. Moreover, the occurrence of dienogest, mometasone furoate, flumethasone pivalate, and the metabolites 6β-hydroxy dienogest, 6β-hydroxy triamcinolone acetonide, 7α-thiomethyl spironolactone, and 11α-hydroxy canrenone is reported for the first time. In addition, this study revealed the ubiquitous presence of topically applied GC monoesters betamethasone propionate, betamethasone valerate, and 6α-methylprednisolone propionate in WWTP effluents and surface water.
Collapse
Affiliation(s)
- Alexander Weizel
- Federal Institute of Hydrology , Department of Aquatic Chemistry , 56068 Koblenz , Germany
| | - Michael P Schlüsener
- Federal Institute of Hydrology , Department of Aquatic Chemistry , 56068 Koblenz , Germany
| | - Georg Dierkes
- Federal Institute of Hydrology , Department of Aquatic Chemistry , 56068 Koblenz , Germany
| | - Thomas A Ternes
- Federal Institute of Hydrology , Department of Aquatic Chemistry , 56068 Koblenz , Germany
| |
Collapse
|
40
|
Lyu L, Yu G, Zhang L, Hu C, Sun Y. 4-Phenoxyphenol-Functionalized Reduced Graphene Oxide Nanosheets: A Metal-Free Fenton-Like Catalyst for Pollutant Destruction. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 51:6498-6506. [PMID: 29250958 DOI: 10.1021/acs.est.7b01231] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Metal-containing Fenton catalysts have been widely investigated. Here, we report for the first time a highly effective stable metal-free Fenton-like catalyst with dual reaction centers consisting of 4-phenoxyphenol-functionalized reduced graphene oxide nanosheets (POP-rGO NSs) prepared through surface complexation and copolymerization. Experimental and theoretical studies verified that dual reaction centers are formed on the C-O-C bridge of POP-rGO NSs. The electron-rich center around O is responsible for the efficient reduction of H2O2 to •OH, while the electron-poor center around C captures electrons from the adsorbed pollutants and diverts them to the electron-rich area via the C-O-C bridge. By these processes, pollutants are degraded and mineralized quickly in a wide pH range, and a higher H2O2 utilization efficiency is achieved. Our findings address the problems of the classical Fenton reaction and are useful for the development of efficient Fenton-like catalysts using organic polymers for different fields.
Collapse
Affiliation(s)
- Lai Lyu
- School of Environmental Science and Engineering, Guangzhou University , Guangzhou 510006, China
- Research Institute of Environmental Studies at Greater Bay, Guangzhou University , Guangzhou 510006, China
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085, China
| | - Guangfei Yu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085, China
| | - Lili Zhang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085, China
| | - Chun Hu
- School of Environmental Science and Engineering, Guangzhou University , Guangzhou 510006, China
- Research Institute of Environmental Studies at Greater Bay, Guangzhou University , Guangzhou 510006, China
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085, China
| | - Yong Sun
- College of Aerospace and Civil Engineering, Harbin Engineering University , Harbin 150001, China
| |
Collapse
|
41
|
Willi RA, Faltermann S, Hettich T, Fent K. Active Glucocorticoids Have a Range of Important Adverse Developmental and Physiological Effects on Developing Zebrafish Embryos. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:877-885. [PMID: 29190094 DOI: 10.1021/acs.est.7b06057] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Glucocorticoids in aquatic systems originating from natural excretion and medical use may pose a risk to fish. Here, we analyzed physiological and transcriptional effects of clobetasol propionate (CLO), cortisol and cortisone in zebrafish embryos as single compounds and binary mixtures. CLO and cortisol, but not cortisone showed a concentration-dependent decrease in muscle contraction, increase in heart rate, and accelerated hatching. CLO also induced immobilization and edema at high concentrations. Transcription analysis covering up to 26 genes showed that mostly genes related to glucose metabolism, immune system and development were differentially expressed at 91 ng/L and higher. CLO showed stronger effects on immune system genes than cortisol, which was characterized by upregulation of fkbp5, irg1l, gilz, and socs3, and development genes, matrix metalloproteinases mmp-9 and mmp-13, while cortisol led to stronger upregulation of the gluconeogenesis genes g6pca and pepck1. CLO also induced genes regulating the circadian rhythm, nr1d1 and per1a. In contrast, cortisone led to down-regulation of vitellogenin. Binary mixtures of cortisol and CLO mostly showed a similar activity as CLO alone on physiological and transcriptional end points but additive effects in heart rate and pepck1 upregulation, which indicates that mixtures of glucocorticoids may be of concern for developing fish.
Collapse
Affiliation(s)
- Raffael Alois Willi
- University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences , Gründenstrasse 40, CH-4132 Muttenz, Switzerland
| | - Susanne Faltermann
- University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences , Gründenstrasse 40, CH-4132 Muttenz, Switzerland
| | - Timm Hettich
- University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences , Gründenstrasse 40, CH-4132 Muttenz, Switzerland
| | - Karl Fent
- University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences , Gründenstrasse 40, CH-4132 Muttenz, Switzerland
- Swiss Federal Institute of Technology (ETH Zürich), Institute of Biogeochemistry and Pollution Dynamics, Department of Environmental System Sciences , CH-8092 Zürich, Switzerland
| |
Collapse
|
42
|
Zhang K, Fent K. Determination of two progestin metabolites (17α-hydroxypregnanolone and pregnanediol) and different classes of steroids (androgens, estrogens, corticosteroids, progestins) in rivers and wastewaters by high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 610-611:1164-1172. [PMID: 31096410 DOI: 10.1016/j.scitotenv.2017.08.114] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 08/11/2017] [Accepted: 08/12/2017] [Indexed: 05/04/2023]
Abstract
A highly sensitive and robust method was developed for routine analysis of two progestin metabolites, 17α-hydroxypregnanolone (17OH-Δ5P) and pregnanediol (PD), and 31 other natural and synthetic steroids and related metabolites (estrogens, androgens, corticosteroids, progestins) in river water, as well as influents and effluents of municipal wastewater treatment plants (WWTP) using HPLC-MS/MS combined with solid-phase extraction. For the various matrixes considered, the optimized method showed satisfactory performance with recoveries of 70-120% for most of target steroids. The method detection limits (MDLs) ranged from 0.01 to 3ng/L for river water, 0.02 to 10ng/L for WWTP effluents, and 0.1 to 40ng/L for influents with good linearity and reproducibility. The developed method was successfully applied for the analysis of steroids in rivers and WWTP influent and effluents. WWTP influents concentrations of 17OH-Δ5P and PD were 51-256ng/L and up to 400ng/L, respectively, along with androstenedione (concentration range: 38-220ng/L), testosterone (11-26ng/L), estrone (2.3-37ng/L), 17β-estradiol (N.D.-8.7ng/L), 17α-hydroxyprogesterone (N.D.-66ng/L), medroxyprogesterone acetate (N.D.-5.3ng/L), and progesterone (2.0-22ng/L), while only androstenedione (ADD), estrone (E1), and estriol (E3) were detected in effluent with concentrations ranging up to 1.7ng/L, 0.90ng/L and 0.8ng/L, respectively. In river water samples, only ADD and E1 were detected with concentrations up to 1.0ng/L and 0.91ng/L. Our procedure represents the first method for analyzing 17OH-Δ5P and PD in environmental samples along with a large series of steroids.
Collapse
Affiliation(s)
- Kun Zhang
- University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences, Gründenstrasse 40, CH-4132 Muttenz, Switzerland
| | - Karl Fent
- University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences, Gründenstrasse 40, CH-4132 Muttenz, Switzerland; Swiss Federal Institute of Technology Zürich (ETH Zürich), Department of Environmental Systems Science, Institute of Biogeochemistry and Pollution Dynamics, CH-8092 Zürich, Switzerland.
| |
Collapse
|
43
|
Pérez-Fernández V, Mainero Rocca L, Tomai P, Fanali S, Gentili A. Recent advancements and future trends in environmental analysis: Sample preparation, liquid chromatography and mass spectrometry. Anal Chim Acta 2017; 983:9-41. [DOI: 10.1016/j.aca.2017.06.029] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Revised: 05/30/2017] [Accepted: 06/01/2017] [Indexed: 02/06/2023]
|
44
|
Hidasi AO, Groh KJ, Suter MJF, Schirmer K. Clobetasol propionate causes immunosuppression in zebrafish (Danio rerio) at environmentally relevant concentrations. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2017; 138:16-24. [PMID: 27987419 DOI: 10.1016/j.ecoenv.2016.11.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 11/26/2016] [Accepted: 11/28/2016] [Indexed: 06/06/2023]
Abstract
Synthetic glucocorticoids (GCs) are potential endocrine disrupting compounds that have been detected in the aquatic environment around the world in the low ng/L (nanomolar) range. GCs are used as immunosuppressants in medicine. It is of high interest whether clobetasol propionate (CP), a highly potent GC, suppresses the inflammatory response in fish after exposure to environmentally relevant concentrations. Bacterial lipopolysaccharide (LPS) challenge was used to induce inflammation and thus mimic pathogen infection. Zebrafish embryos were exposed to ≤1000nM CP from ~1h post fertilization (hpf) to 96 hpf, and CP uptake, survival after LPS challenge, and expression of inflammation-related genes were examined. Our initial experiments were carried out using 0.001% DMSO as a solvent vehicle, but we observed that DMSO interfered with the LPS challenge assay, and thus masked the effects of CP. Therefore, DMSO was not used in the subsequent experiments. The internal CP concentration was quantifiable after exposure to ≥10nM CP for 96h. The bioconcentration factor (BCF) of CP was determined to be between 16 and 33 in zebrafish embryos. CP-exposed embryos showed a significantly higher survival rate in the LPS challenge assay after exposure to ≥0.1nM in a dose dependent manner. This effect is an indication of immunosuppression. Furthermore, the regulation pattern of several genes related to LPS challenge in mammals supported our results, providing evidence that LPS-mediated inflammatory pathways are conserved from mammals to teleost fish. Anxa1b, a GC-action related anti-inflammatory gene, was significantly down-regulated after exposure to ≥0.05nM CP. Our results show for the first time that synthetic GCs can suppress the innate immune system of fish at environmentally relevant concentrations. This may reduce the chances of fish to survive in the environment, as their defense against pathogens is weakened.
Collapse
Affiliation(s)
- Anita O Hidasi
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Environmental Toxicology, Dübendorf 8600, Switzerland; EPFL, School of Architecture, Civil and Environmental Engineering, Lausanne 1015, Switzerland
| | - Ksenia J Groh
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Environmental Toxicology, Dübendorf 8600, Switzerland
| | - Marc J-F Suter
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Environmental Toxicology, Dübendorf 8600, Switzerland; ETHZ, Institute of Biogeochemistry and Pollutant Dynamics, Zürich 8092, Switzerland
| | - Kristin Schirmer
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Environmental Toxicology, Dübendorf 8600, Switzerland; EPFL, School of Architecture, Civil and Environmental Engineering, Lausanne 1015, Switzerland; ETHZ, Institute of Biogeochemistry and Pollutant Dynamics, Zürich 8092, Switzerland.
| |
Collapse
|
45
|
Chen Q, Li C, Gong Z, Chan ECY, Snyder SA, Lam SH. Common deregulated gene expression profiles and morphological changes in developing zebrafish larvae exposed to environmental-relevant high to low concentrations of glucocorticoids. CHEMOSPHERE 2017; 172:429-439. [PMID: 28092764 DOI: 10.1016/j.chemosphere.2017.01.036] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 01/04/2017] [Accepted: 01/05/2017] [Indexed: 06/06/2023]
Abstract
Synthetic glucocorticoids have been detected in environmental waters and their biological potency have raised concerns of their impact on aquatic vertebrates especially fish. In this study, developing zebrafish larvae exposed to representative glucocorticoids (dexamethasone, prednisolone and triamcinolone) at 50 pM to 50 nM from 3 h post-fertilisation to 5 days post-fertilisation were investigated. Microarray analysis identified 1255, 1531, and 2380 gene probes, which correspondingly mapped to 660, 882 and 1238 human/rodent homologs, as deregulated by dexamethasone, prednisolone and triamcinolone, respectively. A total of 248 gene probes which mapped to 159 human/rodent homologs were commonly deregulated by the three glucocorticoids. These homologs were associated with over 20 molecular functions from cell cycle to cellular metabolisms, and were involved in the development and function of connective tissue, nervous, haematological, and digestive systems. Glucocorticoid receptor signalling, NRF2-mediated oxidative stress response and RAR signalling were among the top perturbed canonical pathways. Morphological analyses using four transgenic zebrafish lines revealed that the hepatic and endothelial-vascular systems were affected by all three glucocorticoids while nervous, pancreatic and myeloid cell systems were affected by one of them. Quantitative real-time PCR detected significant change in the expression of seven genes at 50 pM of all three glucocorticoids, a concentration comparable to total glucocorticoids reported in environmental waters. Three genes (cry2b, fbxo32, and klhl38b) responded robustly to all glucocorticoid concentrations tested. The common deregulated genes with the associated biological processes and morphological changes can be used for biological inference of glucocorticoid exposure in fish for future studies.
Collapse
Affiliation(s)
- Qiyu Chen
- NUS Environmental Research Institute, National University of Singapore, 5A Engineering Drive 1, Singapore 117411, Singapore
| | - Caixia Li
- NUS Environmental Research Institute, National University of Singapore, 5A Engineering Drive 1, Singapore 117411, Singapore; Department of Biological Science, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore
| | - Zhiyuan Gong
- Department of Biological Science, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore
| | - Eric Chun Yong Chan
- Department of Pharmacy, National University of Singapore, Singapore, Singapore
| | - Shane A Snyder
- University of Arizona, 1133 E. James E. Rogers Way, Harshbarger 108, Tucson, AZ 85721-0011, USA
| | - Siew Hong Lam
- NUS Environmental Research Institute, National University of Singapore, 5A Engineering Drive 1, Singapore 117411, Singapore; Department of Biological Science, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore.
| |
Collapse
|
46
|
Zhao Y, Zhang K, Fent K. Corticosteroid Fludrocortisone Acetate Targets Multiple End Points in Zebrafish (Danio rerio) at Low Concentrations. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:10245-54. [PMID: 27618422 DOI: 10.1021/acs.est.6b03436] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Synthetic corticosteroids may pose an environmental risk to fish. Here, we describe multiend point responses of adult zebrafish (8 months old) upon 21-day exposure to a commonly prescribed corticosteroid, fludrocortisone acetate (FLU), at concentrations between 0.006 and 42 μg/L. No remarkable reproductive impacts were observed, while physiological effects, including plasma glucose level and blood leukocyte numbers were significant altered even at 42 ng/L. Ovary parameters and transcriptional analysis of hypothalamic-pituitary-gonadal-liver axis revealed negligible effects. Significant alterations of the circadian rhythm network were observed in the zebrafish brain. Transcripts of several biomarker genes, including per1a and nr1d1, displayed strong transcriptional changes, which occurred at environmental relevant concentrations of 6 and 42 ng/L FLU. Importantly, the development and behavior of F1 embryos were significant changed. Heartbeat, hatching success and swimming behavior of F1 embryos were all increased even at 6 and 42 ng/L. All effects were further confirmed by exposure of eleuthero-embryos. Significant transcriptional changes of biomarker genes involved in gluconeogenesis, immune response and circadian rhythm in eleuthero-embryos confirmed the observations in adult fish. Hatching success, heartbeat, and swimming activity were increased at 81 ng/L and higher, as with F1 embryos. These results provide novel insights into the understanding of potential environmental risks of corticosteroids.
Collapse
Affiliation(s)
- Yanbin Zhao
- School of Life Sciences, University of Applied Sciences and Arts Northwestern Switzerland , Gründenstrasse 40, CH-4132 Muttenz, Switzerland
| | - Kun Zhang
- School of Life Sciences, University of Applied Sciences and Arts Northwestern Switzerland , Gründenstrasse 40, CH-4132 Muttenz, Switzerland
| | - Karl Fent
- School of Life Sciences, University of Applied Sciences and Arts Northwestern Switzerland , Gründenstrasse 40, CH-4132 Muttenz, Switzerland
- Institute of Biogeochemistry and Pollution Dynamics, Department of Environmental System Sciences, Swiss Federal Institute of Technology (ETH Zürich) , CH-8092 Zürich, Switzerland
| |
Collapse
|
47
|
Svensson J, Mustafa A, Fick J, Schmitz M, Brunström B. Developmental exposure to progestins causes male bias and precocious puberty in zebrafish (Danio rerio). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 177:316-323. [PMID: 27348263 DOI: 10.1016/j.aquatox.2016.06.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 06/08/2016] [Accepted: 06/12/2016] [Indexed: 06/06/2023]
Abstract
Progestins are aquatic contaminants that in low concentrations can impair fish reproduction. The mechanisms are likely multiple since different progestins interact with other steroid receptors in addition to progesterone receptors. Puberty is the process when animals first acquire the capability to reproduce and it comprises maturation of sperm and eggs. In zebrafish, puberty is initiated around 45days post fertilization (dpf) in females and around 53-55 dpf in males, and is marked by increased production of pituitary gonadotropins. We exposed juvenile zebrafish from 20 to 80 dpf to the androgenic progestin levonorgestrel at concentrations of 5.5, 79 and 834ngL(-1) and to the non-androgenic progestin progesterone at concentrations of 3.7, 77 and 1122ngL(-1), during sexual differentiation and puberty. Levonorgestrel exposure caused 100% males even at the lowest concentration tested whereas progesterone did not affect the sex ratio. Transcript levels of the gonadal genes amh, CYP11B and CYP19a1a indicated that the masculinizing effect of levonorgestrel occurred very rapidly. Transcript concentrations of gonadotropins in pituitaries were low in control fish at 44 dpf, but high at 55 dpf and onward. In fish exposed to levonorgestrel or progesterone gonadotropin transcript concentrations were high already at 44 dpf, indicating that both progestins caused precocious puberty. Gonad histology at 50 dpf confirmed a well advanced sexual maturation, but only in males. Our results show that progestins can affect sexual development in fish and that the androgenic progestin levonorgestrel induces a male phenotype at concentrations similar to those detected in aquatic environments.
Collapse
Affiliation(s)
- Johan Svensson
- Department of Environmental Toxicology, Uppsala University, Norbyvägen 18A, SE-75 236, Uppsala, Sweden.
| | - Arshi Mustafa
- Department of Comparative Physiology, Uppsala University, Norbyvägen 18A, SE-75 236 Uppsala, Sweden
| | - Jerker Fick
- Department of Chemistry, Umeå University, Linnaeus väg 6, Umeå, SE-90 187, Sweden
| | - Monika Schmitz
- Department of Comparative Physiology, Uppsala University, Norbyvägen 18A, SE-75 236 Uppsala, Sweden
| | - Björn Brunström
- Department of Environmental Toxicology, Uppsala University, Norbyvägen 18A, SE-75 236, Uppsala, Sweden
| |
Collapse
|
48
|
Ammann AA, Suter MJF. Multimode gradient high performance liquid chromatography mass spectrometry method applicable to metabolomics and environmental monitoring. J Chromatogr A 2016; 1456:145-51. [DOI: 10.1016/j.chroma.2016.06.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 04/25/2016] [Accepted: 06/01/2016] [Indexed: 11/16/2022]
|
49
|
Nakayama K, Sato K, Shibano T, Isobe T, Suzuki G, Kitamura SI. Occurrence of glucocorticoids discharged from a sewage treatment plant in Japan and the effects of clobetasol propionate exposure on the immune responses of common carp (Cyprinus carpio) to bacterial infection. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2016; 35:946-952. [PMID: 26126539 DOI: 10.1002/etc.3136] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 04/13/2015] [Accepted: 06/26/2015] [Indexed: 06/04/2023]
Abstract
The present study evaluated the environmental risks to common carp (Cyprinus carpio) posed by glucocorticoids present in sewage treatment plant (STP) effluent. To gather information on the seasonal variations in glucocorticoid concentration, the authors sampled the effluent of a Japanese STP every other week for 12 mo. Six of 9 selected glucocorticoids were detected in the effluent, with clobetasol propionate and betamethasone 17-valerate detected at the highest concentrations and frequencies. The present study's results indicated that effluent glucocorticoid concentration may depend on water temperature, which is closely related to the removal efficiency of the STP or to seasonal variations in the public's use of glucocorticoids. In a separate experiment, to clarify whether glucocorticoids in environmental water increase susceptibility to bacterial infection in fish, the authors examined the responses to bacterial infection (Aeromonas veronii) of common carp exposed to clobetasol propionate. Clobetasol propionate exposure did not affect bacterial infection-associated mortality. In fish infected with A. veronii but not exposed to clobetasol propionate, head kidney weight and number of leukocytes in the head kidney were significantly increased (p < 0.05), whereas these effects were not observed in infected fish exposed to clobetasol. This suggests that clobetasol propionate alleviated bacterial infection-associated inflammation. Together, these results indicate that susceptibility to bacterial infection in common carp is not affected by exposure to glucocorticoids at environmentally relevant concentrations.
Collapse
Affiliation(s)
- Kei Nakayama
- Center for Marine Environmental Studies, Ehime University, Matsuyama, Japan
| | - Kentaro Sato
- Center for Marine Environmental Studies, Ehime University, Matsuyama, Japan
| | - Takazumi Shibano
- Department of Biology, Faculty of Science, Ehime University, Matsuyama, Japan
| | - Tomohiko Isobe
- Center for Marine Environmental Studies, Ehime University, Matsuyama, Japan
- Center for Environmental Health Science, National Institute for Environmental Studies, Tsukuba, Japan
| | - Go Suzuki
- Center for Material Cycles and Waste Management Research, National Institute for Environmental Studies, Tsukuba, Japan
| | - Shin-Ichi Kitamura
- Center for Marine Environmental Studies, Ehime University, Matsuyama, Japan
| |
Collapse
|
50
|
Jia A, Wu S, Daniels KD, Snyder SA. Balancing the Budget: Accounting for Glucocorticoid Bioactivity and Fate during Water Treatment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:2870-80. [PMID: 26840181 DOI: 10.1021/acs.est.5b04893] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Numerous studies have identified the presence and bioactivity of glucocorticoid receptor (GR) active substances in water; however, the identification and activity-balance of GR compounds remained elusive. This study determined the occurrence and attenuation of GR bioactivity and closed the balance by determining those substances responsible. The observed in vitro GR activity ranged from 39 to 155 ng dexamethasone-equivalent/L (ng Dex-EQ/L) in the secondary effluents of four wastewater treatment plants. Monochromatic ultraviolet light of 80 mJ/cm(2) disinfection dose was efficient for GR activity photolysis, whereas chlorination could not appreciably attenuate the observed GR activity. Ozonation was effective only at relatively high dose (ozone/TOC 1:1). Microfiltration membranes were not efficient for GR activity attenuation; however, reverse osmosis removed GR activity to levels below the limits of detection. A high-sensitivity liquid chromatography with tandem mass spectrometry (LC-MS/MS) method was then developed to screen 27 GR agonists. Twelve were identified and quantified in effluents at summed concentrations of 9.6-21.2 ng/L. The summed Dex-EQ of individual compounds based on their measured concentrations was in excellent agreement with the Dex-EQ obtained from bioassay, which demonstrated that the detected glucocorticoids can entirely explain the observed GR bioactivity. Four synthetic glucocorticoids (triamcinolone acetonide, fluocinolone acetonide, clobetasol propionate, and fluticasone propionate) predominantly accounted for GR activity. These data represent the first known publication where a complete activity balance has been determined for GR agonists in an aquatic environment.
Collapse
Affiliation(s)
- Ai Jia
- University of Arizona , 1133 E. James E. Rogers Way, Harshbarger 108, Tucson, Arizona 85721-0011, United States
| | - Shimin Wu
- University of Arizona , 1133 E. James E. Rogers Way, Harshbarger 108, Tucson, Arizona 85721-0011, United States
| | - Kevin D Daniels
- University of Arizona , 1133 E. James E. Rogers Way, Harshbarger 108, Tucson, Arizona 85721-0011, United States
| | - Shane A Snyder
- University of Arizona , 1133 E. James E. Rogers Way, Harshbarger 108, Tucson, Arizona 85721-0011, United States
| |
Collapse
|