1
|
Eap CB, Gründer G, Baumann P, Ansermot N, Conca A, Corruble E, Crettol S, Dahl ML, de Leon J, Greiner C, Howes O, Kim E, Lanzenberger R, Meyer JH, Moessner R, Mulder H, Müller DJ, Reis M, Riederer P, Ruhe HG, Spigset O, Spina E, Stegman B, Steimer W, Stingl J, Suzen S, Uchida H, Unterecker S, Vandenberghe F, Hiemke C. Tools for optimising pharmacotherapy in psychiatry (therapeutic drug monitoring, molecular brain imaging and pharmacogenetic tests): focus on antidepressants. World J Biol Psychiatry 2021; 22:561-628. [PMID: 33977870 DOI: 10.1080/15622975.2021.1878427] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Objectives: More than 40 drugs are available to treat affective disorders. Individual selection of the optimal drug and dose is required to attain the highest possible efficacy and acceptable tolerability for every patient.Methods: This review, which includes more than 500 articles selected by 30 experts, combines relevant knowledge on studies investigating the pharmacokinetics, pharmacodynamics and pharmacogenetics of 33 antidepressant drugs and of 4 drugs approved for augmentation in cases of insufficient response to antidepressant monotherapy. Such studies typically measure drug concentrations in blood (i.e. therapeutic drug monitoring) and genotype relevant genetic polymorphisms of enzymes, transporters or receptors involved in drug metabolism or mechanism of action. Imaging studies, primarily positron emission tomography that relates drug concentrations in blood and radioligand binding, are considered to quantify target structure occupancy by the antidepressant drugs in vivo. Results: Evidence is given that in vivo imaging, therapeutic drug monitoring and genotyping and/or phenotyping of drug metabolising enzymes should be an integral part in the development of any new antidepressant drug.Conclusions: To guide antidepressant drug therapy in everyday practice, there are multiple indications such as uncertain adherence, polypharmacy, nonresponse and/or adverse reactions under therapeutically recommended doses, where therapeutic drug monitoring and cytochrome P450 genotyping and/or phenotyping should be applied as valid tools of precision medicine.
Collapse
Affiliation(s)
- C B Eap
- Unit of Pharmacogenetics and Clinical Psychopharmacology, Center for Psychiatric Neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.,Center for Research and Innovation in Clinical Pharmaceutical Sciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.,School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland.,Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland.,Institute of Pharmaceutical Sciences of Western Switzerland, University of Lausanne, Switzerland, Geneva, Switzerland
| | - G Gründer
- Department of Molecular Neuroimaging, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - P Baumann
- Department of Psychiatry, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - N Ansermot
- Unit of Pharmacogenetics and Clinical Psychopharmacology, Center for Psychiatric Neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - A Conca
- Department of Psychiatry, Health Service District Bolzano, Bolzano, Italy.,Department of Child and Adolescent Psychiatry, South Tyrolean Regional Health Service, Bolzano, Italy
| | - E Corruble
- INSERM CESP, Team ≪MOODS≫, Service Hospitalo-Universitaire de Psychiatrie, Universite Paris Saclay, Le Kremlin Bicetre, France.,Service Hospitalo-Universitaire de Psychiatrie, Hôpital Bicêtre, Assistance Publique Hôpitaux de Paris, Le Kremlin Bicêtre, France
| | - S Crettol
- Unit of Pharmacogenetics and Clinical Psychopharmacology, Center for Psychiatric Neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - M L Dahl
- Division of Clinical Pharmacology, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - J de Leon
- Eastern State Hospital, University of Kentucky Mental Health Research Center, Lexington, KY, USA
| | - C Greiner
- Bundesinstitut für Arzneimittel und Medizinprodukte, Bonn, Germany
| | - O Howes
- King's College London and MRC London Institute of Medical Sciences (LMS)-Imperial College, London, UK
| | - E Kim
- Department of Brain and Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul, South Korea.,Department of Psychiatry, Seoul National University College of Medicine, Seoul, South Korea
| | - R Lanzenberger
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - J H Meyer
- Campbell Family Mental Health Research Institute, CAMH and Department of Psychiatry, University of Toronto, Toronto, Canada
| | - R Moessner
- Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany
| | - H Mulder
- Department of Clinical Pharmacy, Wilhelmina Hospital Assen, Assen, The Netherlands.,GGZ Drenthe Mental Health Services Drenthe, Assen, The Netherlands.,Department of Pharmacotherapy, Epidemiology and Economics, Department of Pharmacy and Pharmaceutical Sciences, University of Groningen, Groningen, The Netherlands.,Department of Psychiatry, Interdisciplinary Centre for Psychopathology and Emotion Regulation, University of Groningen, Groningen, The Netherlands
| | - D J Müller
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada.,Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - M Reis
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden.,Clinical Chemistry and Pharmacology, Skåne University Hospital, Lund, Sweden
| | - P Riederer
- Center of Mental Health, Clinic and Policlinic for Psychiatry, Psychosomatics and Psychotherapy, University Hospital Würzburg, Würzburg, Germany.,Department of Psychiatry, University of Southern Denmark Odense, Odense, Denmark
| | - H G Ruhe
- Department of Psychiatry, Radboudumc, Nijmegen, the Netherlands.,Donders Institute for Brain, Cognition and Behavior, Radboud University, Nijmegen, Netherlands
| | - O Spigset
- Department of Clinical Pharmacology, St. Olav University Hospital, Trondheim, Norway.,Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - E Spina
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - B Stegman
- Institut für Pharmazie der Universität Regensburg, Regensburg, Germany
| | - W Steimer
- Institute for Clinical Chemistry and Pathobiochemistry, Technical University of Munich, Munich, Germany
| | - J Stingl
- Institute for Clinical Pharmacology, University Hospital of RWTH Aachen, Germany
| | - S Suzen
- Department of Toxicology, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - H Uchida
- Department of Neuropsychiatry, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - S Unterecker
- Department of Psychiatry, Psychosomatics and Psychotherapy, University Hospital of Würzburg, Würzburg, Germany
| | - F Vandenberghe
- Unit of Pharmacogenetics and Clinical Psychopharmacology, Center for Psychiatric Neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - C Hiemke
- Department of Psychiatry and Psychotherapy, University Medical Center Mainz, Mainz, Germany
| |
Collapse
|
2
|
Chebotareva AD, Levin OS, Markov DD, Sychev DA, Grishina EA. [Is it personalized treatment of dementia based on the CYP2D6 gene polymorphism possible?]. Zh Nevrol Psikhiatr Im S S Korsakova 2018; 118:90-94. [PMID: 30346440 DOI: 10.17116/jnevro201811806290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Treatment of dementia is an urgent problem of modern neurology. Currently, four drugs are recommended to treat dementia, two of which (donepezil and galantamine) are metabolized with participation of the CYP2D6 enzyme. Genetic heterogeneity of CYP2D6 is associated with different enzyme activity, which affects the concentration of its substrates in blood and, accordingly, the clinical effect and the risk of side-effects of drugs. AIM To genotype the single nucleotide polymorphism 1846G>A in the CYP2D6 gene and evaluate its effect on the efficacy and safety of donepezyl in the treatment of Alzheimer's disease (AD). MATERIAL AND METHODS Twenty-one patients with AD were genotyped for the CYP2D6 1846G>A polymorphism, which corresponds to the most common in Caucasians allele CYP2D6*4. An effect of this polymorphism on the efficacy and safety of donepezyl was assessed. RESULTS AND CONCLUSION There was no association between the CYP2D6 genotype and the efficacy of antidementia therapy (OR=0,44, 95% CI -3.0-1,38; p=0,46).
Collapse
Affiliation(s)
- A D Chebotareva
- Russian Medical Academy of Continuous Professional Education, Moscow, Russia
| | - O S Levin
- Russian Medical Academy of Continuous Professional Education, Moscow, Russia
| | - D D Markov
- Russian Medical Academy of Continuous Professional Education, Moscow, Russia
| | - D A Sychev
- Russian Medical Academy of Continuous Professional Education, Moscow, Russia
| | - E A Grishina
- Russian Medical Academy of Continuous Professional Education, Moscow, Russia
| |
Collapse
|
3
|
Santini SA, Panza F, Lozupone M, Bellomo A, Greco A, Seripa D. Genetics of tailored medicine: Focus on CNS drugs. Microchem J 2018. [DOI: 10.1016/j.microc.2017.02.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
4
|
Modak AS. Point-of-care companion diagnostic tests for personalizing psychiatric medications: fulfilling an unmet clinical need. J Breath Res 2017; 12:017101. [PMID: 28920579 DOI: 10.1088/1752-7163/aa8d2e] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Over the last decade stable isotope-labeled substrates have been used as probes for rapid, point-of-care, non-invasive and user-friendly phenotype breath tests to evaluate activity of drug metabolizing enzymes. These diagnostic breath tests can potentially be used as companion diagnostics by physicians to personalize medications, especially psychiatric drugs with narrow therapeutic windows, to monitor the progress of disease severity, medication efficacy and to study in vivo the pharmacokinetics of xenobiotics. Several genotype tests have been approved by the FDA over the last 15 years for both cytochrome P450 2D6 and 2C19 enzymes, however they have not been cleared for use in personalizing medications since they fall woefully short in identifying all non-responders to drugs, especially for the CYP450 enzymes. CYP2D6 and CYP2C19 are among the most extensively studied drug metabolizing enzymes, involved in the metabolism of approximately 30% of FDA-approved drugs in clinical use, associated with large individual differences in medication efficacy or tolerability essentially due to phenoconversion. The development and commercialization via FDA approval of the non-invasive, rapid (<60 min), in vivo, phenotype diagnostic breath tests to evaluate polymorphic CYP2D6 and CYP2C19 enzyme activity by measuring exhaled 13CO2 as a biomarker in breath will effectively resolve the currently unmet clinical need for individualized psychiatric drug therapy. Clinicians could personalize treatment options for patients based on the CYP2D6 and CYP2C19 phenotype by selecting the optimal medication at the right initial and subsequent maintenance dose for the desired clinical outcome (i.e. greatest efficacy and minimal side effects).
Collapse
Affiliation(s)
- Anil S Modak
- Cambridge Isotope Laboratories, Inc., 3 Highwood Drive, Tewksbury, MA 01876, United States of America
| |
Collapse
|
5
|
Seripa D, Lozupone M, Stella E, Paroni G, Bisceglia P, La Montagna M, D’onofrio G, Gravina C, Urbano M, Priore MG, Lamanna A, Daniele A, Bellomo A, Logroscino G, Greco A, Panza F. Psychotropic drugs and CYP2D6 in late-life psychiatric and neurological disorders. What do we know? Expert Opin Drug Saf 2017; 16:1373-1385. [DOI: 10.1080/14740338.2017.1389891] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Davide Seripa
- Complex Structure of Geriatrics, Department of Medical Sciences, IRCCS “Casa Sollievo della Sofferenza”, San Giovanni Rotondo, Foggia, Italy
| | - Madia Lozupone
- Neurodegenerative Disease Unit, Department of Basic Medicine, Neuroscience, and Sense Organs, University of Bari Aldo Moro, Bari, Italy
| | - Eleonora Stella
- Psychiatric Unit, Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Giulia Paroni
- Complex Structure of Geriatrics, Department of Medical Sciences, IRCCS “Casa Sollievo della Sofferenza”, San Giovanni Rotondo, Foggia, Italy
| | - Paola Bisceglia
- Complex Structure of Geriatrics, Department of Medical Sciences, IRCCS “Casa Sollievo della Sofferenza”, San Giovanni Rotondo, Foggia, Italy
| | - Maddalena La Montagna
- Psychiatric Unit, Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Grazia D’onofrio
- Complex Structure of Geriatrics, Department of Medical Sciences, IRCCS “Casa Sollievo della Sofferenza”, San Giovanni Rotondo, Foggia, Italy
| | - Carolina Gravina
- Complex Structure of Geriatrics, Department of Medical Sciences, IRCCS “Casa Sollievo della Sofferenza”, San Giovanni Rotondo, Foggia, Italy
| | - Maria Urbano
- Complex Structure of Geriatrics, Department of Medical Sciences, IRCCS “Casa Sollievo della Sofferenza”, San Giovanni Rotondo, Foggia, Italy
| | - Maria Giovanna Priore
- Neurodegenerative Disease Unit, Department of Basic Medicine, Neuroscience, and Sense Organs, University of Bari Aldo Moro, Bari, Italy
| | - Angela Lamanna
- Neurodegenerative Disease Unit, Department of Basic Medicine, Neuroscience, and Sense Organs, University of Bari Aldo Moro, Bari, Italy
| | - Antonio Daniele
- Institute of Neurology, Catholic University of Sacred Heart, Rome, Italy
| | - Antonello Bellomo
- Psychiatric Unit, Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Giancarlo Logroscino
- Neurodegenerative Disease Unit, Department of Basic Medicine, Neuroscience, and Sense Organs, University of Bari Aldo Moro, Bari, Italy
- Department of Clinical Research in Neurology, University of Bari Aldo Moro, “Pia Fondazione Cardinale G. Panico”, Tricase, Lecce, Italy
| | - Antonio Greco
- Complex Structure of Geriatrics, Department of Medical Sciences, IRCCS “Casa Sollievo della Sofferenza”, San Giovanni Rotondo, Foggia, Italy
| | - Francesco Panza
- Complex Structure of Geriatrics, Department of Medical Sciences, IRCCS “Casa Sollievo della Sofferenza”, San Giovanni Rotondo, Foggia, Italy
- Neurodegenerative Disease Unit, Department of Basic Medicine, Neuroscience, and Sense Organs, University of Bari Aldo Moro, Bari, Italy
- Department of Clinical Research in Neurology, University of Bari Aldo Moro, “Pia Fondazione Cardinale G. Panico”, Tricase, Lecce, Italy
| |
Collapse
|
6
|
Eap CB. Personalized prescribing: a new medical model for clinical implementation of psychotropic drugs. DIALOGUES IN CLINICAL NEUROSCIENCE 2017. [PMID: 27757065 PMCID: PMC5067148 DOI: 10.31887/dcns.2016.18.3/ceap] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The use of pharmacogenetic tests was already being proposed in psychiatry in the early 2000s because genetic factors were known to influence drug pharmacokinetics and pharmacodynamics. However, sufficient levels of evidence to justify routine use have been achieved for only a few tests (eg, major histocompatibility complex, class I, B, allele 1502 [HLA-B*1502] for carbamazepine in epilepsy and bipolar disorders); many findings are too preliminary or, when replicated, of low clinical relevance because of a small effect size. Although drug selection and dose adaptation according to cytochrome P450 genotypes are sound, a large number of patients need to be genotyped in order to prevent one case of severe side effect and/or nonresponse. The decrease in cost for genetic analysis shifts the cost: benefit ratio toward increasing use of pharmacogenetic tests. However, they have to be combined with careful clinical evaluations and other tools (eg, therapeutic drug monitoring and phenotyping) to contribute to the general aim of providing the best care for psychiatric patients.
Collapse
Affiliation(s)
- Chin B Eap
- Unit of Pharmacogenetics and Clinical Psychopharmacology, Centre for Psychiatric Neurosciences, Department of Psychiatry, Lausanne University Hospital, Prilly, Switzerland; School of Pharmacy, Department of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Geneva, Switzerland
| |
Collapse
|
7
|
Mulder H, Heerdink ER, van Iersel EE, Wilmink FW, Egberts ACG. Prevalence of Patients Using Drugs Metabolized by Cytochrome P450 2D6 in Different Populations: a Cross-Sectional Study. Ann Pharmacother 2016; 41:408-13. [PMID: 17341534 DOI: 10.1345/aph.1h482] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Background: Despito a large number of studies investigating the potential clinical relevance of CYP2D6 genotyping in preventing treatment failure (eg, insufficient efficacy and/or unacceptable adverse effects), the prevalence of patients using drugs metabolized by that isoenzyme is relatively unknown. Objective: To investigate the prevalence of patients in different populations using drugs metabolized by CYP2D6. Methods: In this cross-sectional study. 6 different patient populations were investigated: general, general hospital, geriatric, psychogoriatric, psychiatric, and mentally retarded. From every population, 150 adults using at least one drug were randomly selected. Primary outcome was the prevalence of patients using at least one drug metabolized by CYP2D6. The prevalence of patients using at least one CYP2D6 substrate in different populations was compared with the general population using χ2 statistics. Data were expressed as a relative risk with a 95% confidence interval. Results: Patients from the general hospital (RR 1.81; 95% CI 1.26 to 2.62), geriatric patients (RR 2.16; 95% CI 1.26 to 2.62), psychogeriatric patients (RR 2.31; 95% CI 1.63 to 3.27), and psychiatric patients (RR 2.44; 95% CI 1.73 to 3.44) were treated more frequently with at least one drug metabolized by CYP2D6 compared with patients in the general population. Approximately 50% of psychiatric (52%), psychogeriatric (49%), and geriatric (46%) patients used at least one drug metabolized by CYP2D6. In total, 416 drugs metabolized by CYP2D6 were prescribed, with 257 (62%) of these classified as an antidepressant (Anatomical and Therapeutic Chemical [ATC] category N06A) or antipsychotic (ATC N05A). Conclusions: Several patient populations (eg, psychiatric, psychogeriatric, geriatric) have a high prevalence of patients treated with at least one drug metabolized by CYP2D6. This study does not provide evidence regarding the clinical evidence of CYP2D6 genotyping, but shows that, if CYP2D6 genotyping is relevant for patient care, the highest probability of cost-effectiveness will, most likely, be in specific populations.
Collapse
Affiliation(s)
- Hans Mulder
- Faculty of Science, Division of Pharmacoepidemiology and Pharmacotherapy, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| | | | | | | | | |
Collapse
|
8
|
Lozupone M, Panza F, Stella E, La Montagna M, Bisceglia P, Miscio G, Galizia I, Daniele A, di Mauro L, Bellomo A, Logroscino G, Greco A, Seripa D. Pharmacogenetics of neurological and psychiatric diseases at older age: has the time come? Expert Opin Drug Metab Toxicol 2016; 13:259-277. [DOI: 10.1080/17425255.2017.1246533] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Madia Lozupone
- Unit of Neurodegenerative Disease, Department of Basic Medicine Sciences, Neuroscience, and Sense Organs, University of Bari ‘Aldo Moro,’, Bari, Italy
| | - Francesco Panza
- Unit of Neurodegenerative Disease, Department of Basic Medicine Sciences, Neuroscience, and Sense Organs, University of Bari ‘Aldo Moro,’, Bari, Italy
- Unit of Neurodegenerative Disease, Department of Clinical Research in Neurology, University of Bari ‘Aldo Moro’ at ‘Pia Fondazione Card. G. Panico,’, Tricase, Lecce, Italy
- Geriatric Unit and Gerontology-Geriatrics Research Laboratory, Department of Medical Sciences, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Eleonora Stella
- Psychiatric Unit, Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Maddalena La Montagna
- Psychiatric Unit, Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Paola Bisceglia
- Geriatric Unit and Gerontology-Geriatrics Research Laboratory, Department of Medical Sciences, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Giuseppe Miscio
- Laboratory of Clinical Chemistry, Department of Clinical Pathology, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Ilaria Galizia
- Psychiatric Unit, Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Antonio Daniele
- Institute of Neurology, Catholic University of Sacred Heart, Rome, Italy
| | - Lazzaro di Mauro
- Laboratory of Clinical Chemistry, Department of Clinical Pathology, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Antonello Bellomo
- Psychiatric Unit, Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Giancarlo Logroscino
- Unit of Neurodegenerative Disease, Department of Basic Medicine Sciences, Neuroscience, and Sense Organs, University of Bari ‘Aldo Moro,’, Bari, Italy
- Unit of Neurodegenerative Disease, Department of Clinical Research in Neurology, University of Bari ‘Aldo Moro’ at ‘Pia Fondazione Card. G. Panico,’, Tricase, Lecce, Italy
| | - Antonio Greco
- Geriatric Unit and Gerontology-Geriatrics Research Laboratory, Department of Medical Sciences, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Davide Seripa
- Geriatric Unit and Gerontology-Geriatrics Research Laboratory, Department of Medical Sciences, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| |
Collapse
|
9
|
Panza F, Lozupone M, Stella E, Miscio G, La Montagna M, Daniele A, di Mauro L, Bellomo A, Logroscino G, Greco A, Seripa D. The pharmacogenetic road to avoid adverse drug reactions and therapeutic failures in revolving door patients with psychiatric illnesses: focus on the CYP2D6 isoenzymes. EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT 2016. [DOI: 10.1080/23808993.2016.1232148] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
10
|
Panza F, Lozupone M, Stella E, Lofano L, Gravina C, Urbano M, Daniele A, Bellomo A, Logroscino G, Greco A, Seripa D. Psychiatry meets pharmacogenetics for the treatment of revolving door patients with psychiatric disorders. Expert Rev Neurother 2016; 16:1357-1369. [DOI: 10.1080/14737175.2016.1204913] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Francesco Panza
- a Geriatric Unit and Geriatric Research Laboratory, Department of Medical Sciences , IRCCS Casa Sollievo della Sofferenza , Foggia , Italy.,b Neurodegenerative Diseases Unit, Department of Basic Medicine, Neuroscience, and Sense Organs , University of Bari "Aldo Moro" , Bari , Italy.,c Neurodegenerative Diseases Unit, Department of Clinical Research in Neurology , University of Bari "Aldo Moro" at "Pia Fondazione Card. G. Panico" , Lecce , Italy
| | - Madia Lozupone
- b Neurodegenerative Diseases Unit, Department of Basic Medicine, Neuroscience, and Sense Organs , University of Bari "Aldo Moro" , Bari , Italy.,d Psychiatric Unit, Department of Clinical and Experimental Medicine , University of Foggia , Foggia , Italy
| | - Eleonora Stella
- d Psychiatric Unit, Department of Clinical and Experimental Medicine , University of Foggia , Foggia , Italy
| | - Lucia Lofano
- e Psychiatric Unit, Department of Basic Medicine Sciences, Neuroscience, and Sense Organs , University of Bari "Aldo Moro" , Bari , Italy
| | - Carolina Gravina
- a Geriatric Unit and Geriatric Research Laboratory, Department of Medical Sciences , IRCCS Casa Sollievo della Sofferenza , Foggia , Italy
| | - Maria Urbano
- a Geriatric Unit and Geriatric Research Laboratory, Department of Medical Sciences , IRCCS Casa Sollievo della Sofferenza , Foggia , Italy
| | - Antonio Daniele
- f Institute of Neurology , Catholic University of Sacred Heart , Rome , Italy
| | - Antonello Bellomo
- d Psychiatric Unit, Department of Clinical and Experimental Medicine , University of Foggia , Foggia , Italy
| | - Giancarlo Logroscino
- b Neurodegenerative Diseases Unit, Department of Basic Medicine, Neuroscience, and Sense Organs , University of Bari "Aldo Moro" , Bari , Italy.,c Neurodegenerative Diseases Unit, Department of Clinical Research in Neurology , University of Bari "Aldo Moro" at "Pia Fondazione Card. G. Panico" , Lecce , Italy
| | - Antonio Greco
- a Geriatric Unit and Geriatric Research Laboratory, Department of Medical Sciences , IRCCS Casa Sollievo della Sofferenza , Foggia , Italy
| | - Davide Seripa
- a Geriatric Unit and Geriatric Research Laboratory, Department of Medical Sciences , IRCCS Casa Sollievo della Sofferenza , Foggia , Italy
| |
Collapse
|
11
|
Abstract
Clinicians already face "personalized" medicine every day while experiencing the great variation in toxicities and drug efficacy among individual patients. Pharmacogenetics studies are the platform for discovering the DNA determinants of variability in drug response and tolerability. Research now focuses on the genome after its beginning with analyses of single genes. Therapeutic outcomes from several psychotropic drugs have been weakly linked to specific genetic variants without independent replication. Drug side effects show stronger associations to genetic variants, including human leukocyte antigen loci with carbamazepine-induced dermatologic outcome and MC4R with atypical antipsychotic weight gain. Clinical implementation has proven challenging, with barriers including a lack of replicable prospective evidence for clinical utility required for altering medical care. More recent studies show promising approaches for reducing these barriers to routine incorporation of pharmacogenetics data into clinical care.
Collapse
|
12
|
Zahari Z, Ismail R. Influence of Cytochrome P450, Family 2, Subfamily D, Polypeptide 6 (CYP2D6) Polymorphisms on Pain Sensitivity and Clinical Response to Weak Opioid Analgesics. Drug Metab Pharmacokinet 2014; 29:29-43. [DOI: 10.2133/dmpk.dmpk-13-rv-032] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
13
|
Samer CF, Lorenzini KI, Rollason V, Daali Y, Desmeules JA. Applications of CYP450 testing in the clinical setting. Mol Diagn Ther 2013; 17:165-84. [PMID: 23588782 PMCID: PMC3663206 DOI: 10.1007/s40291-013-0028-5] [Citation(s) in RCA: 226] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Interindividual variability in drug response is a major clinical problem. Polymedication and genetic polymorphisms modulating drug-metabolising enzyme activities (cytochromes P450, CYP) are identified sources of variability in drug responses. We present here the relevant data on the clinical impact of the major CYP polymorphisms (CYP2D6, CYP2C19 and CYP2C9) on drug therapy where genotyping and phenotyping may be considered, and the guidelines developed when available. CYP2D6 is responsible for the oxidative metabolism of up to 25% of commonly prescribed drugs such as antidepressants, antipsychotics, opioids, antiarrythmics and tamoxifen. The ultrarapid metaboliser (UM) phenotype is recognised as a cause of therapeutic inefficacy of antidepressant, whereas an increased risk of toxicity has been reported in poor metabolisers (PMs) with several psychotropics (desipramine, venlafaxine, amitriptyline, haloperidol). CYP2D6 polymorphism influences the analgesic response to prodrug opioids (codeine, tramadol and oxycodone). In PMs for CYP2D6, reduced analgesic effects have been observed, whereas in UMs cases of life-threatening toxicity have been reported with tramadol and codeine. CYP2D6 PM phenotype has been associated with an increased risk of toxicity of metoprolol, timolol, carvedilol and propafenone. Although conflicting results have been reported regarding the association between CYP2D6 genotype and tamoxifen effects, CYP2D6 genotyping may be useful in selecting adjuvant hormonal therapy in postmenopausal women. CYP2C19 is responsible for metabolising clopidogrel, proton pump inhibitors (PPIs) and some antidepressants. Carriers of CYP2C19 variant alleles exhibit a reduced capacity to produce the active metabolite of clopidogrel, and are at increased risk of adverse cardiovascular events. For PPIs, it has been shown that the mean intragastric pH values and the Helicobacter pylori eradication rates were higher in carriers of CYP2C19 variant alleles. CYP2C19 is involved in the metabolism of several antidepressants. As a result of an increased risk of adverse effects in CYP2C19 PMs, dose reductions are recommended for some agents (imipramine, sertraline). CYP2C9 is responsible for metabolising vitamin K antagonists (VKAs), non-steroidal anti-inflammatory drugs (NSAIDs), sulfonylureas, angiotensin II receptor antagonists and phenytoin. For VKAs, CYP2C9 polymorphism has been associated with lower doses, longer time to reach treatment stability and higher frequencies of supratherapeutic international normalised ratios (INRs). Prescribing algorithms are available in order to adapt dosing to genotype. Although the existing data are controversial, some studies have suggested an increased risk of NSAID-associated gastrointestinal bleeding in carriers of CYP2C9 variant alleles. A relationship between CYP2C9 polymorphisms and the pharmacokinetics of sulfonylureas and angiotensin II receptor antagonists has also been observed. The clinical impact in terms of hypoglycaemia and blood pressure was, however, modest. Finally, homozygous and heterozygous carriers of CYP2C9 variant alleles require lower doses of phenytoin to reach therapeutic plasma concentrations, and are at increased risk of toxicity. New diagnostic techniques made safer and easier should allow quicker diagnosis of metabolic variations. Genotyping and phenotyping may therefore be considered where dosing guidelines according to CYP genotype have been published, and help identify the right molecule for the right patient.
Collapse
Affiliation(s)
- C F Samer
- Clinical Pharmacology and Toxicology, Geneva University Hospitals, Rue Gabrielle-Perret-Gentil 4, 1211, Geneva, Switzerland.
| | | | | | | | | |
Collapse
|
14
|
Teh LK, Bertilsson L. Pharmacogenomics of CYP2D6: molecular genetics, interethnic differences and clinical importance. Drug Metab Pharmacokinet 2011; 27:55-67. [PMID: 22185816 DOI: 10.2133/dmpk.dmpk-11-rv-121] [Citation(s) in RCA: 150] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
CYP2D6 has received intense attention since the beginning of the pharmacogenetic era in the 1970s. This is because of its involvement in the metabolism of more than 25% of the marketed drugs, the large geographical and inter-ethnic differences in the genetic polymorphism and possible drug-induced toxicity. Many interesting reviews have been published on CYP2D6 and this review aims to reinstate the importance of the genetic polymorphism of CYP2D6 in different populations as well as some clinical implications and important drug interactions.
Collapse
Affiliation(s)
- Lay Kek Teh
- Pharmacogenomics Centre PROMISE, Faculty of Pharmacy, Universiti Teknologi MARA, Selangor DE, Malaysia.
| | | |
Collapse
|
15
|
Abstract
Psychiatry is one of the most promising areas for bringing pharmacogenomics to the patient. Psychiatric disorders such as depression and schizophrenia contribute significantly to worldwide morbidity and mortality. Forecasts rank depression second only to ischemic heart disease by 2020. In depression and schizophrenia, 30% to 50% of all patients do not respond sufficiently to the initial treatment regime. Genetic variability has been demonstrated to play an important role in the response to pharmacotherapy. Most data are available with regard to polymorphisms in the genes coding for drug-metabolizing enzymes and recommendations for the choice of personalized dosages based on genotyping results are available. Clinical outcome, in particular adverse effects, has been shown to correlate with the results from genotyping. Incorporating pharmacogenomics into clinical practice has, however, been slow and it is still not clear in which clinical situations genotyping should be performed and what the benefit of such procedures could be beyond therapeutic drug monitoring. Additionally, many studies in psychiatry focus on genetic variation in candidate genes of drug targets. However, despite promising reports, no clear recommendation can be given at present to perform such testing in clinical use.
Collapse
|
16
|
Lötsch J, Geisslinger G, Tegeder I. Genetic modulation of the pharmacological treatment of pain. Pharmacol Ther 2009; 124:168-84. [DOI: 10.1016/j.pharmthera.2009.06.010] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2009] [Accepted: 06/22/2009] [Indexed: 12/15/2022]
|
17
|
Nurses' genetic/genomics competencies when medication therapy is guided by pharmacogenetic testing: children with mental health disorders as an exemplar. J Pediatr Nurs 2009; 24:179-88. [PMID: 19467430 DOI: 10.1016/j.pedn.2008.02.033] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2007] [Revised: 02/26/2008] [Accepted: 02/26/2008] [Indexed: 11/22/2022]
Abstract
There is considerable variability in the effectiveness and toxicity of psychotropics used to treat mental health disorders in children and adolescents. Pharmacogenetic (PG) testing is beginning to be used to decrease the time it takes to reach therapeutic response and decrease the occurrence of adverse drug reactions in children and adolescents treated with psychotropics. This article reviews the pharmacogenetics literature and uses a clinical scenario to illustrate the essential genetic/genomics competencies pediatric nurses need to meet when providing care to patients whose medication therapy is being guided by PG testing.
Collapse
|
18
|
Lötsch J, Rohrbacher M, Schmidt H, Doehring A, Brockmöller J, Geisslinger G. Can extremely low or high morphine formation from codeine be predicted prior to therapy initiation? Pain 2009; 144:119-24. [PMID: 19395173 DOI: 10.1016/j.pain.2009.03.023] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2008] [Revised: 03/24/2009] [Accepted: 03/24/2009] [Indexed: 10/20/2022]
Abstract
Activation of codeine by O-demethylation into morphine is a prerequisite for its analgesic effects and severe toxicity. Identifying patients in whom morphine is formed either at extremely low or at extremely high amounts may improve efficacy and safety of codeine therapy. To assess how well this identification is possible, we compared the performance of current CYP2D6 phenotype association systems (traditional genotype-based classification, a recently proposed CYP2D6 activity score, and the plasma dextromethorphan metabolic ratio) in 57 healthy Caucasians after oral administration of 30 mg dextromethorphan hydrobromide or 50 mg codeine. Most subjects (87.5%) at the lower 15% of morphine formation from codeine and thus likely to not to respond to codeine therapy were correctly identified by CYP2D6 genotype- or phenotype-based systems. In contrast, in subjects at the upper 15% of morphine formation being at risk for opioid toxicity, CYP2D6 genotyping predicted only the 50% who carried gene duplication, whereas dextromethorphan-based phenotyping identified 67.5% of the subjects with high morphine formation. However, satisfactory prediction (87.5%) of high morphine formation was only achieved when combining genotyping with phenotyping. In conclusion, insufficient morphine formation from codeine and thus likely failure of analgesia can currently be well predicted. However, to make codeine therapy safe, extremely high morphine formation has to be predicted as well, which has to be obtained at the effort of combining genotyping with phenotyping.
Collapse
Affiliation(s)
- Jörn Lötsch
- pharmazentrum frankfurt/ZAFES, Institute of Clinical Pharmacology, Johann Wolfgang Goethe-University, Theodor Stern Kai 7, D-60590 Frankfurt am Main, Germany.
| | | | | | | | | | | |
Collapse
|
19
|
Maier W, Zobel A. Contribution of allelic variations to the phenotype of response to antidepressants and antipsychotics. Eur Arch Psychiatry Clin Neurosci 2008; 258 Suppl 1:12-20. [PMID: 18344045 DOI: 10.1007/s00406-007-1004-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Individualized medicine through molecular pharmacogenetics is one of the major future goals in clinical medicine. In psychopharmacology, pharmacogenetics became an expanding research component. Major research results were already attained: first, it is now feasible to predict a major proportion of the interindividual variation of plasma levels of most antidepressants and antipsychotics by using the DNA-sequence variation in genes for crucial CYP P450-enzymes as CYP2D6. Second, it is now possible to relate serious side effects (tardive dyskinesia, weight gain) of antipsychotics to specific genetic variants of genes for target proteins. Third, a long list of mainly functional variants in target protein genes was explored for their predictive power for the beneficial and adverse treatment outcome. Although specific results transferable into clinical practice were not yet obtained in this respect, the proof of principle could be demonstrated.
Collapse
Affiliation(s)
- Wolfgang Maier
- Klinik und Poliklinik für Psychiatrie und Psychotherapie, der Universität Bonn, Sigmund-Freud-Str 25, Bonn, Germany.
| | | |
Collapse
|
20
|
Jaquenoud Sirot E, van der Velden JW, Rentsch K, Eap CB, Baumann P. Therapeutic Drug Monitoring and Pharmacogenetic Tests as Tools in Pharmacovigilance. Drug Saf 2006; 29:735-68. [PMID: 16944962 DOI: 10.2165/00002018-200629090-00001] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Therapeutic drug monitoring (TDM) and pharmacogenetic tests play a major role in minimising adverse drug reactions and enhancing optimal therapeutic response. The response to medication varies greatly between individuals, according to genetic constitution, age, sex, co-morbidities, environmental factors including diet and lifestyle (e.g. smoking and alcohol intake), and drug-related factors such as pharmacokinetic or pharmacodynamic drug-drug interactions. Most adverse drug reactions are type A reactions, i.e. plasma-level dependent, and represent one of the major causes of hospitalisation, in some cases leading to death. However, they may be avoidable to some extent if pharmacokinetic and pharmacogenetic factors are taken into consideration. This article provides a review of the literature and describes how to apply and interpret TDM and certain pharmacogenetic tests and is illustrated by case reports. An algorithm on the use of TDM and pharmacogenetic tests to help characterise adverse drug reactions is also presented. Although, in the scientific community, differences in drug response are increasingly recognised, there is an urgent need to translate this knowledge into clinical recommendations. Databases on drug-drug interactions and the impact of pharmacogenetic polymorphisms and adverse drug reaction information systems will be helpful to guide clinicians in individualised treatment choices.
Collapse
|
21
|
Mulder H, Herder A, Wilmink FW, Tamminga WJ, Belitser SV, Egberts ACG. The impact of Cytochrome P450-2D6 genotype on the use and interpretation of therapeutic drug monitoring in long-stay patients treated with antidepressant and antipsychotic drugs in daily psychiatric practice. Pharmacoepidemiol Drug Saf 2006; 15:107-14. [PMID: 16294366 DOI: 10.1002/pds.1173] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
PURPOSE This retrospective follow-up study investigates whether cytochrome P450-2D6 (CYP2D6) genotype explains variability in plasma concentrations of psychotropic drugs in daily psychiatric practice. METHODS The study population consisted of 62 hospitalised psychiatric patients genotyped for CYP2D6. Primary endpoint was the normalised plasma concentration ratio which was defined as the [measured concentration]/[mean therapeutic concentration] allowing comparison of plasma concentrations of different substrates. Secondary endpoint was a plasma concentration above the therapeutic range. The determinant was CYP2D6 genotype classified as ultrarapid metaboliser (UM), extensive metaboliser (EM), intermediate metaboliser (IM), or poor metaboliser (PM). The relation between CYP2D6 genotype and the normalised plasma concentration ratio was assessed with a linear mixed-effects model after adjustment for the Prescribed Daily Dose (PDD). The risk of having a plasma concentration above the therapeutic range was assessed with a logistic mixed-effects model. RESULTS For antidepressants, CYP2D6 genotype PM (1.68 (95%CI: 1.01-2.28)) and IM (1.09 (95%CI: 0.77-1.29)) were associated with higher normalised plasma concentration ratios of antidepressants compared to EMs (0.56 (95%CI: 0.26-0.74)). In addition, the risk of a plasma concentration above the therapeutic range was increased for PMs (OR 33.1 (95%CI: 2.0-544.6)) and IMs (OR 8.2 (95%CI: 1.1-60.3)) relative to EMs using antidepressants. CYP2D6 genotype could not clearly explain variability in plasma concentrations of antipsychotics possibly due to a low frequency of therapeutic drug monitoring (TDM) in antipsychotics primarily metabolised by CYP2D6 in daily psychiatric practice. CONCLUSIONS CYP2D6 genotype contributes to clinically relevant variability in plasma concentrations of antidepressants but probably not antipsychotics in daily clinical practice.
Collapse
Affiliation(s)
- Hans Mulder
- Department of Pharmacoepidemiology and Pharmacotherapy, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, The Netherlands
| | | | | | | | | | | |
Collapse
|
22
|
Ingelman-Sundberg M. Genetic polymorphisms of cytochrome P450 2D6 (CYP2D6): clinical consequences, evolutionary aspects and functional diversity. THE PHARMACOGENOMICS JOURNAL 2005; 5:6-13. [PMID: 15492763 DOI: 10.1038/sj.tpj.6500285] [Citation(s) in RCA: 744] [Impact Index Per Article: 39.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
CYP2D6 is of great importance for the metabolism of clinically used drugs and about 20-25% of those are metabolised by this enzyme. In addition, the enzyme utilises hydroxytryptamines as endogenous substrates. The polymorphism of the enzyme results in poor, intermediate, efficient or ultrarapid metabolisers (UMs) of CYP2D6 drugs. It is plausible that the UM genotype, where more than one active gene on one allele occurs, is the outcome of selective dietary selection in certain populations in North East Africa. The UM phenotype affects 5.5% of the population in Western Europe. A hypothesis for the evolutionary basis behind selection for CYP2D6 gene duplications is presented in relation to selection for Cyp6 variants in insecticide resistant Drosophila strains. The polymorphism of CYP2D6 significantly affects the pharmacokinetics of about 50% of the drugs in clinical use, which are CYP2D6 substrates. The consequences of the polymorphism at ordinary drug doses can be either adverse drug reactions or no drug response. Examples are presented where CYP2D6 polymorphism affects the efficacy and costs of drug treatment. Predictive CYP2D6 genotyping is estimated by the author to be beneficial for treatment of about 30-40% of CYP2D6 drug substrates, that is, for about 7-10% of all drugs clinically used, although prospective clinical studies are necessary to evaluate the exact benefit of drug selection and dosage based on the CYP2D6 genotype.
Collapse
Affiliation(s)
- M Ingelman-Sundberg
- Division of Molecular Toxicology, IMM, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
23
|
Abstract
This article examines some major challenges to the clinical implementation of personalized medicine from a bioethics point of view. Challenges arise from the need to choose between competing scenarios in the allocation of healthcare resources. If a choice between competing scenarios must be made, the key question is what sort of medicine a society wants to have and how much its citizens are willing to pay for it. Cost-effectiveness is crucial, but not the only criterium. Pharmacogenomics-based personalized medicine is also challenged by competing concepts of 'good' medicine. However, a real dilemma for health policy arises when a trade-off between implementing public health practices and personalized medicine must be made. This paper tries to show that from a bioethics perspective these concepts are not mutually exclusive. In future, a scenario that seeks to integrate both concepts in a complementary fashion may maximize the benefit for both individuals and the community.
Collapse
Affiliation(s)
- Jeantine Lunshof
- VU University Medical Center , Department of Clinical Genetics and Human Genetics, Section Community Genetics, De Boelelaan 1117, PO Box 7057, 1007 MB Amsterdam, The Netherlands Tel; Fax; E-mail:
| |
Collapse
|
24
|
Wilffert B, Zaal R, Brouwers JRBJ. Pharmacogenetics as a tool in the therapy of schizophrenia. ACTA ACUST UNITED AC 2005; 27:20-30. [PMID: 15861931 DOI: 10.1007/s11096-004-1731-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
AIM This review summarises the present knowledge of associations between pharmacogenetics and therapeutic efficacy and side effects of antipsychotics to enable pharmacists to judge the applicability for a more tailor made therapy in patients with schizophrenia. Polymorphisms of Cytochrome P450 isoenzymes and neurotransmitter receptors involved in the efficacy and side effects of antipsychotics are highlighted in this review. METHOD A search was performed in Medline and EMBASE for the period 1995-August 2002. Also relevant references from the selected papers were incorporated. RESULTS Poor metabolism with respect to CYP2D6 seems to be related with more pronounced extrapyramidal symptoms and more specifically with a higher incidence of tardive dyskinesia. The C/C-genotype for CYP1A2 results in smokers in a reduction of enzyme activity, but an effect on the incidence of tardive dyskinesia is controversial. For dopamine D2 receptors the effect of the -141C Ins/Del polymorphism on efficacy is not clear yet, although the Taq I polymorphism is associated with greater improvement of positive, but not negative symptoms in acute psychosis. The Gly9-allele of the dopamine D3 receptor is associated with the response to clozapine, but in studies in which the choice of antipsychotics is not restricted, the role of this polymorphism is unclear. The reverse is applicable to the dopamine D(4.2/4.7) polymorphism. For the 5-HT2A receptor the His452Tyr polymorphism is associated with response to clozapine, the 102 T/C polymorphism leads to equivocal results. The polymorphism studied for 5-HT5A, 5-HT6, alpha1A- and alpha2A-receptors give no clear associations with the response to clozapine. The polymorphism studied of the dopamine D2 and D4 receptor are not related to extrapyramidal adverse effects and side effects, respectively. The 9Gly-variant of the dopamine D3 receptor, the 102C-variant, but not the His452Tyr polymorphism of the 5-HT2A-receptor and the 23Ser-variant (for females only) of the 5-HT2C receptor seem to increase the susceptibility to tardive dyskinesia. Weight gain induced by antipsychotics seems to be associated with the -759C-allele of the 5-HT2C receptor. CONCLUSION The results show the first careful steps toward application of pharmacogenetics in a more individualised, tailor-made, pharmacotherapy. A pre-condition seems to be a multifactorial approach, as can be expected for multifactorial processes.
Collapse
Affiliation(s)
- Bob Wilffert
- Department of Social Pharmacy, Pharmacoepidemiology & Pharmacotherapy, Groningen University Institute for Drug Exploration (GUIDE), Groningen, The Netherlands [corrected]
| | | | | |
Collapse
|
25
|
Puozzo C, Lens S, Reh C, Michaelis K, Rosillon D, Deroubaix X, Deprez D. Lack of Interaction of Milnacipran with the Cytochrome P450 Isoenzymes Frequently Involved in the Metabolism of Antidepressants. Clin Pharmacokinet 2005; 44:977-88. [PMID: 16122284 DOI: 10.2165/00003088-200544090-00007] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
OBJECTIVE To compare the pharmacokinetics of milnacipran in extensive metabolisers (EMs) and poor metabolisers (PMs) of sparteine and mephenytoin, and to assess the influence of multiple administrations of milnacipran on the activity of cytochrome P450 (CYP) isoenzymes through its own metabolism and through various probes, namely CYP2D6 (sparteine/dextromethorphan), CYP2C19 (mephenytoin), CYP1A2 (caffeine) and CYP3A4 (endogenous 6-beta-hydroxy-cortisol excretion). METHODS Twenty-five healthy subjects, 12 EMs for both sparteine/dextromethorphan and mephenytoin, nine EMs for mephenytoin and PMs for sparteine/dextromethorphan (PM(2D6)) and four PMs for mephenytoin and EMs for sparteine/dextromethorphan (PM(2C19)) were administered milnacipran as a single 50 mg capsule on day 1 followed by a 50 mg capsule twice daily for 7 days. The pharmacokinetics of milnacipran and its oxidative metabolites were assessed after the first dose (day 1) and after multiple administration (day 8), and were compared for differences between CYP2D6 and CYP2C19 PMs and EMs. Metabolic tests were performed before (day -2), during (days 1 and 8) and after (day 20) milnacipran administration. RESULTS Milnacipran steady state was rapidly achieved. Metabolism was limited: approximately 50% unchanged drug, 30% as glucuronide and 20% as oxidative metabolite (mainly F2800 the N-dealkyl metabolite). Milnacipran administration to PM2D6 and PM2C19 subjects did not increase parent drug exposure or decrease metabolite exposure. Milnacipran oxidative metabolism is not mediated through CYP2D6 or CYP2C19 polymorphic pathways nor does it significantly interact with CYP1A2, CYP2C19, CYP2D6 or CYP3A4 activities. CONCLUSION Limited reciprocal pharmacokinetic interaction between milnacipran and CYP isoenzymes would confer flexibility in the therapeutic use of the drug when combined with antidepressants. Drug-drug interaction risk would be low, even if the combined treatments were likely to inhibit CYP2D6 and CYP2C19 isoenzyme activities.
Collapse
|
26
|
Egger T, Dormann H, Ahne G, Pahl A, Runge U, Azaz-Livshits T, Neubert A, Criegee-Rieck M, Gassmann KG, Brune K. Cytochrome P450 Polymorphisms in Geriatric Patients. Drugs Aging 2005; 22:265-72. [PMID: 15813658 DOI: 10.2165/00002512-200522030-00007] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
BACKGROUND AND OBJECTIVE Up to 23% of the population, depending on their ethnic background, has genetically determined differences in the metabolism of drugs by the cytochrome P450 (CYP) enzymes CYP2C9, CYP2C19 and CYP2D6. The aim of this survey was to determine the relationship between genetical polymorphisms in these CYP enzymes and adverse drug reactions (ADRs) in geriatric patients. STUDY DESIGN In a prospective 6-month cohort study of 243 patients in a geriatric rehabilitation ward, mean age 80.2 +/- 7.7 years, ADRs were identified by intensive monitoring by a pharmacoepidemiological team, consisting of pharmacists and physicians. 125 out of these 243 patients were genotyped cross-sectionally for polymorphisms of CYP2C9, CYP2C19 and CYP2D6 by the TaqMan-polymerase chain reaction. The main outcome measures were the prevalence of genetical polymorphisms and the patients' risk for developing an ADR as related to the genotype. RESULTS Patients received an average of 14.2 drugs during hospitalisation which led to 251 ADRs in the whole cohort and 149 ADRs in the cross-sectional genotyping study. Genotype frequencies of CYP2C9 enzyme were 25.9% (n = 29) intermediate metabolisers (IMs) and 2.7% (n = 3) poor metabolisers (PMs). For the enzyme CYP2C19, 26.8% (n = 33) IMs and 0.8% (n = 1) PMs were detected. For the enzyme CYP2D6, 24.1% (n = 26) IMs and 3.7% (n = 4) PMs were found in the analysed patient population. In total, 61.6% (n = 77) of genotyped patients experienced mutations in at least one of the three cytochrome enzymes. The ADR rate did not differ significantly between patients with genetic mutations and wild-type genotype patients. Moreover, only eight out of 40 ADRs which were associated with drugs metabolised by CYP2C9, CYP2C19 or CYP2D6 were detected in patients with IM genotype and none in patients with PM genotype. CONCLUSION In this investigation geriatric patients showed a high rate of ADRs. However, no association between the ADR rate and the patients' genotype could be detected, which most likely was a result of the small number of patient samples analysed. Although prophylactic genotyping would have not prevented ADRs in this pilot study, physicians nevertheless have to be aware of potential genetic mutations in patients with polypharmacy.
Collapse
Affiliation(s)
- Tobias Egger
- Department of Experimental and Clinical Pharmacology and Toxicology, University Erlangen-Nüremberg, Erlangen, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Affiliation(s)
- Julie A Johnson
- Department of Pharmacy Practice, Department of Pharmaceutics and Department of Medicine, University of Florida, Box 100486, Gainesville, FL 32610-0486, USA.
| |
Collapse
|