1
|
Polzin BJ, Heimovics SA, Riters LV. Immunolabeling Provides Evidence for Subregions in the Songbird Nucleus Accumbens and Suggests a Context-Dependent Role in Song in Male European Starlings (Sturnus vulgaris). BRAIN, BEHAVIOR AND EVOLUTION 2022; 96:147-162. [PMID: 34879382 DOI: 10.1159/000521310] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 12/01/2021] [Indexed: 12/17/2022]
Abstract
Birdsong is well known for its role in mate attraction during the breeding season. However, many birds, including European starlings (Sturnus vulgaris), also sing outside the breeding season as part of large flocks. Song in a breeding context can be extrinsically rewarded by mate attraction; however, song in nonbreeding flocks, referred to here as gregarious song, results in no obvious extrinsic reward and is proposed to be intrinsically rewarded. The nucleus accumbens (NAC) is a brain region well known to mediate reward and motivation, which suggests it is an ideal candidate to regulate reward associated with gregarious song. The goal of this study was to provide new histochemical information on the songbird NAC and its subregions (rostral pole, core, and shell) and to begin to determine subregion-specific contributions to gregarious song in male starlings. We examined immunolabeling for tyrosine hydroxylase (TH), neurotensin, and enkephalin (ENK) in the NAC. We then examined the extent to which gregarious and sexually motivated song differentially correlated with immunolabeling for the immediate early genes FOS and ZENK in each subdivision of the NAC. We found that TH and ENK labeling within subregions of the starling NAC was generally similar to patterns seen in the core and shell of NACs in mammals and birds. Additionally, we found that gregarious song, but not sexually motivated song, positively correlated with FOS in all NAC subregions. Our observations provide further evidence for distinct subregions within the songbird NAC and suggest the NAC may play an important role in regulating gregarious song in songbirds.
Collapse
Affiliation(s)
- Brandon J Polzin
- Department of Integrative Biology, University of Wisconsin - Madison, Madison, Wisconsin, USA
| | - Sarah A Heimovics
- Department of Biology, University of St. Thomas, Saint Paul, Minnesota, USA
| | - Lauren V Riters
- Department of Integrative Biology, University of Wisconsin - Madison, Madison, Wisconsin, USA
| |
Collapse
|
2
|
Pharmacological Insights into the Use of Apomorphine in Parkinson’s Disease: Clinical Relevance. Clin Drug Investig 2018; 38:287-312. [DOI: 10.1007/s40261-018-0619-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
3
|
Dopamine Responsiveness in the Nucl. Accumbens Shell and Parameters of the Heroin-Influenced Conditioned Place Preference in Rats. NEUROPHYSIOLOGY+ 2015. [DOI: 10.1007/s11062-015-9523-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
4
|
Molecular underpinnings of prefrontal cortex development in rodents provide insights into the etiology of neurodevelopmental disorders. Mol Psychiatry 2015; 20:795-809. [PMID: 25450230 PMCID: PMC4486649 DOI: 10.1038/mp.2014.147] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 09/12/2014] [Accepted: 09/17/2014] [Indexed: 12/20/2022]
Abstract
The prefrontal cortex (PFC), seat of the highest-order cognitive functions, constitutes a conglomerate of highly specialized brain areas and has been implicated to have a role in the onset and installation of various neurodevelopmental disorders. The development of a properly functioning PFC is directed by transcription factors, guidance cues and other regulatory molecules and requires the intricate and temporal orchestration of a number of developmental processes. Disturbance or failure of any of these processes causing neurodevelopmental abnormalities within the PFC may contribute to several of the cognitive deficits seen in patients with neurodevelopmental disorders. In this review, we elaborate on the specific processes underlying prefrontal development, such as induction and patterning of the prefrontal area, proliferation, migration and axonal guidance of medial prefrontal progenitors, and their eventual efferent and afferent connections. We furthermore integrate for the first time the available knowledge from genome-wide studies that have revealed genes linked to neurodevelopmental disorders with experimental molecular evidence in rodents. The integrated data suggest that the pathogenic variants in the neurodevelopmental disorder-associated genes induce prefrontal cytoarchitectonical impairments. This enhances our understanding of the molecular mechanisms of prefrontal (mis)development underlying the four major neurodevelopmental disorders in humans, that is, intellectual disability, autism spectrum disorders, attention deficit hyperactivity disorder and schizophrenia, and may thus provide clues for the development of novel therapies.
Collapse
|
5
|
Mena A, De la Casa LG. Prepulse inhibition modulation by contextual conditioning of dopaminergic activity. Behav Brain Res 2013; 252:188-94. [PMID: 23756135 DOI: 10.1016/j.bbr.2013.06.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2013] [Revised: 06/01/2013] [Accepted: 06/03/2013] [Indexed: 10/26/2022]
Abstract
When a neutral stimulus is repeatedly paired with a drug, an association is established between them that can induce two different responses: either an opponent response that counteracts the effect of the drug, or a response that is similar to that induced by the drug. In this paper, we focus on the analysis of the associations that can be established between the contextual cues and the administration of dopamine agonists or antagonists. Our hypothesis suggests that repeated administration of drugs that modulate dopaminergic activity in the presence of a specific context leads to the establishment of an association that subsequently results in a conditioned response to the context that is similar to that induced by the drug. To test this hypothesis, we conducted two experiments that revealed that contextual cues acquired the property to modulate pre-pulse inhibition by prior pairings of such context with the dopamine antagonist haloperidol (Experiment 1), and with the dopamine agonist d-amphetamine (Experiment 2). The implications of these results are discussed both at a theoretical level, and attending to the possibilities that could involve the use of context cues for the therapeutic administration of dopaminergic drugs.
Collapse
Affiliation(s)
- Auxiliadora Mena
- Department of Experimental Psychology, University of Seville, 41018 Seville, Spain
| | | |
Collapse
|
6
|
De la Casa L, Fernandez A, Larrauri J, Mena A, Puentes A, Quintero E, Schmajuk N. Different effects of unexpected changes in environmental conditions on prepulse inhibition in rats and humans. Physiol Behav 2012; 106:542-7. [DOI: 10.1016/j.physbeh.2012.03.036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2011] [Revised: 03/24/2012] [Accepted: 03/26/2012] [Indexed: 11/27/2022]
|
7
|
Jones CA, Watson DJG, Fone KCF. Animal models of schizophrenia. Br J Pharmacol 2011; 164:1162-94. [PMID: 21449915 PMCID: PMC3229756 DOI: 10.1111/j.1476-5381.2011.01386.x] [Citation(s) in RCA: 546] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Revised: 03/09/2011] [Accepted: 03/12/2011] [Indexed: 12/27/2022] Open
Abstract
Developing reliable, predictive animal models for complex psychiatric disorders, such as schizophrenia, is essential to increase our understanding of the neurobiological basis of the disorder and for the development of novel drugs with improved therapeutic efficacy. All available animal models of schizophrenia fit into four different induction categories: developmental, drug-induced, lesion or genetic manipulation, and the best characterized examples of each type are reviewed herein. Most rodent models have behavioural phenotype changes that resemble 'positive-like' symptoms of schizophrenia, probably reflecting altered mesolimbic dopamine function, but fewer models also show altered social interaction, and learning and memory impairment, analogous to negative and cognitive symptoms of schizophrenia respectively. The negative and cognitive impairments in schizophrenia are resistant to treatment with current antipsychotics, even after remission of the psychosis, which limits their therapeutic efficacy. The MATRICS initiative developed a consensus on the core cognitive deficits of schizophrenic patients, and recommended a standardized test battery to evaluate them. More recently, work has begun to identify specific rodent behavioural tasks with translational relevance to specific cognitive domains affected in schizophrenia, and where available this review focuses on reporting the effect of current and potential antipsychotics on these tasks. The review also highlights the need to develop more comprehensive animal models that more adequately replicate deficits in negative and cognitive symptoms. Increasing information on the neurochemical and structural CNS changes accompanying each model will also help assess treatments that prevent the development of schizophrenia rather than treating the symptoms, another pivotal change required to enable new more effective therapeutic strategies to be developed.
Collapse
Affiliation(s)
- C A Jones
- School of Biomedical Sciences, Medical School, Queen's Medical Centre, The University of Nottingham, Nottingham, UK
| | | | | |
Collapse
|
8
|
Chung S, Verheij MMM, Hesseling P, van Vugt RWM, Buell M, Belluzzi JD, Geyer MA, Martens GJM, Civelli O. The melanin-concentrating hormone (MCH) system modulates behaviors associated with psychiatric disorders. PLoS One 2011; 6:e19286. [PMID: 21818251 PMCID: PMC3139593 DOI: 10.1371/journal.pone.0019286] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Accepted: 03/25/2011] [Indexed: 12/02/2022] Open
Abstract
Deficits in sensorimotor gating measured by prepulse inhibition (PPI) of the startle have been known as characteristics of patients with schizophrenia and related neuropsychiatric disorders. PPI disruption is thought to rely on the activity of the mesocorticolimbic dopaminergic system and is inhibited by most antipsychotic drugs. These drugs however act also at the nigrostriatal dopaminergic pathway and exert adverse locomotor responses. Finding a way to inhibit the mesocorticolimbic- without affecting the nigrostriatal-dopaminergic pathway may thus be beneficial to antipsychotic therapies. The melanin-concentrating hormone (MCH) system has been shown to modulate dopamine-related responses. Its receptor (MCH1R) is expressed at high levels in the mesocorticolimbic and not in the nigrostriatal dopaminergic pathways. Interestingly a genomic linkage study revealed significant associations between schizophrenia and markers located in the MCH1R gene locus. We hypothesize that the MCH system can selectively modulate the behavior associated with the mesocorticolimbic dopamine pathway. Using mice, we found that central administration of MCH potentiates apomorphine-induced PPI deficits. Using congenic rat lines that differ in their responses to PPI, we found that the rats that are susceptible to apomorphine (APO-SUS rats) and exhibit PPI deficits display higher MCH mRNA expression in the lateral hypothalamic region and that blocking the MCH system reverses their PPI deficits. On the other hand, in mice and rats, activation or inactivation of the MCH system does not affect stereotyped behaviors, dopamine-related responses that depend on the activity of the nigrostriatal pathway. Furthermore MCH does not affect dizocilpine-induced PPI deficit, a glutamate related response. Thus, our data present the MCH system as a regulator of sensorimotor gating, and provide a new rationale to understand the etiologies of schizophrenia and related psychiatric disorders.
Collapse
Affiliation(s)
- Shinjae Chung
- Department of Pharmacology, University of California Irvine, Irvine, California, United States of America
| | - Michel M. M. Verheij
- Department of Molecular Animal Physiology, Donders Institute for Brain, Cognition and Behaviour, and Nijmegen Center for Molecular Life Sciences, Radboud University, Nijmegen, The Netherlands
| | - Peter Hesseling
- Department of Molecular Animal Physiology, Donders Institute for Brain, Cognition and Behaviour, and Nijmegen Center for Molecular Life Sciences, Radboud University, Nijmegen, The Netherlands
| | - Ruben W. M. van Vugt
- Department of Molecular Animal Physiology, Donders Institute for Brain, Cognition and Behaviour, and Nijmegen Center for Molecular Life Sciences, Radboud University, Nijmegen, The Netherlands
| | - Mahalah Buell
- Department of Psychiatry, University of California San Diego, La Jolla, California, United States of America
| | - James D. Belluzzi
- Department of Pharmacology, University of California Irvine, Irvine, California, United States of America
| | - Mark A. Geyer
- Department of Psychiatry, University of California San Diego, La Jolla, California, United States of America
| | - Gerard J. M. Martens
- Department of Molecular Animal Physiology, Donders Institute for Brain, Cognition and Behaviour, and Nijmegen Center for Molecular Life Sciences, Radboud University, Nijmegen, The Netherlands
| | - Olivier Civelli
- Department of Pharmacology, University of California Irvine, Irvine, California, United States of America
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, California, United States of America
- Department of Pharmaceutical Sciences, University of California Irvine, Irvine, California, United States of America
- * E-mail:
| |
Collapse
|
9
|
Mathews IZ, Waters P, McCormick CM. Changes in hyporesponsiveness to acute amphetamine and age differences in tyrosine hydroxylase immunoreactivity in the brain over adolescence in male and female rats. Dev Psychobiol 2009; 51:417-28. [DOI: 10.1002/dev.20381] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
10
|
Choy KHC, de Visser YP, van den Buuse M. The effect of 'two hit' neonatal and young-adult stress on dopaminergic modulation of prepulse inhibition and dopamine receptor density. Br J Pharmacol 2009; 156:388-96. [PMID: 19154431 PMCID: PMC2697842 DOI: 10.1111/j.1476-5381.2008.00008.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2008] [Revised: 07/31/2008] [Accepted: 08/29/2008] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND AND PURPOSE A combination of early neurodevelopmental insult(s) and young-adult stress exposure may be involved in the development of schizophrenia. We studied prepulse inhibition (PPI) regulation in rats after an early stress, maternal deprivation, combined with a later stress, simulated by chronic corticosterone treatment, and also determined whether changes in brain dopamine receptor density were involved. EXPERIMENTAL APPROACH Rats were subjected to either 24 h maternal deprivation on postnatal day 9, corticosterone treatment from 8 to 10 weeks of age, or both. At 12 weeks of age, the rats were injected with 0.1, 0.3 or 1.0 mg.kg(-1) of apomorphine or 0.5 or 2.5 mg.kg(-1) of amphetamine and PPI was determined using automated startle boxes. Dopamine D(1) and D(2) receptor levels were assessed in the nucleus accumbens and caudate nucleus using receptor autoradiography. KEY RESULTS Young-adult treatment with corticosterone resulted in attenuated disruption of PPI by apomorphine and amphetamine. In some rats, maternal deprivation resulted in reduced baseline PPI which added to the effect of corticosterone treatment. There was no down-regulation of dopamine D(1) or D(2) receptors. CONCLUSIONS AND IMPLICATIONS These results confirm and extend our finding of an inhibitory interaction of developmental stress on dopaminergic regulation of PPI. No corresponding changes in dopamine receptor density were observed in brain regions with a major involvement in PPI regulation, suggesting long-lasting desensitization of dopamine receptor signalling or indirect changes in PPI regulation.
Collapse
Affiliation(s)
- Kwok Ho Christopher Choy
- Behavioural Neuroscience Laboratory, Mental Health Research Institute of Victoria, 155 Oak Street, Parkville, Victoria 3052, Australia
| | | | | |
Collapse
|
11
|
Verheij MMM, Cools AR. Twenty years of dopamine research: individual differences in the response of accumbal dopamine to environmental and pharmacological challenges. Eur J Pharmacol 2008; 585:228-44. [PMID: 18423601 DOI: 10.1016/j.ejphar.2008.02.084] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2007] [Revised: 02/07/2008] [Accepted: 02/13/2008] [Indexed: 11/30/2022]
Abstract
Individual differences in the dopaminergic system of the nucleus accumbens of rats have extensively been reported. These individual differences have frequently been used to explain individual differences in response to environmental and pharmacological challenges. Remarkably, only little attention is paid to the factors that underlie these individual differences. This review gives an overview of the studies that have been performed in our institute during the last 20 years to investigate individual differences in accumbal dopamine release. Data are summarised demonstrating that individual differences in accumbal dopamine release are due to individual differences in: the functional reactivity of the noradrenergic system, the accumbal concentration of vesicular monoamine transporters and tyrosine hydroxylase as well as in the quantal size of the presynaptic pools of dopamine. Our data are embedded in the available literature to create a model that illustrates the putative hardware giving rise to the individual-specific release of accumbal dopamine. An important role is contributed to individual differences in the reactivity of the: hypothalamic-pituitary-adrenal axes, the reactivity of second messenger systems as well in the aminergic reactivity of the accumbens shell and core. The consequences of the individual-specific make-up and reactivity of the nucleus accumbens on the regulation of behaviour and the response to drugs of abuse will also be discussed. Apart from agents that interact with dopaminergic receptors, re-uptake or breakdown, noradrenergic agents as well as agents that interact with vesicular monoamine transporters or tyrosine hydroxylase are suggested to have therapeutic effects in subjects that are suffering from diseases in which the dopaminergic system is disturbed.
Collapse
Affiliation(s)
- Michel M M Verheij
- Department of Cognitive Neuroscience (CNS), Division of Psychoneuropharmacology (PNF), Radboud University Nijmegen Medical Centre, 6525 EZ, Nijmegen, The Netherlands.
| | | |
Collapse
|
12
|
van der Elst MCJ, Wunderink YS, Ellenbroek BA, Cools AR. Differences in the cellular mechanism underlying the effects of amphetamine on prepulse inhibition in apomorphine-susceptible and apomorphine-unsusceptible rats. Psychopharmacology (Berl) 2007; 190:93-102. [PMID: 17031706 DOI: 10.1007/s00213-006-0587-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2006] [Accepted: 08/30/2006] [Indexed: 10/24/2022]
Abstract
BACKGROUND Amphetamine is often used to mimic certain aspects of schizophrenia in laboratory animals, such as a decreased prepulse inhibition. MATERIALS AND METHODS Apomorphine-susceptible and apomorphine-unsusceptible rats represent a well-characterized animal model for individual differences in the sensitivity to dopaminergic drugs. Moreover, apomorphine-susceptible rats show a wide variety of schizophrenia-like abnormalities. The differential response to administration of amphetamine (1-4 mg/kg, i.p.) was investigated in these two rat lines using the prepulse inhibition paradigm. Because amphetamine promotes dopamine release, the cellular mechanism underlying the line-specific effects of amphetamine was investigated by administration of alpha-methyl-para-tyrosine (aMpT) and reserpine, substances that are known to deplete the cytosolic dopamine pool and the vesicular dopamine pool, respectively, the former being primarily implicated in mediating the effects of amphetamine. RESULTS All doses of amphetamine decreased prepulse inhibition in apomorphine-susceptible rats, whereas only the highest doses (2 and 4 mg/kg, i.p.) of amphetamine decreased prepulse inhibition in apomorphine-unsusceptible rats. Alpha-methyl-para-tyrosine, but not reserpine, blocked the amphetamine-induced disruption in prepulse inhibition in apomorphine-unsusceptible rats, whereas both substances alone had no effect in apomorphine-susceptible rats. However, the combination of alpha-methyl-para-tyrosine and reserpine did block the amphetamine-induced effects in the latter rat line. DISCUSSION The present study suggests that apomorphine-susceptible rats are more sensitive to systemic administration of amphetamine than apomorphine-unsusceptible rats. In addition, the data show that the cellular mechanism underlying the effects of amphetamine differs between apomorphine-susceptible and apomorphine-unsusceptible rats. Whereas the effects of amphetamine on prepulse inhibition in apomorphine-unsusceptible rats just require the alpha-methyl-para-tyrosine sensitive dopamine pool, the effects in apomorphine-susceptible rats require both the alpha-methyl-para-tyrosine sensitive and the reserpine sensitive dopamine pool. Because apomorphine-susceptible rats share many features with schizophrenic patients, these data open the perspective that in these patients amphetamine may induce dopamine release from both types of dopamine pool. This might provide an explanation for the increased dopamine release after this psychostimulant drug in patients vs controls.
Collapse
Affiliation(s)
- Martine C J van der Elst
- Molecular Neurobiology Section, Department of Cognitive Neurosciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | | | | | | |
Collapse
|
13
|
van der Elst MCJ, Ellenbroek BA, Cools AR. Cocaine strongly reduces prepulse inhibition in apomorphine-susceptible rats, but not in apomorphine-unsusceptible rats: Regulation by dopamine D2 receptors. Behav Brain Res 2006; 175:392-8. [PMID: 17079027 DOI: 10.1016/j.bbr.2006.09.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2006] [Revised: 09/07/2006] [Accepted: 09/20/2006] [Indexed: 10/24/2022]
Abstract
Dopaminergic agonists, such as apomorphine and amphetamine, have been shown to drastically reduce prepulse inhibition of the acoustic startle reflex. The effects of the indirect dopamine agonist cocaine on prepulse inhibition have only been described in a few reports and have yielded conflicting results, possibly due to individual differences within and between rat strains. In this study we therefore used apomorphine-susceptible and apomorphine-unsusceptible rats, as an animal model for individual differences, to study the effects of cocaine (20, 30 mg/kg i.p.) on prepulse inhibition. In addition we tested whether the cocaine-induced deficit in prepulse inhibition could be reversed by the D2-antagonist remoxipride (5 mg/kg i.p.), the alpha-1 adrenoceptor antagonist prazosin (2.5 mg/kg i.p.) and the 5-HT2-antagonist ketanserin (2.0 mg/kg i.p.). Cocaine strongly reduced prepulse inhibition in apomorphine-susceptible rats, but had no effect at all on apomorphine-unsusceptible rats. Remoxipride had no effect on prepulse inhibition, but prazosin and ketanserin increased prepulse inhibition. Both remoxipride and prazosin reversed the cocaine-induced deficit in prepulse inhibition, whereas ketanserin did not. We conclude that apomorphine-susceptible rats are extremely sensitive to the effects of cocaine on prepulse inhibition, while apomorphine-unsusceptible rats are not. The effects of cocaine on prepulse inhibition in apomorphine-susceptible rats were mediated by D2-receptors, but not by 5-HT2-receptors or alpha-1 adrenoceptors.
Collapse
MESH Headings
- Acoustic Stimulation
- Analysis of Variance
- Animals
- Apomorphine/pharmacology
- Behavior, Animal/drug effects
- Cocaine/pharmacology
- Dopamine Agents/pharmacology
- Dose-Response Relationship, Drug
- Drug Interactions
- Male
- Neural Inhibition/drug effects
- Neurotransmitter Agents/pharmacology
- Rats
- Rats, Inbred Strains
- Receptors, Adrenergic, alpha-1/drug effects
- Receptors, Adrenergic, alpha-1/physiology
- Receptors, Dopamine D2/drug effects
- Receptors, Dopamine D2/physiology
- Receptors, Serotonin, 5-HT2/drug effects
- Receptors, Serotonin, 5-HT2/physiology
- Reflex, Startle/drug effects
- Species Specificity
Collapse
Affiliation(s)
- Martine C J van der Elst
- Department of Cognitive Neurosciences, Section Molecular Neurobiology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | | | | |
Collapse
|
14
|
Ellenbroek BA, van der Kam EL, van der Elst MCJ, Cools AR. Individual differences in drug dependence in rats: the role of genetic factors and life events. Eur J Pharmacol 2005; 526:251-8. [PMID: 16253227 DOI: 10.1016/j.ejphar.2005.09.032] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2005] [Revised: 06/28/2005] [Accepted: 09/23/2005] [Indexed: 12/15/2022]
Abstract
Drug dependence and addiction is a chronic mental illness that has far reaching consequences for society in terms of economic loss, health costs and judicial problems. A crucial question in drug addiction, is what factors are involved in its aetiology, and especially what mediates the shit from use to abuse. As in most other mental illnesses, addiction can best be described using the so-called three hit model, which states that a disease results from an interaction between genetic factors, early lie events and late environmental factors. However, the precise nature of these factors still remains to be elucidated. This present review discusses the results from an animal model in which these three different hit are currently being investigated. The apomorphine susceptible (APO-SUS) and apomorphine unsusceptible (APO-UNSUS) rats, originally selected on the basis of their behavioural response to the dopaminergic agonist apomorphine, were recently found to be genetically different in the number of gene copies of a component of the gamma-secretase complex called Aph-1b. Whereas APO-UNSUS rats have three copies of the gene, APO-SUS rats have either 1 or 2 copies. In addition we have shown that these rats show differences in cocaine and alcohol self-administration, and that both early life events and late environmental factors can alter this self-administration behaviour. Thus, the data so far support the hypothesis that the APO-SUS and APO-UNSUS rats offer an interesting animal model for drug dependence in which genes and environment interact. We finally propose a theoretical model which can explain this gene-environment interaction.
Collapse
Affiliation(s)
- Bart A Ellenbroek
- Department of Psychoneuropharmacology, University of Nijmegen, P.O. Box 9101, The Netherlands.
| | | | | | | |
Collapse
|
15
|
van der Kam EL, Ellenbroek BA, Cools AR. Gene - environment interactions determine the individual variability in cocaine self-administration. Neuropharmacology 2005; 48:685-95. [PMID: 15814103 DOI: 10.1016/j.neuropharm.2004.12.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2004] [Revised: 11/29/2004] [Accepted: 12/17/2004] [Indexed: 11/22/2022]
Abstract
Research into factors that determine the propensity to self-administer cocaine has shown that stressors can determine the amount of cocaine self-administered as well as the rate of acquisition. However, the interaction between the genetic make-up of the animal and stress is unknown. This study investigated this interaction by using the genetic animal model consisting of apomorphine susceptible (APO-SUS) and unsusceptible (APO-UNSUS) rats. Animals were allowed to self-administer 0.25 mg/kg cocaine under stressful and habituated conditions. This study revealed that the amount of cocaine consumed was highly dependent on the genetic make-up of the animal as well as the amount of stress during self-administration. Under habituated circumstances the APO-UNSUS rats took far more cocaine than the APO-SUS rats. Under stressful circumstances, however, the APO-SUS rats took far more cocaine than the APO-UNSUS rats. This difference in the amount consumed by APO-SUS and APO-UNSUS rats is likely to be due to the specific neurobiological features of their dopaminergic and, possibly, noradrenergic system as well as the reactivity of their HPA-axis. It is suggested that the amount of a drug consumed and, accordingly, its addictive potential and 'drug-vulnerability' are determined by the interaction between the genetic make-up of the animals and stress, and not by either component alone.
Collapse
Affiliation(s)
- Elizabeth L van der Kam
- Department of Psychoneuropharmacology, Nijmegen Institute of Neuroscience, Radboud University Nijmegen Medical Center, the Netherlands.
| | | | | |
Collapse
|