1
|
Valle M, Mitchell PL, Pilon G, Varin T, Hénault L, Rolin J, McLeod R, Gill T, Richard D, Vohl MC, Jacques H, Gagnon C, Bazinet L, Marette A. Salmon peptides limit obesity-associated metabolic disorders by modulating a gut-liver axis in vitamin D-deficient mice. Obesity (Silver Spring) 2021; 29:1635-1649. [PMID: 34449134 DOI: 10.1002/oby.23244] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/27/2021] [Accepted: 05/27/2021] [Indexed: 11/06/2022]
Abstract
OBJECTIVE This study investigated the effects of a low-dose salmon peptide fraction (SPF) and vitamin D3 (VitD3 ) in obese and VitD3 -deficient mice at risk of metabolic syndrome (MetS). METHODS Obese and VitD3 -deficient low-density lipoprotein receptor (LDLr)-/- /apolipoprotein B100 (ApoB)100/100 mice were treated with high-fat high-sucrose diets, with 25% of dietary proteins replaced by SPF or a nonfish protein mix (MP). The SPF and MP groups received a VitD3 -deficient diet or a supplementation of 15,000 IU of VitD3 per kilogram of diet. Glucose homeostasis, atherosclerosis, nonalcoholic fatty liver disease, and gut health were assessed. RESULTS VitD3 supplementation increased plasma 25-hydroxyvitamin D to optimal status whereas the VitD3 -deficient diet maintained moderate deficiency. SPF-treated groups spent more energy and accumulated less visceral fat in association with an improved adipokine profile. SPF lowered homeostatic model assessment of insulin resistance compared with MP, suggesting that SPF can improve insulin sensitivity. SPF alone blunted hepatic and colonic inflammation, whereas VitD3 supplementation attenuated ileal inflammation. These effects were associated with changes in gut microbiota such as increased Mogibacterium and Muribaculaceae. CONCLUSIONS SPF treatment improves MetS by modulating hepatic and gut inflammation along with gut microbiota, suggesting that SPF operates through a gut-liver axis. VitD3 supplementation has limited influence on MetS in this model.
Collapse
Affiliation(s)
- Marion Valle
- Faculty of Medicine, Québec Heart and Lung Institute, Laval University, Québec City, Québec, Canada
- Institute of Nutrition and Functional Foods, Laval University, Québec City, Québec, Canada
| | - Patricia L Mitchell
- Faculty of Medicine, Québec Heart and Lung Institute, Laval University, Québec City, Québec, Canada
- Institute of Nutrition and Functional Foods, Laval University, Québec City, Québec, Canada
| | - Geneviève Pilon
- Faculty of Medicine, Québec Heart and Lung Institute, Laval University, Québec City, Québec, Canada
- Institute of Nutrition and Functional Foods, Laval University, Québec City, Québec, Canada
| | - Thibault Varin
- Faculty of Medicine, Québec Heart and Lung Institute, Laval University, Québec City, Québec, Canada
- Institute of Nutrition and Functional Foods, Laval University, Québec City, Québec, Canada
| | - Loïc Hénault
- Institute of Nutrition and Functional Foods, Laval University, Québec City, Québec, Canada
- Department of Food Sciences, Laboratory of Food Processing and ElectroMembrane Processes, Laval University, Québec City, Québec, Canada
| | - Jonathan Rolin
- Process Engineering and Applied Science, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Roger McLeod
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Tom Gill
- Process Engineering and Applied Science, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Denis Richard
- Faculty of Medicine, Québec Heart and Lung Institute, Laval University, Québec City, Québec, Canada
| | - Marie-Claude Vohl
- Institute of Nutrition and Functional Foods, Laval University, Québec City, Québec, Canada
- School of Nutrition, Laval University, Québec, Québec, Canada
| | - Hélène Jacques
- Institute of Nutrition and Functional Foods, Laval University, Québec City, Québec, Canada
- School of Nutrition, Laval University, Québec, Québec, Canada
| | - Claudia Gagnon
- Faculty of Medicine, Québec Heart and Lung Institute, Laval University, Québec City, Québec, Canada
- Institute of Nutrition and Functional Foods, Laval University, Québec City, Québec, Canada
- Endocrinology and Nephrology Unit, CHU de Québec Research Centre, Québec City, Québec, Canada
| | - Laurent Bazinet
- Institute of Nutrition and Functional Foods, Laval University, Québec City, Québec, Canada
- Department of Food Sciences, Laboratory of Food Processing and ElectroMembrane Processes, Laval University, Québec City, Québec, Canada
| | - André Marette
- Faculty of Medicine, Québec Heart and Lung Institute, Laval University, Québec City, Québec, Canada
- Institute of Nutrition and Functional Foods, Laval University, Québec City, Québec, Canada
| |
Collapse
|
2
|
Ruggiero CE, Backus RC. Effects of Vitamin D 2 and 25-Hydroxyvitamin D 2 Supplementation on Plasma Vitamin D Epimeric Metabolites in Adult Cats. Front Vet Sci 2021; 8:654629. [PMID: 34164449 PMCID: PMC8215352 DOI: 10.3389/fvets.2021.654629] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 05/11/2021] [Indexed: 11/13/2022] Open
Abstract
Feline vitamin D status is based on dietary consumption but metabolism of this essential nutrient and the efficacy of supplementation forms are poorly described in cats. The aim of this study was to further elucidate the metabolites of vitamin D2 in cats and to compare the effectiveness of vitamin D2 and 25(OH)D2 for increasing feline vitamin D status. Eight adult male castrated domestic shorthair cats received vitamin D2 or 25(OH)D2 in a single crossover design. Vitamin D2 was dosed daily in a molar equivalent dosage to vitamin D3 ingested in the diet while 25(OH)D2 was provided at a daily dose of 20% molar equivalent intake of dietary vitamin D3 based on its expected higher potency. Plasma concentrations of 25-hydroxyvitamin D epimers were evaluated at baseline then every 2 weeks for a total of 10 weeks. Analysis of multiple vitamin D metabolite concentrations was completed at the end of each supplementation period, followed by a washout period preceding the second phase of the crossover trial. Results showed that supplementation with 25(OH)D2 more effectively and rapidly raised circulating 25(OH)D2 levels in cat plasma compared to vitamin D2. Formation of C-3 epimers of 25(OH)D3, 25(OH)D2, and 24,25R(OH)2D3, but not 24,25(OH)2D2, were observed in feline plasma. The abundant concentrations of epimeric forms of vitamin D metabolites found in circulation suggest that these metabolites should be considered during vitamin D analyses in cats. Further studies using 25(OH)D and vitamin D2 forms are needed to conclude safety and efficacy of these vitamers for supplementation in this species.
Collapse
Affiliation(s)
- Catherine E. Ruggiero
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, MO, United States
| | | |
Collapse
|
3
|
Valle M, Mitchell PL, Pilon G, St-Pierre P, Varin T, Richard D, Vohl MC, Jacques H, Delvin E, Levy E, Gagnon C, Bazinet L, Marette A. Cholecalciferol Supplementation Does Not Prevent the Development of Metabolic Syndrome or Enhance the Beneficial Effects of Omega-3 Fatty Acids in Obese Mice. J Nutr 2021; 151:1175-1189. [PMID: 33851198 PMCID: PMC8112766 DOI: 10.1093/jn/nxab002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 10/30/2020] [Accepted: 01/04/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Cholecalciferol (D3) may improve inflammation, and thus provide protection from cardiometabolic diseases (CMD), although controversy remains. Omega-3 fatty acids (ω-3FA) may also prevent the development of CMD, but the combined effects of ω-3FA and D3 are not fully understood. OBJECTIVES We determined the chronic independent and combined effects of D3 and ω-3FA on body weight, glucose homeostasis, and markers of inflammation in obese mice. METHODS We gave 8-week-old male C57BL/6J mice, which had been fed a high-fat, high-sucrose (HF) diet (65.5% kcal fat, 19.8% kcal carbohydrate, and 14% kcal protein) for 12 weeks, either a standard D3 dose (+SD3; 1400 IU D3/kg diet) or a high D3 dose (+HD3; 15,000 IU D3/kg diet). We fed 1 +SD3 group and 1 +HD3 group with 4.36% (w/w) fish oil (+ω-3FA; 44% eicosapentaenoic acid, 25% docosahexaenoic acid), and fed the other 2 groups with corn oil [+omega-6 fatty acids (ω-6FA)]. A fifth group was fed a low-fat (LF; 15.5% kcal) diet. LF and HF+ω-6+SD3 differences were tested by a Student's t-test and HF treatment differences were tested by a 2-way ANOVA. RESULTS D3 supplementation in the +HD3 groups did not significantly increase plasma total 25-hydroxyvitamin D and 25-hydroxyvitamin D3 [25(OH)D3] versus the +SD3 groups, but it increased 3-epi-25-hydroxyvitamin D3 levels by 3.4 ng/mL in the HF+ω-6+HD3 group and 4.0 ng/mL in the HF+ω-3+HD3 group, representing 30% and 70%, respectively, of the total 25(OH)D3 increase. Energy expenditure increased in those mice fed diets +ω-3FA, by 3.9% in the HF+ω-3+SD3 group and 7.4% in the HF+ω-3+HD3 group, but it did not translate into lower body weight. The glucose tolerance curves of the HF+ω-3+SD3 and HF+ω-3+HD3 groups were improved by 11% and 17%, respectively, as compared to the respective +ω-6FA groups. D3 supplementation, within the ω-3FA groups, altered the gut microbiota by increasing the abundance of S24-7 and Lachnospiraceae taxa compared to the standard dose, while within the ω-6FA groups, D3 supplementation did not modulate specific taxa. CONCLUSIONS Overall, D3 supplementation does not prevent CMD or enhance the beneficial effects of ω-3FA in vitamin D-sufficient obese mice.
Collapse
Affiliation(s)
- Marion Valle
- Québec Heart and Lung Institute Research Centre, Faculty of Medicine, Laval University, Québec City, QC, Canada,Institute of Nutrition and Functional Foods, Laval University, Québec City, QC, Canada
| | - Patricia L Mitchell
- Québec Heart and Lung Institute Research Centre, Faculty of Medicine, Laval University, Québec City, QC, Canada,Institute of Nutrition and Functional Foods, Laval University, Québec City, QC, Canada
| | - Geneviève Pilon
- Québec Heart and Lung Institute Research Centre, Faculty of Medicine, Laval University, Québec City, QC, Canada,Institute of Nutrition and Functional Foods, Laval University, Québec City, QC, Canada
| | - Philippe St-Pierre
- Québec Heart and Lung Institute Research Centre, Faculty of Medicine, Laval University, Québec City, QC, Canada,Institute of Nutrition and Functional Foods, Laval University, Québec City, QC, Canada
| | - Thibault Varin
- Québec Heart and Lung Institute Research Centre, Faculty of Medicine, Laval University, Québec City, QC, Canada,Institute of Nutrition and Functional Foods, Laval University, Québec City, QC, Canada
| | - Denis Richard
- Québec Heart and Lung Institute Research Centre, Faculty of Medicine, Laval University, Québec City, QC, Canada,Department of Medicine, Laval University, Québec City, QC, Canada
| | - Marie-Claude Vohl
- Institute of Nutrition and Functional Foods, Laval University, Québec City, QC, Canada,School of Nutrition, Laval University, Québec, QC, Canada
| | - Hélène Jacques
- Institute of Nutrition and Functional Foods, Laval University, Québec City, QC, Canada,School of Nutrition, Laval University, Québec, QC, Canada
| | - Edgar Delvin
- Department of Nutrition and Biochemistry, Sainte Justine Hospital Research Centre, University of Montreal, Montreal, QC, Canada
| | - Emile Levy
- Institute of Nutrition and Functional Foods, Laval University, Québec City, QC, Canada,Department of Nutrition and Biochemistry, Sainte Justine Hospital Research Centre, University of Montreal, Montreal, QC, Canada
| | - Claudia Gagnon
- Québec Heart and Lung Institute Research Centre, Faculty of Medicine, Laval University, Québec City, QC, Canada,Institute of Nutrition and Functional Foods, Laval University, Québec City, QC, Canada,Department of Medicine, Laval University, Québec City, QC, Canada,Endocrinology and Nephrology Unit, Centre hospitalier universitaire de Québec Research Centre, Québec City, QC, Canada
| | - Laurent Bazinet
- Institute of Nutrition and Functional Foods, Laval University, Québec City, QC, Canada,Department of Food Sciences, Laboratory of Food Processing and ElectroMembrane Processes, Laval University, Québec City, QC, Canada
| | | |
Collapse
|
4
|
Validation and Determination of 25(OH) Vitamin D and 3-Epi25(OH)D3 in Breastmilk and Maternal- and Infant Plasma during Breastfeeding. Nutrients 2020; 12:nu12082271. [PMID: 32751196 PMCID: PMC7469027 DOI: 10.3390/nu12082271] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 07/23/2020] [Accepted: 07/27/2020] [Indexed: 12/22/2022] Open
Abstract
Vitamin D deficiency in pregnant women and their offspring may result in unfavorable health outcomes for both mother and infant. A 25hydroxyvitamin D (25(OH)D) level of at least 75 nmol/L is recommended by the Endocrine Society. Validated, automated sample preparation and liquid chromatography-tandem mass spectrometry (LC-MS/MS) methods were used to determine the vitamin D metabolites status in mother-infant pairs. Detection of 3-Epi25(OH)D3 prevented overestimation of 25(OH)D3 and misclassification of vitamin D status. Sixty-three percent of maternal 25(OH)D plasma levels were less than the recommended level of 25(OH)D at 3 months. Additionally, breastmilk levels of 25(OH)D decreased from 60.1 nmol/L to 50.0 nmol/L between six weeks and three months (p < 0.01). Furthermore, there was a positive correlation between mother and infant plasma levels (p < 0.01, r = 0.56) at 3 months. Accordingly, 31% of the infants were categorized as vitamin D deficient (25(OH)D < 50 nmol/L) compared to 25% if 3-Epi25(OH)D3 was not distinguished from 25(OH)D3. This study highlights the importance of accurate quantification of 25(OH)D. Monitoring vitamin D metabolites in infant, maternal plasma, and breastmilk may be needed to ensure adequate levels in both mother and infant in the first 6 months of infant life.
Collapse
|
5
|
Mak IL, Lavery P, Agellon S, Rauch F, Murshed M, Weiler HA. Arachidonic acid exacerbates diet-induced obesity and reduces bone mineral content without impacting bone strength in growing male rats. J Nutr Biochem 2019; 73:108226. [PMID: 31520815 DOI: 10.1016/j.jnutbio.2019.108226] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 06/28/2019] [Accepted: 08/09/2019] [Indexed: 12/30/2022]
Abstract
Long-chain polyunsaturated fatty acids modulate bone mass and adipocyte metabolism. Arachidonic acid (AA, C20:4 n-6) is elevated in obesity and postulated to stimulate bone resorption. This study aimed to determine the effect of AA on bone mass, quality, and adiposity in diet-induced obesity during growth. Male Sprague-Dawley rats (n=42, 4-week) were randomized into groups fed a control diet (CTRL, AIN-93G), high-fat diet (HFD, 35% kcal fat) or HFD + AA (1% w/w diet) for 6 weeks. Body composition, bone mineral density and microarchitecture were measured using dual-energy X-ray absorptiometry and micro-computed tomography. Red blood cell fatty acid profile was measured with gas chromatography. Group differences were evaluated using repeated measures two-way analysis of variance with Tukey-Kramer post hoc testing. Total energy intake did not differ among diet groups. At week 6, HFD + AA had significantly greater body fat % (12%), body weight (6%) and serum leptin concentrations (125%) than CTRL, whereas visceral fat (mass and %, assessed with micro-computed tomography) was increased in both HFD and HFD + AA groups. HFD + AA showed reduced whole body bone mineral content and femur mid-diaphyseal cortical bone cross-sectional area than HFD and CTRL, without impairment in bone strength. Contrarily, HFD + AA had greater femur metaphyseal trabecular vBMD (35%) and bone volume fraction (5%) compared to controls. Inclusion of AA elevated leptin concentrations in male rats. The early manifestations of diet-induced obesity on bone mass were accelerated with AA. Studies of longer duration are needed to clarify the effect of AA on peak bone mass following growth cessation.
Collapse
Affiliation(s)
- Ivy L Mak
- School of Human Nutrition, McGill University, 21111 Lakeshore Road, Ste-Anne-de-Bellevue, QC, Canada H9X 3V9
| | - Paula Lavery
- School of Human Nutrition, McGill University, 21111 Lakeshore Road, Ste-Anne-de-Bellevue, QC, Canada H9X 3V9
| | - Sherry Agellon
- School of Human Nutrition, McGill University, 21111 Lakeshore Road, Ste-Anne-de-Bellevue, QC, Canada H9X 3V9
| | - Frank Rauch
- Shriners' Hospital for Children, 1003 Decarie Boulevard, Montreal, QC, Canada H4A 0A9
| | - Monzur Murshed
- Shriners' Hospital for Children, 1003 Decarie Boulevard, Montreal, QC, Canada H4A 0A9; Faculty of Dentistry, McGill University, 3640 rue University, Montreal, QC, Canada H3A 0C7
| | - Hope A Weiler
- School of Human Nutrition, McGill University, 21111 Lakeshore Road, Ste-Anne-de-Bellevue, QC, Canada H9X 3V9.
| |
Collapse
|
6
|
Luo Z, Liu D, Pang X, Yang W, He J, Zhang R, Zhu C, Chen Y, Li X, Zhang J, Shi J, Abliz Z. Whole-body spatially-resolved metabolomics method for profiling the metabolic differences of epimer drug candidates using ambient mass spectrometry imaging. Talanta 2019; 202:198-206. [PMID: 31171170 DOI: 10.1016/j.talanta.2019.04.068] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 04/04/2019] [Accepted: 04/27/2019] [Indexed: 12/29/2022]
Abstract
Investigation of the in vivo drug action and metabolic differences of epimer drugs is challenging. Whole-body MSI analysis can visually present the stereoscopic distribution of molecules related to the interaction of drugs and organisms, and can provide more comprehensive organ-specific profiling information. Herein, we developed a whole-body spatially-resolved imaging metabolomics method based on an air flow-assisted ionisation desorption electrospray ionisation (AFADESI)-MSI system coupled with a high-resolution mass spectrometer and highly discriminating imaging software. The epimeric sedative-hypnotic drug candidates YZG-331 and YZG-330 were selected as examples, and rats administered normal or high oral doses were used. By performing multivariate statistical data-mining on the combined MSI data, organ-specific differential ions were screened. By comparing the variations in the relative contents of the drugs, their metabolites, and endogenous neurotransmitters throughout whole-body tissue sections of the rats, rich information that could potentially explain the more significant sedative-hypnotic effects of YZG-330 compared to YZG-331 was obtained. Such as the increased ratio of gamma-aminobutyric acid in the brain and stomach of the rats (0.25, 0.47, 0.68, 0.30, and 0.89 for the control and YZG-331-H, YZG-330-H, YZG-331-L, and YZG-330-L, respectively) were interesting. This study provided a convenient and visual method to investigate in vivo molecular metabolic differences and provide insight towards a better understanding of the pharmacodynamic mechanisms of these sedative-hypnotic drug-candidates.
Collapse
Affiliation(s)
- Zhigang Luo
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, PR China
| | - Dan Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, PR China
| | - Xuechao Pang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, PR China
| | - Wanqi Yang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, PR China
| | - Jiuming He
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, PR China
| | - Ruiping Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, PR China
| | - Chenggen Zhu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, PR China
| | - Yanhua Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, PR China
| | - Xin Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, PR China
| | - Jianjun Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, PR China
| | - Jiangong Shi
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, PR China
| | - Zeper Abliz
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, PR China; Center for Imaging and Systems Biology, School of Pharmacy, Minzu University of China, Beijing, 100081, PR China.
| |
Collapse
|
7
|
Minematsu A, Nishii Y, Sakata S. High-fat/high-sucrose diet results in higher bone mass in aged rats. Bone Rep 2018; 8:18-24. [PMID: 29322073 PMCID: PMC5755753 DOI: 10.1016/j.bonr.2018.01.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Revised: 12/01/2017] [Accepted: 01/02/2018] [Indexed: 01/14/2023] Open
Abstract
Intake of high-fat/high-sucrose (HFS) diet or high fat diet influences bone metabolism in young rodents, but its effects on bone properties of aged rodents still remain unclear. This study aimed to examine the effects of HFS diet intake on trabecular bone architecture (TBA) and cortical bone geometry (CBG) in aged rats. Fifteen male Wistar rats over 1 year were randomly divided into two groups. One group was fed a standard laboratory diet (SLD) and the other group was fed a HFS diet for six months. The femur/tibia, obtained from both groups at the end of experimental period, were scanned by micro-computed tomography for TBA/CBG analyses. Serum biochemical analyses were also conducted. Body weight was significantly higher in the HFS group than in the SLD group. In both femur and tibia, the HFS group showed higher trabecular/cortical bone mass in reference to bone mineral content, volume bone mineral density and TBA/CBG parameters compared with the SLD group. In addition, serum calcium, inorganic phosphorus, total protein, triacylglycerol, HDL and TRACP-5b levels were significantly higher in the HFS group than in the SLD group. There were good correlations between body weight and bone parameters in the femur and tibia. These results suggest that HFS diet intake results in higher bone mass in aged rats. Such effects of HFS diet intake might have been induced by increased body weight.
Collapse
Key Words
- ALP, alkaline phosphatase
- Aged rats
- BMC, bone mineral content
- BMD, bone mineral density
- BV, bone volume
- BV/TV, bone volume fraction
- CBG, cortical bone geometry
- CV, cortical bone volume
- CV/(CV + MV), cortical volume fraction
- Ca, calcium
- Conn.D, connectivity density
- Cortical bone geometry
- Ct.Ar, cortical bone sectional area
- Ct.Th, cortical bone thickness
- DXA, dual-energy X-ray absorptiometry
- Ec.Pm, endocortical perimeter
- HDL, high-density lipoprotein cholesterol
- HFD, high fat diet
- HFS, high-fat/high-sucrose
- High-fat sucrose diet
- IP, inorganic phosphorus
- LDL, low-density lipoprotein cholesterol
- MV, medullary volume
- Micro-computed tomography
- OC, osteocalcin
- Ps.Pm, periosteal perimeter
- SLD, standard laboratory diet
- TBA, trabecular bone architecture
- TBPf, trabecular bone pattern factor
- TC, total cholesterol
- TG, triacylglycerol
- TMD, tissue mineral density
- TP, total protein
- TRACP-5b, tartrate-resistant acid phosphatase-5b
- TV, tissue volume
- Tb.N, trabecular number
- Tb.Sp, trabecular separation
- Tb.Th, trabecular thickness
- Tb.W, trabecular width
- Trabecular bone architecture
- VOI, volume of interest
- micro-CT, x-ray micro-computed tomography
- vBMD, volume BMD
Collapse
Affiliation(s)
- Akira Minematsu
- Department of Physical Therapy, Faculty of Health Science, Kio University, 4-2-2 Umaminaka, Koryo-cho, Kitakatsuragi-gun, Nara 635-0832, Japan
| | - Yasue Nishii
- Department of Physical Therapy, Faculty of Health Science, Kio University, 4-2-2 Umaminaka, Koryo-cho, Kitakatsuragi-gun, Nara 635-0832, Japan
| | - Susumu Sakata
- Department of Physiology, Nara Medical University, 840 Shijou-cho, Kashihara, Nara 634-8521, Japan
| |
Collapse
|
8
|
Carballa D, Sigüeiro R, Rodríguez-Docampo Z, Zacconi F, Maestro MA, Mouriño A. Stereoselective Palladium-Catalyzed Approach to Vitamin D3
Derivatives in Protic Medium. Chemistry 2018; 24:3314-3320. [DOI: 10.1002/chem.201705656] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Indexed: 11/10/2022]
Affiliation(s)
- Diego Carballa
- Departamento de Química Orgánica; Laboratorio de Investigación Ignacio Ribas; Universidad de Santiago de Compostela; Avda. Ciencias s/n 15782 Santiago de Compostela Spain
| | - Rita Sigüeiro
- Departamento de Química Orgánica; Laboratorio de Investigación Ignacio Ribas; Universidad de Santiago de Compostela; Avda. Ciencias s/n 15782 Santiago de Compostela Spain
| | - Zaida Rodríguez-Docampo
- Departamento de Química Orgánica; Laboratorio de Investigación Ignacio Ribas; Universidad de Santiago de Compostela; Avda. Ciencias s/n 15782 Santiago de Compostela Spain
| | - Flavia Zacconi
- Departamento de Química Orgánica; Laboratorio de Investigación Ignacio Ribas; Universidad de Santiago de Compostela; Avda. Ciencias s/n 15782 Santiago de Compostela Spain
| | - Miguel A. Maestro
- Departamento de Química-CICA; Universidad de A Coruña; Campus da Zapateira s/n 15701 A Coruña Spain
| | - Antonio Mouriño
- Departamento de Química Orgánica; Laboratorio de Investigación Ignacio Ribas; Universidad de Santiago de Compostela; Avda. Ciencias s/n 15782 Santiago de Compostela Spain
| |
Collapse
|
9
|
Hazell TJ, Olver TD, Kowalchuk H, McDonald MW, Dey A, Grisé KN, Noble EG, Melling CWJ, Lavery P, Weiler HA. Aerobic Endurance Training Does Not Protect Bone Against Poorly Controlled Type 1 Diabetes in Young Adult Rats. Calcif Tissue Int 2017; 100:374-381. [PMID: 28110443 DOI: 10.1007/s00223-016-0227-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 12/20/2016] [Indexed: 02/06/2023]
Abstract
Streptozotocin (STZ)-induced type 1 diabetes mellitus (T1DM) decreases trabecular bone volume and bone strength in rodents. The current study investigated the potential protective effects of aerobic endurance training (AET) on bone in STZ-induced T1DM young adult rats. Sixty-four 8-week-old male Sprague-Dawley rats were randomly divided into 4 groups of 16: control non-T1DM sedentary (CS) and exercised (CX), T1DM sedentary (DS) and exercised (DX). Blood glucose was maintained at 9-15 mmol/L using subcutaneously implanted insulin pellets (Linplant, Linshin Canada, Inc.). AET was performed at ~75-85% VO2max for 1 h/day, 5 day/week for 10 weeks. Areal and volumetric bone mineral density (aBMD and vBMD; excised femur) were measured using dual-energy X-ray absorptiometry (DXA; QDR 4500A) and micro computed tomography (μCT; Aloka). Bone strength was tested using a 3-point bending test (Instron 5544 Load Frame). Two-way ANOVA was used to test for T1DM and exercise differences followed by Tukey's HSD tests for interaction effects; significance was set at P < 0.05. T1DM had lower body weight (18.0%), aBMD (8.6%), cortical vBMD (1.6%), trabecular vBMD (2.1%), maximum load at break (22.2%), and increased elastic modulus (11.3%) vs. control (P < 0.001). Exercise in T1DM further decreased body weight (4.7%) vs. sedentary (P = 0.043) and maximum extension during the bending test that demonstrated DX was increased (7.3%) vs. CX (P = 0.033). There were no other beneficial effects of exercise on bone. These results suggest that 10 weeks of AET in rats do not have protective effects on bone in the short term and that T1DM rats have compromised bone health.
Collapse
Affiliation(s)
- Tom J Hazell
- Department of Kinesiology and Physical Education, Faculty Science, Wilfrid Laurier University, Waterloo, ON, N2L 3C5, Canada.
| | - T Dylan Olver
- School of Kinesiology, Faculty of Health Sciences, Western University, London, ON, N6G 1AH, Canada
| | - Hana Kowalchuk
- School of Kinesiology, Faculty of Health Sciences, Western University, London, ON, N6G 1AH, Canada
| | - Matthew W McDonald
- School of Kinesiology, Faculty of Health Sciences, Western University, London, ON, N6G 1AH, Canada
| | - Adwitia Dey
- School of Kinesiology, Faculty of Health Sciences, Western University, London, ON, N6G 1AH, Canada
| | - Kenneth N Grisé
- School of Kinesiology, Faculty of Health Sciences, Western University, London, ON, N6G 1AH, Canada
| | - Earl G Noble
- School of Kinesiology, Faculty of Health Sciences, Western University, London, ON, N6G 1AH, Canada
| | - C W James Melling
- School of Kinesiology, Faculty of Health Sciences, Western University, London, ON, N6G 1AH, Canada
| | - Paula Lavery
- School of Dietetics and Human Nutrition, Faculty of Agricultural and Environmental Sciences, McGill University, Ste-Anne-de-Bellevue, QC, H9X 2E3, Canada
| | - Hope A Weiler
- School of Dietetics and Human Nutrition, Faculty of Agricultural and Environmental Sciences, McGill University, Ste-Anne-de-Bellevue, QC, H9X 2E3, Canada
| |
Collapse
|
10
|
Djekic-Ivankovic M, Lavery P, Agellon S, Weiler HA. The C-3α Epimer of 25-Hydroxycholecalciferol from Endogenous and Exogenous Sources Supports Normal Growth and Bone Mineral Density in Weanling Rats. J Nutr 2017; 147:141-151. [PMID: 27881592 DOI: 10.3945/jn.116.231753] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 06/09/2016] [Accepted: 10/31/2016] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND The C-3α epimer of 25-hydroxycholecalciferol [3-epi-25(OH)D3] is elevated in infants. OBJECTIVES We tested whether increasing cholecalciferol intake results in a dose-response in plasma 3-epi-25(OH)D3 We also examined bone and mineral metabolism in response to 3-epi-25(OH)D3 treatment. METHODS Sprague Dawley rats (4 wk old) were randomly assigned (n = 6/group of each sex) to AIN-93G diets with cholecalciferol at 1 (control), 2, or 4 IU/g diet for objective 1 and to diets with 3-epi-25(OH)D3 at 0.5 or 1 IU/g diet or 25-hydroxycholecalciferol [25(OH)D3] at 0.5 IU/g diet for objective 2 for 8 wk. Measurements at weeks 0, 4, and 8 included body weight and length, plasma vitamin D metabolites, bone biomarkers, and bone mineral density determined by using dual-energy X-ray absorptiometry. Lumbar vertebra 3 (L3) geometry and volumetric bone mineral density (vBMD) were measured using microcomputed tomography. Differences between groups were identified for males and females separately. RESULTS Weight and food intake were not different between groups. Elevated plasma 3-epi-25(OH)D3 was observed only in females in the 4 IU cholecalciferol/g diet group (mean ± SD: 24.7 ± 17.1 ng/mL), compared with the control group (5.3 ± 1.4 ng/mL; P = 0.001). By week 8, both male and female rats in the 3-epi-25(OH)D3 groups had >87% greater plasma 3-epi-25(OH)D3 concentrations relative to the 25(OH)D3 reference group (P < 0.0001). At week 8 in males only, parathyroid hormone was significantly lower (P = 0.019) in both 3-epi-25(OH)D3 groups than in the 25(OH)D3 group, and L3 total vBMD was higher (P = 0.004) in the 0.5 IU 3-epi-25(OH)D3 group than in the 25(OH)D3 group. CONCLUSIONS Endogenously generated 3-epi-25(OH)D3 is more prominent in female than in male rats. Exogenous 3-epi-25(OH)D3 was as effective as 25(OH)D3 in supporting bone mineral accretion in both sexes. It thus appears that 3-epi-25(OH)D3 has biological activity and should be further explored.
Collapse
Affiliation(s)
- Marija Djekic-Ivankovic
- School of Dietetics and Human Nutrition, McGill University, Ste-Anne-de-Bellevue, Quebec, Canada
| | - Paula Lavery
- School of Dietetics and Human Nutrition, McGill University, Ste-Anne-de-Bellevue, Quebec, Canada
| | - Sherry Agellon
- School of Dietetics and Human Nutrition, McGill University, Ste-Anne-de-Bellevue, Quebec, Canada
| | - Hope A Weiler
- School of Dietetics and Human Nutrition, McGill University, Ste-Anne-de-Bellevue, Quebec, Canada
| |
Collapse
|
11
|
Sprinkle MC, Hooper SE, Backus RC. Previously undescribed vitamin D C-3 epimer occurs in substantial amounts in the blood of cats. J Feline Med Surg 2017; 20:83-90. [PMID: 29172936 DOI: 10.1177/1098612x17693523] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Objectives The aim of this report is to describe the identification of a novel vitamin D metabolite, a C-3, alpha-epimer of 25-hydroxycholecalciferol (3-epi-25(OH)D3), in serum and plasma extracts of cat blood and compare its abundance in cat, dog and rat serum to 25-hydroxycholecalciferol (25(OH)D3), a conventional marker of vitamin D status. Methods Serum 25(OH)D3 and 3-epi-25(OH)D3 concentrations were measured in healthy cohorts of cats (n = 8), dogs (n = 8) and rats (n = 17) using validated reverse and normal-phase high-performance liquid chromatography methods. The methods were verified using liquid chromatography tandem mass spectrophotometry. Dietary intake and dietary concentrations of vitamin D were also measured for evaluation of species differences and effect of dietary change on vitamin D metabolite concentrations. Differences between cat serum and plasma metabolite concentrations were determined. Results Detectable concentrations of 3-epi-25(OH)D3 were observed in all cats and rats. No 3-epi-25(OH)D3 was detected in dogs, where our limit of detection was 5 ng/ml. There were significant differences ( P <0.05) in serum concentrations of 25(OH)D3 and 3-epi-25(OH)D3 among species, with cats having the greatest concentrations of both metabolites. Serum and plasma results were not significantly different. A diet change, which resulted in an increase in vitamin D intake among the cats, affected serum concentration with an increase ( P = 0.004) in 3-epi-25(OH)D3 but no significant change in 25(OH)D3. Conclusions and relevance Serum and plasma of cats contain 3-epi-25(OH)D3 in varied and extraordinary concentrations, much greater than in rats and certainly than that of dogs, a species for which the metabolite was not detected. Importantly, this finding indicates a C-3 epimerization pathway is quantitatively significant for vitamin D metabolism in domestic cats, making 3-epi-25(OH)D3 assays essential for the evaluation of vitamin D status in cats and positioning the cat as a novel model for study of this pathway.
Collapse
Affiliation(s)
- Megan C Sprinkle
- 1 Department of Veterinary Medicine and Surgery, University of Missouri, Columbia, MO, USA
| | - Sarah E Hooper
- 2 Department of Veterinary Pathobiology, University of Missouri, Columbia, MO, USA
| | - Robert C Backus
- 1 Department of Veterinary Medicine and Surgery, University of Missouri, Columbia, MO, USA
| |
Collapse
|
12
|
Chailurkit LO, Aekplakorn W, Srijaruskul K, Ongphiphadhanakul B. Discrepant association of serum C-3 epimer of 25-hydroxyvitamin D versus non-epimeric 25-hydroxyvitamin D with serum lipid levels. Lipids Health Dis 2016; 15:157. [PMID: 27633775 PMCID: PMC5025584 DOI: 10.1186/s12944-016-0333-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 09/13/2016] [Indexed: 11/10/2022] Open
Abstract
Background Low vitamin D status has been associated with a number of chronic diseases. For dyslipidemia, vitamin D deficiency has been associated with higher low density lipoprotein-cholesterol (LDL-C) in a number of studies, but with inconsistent results in clinical trials. The purpose of the present study is to explore the relative importance of 3-epi-25-hydroxyvitamin D (25(OH)D) as compared with the non-epimeric form in relation to serum lipid. Method This study used data from 1068 randomly selected volunteers in the Thai 4th National Health Examination Survey (NHES IV). Serum 25(OH)D2, 25(OH)D3, 3-epi-25(OH)D2 and 3-epi-25(OH)D3 were analyzed by liquid chromatography–tandem mass spectrometry. Results There was no association between serum total 25(OH)D and serum LDL-C. However, circulating 3-epi-25(OH)D3 was negatively related to serum LDL-C (r = −0.077, P <0.05), while no such association was found for non-epimeric 25(OH)D3 (r =0.030, P = 0.33). On the other hand, both 3-epi-25(OH)D3 (r = 0.175, P <0.001) and non-epimeric 25(OH)D3 (r = 0.142, P <0.001) were positively related to serum triglyceride (TRIG) levels. In multiple linear regression models with age, gender, body mass index , urban residence, education, hypertension and education as covariates, it was found that 3-epi-25(OH)D3 was independently associated with serum LDL-C (beta = −0.12, P <0.01), while non-epimeric 25(OH)D3 was positively related to LDL-C (beta = 0.13, P = 0.002). For TRIG, there were positive association with 3-epi-25(OH)D3 (beta = 0.27, P <0.001) and negative association with non-epimeric 25(OH)D3 (beta = − 0.10, P = 0.011) independent of age, gender, urban resident and education. Conclusions There is a discrepant association of 25(OH)D levels with serum lipids according to 25(OH)D epimeric forms.
Collapse
Affiliation(s)
- La-Or Chailurkit
- Department of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand. .,Division of Endocrinology and Metabolism, Department of Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Rama 6th Road, Bangkok, 10400, Thailand.
| | - Wichai Aekplakorn
- Department of Community Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand
| | - Kriangsuk Srijaruskul
- Department of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand
| | | |
Collapse
|
13
|
Schleicher RL, Sternberg MR, Looker AC, Yetley EA, Lacher DA, Sempos CT, Taylor CL, Durazo-Arvizu RA, Maw KL, Chaudhary-Webb M, Johnson CL, Pfeiffer CM. National Estimates of Serum Total 25-Hydroxyvitamin D and Metabolite Concentrations Measured by Liquid Chromatography-Tandem Mass Spectrometry in the US Population during 2007-2010. J Nutr 2016; 146:1051-61. [PMID: 27052537 PMCID: PMC4841925 DOI: 10.3945/jn.115.227728] [Citation(s) in RCA: 149] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 01/15/2016] [Accepted: 02/22/2016] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND The 2007-2010 NHANES provides the first US nationally representative serum 25-hydroxyvitamin D [25(OH)D] concentrations measured by standardized liquid chromatography-tandem mass spectrometry. OBJECTIVE We describe patterns for total 25(OH)D and individual metabolites in persons aged ≥1 y stratified by race-ethnicity and grouped by demographic, intake, physiologic, and lifestyle variables. METHODS We measured 25-hydroxycholecalciferol [25(OH)D3], 25-hydroxyergocalciferol [25(OH)D2], and C3-epimer of 25(OH)D3 [C3-epi-25(OH)D3] in serum samples (n = 15,652) from the 2007-2010 cross-sectional NHANES [total 25(OH)D = 25(OH)D3 + 25(OH)D2]. RESULTS Concentrations (median, detection rate) of 25(OH)D3 (63.6 nmol/L, 100%) and C3-epi-25(OH)D3 (3.40 nmol/L, 86%) were generally detectable; 25(OH)D2 was detectable in 19% of the population. Total 25(OH)D, 25(OH)D3, and C3-epi-25(OH)D3 displayed similar demographic patterns and were strongly correlated (Spearman's r > 0.70). Concentrations of 25(OH)D2 (90th percentile) were much higher in persons aged ≥60 y (17.3 nmol/L) than in younger age groups (≤4.88 nmol/L). We noted significant race-ethnicity differences in mean total 25(OH)D [non-Hispanic blacks (NHBs), Hispanics, and non-Hispanic whites (NHWs): 46.6, 57.2, and 75.2 nmol/L, respectively] and in the prevalence of total 25(OH)D <30 nmol/L overall (24% of NHBs, 6.4% of Hispanics, and 2.3% of NHWs) as well as stratified by season (winter months: 30% of NHBs, 7.5% of Hispanics, and 3.8% of NHWs; summer months: 17% of NHBs, 4.4% of Hispanics, and 1.6% of NHWs). Persons with higher vitamin D intakes (diet, supplements, or both) and those examined during May-October had significantly higher total 25(OH)D. Significant race-ethnicity interactions in a multiple linear regression model confirmed the necessity of providing race-ethnicity-specific estimates of total 25(OH)D. CONCLUSIONS Race-ethnicity differences in the prevalence of low total 25(OH)D remained strong even after adjustment for season to account for the NHANES design imbalance between season, latitude, and race-ethnicity. The strong correlation between C3-epi-25(OH)D3 and 25(OH)D3 may be because the epimer is a metabolite of 25(OH)D3. The presence of 25(OH)D2 mainly in older persons is likely a result of high-dose prescription vitamin D2.
Collapse
Affiliation(s)
| | | | - Anne C Looker
- National Center for Health Statistics, CDC, Hyattsville, MD
| | | | - David A Lacher
- National Center for Health Statistics, CDC, Hyattsville, MD
| | | | | | | | - Khin L Maw
- National Center for Environmental Health, CDC, Atlanta, GA
| | | | | | | |
Collapse
|
14
|
Vitamin D status in mothers with pre-eclampsia and their infants: a case-control study from Serbia, a country without a vitamin D fortification policy. Public Health Nutr 2016; 20:1825-1835. [PMID: 27087002 DOI: 10.1017/s1368980016000409] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
OBJECTIVE The objective of the present study was to determine if vitamin D intake and status are associated with pre-eclampsia in a country without a vitamin D fortification policy. DESIGN A case-control study of pregnancies with (case) and without (control) pre-eclampsia was conducted from January to April when UVB is minimal. Maternal and cord blood obtained at delivery were measured for plasma 25-hydroxycholecalciferol (25-OH-D3), 3-epimer of 25-OH-D3 (3-epi-25-OH-D3) and 24,25-dihydroxycholecalciferol (24,25-(OH)2D3) by LC-MS/MS and maternal 1,25-dihydroxyvitamin D (1,25-(OH)2D). Differences between groups were tested with ANOVA and Bonferroni post hoc tests (P<0·05). SETTING Clinical Center of Serbia. SUBJECTS Pregnant women with and without pre-eclampsia (n 60) and their infants. RESULTS Exogenous vitamin D intake (0·95-16·25 µg/d (38-650 IU/d)) was not significantly different between groups. Women with pre-eclampsia delivered infants at an earlier gestational age and had significantly lower mean total plasma 25-hydroxyvitamin D (25-OH-D; case: 11·2 (sd 5·1); control: 16·1 (sd 5·7) ng/ml; P=0·0006), 25-OH-D3 (case: 10·0 (sd 4·9); control: 14·2 (sd 5·8) ng/ml; P=0·002), 3-epi-25-OH-D3 (case: 0·5 (sd 0·2); control: 0·7 (sd 0·2) ng/ml; P=0·0007) and 1,25-(OH)2D (case: 56·5 (sd 26·6); control: 81·0 (sd 25·7) pg/ml; P=0·018), while 24,25-(OH)2D3 was not different between groups. Infants did not differ in total plasma 25-OH-D, 25-OH-D3, 3-epi-25-OH-D3 and 24,25-(OH)2D3, but the mean proportion of 3-epi-25-OH-D3 was higher in the infant case group (case: 7·9 (sd 1·1); control: 7·0 (sd 1·4) % of total 25-OH-D3; P=0·005). CONCLUSIONS A high prevalence of vitamin D deficiency, as defined by plasma 25-OH-D<12 ng/ml, was observed in 47 % of all mothers and 77 % of all infants. These data underscore the need for prenatal vitamin D supplementation and a food fortification policy in Serbia.
Collapse
|