1
|
He W, Bertram HC, Yin JY, Nie SP. Lactobacilli and Their Fermented Foods as a Promising Strategy for Enhancing Bone Mineral Density: A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:17730-17745. [PMID: 39078823 DOI: 10.1021/acs.jafc.4c03218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Lactobacilli fermentation possesses special nutritional and health values to food, especially in improving diseases related to the gut microbiota such as osteoporosis risk. Previous research indicates that lactobacilli-fermented foods have the potential to enhance the bone mineral density (BMD), as suggested by some clinical studies. Nonetheless, there is currently a lack of comprehensive summaries of the effects and potential mechanisms of lactobacilli-fermented foods on BMD. This review summarizes findings from preclinical and clinical studies, revealing that lactobacilli possess the potential to mitigate age-related and secondary factor-induced bone loss. Furthermore, these findings imply that lactobacilli are likely mediated through the modulation of bone remodeling via gut inflammation-related pathways. Additionally, lactobacilli fermentation may augment calcium accessibility through directly promoting calcium absorption or modifying food constituents. Considering the escalating global health challenge of bone-related issues among the elderly population, this review may offer a valuable reference for the development of food strategies aimed at preventing osteoporosis.
Collapse
Affiliation(s)
- Weiwei He
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, Jiangxi, China
| | | | - Jun-Yi Yin
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, Jiangxi, China
| | - Shao-Ping Nie
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, Jiangxi, China
| |
Collapse
|
2
|
García Navas P, Ruíz Del Prado MY, Villoslada Blanco P, Recio Fernández E, Ruíz Del Campo M, Pérez Matute P. Composition of the microbiota in patients with growth hormone deficiency before and after treatment with growth hormone. An Pediatr (Barc) 2024; 100:404-411. [PMID: 38806303 DOI: 10.1016/j.anpede.2024.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 03/25/2024] [Indexed: 05/30/2024] Open
Abstract
INTRODUCTION Growth hormone (GH) and insulin-like growth factor-1 (IGF-1) have modulatory effects on bowel function and its microbiota. Our aim was to investigate whether low levels of GH and IGF-1 in patients with GH deficiency are associated with changes in gut physiology/integrity as well as in the composition of the gut microbiota. MATERIALS AND METHODS We conducted a case-control study in 21 patients with GH deficiency, at baseline and after 6 months of GH treatment, and in 20 healthy controls. We analysed changes in anthropometric and laboratory characteristics and bacterial translocation and studied the composition of the microbiome by means of massive 16S rRNA gene sequencing. RESULTS Growth hormone deficiency was accompanied by a significant increase in serum levels of sCD14, a marker of bacterial translocation (P < .01). This increase was reversed by GH treatment. We did not find any differences in the composition or α- or β-diversity of the gut microbiota after treatment or between cases and controls. CONCLUSIONS Our work is the first to demonstrate that the presence of GH deficiency is not associated with differences in gut microbiota composition in comparison with healthy controls, and changes in microbiota composition are also not found after 6 months of treatment. However, GH deficiency and low IGF-1 levels were associated with an increase in bacterial translocation, which had reversed after treatment.
Collapse
Affiliation(s)
- Patricia García Navas
- Sección de Endocrinología Infantil, Servicio de Pediatría, Hospital San Pedro, Logroño, La Rioja, Spain.
| | | | - Pablo Villoslada Blanco
- Unidad de Enfermedades Infecciosas, Microbiota y Metabolismo, Centro de Investigación Biomédica de La Rioja (CIBIR), Logroño, La Rioja, Spain
| | - Emma Recio Fernández
- Unidad de Enfermedades Infecciosas, Microbiota y Metabolismo, Centro de Investigación Biomédica de La Rioja (CIBIR), Logroño, La Rioja, Spain
| | - María Ruíz Del Campo
- Sección de Endocrinología Infantil, Servicio de Pediatría, Hospital San Pedro, Logroño, La Rioja, Spain
| | - Patricia Pérez Matute
- Unidad de Enfermedades Infecciosas, Microbiota y Metabolismo, Centro de Investigación Biomédica de La Rioja (CIBIR), Logroño, La Rioja, Spain; Facultad de Ciencias de la Salud de la Universidad de La Rioja, Logroño, La Rioja, Spain
| |
Collapse
|
3
|
Zhang J, Shu Z, Lv S, Zhou Q, Huang Y, Peng Y, Zheng J, Zhou Y, Hu C, Lan S. Fermented Chinese Herbs Improve the Growth and Immunity of Growing Pigs through Regulating Colon Microbiota and Metabolites. Animals (Basel) 2023; 13:3867. [PMID: 38136904 PMCID: PMC10740985 DOI: 10.3390/ani13243867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/11/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
(1) Background: the development of new antibiotic substitutes to promote pig growth and health has become an important way to solve the current dilemma and promote the pig industry. (2) Methods: to assess the effects of a fermented Chinese herbal (FCH) formula on the growth and immunity of growing pigs, 100 Duroc × Landrace × Yorshire three-way crossed growing pigs were randomly divided into control and treatment groups that were fed a basal diet, and a basal diet with 1% (group A), 2% (group B), and 3% (group C) FCH formulas, respectively. A sixty-day formal experiment was conducted, and their growth and serum indices, colonic microbiota, and metabolites were analyzed. (3) Results: the daily gain of growing pigs in groups A, B, and C increased by 7.93%, 17.68%, and 19.61%, respectively, and the feed-to-gain ratios decreased by 8.33%, 15.00%, and 14.58%, respectively. Serum immunity and antioxidant activities were significantly increased in all treatment groups. Particularly, adding a 2% FCH formula significantly changed the colon's microbial structure; the Proteobacteria significantly increased and Firmicutes significantly decreased, and the metabolite composition in the colon's contents significantly changed. (4) Conclusions: these results indicate that the FCH formula is a good feed additive for growing pigs, and the recommended addition ratio was 3%.
Collapse
Affiliation(s)
- Junhao Zhang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; (J.Z.); (Z.S.); (S.L.); (Q.Z.); (Y.H.); (J.Z.); (Y.Z.)
| | - Zhiheng Shu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; (J.Z.); (Z.S.); (S.L.); (Q.Z.); (Y.H.); (J.Z.); (Y.Z.)
| | - Sixiao Lv
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; (J.Z.); (Z.S.); (S.L.); (Q.Z.); (Y.H.); (J.Z.); (Y.Z.)
| | - Qingwen Zhou
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; (J.Z.); (Z.S.); (S.L.); (Q.Z.); (Y.H.); (J.Z.); (Y.Z.)
| | - Yuanhao Huang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; (J.Z.); (Z.S.); (S.L.); (Q.Z.); (Y.H.); (J.Z.); (Y.Z.)
| | - Yingjie Peng
- Guangdong Chuangzhan Bona Agricultural Technology Co., Ltd., Guangning 526339, China;
| | - Jun Zheng
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; (J.Z.); (Z.S.); (S.L.); (Q.Z.); (Y.H.); (J.Z.); (Y.Z.)
| | - Yi Zhou
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; (J.Z.); (Z.S.); (S.L.); (Q.Z.); (Y.H.); (J.Z.); (Y.Z.)
| | - Chao Hu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; (J.Z.); (Z.S.); (S.L.); (Q.Z.); (Y.H.); (J.Z.); (Y.Z.)
| | - Shile Lan
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; (J.Z.); (Z.S.); (S.L.); (Q.Z.); (Y.H.); (J.Z.); (Y.Z.)
| |
Collapse
|
4
|
Miao J, Lai P, Wang K, Fang G, Li X, Zhang L, Jiang M, Bao Y. Characteristics of intestinal microbiota in children with idiopathic short stature: a cross-sectional study. Eur J Pediatr 2023; 182:4537-4546. [PMID: 37522979 DOI: 10.1007/s00431-023-05132-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 05/18/2023] [Accepted: 07/21/2023] [Indexed: 08/01/2023]
Abstract
Idiopathic short stature (ISS) accounts for more than 70% of childhood short stature cases, with an undefined etiology and pathogenesis, leading to limited treatment. However, recent studies have shown that intestinal microbiota may be associated with ISS. This study aimed to characterize the intestinal microbiota in children with ISS, effect of treatment with growth hormones, and association between specific bacterial species and ISS. This study enrolled 55 children, comprising 40 diagnosed with ISS at Jinhua Hospital, Zhejiang University, and 15 healthy controls. The subjects with ISS were divided into the untreated ISS group (UISS group, 22 children who had not been treated with recombinant human growth hormone [rhGH]), treated ISS group (TISS group, 18 children treated with rhGH for 1 year), and control group (NC group, 15 healthy children). High-throughput sequencing was used to determine the intestinal microbiota characteristics. Higher abundances of Bacteroides, Prevotella, Alistipes, Parabacteroides, Agathobacter and Roseburia were found in the UISS and TISS groups than in the control group, whereas Bifidobacterium, Subdoligranulum, and Romboutsia were less abundant. The composition of intestinal microbiota in the UISS and TISS groups was almost identical, except for Prevotella. The TISS group had significantly lower levels of Prevotella than did the UISS group, which were closer to those of the NC group. Receiver operating characteristic curve analysis revealed that the abundances of Prevotella, Bifidobacterium, Bacteroides, and Subdoligranulum were effective in differentiating between the UISS and NC groups. CONCLUSION Alterations in intestinal microbiota may be associated with ISS. Specific bacterial species, such as Prevotella, may be potential diagnostic markers for ISS. WHAT IS KNOWN • ISS is associated with the GH-IGF-1 axis. • Recent studies indicated an association between the GH-IGF-1 axis and intestinal microbiota. WHAT IS NEW • Children with ISS showed alterations in intestinal microbiota, with a relative increase in the abundance of gut inflammation-related bacteria. • The relative abundances of Prevotella, Bacteroides, Bifidobacterium, and Subdoligranulum may serve as potential diagnostic markers.
Collapse
Affiliation(s)
- Jing Miao
- Department of Pediatrics, Jinhua Hospital, Zhejiang University and Jinhua Municipal Central Hospital, Jinhua, China
- Department of Pediatrics, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou, China
| | - Panjian Lai
- Department of Pediatrics, Jinhua Hospital, Zhejiang University and Jinhua Municipal Central Hospital, Jinhua, China
| | - Kan Wang
- Department of Pediatrics, Jinhua Hospital, Zhejiang University and Jinhua Municipal Central Hospital, Jinhua, China
| | - Guoxing Fang
- Department of Pediatrics, Jinhua Hospital, Zhejiang University and Jinhua Municipal Central Hospital, Jinhua, China
| | - Xiaobing Li
- Department of Pediatrics, Jinhua Hospital, Zhejiang University and Jinhua Municipal Central Hospital, Jinhua, China
| | - Linqian Zhang
- Department of Pediatrics, Jinhua Hospital, Zhejiang University and Jinhua Municipal Central Hospital, Jinhua, China
| | - Mizu Jiang
- Department of Pediatrics, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou, China
| | - Yunguang Bao
- Department of Pediatrics, Jinhua Hospital, Zhejiang University and Jinhua Municipal Central Hospital, Jinhua, China.
| |
Collapse
|
5
|
Villatoro-Castañeda M, Forsburg ZR, Ortiz W, Fritts SR, Gabor CR, Carlos-Shanley C. Exposure to Roundup and Antibiotics Alters Gut Microbial Communities, Growth, and Behavior in Rana berlandieri Tadpoles. BIOLOGY 2023; 12:1171. [PMID: 37759571 PMCID: PMC10525943 DOI: 10.3390/biology12091171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/15/2023] [Accepted: 08/18/2023] [Indexed: 09/29/2023]
Abstract
The gut microbiome is important for digestion, host fitness, and defense against pathogens, which provides a tool for host health assessment. Amphibians and their microbiomes are highly susceptible to pollutants including antibiotics. We explored the role of an unmanipulated gut microbiome on tadpole fitness and phenotype by comparing tadpoles of Rana berlandieri in a control group (1) with tadpoles exposed to: (2) Roundup® (glyphosate active ingredient), (3) antibiotic cocktail (enrofloxacin, sulfamethazine, trimethoprim, streptomycin, and penicillin), and (4) a combination of Roundup and antibiotics. Tadpoles in the antibiotic and combination treatments had the smallest dorsal body area and were the least active compared to control and Roundup-exposed tadpoles, which were less active than control tadpoles. The gut microbial community significantly changed across treatments at the alpha, beta, and core bacterial levels. However, we did not find significant differences between the antibiotic- and combination-exposed tadpoles, suggesting that antibiotic alone was enough to suppress growth, change behavior, and alter the gut microbiome composition. Here, we demonstrate that the gut microbial communities of tadpoles are sensitive to environmental pollutants, namely Roundup and antibiotics, which may have consequences for host phenotype and fitness via altered behavior and growth.
Collapse
Affiliation(s)
- Melissa Villatoro-Castañeda
- Department of Biology, Texas State University, 601 University Dr., San Marcos, TX 78666, USA; (M.V.-C.); (Z.R.F.); (W.O.); (S.R.F.); (C.C.-S.)
| | - Zachery R. Forsburg
- Department of Biology, Texas State University, 601 University Dr., San Marcos, TX 78666, USA; (M.V.-C.); (Z.R.F.); (W.O.); (S.R.F.); (C.C.-S.)
- Archbold Biological Station, 123 Main Dr., Venus, FL 33960, USA
| | - Whitney Ortiz
- Department of Biology, Texas State University, 601 University Dr., San Marcos, TX 78666, USA; (M.V.-C.); (Z.R.F.); (W.O.); (S.R.F.); (C.C.-S.)
- Department of Molecular Microbiology and Immunology, The University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249, USA
| | - Sarah R. Fritts
- Department of Biology, Texas State University, 601 University Dr., San Marcos, TX 78666, USA; (M.V.-C.); (Z.R.F.); (W.O.); (S.R.F.); (C.C.-S.)
| | - Caitlin R. Gabor
- Department of Biology, Texas State University, 601 University Dr., San Marcos, TX 78666, USA; (M.V.-C.); (Z.R.F.); (W.O.); (S.R.F.); (C.C.-S.)
| | - Camila Carlos-Shanley
- Department of Biology, Texas State University, 601 University Dr., San Marcos, TX 78666, USA; (M.V.-C.); (Z.R.F.); (W.O.); (S.R.F.); (C.C.-S.)
| |
Collapse
|
6
|
Nikolopoulos N, Matos RC, Ravaud S, Courtin P, Akherraz H, Palussiere S, Gueguen-Chaignon V, Salomon-Mallet M, Guillot A, Guerardel Y, Chapot-Chartier MP, Grangeasse C, Leulier F. Structure-function analysis of Lactiplantibacillus plantarum DltE reveals D-alanylated lipoteichoic acids as direct cues supporting Drosophila juvenile growth. eLife 2023; 12:e84669. [PMID: 37042660 PMCID: PMC10241514 DOI: 10.7554/elife.84669] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 04/11/2023] [Indexed: 04/13/2023] Open
Abstract
Metazoans establish mutually beneficial interactions with their resident microorganisms. However, our understanding of the microbial cues contributing to host physiology remains elusive. Previously, we identified a bacterial machinery encoded by the dlt operon involved in Drosophila melanogaster's juvenile growth promotion by Lactiplantibacillus plantarum. Here, using crystallography combined with biochemical and cellular approaches, we investigate the physiological role of an uncharacterized protein (DltE) encoded by this operon. We show that lipoteichoic acids (LTAs) but not wall teichoic acids are D-alanylated in Lactiplantibacillus plantarumNC8 cell envelope and demonstrate that DltE is a D-Ala carboxyesterase removing D-Ala from LTA. Using the mutualistic association of L. plantarumNC8 and Drosophila melanogaster as a symbiosis model, we establish that D-alanylated LTAs (D-Ala-LTAs) are direct cues supporting intestinal peptidase expression and juvenile growth in Drosophila. Our results pave the way to probing the contribution of D-Ala-LTAs to host physiology in other symbiotic models.
Collapse
Affiliation(s)
- Nikos Nikolopoulos
- Molecular Microbiology and Structural Biochemistry, CNRS UMR 5086, Université Claude Bernard Lyon 1LyonFrance
| | - Renata C Matos
- Institut de Génomique Fonctionnelle de Lyon, Ecole Normale Supérieure de Lyon, CNRS UMR 5242, Université Claude Bernard Lyon 1LyonFrance
| | - Stephanie Ravaud
- Molecular Microbiology and Structural Biochemistry, CNRS UMR 5086, Université Claude Bernard Lyon 1LyonFrance
| | - Pascal Courtin
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis InstituteJouy-en-JosasFrance
| | - Houssam Akherraz
- Institut de Génomique Fonctionnelle de Lyon, Ecole Normale Supérieure de Lyon, CNRS UMR 5242, Université Claude Bernard Lyon 1LyonFrance
| | - Simon Palussiere
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis InstituteJouy-en-JosasFrance
| | - Virginie Gueguen-Chaignon
- Protein Science Facility, CNRS UAR3444, INSERM US8, Université Claude Bernard Lyon 1, Ecole Normale Supérieur de LyonLyonFrance
| | - Marie Salomon-Mallet
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis InstituteJouy-en-JosasFrance
| | - Alain Guillot
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis InstituteJouy-en-JosasFrance
| | - Yann Guerardel
- Institute for Glyco-core Research (iGCORE), Gifu UniversityGifuJapan
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et FonctionnelleLilleFrance
| | | | - Christophe Grangeasse
- Molecular Microbiology and Structural Biochemistry, CNRS UMR 5086, Université Claude Bernard Lyon 1LyonFrance
| | - François Leulier
- Institut de Génomique Fonctionnelle de Lyon, Ecole Normale Supérieure de Lyon, CNRS UMR 5242, Université Claude Bernard Lyon 1LyonFrance
| |
Collapse
|
7
|
Guo W, Qiu M, Pu Z, Long N, Yang M, Ren K, Ning R, Zhang S, Peng F, Sun F, Dai M. Geraniol-a potential alternative to antibiotics for bovine mastitis treatment without disturbing the host microbial community or causing drug residues and resistance. Front Cell Infect Microbiol 2023; 13:1126409. [PMID: 36875515 PMCID: PMC9978373 DOI: 10.3389/fcimb.2023.1126409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 01/31/2023] [Indexed: 02/18/2023] Open
Abstract
Mastitis is one of the most prevalent diseases of dairy cows. Currently, mastitis treatment in dairy cows is mainly based on antibiotics. However, the use of antibiotics causes adverse effects, including drug resistance, drug residues, host-microbiome destruction, and environmental pollution. The present study sought to investigate the potentiality of geraniol as an alternative to antibiotics for bovine mastitis treatment in dairy cows. Additionally, the effectiveness of treatment, improvement in inflammatory factors, the influence on microbiome, presence of drug residues, and drug resistance induction were compared and analyzed comprehensively.Geraniol showed an equivalent therapeutic rate as antibiotics in the mouse infection model and cows with mastitis. Moreover, geraniol significantly inhibited the pathogenic bacteria and restored the microbial community while increasing the abundance of probiotics in milk. Notably, geraniol did not destroy the gut microbial communities in cows and mice, whereas antibiotics significantly reduced the diversity and destroyed the gut microbial community structure. Additionally, no geraniol residue was detected in milk four days after treatment discontinuation, but, antibiotic residues were detected in milk at the 7th day after drug withdrawal. In vitro experiments revealed that geraniol did not induce drug resistance in the Escherichia coli strain ATCC25922 and Staphylococcus aureus strain ATCC25923 after 150 generations of culturing, while antibiotics induced resistance after 10 generations. These results suggest that geraniol has antibacterial and anti-inflammatory effects similar to antibiotics without affecting the host-microbial community structure or causing drug residues and resistance. Therefore, geraniol can be a potential substitute for antibiotics to treat mastitis or other infectious diseases and be widely used in the dairy industry.
Collapse
Affiliation(s)
- Wei Guo
- School of Laboratory Medicine, Chengdu Medical College, Chengdu, China
- Sichuan Provincial Engineering Laboratory for Prevention and Control Technology of Veterinary Drug Residue in Animal-origin Food, Chengdu Medical College, Chengdu, China
| | - Min Qiu
- School of Laboratory Medicine, Chengdu Medical College, Chengdu, China
| | - Zhonghui Pu
- School of Laboratory Medicine, Chengdu Medical College, Chengdu, China
- Sichuan Provincial Engineering Laboratory for Prevention and Control Technology of Veterinary Drug Residue in Animal-origin Food, Chengdu Medical College, Chengdu, China
| | - Nana Long
- School of Laboratory Medicine, Chengdu Medical College, Chengdu, China
| | - Min Yang
- School of Laboratory Medicine, Chengdu Medical College, Chengdu, China
- Sichuan Provincial Engineering Laboratory for Prevention and Control Technology of Veterinary Drug Residue in Animal-origin Food, Chengdu Medical College, Chengdu, China
| | - Ke Ren
- School of Laboratory Medicine, Chengdu Medical College, Chengdu, China
- Sichuan Provincial Engineering Laboratory for Prevention and Control Technology of Veterinary Drug Residue in Animal-origin Food, Chengdu Medical College, Chengdu, China
| | - Ruihong Ning
- School of Laboratory Medicine, Chengdu Medical College, Chengdu, China
| | - Siyuan Zhang
- School of Laboratory Medicine, Chengdu Medical College, Chengdu, China
- Sichuan Provincial Engineering Laboratory for Prevention and Control Technology of Veterinary Drug Residue in Animal-origin Food, Chengdu Medical College, Chengdu, China
| | - Fu Peng
- West China School of Pharmacy, Sichuan University, Chengdu, China
- *Correspondence: Fu Peng, ; Fenghui Sun, ; Min Dai,
| | - Fenghui Sun
- School of Laboratory Medicine, Chengdu Medical College, Chengdu, China
- *Correspondence: Fu Peng, ; Fenghui Sun, ; Min Dai,
| | - Min Dai
- School of Laboratory Medicine, Chengdu Medical College, Chengdu, China
- Sichuan Provincial Engineering Laboratory for Prevention and Control Technology of Veterinary Drug Residue in Animal-origin Food, Chengdu Medical College, Chengdu, China
- *Correspondence: Fu Peng, ; Fenghui Sun, ; Min Dai,
| |
Collapse
|
8
|
Maritan E, Gallo M, Srutkova D, Jelinkova A, Benada O, Kofronova O, Silva-Soares NF, Hudcovic T, Gifford I, Barrick JE, Schwarzer M, Martino ME. Gut microbe Lactiplantibacillus plantarum undergoes different evolutionary trajectories between insects and mammals. BMC Biol 2022; 20:290. [PMID: 36575413 PMCID: PMC9795633 DOI: 10.1186/s12915-022-01477-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 11/23/2022] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Animals form complex symbiotic associations with their gut microbes, whose evolution is determined by an intricate network of host and environmental factors. In many insects, such as Drosophila melanogaster, the microbiome is flexible, environmentally determined, and less diverse than in mammals. In contrast, mammals maintain complex multispecies consortia that are able to colonize and persist in the gastrointestinal tract. Understanding the evolutionary and ecological dynamics of gut microbes in different hosts is challenging. This requires disentangling the ecological factors of selection, determining the timescales over which evolution occurs, and elucidating the architecture of such evolutionary patterns. RESULTS We employ experimental evolution to track the pace of the evolution of a common gut commensal, Lactiplantibacillus plantarum, within invertebrate (Drosophila melanogaster) and vertebrate (Mus musculus) hosts and their respective diets. We show that in Drosophila, the nutritional environment dictates microbial evolution, while the host benefits L. plantarum growth only over short ecological timescales. By contrast, in a mammalian animal model, L. plantarum evolution results to be divergent between the host intestine and its diet, both phenotypically (i.e., host-evolved populations show higher adaptation to the host intestinal environment) and genomically. Here, both the emergence of hypermutators and the high persistence of mutated genes within the host's environment strongly differed from the low variation observed in the host's nutritional environment alone. CONCLUSIONS Our results demonstrate that L. plantarum evolution diverges between insects and mammals. While the symbiosis between Drosophila and L. plantarum is mainly determined by the host diet, in mammals, the host and its intrinsic factors play a critical role in selection and influence both the phenotypic and genomic evolution of its gut microbes, as well as the outcome of their symbiosis.
Collapse
Affiliation(s)
- Elisa Maritan
- Department of Comparative Biomedicine and Food Science, University of Padua, Padua, Italy
| | - Marialaura Gallo
- Department of Comparative Biomedicine and Food Science, University of Padua, Padua, Italy
| | - Dagmar Srutkova
- Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, Novy Hradek, Czech Republic
| | - Anna Jelinkova
- Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, Novy Hradek, Czech Republic
| | - Oldrich Benada
- Laboratory of Molecular Structure Characterization, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Olga Kofronova
- Laboratory of Molecular Structure Characterization, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Nuno F Silva-Soares
- Department of Comparative Biomedicine and Food Science, University of Padua, Padua, Italy
| | - Tomas Hudcovic
- Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, Novy Hradek, Czech Republic
| | - Isaac Gifford
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Jeffrey E Barrick
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Martin Schwarzer
- Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, Novy Hradek, Czech Republic.
| | - Maria Elena Martino
- Department of Comparative Biomedicine and Food Science, University of Padua, Padua, Italy.
| |
Collapse
|
9
|
Garrigues Q, Apper E, Chastant S, Mila H. Gut microbiota development in the growing dog: A dynamic process influenced by maternal, environmental and host factors. Front Vet Sci 2022; 9:964649. [PMID: 36118341 PMCID: PMC9478664 DOI: 10.3389/fvets.2022.964649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 08/12/2022] [Indexed: 11/13/2022] Open
Abstract
Microorganisms of the gastrointestinal tract play a crucial role in the health, metabolism and development of their host by modulating vital functions such as digestion, production of key metabolites or stimulation of the immune system. This review aims to provide an overview on the current knowledge of factors shaping the gut microbiota of young dogs. The composition of the gut microbiota is modulated by many intrinsic (i.e., age, physiology, pathology) and extrinsic factors (i.e., nutrition, environment, medication) which can cause both beneficial and harmful effects depending on the nature of the changes. The composition of the gut microbiota is quickly evolving during the early development of the dog, and some crucial bacteria, mostly anaerobic, progressively colonize the gut before the puppy reaches adulthood. Those bacterial communities are of paramount importance for the host health, with disturbance in their composition potentially leading to altered metabolic states such as acute diarrhea or inflammatory bowel disease. While many studies focused on the microbiota of young children, there is still a lack of knowledge concerning the development of gut microbiota in puppies. Understanding this early evolution is becoming a key aspect to improve dogs' short and long-term health and wellbeing.
Collapse
Affiliation(s)
- Quentin Garrigues
- NeoCare, ENVT, Université de Toulouse, Toulouse, France
- *Correspondence: Quentin Garrigues
| | | | | | - Hanna Mila
- NeoCare, ENVT, Université de Toulouse, Toulouse, France
| |
Collapse
|
10
|
Wen K, Liu L, Zhao M, Geng T, Gong D. The Changes in Microbiotic Composition of Different Intestinal Tracts and the Effects of Supplemented Lactobacillus During the Formation of Goose Fatty Liver. Front Microbiol 2022; 13:906895. [PMID: 35923413 PMCID: PMC9339986 DOI: 10.3389/fmicb.2022.906895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 06/10/2022] [Indexed: 11/29/2022] Open
Abstract
Intestinal bacteria play an important role in the formation of fatty liver in animals by participating in the digestion and degradation of nutrients, producing various metabolites, and altering the barrier effect of the intestine. However, changes in the gut microbiota during the formation of goose fatty liver are unclear. In this study, 80 healthy Landes geese with similar body weights at 70 days of age were randomly divided into two groups: the control group (n = 48; fed ad libitum) and the overfeeding group (n = 32; overfed). The intestinal contents were collected at 0, 12, and 24 days of overfeeding. The 16S rRNA and metagenomic sequencing analyses showed that the dominant phyla were Firmicutes, Proteobacteria, Bacteroidetes, and Actinobacteria. At the genus level, Phyllobacterium, Bacteroides, Helicobacter, Lactobacillus, Enterococcus, and Romboutsia were the dominant genera in the goose intestine, and most of them were probiotics. In the control group, the relative abundance of Firmicutes in the jejunum and ileum gradually decreased with time, while that of Proteobacteria increased, whereas in the overfeeding group, the relative abundance of Firmicutes in the jejunum and ileum decreased and then increased with time, while that of Proteobacteria showed an opposite trend. In addition, supplementing Lactobacillus to the diet reduced body weight and fatty liver weight in overfed geese, but increased the weight of abdominal fat, suggesting that Lactobacillus supplementation might affect the transport of nascent fat from the liver to abdominal fat. In conclusion, the species of intestinal-dominant bacteria in the geese are relatively stable, but their relative abundance and function are affected by a number of factors. Overfeeding promotes the metabolism of nutrients in the jejunum and ileum and increases bacterial adaptability to environmental changes by enhancing their ability to process environmental and genetic information more efficiently. These findings suggest that the effect of overfeeding on the composition of intestinal microbiota may indirectly influence the formation of goose fatty liver through the gut/liver axis.
Collapse
Affiliation(s)
- Kang Wen
- Department of Animal Science, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Long Liu
- Department of Animal Science, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Minmeng Zhao
- Department of Animal Science, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Tuoyu Geng
- Department of Animal Science, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, China
- *Correspondence: Tuoyu Geng
| | - Daoqing Gong
- Department of Animal Science, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, China
- Daoqing Gong
| |
Collapse
|
11
|
Li P, Zhang J, Liu X, Gan L, Xie Y, Zhang H, Si J. The Function and the Affecting Factors of the Zebrafish Gut Microbiota. Front Microbiol 2022; 13:903471. [PMID: 35722341 PMCID: PMC9201518 DOI: 10.3389/fmicb.2022.903471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/16/2022] [Indexed: 11/13/2022] Open
Abstract
Gut microbiota has become a topical issue in unraveling the research mechanisms underlying disease onset and progression. As an important and potential "organ," gut microbiota plays an important role in regulating intestinal epithelial cell differentiation, proliferation, metabolic function and immune response, angiogenesis and host growth. More recently, zebrafish models have been used to study the interactions between gut microbiota and hosts. It has several advantages, such as short reproductive cycle, low rearing cost, transparent larvae, high genomic similarity to humans, and easy construction of germ-free (GF) and transgenic zebrafish. In our review, we reviewed a large amount of data focusing on the close relationship between gut microbiota and host health. Moreover, we outlined the functions of gut microbiota in regulating intestinal epithelial cell differentiation, intestinal epithelial cell proliferation, metabolic function, and immune response. More, we summarized major factors that can influence the composition, abundance, and diversity of gut microbiota, which will help us to understand the significance of gut microbiota in regulating host biological functions and provide options for maintaining the balance of host health.
Collapse
Affiliation(s)
- Pingping Li
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jinhua Zhang
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoyi Liu
- College of Life Science, Lanzhou University, Lanzhou, China
| | - Lu Gan
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou, China
| | - Yi Xie
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou, China
| | - Hong Zhang
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou, China
| | - Jing Si
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou, China
| |
Collapse
|
12
|
Orwoll ES, Parimi N, Wiedrick J, Lapidus J, Napoli N, Wilkinson JE, Huttenhower C, Langsetmo L, Kiel DP. Analysis of the Associations Between the Human Fecal Microbiome and Bone Density, Structure, and Strength: The Osteoporotic Fractures in Men (MrOS) Cohort. J Bone Miner Res 2022; 37:597-607. [PMID: 35119137 PMCID: PMC9605688 DOI: 10.1002/jbmr.4518] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 12/27/2021] [Accepted: 01/13/2022] [Indexed: 11/08/2022]
Abstract
In preclinical models, the composition and function of the gut microbiota have been linked to bone growth and homeostasis, but there are few available data from studies of human populations. In a hypothesis-generating experiment in a large cohort of community-dwelling older men (n = 831; age range, 78-98 years), we explored the associations between fecal microbial profiles and bone density, microarchitecture, and strength measured with total hip dual-energy X-ray absorptiometry (DXA) and high-resolution peripheral quantitative computed tomography (HRpQCT) (distal radius, distal and diaphyseal tibia). Fecal samples were collected and the 16S rRNA gene V4 hypervariable region sequenced. Sequences were bioinformatically processed through the DADA2 pipeline and then taxonomically assigned using SILVA. Generalized linear models as implemented in microbiome multivariable association with linear models (MaAsLin 2) were used to test for associations between skeletal measures and specific microbial genera. The abundances of four bacterial genera were weakly associated with bone density, structure, or strength (false discovery rate [FDR] ≤ 0.05), and the measured directions of associations of genera were generally consistent across multiple bone measures, supporting a role for microbiota on skeletal homeostasis. However, the associated effect sizes were small (log2 fold change < ±0.35), limiting power to confidently identify these associations even with high resolution skeletal imaging phenotypes, and we assessed the resulting implications for the design of future cohort-based studies. As in analogous examples from genomewide association studies, we find that larger cohort sizes will likely be needed to confidently identify associations between the fecal microbiota and skeletal health relying on 16S sequencing. Our findings bolster the view that the gut microbiome is associated with clinically important measures of bone health, while also indicating the challenges in the design of cohort-based microbiome studies. © 2022 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Eric S Orwoll
- Department of Medicine, Oregon Health & Sciences University, Portland, OR, USA
| | - Neeta Parimi
- San Francisco Coordinating Center, San Francisco, CA, USA
| | - Jack Wiedrick
- Biostatistics & Design Program, Oregon Health & Science University, Portland, OR, USA
| | - Jodi Lapidus
- Biostatistics & Design Program, Oregon Health & Science University, Portland, OR, USA.,Oregon Health & Science University - Portland State University School of Public Health, Portland, OR, USA
| | - Nicola Napoli
- Department of Medicine, Unit of Endocrinology and Diabetes, Campus Bio-Medico University of Rome, Rome, Italy.,Division of Bone and Mineral Diseases, Washington University, St Louis, MO, USA
| | - Jeremy E Wilkinson
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Curtis Huttenhower
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Lisa Langsetmo
- School of Public Health, University of Minnesota, Twin Cities, Minneapolis, MN, USA
| | - Douglas P Kiel
- Hinda and Arthur Marcus Institute for Aging Research, Hebrew Senior Life, Boston, MA, USA.,Department of Medicine, Beth Israel Deaconess Medical Center & Harvard Medical School, Boston, MA, USA.,Broad Institute of MIT & Harvard, Cambridge, MA, USA
| |
Collapse
|
13
|
He S, Li D, Wang F, Zhang C, Yue C, Huang Y, Xie L, Zhang YT, Mu J. Parental exposure to sulfamethazine and nanoplastics alters the gut microbial communities in the offspring of marine madaka (Oryzias melastigma). JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127003. [PMID: 34474367 DOI: 10.1016/j.jhazmat.2021.127003] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 08/07/2021] [Accepted: 08/19/2021] [Indexed: 06/13/2023]
Abstract
The individual and combined toxicity of antibiotics and nanoplastics in marine organisms has received increasing attention. However, many studies have been mostly focused on the impacts on the directly exposed generation (F0). In this study, intergenerational effects of sulfamethazine (SMZ) and nanoplastic fragments (polystyrene, PS) on the growth and the gut microbiota of marine medaka (Oryzias melastigma) were investigated. The results showed that parental exposure to dietary SMZ (4.62 mg/g) alone and PS (3.45 mg/g) alone for 30 days decreased the body weight (by 13.41% and 34.33%, respectively) and altered the composition of gut microbiota in F1 males (two months after hatching). Interestingly, parental exposure to the mixture of SMZ and PS caused a more modest decrease in the body weight of F1 males than the PS alone (15.60% vs 34.33%). The hepatic igf1 level and the relative abundance of the host energy metabolism related phylum Bacteroidetes for the SMZ + PS group were significantly higher than those for the PS group (igf1, increased by 97.1%; Bacteroidetes, 2.876% vs 0.375%), suggesting that the parentally derived mixture of SMZ and PS might influence the first microbial colonization of gut in a different way to the PS alone. This study contributes to a better understanding of the long-term risk of antibiotics and nanoplastics to marine organisms.
Collapse
Affiliation(s)
- Shuiqing He
- Fujian Key Laboratory of Functional Marine Sensing Materials, Institute of Oceanography, Minjiang University, Fuzhou 350108, China
| | - Dan Li
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Feipeng Wang
- Fujian Key Laboratory of Functional Marine Sensing Materials, Institute of Oceanography, Minjiang University, Fuzhou 350108, China; Fuzhou Institute of Oceanography, Fuzhou 350108, China
| | - Chaoyue Zhang
- Fujian Key Laboratory of Functional Marine Sensing Materials, Institute of Oceanography, Minjiang University, Fuzhou 350108, China
| | - Chen Yue
- Fujian Key Laboratory of Functional Marine Sensing Materials, Institute of Oceanography, Minjiang University, Fuzhou 350108, China
| | - Yaling Huang
- Fujian Key Laboratory of Functional Marine Sensing Materials, Institute of Oceanography, Minjiang University, Fuzhou 350108, China; Fuzhou Institute of Oceanography, Fuzhou 350108, China
| | - Lingtian Xie
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Yu Ting Zhang
- Fujian Key Laboratory of Functional Marine Sensing Materials, Institute of Oceanography, Minjiang University, Fuzhou 350108, China; Fuzhou Institute of Oceanography, Fuzhou 350108, China.
| | - Jingli Mu
- Fujian Key Laboratory of Functional Marine Sensing Materials, Institute of Oceanography, Minjiang University, Fuzhou 350108, China; Fuzhou Institute of Oceanography, Fuzhou 350108, China.
| |
Collapse
|
14
|
Li X, Bi R, Xiao K, Roy A, Zhang Z, Chen X, Peng J, Wang R, Yang R, Shen X, Irwin DM, Shen Y. Hen raising helps chicks establish gut microbiota in their early life and improve microbiota stability after H9N2 challenge. MICROBIOME 2022; 10:14. [PMID: 35074015 PMCID: PMC8785444 DOI: 10.1186/s40168-021-01200-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 11/22/2021] [Indexed: 05/19/2023]
Abstract
BACKGROUND Early gut microbial colonization is important for postnatal growth and immune development of the chicken. However, at present, commercial chickens are hatched and raised without adult hens, thus are cut off from the microbiota transfer between hens and chicks. In this study, we compared the gut microbiota composition between hen-reared and separately reared chicks, and its impact on the resistance to H9N2 avian influenza virus, with the motive of investigating the impact of this cutoff in microbiota transfer. RESULTS We used the 16SrRNA sequencing method to assess the composition of the gut microbiota in chicks represented by three hen-reared groups and one separately reared group. We found that the diversity of gut microbes in the chicks from the three hen-reared groups was more abundant than in the separately reared group, both at the phylum and genus levels. Our findings highlight the importance of early parental care in influencing the establishment of gut microbiota in the early life of chicks. SourceTracker analysis showed that the feather and cloaca microbiota of hens are the main sources of gut microbiota of chicks. After H9N2 exposure, the viral infection lasted longer in the separately reared chicks, with the viral titers in their oropharyngeal swabs being higher compared to the hen-reared chicks at day 5 post-infection. Interestingly, our results revealed that the gut microbiota of the hen-reared chicks was more stable after H9N2 infection in comparison to that of the separately reared chicks. CONCLUSIONS Microbiota transfer between the hens and their chicks promotes the establishment of a balanced and diverse microbiota in the early life of the chicks and improves microbiota stability after H9N2 challenge. These findings advance our understanding of the protective role of gut microbiota in the early life of chicks and should be instrumental in improving chick rearing in the commercial poultry industry. Video Abstract.
Collapse
Affiliation(s)
- Xiaobing Li
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Ran Bi
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Kangpeng Xiao
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Ayan Roy
- Department of Biotechnology, Lovely Professional University, Bengaluru, India
| | - Zhipeng Zhang
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Xiaoyuan Chen
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Jinyu Peng
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Ruichen Wang
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Rou Yang
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Xuejuan Shen
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
- Zhaoqing Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Zhaoqing, 526238, China
| | - David M Irwin
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, M5S1A8, Canada
- Banting and Best Diabetes Centre, University of Toronto, Toronto, M5S1A8, Canada
| | - Yongyi Shen
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China.
- Zhaoqing Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Zhaoqing, 526238, China.
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, Guangzhou, China.
| |
Collapse
|
15
|
Li L, Chen L, Yang Y, Wang J, Guo L, An J, Ma X, Lu W, Xiao Y, Wang X, Dong Z. Characteristics of Gut Microbiome and Its Metabolites, Short-Chain Fatty Acids, in Children With Idiopathic Short Stature. Front Endocrinol (Lausanne) 2022; 13:890200. [PMID: 35757432 PMCID: PMC9226366 DOI: 10.3389/fendo.2022.890200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 05/12/2022] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND The gut microbiome is important for host nutrition and metabolism. Whether the gut microbiome under normal diet regulate human height remains to be addressed. Our study explored the possible relationship between gut microbiota, its metabolic products and the pathogenesis of idiopathic short stature disease (ISS) by comparing the gut microbiota between children with ISS and of normal height, and also the short-chain fatty acids (SCFAs) produced by the gut microbiota. METHODS The subjects of this study were 32 prepubescent children aged 4-8 years. The fecal microbial structure of the subjects was analyzed by 16S rRNA high-throughput sequencing technology. The concentrations of SCFAs in feces were determined by gas chromatography-mass spectrometry. RESULTS The richness of gut microbiota in ISS group was decreased, and the composition of gut microbiota was significantly different between ISS group and control group. The relative abundance of nine species including family Ruminococcaceae and genera Faecalibacterium and Eubacterium, in ISS group was significantly lower than that in control group (P<0.05). The relative abundance of 10 species, such as those belonging to genus Parabacteroides and genus Clostridium, in ISS group was significantly higher than that in control group (P<0.05). The concentration of total SCFAs and butyrate in ISS group was significantly lower than that in control group. The correlation analysis among different species, clinical indicators, and SCFAs showed that the relative abundance of family Ruminococcaceae and genera Faecalibacterium and Eubacterium was positively correlated with the standard deviation score of height. Furthermore, the concentrations of total SCFAs and butyrate were positively correlated with serum insulin-like growth factor 1 (IGF-1)-SDS. Disease prediction model constructed based on the bacteria who abundance differed between healthy children and ISS children exhibited high diagnostic value (AUC: 0.88). CONCLUSIONS The composition of gut microbiota and the change in its metabolite levels may be related to ISS pathogenesis. Strains with increased or decreased specificity could be used as biomarkers to diagnose ISS.
Collapse
Affiliation(s)
- Lin Li
- Department of Pediatrics, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lifen Chen
- Department of Pediatrics, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yuanyan Yang
- Department of Pediatrics, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Junqi Wang
- Department of Pediatrics, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Li Guo
- Department of Molecular Medicine, University of Utah School of Medicine, Salt Lake City, UT, United States
| | - Jingjing An
- Department of Pediatrics, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoyu Ma
- Department of Pediatrics, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wenli Lu
- Department of Pediatrics, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yuan Xiao
- Department of Pediatrics, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xinqiong Wang
- Department of Pediatrics, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- *Correspondence: Zhiya Dong, ; Xinqiong Wang,
| | - Zhiya Dong
- Department of Pediatrics, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- *Correspondence: Zhiya Dong, ; Xinqiong Wang,
| |
Collapse
|
16
|
Yu J, Zhou Y, Wen Q, Wang B, Gong H, Zhu L, Lan H, Wu B, Lang W, Zheng X, Wu M. Effects of faecal microbiota transplantation on the growth performance, intestinal microbiota, jejunum morphology and immune function of laying-type chicks. ANIMAL PRODUCTION SCIENCE 2021. [DOI: 10.1071/an21093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Context Recent studies have indicated that the early stage of growth is a critical window for intestinal microbiota manipulation to optimise the immunity and body growth. Faecal microbiota transplantation (FMT) is often used to regulate intestinal microbiota colonisation. Aims The aim of this study was to explore the effect of FMT on the growth performance, intestinal microbiota, jejunum morphology and immune function of newly hatched laying-type chicks. Methods The chicks (Hy-line Brown) were randomly divided into the control group (CON) and FMT group (FMT), which were treated with sterile saline and faecal microbiota suspension of Hy-line Brown breeder hens on Days 1, 3 and 5 respectively. For each group, there were five replications of 12 birds each for 4 weeks. This study investigated the body weight, tibia length, intestinal microflora, jejunum morphology and immune indexes of the chicks. Key results The results showed that the body weight and tibia length of birds in the FMT group were significantly increased at 7, 14 and 21 days of age (P < 0.01). Furthermore, we found that FMT altered the intestinal microbiota community of the birds and improved the richness, evenness, diversity and stability of their intestinal microbiota (P < 0.05). The faecal microbiota of the donor hens and birds that received the transplantation were very similar. The villus height and the ratio of the villus to crypt of the birds in the FMT group were significantly (P < 0.0001) higher than those in the control group. In addition, Spearman’s correlation analysis showed that the villus height of the FMT group showed positive correlation with Bacteroides (P < 0.05), and the villus height and the ratio of the villus to crypt in the FMT group showed positive correlations with Megasphaera (P < 0.05). The birds in the FMT group had no significant difference in intestinal length, immune organ indexes, serum β-defensin and IgA concentrations. Conclusions In summary, FMT can promote the early growth performance and jejunum morphology of laying-type chicks and improve the intestinal microbiota. FMT has no significant effect on the immune function of chicks. Implications FMT may be a potential method to improve the health of chicks to enhance the poultry industry.
Collapse
|
17
|
Di DS, Li C, Dai Y, Wei MH, Wang SS, Song WJ, Zhou HL, Cui Y, Zhang RY, Huang Q, Wang Q. Integrative Analysis of LGR5/6 Gene Variants, Gut Microbiota Composition and Osteoporosis Risk in Elderly Population. Front Microbiol 2021; 12:765008. [PMID: 34795657 PMCID: PMC8593465 DOI: 10.3389/fmicb.2021.765008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 10/13/2021] [Indexed: 11/25/2022] Open
Abstract
Objective: This study aimed to explore the relationships between the common variants of R-spondin/Wnt signaling genes, gut microbiota composition, and osteoporosis (OP) risk in elderly Chinese Han population. Design: Dual-energy X-ray absorptiometry was used to obtain the OP-associated measurements at multiple skeleton sites among all 1,168 participants. Genotyping data was obtained by using the next-generation sequencing in the discovery stage (n = 400, 228 OP patients) and SNPscan technology in the replication stage (n = 768, 356 OP patients). Bioinformatic analysis was performed to provide more evidence for the genotype-OP associations. The 16S ribosomal RNA gene high-throughput sequencing technology was adopted to explore OP-associated gut microbiota variations. Results: The genetic variants of rs10920362 in the LGR6 gene (P-FDR = 1.19 × 10–6) and rs11178860 in the LGR5 gene (P-FDR = 1.51 × 10–4) were found to associate with OP risk significantly. Several microbial taxa were associated with the BMDs and T-scores at multiple skeleton sites. The associations between rs10920362 and BMD-associated microbiota maintained significance after adjusting confounders. The rs10920362 CT/TT genotype associated with a decreased relative abundance of Actinobacteria (β = −1.32, P < 0.001), Bifidobacteriaceae (β = −1.70, P < 0.001), and Bifidobacterium (β = −1.70, P < 0.001) compared to the CC genotype. Conclusion: Our findings suggested that the variants loci of LGR6 may be associate with OP pathogenesis via gut microbiota modifications. The relationship between host genetics and gut microbiome provides new perspectives about OP prevention and treatment.
Collapse
Affiliation(s)
- Dong-Sheng Di
- MOE Key Lab of Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Can Li
- Department of Cancer Prevention and Control, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Yu Dai
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mu-Hong Wei
- MOE Key Lab of Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shan-Shan Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wen-Jing Song
- MOE Key Lab of Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hao-Long Zhou
- MOE Key Lab of Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuan Cui
- MOE Key Lab of Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ru-Yi Zhang
- MOE Key Lab of Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qin Huang
- Department of Rehabilitation Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qi Wang
- MOE Key Lab of Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
18
|
The intestinal flora of patients with GHPA affects the growth and the expression of PD-L1 of tumor. Cancer Immunol Immunother 2021; 71:1233-1245. [PMID: 34647152 PMCID: PMC9016060 DOI: 10.1007/s00262-021-03080-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 10/01/2021] [Indexed: 01/01/2023]
Abstract
Context Pituitary adenoma (PA) is a common intracranial tumor. The evidence indicates that the tumor immune microenvironment (TIME) is associated with PA and that the intestinal flora influences other tumors' growth through interacting with the TIME. However, how the intestinal microbial flora contributes to the development of PA through the immune response is unknown.
Objective and methods Here we used high-throughput Illumina MiSeq sequencing targeting the V3−V4 region of the 16S ribosomal RNA gene to investigate the intestinal flora of patients with growth hormone-secreting pituitary adenoma (GHPA), nonfunctional pituitary adenoma (NFPA), and healthy controls. We determined their effects on tumor growth and the TIME. Fecal microbiota transplantation (FMT) was performed after adoptive transfer via peripheral blood mononuclear cells to tumor-bearing nude mice, which allowed the study of the immune response. Result We discovered differences in the structures and quantities of intestinal flora between patients with GHPA, patients with NFPA, and healthy controls. After FMT, the intestinal flora of GHPA patients promoted the growth of tumors in mouse models. The number of programmed cell death ligand 1 (PD-L1)-positive cells increased in tumor tissues as well as the extent of infiltration of CD8+ cells. Increased numbers of CD3+CD8+ cells and increased levels of sPD-L1 were detected in peripheral blood. Conclusion These findings indicated that the intestinal flora of patients with GHPA promoted tumor growth and that the immune system may mediate this change. Supplementary Information The online version contains supplementary material available at 10.1007/s00262-021-03080-6.
Collapse
|
19
|
Teulière J, Bernard C, Bapteste E. Interspecific interactions that affect ageing: Age-distorters manipulate host ageing to their own evolutionary benefits. Ageing Res Rev 2021; 70:101375. [PMID: 34082078 DOI: 10.1016/j.arr.2021.101375] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 05/22/2021] [Accepted: 05/26/2021] [Indexed: 02/07/2023]
Abstract
Genetic causes for ageing are traditionally investigated within a species. Yet, the lifecycles of many organisms intersect. Additional evolutionary and genetic causes of ageing, external to a focal species/organism, may thus be overlooked. Here, we introduce the phrase and concept of age-distorters and its evidence. Age-distorters carry ageing interfering genes, used to manipulate the biological age of other entities upon which the reproduction of age-distorters relies, e.g. age-distorters bias the reproduction/maintenance trade-offs of cells/organisms for their own evolutionary interests. Candidate age-distorters include viruses, parasites and symbionts, operating through specific, genetically encoded interferences resulting from co-evolution and arms race between manipulative non-kins and manipulable species. This interference results in organismal ageing when age-distorters prompt manipulated organisms to favor their reproduction at the expense of their maintenance, turning these hosts into expanded disposable soma. By relying on reproduction/maintenance trade-offs affecting disposable entities, which are left ageing to the reproductive benefit of other physically connected lineages with conflicting evolutionary interests, the concept of age-distorters expands the logic of the Disposable Soma theory beyond species with fixed germen/soma distinctions. Moreover, acknowledging age-distorters as external sources of mutation accumulation and antagonistic pleiotropic genes expands the scope of the mutation accumulation and of the antagonistic pleiotropy theories.
Collapse
Affiliation(s)
- Jérôme Teulière
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Sorbonne Université, CNRS, Museum National d'Histoire Naturelle, EPHE, Université des Antilles, Paris, France
| | - Charles Bernard
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Sorbonne Université, CNRS, Museum National d'Histoire Naturelle, EPHE, Université des Antilles, Paris, France
| | - Eric Bapteste
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Sorbonne Université, CNRS, Museum National d'Histoire Naturelle, EPHE, Université des Antilles, Paris, France.
| |
Collapse
|
20
|
Cui J, Yang X, Wang F, Liu S, Han S, Chen B. Effects of ammonia on growth performance, lipid metabolism and cecal microbial community of rabbits. PLoS One 2021; 16:e0252065. [PMID: 34191811 PMCID: PMC8244895 DOI: 10.1371/journal.pone.0252065] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 05/09/2021] [Indexed: 01/12/2023] Open
Abstract
This study was designed to investigate the effect of ammonia on growth performance, lipid metabolism and intestinal flora of rabbits. A total of 150 female IRA rabbits (35-days-old) were randomly divided into three groups including 0 ppm (CG), 10 ppm (LAC) and 30 ppm ammonia (HAC) groups for a period of 28 days. The average daily weight gain (ADG) of rabbits was significantly reduced in LAC (-17.11%; p < 0.001) and HAC groups (-17.46%; p < 0.001) as compared with the CG. Serum concentration of high density lipoprotein (HDL) and glucose (Glu) were increased in LAC (+80.95%; +45.99; p < 0.05) and HAC groups (+219.05%; +45.89; p < 0.001), while apolipoprotein A1 (apoA1) was decreased in LAC (-58.49%; p < 0.001) and HAC groups (-36.92%; p < 0.001). The structural integrity of cecum was damaged, and the thickness of mucosa and serosa were significantly decreased in LAC and HAC. The acetate, butyrate and propionate level of cecal chyme were reduced in HAC group (-21.67%; -19.82%; -30.81%; p < 0.05). Microbial diversity and burden of Firmicutes were significantly decreased, while that of pathogenic bacteria, such as Bacteroidetes, Clostridium and Proteobacteria were increased in ammonia treated groups. Spearman's correlation confirmed that burden of Ruminococcaceae_NK4A214_group showed significantly negative correlation with acetic acid (r = -0.67; p < 0.001) while Barnesiellaceae_unclassified showed significantly positive correlation with propionic acid (r = 0.50; p < 0.001). In conclusion, ammonia treatment was responsible for an imbalance of intestinal flora, which affected lipid metabolism and damaged intestinal barrier of rabbits, resulting in low growth performance due to lipid metabolism dysfunction.
Collapse
Affiliation(s)
- Jia Cui
- College of Animal Science and Technology, Hebei Agricultural University, Bao ding, China
| | - Xinyu Yang
- College of Animal Science and Technology, Hebei Agricultural University, Bao ding, China
| | - Fengxia Wang
- College of Animal Science and Technology, Hebei Agricultural University, Bao ding, China
| | - Shudong Liu
- College of Animal Science and Technology, Hebei Agricultural University, Bao ding, China
| | - Shuaijuan Han
- College of Animal Science and Technology, Hebei Agricultural University, Bao ding, China
| | - Baojiang Chen
- College of Animal Science and Technology, Hebei Agricultural University, Bao ding, China
| |
Collapse
|
21
|
Tu Y, Yang R, Xu X, Zhou X. The microbiota-gut-bone axis and bone health. J Leukoc Biol 2021; 110:525-537. [PMID: 33884666 DOI: 10.1002/jlb.3mr0321-755r] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 03/16/2021] [Accepted: 04/05/2021] [Indexed: 02/05/2023] Open
Abstract
The gastrointestinal tract is colonized by trillions of microorganisms, consisting of bacteria, fungi, and viruses, known as the "second gene pool" of the human body. In recent years, the microbiota-gut-bone axis has attracted increasing attention in the field of skeletal health/disorders. The involvement of gut microbial dysbiosis in multiple bone disorders has been recognized. The gut microbiota regulates skeletal homeostasis through its effects on host metabolism, immune function, and hormonal secretion. Owing to the essential role of the gut microbiota in skeletal homeostasis, novel gut microbiota-targeting therapeutics, such as probiotics and prebiotics, have been proven effective in preventing bone loss. However, more well-controlled clinical trials are still needed to evaluate the long-term efficacy and safety of these ecologic modulators in the treatment of bone disorders.
Collapse
Affiliation(s)
- Ye Tu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, P.R. China.,Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, P.R. China
| | - Ran Yang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, P.R. China.,Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, P.R. China
| | - Xin Xu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, P.R. China.,Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, P.R. China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, P.R. China.,Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, P.R. China
| |
Collapse
|
22
|
Bosch TCG, McFall-Ngai M. Animal development in the microbial world: Re-thinking the conceptual framework. Curr Top Dev Biol 2021; 141:399-427. [PMID: 33602495 PMCID: PMC8214508 DOI: 10.1016/bs.ctdb.2020.11.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Animals have evolved within the framework of the microbes and are constantly exposed to diverse microbiota. This dominance of the microbial world is forcing all fields of biology to question some of their most basic premises, with developmental biology being no exception. While animals under laboratory conditions can develop and live without microbes, they are far from normal, and would not survive under natural conditions, where their fitness would be strongly compromised. Since much of the undescribed biodiversity on Earth is microbial, any consideration of animal development in the absence of the recognition of microbes will be incomplete. Here, we show that animal development may never have been autonomous, rather it requires transient or persistent interactions with the microbial world. We propose that to formulate a comprehensive understanding of embryogenesis and post-embryonic development, we must recognize that symbiotic microbes provide important developmental signals and contribute in significant ways to phenotype production. This offers limitless opportunities for the field of developmental biology to expand.
Collapse
Affiliation(s)
- Thomas C G Bosch
- Zoological Institute, Christian-Albrechts-University Kiel, Kiel, Germany.
| | - Margaret McFall-Ngai
- Pacific Biosciences Research Center, Kewalo Marine Laboratory, University of Hawai'i at Mānoa, Honolulu, HI, United States
| |
Collapse
|
23
|
Kirschman LJ, Khadjinova A, Ireland K, Milligan-Myhre KC. Early life disruption of the microbiota affects organ development and cytokine gene expression in threespine stickleback. Integr Comp Biol 2020; 63:icaa136. [PMID: 32970813 PMCID: PMC10388389 DOI: 10.1093/icb/icaa136] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 09/04/2020] [Accepted: 09/08/2020] [Indexed: 12/20/2022] Open
Abstract
The microbiota that inhabits vertebrates exerts strong effects on host physiology and can be crucial to the development of a normal phenotype. This includes development of the immune system, somatic growth and maintenance, and morphogenesis. However, the genetic background of the host can also affect these life history traits. To this end, we investigated the effects of the microbiota on growth, development, and immune gene expression on two populations of threespine stickleback (Gasterosteus aculeatus), one anadromous and one freshwater. We tested the hypotheses that microbial colonization and the genetic background of the host would affect survival, cytokine gene expression, growth, and development. We raised in vitro crosses of stickleback larvae with and without conventional microbiota. We then exposed all these treatments to Vibrio anguillarum, a potential fish pathogen, in a full factorial design. We found stickleback raised without conventional microbiota had smaller swim bladders relative to those raised with conventional microbiota. Stickleback raised with conventional microbiota exhibited small increases in cytokine gene expression. We found no differences in growth or survival regardless of treatment. These results are consistent with other investigations that show microbiota disruption, in early life, can alter host organ and tissue development and immune responses.
Collapse
Affiliation(s)
- Lucas J Kirschman
- Department Biology, Southeast Missouri University, 1 University Plaza, Cape Girardeau, MO 63701, USA
| | | | - Kelly Ireland
- Department of Biological Sciences, University of Alaska Anchorage, Anchorage, AK 99508, USA
| | - Kathryn C Milligan-Myhre
- Department of Biological Sciences, University of Alaska Anchorage, Anchorage, AK 99508, USA
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269-3125, USA
| |
Collapse
|
24
|
Yuen KCJ, Masel BE, Reifschneider KL, Sheffield-Moore M, Urban RJ, Pyles RB. Alterations of the GH/IGF-I Axis and Gut Microbiome after Traumatic Brain Injury: A New Clinical Syndrome? J Clin Endocrinol Metab 2020; 105:5862647. [PMID: 32585029 DOI: 10.1210/clinem/dgaa398] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 06/18/2020] [Indexed: 12/22/2022]
Abstract
CONTEXT Pituitary dysfunction with abnormal growth hormone (GH) secretion and neurocognitive deficits are common consequences of traumatic brain injury (TBI). Recognizing the comorbidity of these symptoms is of clinical importance; however, efficacious treatment is currently lacking. EVIDENCE ACQUISITION A review of studies in PubMed published between January 1980 to March 2020 and ongoing clinical trials was conducted using the search terms "growth hormone," "traumatic brain injury," and "gut microbiome." EVIDENCE SYNTHESIS Increasing evidence has implicated the effects of TBI in promoting an interplay of ischemia, cytotoxicity, and inflammation that renders a subset of patients to develop postinjury hypopituitarism, severe fatigue, and impaired cognition and behavioral processes. Recent data have suggested an association between abnormal GH secretion and altered gut microbiome in TBI patients, thus prompting the description of a hypothesized new clinical syndrome called "brain injury associated fatigue and altered cognition." Notably, these patients demonstrate distinct characteristics from those with GH deficiency from other non-TBI causes in that their symptom complex improves significantly with recombinant human GH treatment, but does not reverse the underlying mechanistic cause as symptoms typically recur upon treatment cessation. CONCLUSION The reviewed data describe the importance of alterations of the GH/insulin-like growth factor I axis and gut microbiome after brain injury and its influence in promoting neurocognitive and behavioral deficits in a bidirectional relationship, and highlight a new clinical syndrome that may exist in a subset of TBI patients in whom recombinant human GH therapy could significantly improve symptomatology. More studies are needed to further characterize this clinical syndrome.
Collapse
Affiliation(s)
- Kevin C J Yuen
- Barrow Pituitary Center, Barrow Neurological Institute and St. Joseph's Hospital and Medical Center, University of Arizona College of Medicine and Creighton School of Medicine, Phoenix, Arizona
| | | | - Kent L Reifschneider
- Division of Endocrinology, Children's Specialty Group, Children's Hospital of The King's Daughters, Norfolk, Virginia
| | - Melinda Sheffield-Moore
- Department of Health and Kinesiology, Texas A & M University, College Station, Texas
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas 77555
| | - Randall J Urban
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas 77555
| | - Richard B Pyles
- Department of Pediatrics, University of Texas Medical Branch, Galveston, Texas
| |
Collapse
|
25
|
Callegari M, Jucker C, Fusi M, Leonardi MG, Daffonchio D, Borin S, Savoldelli S, Crotti E. Hydrolytic Profile of the Culturable Gut Bacterial Community Associated With Hermetia illucens. Front Microbiol 2020; 11:1965. [PMID: 32903451 PMCID: PMC7434986 DOI: 10.3389/fmicb.2020.01965] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 07/24/2020] [Indexed: 12/22/2022] Open
Abstract
Larvae of the black soldier fly (BSF) Hermetia illucens (L.) convert organic waste into high valuable insect biomass that can be used as alternative protein source for animal nutrition or as feedstock for biodiesel production. Since insect biology and physiology are influenced by the gut microbiome, knowledge about the functional role of BSF-associated microorganisms could be exploited to enhance the insect performance and growth. Although an increasing number of culture-independent studies are unveiling the microbiota structure and composition of the BSF gut microbiota, a knowledge gap remains on the experimental validation of the contribution of the microorganisms to the insect growth and development. We aimed at assessing if BSF gut-associated bacteria potentially involved in the breakdown of diet components are able to improve host nutrition. A total of 193 bacterial strains were obtained from guts of BSF larvae reared on a nutritious diet using selective and enrichment media. Most of the bacterial isolates are typically found in the insect gut, with major representatives belonging to the Gammaproteobacteria and Bacilli classes. The hydrolytic profile of the bacterial collection was assessed on compounds typically present in the diet. Finally, we tested the hypothesis that the addition to a nutritionally poor diet of the two isolates Bacillus licheniformis HI169 and Stenotrophomonas maltophilia HI121, selected for their complementary metabolic activities, could enhance BSF growth. B. licheniformis HI169 positively influenced the larval final weight and growth rate when compared to the control. Conversely, the addition of S. maltophilia HI121 to the nutritionally poor diet did not result in a growth enhancement in terms of larval weight and pupal weight and length in comparison to the control, whereas the combination of the two strains positively affected the larval final weight and the pupal weight and length. In conclusion, we isolated BSF-associated bacterial strains with potential positive properties for the host nutrition and we showed that selected isolates may enhance BSF growth, suggesting the importance to evaluate the effect of the bacterial administration on the insect performance.
Collapse
Affiliation(s)
- Matteo Callegari
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l’Ambiente (DeFENS), Università degli Studi di Milano, Milan, Italy
- Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Costanza Jucker
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l’Ambiente (DeFENS), Università degli Studi di Milano, Milan, Italy
| | - Marco Fusi
- Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- School of Applied Sciences, Edinburgh Napier University, Edinburgh, United Kingdom
| | - Maria Giovanna Leonardi
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l’Ambiente (DeFENS), Università degli Studi di Milano, Milan, Italy
| | - Daniele Daffonchio
- Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Sara Borin
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l’Ambiente (DeFENS), Università degli Studi di Milano, Milan, Italy
| | - Sara Savoldelli
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l’Ambiente (DeFENS), Università degli Studi di Milano, Milan, Italy
| | - Elena Crotti
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l’Ambiente (DeFENS), Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
26
|
Abstract
PURPOSE OF REVIEW Calcium and vitamin D supplementation is recommended for patients at high risk of fracture and/or for those receiving pharmacological osteoporosis treatments. Probiotics are micro-organisms conferring a health benefit on the host when administered in adequate amounts, likely by influencing gut microbiota (GM) composition and/or function. GM has been shown to influence various determinants of bone health. RECENT FINDINGS In animal models, probiotics prevent bone loss associated with estrogen deficiency, diabetes, or glucocorticoid treatments, by modulating both bone resorption by osteoclasts and bone formation by osteoblast. In humans, they interfere with 25-hydroxyvitamin D levels, and calcium intake and absorption, and slightly decrease bone loss in elderly postmenopausal women, in a quite similar magnitude as observed with calcium ± vitamin D supplements. A dietary source of probiotics is fermented dairy products which can improve calcium balance, prevent secondary hyperparathyroidism, and attenuate age-related increase of bone resorption and bone loss. Additional studies are required to determine whether probiotics or any other interventions targeting GM and its metabolites may be adjuvant treatment to calcium and vitamin D or anti-osteoporotic drugs in the general management of patients with bone fragility.
Collapse
Affiliation(s)
- René Rizzoli
- Service of Bone Diseases, Geneva University Hospitals and Faculty of Medicine, 1211, Geneva 14, Switzerland.
| | - Emmanuel Biver
- Service of Bone Diseases, Geneva University Hospitals and Faculty of Medicine, 1211, Geneva 14, Switzerland
| |
Collapse
|
27
|
Zhaxi Y, Meng X, Wang W, Wang L, He Z, Zhang X, Pu W. Duan-Nai-An, A Yeast Probiotic, Improves Intestinal Mucosa Integrity and Immune Function in Weaned Piglets. Sci Rep 2020; 10:4556. [PMID: 32165666 PMCID: PMC7067797 DOI: 10.1038/s41598-020-61279-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 02/20/2020] [Indexed: 12/01/2022] Open
Abstract
Post-weaning diarrhea commonly occurs in piglets and results in significant economic loss to swine producers. Non-antibiotic measures for managing post-weaning diarrhea are critically needed. Duan-Nai-An, a probiotic produced from the yeast fermentation of egg whites, was previously shown to optimize intestinal flora and reduce the incidence of clinical diarrhea in weaning piglets. To study the effects of Duan-Nai-An on mucosal integrity and immunity in pig intestine, we examined the microstructure and ultrastructure of the intestines of weaned pigs with or without Duan-Nai-An as a feed supplement. The piglets of the Duan-Nai-An-fed group developed intestines with intact columnar epithelia covered by tightly packed microvilli on the apical surface. However, piglets of the control group (no supplement) showed villous atrophy and thinning, microvillus slough, and in the severe cases, damage of intestinal epithelia and exposure of the underlying lamina propria. Moreover, piglets of the Duan-Nai-An-fed group showed apparent plasmocyte hyperplasia, increased lymphoid nodule numbers, well-developed Peyer's Patchs, and apparent germinal centers. The lymphoid tissues of the control group were far less developed, showing lymph node atrophy, lymphocyte reduction, degeneration, and necrosis. These results indicate that Duan-Nai-An improves the development of the intestinal structures and lymphoid tissues and promotes intestinal health in weaned piglets.
Collapse
Affiliation(s)
- Yingpai Zhaxi
- Key Laboratory of New Animal Drug Project, Gansu Province and Key Laboratory of Veterinary Pharmaceutics Discovery, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, 730050, China
- College of Life Sciences and Engineering, Northwest Minzu University, Lanzhou, 730030, China
| | - Xiaoqin Meng
- Lanzhou Center for Animal Disease Control and Prevention, Lanzhou, 730050, China
| | - Wenhui Wang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China
| | - Ling Wang
- Key Laboratory of New Animal Drug Project, Gansu Province and Key Laboratory of Veterinary Pharmaceutics Discovery, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, 730050, China
| | - Zhuolin He
- Key Laboratory of New Animal Drug Project, Gansu Province and Key Laboratory of Veterinary Pharmaceutics Discovery, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, 730050, China
| | - Xuejing Zhang
- Key Laboratory of New Animal Drug Project, Gansu Province and Key Laboratory of Veterinary Pharmaceutics Discovery, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, 730050, China
| | - Wanxia Pu
- Key Laboratory of New Animal Drug Project, Gansu Province and Key Laboratory of Veterinary Pharmaceutics Discovery, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, 730050, China.
| |
Collapse
|
28
|
Fang S, Chen X, Zhou L, Wang C, Chen Q, Lin R, Xiao T, Gan Q. Faecal microbiota and functional capacity associated with weaning weight in meat rabbits. Microb Biotechnol 2019; 12:1441-1452. [PMID: 31571427 PMCID: PMC6801154 DOI: 10.1111/1751-7915.13485] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 05/15/2019] [Accepted: 08/15/2019] [Indexed: 12/18/2022] Open
Abstract
Weaning weight is an important economic trait in the meat rabbit industry. Evidence has linked the gut microbiota to health and production performance in rabbits. However, the effect of gut microbiota on meat rabbit weaning weight remains unclear. In this study, we performed 16S rRNA gene sequencing analysis of 135 faecal samples from commercial Ira rabbits. We detected 50 OTUs significantly associated with weaning weight. OTUs that showed positive associations with weaning weight were mostly members of the family Ruminococcaceae which are important in degrading dietary fibres and producing butyrate. On the contrary, OTUs annotated to genera Blautia, Lachnoclostridium and Butyricicoccus correlated with fat deposition were negatively associated with weaning weight. Predicted functional capacity analysis revealed that 91 KOs and 26 KEGG pathways exhibited potential correlations with weaning weight. We found that gut microbiota involved in the metabolism of amino acids, butanoate, energy and monosaccharides affected weaning weight. Additionally, cross-validation analysis indicated that 16.16% of the variation in weaning weight was explained by the gut microbiome. Our findings provide important information to improve weaning weight of meat rabbits by modulating their gut microbiome.
Collapse
Affiliation(s)
- Shaoming Fang
- College of Animal ScienceFujian Agriculture and Forestry UniversityFuzhouChina
| | - Xuan Chen
- College of Life ScienceFujian Agriculture and Forestry UniversityFuzhouChina
| | - Liwen Zhou
- College of Animal ScienceFujian Agriculture and Forestry UniversityFuzhouChina
| | - Chongchong Wang
- College of Animal ScienceFujian Agriculture and Forestry UniversityFuzhouChina
| | - Qiaohui Chen
- College of Animal ScienceFujian Agriculture and Forestry UniversityFuzhouChina
| | - Ruiyi Lin
- College of Animal ScienceFujian Agriculture and Forestry UniversityFuzhouChina
| | - Tianfang Xiao
- College of Animal ScienceFujian Agriculture and Forestry UniversityFuzhouChina
| | - QianFu Gan
- College of Animal ScienceFujian Agriculture and Forestry UniversityFuzhouChina
| |
Collapse
|
29
|
Rizzoli R. Nutritional influence on bone: role of gut microbiota. Aging Clin Exp Res 2019; 31:743-751. [PMID: 30710248 DOI: 10.1007/s40520-019-01131-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 01/12/2019] [Indexed: 02/07/2023]
Abstract
Gut microbiota (GM) located within the intestinal tract lumen comprises the largest number of cells (10E14) in the human body. The gut microbiome refers to the collection of genomes and genes present in gut microbiota. GM can vary according to age, sex, genetic background, immune status, geography, diet, prebiotics, which are non-digestible fibers metabolized in the distal part of the gastrointestinal tract, probiotics, which are micro-organisms conferring a health benefit on the host when administered in adequate amounts, living conditions, diseases and drugs. A source of probiotics is fortified fermented dairy products, which in addition provide calcium, protein, phosphorus and various micronutrients. Bone homeostasis is influenced by GM composition and/or products. GM appears to be a major player in the various determinants of bone health. However, it remains to be demonstrated in well conducted long-term randomized controlled trials, whether interventions changing GM composition and/or function are capable of reducing fracture risk.
Collapse
|
30
|
The Costs of Living Together: Immune Responses to the Microbiota and Chronic Gut Inflammation. Appl Environ Microbiol 2019; 85:AEM.02147-18. [PMID: 30530709 DOI: 10.1128/aem.02147-18] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
While the vertebrate microbiota is critical to the normal function of many host traits, hosts may expend a large amount of energy to constrain and interface with their microbiota via their immune system to avoid the high fitness costs associated with gut dysbiosis, pathobionts, and opportunistic pathogens. All jawed vertebrates share mucosal immunity dedicated to isolating the microbiota, and a breakdown of this system can result in chronic gut inflammation. In humans, chronic gut inflammation negatively affects growth and development. There is little information available on the prevalence of chronic gut inflammation in wild animals, but given that animals with different life histories emphasize different immune responses, it follows that wild animals may vary in their susceptibility to chronic gut inflammation, and most animals will experience signaling that can lead to this state. These can be top-down signals originating from sources like the central nervous system or bottom-up signals originating from changes in the gut microbiota. The sources of these signals might include stress, developmental transitions, food restriction, and dietary shifts. Here, we briefly discuss host-microbiota interactions from the perspective of life history theory and ecoimmunology, focusing on the mucosal immune system and chronic gut inflammation. We also include future directions for research and the tools necessary to investigate them.
Collapse
|
31
|
Chen S, Tan B, Xia Y, Liao S, Wang M, Yin J, Wang J, Xiao H, Qi M, Bin P, Liu G, Ren W, Yin Y. Effects of dietary gamma-aminobutyric acid supplementation on the intestinal functions in weaning piglets. Food Funct 2019; 10:366-378. [PMID: 30601517 DOI: 10.1039/c8fo02161a] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
This study aims to investigate the effects of dietary gamma-aminobutyric acid (GABA) supplementation on the growth performance, intestinal immunity, intestinal GABAergic system, amino acid profiles and gut microflora of the weaned piglets. Totally sixteen healthy piglets were randomly assigned into two groups to be fed with the basal diet (Con group) or the basal diet with GABA (20 mg kg-1) supplementation. Body weights and feed intakes were monitored weekly. Piglets were sacrificed after 3 weeks of GABA supplementation to collect the blood, ileum, ileal mucosa and luminal content. Immune-associated factors, GABAergic system, amino acid profiles, and microbiota in the ileum and serum amino acid profiles were explored. The results showed that GABA supplementation improved the growth performance and modulated the intestinal immunity with inhibiting the gene expressions of IL-22, proinflammatory cytokines (IL-1 and IL-18), and Muc1, but promoted the expressions of anti-inflammatory cytokines (IFN-γ, IL-4, and IL-10), TLR6 and MyD88. GABA regulated a few components of the intestinal GABAergic system, increased the levels of most amino acids in the ileal mucosa but reduced the serum amino acid profiles. GABA regulated the population and diversity of intestinal microbiota, such as the abundances of the dominant microbial populations, the community richness, and diversity of the ileal microbiota. In conclusion, GABA supplementation modulated the intestinal functions, including intestinal immunity, intestinal amino acid profiles and gut microbiota, and the results can be helpful for understanding the functions of GABA in the intestine.
Collapse
Affiliation(s)
- Shuai Chen
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, Hunan, China.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Rizzoli R. Microbiota and Bone Health: The Gut-Musculoskeletal Axis. Calcif Tissue Int 2018; 102:385-386. [PMID: 29427235 DOI: 10.1007/s00223-018-0391-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Accepted: 01/11/2018] [Indexed: 12/14/2022]
Affiliation(s)
- René Rizzoli
- Service of Bone Diseases, Geneva University Hospitals and Faculty of Medicine, 1211, Geneva 14, Switzerland.
| |
Collapse
|