1
|
Naqvi SM, O’Sullivan LM, Allison H, Casey VJ, Schiavi-Tritz J, McNamara LM. Altered extracellular matrix and mechanotransduction gene expression in rat bone tissue following long-term estrogen deficiency. JBMR Plus 2024; 8:ziae098. [PMID: 39193115 PMCID: PMC11347883 DOI: 10.1093/jbmrpl/ziae098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 06/28/2024] [Accepted: 07/11/2024] [Indexed: 08/29/2024] Open
Abstract
Osteoporosis is primarily associated with bone loss, but changes in bone tissue matrix composition and osteocyte mechanotransduction have also been identified. However, the molecular mechanisms underlying these changes and their relation to bone loss are not fully understood. The objectives of this study were to (1) conduct comprehensive temporal gene expression analyses on cortical bone tissue from ovariectomized rats, with a specific focus on genes known to govern matrix degradation, matrix production, and mechanotransduction, and (2) correlate these findings with bone mass, trabecular and cortical microarchitecture, and mineral and matrix composition. Microarray data revealed 35 differentially expressed genes in the cortical bone tissue of the ovariectomized cohort. We report that catabolic gene expression abates after the initial accelerated bone loss period, which occurs within the first 4 wk of estrogen deficiency. However, in long-term estrogen deficiency, we report increased expression of genes associated with extracellular matrix deposition (Spp1, COL1A1, COL1A2, OCN) and mechanotransduction (Cx43) compared with age-matched controls and short-term estrogen deficiency. These changes coincided with increased heterogeneity of mineral-to-matrix ratio and collagen maturity, to which extracellular matrix markers COL1A1 and COL1A2 were positively correlated. Interestingly, mineral heterogeneity and collagen maturity, exhibited a negative correlation with PHEX and IFT88, associated with mechanosensory cilia formation and Hedgehog (Hh) signaling. This study provides the first insight into the underlying mechanisms governing secondary mineralization and heterogeneity of matrix composition of bone tissue in long-term estrogen deficiency. We propose that altered mechanobiological responses in long-term estrogen deficiency may play a role in these changes.
Collapse
Affiliation(s)
- Syeda Masooma Naqvi
- Mechanobiology and Medical Devices Research Group (MMDRG), Biomedical Engineering, School of Engineering, College of Science and Engineering, University of Galway, Galway, H91 HX31, Ireland
| | - Laura M O’Sullivan
- Mechanobiology and Medical Devices Research Group (MMDRG), Biomedical Engineering, School of Engineering, College of Science and Engineering, University of Galway, Galway, H91 HX31, Ireland
| | - Hollie Allison
- Mechanobiology and Medical Devices Research Group (MMDRG), Biomedical Engineering, School of Engineering, College of Science and Engineering, University of Galway, Galway, H91 HX31, Ireland
| | - Vincent J Casey
- Mechanobiology and Medical Devices Research Group (MMDRG), Biomedical Engineering, School of Engineering, College of Science and Engineering, University of Galway, Galway, H91 HX31, Ireland
| | - Jessica Schiavi-Tritz
- Mechanobiology and Medical Devices Research Group (MMDRG), Biomedical Engineering, School of Engineering, College of Science and Engineering, University of Galway, Galway, H91 HX31, Ireland
- University of Lorraine, CNRS, LRGP, F-54000 Nancy, France
| | - Laoise M McNamara
- Mechanobiology and Medical Devices Research Group (MMDRG), Biomedical Engineering, School of Engineering, College of Science and Engineering, University of Galway, Galway, H91 HX31, Ireland
| |
Collapse
|
2
|
Suliman M, Nagasawa M, Al-Omari FA, Uoshima K. The effects of collagen cross-link deficiency on osseointegration process of pure titanium implants. J Prosthodont Res 2024; 68:449-455. [PMID: 37793821 DOI: 10.2186/jpr.jpr_d_22_00249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
PURPOSE This study aimed to investigate the effect of collagen cross-link deficiency on collagen fiber formation around an implant and its effect on the osseointegration process. METHODS Wistar rats were fed 0.1% beta-aminopropionitrile (BAPN) dissolved in water to induce collagen cross-link deficiency. Custom-made mini-implants with machined surfaces were placed proximal to the tibia. At 1, 2, and 4 weeks postoperatively, the bone area around the implant, bone-implant contact ratio, osteoclast/osteocyte activity, and osseointegration strength were evaluated using histological and immunohistochemical analyses and biomechanical tests. RESULTS Long-term disturbance of collagen cross-link formation in the BAPN group resulted in faster collagen fiber maturation than that in controls, with a defective collagen structure, low bone formation quantity, and low bone-implant contact values. Deficiency of collagen cross-links resulted in increased bone resorption and decreased osteocyte activity. CONCLUSIONS Collagen cross-linking is important for the formation of the collagen matrix, and their deficiency may impair bone activity around implants, affecting the osseointegration process.
Collapse
Affiliation(s)
- Mubarak Suliman
- Division of Bio-Prosthodontics, Department of Oral Health Science, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Masako Nagasawa
- Division of Bio-Prosthodontics, Department of Oral Health Science, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Farah A Al-Omari
- Division of Bio-Prosthodontics, Department of Oral Health Science, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Katsumi Uoshima
- Division of Bio-Prosthodontics, Department of Oral Health Science, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| |
Collapse
|
3
|
Lv R, Yao Y, Dong J, Chen Q. COL1A1, mediated by m6A methylation of METTL3, facilitates oral squamous cell carcinoma cell growth and metastasis. Odontology 2024:10.1007/s10266-024-00962-w. [PMID: 38900231 DOI: 10.1007/s10266-024-00962-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 06/04/2024] [Indexed: 06/21/2024]
Abstract
Collagen type I alpha1 (COL1A1) has been found to be abnormal expressed in oral squamous cell carcinoma (OSCC) tissues, but its role and mechanism in OSCC need to be further elucidated. The expression levels of COL1A1 and methyltransferase-like 3 (METTL3) were measured by quantitative real-time PCR and western blot. Cell growth and metastasis were determined by CCK8, colony formation, EdU, flow cytometry and transwell assays. MeRIP, Co-IP and dual-luciferase reporter assays were performed to explore the interplay of COL1A1 and METTL3. COL1A1 mRNA stability was confirmed by Actinomycin D assay. Mice xenograft models were constructed to perform in vivo experiments. COL1A1 and METTL3 were upregulated in OSCC. COL1A1 knockdown suppressed OSCC cell growth and metastasis, while its overexpression had an opposite effect. The stability of COL1A1 mRNA was regulated by the m6A methylation of METTL3. METTL3 overexpression promoted OSCC cell growth and metastasis, and its knockdown-mediated OSCC cell function inhibition could be abolished by COL1A1 overexpression. Besides, silencing of METTL3 reduced OSCC tumor growth by reducing COL1A1 expression. METTL3-stabilized COL1A1 promoted OSCC progression, providing an exact molecular target for the treatment of OSCC.
Collapse
Affiliation(s)
- Ruya Lv
- Department of Stomatology, Jingzhou Central Hospital, No. 6 Jingzhong Road, Jingzhou District, Jingzhou, 434000, Hubei, China.
- Department of Stomatology, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, 434000, Hubei, China.
| | - Yao Yao
- Department of Stomatology, Jingzhou Central Hospital, No. 6 Jingzhong Road, Jingzhou District, Jingzhou, 434000, Hubei, China
- Department of Stomatology, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, 434000, Hubei, China
| | - Jingjing Dong
- Department of Stomatology, Jingzhou Central Hospital, No. 6 Jingzhong Road, Jingzhou District, Jingzhou, 434000, Hubei, China
- Department of Stomatology, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, 434000, Hubei, China
| | - Qian Chen
- Department of Stomatology, Jingzhou Central Hospital, No. 6 Jingzhong Road, Jingzhou District, Jingzhou, 434000, Hubei, China
- Department of Stomatology, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, 434000, Hubei, China
| |
Collapse
|
4
|
Karagianni A, Karkempetzaki AI, Brooks D, Matsuura S, Dambal V, Trackman PC, Ravid K. Deletion of mouse lysyl oxidase in megakaryocytes affects bone properties in a sex-dependent manner. Blood 2024; 143:2666-2670. [PMID: 38635757 PMCID: PMC11196861 DOI: 10.1182/blood.2024024620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 04/02/2024] [Indexed: 04/20/2024] Open
Abstract
ABSTRACT Lysyl oxidase (LOX) is a facilitator of extracellular matrix cross-linking. Using newly developed megakaryocyte-specific LOX knockout mice, we show that LOX expressed in these scarce bone marrow cells affects bone volume and collagen architecture in a sex-dependent manner.
Collapse
Affiliation(s)
- Aikaterini Karagianni
- Department of Medicine, Whitaker Cardiovascular Research Institute, Boston University Chobanian and Avedisian School of Medicine, Boston, MA
- Department of Internal Medicine, University of Crete, School of Medicine, Heraklion, Greece
| | - Anastasia Iris Karkempetzaki
- Department of Medicine, Whitaker Cardiovascular Research Institute, Boston University Chobanian and Avedisian School of Medicine, Boston, MA
- Department of Internal Medicine, University of Crete, School of Medicine, Heraklion, Greece
| | - Daniel Brooks
- Center for Musculoskeletal Research, Endocrine Unit, Massachusetts General Hospital, Boston, MA
- Center for Advanced Orthopedic Studies, Beth Israel Deaconess Medical Center, Boston, MA
| | - Shinobu Matsuura
- Department of Medicine, Whitaker Cardiovascular Research Institute, Boston University Chobanian and Avedisian School of Medicine, Boston, MA
| | - Vrinda Dambal
- Department of Translational Dental Medicine, Boston University Henry M. Goldman School of Dental Medicine, Boston, MA
| | - Philip C. Trackman
- Department of Translational Dental Medicine, Boston University Henry M. Goldman School of Dental Medicine, Boston, MA
- Forsyth Institute, Boston, MA
| | - Katya Ravid
- Department of Medicine, Whitaker Cardiovascular Research Institute, Boston University Chobanian and Avedisian School of Medicine, Boston, MA
| |
Collapse
|
5
|
Devos H, Zoidakis J, Roubelakis MG, Latosinska A, Vlahou A. Reviewing the Regulators of COL1A1. Int J Mol Sci 2023; 24:10004. [PMID: 37373151 DOI: 10.3390/ijms241210004] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/28/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
The collagen family contains 28 proteins, predominantly expressed in the extracellular matrix (ECM) and characterized by a triple-helix structure. Collagens undergo several maturation steps, including post-translational modifications (PTMs) and cross-linking. These proteins are associated with multiple diseases, the most pronounced of which are fibrosis and bone diseases. This review focuses on the most abundant ECM protein highly implicated in disease, type I collagen (collagen I), in particular on its predominant chain collagen type I alpha 1 (COLα1 (I)). An overview of the regulators of COLα1 (I) and COLα1 (I) interactors is presented. Manuscripts were retrieved searching PubMed, using specific keywords related to COLα1 (I). COL1A1 regulators at the epigenetic, transcriptional, post-transcriptional and post-translational levels include DNA Methyl Transferases (DNMTs), Tumour Growth Factor β (TGFβ), Terminal Nucleotidyltransferase 5A (TENT5A) and Bone Morphogenic Protein 1 (BMP1), respectively. COLα1 (I) interacts with a variety of cell receptors including integrinβ, Endo180 and Discoidin Domain Receptors (DDRs). Collectively, even though multiple factors have been identified in association to COLα1 (I) function, the implicated pathways frequently remain unclear, underscoring the need for a more spherical analysis considering all molecular levels simultaneously.
Collapse
Affiliation(s)
- Hanne Devos
- Centre of Systems Biology, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| | - Jerome Zoidakis
- Centre of Systems Biology, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| | - Maria G Roubelakis
- Laboratory of Biology, University of Athens School of Medicine, 11527 Athens, Greece
- Laboratory of Cell and Gene Therapy, Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece
| | | | - Antonia Vlahou
- Centre of Systems Biology, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| |
Collapse
|
6
|
Tanios M, Brickman B, Cage E, Abbas K, Smith C, Atallah M, Baroi S, Lecka-Czernik B. Diabetes and Impaired Fracture Healing: A Narrative Review of Recent Literature. Curr Osteoporos Rep 2022; 20:229-239. [PMID: 35960475 DOI: 10.1007/s11914-022-00740-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/22/2022] [Indexed: 11/03/2022]
Abstract
PURPOSE OF THE REVIEW Diabetes mellitus is a chronic metabolic disorder commonly encountered in orthopedic patients. Both type 1 and type 2 diabetes mellitus increase fracture risk and impair fracture healing. This review examines complex etiology of impaired fracture healing in diabetes. RECENT FINDINGS Recent findings point to several mechanisms leading to orthopedic complications in diabetes. Hyperglycemia and chronic inflammation lead to increased formation of advanced glycation end products and generation of reactive oxygen species, which in turn contribute to the disruption in osteoblast and osteoclast balance leading to decreased bone formation and heightening the risk of nonunion or delayed union as well as impaired fracture healing. The mechanisms attributing to this imbalance is secondary to an increase in pro-inflammatory mediators leading to premature resorption of callus cartilage and impaired bone formation due to compromised osteoblast differentiation and their apoptosis. Other mechanisms include disruption in the bone's microenvironment supporting different stages of healing process including hematoma and callus formation, and their resolution during bone remodeling phase. Complications of diabetes including peripheral neuropathy and peripheral vascular disease also contribute to the impairment of fracture healing. Certain diabetic drugs may have adverse effects on fracture healing. The pathophysiology of impaired fracture healing in diabetic patients is complex. This review provides an update of the most recent findings on how key mediators of bone healing are affected in diabetes.
Collapse
Affiliation(s)
- Mina Tanios
- Department of Orthopedic Surgery, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA.
| | - Bradley Brickman
- The University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Emily Cage
- Department of Orthopedic Surgery, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Kassem Abbas
- The University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Cody Smith
- Department of Orthopedic Surgery, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Marina Atallah
- The University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Sudipta Baroi
- Department of Orthopedic Surgery, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Beata Lecka-Czernik
- Department of Orthopedic Surgery, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA.
- Center for Diabetes and Endocrine Research, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA.
| |
Collapse
|
7
|
Rong H, Lin F, Ning L, Wu K, Chen B, Zheng J, Limbu SM, Wen X. Cloning, tissue distribution and mRNA expression of type I collagen alpha 1 gene from Chu's croaker (Nibea coibor). Gene 2022; 824:146441. [PMID: 35339641 DOI: 10.1016/j.gene.2022.146441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 02/20/2022] [Accepted: 03/18/2022] [Indexed: 11/26/2022]
Abstract
The demand for collagen has been increasing over years due to its wide application in food, cosmetics and biomedicine industries. The synthesis of collagen protein in fish depends on instructions provided by collagen, type I, alpha 1 (COL1A1) gene. However, cloning, tissue distribution and mRNA expression of COL1A1 gene in a gel-producing Chu's croaker (Nibea coibor) is currently unknown. This study cloned the cDNA of COL1A1 gene (GenBank accession number: MK641512) from six N. coibor fish. The distribution and mRNA expression pattern of COL1A1 was analyzed in eight tissues of N. coibor. The COL1A1 cDNA had a full length of 6130 bp and contained a 4344 bp open reading frame (ORF) encoding a polypeptide of 1448 amino acids. The homology of N. coibor COL1A1 amino acid had 98% similarity with Larimichthys crocea, indicating conservatism with other members in same family (Sciaenidae). The deduced polypeptide contained the same signal peptides, C-propeptide and N-propeptide domains, and triple helix domains, which are the characteristics of type I collagen in vertebrates. The mRNA of COL1A1 gene was expressed significantly higher in the spine of N. coibor than in all other tissues (P < 0.05), followed by swim bladder, skin and scales. The swim bladder had higher collagen and hydroxyproline contents than other tissues, followed by spine >, scales > and > skin (P < 0.05). Our study successfully cloned the COL1A1 gene from N. coibor for the first time. The COL1A1 gene contained all the features of collagen pro-α1(I) chain proteins, and shared high homology with other marine teleost. COL1A1 gene in N. coibor is highly expressed in spine and swim bladder, consistent with collagen distribution. Our study contributes to better understanding on collagen biosynthesis in N. coibor tissues for various industrial uses.
Collapse
Affiliation(s)
- Hua Rong
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Fan Lin
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou 515063, China
| | - Lijun Ning
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Kun Wu
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Baojia Chen
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Jia Zheng
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Samwel Mchele Limbu
- Department of Aquaculture Technology, School of Aquatic Sciences and Fisheries Technology, University of Dar es Salaam, P. O. Box 60091, Dar es Salaam, Tanzania
| | - Xiaobo Wen
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
8
|
Abstract
Bone fragility fractures remain an important worldwide health and economic problem due to increased morbidity and mortality. The current methods for predicting fractures are largely based on the measurement of bone mineral density and the utilization of mathematical risk calculators based on clinical risk factors for bone fragility. Despite these approaches, many bone fractures remain undiagnosed. Therefore, current research is focused on the identification of new factors such as bone turnover markers (BTM) for risk calculation. BTM are a group of proteins and peptides released during bone remodeling that can be found in serum or urine. They derive from bone resorptive and formative processes mediated by osteoclasts and osteoblasts, respectively. Potential use of BTM in monitoring these phenomenon and therefore bone fracture risk is limited by physiologic and pathophysiologic factors that influence BTM. These limitations in predicting fractures explain why their inclusion in clinical guidelines remains limited despite the large number of studies examining BTM.
Collapse
Affiliation(s)
- Lisa Di Medio
- Department of Surgery and Translational Medicine, University Hospital of Florence, Florence, Italy.
| | - Maria Luisa Brandi
- Department of Surgery and Translational Medicine, University Hospital of Florence, Florence, Italy
| |
Collapse
|
9
|
Aljohani H, Senbanjo LT, Al Qranei M, Stains JP, Chellaiah MA. Methylsulfonylmethane Increases the Alveolar Bone Density of Mandibles in Aging Female Mice. Front Physiol 2021; 12:708905. [PMID: 34671266 PMCID: PMC8521043 DOI: 10.3389/fphys.2021.708905] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 09/06/2021] [Indexed: 11/13/2022] Open
Abstract
Methylsulfonylmethane (MSM) is a naturally occurring anti-inflammatory compound that effectively treats multiple degenerative diseases such as osteoarthritis and acute pancreatitis. Our previous studies have demonstrated the ability of MSM to differentiate stem cells from human exfoliated deciduous (SHED) teeth into osteoblast-like cells. This study examined the systemic effect of MSM in 36-week-old aging C57BL/6 female mice in vivo by injecting MSM for 13 weeks. Serum analyses showed an increase in expression levels of bone formation markers [osteocalcin (OCN) and procollagen type 1 intact N-terminal propeptide (P1NP)] and a reduction in bone resorption markers [tartrate-resistant acid phosphatase (TRAP) and C-terminal telopeptide of type I collag (CTX-I)] in MSM-injected animals. Micro-computed tomographic images demonstrated an increase in trabecular bone density in mandibles. The trabecular bone density tended to be higher in the femur, although the increase was not significantly different between the MSM- and phosphate-buffered saline (PBS)-injected mice. In mandibles, an increase in bone density with a corresponding decrease in the marrow cavity was observed in the MSM-injected mice. Furthermore, immunohistochemical analyses of the mandibles for the osteoblast-specific marker - OCN, and the mesenchymal stem cell-specific marker - CD105 showed a significant increase and decrease in OCN and CD105 positive cells, respectively. Areas of bone loss were observed in the inter-radicular region of mandibles in control mice. However, this loss was considerably decreased due to stimulation of bone formation in response to MSM injection. In conclusion, our study has demonstrated the ability of MSM to induce osteoblast formation and function in vivo, resulting in increased bone formation in the mandible. Hence, the application of MSM and stem cells of interest may be the right combination in alveolar bone regeneration under periodontal or other related diseases that demonstrate bone loss.
Collapse
Affiliation(s)
- Hanan Aljohani
- Department of Oncology and Diagnostic Sciences, School of Dentistry, University of Maryland, Baltimore, Baltimore, MD, United States.,Department of Oral Medicine and Diagnostics Sciences, School of Dentistry, King Saud University, Riyadh, Saudi Arabia
| | - Linda T Senbanjo
- Department of Oncology and Diagnostic Sciences, School of Dentistry, University of Maryland, Baltimore, Baltimore, MD, United States
| | - Mohammed Al Qranei
- Department of Oncology and Diagnostic Sciences, School of Dentistry, University of Maryland, Baltimore, Baltimore, MD, United States.,Department of Preventive Dental Sciences, School of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Joseph P Stains
- Department of Orthopedics, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Meenakshi A Chellaiah
- Department of Oncology and Diagnostic Sciences, School of Dentistry, University of Maryland, Baltimore, Baltimore, MD, United States
| |
Collapse
|
10
|
Pehrsson M, Mortensen JH, Manon-Jensen T, Bay-Jensen AC, Karsdal MA, Davies MJ. Enzymatic cross-linking of collagens in organ fibrosis - resolution and assessment. Expert Rev Mol Diagn 2021; 21:1049-1064. [PMID: 34330194 DOI: 10.1080/14737159.2021.1962711] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Introduction: Enzymatic cross-linking of the collagens within the extracellular matrix (ECM) catalyzed by enzymes such as lysyl oxidase (LOX) and lysyl oxidase like-enzymes 1-4 (LOXL), transglutaminase 2 (TG2), and peroxidasin (PXDN) contribute to fibrosis progression through extensive collagen cross-linking. Studies in recent years have begun elucidating the important role of collagen cross-linking in perpetuating progression of organ fibrosis independently of inflammation through an increasingly stiff and noncompliant ECM. Therefore, collagen cross-linking and the cross-linking enzymes have become new targets in anti-fibrotic therapy as well as targets of novel biomarkers to properly assess resolution of the fibrotic ECM.Areas covered: The enzymatic actions of enzymes catalyzing collagen cross-linking and their relevance in organ fibrosis. Potential biomarkers specifically quantifying proteolytic fragments of collagen cross-linking is discussed based on Pubmed search done in November 2020 as well as the authors knowledge.Expert opinion: Current methods for the assessment of fibrosis involve the use of invasive and/or cumbersome and expensive methods such as tissue biopsies. Thus, an unmet need exists for the development and validation of minimally invasive biomarkers of proteolytic fragments of cross-linked collagens. These biomarkers may aid in the development and proper assessment of fibrosis resolution in coming years.
Collapse
Affiliation(s)
- Martin Pehrsson
- Department of Biomedical Science, University of Copenhagen, Copenhagen, Denmark.,Biomarkers & Research, Nordic Bioscience A/S, Herlev, Denmark
| | | | | | | | | | | |
Collapse
|
11
|
Myeloproliferative Disorders and its Effect on Bone Homeostasis: The Role of Megakaryocytes. Blood 2021; 139:3127-3137. [PMID: 34428274 DOI: 10.1182/blood.2021011480] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 08/11/2021] [Indexed: 11/20/2022] Open
Abstract
Myeloproliferative Neoplasms (MPNs) are a heterogeneous group of chronic hematological diseases that arise from the clonal expansion of abnormal hematopoietic stem cells, of which Polycythemia Vera (PV), Essential Thrombocythemia (ET), and Primary Myelofibrosis (PMF) have been extensively reviewed in context of clonal expansion, fibrosis and other phenotypes. Here, we review current knowledge on the influence of different forms of MPN on bone health. Studies implicated various degrees of effect of different forms of MPN on bone density, and on osteoblast proliferation and differentiation, using murine models and human data. The majority of studies show that bone volume is generally increased in PMF patients, whereas it is slightly decreased or not altered in ET and PV patients, although possible differences between male and female phenotypes were not fully explored in most MPN forms. Osteosclerosis seen in PMF patients is a serious complication that can lead to bone marrow failure, and the loss of bone reported in some ET and PV patients can lead to osteoporotic fractures. Some MPN forms are associated with increased number of megakaryocytes (MKs), and several of the MK-associated factors in MPN are known to affect bone development. Here, we review known mechanisms involved in these processes, with focus on the role of MKs and secreted factors. Understanding MPN-associated changes in bone health could improve early intervention and treatment of this side effect of the pathology.
Collapse
|
12
|
Yamada S, Yamamoto K, Nakazono A, Matsuura T, Yoshimura A. Functional roles of fish collagen peptides on bone regeneration. Dent Mater J 2021; 40:1295-1302. [PMID: 34334505 DOI: 10.4012/dmj.2020-446] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Fish collagen peptides (FCP) derived from the skin, bones and scales are commercially used as a functional food or dietary supplement for hypertension and diabetes. However, there is limited evidence on the effects of FCP on the osteoblast function in contrast to evidence of the effects on wound healing, diabetes and bone regeneration, which have been obtained from animal studies. In this narrative review, we expound on the availability of FCP by basic research using osteoblasts. Low-concentration FCP upregulates the expression of osteoblast proliferation, differentiation and collagen modifying enzyme-related genes. Furthermore, it could accelerate matrix mineralization. FCP may have potential utility as a biomaterial to improve collagen quality and promote mineralization through the mitogen-activated protein kinase and Smad cascades. However, there are few clinical studies on bone regeneration in human subjects. It is desirable to be applied clinically through clinical study as soon as possible, based on the results from basic research.
Collapse
Affiliation(s)
- Shizuka Yamada
- Department of Periodontology and Endodontology, Nagasaki University Graduate School of Biomedical Sciences
| | - Kohei Yamamoto
- Department of Periodontology and Endodontology, Nagasaki University Graduate School of Biomedical Sciences
| | - Ayako Nakazono
- Department of Periodontology and Endodontology, Nagasaki University Graduate School of Biomedical Sciences
| | - Takashi Matsuura
- Department of Periodontology and Endodontology, Nagasaki University Graduate School of Biomedical Sciences
| | - Atsutoshi Yoshimura
- Department of Periodontology and Endodontology, Nagasaki University Graduate School of Biomedical Sciences
| |
Collapse
|
13
|
Claeys L, Storoni S, Eekhoff M, Elting M, Wisse L, Pals G, Bravenboer N, Maugeri A, Micha D. Collagen transport and related pathways in Osteogenesis Imperfecta. Hum Genet 2021; 140:1121-1141. [PMID: 34169326 PMCID: PMC8263409 DOI: 10.1007/s00439-021-02302-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 06/08/2021] [Indexed: 12/16/2022]
Abstract
Osteogenesis Imperfecta (OI) comprises a heterogeneous group of patients who share bone fragility and deformities as the main characteristics, albeit with different degrees of severity. Phenotypic variation also exists in other connective tissue aspects of the disease, complicating disease classification and disease course prediction. Although collagen type I defects are long established as the primary cause of the bone pathology, we are still far from comprehending the complete mechanism. In the last years, the advent of next generation sequencing has triggered the discovery of many new genetic causes for OI, helping to draw its molecular landscape. It has become clear that, in addition to collagen type I genes, OI can be caused by multiple proteins connected to different parts of collagen biosynthesis. The production of collagen entails a complex process, starting from the production of the collagen Iα1 and collagen Iα2 chains in the endoplasmic reticulum, during and after which procollagen is subjected to a plethora of posttranslational modifications by chaperones. After reaching the Golgi organelle, procollagen is destined to the extracellular matrix where it forms collagen fibrils. Recently discovered mutations in components of the retrograde transport of chaperones highlight its emerging role as critical contributor of OI development. This review offers an overview of collagen regulation in the context of recent gene discoveries, emphasizing the significance of transport disruptions in the OI mechanism. We aim to motivate exploration of skeletal fragility in OI from the perspective of these pathways to identify regulatory points which can hint to therapeutic targets.
Collapse
Affiliation(s)
- Lauria Claeys
- Department of Clinical Genetics, Amsterdam UMC, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Silvia Storoni
- Department of Internal Medicine Section Endocrinology, Amsterdam UMC, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Marelise Eekhoff
- Department of Internal Medicine Section Endocrinology, Amsterdam UMC, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Mariet Elting
- Department of Clinical Genetics, Amsterdam UMC, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Lisanne Wisse
- Department of Clinical Genetics, Amsterdam UMC, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Gerard Pals
- Department of Clinical Genetics, Amsterdam UMC, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Nathalie Bravenboer
- Department of Clinical Chemistry, Amsterdam /UMC, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Alessandra Maugeri
- Department of Clinical Genetics, Amsterdam UMC, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Dimitra Micha
- Department of Clinical Genetics, Amsterdam UMC, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
14
|
Xu F, Li W, Yang X, Na L, Chen L, Liu G. The Roles of Epigenetics Regulation in Bone Metabolism and Osteoporosis. Front Cell Dev Biol 2021; 8:619301. [PMID: 33569383 PMCID: PMC7868402 DOI: 10.3389/fcell.2020.619301] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 12/31/2020] [Indexed: 12/17/2022] Open
Abstract
Osteoporosis is a metabolic disease characterized by decreased bone mineral density and the destruction of bone microstructure, which can lead to increased bone fragility and risk of fracture. In recent years, with the deepening of the research on the pathological mechanism of osteoporosis, the research on epigenetics has made significant progress. Epigenetics refers to changes in gene expression levels that are not caused by changes in gene sequences, mainly including DNA methylation, histone modification, and non-coding RNAs (lncRNA, microRNA, and circRNA). Epigenetics play mainly a post-transcriptional regulatory role and have important functions in the biological signal regulatory network. Studies have shown that epigenetic mechanisms are closely related to osteogenic differentiation, osteogenesis, bone remodeling and other bone metabolism-related processes. Abnormal epigenetic regulation can lead to a series of bone metabolism-related diseases, such as osteoporosis. Considering the important role of epigenetic mechanisms in the regulation of bone metabolism, we mainly review the research progress on epigenetic mechanisms (DNA methylation, histone modification, and non-coding RNAs) in the osteogenic differentiation and the pathogenesis of osteoporosis to provide a new direction for the treatment of bone metabolism-related diseases.
Collapse
Affiliation(s)
- Fei Xu
- College of Medical Technology, Shanghai University of Medicine and Health Sciences, Shanghai, China
- Collaborative Innovation Center, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Wenhui Li
- Collaborative Innovation Center, Shanghai University of Medicine and Health Sciences, Shanghai, China
- College of Clinical Medicine, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Xiao Yang
- Traditional Chinese Vascular Surgery, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lixin Na
- Collaborative Innovation Center, Shanghai University of Medicine and Health Sciences, Shanghai, China
- College of Public Health, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Linjun Chen
- College of Medical Technology, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Guobin Liu
- Traditional Chinese Vascular Surgery, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
15
|
Wei S, Gao L, Wu C, Qin F, Yuan J. Role of the lysyl oxidase family in organ development (Review). Exp Ther Med 2020; 20:163-172. [PMID: 32536990 PMCID: PMC7282176 DOI: 10.3892/etm.2020.8731] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 03/02/2020] [Indexed: 02/05/2023] Open
Abstract
Lysyl oxidase proteins (LOXs) are amine oxidases, which are mainly located in smooth muscle cells and fibroblasts and serve an important role in the formation of the extracellular matrix (ECM) in a copper-dependent manner. Owing to the ability of LOX proteins to modulate crosslinking between collagens and to promote the deposition of other fibers, they serve crucially in organogenesis and the subsequent organ development, as well as disease initiation and progression. In addition, ECM formation significantly influences organ morphological formation in both cancer- and non-tumor-related diseases, in addition to cellular epigenetic transformation and migration, under the influence of LOXs. A number of different signaling pathways regulate the LOXs expression and their enzymatic activation. The tissue remodeling and transformation process shares some resemblance between oncogenesis and embryogenesis. Additionally the roles that LOXs serve appeared to be stressed during oncogenesis and tumor metastasis. It has also been indicated LOXs have a noteworthy role in non-tumor diseases. Nonetheless, the role of LOXs in systemic or local organ development and disease control remains unknown. In the present study, the essential roles that LOXs play in embryogenesis were unveiled partially, whereas the role of LOXs in organ or systematic development requires further investigations. The present review aimed to discuss the roles of members of the LOX family in the context of the remodeling of organogenesis and organ development. In addition, the consequences of the malfunction of these proteins related to the development of abnormalities and resulting diseases is discussed.
Collapse
Affiliation(s)
- Shanzun Wei
- Andrology Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China.,Department of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Liang Gao
- Andrology Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China.,Department of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Changjing Wu
- Andrology Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Feng Qin
- Andrology Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Jiuhong Yuan
- Andrology Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China.,Department of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
16
|
Canelón SP, Wallace JM. Substrate Strain Mitigates Effects of β-Aminopropionitrile-Induced Reduction in Enzymatic Crosslinking. Calcif Tissue Int 2019; 105:660-669. [PMID: 31482192 PMCID: PMC7161703 DOI: 10.1007/s00223-019-00603-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 08/21/2019] [Indexed: 01/22/2023]
Abstract
Enzymatic crosslinks stabilize type I collagen and are catalyzed by lysyl oxidase (LOX), a step interrupted through β-aminopropionitrile (BAPN) exposure. This study evaluated dose-dependent effects of BAPN on osteoblast gene expression of type I collagen, LOX, and genes associated with crosslink formation. The second objective was to characterize collagen produced in vitro after exposure to BAPN, and to explore changes to collagen properties under continuous cyclical substrate strain. To evaluate dose-dependent effects, osteoblasts were exposed to a range of BAPN dosages (0-10 mM) for gene expression analysis and cell proliferation. Results showed significant upregulation of BMP-1, POST, and COL1A1 and change in cell proliferation. Results also showed that while the gene encoding LOX was unaffected by BAPN treatment, other genes related to LOX activation and matrix production were upregulated. For the loading study, the combined effects of BAPN and mechanical loading were assessed. Gene expression was quantified, atomic force microscopy was used to extract elastic properties of the collagen matrix, and Fourier Transform infrared spectroscopy was used to assess collagen secondary structure for enzymatic crosslinking analysis. BAPN upregulated BMP-1 in static samples and BAPN combined with mechanical loading downregulated LOX when compared to control-static samples. Results showed a higher indentation modulus in BAPN-loaded samples compared to control-loaded samples. Loading increased the mature-to-immature crosslink ratios in control samples, and BAPN increased the height ratio in static samples. In summary, effects of BAPN (upregulation of genes involved in crosslinking, mature/immature crosslinking ratios, upward trend in collagen elasticity) were mitigated by mechanical loading.
Collapse
Affiliation(s)
- Silvia P Canelón
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Joseph M Wallace
- Department of Biomedical Engineering, Indiana University-Purdue University at Indianapolis, Indianapolis, IN, USA.
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
17
|
Kohno K, Yamada W, Ishitsuka A, Sekine M, Virgona N, Ota M, Yano T. Tocotrienol-rich fraction from annatto ameliorates expression of lysyl oxidase in human osteoblastic MG-63 cells. Biosci Biotechnol Biochem 2019; 84:526-535. [PMID: 31743080 DOI: 10.1080/09168451.2019.1693252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Lysyl oxidase (LOX) is required for the formation of bone collagen cross-links. Inactivation of the LOX gene in osteoblasts by DNA methylation and JAK signaling has been reported to cause loss of cross-links and an increased risk of fractures. Tocotrienols (T3s) have proven benefits on bone strength, but their potential effects on LOX remain largely unknown. Thus, the present study investigates the in vitro effects of T3s on LOX expression in human osteoblastic MG-63 cells. Results indicated that Tocotrienol-Rich Fraction (TRF), the δ-T3 rich oil extracted from Annatto was the most effective and significantly increased LOX expression. TRF treatment decreased de-novo methyltransferases (DNMTs), DNMT3A and DNMT3B levels. In addition, TRF significantly inhibited JAK2 activation and decreased expression of Fli1, a transcription factor of DNMTs. We conclude that TRF induced an increase in LOX expression via inhibition of de-novo methylation and reduction of Fli1 expression by the inactivation of JAK2.Abbreviations: CpG: cytosine-guanine dinucleotide; DNMT: DNA methyltransferase; Fli1: friend leukemia virus integration 1; JAK: janus kinase; LOX: lysyl oxidase; PCR: polymerase chain reaction; STAT: signal transducers and activators of transcription; T3s: tocotrienols; TPs: tocopherols; TRF: Tocotrienol-Rich Fraction.
Collapse
Affiliation(s)
- Kakeru Kohno
- Graduate School of Food and Nutritional Sciences, Toyo University, Itakura, Gunma, Japan
| | - Wakana Yamada
- Research Institute for Life Innovation, Toyo University, Itakura, Gunma, Japan
| | - Aya Ishitsuka
- Research Institute for Life Innovation, Toyo University, Itakura, Gunma, Japan
| | - Miki Sekine
- Research Institute for Life Innovation, Toyo University, Itakura, Gunma, Japan
| | - Nantiga Virgona
- Research Institute for Life Innovation, Toyo University, Itakura, Gunma, Japan
| | - Masako Ota
- Graduate School of Food and Nutritional Sciences, Toyo University, Itakura, Gunma, Japan.,Research Institute for Life Innovation, Toyo University, Itakura, Gunma, Japan
| | - Tomohiro Yano
- Graduate School of Food and Nutritional Sciences, Toyo University, Itakura, Gunma, Japan.,Research Institute for Life Innovation, Toyo University, Itakura, Gunma, Japan
| |
Collapse
|
18
|
Martínez-González J, Varona S, Cañes L, Galán M, Briones AM, Cachofeiro V, Rodríguez C. Emerging Roles of Lysyl Oxidases in the Cardiovascular System: New Concepts and Therapeutic Challenges. Biomolecules 2019; 9:biom9100610. [PMID: 31615160 PMCID: PMC6843517 DOI: 10.3390/biom9100610] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/07/2019] [Accepted: 10/10/2019] [Indexed: 12/13/2022] Open
Abstract
Lysyl oxidases (LOX and LOX-likes (LOXLs) isoenzymes) belong to a family of copper-dependent enzymes classically involved in the covalent cross-linking of collagen and elastin, a pivotal process that ensures extracellular matrix (ECM) stability and provides the tensile and elastic characteristics of connective tissues. Besides this structural role, in the last years, novel biological properties have been attributed to these enzymes, which can critically influence cardiovascular function. LOX and LOXLs control cell proliferation, migration, adhesion, differentiation, oxidative stress, and transcriptional regulation and, thereby, their dysregulation has been linked to a myriad of cardiovascular pathologies. Lysyl oxidase could modulate virtually all stages of the atherosclerotic process, from endothelial dysfunction and plaque progression to calcification and rupture of advanced and complicated plaques, and contributes to vascular stiffness in hypertension. The alteration of LOX/LOXLs expression underlies the development of other vascular pathologies characterized by a destructive remodeling of the ECM, such as aneurysm and artery dissections, and contributes to the adverse myocardial remodeling and dysfunction in hypertension, myocardial infarction, and obesity. This review examines the most recent advances in the study of LOX and LOXLs biology and their pathophysiological role in cardiovascular diseases with special emphasis on their potential as therapeutic targets.
Collapse
Affiliation(s)
- José Martínez-González
- Instituto de Investigaciones Biomédicas de Barcelona (IIBB-CSIC), 08036 Barcelona, Spain.
- CIBER de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, 28029 Madrid, Spain.
- Instituto de Investigación Biomédica Sant Pau (IIB-Sant Pau), 08041 Barcelona, Spain.
| | - Saray Varona
- CIBER de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, 28029 Madrid, Spain.
- Instituto de Investigación Biomédica Sant Pau (IIB-Sant Pau), 08041 Barcelona, Spain.
| | - Laia Cañes
- Instituto de Investigaciones Biomédicas de Barcelona (IIBB-CSIC), 08036 Barcelona, Spain.
- CIBER de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, 28029 Madrid, Spain.
- Instituto de Investigación Biomédica Sant Pau (IIB-Sant Pau), 08041 Barcelona, Spain.
| | - María Galán
- CIBER de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, 28029 Madrid, Spain.
- Instituto de Investigación Biomédica Sant Pau (IIB-Sant Pau), 08041 Barcelona, Spain.
- Institut de Recerca Hospital de la Santa Creu i Sant Pau-Programa ICCC, 08025 Barcelona, Spain.
| | - Ana M Briones
- CIBER de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, 28029 Madrid, Spain.
- Departmento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid, Instituto de Investigación Hospital La Paz, 28029 Madrid, Spain.
| | - Victoria Cachofeiro
- CIBER de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, 28029 Madrid, Spain.
- Departamento de Fisiología, Facultad de Medicina, Universidad Complutense de Madrid-Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), 28040 Madrid, Spain.
| | - Cristina Rodríguez
- CIBER de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, 28029 Madrid, Spain.
- Instituto de Investigación Biomédica Sant Pau (IIB-Sant Pau), 08041 Barcelona, Spain.
- Institut de Recerca Hospital de la Santa Creu i Sant Pau-Programa ICCC, 08025 Barcelona, Spain.
| |
Collapse
|
19
|
Mubarak S, Masako N, Al-Omari FA, Keisuke H, Katsumi U. Effect of Collagen Cross-Link Deficiency on Incorporation of Grafted Bone. Dent J (Basel) 2019; 7:dj7020045. [PMID: 31052355 PMCID: PMC6630422 DOI: 10.3390/dj7020045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 04/10/2019] [Accepted: 04/10/2019] [Indexed: 11/17/2022] Open
Abstract
Bone matrix collagen, is one of the major contributors to bone quality. No studies have examined how bone quality affects the results of bone transplantation. Collagen cross-links (CCL) are the key factor in collagen properties. The purpose was to investigate the influences of CCL for both grafted bone and recipient site bone on the success of bone augmentation. Four-week-old male Wister rats (n = 54) were divided into control and test groups. Control and test groups equally sub-divided into donors and recipients. An additional six rats were used to characterize bone at day zero. Test groups received 0.2% beta-aminoproperionitrile (BAPN) for 4 weeks as CCL inhibitor. Animals were further divided into donor and recipient groups. The transplanted bone chips integrated with host bone by 25% more in CCL-deficient animals compared to control. However, no difference in cortical thickness among all conditions. CCL-deficient transplanted bone did not show any extra signs of osteocyte apoptosis, while sclerostin expression was comparable to that in control. The host periosteum of CCL-deficient animals showed higher cellular activity, as well as higher bone quantity and osteoclast activity. Collagen cross-links deficiency in host bone might accelerate the incorporation of grafted bone. effect. Incorporation of the bone grafts appears to depend mainly on host condition rather than graft condition.
Collapse
Affiliation(s)
- Suliman Mubarak
- Division of Bio-Prosthodontics, Graduate School of Medical and Dental Sciences, Faculty of Dentistry, Niigata University, 2-5274 Gakkocho-dori, Chuo-ku, Niigata 951-8514, Japan.
| | - Nagasawa Masako
- Division of Bio-Prosthodontics, Graduate School of Medical and Dental Sciences, Faculty of Dentistry, Niigata University, 2-5274 Gakkocho-dori, Chuo-ku, Niigata 951-8514, Japan.
| | - Farah A Al-Omari
- Division of Bio-Prosthodontics, Graduate School of Medical and Dental Sciences, Faculty of Dentistry, Niigata University, 2-5274 Gakkocho-dori, Chuo-ku, Niigata 951-8514, Japan.
| | - Hamaya Keisuke
- Division of Bio-Prosthodontics, Graduate School of Medical and Dental Sciences, Faculty of Dentistry, Niigata University, 2-5274 Gakkocho-dori, Chuo-ku, Niigata 951-8514, Japan.
| | - Uoshima Katsumi
- Division of Bio-Prosthodontics, Graduate School of Medical and Dental Sciences, Faculty of Dentistry, Niigata University, 2-5274 Gakkocho-dori, Chuo-ku, Niigata 951-8514, Japan.
| |
Collapse
|
20
|
Mitra D, Yasui OW, Harvestine JN, Link JM, Hu JC, Athanasiou KA, Leach JK. Exogenous Lysyl Oxidase-Like 2 and Perfusion Culture Induce Collagen Crosslink Formation in Osteogenic Grafts. Biotechnol J 2019; 14:e1700763. [PMID: 30052320 PMCID: PMC6432926 DOI: 10.1002/biot.201700763] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 06/30/2018] [Indexed: 12/24/2022]
Abstract
Lysyl oxidase (LOX)-mediated collagen crosslinking can regulate osteoblastic phenotype and enhance mechanical properties of tissues, both areas of interest in bone tissue engineering. The objective of this study is to investigate the effect of lysyl oxidase-like 2 (LOXL2) on osteogenic differentiation of mesenchymal stem cells (MSCs) cultured in perfusion bioreactors, enzymatic collagen crosslink formation in the extracellular matrix (ECM), and mechanical properties of engineered bone grafts. Exogenous LOXL2 to MSCs seeded in composite scaffolds under perfusion culture for up to 28 days is administered. Constructs treated with LOXL2 appear brown in color and possess greater DNA content and osteogenic potential measured by a twofold increase in bone sialoprotein gene expression. Collagen expression of LOXL2-treated scaffolds is lower than untreated controls. Functional outputs such as calcium deposition, osteocalcin expression, and compressive modulus are unaffected by LOXL2 supplementation. Excitingly, LOXL2-treated constructs contain 1.8- and 1.4-times more pyridinoline (PYD) crosslinks per mole of collagen and per wet weight, respectively, than untreated constructs. Despite these increases, compressive moduli of LOXL2-treated constructs are similar to untreated constructs over the 28-day culture duration. This is the first report of LOXL2 application to engineered, three-dimensional bony constructs. The results suggest a potentially new strategy for engineering osteogenic grafts with a mature ECM by modulating crosslink formation.
Collapse
Affiliation(s)
- Debika Mitra
- Department of Biomedical Engineering, University of California, Davis, Davis, CA 95616
| | - Osamu W. Yasui
- Department of Biomedical Engineering, University of California, Davis, Davis, CA 95616
| | - Jenna N. Harvestine
- Department of Biomedical Engineering, University of California, Davis, Davis, CA 95616
| | - Jarrett M. Link
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA 92697
| | - Jerry C. Hu
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA 92697
| | - Kyriacos A. Athanasiou
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA 92697
| | - J. Kent Leach
- Department of Biomedical Engineering, University of California, Davis, Davis, CA 95616
- Department of Orthopaedic Surgery, UC Davis Health, Sacramento, CA 95817
| |
Collapse
|
21
|
Shen Y, Jing D, Hao J, Tang G, Yang P, Zhao Z. The Effect of β-Aminopropionitrile on Skeletal Micromorphology and Osteogenesis. Calcif Tissue Int 2018; 103:411-421. [PMID: 29916126 DOI: 10.1007/s00223-018-0430-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 05/03/2018] [Indexed: 12/16/2022]
Abstract
Collagen cross-linking, as a form of collagen post-translational modification, plays a crucial role in maintaining bone mechanical properties as well as in regulating cell biological functions. Shifts in cross-links profile are found apparently correlated to kinds of skeletal pathology and diseases, whereas little is known about the relationship between collagen cross-links and osteogenesis. Here, we hypothesized that the inhibition of collagen cross-links could impair skeletal microstructure and inhibit osteogenesis. A mouse model of collagen cross-linking defects has been established using subcutaneous injection of 350 mg/kg β-aminopropionitrile (BAPN) daily for 4 weeks, and same dose of phosphate buffered saline (PBS) served as control group. The analysis of bone microstructural parameters revealed a significant decrease of bone volume fraction (BV/TV) and trabecular thickness (Tb.Th), and increase of bone surface ratio (BS/BV), structure model index (SMI) as well as trabecular separation (Tb.Sp) in the experimental group (p < 0.05), whereas there was no difference observed in bone mineral density (BMD). Histological staining displayed that the BAPN treatment caused thinner trabeculae and decrease of collagen content in proximal tibiae. The analysis of osteogenesis PCR (Polymerase Chain Reaction) array reflected that BAPN remarkably influenced the expression of Alpl, Bglap, Bgn, Bmp5, Col10a1, Col1a1, Col1a2, Col5a1, Itga2b, and Serpinh1. The results of immunohistochemistry displayed a significant reduction in the mean optical densities of OCN and COL1 at the presence of BAPN. The overall results of this study suggested that BAPN alters bone microstructure and hinders the expression of osteogenic genes without affecting mineralization processes, indicating the influences of collagen cross-links on osteogenesis may be a potential pathological mechanism in skeletal diseases.
Collapse
Affiliation(s)
- Yu Shen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, #14, 3rd section of Renmin South Road, Chengdu, 610041, China
| | - Dian Jing
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, #14, 3rd section of Renmin South Road, Chengdu, 610041, China
| | - Jin Hao
- Harvard School of Dental Medicine, Harvard University, Cambridge, MA, USA
| | - Ge Tang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, #14, 3rd section of Renmin South Road, Chengdu, 610041, China
| | - Pu Yang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, #14, 3rd section of Renmin South Road, Chengdu, 610041, China.
| | - Zhihe Zhao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, #14, 3rd section of Renmin South Road, Chengdu, 610041, China.
| |
Collapse
|
22
|
Zhang C, Ma J, Wang W, Sun Y, Sun K. Lysyl oxidase blockade ameliorates anovulation in polycystic ovary syndrome. Hum Reprod 2018; 33:2096-2106. [DOI: 10.1093/humrep/dey292] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 09/20/2018] [Indexed: 01/05/2023] Open
Affiliation(s)
- Chuyue Zhang
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R.China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, P.R.China
| | - Jin Ma
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R.China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, P.R.China
| | - Wangsheng Wang
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R.China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, P.R.China
| | - Yun Sun
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R.China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, P.R.China
| | - Kang Sun
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R.China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, P.R.China
| |
Collapse
|
23
|
Ida T, Kaku M, Kitami M, Terajima M, Rosales Rocabado JM, Akiba Y, Nagasawa M, Yamauchi M, Uoshima K. Extracellular matrix with defective collagen cross-linking affects the differentiation of bone cells. PLoS One 2018; 13:e0204306. [PMID: 30252876 PMCID: PMC6155528 DOI: 10.1371/journal.pone.0204306] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Accepted: 09/06/2018] [Indexed: 01/05/2023] Open
Abstract
Fibrillar type I collagen, the predominant organic component in bone, is stabilized by lysyl oxidase (LOX)-initiated covalent intermolecular cross-linking, an important determinant of bone quality. However, the impact of collagen cross-linking on the activity of bone cells and subsequent tissue remodeling is not well understood. In this study, we investigated the effect of collagen cross-linking on bone cellular activities employing a loss-of-function approach, using a potent LOX inhibitor, β-aminopropionitrile (BAPN). Osteoblastic cells (MC3T3-E1) were cultured for 2 weeks in the presence of 0–2 mM BAPN to obtain low cross-linked collagen matrices. The addition of BAPN to the cultures diminished collagen cross-links in a dose-dependent manner and, at 1 mM level, none of the major cross-links were detected without affecting collagen production. After the removal of cellular components from these cultures, MC3T3-E1, osteoclasts (RAW264.7), or mouse primary bone marrow-derived stromal cells (BMSCs) were seeded. MC3T3-E1 cells grown on low cross-link matrices showed increased alkaline phosphatase (ALP) activity. The number of multinucleate tartrate-resistant acid phosphatase (TRAP)-positive cells increased in RAW264.7 cells. Initial adhesion, proliferation, and ALP activity of BMSCs also increased. In the animal experiments, 4-week-old C57BL/6 mice were fed with BAPN-containing diet for 8 weeks. At this point, biochemical analysis of bone demonstrated that collagen cross-links decreased without affecting collagen content. Then, the diet was changed to a control diet to minimize the direct effect of BAPN. At 2 and 4 weeks after the change, histological samples were prepared. Histological examination of femur samples at 4 weeks showed a significant increase in the number of bone surface osteoblasts, while the bone volume and surface osteoclast numbers were not significantly affected. These results clearly demonstrated that the extent of collagen cross-linking of bone matrix affected the differentiation of bone cells, underscoring the importance of collagen cross-linking in the regulation of cell behaviors and tissue remodeling in bone. Characterization of collagen cross-linking in bone may be beneficial to obtain insight into not only bone mechanical property, but also bone cellular activities.
Collapse
Affiliation(s)
- Takako Ida
- Division of Bio-Prosthodontics, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Masaru Kaku
- Division of Bio-Prosthodontics, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Megumi Kitami
- Division of Bio-Prosthodontics, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Masahiko Terajima
- North Carolina Oral Health Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | | | - Yosuke Akiba
- Division of Bio-Prosthodontics, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Masako Nagasawa
- Division of Bio-Prosthodontics, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Mitsuo Yamauchi
- North Carolina Oral Health Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Katsumi Uoshima
- Division of Bio-Prosthodontics, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| |
Collapse
|
24
|
Jiang WY, Xing C, Wang HW, Wang W, Chen SZ, Ning LF, Xu X, Tang QQ, Huang HY. A Lox/CHOP-10 crosstalk governs osteogenic and adipogenic cell fate by MSCs. J Cell Mol Med 2018; 22:5097-5108. [PMID: 30044535 PMCID: PMC6156357 DOI: 10.1111/jcmm.13798] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Revised: 05/31/2018] [Accepted: 06/23/2018] [Indexed: 12/20/2022] Open
Abstract
Accelerated marrow adipogenesis has been associated with ageing and osteoporosis and is thought to be because of an imbalance between adipogenic and osteogenic differentiation of mesenchymal stem cell (MSCs). We have previously found that lysyl oxidase (Lox) inhibition disrupts BMP4‐induced adipocytic lineage commitment and differentiation of MSCs. In this study, we found that lox inhibition dramatically up‐regulates BMP4‐induced expression of CCAAT/enhancer binding protein (C/EBP) homologous protein 10 (CHOP‐10), which then promotes BMP4‐induced osteogenesis of MSCs both in vitro and in vivo. Specifically, Lox inhibition or CHOP‐10 up‐regulation activated Wnt/β‐catenin signalling to enhance BMP4‐induced osteogenesis, with pro‐adipogenic p38 MAPK and Smad signalling suppressed. Together, we demonstrate that Lox/CHOP‐10 crosstalk regulates BMP4‐induced osteogenic and adipogenic fate determination of MSCs, presenting a promising therapeutic target for osteoporosis and other bone diseases.
Collapse
Affiliation(s)
- Wen-Yan Jiang
- Key Laboratory of Metabolism and Molecular Medicine, The Ministry of Education, Shanghai, China.,Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Chun Xing
- Key Laboratory of Metabolism and Molecular Medicine, The Ministry of Education, Shanghai, China.,Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Hong-Wei Wang
- Biliary and Pancreatic Center, Huadong Hospital, Fudan University, Shanghai, China
| | - Wei Wang
- Biliary and Pancreatic Center, Huadong Hospital, Fudan University, Shanghai, China
| | - Su-Zhen Chen
- Key Laboratory of Metabolism and Molecular Medicine, The Ministry of Education, Shanghai, China.,Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Liu-Fang Ning
- Key Laboratory of Metabolism and Molecular Medicine, The Ministry of Education, Shanghai, China.,Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Xu Xu
- Institute of Stem Cell Research and Regenerative Medicine, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Qi-Qun Tang
- Key Laboratory of Metabolism and Molecular Medicine, The Ministry of Education, Shanghai, China.,Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China.,Institute of Stem Cell Research and Regenerative Medicine, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Hai-Yan Huang
- Key Laboratory of Metabolism and Molecular Medicine, The Ministry of Education, Shanghai, China.,Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China.,Institute of Stem Cell Research and Regenerative Medicine, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
25
|
Cabrera D, Kruger M, Wolber FM, Roy NC, Totman JJ, Henry CJ, Cameron-Smith D, Fraser K. Association of Plasma Lipids and Polar Metabolites with Low Bone Mineral Density in Singaporean-Chinese Menopausal Women: A Pilot Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:E1045. [PMID: 29789485 PMCID: PMC5982084 DOI: 10.3390/ijerph15051045] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 05/09/2018] [Accepted: 05/19/2018] [Indexed: 01/23/2023]
Abstract
The diagnosis of osteoporosis is mainly based on clinical examination and bone mineral density assessments. The present pilot study compares the plasma lipid and polar metabolite profiles in blood plasma of 95 Singaporean-Chinese (SC) menopausal women with normal and low bone mineral density (BMD) using an untargeted metabolomic approach. The primary finding of this study was the association between lipids and femoral neck BMD in SC menopausal women. Twelve lipids were identified to be associated with low BMD by the orthogonal partial least squares (OPLS) model. Plasma concentrations of eight glycerophospholipid, glycerolipid, and sphingolipid species were significantly lower in menopausal women with low BMD but higher in two glycerophospholipid species (phosphatidylinositol and phosphatidic acid). Further, this study found no significant differences in plasma amino acid metabolites. However, trends for lower 4-aminobutyric acid, turanose, proline, aminopropionitrile, threonine, and methionine were found in women with low BMD. This pilot study identified associations between lipid metabolism and femoral neck BMD in SC women. Further studies are required on larger populations for evaluating the bone health effect of these compounds and their usefulness as clinical biomarkers for osteoporosis prediction in women.
Collapse
Affiliation(s)
- Diana Cabrera
- School of Food and Nutrition, Massey University, Tennent Drive, Palmerston North 4442, New Zealand.
- Food Nutrition & Health Team, Food & Bio-Based Products Group, AgResearch Grasslands, Palmerston North 4442, New Zealand.
| | - Marlena Kruger
- School of Food and Nutrition, Massey University, Tennent Drive, Palmerston North 4442, New Zealand.
- Riddet Institute, Massey University, Palmerston North 4442, New Zealand.
| | - Frances M Wolber
- Centre for Metabolic Health Research, Massey University, Tennent Drive, Palmerston North 4442, New Zealand.
| | - Nicole C Roy
- Food Nutrition & Health Team, Food & Bio-Based Products Group, AgResearch Grasslands, Palmerston North 4442, New Zealand.
- Riddet Institute, Massey University, Palmerston North 4442, New Zealand.
- High-Value Nutrition National Science Challenge, Auckland 1142, New Zealand.
| | - John J Totman
- A*Star-NUS Clinical Imaging Research Centre, Singapore 117599, Singapore.
| | | | - David Cameron-Smith
- Food Nutrition & Health Team, Food & Bio-Based Products Group, AgResearch Grasslands, Palmerston North 4442, New Zealand.
- Riddet Institute, Massey University, Palmerston North 4442, New Zealand.
- The Liggins Institute, The University of Auckland, Auckland 1142, New Zealand.
| | - Karl Fraser
- Food Nutrition & Health Team, Food & Bio-Based Products Group, AgResearch Grasslands, Palmerston North 4442, New Zealand.
- Riddet Institute, Massey University, Palmerston North 4442, New Zealand.
- High-Value Nutrition National Science Challenge, Auckland 1142, New Zealand.
| |
Collapse
|
26
|
Kubota T, Hasuike A, Tsukune N, Ozawa Y, Yamamoto T, Min S, Naito M, Sato S. Influence of estrogen deficiency on guided bone augmentation: investigation of rat calvarial model and osteoblast-like MC3T3-E1 cells. Eur J Oral Sci 2018; 126:206-213. [PMID: 29676477 DOI: 10.1111/eos.12415] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The effect of estrogen deficiency in bone augmentation, and the mechanisms by which estrogen deficiency impedes osteoblast differentiation and collagen matrix production, were examined. Twenty female Jcl:Wistar rats were divided into two groups: ovariectomized rats; and control rats. Guided bone augmentation was performed by positioning plastic caps in the calvarium of all animals at 8 wk after ovariectomy or sham surgery. Micro-computed tomography and histological sections were used to determine the amount of bone augmentation within the plastic caps. At 8 wk, there was statistically significantly less newly formed bone volume in ovariectomized rats. Immunohistological staining revealed the rare alignment of runt-related transcription factor 2-positive osteoblast-like cells and collagen I-positive bundle fibers in ovariectomized rats. In cell culture experiments, pre-osteoblast-like cells, MC3T3-E1, were treated with the estrogen receptor antagonist, fulvestrant. In treated cells, alkaline phosphatase activity remained high, whereas Alizarin Red staining was completely inhibited. Extracellular staining intensity of collagen I was decreased after fulvestrant treatment. Consistent with these observations, gene-expression analysis confirmed that fulvestrant treatment led to weaker expression of mRNA for osteogenic transcription factors and bone matrix protein-related genes. The results demonstrate that estrogen deficiency suppresses osteoblast differentiation and collagen matrix production in bone augmentation.
Collapse
Affiliation(s)
- Tatsuya Kubota
- Division of Applied Oral Sciences, Nihon University Graduate School of Dentistry, Tokyo, Japan
| | - Akira Hasuike
- Department of Periodontology, Nihon University School of Dentistry, Tokyo, Japan.,Dental Research Center, Nihon University School of Dentistry, Tokyo, Japan
| | - Naoya Tsukune
- Division of Applied Oral Sciences, Nihon University Graduate School of Dentistry, Tokyo, Japan
| | - Yasumasa Ozawa
- Division of Applied Oral Sciences, Nihon University Graduate School of Dentistry, Tokyo, Japan
| | - Takanobu Yamamoto
- Division of Applied Oral Sciences, Nihon University Graduate School of Dentistry, Tokyo, Japan
| | - Seiko Min
- Department of Periodontology and Dental Hygiene, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Masako Naito
- Department of Anatomy, Nihon University School of Dentistry, Tokyo, Japan
| | - Shuichi Sato
- Department of Periodontology, Nihon University School of Dentistry, Tokyo, Japan.,Dental Research Center, Nihon University School of Dentistry, Tokyo, Japan
| |
Collapse
|
27
|
Marin C, Luyten FP, Van der Schueren B, Kerckhofs G, Vandamme K. The Impact of Type 2 Diabetes on Bone Fracture Healing. Front Endocrinol (Lausanne) 2018; 9:6. [PMID: 29416527 PMCID: PMC5787540 DOI: 10.3389/fendo.2018.00006] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 01/05/2018] [Indexed: 12/14/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a chronic metabolic disease known by the presence of elevated blood glucose levels. Nowadays, it is perceived as a worldwide epidemic, with a very high socioeconomic impact on public health. Many are the complications caused by this chronic disorder, including a negative impact on the cardiovascular system, kidneys, eyes, muscle, blood vessels, and nervous system. Recently, there has been increasing evidence suggesting that T2DM also adversely affects the skeletal system, causing detrimental bone effects such as bone quality deterioration, loss of bone strength, increased fracture risk, and impaired bone healing. Nevertheless, the precise mechanisms by which T2DM causes detrimental effects on bone tissue are still elusive and remain poorly studied. The aim of this review was to synthesize current knowledge on the different factors influencing the impairment of bone fracture healing under T2DM conditions. Here, we discuss new approaches used in recent studies to unveil the mechanisms and fill the existing gaps in the scientific understanding of the relationship between T2DM, bone tissue, and bone fracture healing.
Collapse
Affiliation(s)
- Carlos Marin
- Skeletal Biology and Engineering Research Center, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
- Prometheus—Division of Skeletal Tissue Engineering Leuven, KU Leuven, Leuven, Belgium
- Biomaterials—BIOMAT, Department of Oral Health Sciences, KU Leuven, Leuven, Belgium
| | - Frank P. Luyten
- Skeletal Biology and Engineering Research Center, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
- Prometheus—Division of Skeletal Tissue Engineering Leuven, KU Leuven, Leuven, Belgium
| | - Bart Van der Schueren
- Clinical and Experimental Endocrinology, Department of Clinical and Experimental Medicine, KU Leuven, Leuven, Belgium
| | - Greet Kerckhofs
- Skeletal Biology and Engineering Research Center, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
- Prometheus—Division of Skeletal Tissue Engineering Leuven, KU Leuven, Leuven, Belgium
| | - Katleen Vandamme
- Prometheus—Division of Skeletal Tissue Engineering Leuven, KU Leuven, Leuven, Belgium
- Biomaterials—BIOMAT, Department of Oral Health Sciences, KU Leuven, Leuven, Belgium
| |
Collapse
|
28
|
Bae WJ, Yi JK, Park J, Kang SK, Jang JH, Kim EC. Lysyl oxidase-mediated VEGF-induced differentiation and angiogenesis in human dental pulp cells. Int Endod J 2017; 51:335-346. [PMID: 28568134 DOI: 10.1111/iej.12796] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 05/26/2017] [Indexed: 11/26/2022]
Abstract
AIM To investigate the effects of recombinant human vascular endothelial growth factor (rhVEGF) on odontoblastic differentiation, in vitro angiogenesis, and expression and activity of lysyl oxidase (LOX) in human dental pulp cells (HDPCs), compared with rhFGF-2. To identify the underlying molecular mechanisms, the study focused on whether LOX was responsible for the actions of rhVEGF. METHODOLOGY Recombinant human vascular endothelial growth factor (rhVEGF) was constructed using the pBAD-HisA plasmid in Escherichia coli. HDPCs were treated with 1-50 μg mL-1 rhVEGF for 14 days. Alkaline phosphatase (ALP) activity was measured, and the formation of calcified nodules was assessed using alizarin red staining after the induction of odontogenic differentiation of HDPCs. The expression level of the odontogenic differentiation markers was detected by reverse transcription polymerase chain reaction. Signal pathways were assessed by Western blot and immunocytochemistry. The data were analysed by anova with Bonferroni's test (α = 0.05). RESULTS Recombinant human vascular endothelial growth factor significantly increased cell growth (P < 0.05), ALP activity (P < 0.05) and mineralization nodule formation and upregulated the mRNA expression levels of the osteogenic/odontogenic markers that were lower with rhFGF-2. rhVEGF significantly increased amine oxidase activity (P < 0.05) and upregulated LOX and LOXL mRNA expression in HDPCs. Additionally, rhVEGF dose-dependently upregulated angiogenic gene mRNAs and capillary tube formation to a greater degree than rhFGF-2. Inhibition of LOX using β-aminopropionitrile (BAPN) and LOX or LOXL gene silencing by RNA interference attenuated rhVEGF-induced growth, ALP activity, mineralization, the expression of marker mRNAs and in vitro angiogenesis. Furthermore, treatment with rhVEGF resulted in phosphorylation of Akt, ERK, JNK and p38, and activation of NF-κB, which was inhibited by LOX or LOXL silencing and BAPN. CONCLUSION Recombinant human vascular endothelial growth factor promoted cell growth, odontogenic potential and in vitro angiogenesis via modulation of LOX expression. These results support the concept that rhVEGF may offer therapeutic benefits in regenerative endodontics.
Collapse
Affiliation(s)
- W-J Bae
- Department of Oral and Maxillofacial Pathology, School of Dentistry, Kyung Hee University, Seoul, Korea
| | - J-K Yi
- Department of Conservative Dentistry, School of Dentistry, Kyung Hee University, Seoul, Korea
| | - J Park
- Department of Oral and Maxillofacial Pathology, School of Dentistry, Kyung Hee University, Seoul, Korea
| | - S-K Kang
- Department of Oral Medicine, School of Dentistry, Kyung Hee University, Seoul, Korea
| | - J-H Jang
- Department of Biochemistry, School of Medicine, Inha University, Incheon, Korea
| | - E-C Kim
- Department of Oral and Maxillofacial Pathology, School of Dentistry, Kyung Hee University, Seoul, Korea
| |
Collapse
|
29
|
Kuroshima S, Kaku M, Ishimoto T, Sasaki M, Nakano T, Sawase T. A paradigm shift for bone quality in dentistry: A literature review. J Prosthodont Res 2017. [PMID: 28633987 DOI: 10.1016/j.jpor.2017.05.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
PURPOSE The aim of this study was to present the current concept of bone quality based on the proposal by the National Institutes of Health (NIH) and some of the cellular and molecular factors that affect bone quality. STUDY SELECTION This is a literature review which focuses on collagen, biological apatite (BAp), and bone cells such as osteoblasts and osteocytes. RESULTS In dentistry, the term "bone quality" has long been considered to be synonymous with bone mineral density (BMD) based on radiographic and sensible evaluations. In 2000, the NIH proposed the concept of bone quality as "the sum of all characteristics of bone that influence the bone's resistance to fracture," which is completely independent of BMD. The NIH defines bone quality as comprising bone architecture, bone turnover, bone mineralization, and micro-damage accumulation. Moreover, our investigations have demonstrated that BAp, collagen, and bone cells such as osteoblasts and osteocytes play essential roles in controlling the current concept of bone quality in bone around hip and dental implants. CONCLUSION The current concept of bone quality is crucial for understanding bone mechanical functions. BAp, collagen and osteocytes are the main factors affecting bone quality. Moreover, mechanical loading dynamically adapts bone quality. Understanding the current concept of bone quality is required in dentistry.
Collapse
Affiliation(s)
- Shinichiro Kuroshima
- Department of Applied Prosthodontics, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1, Sakamoto, Nagasaki-city, Nagasaki 852-8588, Japan.
| | - Masaru Kaku
- Division of Bio-prosthodontics, Graduate School of Medical and Dental Science, Niigata University, 2-5274, Gakkocho-dori, Chuo-ku, Niigata-City, Niigata 951-8514, Japan
| | - Takuya Ishimoto
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1, Yamadaoka, Suita-city, Osaka 565-0871, Japan
| | - Muneteru Sasaki
- Department of Applied Prosthodontics, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1, Sakamoto, Nagasaki-city, Nagasaki 852-8588, Japan
| | - Takayoshi Nakano
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1, Yamadaoka, Suita-city, Osaka 565-0871, Japan
| | - Takashi Sawase
- Department of Applied Prosthodontics, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1, Sakamoto, Nagasaki-city, Nagasaki 852-8588, Japan
| |
Collapse
|
30
|
Kumari S, Panda TK, Pradhan T. Lysyl Oxidase: Its Diversity in Health and Diseases. Indian J Clin Biochem 2017; 32:134-141. [PMID: 28428687 PMCID: PMC5382067 DOI: 10.1007/s12291-016-0576-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 05/06/2016] [Indexed: 01/27/2023]
Abstract
The mechanical properties of extracellular matrix (ECM) and connective tissues is largely dependent on the collagen and elastin structure. Lysyl oxidase (LOX) plays a critical role in the formation and repair of the ECM by oxidizing lysine residues in elastin and collagen, thereby initiating the formation of covalent cross linkages which stabilize these fibrous proteins. Due to its multiple functions both extracellularly and intracellularly, lysyl oxidase is involved in several processes in the tumorigenic pathway, in many different cancer types and stages. Alteration in LOX activity is implicated in many diseases and disorders including inflammation and inflammatory diseases, fibrosis of distinct organs and fibrotic disorders, cancer promotion and progression. There are only sparse reports of mutations or epigenetic alterations in the LOX gene. This review provides the recent clinical developments in the molecular mechanisms and pathologic process, pointing out LOX as a potential therapeutic target in translational medicine.
Collapse
Affiliation(s)
- Suchitra Kumari
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Bhubaneswar, India
| | | | | |
Collapse
|
31
|
Ethnomedicine based evaluation of osteoprotective properties of Tinospora cordifolia on in vitro and in vivo model systems. Biomed Pharmacother 2017; 87:342-354. [DOI: 10.1016/j.biopha.2016.12.094] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 12/07/2016] [Accepted: 12/22/2016] [Indexed: 11/19/2022] Open
|
32
|
Palermo A, D'Onofrio L, Buzzetti R, Manfrini S, Napoli N. Pathophysiology of Bone Fragility in Patients with Diabetes. Calcif Tissue Int 2017; 100:122-132. [PMID: 28180919 DOI: 10.1007/s00223-016-0226-3] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 12/20/2016] [Indexed: 02/07/2023]
Abstract
It has been well established that bone fragility is one of the chronic complications of diabetes mellitus, and both type 1 and type 2 diabetes are risk factors for fragility fractures. Diabetes may negatively affect bone health by unbalancing several pathways: bone formation, bone resorption, collagen formation, inflammatory cytokine, muscular and incretin system, bone marrow adiposity and calcium metabolism. The purpose of this narrative review is to explore the current understanding of pathophysiological pathways underlying bone fragility in diabetics. In particular, the review will focus on the peculiar cellular and molecular system impairment that may lead to increased risk of fracture in type 1 and type 2 diabetes.
Collapse
Affiliation(s)
- Andrea Palermo
- Diabetes and Bone network, Department Endocrinology and Diabetes, University Campus Bio-Medico of Rome, Via Alvaro del Portillo, 21 - 00128, Rome, Italy
| | - Luca D'Onofrio
- Department of Experimental Medicine, Polo Pontino, Sapienza University of Rome, Rome, Italy
| | - Raffaella Buzzetti
- Department of Experimental Medicine, Polo Pontino, Sapienza University of Rome, Rome, Italy
| | - Silvia Manfrini
- Diabetes and Bone network, Department Endocrinology and Diabetes, University Campus Bio-Medico of Rome, Via Alvaro del Portillo, 21 - 00128, Rome, Italy
| | - Nicola Napoli
- Diabetes and Bone network, Department Endocrinology and Diabetes, University Campus Bio-Medico of Rome, Via Alvaro del Portillo, 21 - 00128, Rome, Italy.
- Division of Bone and Mineral Diseases, Washington University in St Louis, St Louis, USA.
| |
Collapse
|
33
|
Canelón SP, Wallace JM. β-Aminopropionitrile-Induced Reduction in Enzymatic Crosslinking Causes In Vitro Changes in Collagen Morphology and Molecular Composition. PLoS One 2016; 11:e0166392. [PMID: 27829073 PMCID: PMC5102343 DOI: 10.1371/journal.pone.0166392] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 10/27/2016] [Indexed: 01/04/2023] Open
Abstract
Type I collagen morphology can be characterized using fibril D-spacing, a metric which describes the periodicity of repeating bands of gap and overlap regions of collagen molecules arranged into collagen fibrils. This fibrillar structure is stabilized by enzymatic crosslinks initiated by lysyl oxidase (LOX), a step which can be disrupted using β-aminopropionitrile (BAPN). Murine in vivo studies have confirmed effects of BAPN on collagen nanostructure and the objective of this study was to evaluate the mechanism of these effects in vitro by measuring D-spacing, evaluating the ratio of mature to immature crosslinks, and quantifying gene expression of type I collagen and LOX. Osteoblasts were cultured in complete media, and differentiated using ascorbic acid, in the presence or absence of 0.25mM BAPN-fumarate. The matrix produced was imaged using atomic force microscopy (AFM) and 2D Fast Fourier transforms were performed to extract D-spacing from individual fibrils. The experiment was repeated for quantitative reverse transcription polymerase chain reaction (qRT-PCR) and Fourier Transform infrared spectroscopy (FTIR) analyses. The D-spacing distribution of collagen produced in the presence of BAPN was shifted toward higher D-spacing values, indicating BAPN affects the morphology of collagen produced in vitro, supporting aforementioned in vivo experiments. In contrast, no difference in gene expression was found for any target gene, suggesting LOX inhibition does not upregulate the LOX gene to compensate for the reduction in aldehyde formation, or regulate expression of genes encoding type I collagen. Finally, the mature to immature crosslink ratio decreased with BAPN treatment and was linked to a reduction in peak percent area of mature crosslink hydroxylysylpyridinoline (HP). In conclusion, in vitro treatment of osteoblasts with low levels of BAPN did not induce changes in genes encoding LOX or type I collagen, but led to an increase in collagen D-spacing as well as a decrease in mature crosslinks.
Collapse
Affiliation(s)
- Silvia P. Canelón
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, United States of America
| | - Joseph M. Wallace
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, United States of America
- Department of Biomedical Engineering, Indiana University-Purdue University at Indianapolis, Indianapolis, Indiana, United States of America
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- * E-mail:
| |
Collapse
|
34
|
McNerny EMB, Gardinier JD, Kohn DH. Exercise increases pyridinoline cross-linking and counters the mechanical effects of concurrent lathyrogenic treatment. Bone 2015; 81:327-337. [PMID: 26211995 PMCID: PMC4640975 DOI: 10.1016/j.bone.2015.07.030] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 07/14/2015] [Accepted: 07/21/2015] [Indexed: 01/22/2023]
Abstract
The collagen cross-link profile of bone, associated with bone strength and fracture toughness, is tightly regulated (affecting cross-link quantity, type, lysine hydroxylation and maturity) and may contribute to the improvements in bone quality during exercise. We hypothesized that 1) exercise promotes mature cross-link formation, 2) increased mature cross-linking is accompanied by shifts in lysine hydroxylation, and 3) these changes in collagen cross-link profile have positive effects on mechanical properties. Growing male C57Bl6 mice were treated with 30 min/day of running exercise, 350 mg/kg/day β-aminopropionitrile (BAPN) injected subcutaneously to inhibit enzymatic collagen cross-linking, or both exercise and BAPN, from 5 to 8 weeks of age. Bone collagen cross-linking profile, mechanical properties, morphology, and mineralization were measured from the tibiae. Cross-link measures, including immature, pyridinoline, pyrrole and pentosidine cross-links, ratios reflecting cross-link maturity and hydroxylation, and mineralization were tested for their importance to mechanical properties across 8 week groups through correlation analyses and step-wise linear regressions. BAPN treatment significantly reduced lysylpyridinoline, pyrrole, hydroxylysinorleucine, and total mature collagen cross-linking, resulting in decreased bone elastic modulus and increased yield strain despite a marginal increase in TMD. Exercise caused a shift toward pyridinoline cross-linking, with increased hydroxylysylpyridinoline and decreased pyrrole cross-linking resulting in total mature cross-linking and estimated tissue level mechanical properties matching sedentary control levels. Exercise superimposed on BAPN treatment increased total mature cross-linking from BAPN to control levels, but did so by increasing pyridinoline, not pyrrole, cross-links. Exercise also counteracted the BAPN effects on modulus and strain, without a change in TMD. Pyrrole cross-linking was the strongest correlate of modulus (r=0.470, p<0.01) and yield strain (r=-0.467, p<0.01). Cross-links with similar levels of telopeptide lysine hydroxylation to pyrrole (lysylpyridinoline and hydroxylysinorleucine) also correlated with modulus and strain to a lesser extent. In conclusion, exercise in growing mice promotes pyridinoline collagen cross-linking in bone, the resulting increase in total mature cross-linking is sufficient to counteract the mechanical effects of concurrent cross-link inhibition, and this responsiveness to loading is a potential means by which exercise might improve bone quality in diseased or otherwise compromised bone.
Collapse
Affiliation(s)
- Erin M B McNerny
- Department of Biomedical Engineering, College of Engineering and Medical School, University of Michigan, MI, USA
| | - Joseph D Gardinier
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, MI, USA
| | - David H Kohn
- Department of Biomedical Engineering, College of Engineering and Medical School, University of Michigan, MI, USA; Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, MI, USA.
| |
Collapse
|
35
|
Saito M, Marumo K. Effects of Collagen Crosslinking on Bone Material Properties in Health and Disease. Calcif Tissue Int 2015; 97:242-61. [PMID: 25791570 DOI: 10.1007/s00223-015-9985-5] [Citation(s) in RCA: 115] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 03/09/2015] [Indexed: 12/18/2022]
Abstract
Data have accumulated to show that various types of collagen crosslinking are implicated in the health of individuals, as well as in a number of disease states, such as osteoporosis, diabetes mellitus, chronic kidney disease, inflammatory bowel disease, or in conditions of mild hyperhomocysteinemia, or when glucocorticoid use is indicated. Collagen crosslinking is a posttranslational modification of collagen molecules and plays important roles in tissue differentiation and in the mechanical properties of collagenous tissue. The crosslinking of collagen in the body can form via two mechanisms: one is enzymatic crosslinking and the other is nonenzymatic crosslinking. Lysyl hydroxylases and lysyl oxidases regulate tissue-specific crosslinking patterns and quantities. Enzymatic crosslinks initially form via immature divalent crosslinking, and a portion of them convert into mature trivalent forms such as pyridinoline and pyrrole crosslinks. Nonenzymatic crosslinks form as a result of reactions which create advanced glycation end products (AGEs), such as pentosidine and glucosepane. These types of crosslinks differ in terms of their mechanisms of formation and function. Impaired enzymatic crosslinking and/or an increase of AGEs have been proposed as a major cause of bone fragility associated with aging and numerous disease states. This review focuses on the effects of collagen crosslinking on bone material properties in health and disease.
Collapse
Affiliation(s)
- Mitsuru Saito
- Department of Orthopaedic Surgery, Jikei University School of Medicine, 3-25-8, Nishi-Shinbashi, Minato-ku, Tokyo, 105-8461, Japan,
| | | |
Collapse
|
36
|
Mieczkowska A, Bouvard B, Chappard D, Mabilleau G. Glucose-dependent insulinotropic polypeptide (GIP) directly affects collagen fibril diameter and collagen cross-linking in osteoblast cultures. Bone 2015; 74:29-36. [PMID: 25582623 DOI: 10.1016/j.bone.2015.01.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2014] [Revised: 12/19/2014] [Accepted: 01/05/2015] [Indexed: 12/25/2022]
Abstract
Glucose-dependent insulinotropic polypeptide (GIP) is absolutely crucial in order to obtain optimal bone strength and collagen quality. However, as the GIPR is expressed in several tissues other than bone, it is difficult to ascertain whether the observed modifications of collagen maturity, reported in animal studies, were due to direct effects on osteoblasts or indirect through regulation of signals originating from other tissues. The aims of the present study were to investigate whether GIP can directly affect collagen biosynthesis and processing in osteoblast cultures and to decipher which molecular pathways were necessary for such effects. MC3T3-E1 cells were cultured in the presence of GIP ranged between 10 and 100pM. Collagen fibril diameter was investigated by electron microscopy whilst collagen maturity was determined by Fourier transform infra-red microspectroscopy (FTIRM). GIP treatment resulted in dose-dependent increases in lysyl oxidase activity and collagen maturity. Furthermore, GIP treatment shifted the collagen fiber diameter towards lower value but did not significantly affect collagen heterogeneity. GIP acted directly on osteoblasts by activating the adenylyl cyclase-cAMP pathway. This study provides evidences that GIP acts directly on osteoblasts and is capable of improving collagen maturity and fibril diameter.
Collapse
Affiliation(s)
- Aleksandra Mieczkowska
- GEROM Groupe Etudes Remodelage Osseux et bioMatériaux-LHEA, IRIS-IBS Institut de Biologie en Santé, CHU d'Angers, LUNAM Université, 49933 Angers Cedex, France
| | - Beatrice Bouvard
- Service de Rhumatologie, CHU d'Angers, 49933 Angers Cedex, France
| | - Daniel Chappard
- GEROM Groupe Etudes Remodelage Osseux et bioMatériaux-LHEA, IRIS-IBS Institut de Biologie en Santé, CHU d'Angers, LUNAM Université, 49933 Angers Cedex, France; SCIAM, Service Commun d'Imagerie et Analyses Microscopiques, IRIS-IBS Institut de Biologie en Santé, CHU d'Angers, LUNAM Université, 49933 Angers Cedex, France
| | - Guillaume Mabilleau
- GEROM Groupe Etudes Remodelage Osseux et bioMatériaux-LHEA, IRIS-IBS Institut de Biologie en Santé, CHU d'Angers, LUNAM Université, 49933 Angers Cedex, France; SCIAM, Service Commun d'Imagerie et Analyses Microscopiques, IRIS-IBS Institut de Biologie en Santé, CHU d'Angers, LUNAM Université, 49933 Angers Cedex, France.
| |
Collapse
|
37
|
Miana M, Galán M, Martínez-Martínez E, Varona S, Jurado-López R, Bausa-Miranda B, Antequera A, Luaces M, Martínez-González J, Rodríguez C, Cachofeiro V. The lysyl oxidase inhibitor β-aminopropionitrile reduces body weight gain and improves the metabolic profile in diet-induced obesity in rats. Dis Model Mech 2015; 8:543-51. [PMID: 26035864 PMCID: PMC4457038 DOI: 10.1242/dmm.020107] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 03/28/2015] [Indexed: 12/31/2022] Open
Abstract
Extracellular matrix (ECM) remodelling of the adipose tissue plays a pivotal role in the pathophysiology of obesity. The lysyl oxidase (LOX) family of amine oxidases, including LOX and LOX-like (LOXL) isoenzymes, controls ECM maturation, and upregulation of LOX activity is essential in fibrosis; however, its involvement in adipose tissue dysfunction in obesity is unclear. In this study, we observed that LOX is the main isoenzyme expressed in human adipose tissue and that its expression is strongly upregulated in samples from obese individuals that had been referred to bariatric surgery. LOX expression was also induced in the adipose tissue from male Wistar rats fed a high-fat diet (HFD). Interestingly, treatment with β-aminopropionitrile (BAPN), a specific and irreversible inhibitor of LOX activity, attenuated the increase in body weight and fat mass that was observed in obese animals and shifted adipocyte size toward smaller adipocytes. BAPN also ameliorated the increase in collagen content that was observed in adipose tissue from obese animals and improved several metabolic parameters – it ameliorated glucose and insulin levels, decreased homeostasis model assessment (HOMA) index and reduced plasma triglyceride levels. Furthermore, in white adipose tissue from obese animals, BAPN prevented the downregulation of adiponectin and glucose transporter 4 (GLUT4), as well as the increase in suppressor of cytokine signaling 3 (SOCS3) and dipeptidyl peptidase 4 (DPP4) levels, triggered by the HFD. Likewise, in the TNFα-induced insulin-resistant 3T3-L1 adipocyte model, BAPN prevented the downregulation of adiponectin and GLUT4 and the increase in SOCS3 levels, and consequently normalised insulin-stimulated glucose uptake. Therefore, our data provide evidence that LOX plays a pathologically relevant role in the metabolic dysfunction induced by obesity and emphasise the interest of novel pharmacological interventions that target adipose tissue fibrosis and LOX activity for the clinical management of this disease. Highlighted Article: Lysyl oxidase (LOX) could play a role in the metabolic dysfunction induced by obesity, and consequently the inhibition of LOX activity could be a valuable strategy to ameliorate obesity-related metabolic disturbances.
Collapse
Affiliation(s)
- María Miana
- Departamento de Fisiología, Facultad de Medicina, Universidad Complutense, Madrid 28040, Spain Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid 28007, Spain
| | - María Galán
- Centro de Investigación Cardiovascular (CSIC-ICCC), IIB-Sant Pau, Barcelona 08025, Spain
| | - Ernesto Martínez-Martínez
- Departamento de Fisiología, Facultad de Medicina, Universidad Complutense, Madrid 28040, Spain Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid 28007, Spain Cardiovascular Translational Research, NavarraBiomed (Fundación Miguel Servet), Pamplona 31008, Spain
| | - Saray Varona
- Centro de Investigación Cardiovascular (CSIC-ICCC), IIB-Sant Pau, Barcelona 08025, Spain
| | - Raquel Jurado-López
- Departamento de Fisiología, Facultad de Medicina, Universidad Complutense, Madrid 28040, Spain Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid 28007, Spain
| | - Belén Bausa-Miranda
- Departamento de Fisiología, Facultad de Medicina, Universidad Complutense, Madrid 28040, Spain Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid 28007, Spain
| | - Alfonso Antequera
- Upper Gastroenterology & Bariatric Surgery Department, Fuenlabrada University Hospital, Madrid 28942, Spain
| | - María Luaces
- Cardiology Department, Cardiovascular Institute, Hospital Clínico San Carlos, Madrid 28040, Spain
| | - José Martínez-González
- Centro de Investigación Cardiovascular (CSIC-ICCC), IIB-Sant Pau, Barcelona 08025, Spain
| | - Cristina Rodríguez
- Centro de Investigación Cardiovascular (CSIC-ICCC), IIB-Sant Pau, Barcelona 08025, Spain
| | - Victoria Cachofeiro
- Departamento de Fisiología, Facultad de Medicina, Universidad Complutense, Madrid 28040, Spain Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid 28007, Spain
| |
Collapse
|
38
|
McNerny EMB, Gong B, Morris MD, Kohn DH. Bone fracture toughness and strength correlate with collagen cross-link maturity in a dose-controlled lathyrism mouse model. J Bone Miner Res 2015; 30:455-64. [PMID: 25213475 PMCID: PMC4333018 DOI: 10.1002/jbmr.2356] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 08/28/2014] [Accepted: 09/05/2014] [Indexed: 01/05/2023]
Abstract
Collagen cross-linking is altered in many diseases of bone, and enzymatic collagen cross-links are important to bone quality, as evidenced by losses of strength after lysyl oxidase inhibition (lathyrism). We hypothesized that cross-links also contribute directly to bone fracture toughness. A mouse model of lathyrism using subcutaneous injection of up to 500 mg/kg β-aminopropionitrile (BAPN) was developed and characterized (60 animals across 4 dosage groups). Three weeks of 150 or 350 mg/kg BAPN treatment in young, growing mice significantly reduced cortical bone fracture toughness, strength, and pyridinoline cross-link content. Ratios reflecting relative cross-link maturity were positive regressors of fracture toughness (HP/[DHLNL + HLNL] r(2) = 0.208, p < 0.05; [HP + LP]/[DHNL + HLNL] r(2) = 0.196, p < 0.1), whereas quantities of mature pyridinoline cross-links were significant positive regressors of tissue strength (lysyl pyridinoline r(2) = 0.159, p = 0.014; hydroxylysyl pyridinoline r(2) = 0.112, p < 0.05). Immature and pyrrole cross-links, which were not significantly reduced by BAPN, did not correlate with mechanical properties. The effect of BAPN treatment on mechanical properties was dose specific, with the greatest impact found at the intermediate (350 mg/kg) dose. Calcein labeling was used to define locations of new bone formation, allowing for the identification of regions of normally cross-linked (preexisting) and BAPN-treated (newly formed, cross-link-deficient) bone. Raman spectroscopy revealed spatial differences attributable to relative tissue age and effects of cross-link inhibition. Newly deposited tissues had lower mineral/matrix, carbonate/phosphate, and Amide I cross-link (matrix maturity) ratios compared with preexisting tissues. BAPN treatment did not affect mineral measures but significantly increased the cross-link (matrix maturity) ratio compared with newly formed control tissue. Our study reveals that spatially localized effects of short-term BAPN cross-link inhibition can alter the whole-bone collagen cross-link profile to a measureable degree, and this cross-link profile correlates with bone fracture toughness and strength. Thus, cross-link profile perturbations associated with bone disease may provide insight into bone mechanical quality and fracture risk.
Collapse
Affiliation(s)
- Erin M. B. McNerny
- Department of Biomedical Engineering, College of Engineering and Medical School, University of Michigan, MI USA
| | - Bo Gong
- Department of Chemistry, College of Literature, Science and the Arts, University of Michigan, MI USA
| | - Michael D. Morris
- Department of Chemistry, College of Literature, Science and the Arts, University of Michigan, MI USA
| | - David H. Kohn
- Department of Biomedical Engineering, College of Engineering and Medical School, University of Michigan, MI USA
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, MI USA
| |
Collapse
|
39
|
Abstract
Diabetes increases risk of fracture, although type 2 diabetes is characterized by normal or high bone mineral density (BMD) compared with the patients without diabetes. The fracture risk of type 1 diabetes as well as type 2 diabetes increases beyond an explained by a decrease of BMD. Thus, diabetes may reduce bone strength without change in BMD. Whole bone strength is determined by bone density, structure, and quality, which encompass the micro-structural and tissue material properties. Recent literature showed that diabetes reduces bone material properties rather than BMD. Collagen intermolecular cross-linking plays an important role in the expression of bone strength. Collagen cross-links can be divided into beneficial enzymatic immature divalent and mature trivalent cross-links and disadvantageous nonenzymatic cross-links (Advanced glycation end products: AGEs) induced by glycation and oxidation. The formation pathway and biological function are quite different. Not only hyperglycemia, but also oxidative stress induces the reduction in enzymatic cross-links and the formation of AGEs. In this review, we describe the mechanism of low bone quality in diabetes and the usefulness of the measurement of plasma or urinary level of AGEs for estimation of fracture risk.
Collapse
Affiliation(s)
- Mitsuru Saito
- Department of Orthopaedic Surgery, Jikei University School of Medicine, 3-25-8, Nishi-Shinbashi, Minato-ku, Tokyo, 105-8461, Japan,
| | | | | | | |
Collapse
|
40
|
Distinct characteristics of mandibular bone collagen relative to long bone collagen: relevance to clinical dentistry. BIOMED RESEARCH INTERNATIONAL 2014; 2014:769414. [PMID: 24818151 PMCID: PMC4004038 DOI: 10.1155/2014/769414] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 03/19/2014] [Indexed: 01/17/2023]
Abstract
Bone undergoes constant remodeling throughout life. The cellular and biochemical mechanisms of bone remodeling vary in a region-specific manner. There are a number of notable differences between the mandible and long bones, including developmental origin, osteogenic potential of mesenchymal stem cells, and the rate of bone turnover. Collagen, the most abundant matrix protein in bone, is responsible for determining the relative strength of particular bones. Posttranslational modifications of collagen, such as intermolecular crosslinking and lysine hydroxylation, are the most essential determinants of bone strength, although the amount of collagen is also important. In comparison to long bones, the mandible has greater collagen content, a lower amount of mature crosslinks, and a lower extent of lysine hydroxylation. The great abundance of immature crosslinks in mandibular collagen suggests that there is a lower rate of cross-link maturation. This means that mandibular collagen is relatively immature and thus more readily undergoes degradation and turnover. The greater rate of remodeling in mandibular collagen likely renders more flexibility to the bone and leaves it more suited to constant exercise. As reviewed here, it is important in clinical dentistry to understand the distinctive features of the bones of the jaw.
Collapse
|
41
|
Nistala H, Mäkitie O, Jüppner H. Caffey disease: new perspectives on old questions. Bone 2014; 60:246-51. [PMID: 24389367 PMCID: PMC3987944 DOI: 10.1016/j.bone.2013.12.030] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Revised: 12/08/2013] [Accepted: 12/24/2013] [Indexed: 10/25/2022]
Abstract
The autosomal dominant form of Caffey disease is a largely self-limiting infantile bone disorder characterized by acute inflammation of soft tissues and localized thickening of the underlying bone cortex. It is caused by a recurrent arginine-to-cysteine substitution (R836C) in the α1(I) chain of type I collagen. However, the functional link between this mutation and the underlying pathogenetic mechanisms still remains elusive. Importantly, it remains to be established as to how a point-mutation in type I collagen leads to a cascade of inflammatory events and spatio-temporally limited hyperostotic bone lesions, and how structural and inflammatory components contribute to the different organ-specific manifestations in Caffey disease. In this review we attempt to shed light on these questions based on the current understanding of other mutations in type I collagen, their role in perturbing collagen biogenesis, and consequent effects on cell-cell and cell-matrix interactions.
Collapse
Affiliation(s)
- Harikiran Nistala
- Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA, USA
| | - Outi Mäkitie
- Division of Pediatric Endocrinology and Metabolic Bone Diseases, Helsinki University Central Hospital and University of Helsinki, Helsinki, Finland; Folkhälsan Institute of Genetics, Helsinki, Finland
| | - Harald Jüppner
- Pediatric Nephrology Unit and Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
42
|
Yamada S, Nagaoka H, Terajima M, Tsuda N, Hayashi Y, Yamauchi M. Effects of fish collagen peptides on collagen post-translational modifications and mineralization in an osteoblastic cell culture system. Dent Mater J 2014; 32:88-95. [PMID: 23370875 DOI: 10.4012/dmj.2012-220] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Collagen is one of the most widely used biomaterials for tissue engineering and regenerative medicine. Fish collagen peptides (FCP) have been used as a dietary supplement, but their effects on the cellular function are still poorly understood. The objective of this study was to investigate the effects of FCP on collagen synthesis, quality and mineralization using an osteoblastic MC3T3-E1 cell culture system. Cells treated with FCP significantly upregulated the gene expression of several collagen modifying enzymes and more collagen was deposited in the cultures. Collagen in the treated group showed a greater extent of lysine hydroxylation, higher levels of hydroxylysine-aldehyde derived cross-links and accelerated cross-link maturation compared with the untreated group. Furthermore, the treated group showed accelerated matrix mineralization. These results indicate that FCP exerts a positive effect on osteoblastic cells in terms of collagen synthesis, quality and mineralization, thereby suggesting the potential utility of FCP for bone tissue engineering.
Collapse
Affiliation(s)
- Shizuka Yamada
- NC Oral Health Institute, School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | | | | | | | | |
Collapse
|
43
|
Boskey AL, Lukashova L, Spevak L, Ma Y, Khan SR. The kidney sodium-phosphate co-transporter alters bone quality in an age and gender specific manner. Bone 2013; 53:546-53. [PMID: 23333524 PMCID: PMC3593750 DOI: 10.1016/j.bone.2013.01.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Revised: 01/03/2013] [Accepted: 01/08/2013] [Indexed: 01/27/2023]
Abstract
Mutations in the kidney NaPiIIa co-transporter are clinically associated with hypophosphatemia, hyperphosphaturia (phosphate wasting), hypercalcemia, nephrolithiasis and bone demineralization. The mouse lacking this co-transporter system was reported to recover its skeletal defects with age, but the "quality" of the bones was not considered. To assess changes in bone quality we examined both male and female NaPiIIa knockout (KO) mice at 1 and 7months of age using micro-computed tomography (micro-CT) and Fourier transform infrared imaging (FTIRI). KO cancellous bones at both ages had greater bone volume fraction, trabecular thickness and lesser structure model index based on micro-CT values relative to age- and sex-matched wildtype animals. There was a sexual-dimorphism in the micro-CT parameters, with differences at 7months seen principally in males. Cortical bone at 1month showed an increase in bone volume fraction, but this was not seen at 7months. Cortical thickness which was elevated in the male and female KO at 1month was lower in the male KO at 7months. FTIRI showed a reduced mineral and acid phosphate content in the male and female KO's bones at 1month with no change in acid phosphate content at 7months. Collagen maturity was reduced in KO cancellous bone at 1month. The observed sexual dimorphism in the micro-CT data may be related to altered phosphate homeostasis, differences in animal growth rates and other factors. These data indicate that the bone quality of the KO mice at both ages differs from the normal and suggests that these bone quality differences may contribute to skeletal phenotype in humans with mutations in this co-transporter.
Collapse
Affiliation(s)
- Adele L Boskey
- Mineralized Tissue Research Laboratory, Hospital for Special Surgery, New York, NY, USA.
| | | | | | | | | |
Collapse
|
44
|
Faillace ME, Phipps RJ, Miller LM. Fourier transform infrared imaging as a tool to chemically and spatially characterize matrix-mineral deposition in osteoblasts. Calcif Tissue Int 2013; 92:50-8. [PMID: 23143076 DOI: 10.1007/s00223-012-9667-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Accepted: 10/17/2012] [Indexed: 10/27/2022]
Abstract
Mineralizing osteoblasts are regularly used to study osteogenesis and model in vivo bone formation. Thus, it is important to verify that the mineral and matrix being formed in situ are comparable to those found in vivo. However, it has been shown that histochemical techniques alone are not sufficient for identifying calcium phosphate-containing mineral. The goal of the present study was to demonstrate the use of Fourier transform infrared imaging (FTIRI) as a tool for characterizing the spatial distribution and colocalization of the collagen matrix and the mineral phase during the mineralization process of osteoblasts in situ. MC3T3-E1 mouse osteoblasts were mineralized in culture for 28 days and FTIRI was used to evaluate the collagen content, collagen cross-linking, mineralization level and speciation, and mineral crystallinity in a spatially resolved fashion as a function of time. To test whether FTIRI could detect subtle changes in the mineralization process, cells were treated with risedronate (RIS). Results showed that collagen deposition and mineralization progressed over time and that the apatite mineral was associated with a collagenous matrix rather than ectopic mineral. The process was temporarily slowed by RIS, where the inhibition of osteoblast function caused slowed collagen production and cross-linking, leading to decreased mineralization. This study demonstrates that FTIRI is a complementary tool to histochemistry for spatially correlating the collagen matrix distribution and the nature of the resultant mineral during the process of osteoblast mineralization. It can further be used to detect small perturbations in the osteoid and mineral deposition process.
Collapse
Affiliation(s)
- Meghan E Faillace
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11790, USA
| | | | | |
Collapse
|
45
|
Abstract
Diabetes is associated with increased risk of fracture, although type 2 diabetes is characterized by normal bone mineral density (BMD). The fracture risk of type 1 diabetes increases beyond an explained by a decrease of BMD. Thus, diabetes may be associated with a reduction of bone strength that is not reflected in the measurement of BMD. Based on the present definition, both bone density and quality, which encompass the structural and material properties of bone, are important factors in the determination of bone strength. Diabetes reduces bone quality rather than BMD. Collagen cross-linking plays an important role in bone strength. Collagen cross-links can be divided into lysyl hydroxylase and lysyl oxidase-mediated enzymatic immature divalent cross-links, mature trivalent cross-links, and glycation- or oxidation-induced non-enzymatic cross-links (Advanced Glycation End-products: AGEs) such as pentosidine. These types of cross-links differ in the mechanism of formation and in function. Not only hyperglycemia, but also oxidative stress induces the reduction in enzymatic beneficial cross-links and the accumulation of disadvantageous AGEs in bone. In this review, we describe the mechanism of low bone quality in diabetes.
Collapse
Affiliation(s)
- Mitsuru Saito
- Department of Orthopaedic Surgery, Jikei University School of Medicine, Tokyo, Japan
- *Correspondence: Mitsuru Saito, Department of Orthopaedic Surgery, Jikei University School of Medicine, 3-25-8, Nishi-Shinbashi, Minato-ku, Tokyo 105-8461, Japan e-mail:
| | - Keishi Marumo
- Department of Orthopaedic Surgery, Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
46
|
Tjäderhane L, Vered M, Pääkkönen V, Peteri A, Mäki JM, Myllyharju J, Dayan D, Salo T. The expression and role of Lysyl oxidase (LOX) in dentinogenesis. Int Endod J 2012. [PMID: 23190333 DOI: 10.1111/iej.12031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AIM To establish whether eliminating Lysyl oxidase (LOX) gene would affect dentine formation. METHODOLOGY Newborn wild-type (wt) and homo- and heterozygous LOX knock-out (Lox(-/-) and Lox(+/-) , respectively) mice were used to study developing tooth morphology and dentine formation. Collagen aggregation in the developing dentine was examined histochemically with picrosirius red (PSR) staining followed by polarized microscopy. Because Lox(-/-) die at birth, adult wt and Lox(+/-) mouse tooth morphologies were examined with FESEM. Human odontoblasts and pulp tissue were used to study the expression of LOX and its isoenzymes with Affymetrix cDNA microarray. RESULTS No differences between Lox(-/-) , Lox(+/-) and wt mice developing tooth morphology were seen by light microscopy. Histochemically, however, teeth in wt mice demonstrated yellow-orange and orange-red polarization colours with PSR staining, indicating thick and more densely packed collagen fibres, whilst in Lox(-/-) and Lox(+/-) mice, most of the polarization colours were green to green-yellow, indicating thinner, less aggregated collagen fibres. Fully developed teeth did not show any differences between Lox(+/-) and wt mice with FESEM. Human odontoblasts expressed LOX and three of four of its isoenzymes. CONCLUSIONS The data indicate that LOX is not essential in dentinogenesis, even though LOX deletion may affect dentine matrix collagen thickness and packing. The absence of functional LOX may be compensated by LOX isoenzymes.
Collapse
Affiliation(s)
- L Tjäderhane
- Institute of Dentistry, University of Oulu, Oulu, Finland; Oulu University Hospital, Oulu, Finland. leo.Tja¨
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Kagawa R, Kishino M, Sato S, Ishida K, Ogawa Y, Ikebe K, Oya K, Ishimoto T, Nakano T, Maeda Y, Komori T, Toyosawa S. Chronological histological changes during bone regeneration on a non-crosslinked atelocollagen matrix. J Bone Miner Metab 2012; 30:638-50. [PMID: 22864413 DOI: 10.1007/s00774-012-0376-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2010] [Accepted: 06/26/2012] [Indexed: 11/26/2022]
Abstract
Cleavage of the antigenic telopeptide region from type I collagen yields atelocollagen, and this is widely used as a scaffold for bone regeneration combined with cells, growth factors, etc. However, neither the biological effect of atelocollagen alone or its contribution to bone regeneration has been well studied. We evaluated the chronological histological changes during bone regeneration following implantation of non-crosslinked atelocollagen (Koken Co., Ltd.) in rat calvarial defects. One week after implantation, osteogenic cells positive for runt-related transcription factor 2 (Runx2) and osteoclasts positive for tartrate-resistant acid phosphatase (TRAP) were present in the atelocollagen implant in the absence of bone formation. The number of Runx2-positive osteogenic cells and Osterix-positive osteoblasts increased 2 weeks after implantation, and bone matrix proteins (osteopontin, OPN; osteocalcin, OC; dentin matrix protein 1, DMP1) were distributed in newly formed bone in a way comparable to normal bone. Some resorption cavities containing osteoclasts were also present. By 3 weeks after implantation, most of the implanted atelocollagen was replaced by new bone containing many resorption cavities, and OPN, OC, and DMP1 were deposited in the residual collagenous matrix. After 4 weeks, nearly all of the atelocollagen implant was replaced with new bone including hematopoietic marrow. Immunohistochemistry for the telopeptide region of type I collagen (TeloCOL1) during these processes demonstrated that the TeloCOL1-negative atelocollagen implant was replaced by TeloCOL1-positive collagenous matrix and new bone, indicating that new bone was mostly composed of endogenous type I collagen. These findings suggest that the atelocollagen itself can support bone regeneration by promoting osteoblast differentiation and type I collagen production.
Collapse
Affiliation(s)
- Ryosuke Kagawa
- Department of Oral Pathology, Osaka University Graduate School of Dentistry, Yamadaoka, Suita, Osaka, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Kanzaki M, Yamato M, Takagi R, Kikkawa T, Isaka T, Okano T, Onuki T. Controlled collagen crosslinking process in tissue-engineered fibroblast sheets for preventing scar contracture on the surface of lungs. J Tissue Eng Regen Med 2012; 7:383-91. [DOI: 10.1002/term.533] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Revised: 09/19/2011] [Accepted: 09/28/2011] [Indexed: 01/09/2023]
Affiliation(s)
| | - Masayuki Yamato
- Institute of Advanced Biomedical Engineering and Science; Tokyo Women's Medical University; Japan
| | - Ryo Takagi
- Institute of Advanced Biomedical Engineering and Science; Tokyo Women's Medical University; Japan
| | - Takuma Kikkawa
- Department of Surgery I; Tokyo Women's Medical University School of Medicine; Japan
| | - Tamami Isaka
- Department of Surgery I; Tokyo Women's Medical University School of Medicine; Japan
| | - Teruo Okano
- Institute of Advanced Biomedical Engineering and Science; Tokyo Women's Medical University; Japan
| | - Takamasa Onuki
- Department of Surgery I; Tokyo Women's Medical University School of Medicine; Japan
| |
Collapse
|
49
|
Paschalis E, Tatakis D, Robins S, Fratzl P, Manjubala I, Zoehrer R, Gamsjaeger S, Buchinger B, Roschger A, Phipps R, Boskey A, Dall'Ara E, Varga P, Zysset P, Klaushofer K, Roschger P. Lathyrism-induced alterations in collagen cross-links influence the mechanical properties of bone material without affecting the mineral. Bone 2011; 49:1232-41. [PMID: 21920485 PMCID: PMC3229977 DOI: 10.1016/j.bone.2011.08.027] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Revised: 08/24/2011] [Accepted: 08/26/2011] [Indexed: 12/17/2022]
Abstract
In the present study a rat animal model of lathyrism was employed to decipher whether anatomically confined alterations in collagen cross-links are sufficient to influence the mechanical properties of whole bone. Animal experiments were performed under an ethics committee approved protocol. Sixty-four female (47 day old) rats of equivalent weights were divided into four groups (16 per group): Controls were fed a semi-synthetic diet containing 0.6% calcium and 0.6% phosphorus for 2 or 4 weeks and β-APN treated animals were fed additionally with β-aminopropionitrile (0.1% dry weight). At the end of this period the rats in the four groups were sacrificed, and L2-L6 vertebra were collected. Collagen cross-links were determined by both biochemical and spectroscopic (Fourier transform infrared imaging (FTIRI)) analyses. Mineral content and distribution (BMDD) were determined by quantitative backscattered electron imaging (qBEI), and mineral maturity/crystallinity by FTIRI techniques. Micro-CT was used to describe the architectural properties. Mechanical performance of whole bone as well as of bone matrix material was tested by vertebral compression tests and by nano-indentation, respectively. The data of the present study indicate that β-APN treatment changed whole vertebra properties compared to non-treated rats, including collagen cross-links pattern, trabecular bone volume to tissue ratio and trabecular thickness, which were all decreased (p<0.05). Further, compression tests revealed a significant negative impact of β-APN treatment on maximal force to failure and energy to failure, while stiffness was not influenced. Bone mineral density distribution (BMDD) was not altered either. At the material level, β-APN treated rats exhibited increased Pyd/Divalent cross-link ratios in areas confined to a newly formed bone. Moreover, nano-indentation experiments showed that the E-modulus and hardness were reduced only in newly formed bone areas under the influence of β-APN, despite a similar mineral content. In conclusion the results emphasize the pivotal role of collagen cross-links in the determination of bone quality and mechanical integrity. However, in this rat animal model of lathyrism, the coupled alterations of tissue structural properties make it difficult to weigh the contribution of the anatomically confined material changes to the overall mechanical performance of whole bone. Interestingly, the collagen cross-link ratio in bone forming areas had the same profile as seen in actively bone forming trabecular surfaces in human iliac crest biopsies of osteoporotic patients.
Collapse
Affiliation(s)
- E.P. Paschalis
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of WGKK and AUVA Trauma Centre Meidling, 1st Medical Department, Hanusch Hospital, Heinrich Collin Str. 30, A-1140 Vienna, Austria
- Corresponding author at: Ludwig Boltzmann Institute of Osteology, Hanusch Krankenhaus, Heinrich Collin Str. 30, A-1140 Vienna, Austria.
| | - D.N. Tatakis
- Division of Periodontology, The Ohio State University, Columbus, OH, USA
- Visiting Professor, King Saud University, Riyadh, Saudi Arabia
| | - S. Robins
- Matrix Biochemistry, Rowett Institute of Nutrition and Health, University of Aberdeen, Aberdeen, Scotland, UK
| | - P. Fratzl
- Max Planck Institute of Colloids and Interfaces, Department of Biomaterials, Research Campus Golm, Potsdam, Germany
| | - I. Manjubala
- Max Planck Institute of Colloids and Interfaces, Department of Biomaterials, Research Campus Golm, Potsdam, Germany
| | - R. Zoehrer
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of WGKK and AUVA Trauma Centre Meidling, 1st Medical Department, Hanusch Hospital, Heinrich Collin Str. 30, A-1140 Vienna, Austria
| | - S. Gamsjaeger
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of WGKK and AUVA Trauma Centre Meidling, 1st Medical Department, Hanusch Hospital, Heinrich Collin Str. 30, A-1140 Vienna, Austria
| | - B. Buchinger
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of WGKK and AUVA Trauma Centre Meidling, 1st Medical Department, Hanusch Hospital, Heinrich Collin Str. 30, A-1140 Vienna, Austria
| | - A. Roschger
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of WGKK and AUVA Trauma Centre Meidling, 1st Medical Department, Hanusch Hospital, Heinrich Collin Str. 30, A-1140 Vienna, Austria
| | - R. Phipps
- Dept. of Pharmacology, Husson University, ME, USA
| | - A.L. Boskey
- Hospital for Special Surgery, New York, NY, USA
| | - E. Dall'Ara
- Institut für Leichtbau und Struktur-Biomechanik, TU Wien, Vienna, Austria
| | - P. Varga
- Institut für Leichtbau und Struktur-Biomechanik, TU Wien, Vienna, Austria
| | - P. Zysset
- Institut für Leichtbau und Struktur-Biomechanik, TU Wien, Vienna, Austria
| | - K. Klaushofer
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of WGKK and AUVA Trauma Centre Meidling, 1st Medical Department, Hanusch Hospital, Heinrich Collin Str. 30, A-1140 Vienna, Austria
| | - P. Roschger
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of WGKK and AUVA Trauma Centre Meidling, 1st Medical Department, Hanusch Hospital, Heinrich Collin Str. 30, A-1140 Vienna, Austria
| |
Collapse
|
50
|
Thaler R, Agsten M, Spitzer S, Paschalis EP, Karlic H, Klaushofer K, Varga F. Homocysteine suppresses the expression of the collagen cross-linker lysyl oxidase involving IL-6, Fli1, and epigenetic DNA methylation. J Biol Chem 2010; 286:5578-88. [PMID: 21148317 DOI: 10.1074/jbc.m110.166181] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Elevated homocysteine (Hcys) serum levels represent a risk factor for several chronic pathologies, including cardiovascular disease, atherosclerosis, and chronic renal failure, and affect bone development, quality, and homeostasis. Hcys influences the formation of a stable bone matrix directly through the inhibition of the collagen cross-linking enzyme lysyl oxidase (Lox) and, as we have shown recently, by repressing its mRNA expression. The aim of this study was to investigate the mechanisms involved in this process. Through evaluation of gene arrays, quantitative RT-PCR, immunoblots, and ELISA, we identified a Hcys-dependent stimulation of interleukin 6 (IL-6) and genes involved in IL-6/Janus kinase 2 (JAK2)-dependent signal transduction pathways in pre-osteoblastic MC3T3-E1 cells. Moreover, up-regulation of genes essential for epigenetic DNA methylation (DNA (cytosine-5)-methyltransferases and helicase lymphoid-specific (Hells) was observed. Further investigations demonstrated that Hcys increased via IL-6/JAK2 the expression of Fli1 (Friend leukemia virus integration 1), a transcription factor, which we found essential for IL-6-dependent Dnmt1 stimulation. CpG methylation analysis of CpG-rich Lox proximal promoter revealed an increased CpG methylation status after treatment of the cells with Hcys indicating an epigenetic origin for Hcys-dependent Lox repression. Inhibition of the IL-6/JAK2 pathway or of CpG methylation reversed the repressive effect of Hcys on Lox expression. In conclusion, we demonstrate that Hcys stimulates IL-6 synthesis in osteoblasts, which is known to affect bone metabolism via osteoclasts. Furthermore, IL-6 stimulation results via JAK2, Fli1, and Dnmt1 in down-regulation of Lox expression by epigenetic CpG methylation revealing a new mechanism negatively affecting bone matrix formation.
Collapse
Affiliation(s)
- Roman Thaler
- 1st Medical Department, Hanusch Hospital, Ludwig Boltzmann Institute of Osteology, Hanusch Hospital, Wiener Gebietskrankenkasse and AUVA Trauma Center Meidling, 1140 Vienna, Austria
| | | | | | | | | | | | | |
Collapse
|