1
|
Coolen T, Mihai Dumitrescu A, Wens V, Bourguignon M, Rovai A, Sadeghi N, Urbain C, Goldman S, De Tiège X. Spectrotemporal cortical dynamics and semantic control during sentence completion. Clin Neurophysiol 2024; 163:90-101. [PMID: 38714152 DOI: 10.1016/j.clinph.2024.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/27/2024] [Accepted: 04/14/2024] [Indexed: 05/09/2024]
Abstract
OBJECTIVE To investigate cortical oscillations during a sentence completion task (SC) using magnetoencephalography (MEG), focusing on the semantic control network (SCN), its leftward asymmetry, and the effects of semantic control load. METHODS Twenty right-handed adults underwent MEG while performing SC, consisting of low cloze (LC: multiple responses) and high cloze (HC: single response) stimuli. Spectrotemporal power modulations as event-related synchronizations (ERS) and desynchronizations (ERD) were analyzed: first, at the whole-brain level; second, in key SCN regions, posterior middle/inferior temporal gyri (pMTG/ITG) and inferior frontal gyri (IFG), under different semantic control loads. RESULTS Three cortical response patterns emerged: early (0-200 ms) theta-band occipital ERS; intermediate (200-700 ms) semantic network alpha/beta-band ERD; late (700-3000 ms) dorsal language stream alpha/beta/gamma-band ERD. Under high semantic control load (LC), pMTG/ITG showed prolonged left-sided engagement (ERD) and right-sided inhibition (ERS). Left IFG exhibited heightened late (2500-2550 ms) beta-band ERD with increased semantic control load (LC vs. HC). CONCLUSIONS SC involves distinct cortical responses and depends on the left IFG and asymmetric engagement of the pMTG/ITG for semantic control. SIGNIFICANCE Future use of SC in neuromagnetic preoperative language mapping and for understanding the pathophysiology of language disorders in neurological conditions.
Collapse
Affiliation(s)
- Tim Coolen
- Université Libre de Bruxelles (ULB), ULB Neuroscience Institute (UNI), Laboratoire de Neuroanatomie et Neuroimagerie Translationnelles (LN(2)T), Brussels, Belgium; Université Libre de Bruxelles, Hôpital Universitaire de Bruxelles (HUB), CUB Hôpital Erasme, Department of Radiology, Brussels, Belgium.
| | - Alexandru Mihai Dumitrescu
- Université Libre de Bruxelles (ULB), ULB Neuroscience Institute (UNI), Laboratoire de Neuroanatomie et Neuroimagerie Translationnelles (LN(2)T), Brussels, Belgium
| | - Vincent Wens
- Université Libre de Bruxelles (ULB), ULB Neuroscience Institute (UNI), Laboratoire de Neuroanatomie et Neuroimagerie Translationnelles (LN(2)T), Brussels, Belgium
| | - Mathieu Bourguignon
- Université Libre de Bruxelles (ULB), ULB Neuroscience Institute (UNI), Laboratoire de Neuroanatomie et Neuroimagerie Translationnelles (LN(2)T), Brussels, Belgium; Université Libre de Bruxelles (ULB), ULB Neuroscience Institute (UNI), Laboratory of Neurophysiology and Movement Biomechanics, Brussels, Belgium
| | - Antonin Rovai
- Université Libre de Bruxelles (ULB), ULB Neuroscience Institute (UNI), Laboratoire de Neuroanatomie et Neuroimagerie Translationnelles (LN(2)T), Brussels, Belgium
| | - Niloufar Sadeghi
- Université Libre de Bruxelles, Hôpital Universitaire de Bruxelles (HUB), CUB Hôpital Erasme, Department of Radiology, Brussels, Belgium
| | - Charline Urbain
- Université Libre de Bruxelles (ULB), ULB Neuroscience Institute (UNI), Laboratoire de Neuroanatomie et Neuroimagerie Translationnelles (LN(2)T), Brussels, Belgium; Université Libre de Bruxelles (ULB), ULB Neuroscience Institute (UNI), Centre for Research in Cognition and Neurosciences (CRCN), Neuropsychology and Functional Neuroimaging Research Unit (UR2NF), Brussels, Belgium
| | - Serge Goldman
- Université Libre de Bruxelles (ULB), ULB Neuroscience Institute (UNI), Laboratoire de Neuroanatomie et Neuroimagerie Translationnelles (LN(2)T), Brussels, Belgium
| | - Xavier De Tiège
- Université Libre de Bruxelles (ULB), ULB Neuroscience Institute (UNI), Laboratoire de Neuroanatomie et Neuroimagerie Translationnelles (LN(2)T), Brussels, Belgium
| |
Collapse
|
2
|
Dai Z, Song L, Luo C, Liu D, Li M, Han Z. Hemispheric lateralization of language processing: insights from network-based symptom mapping and patient subgroups. Cereb Cortex 2024; 34:bhad437. [PMID: 38031356 DOI: 10.1093/cercor/bhad437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 10/27/2023] [Accepted: 10/27/2023] [Indexed: 12/01/2023] Open
Abstract
The hemispheric laterality of language processing has become a hot topic in modern neuroscience. Although most previous studies have reported left-lateralized language processing, other studies found it to be bilateral. A previous neurocomputational model has proposed a unified framework to explain that the above discrepancy might be from healthy and patient individuals. This model posits an initial symmetry but imbalanced capacity in language processing for healthy individuals, with this imbalance contributing to language recovery disparities following different hemispheric injuries. The present study investigated this model by analyzing the lateralization patterns of language subnetworks across multiple attributes with a group of 99 patients (compared to nonlanguage processing) and examining the lateralization patterns of language subnetworks in subgroups with damage to different hemispheres. Subnetworks were identified using a whole-brain network-based lesion-symptom mapping method, and the lateralization index was quantitatively measured. We found that all the subnetworks in language processing were left-lateralized, while subnetworks in nonlanguage processing had different lateralization patterns. Moreover, diverse hemisphere-injury subgroups exhibited distinct language recovery effects. These findings provide robust support for the proposed neurocomputational model of language processing.
Collapse
Affiliation(s)
- Zhiyun Dai
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Luping Song
- Shenzhen Sixth People's Hospital (Nanshan Hospital), Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen 518052, China
| | - Chongjing Luo
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Di Liu
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Mingyang Li
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Yuquan Campus, Hangzhou 310027, China
| | - Zaizhu Han
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
3
|
Papanicolaou AC. Non-Invasive Mapping of the Neuronal Networks of Language. Brain Sci 2023; 13:1457. [PMID: 37891824 PMCID: PMC10605023 DOI: 10.3390/brainsci13101457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/13/2023] [Accepted: 10/05/2023] [Indexed: 10/29/2023] Open
Abstract
This review consists of three main sections. In the first, the Introduction, the main theories of the neuronal mediation of linguistic operations, derived mostly from studies of the effects of focal lesions on linguistic performance, are summarized. These models furnish the conceptual framework on which the design of subsequent functional neuroimaging investigations is based. In the second section, the methods of functional neuroimaging, especially those of functional Magnetic Resonance Imaging (fMRI) and of Magnetoencephalography (MEG), are detailed along with the specific activation tasks employed in presurgical functional mapping. The reliability of these non-invasive methods and their validity, judged against the results of the invasive methods, namely, the "Wada" procedure and Cortical Stimulation Mapping (CSM), is assessed and their use in presurgical mapping is justified. In the third and final section, the applications of fMRI and MEG in basic research are surveyed in the following six sub-sections, each dealing with the assessment of the neuronal networks for (1) the acoustic and phonological, (2) for semantic, (3) for syntactic, (4) for prosodic operations, (5) for sign language and (6) for the operations of reading and the mechanisms of dyslexia.
Collapse
Affiliation(s)
- Andrew C Papanicolaou
- Department of Pediatrics, Division of Pediatric Neurology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38013, USA
| |
Collapse
|
4
|
Quinones A, Jenabi M, Pasquini L, Peck KK, Moss NS, Brennan C, Tabar V, Holodny A. Use of longitudinal functional MRI to demonstrate translocation of language function in patients with brain tumors. J Neurosurg 2022:1-9. [DOI: 10.3171/2022.10.jns221212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 10/11/2022] [Indexed: 11/27/2022]
Abstract
OBJECTIVE
The ability of functional MRI (fMRI) to localize patient-specific eloquent areas has proved worthwhile in efforts to maximize resection while minimizing risk of iatrogenic damage in patients with brain tumors. Although cortical reorganization has been described, the frequency of its occurrence and the factors that influence incidence are not well understood. The authors investigated changes in language laterality between 2 fMRI studies in patients with brain tumors to elucidate factors contributing to cortical reorganization.
METHODS
The authors analyzed 33 patients with brain tumors involving eloquent language areas who underwent 2 separate presurgical, language task–based fMRI examinations (fMRI1 and fMRI2). Pathology consisted of low-grade glioma (LGG) in 15, and high-grade glioma (HGG) in 18. The mean time interval between scans was 35 ± 38 months (mean ± SD). Regions of interest were drawn for Broca’s area (BA) and the contralateral BA homolog. The laterality index (LI) was calculated and categorized as follows: > 0.2, left dominance; 0.2 to –0.2, codominance; and < −0.2, right dominance. Translocation of language function was defined as a shift across one of these thresholds between the 2 scans. Comparisons between the 2 groups, translocation of language function (reorganized group) versus no translocation (constant group), were performed using the Mann-Whitney U-test.
RESULTS
Nine (27%) of 33 patients demonstrated translocation of language function. Eight of 9 patients with translocation had tumor involvement of BA, compared to 5/24 patients without translocation (p < 0.0001). There was no difference in LI between the 2 groups at fMRI1. However, the reorganized group showed a decreased LI at fMRI2 compared to the constant group (−0.1 vs 0.53, p < 0.01). The reorganized cohort showed a significant difference between LI1 and LI2 (0.50 vs –0.1, p < 0.0001) whereas the constant cohort did not. A longer time interval was found in the reorganized group between fMRI1 and fMRI2 for patients with LGG (34 vs 107 months, p < 0.002). Additionally, the reorganized cohort had a greater proportion of local tumor invasion into eloquent areas at fMRI2 than the constant group. Aphasia was present following fMRI2 in 13/24 (54%) patients who did not exhibit translocation, compared to 2/9 (22%) patients who showed translocation.
CONCLUSIONS
Translocation of language function in patients with brain tumor is associated with tumor involvement of BA, longer time intervals between scans, and is seen in both LGG and HGG. The reduced incidence of aphasia in the reorganized group raises the possibility that reorganization supports the conservation of language function. Therefore, longitudinal fMRI is useful because it may point to reorganization and could affect therapeutic planning for patients.
Collapse
Affiliation(s)
- Addison Quinones
- Departments of Radiology,
- Icahn School of Medicine at Mount Sinai, New York, New York
| | | | - Luca Pasquini
- Departments of Radiology,
- Neuroradiology Unit, NESMOS Department, Sant’Andrea Hospital, La Sapienza University, Rome, Italy
| | | | - Nelson S. Moss
- Neurosurgery, Memorial Sloan Kettering Cancer Center, New York
| | - Cameron Brennan
- Neurosurgery, Memorial Sloan Kettering Cancer Center, New York
| | - Viviane Tabar
- Neurosurgery, Memorial Sloan Kettering Cancer Center, New York
| | - Andrei Holodny
- Departments of Radiology,
- Department of Neuroscience, Weill Cornell Graduate School of the Medical Sciences, New York; and
- Department of Radiology, Joan & Sanford I. Weill Medical College of Cornell University, New York, New York
| |
Collapse
|
5
|
Matsuo K, Kono K, Yasui-Furukori N, Shimoda K, Kaji Y, Akiyama K. HomotopicLI: Rationale, characteristics, and implications of a new threshold-free lateralization index of functional magnetic resonance imaging. Laterality 2022; 27:513-543. [PMID: 35948519 DOI: 10.1080/1357650x.2022.2109655] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The reliable preoperative estimation of brain hemispheric asymmetry may be achieved through multiple lateralization indices using functional magnetic resonance imaging. Adding to our previously developed AveLI, we devised a novel threshold-free lateralization index, HomotopicLI, which computes a basic formula, (Left - Right) / (Left + Right), using voxel values of pairs located symmetrically in relation to the midsagittal line as the terms Left and Right, and averages them within the regions-of-interest. The study aimed to evaluate HomotopicLI before clinical applications. Data were collected from 56 healthy participants who performed four language tasks. We compared seven index types, including HomotopicLI, AveLI, and BaseLI; BaseLI was calculated using the sums of voxel values as the terms. Contrary to our expectations, HomotopicLI performed similarly to AveLI but better than BaseLI in detecting right dominance. A detailed analysis of unilaterally activated voxels of the homotopic pairs revealed that unilateral activation occurred more frequently on the right than on the left when HomotopicLI indicated right dominance. The voxel values during right unilateral activation were smaller than those in the left, causing right dominances in the homotopic pairs by HomotopicLI. These unique features provide an advantage in detecting residual, compensative functions spreading weakly in the non-dominant hemisphere.
Collapse
Affiliation(s)
- Kayako Matsuo
- Center for Research Collaboration and Support, Dokkyo Medical University School of Medicine, Tochigi, Japan.,Graduate School of Informatics and Engineering, The University of Electro-Communications, Chofu, Japan
| | - Kenta Kono
- Dokkyo Medical University School of Medicine, Tochigi, Japan
| | - Norio Yasui-Furukori
- Department of Psychiatry, Dokkyo Medical University School of Medicine, Tochigi, Japan
| | - Kazutaka Shimoda
- Department of Psychiatry, Dokkyo Medical University School of Medicine, Tochigi, Japan
| | - Yasushi Kaji
- Department of Radiology, Dokkyo Medical University School of Medicine, Tochigi, Japan
| | - Kazufumi Akiyama
- Department of Biological Psychiatry and Neuroscience, Dokkyo Medical University School of Medicine, Tochigi, Japan.,Kawada Hospital, Okayama, Japan
| |
Collapse
|
6
|
Elin K, Malyutina S, Bronov O, Stupina E, Marinets A, Zhuravleva A, Dragoy O. A New Functional Magnetic Resonance Imaging Localizer for Preoperative Language Mapping Using a Sentence Completion Task: Validity, Choice of Baseline Condition, and Test–Retest Reliability. Front Hum Neurosci 2022; 16:791577. [PMID: 35431846 PMCID: PMC9006995 DOI: 10.3389/fnhum.2022.791577] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 03/04/2022] [Indexed: 11/24/2022] Open
Abstract
To avoid post-neurosurgical language deficits, intraoperative mapping of the language function in the brain can be complemented with preoperative mapping with functional magnetic resonance imaging (fMRI). The validity of an fMRI “language localizer” paradigm crucially depends on the choice of an optimal language task and baseline condition. This study presents a new fMRI “language localizer” in Russian using overt sentence completion, a task that comprehensively engages the language function by involving both production and comprehension at the word and sentence level. The paradigm was validated in 18 neurologically healthy volunteers who participated in two scanning sessions, for estimating test–retest reliability. For the first time, two baseline conditions for the sentence completion task were compared. At the group level, the paradigm significantly activated both anterior and posterior language-related regions. Individual-level analysis showed that activation was elicited most consistently in the inferior frontal regions, followed by posterior temporal regions and the angular gyrus. Test–retest reliability of activation location, as measured by Dice coefficients, was moderate and thus comparable to previous studies. Test–retest reliability was higher in the frontal than temporo-parietal region and with the most liberal statistical thresholding compared to two more conservative thresholding methods. Lateralization indices were expectedly left-hemispheric, with greater lateralization in the frontal than temporo-parietal region, and showed moderate test-retest reliability. Finally, the pseudoword baseline elicited more extensive and more reliable activation, although the syllable baseline appears more feasible for future clinical use. Overall, the study demonstrated the validity and reliability of the sentence completion task for mapping the language function in the brain. The paradigm needs further validation in a clinical sample of neurosurgical patients. Additionally, the study contributes to general evidence on test–retest reliability of fMRI.
Collapse
Affiliation(s)
- Kirill Elin
- Center for Language and Brain, HSE University, Moscow, Russia
| | - Svetlana Malyutina
- Center for Language and Brain, HSE University, Moscow, Russia
- *Correspondence: Svetlana Malyutina,
| | - Oleg Bronov
- Department of Radiology, National Medical and Surgical Center Named After N.I. Pirogov, Moscow, Russia
| | | | - Aleksei Marinets
- Department of Radiology, National Medical and Surgical Center Named After N.I. Pirogov, Moscow, Russia
| | - Anna Zhuravleva
- Center for Language and Brain, HSE University, Moscow, Russia
| | - Olga Dragoy
- Center for Language and Brain, HSE University, Moscow, Russia
- Institute of Linguistics, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
7
|
Maheshwari M, Deshmukh T, Leuthardt EC, Shimony JS. Task-based and Resting State Functional MRI in Children. Magn Reson Imaging Clin N Am 2021; 29:527-541. [PMID: 34717843 DOI: 10.1016/j.mric.2021.06.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Functional MR imaging (MRI) is a valuable tool for presurgical planning and is well established in adult patients. The use of task-based fMRI is increasing in pediatric populations because it provides similar benefits for pre-surgical planning in children. This article reviews special adaptations that are required for successful applications of task-based fMRI in children, especially in the motor and language systems. The more recently introduced method of resting state fMRI is reviewed and its relative advantages and disadvantages discussed. Common pitfalls and other systems and networks that may be of interest in special circumstances also are reviewed.
Collapse
Affiliation(s)
- Mohit Maheshwari
- Department of Radiology, Medical College of Wisconsin, Children's Wisconsin, MS - 721, 9000 W Wisconsin Avenue, Milwaukee, WI 53226, USA.
| | - Tejaswini Deshmukh
- Department of Radiology, Medical College of Wisconsin, Children's Wisconsin, MS - 721, 9000 W Wisconsin Avenue, Milwaukee, WI 53226, USA
| | - Eric C Leuthardt
- Department of Neurosurgery, Washington University, 4525 Scott Avenue Campus Box 8131, St Louis, MO 63141, USA
| | - Joshua S Shimony
- Mallinckrodt Institute of Radiology, Washington University, 4525 Scott Avenue Campus Box 8131, St Louis, MO 63141, USA
| |
Collapse
|
8
|
Feasibility, Contrast Sensitivity and Network Specificity of Language fMRI in Presurgical Evaluation for Epilepsy and Brain Tumor Surgery. Brain Topogr 2021; 34:511-524. [PMID: 33837867 DOI: 10.1007/s10548-021-00839-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 03/30/2021] [Indexed: 02/05/2023]
Abstract
Language fMRI has become an integral part of the planning process in brain surgery. However, fMRI may suffer from confounding factors both on the patient side, as well as on the provider side. In this study, we investigate how patient-related confounds affect the ability of the patient to perform language fMRI tasks (feasibility), the task sensitivity from an image contrast point of view, and the anatomical specificity of expressive and receptive language fMRI protocols. 104 patients were referred for language fMRI in the context of presurgical procedures for epilepsy and brain tumor surgery. Four tasks were used: (1) a verbal fluency (VF) task to map vocabulary use, (2) a semantic description (SD) task to map sentence formation/semantic integration skills, (3) a reading comprehension (RC) task and (4) a listening comprehension (LC) task. Feasibility was excellent in the LC task (100%), but in the acceptable to mediocre range for the rest of the tasks (SD: 87.50%, RC: 85.57%, VF: 67.30%). Feasibility was significantly confounded by age (p = 0.020) and education level (p = 0.003) in VF, by education level (p = 0.004) and lesion laterality (p = 0.019) in SD and by age (p = 0.001), lesion laterality (p = 0.007) and lesion severity (p = 0.048) in RC. All tasks were comparable regarding sensitivity in generating statistically significant image contrast (VF: 90.00%, SD: 92.30%, RC: 93.25%, LC: 88.46%). The lobe of the lesion (p = 0.005) and the age (p = 0.009) confounded contrast sensitivity in the VF and SD tasks respectively. Both VF and LC tasks demonstrated unilateral lateralization of posterior language areas; only the LC task showed unilateral lateralization of anterior language areas. Our study highlights the effects of patient-related confounding factors on language fMRI and proposes LC as the most feasible, less confounded, and efficiently lateralizing task in the clinical presurgical context.
Collapse
|
9
|
Manan HA, Franz EA, Yahya N. The utilisation of resting-state fMRI as a pre-operative mapping tool in patients with brain tumours in comparison to task-based fMRI and intraoperative mapping: A systematic review. Eur J Cancer Care (Engl) 2021; 30:e13428. [PMID: 33592671 DOI: 10.1111/ecc.13428] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 01/25/2021] [Accepted: 01/28/2021] [Indexed: 12/13/2022]
Abstract
PURPOSE Resting-state functional Magnetic Resonance Imaging (rs-fMRI) is suggested to be a viable option for pre-operative mapping for patients with brain tumours. However, it remains an open issue whether the tool is useful in the clinical setting compared to task-based fMRI (T-fMRI) and intraoperative mapping. Thus, a systematic review was conducted to investigate the usefulness of this technique. METHODS A systematic literature search of rs-fMRI methods applied as a pre-operative mapping tool was conducted using the PubMed/MEDLINE and Cochrane Library electronic databases following PRISMA guidelines. RESULTS Results demonstrated that 50% (six out of twelve) of the studies comparing rs-fMRI and T-fMRI showed good concordance for both language and sensorimotor networks. In comparison to intraoperative mapping, 86% (six out of seven) studies found a good agreement to rs-fMRI. Finally, 87% (twenty out of twenty-three) studies agreed that rs-fMRI is a suitable and useful pre-operative mapping tool. CONCLUSIONS rs-fMRI is a promising technique for pre-operative mapping in assessing the functional brain areas. However, the agreement between rs-fMRI with other techniques, including T-fMRI and intraoperative maps, is not yet optimal. Studies to ascertain and improve the sophistication in pre-processing of rs-fMRI imaging data are needed.
Collapse
Affiliation(s)
- Hanani Abdul Manan
- Makmal Pemprosesan Imej Kefungsian (Functional Image Processing Laboratory, Department of Radiology, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Elizabeth A Franz
- Department of Psychology and fMRIotago, University of Otago, Dunedin, New Zealand
| | - Noorazrul Yahya
- Diagnostic Imaging & Radiotherapy Program, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
10
|
Ades-Aron B, Lemberskiy G, Veraart J, Golfinos J, Fieremans E, Novikov DS, Shepherd T. Improved Task-based Functional MRI Language Mapping in Patients with Brain Tumors through Marchenko-Pastur Principal Component Analysis Denoising. Radiology 2020; 298:365-373. [PMID: 33289611 DOI: 10.1148/radiol.2020200822] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Background Functional MRI improves preoperative planning in patients with brain tumors, but task-correlated signal intensity changes are only 2%-3% above baseline. This makes accurate functional mapping challenging. Marchenko-Pastur principal component analysis (MP-PCA) provides a novel strategy to separate functional MRI signal from noise without requiring user input or prior data representation. Purpose To determine whether MP-PCA denoising improves activation magnitude for task-based functional MRI language mapping in patients with brain tumors. Materials and Methods In this Health Insurance Portability and Accountability Act-compliant study, MP-PCA performance was first evaluated by using simulated functional MRI data with a known ground truth. Right-handed, left-language-dominant patients with brain tumors who successfully performed verb generation, sentence completion, and finger tapping functional MRI tasks were retrospectively identified between January 2017 and August 2018. On the group level, for each task, histograms of z scores for original and MP-PCA denoised data were extracted from relevant regions and contralateral homologs were seeded by a neuroradiologist blinded to functional MRI findings. Z scores were compared with paired two-sided t tests, and distributions were compared with effect size measurements and the Kolmogorov-Smirnov test. The number of voxels with a z score greater than 3 was used to measure task sensitivity relative to task duration. Results Twenty-three patients (mean age ± standard deviation, 43 years ± 18; 13 women) were evaluated. MP-PCA denoising led to a higher median z score of task-based functional MRI voxel activation in left hemisphere cortical regions for verb generation (from 3.8 ± 1.0 to 4.5 ± 1.4; P < .001), sentence completion (from 3.7 ± 1.0 to 4.3 ± 1.4; P < .001), and finger tapping (from 6.9 ± 2.4 to 7.9 ± 2.9; P < .001). Median z scores did not improve in contralateral homolog regions for verb generation (from -2.7 ± 0.54 to -2.5 ± 0.40; P = .90), sentence completion (from -2.3 ± 0.21 to -2.4 ± 0.37; P = .39), or finger tapping (from -2.3 ± 1.20 to -2.7 ± 1.40; P = .07). Individual functional MRI task durations could be truncated by at least 40% after MP-PCA without degradation of clinically relevant correlations between functional cortex and functional MRI tasks. Conclusion Denoising with Marchenko-Pastur principal component analysis led to higher task correlations in relevant cortical regions during functional MRI language mapping in patients with brain tumors. © RSNA, 2020 Online supplemental material is available for this article.
Collapse
Affiliation(s)
- Benjamin Ades-Aron
- From the Center for Biomedical Imaging, Department of Radiology (B.A.A., G.L., J.V., E.F., D.S.N., T.S.) and Department of Neurosurgery (J.G.), New York University School of Medicine, 2nd Floor, 660 First Ave, New York, NY 10016; and Department of Electrical and Computer Engineering, New York University Tandon School of Engineering, New York, NY (B.A.A.)
| | - Gregory Lemberskiy
- From the Center for Biomedical Imaging, Department of Radiology (B.A.A., G.L., J.V., E.F., D.S.N., T.S.) and Department of Neurosurgery (J.G.), New York University School of Medicine, 2nd Floor, 660 First Ave, New York, NY 10016; and Department of Electrical and Computer Engineering, New York University Tandon School of Engineering, New York, NY (B.A.A.)
| | - Jelle Veraart
- From the Center for Biomedical Imaging, Department of Radiology (B.A.A., G.L., J.V., E.F., D.S.N., T.S.) and Department of Neurosurgery (J.G.), New York University School of Medicine, 2nd Floor, 660 First Ave, New York, NY 10016; and Department of Electrical and Computer Engineering, New York University Tandon School of Engineering, New York, NY (B.A.A.)
| | - John Golfinos
- From the Center for Biomedical Imaging, Department of Radiology (B.A.A., G.L., J.V., E.F., D.S.N., T.S.) and Department of Neurosurgery (J.G.), New York University School of Medicine, 2nd Floor, 660 First Ave, New York, NY 10016; and Department of Electrical and Computer Engineering, New York University Tandon School of Engineering, New York, NY (B.A.A.)
| | - Els Fieremans
- From the Center for Biomedical Imaging, Department of Radiology (B.A.A., G.L., J.V., E.F., D.S.N., T.S.) and Department of Neurosurgery (J.G.), New York University School of Medicine, 2nd Floor, 660 First Ave, New York, NY 10016; and Department of Electrical and Computer Engineering, New York University Tandon School of Engineering, New York, NY (B.A.A.)
| | - Dmitry S Novikov
- From the Center for Biomedical Imaging, Department of Radiology (B.A.A., G.L., J.V., E.F., D.S.N., T.S.) and Department of Neurosurgery (J.G.), New York University School of Medicine, 2nd Floor, 660 First Ave, New York, NY 10016; and Department of Electrical and Computer Engineering, New York University Tandon School of Engineering, New York, NY (B.A.A.)
| | - Timothy Shepherd
- From the Center for Biomedical Imaging, Department of Radiology (B.A.A., G.L., J.V., E.F., D.S.N., T.S.) and Department of Neurosurgery (J.G.), New York University School of Medicine, 2nd Floor, 660 First Ave, New York, NY 10016; and Department of Electrical and Computer Engineering, New York University Tandon School of Engineering, New York, NY (B.A.A.)
| |
Collapse
|
11
|
Wilson SM, Schneck SM. Neuroplasticity in post-stroke aphasia: A systematic review and meta-analysis of functional imaging studies of reorganization of language processing. NEUROBIOLOGY OF LANGUAGE (CAMBRIDGE, MASS.) 2020; 2:22-82. [PMID: 33884373 PMCID: PMC8057712 DOI: 10.1162/nol_a_00025] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 09/11/2020] [Indexed: 04/23/2023]
Abstract
Recovery from aphasia is thought to depend on neural plasticity, that is, functional reorganization of surviving brain regions such that they take on new or expanded roles in language processing. We carried out a systematic review and meta-analysis of all articles published between 1995 and early 2020 that have described functional imaging studies of six or more individuals with post-stroke aphasia, and have reported analyses bearing on neuroplasticity of language processing. Each study was characterized and appraised in detail, with particular attention to three critically important methodological issues: task performance confounds, contrast validity, and correction for multiple comparisons. We identified 86 studies describing a total of 561 relevant analyses. We found that methodological limitations related to task performance confounds, contrast validity, and correction for multiple comparisons have been pervasive. Only a few claims about language processing in individuals with aphasia are strongly supported by the extant literature: first, left hemisphere language regions are less activated in individuals with aphasia than neurologically normal controls, and second, in cohorts with aphasia, activity in left hemisphere language regions, and possibly a temporal lobe region in the right hemisphere, is positively correlated with language function. There is modest, equivocal evidence for the claim that individuals with aphasia differentially recruit right hemisphere homotopic regions, but no compelling evidence for differential recruitment of additional left hemisphere regions or domain-general networks. There is modest evidence that left hemisphere language regions return to function over time, but no compelling longitudinal evidence for dynamic reorganization of the language network.
Collapse
Affiliation(s)
- Stephen M. Wilson
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Sarah M. Schneck
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
12
|
Guerin JB, Greiner HM, Mangano FT, Leach JL. Functional MRI in Children: Current Clinical Applications. Semin Pediatr Neurol 2020; 33:100800. [PMID: 32331615 DOI: 10.1016/j.spen.2020.100800] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Functional magnetic resonance imaging has become a critical research tool for evaluating brain function during active tasks and resting states. This has improved our understanding of developmental trajectories in children as well as the plasticity of neural networks in disease states. In the clinical setting, functional maps of eloquent cortex in patients with brain lesions and/or epilepsy provides crucial information for presurgical planning. Although children are inherently challenging to scan in this setting, preparing them appropriately and providing adequate resources can help achieve useful clinical data. This article will review the basic underlying physiologic aspects of functional magnetic resonance imaging, review clinically relevant research applications, describe known validation data compared to gold standard techniques and detail future directions of this technology.
Collapse
Affiliation(s)
- Julie B Guerin
- Department of Pediatric Radiology and Medical Imaging, Cincinnati Children's Hospital Medical Center, Cincinnati, OH; Department of Radiology, Mayo Clinic, Rochester, MN
| | - Hansel M Greiner
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Francesco T Mangano
- Division of Pediatric Neurosurgery, University of Cincinnati College of Medicine Department of Neurosurgery, Cincinnati, OH
| | - James L Leach
- Department of Pediatric Radiology and Medical Imaging, Cincinnati Children's Hospital Medical Center, Cincinnati, OH; Department of Radiology, Mayo Clinic, Rochester, MN.
| |
Collapse
|
13
|
Batouli SAH, Alemi R, Khoshkhouy Delshad H, Oghabian MA. The influence of mental fatigue on the face and word encoding activations. Clin Neurol Neurosurg 2020; 189:105626. [DOI: 10.1016/j.clineuro.2019.105626] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 11/23/2019] [Accepted: 11/27/2019] [Indexed: 11/25/2022]
|
14
|
Yao S, Liebenthal E, Juvekar P, Bunevicius A, Vera M, Rigolo L, Golby AJ, Tie Y. Sex Effect on Presurgical Language Mapping in Patients With a Brain Tumor. Front Neurosci 2020; 14:4. [PMID: 32038154 PMCID: PMC6992642 DOI: 10.3389/fnins.2020.00004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 01/06/2020] [Indexed: 12/12/2022] Open
Abstract
Differences between males and females in brain development and in the organization and hemispheric lateralization of brain functions have been described, including in language. Sex differences in language organization may have important implications for language mapping performed to assess, and minimize neurosurgical risk to, language function. This study examined the effect of sex on the activation and functional connectivity of the brain, measured with presurgical functional magnetic resonance imaging (fMRI) language mapping in patients with a brain tumor. We carried out a retrospective analysis of data from neurosurgical patients treated at our institution who met the criteria of pathological diagnosis (malignant brain tumor), tumor location (left hemisphere), and fMRI paradigms [sentence completion (SC); antonym generation (AG); and resting-state fMRI (rs-fMRI)]. Forty-seven patients (22 females, mean age = 56.0 years) were included in the study. Across the SC and AG tasks, females relative to males showed greater activation in limited areas, including the left inferior frontal gyrus classically associated with language. In contrast, males relative to females showed greater activation in extended areas beyond the classic language network, including the supplementary motor area (SMA) and precentral gyrus. The rs-fMRI functional connectivity of the left SMA in the females was stronger with inferior temporal pole (TP) areas, and in the males with several midline areas. The findings are overall consistent with theories of greater reliance on specialized language areas in females relative to males, and generalized brain areas in males relative to females, for language function. Importantly, the findings suggest that sex could affect fMRI language mapping. Thus, considering sex as a variable in presurgical language mapping merits further investigation.
Collapse
Affiliation(s)
- Shun Yao
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
- Center for Pituitary Tumor Surgery, Department of Neurosurgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Wuhan School of Clinical Medicine, Southern Medical University, Wuhan, China
| | - Einat Liebenthal
- Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
- Institute for Technology in Psychiatry, McLean Hospital, Harvard Medical School, Belmont, MA, United States
| | - Parikshit Juvekar
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Adomas Bunevicius
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Matthew Vera
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Laura Rigolo
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Alexandra J. Golby
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Yanmei Tie
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
15
|
Utilization of functional MRI language paradigms for pre-operative mapping: a systematic review. Neuroradiology 2019; 62:353-367. [DOI: 10.1007/s00234-019-02322-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 11/08/2019] [Indexed: 12/18/2022]
|
16
|
Jeong W, Lee H, Kim JS, Chung CK. Neural basis of episodic memory in the intermediate term after medial temporal lobe resection. J Neurosurg 2019; 131:790-798. [PMID: 30485238 DOI: 10.3171/2018.5.jns18199] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 05/02/2018] [Indexed: 12/31/2022]
Abstract
OBJECTIVE How the brain supports intermediate-term preservation of memory in patients who have undergone unilateral medial temporal lobe resection (MTLR) has not yet been demonstrated. To understand the neural basis of episodic memory in the intermediate term after surgery for temporal lobe epilepsy (TLE), the authors investigated the relationship between the activation of the hippocampus (HIP) during successful memory encoding and individual memory capacity in patients who had undergone MTLR. They also compared hippocampal activation with other parameters, including structural volumes of the HIP, duration of illness, and age at seizure onset. METHODS Thirty-five adult patients who had undergone unilateral MTLR at least 1 year before recruiting and who had a favorable seizure outcome were enrolled (17 left MTLR, 18 right MTLR; mean follow-up 6.31 ± 2.72 years). All patients underwent a standardized neuropsychological examination of memory function and functional MRI scanning with a memory-encoding paradigm of words and figures. Activations of the HIP during successful memory encoding were calculated and compared with standard neuropsychological memory scores, hippocampal volumes, and other clinical variables. RESULTS Greater activation in the HIP contralateral to the side of the resection was related to higher postoperative memory scores and greater postoperative memory improvement than the preoperative baseline in both patient groups. Specifically, postoperative verbal memory performance was positively correlated with contralateral right hippocampal activation during word encoding in the left-sided surgery group. In contrast, postoperative visual memory performance was positively correlated with contralateral left hippocampal activation during figure encoding in the right-sided surgery group. Activation of the ipsilateral remnant HIP was not correlated with any memory scores or volumes of the HIP; however, it had a negative correlation with the seizure-onset age and positive correlation with the duration of illness in both patient groups. CONCLUSIONS For the first time, a neural basis that supports effective intermediate-term episodic memory after unilateral MTLR has been characterized. The results provide evidence that engagement of the HIP contralateral rather than ipsilateral to the side of resection is responsible for effective memory function in the intermediate term (> 1 year) after surgery in patients who have undergone left MTLR and right MTLR. Engagement of the material-specific contralesional HIP, verbal memory in the left-sided surgery group, and visual memory in the right-sided surgery group were observed.
Collapse
Affiliation(s)
- Woorim Jeong
- 1Neuroscience Research Institute, Seoul National University College of Medicine
- 2Department of Neurosurgery, Seoul National University Hospital
| | - Hyeongrae Lee
- 3Department of Mental Health Research, National Center for Mental Health; and
| | - June Sic Kim
- 4Department of Brain and Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul, Korea
| | - Chun Kee Chung
- 1Neuroscience Research Institute, Seoul National University College of Medicine
- 2Department of Neurosurgery, Seoul National University Hospital
- 4Department of Brain and Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul, Korea
| |
Collapse
|
17
|
Abstract
Functional MRI is a reliable, noninvasive technique which allows spatial mapping of the various functions like sensorimotor, language and vision in the brain. This is of immense help to the neurosurgeon in presurgical planning and intraoperative navigation in order to identify and preserve eloquent areas of the brain and minimize post-surgical neurological deficits. Using this technique in children pose unique challenges. This article discusses some of these challenges and how they can be overcome in successful application of this technique in pediatric patients.
Collapse
|
18
|
Agarwal S, Sair HI, Gujar S, Pillai JJ. Language Mapping With fMRI: Current Standards and Reproducibility. Top Magn Reson Imaging 2019; 28:225-233. [PMID: 31385902 DOI: 10.1097/rmr.0000000000000216] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Clinical use of blood oxygen level dependent (BOLD) functional magnetic resonance imaging (fMRI) is a relatively new phenomenon, with only about 3 decades of collective experience. Nevertheless, task-based BOLD fMRI has been widely accepted for presurgical planning, over traditional methods, which are invasive and at times perilous. Many studies have demonstrated the ability of BOLD fMRI to make substantial clinical impact with respect to surgical planning and preoperative risk assessment, especially to localize the eloquent motor and visual areas. Reproducibility and repeatability of language fMRI are important in the assessment of its clinical usefulness. There are national efforts currently underway to standardize language fMRI. The American Society of Functional Neuroradiology (ASFNR) has recently provided guidelines on fMRI paradigm algorithms for presurgical language assessment for language lateralization and localization. In this review article, we provide a comprehensive overview of current standards of language fMRI mapping and its reproducibility.
Collapse
Affiliation(s)
- Shruti Agarwal
- Division of Neuroradiology, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Haris I Sair
- Division of Neuroradiology, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Sachin Gujar
- Division of Neuroradiology, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Jay J Pillai
- Division of Neuroradiology, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD
| |
Collapse
|
19
|
Unadkat P, Fumagalli L, Rigolo L, Vangel MG, Young GS, Huang R, Mukundan S, Golby A, Tie Y. Functional MRI Task Comparison for Language Mapping in Neurosurgical Patients. J Neuroimaging 2019; 29:348-356. [PMID: 30648771 PMCID: PMC6506353 DOI: 10.1111/jon.12597] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 12/07/2018] [Accepted: 12/10/2018] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND AND PURPOSE Language task-based functional MRI (fMRI) is increasingly used for presurgical planning in patients with brain lesions. Different paradigms elicit activations of different components of the language network. The aim of this study is to optimize fMRI clinical usage by comparing the effectiveness of three language tasks for language lateralization and localization in a large group of patients with brain lesions. METHODS We analyzed fMRI data from a sequential retrospective cohort of 51 patients with brain lesions who underwent presurgical fMRI language mapping. We compared the effectiveness of three language tasks (Antonym Generation, Sentence Completion (SC), and Auditory Naming) for lateralizing language function and for activating cortex within patient-specific regions-of-interest representing eloquent language areas, and assessed the degree of spatial overlap of the areas of activation elicited by each task. RESULTS The tasks were similarly effective for lateralizing language within the anterior language areas. The SC task produced higher laterality indices within the posterior language areas and had a significantly higher agreement with the clinical report. Dice coefficients between the task pairs were in the range of .351-.458, confirming substantial variation in the components of the language network activated by each task. CONCLUSIONS SC task consistently produced large activations within the dominant hemisphere and was more effective for lateralizing language within the posterior language areas. The low degree of spatial overlap among the tasks strongly supports the practice of using a battery of tasks to help the surgeon to avoid eloquent language areas.
Collapse
Affiliation(s)
| | | | - Laura Rigolo
- From the Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA (PU, LF, LR, AG, YT); Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA (PU, MGV, GSY, RH, SM, AG); School of Medicine and Surgery, Universitá degli Studi di Milano-Bicocca, Milan, Italy (LF); and Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA (MGV)
| | - Mark G. Vangel
- From the Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA (PU, LF, LR, AG, YT); Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA (PU, MGV, GSY, RH, SM, AG); School of Medicine and Surgery, Universitá degli Studi di Milano-Bicocca, Milan, Italy (LF); and Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA (MGV)
| | - Geoffrey S. Young
- From the Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA (PU, LF, LR, AG, YT); Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA (PU, MGV, GSY, RH, SM, AG); School of Medicine and Surgery, Universitá degli Studi di Milano-Bicocca, Milan, Italy (LF); and Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA (MGV)
| | - Raymond Huang
- From the Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA (PU, LF, LR, AG, YT); Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA (PU, MGV, GSY, RH, SM, AG); School of Medicine and Surgery, Universitá degli Studi di Milano-Bicocca, Milan, Italy (LF); and Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA (MGV)
| | - Srinivasan Mukundan
- From the Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA (PU, LF, LR, AG, YT); Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA (PU, MGV, GSY, RH, SM, AG); School of Medicine and Surgery, Universitá degli Studi di Milano-Bicocca, Milan, Italy (LF); and Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA (MGV)
| | - Alexandra Golby
- From the Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA (PU, LF, LR, AG, YT); Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA (PU, MGV, GSY, RH, SM, AG); School of Medicine and Surgery, Universitá degli Studi di Milano-Bicocca, Milan, Italy (LF); and Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA (MGV)
| | - Yanmei Tie
- From the Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA (PU, LF, LR, AG, YT); Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA (PU, MGV, GSY, RH, SM, AG); School of Medicine and Surgery, Universitá degli Studi di Milano-Bicocca, Milan, Italy (LF); and Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA (MGV)
| |
Collapse
|
20
|
Yen M, DeMarco AT, Wilson SM. Adaptive paradigms for mapping phonological regions in individual participants. Neuroimage 2019; 189:368-379. [PMID: 30665008 DOI: 10.1016/j.neuroimage.2019.01.040] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 12/03/2018] [Accepted: 01/15/2019] [Indexed: 11/19/2022] Open
Abstract
Phonological encoding depends on left-lateralized regions in the supramarginal gyrus and the ventral precentral gyrus. Localization of these phonological regions in individual participants-including individuals with language impairments-is important in several research and clinical contexts. To localize these regions, we developed two paradigms that load on phonological encoding: a rhyme judgment task and a syllable counting task. Both paradigms relied on an adaptive staircase design to ensure that each individual performed each task at a similarly challenging level. The goal of this study was to assess the validity and reliability of the two paradigms, in terms of their ability to consistently produce left-lateralized activations of the supramarginal gyrus and ventral precentral gyrus in neurologically normal individuals with presumptively normal language localization. Sixteen participants were scanned with fMRI as they performed the rhyme judgment paradigm, the syllable counting paradigm, and an adaptive semantic paradigm that we have described previously. We found that the rhyme and syllable paradigms both yielded left-lateralized supramarginal and ventral precentral activations in the majority of participants. The rhyme paradigm produced more lateralized and more reliable activations, and so should be favored in future applications. In contrast, the semantic paradigm did not reveal supramarginal or precentral activations in most participants, suggesting that the recruitment of these regions is indeed driven by phonological encoding, not language processing in general. In sum, the adaptive rhyme judgment paradigm was effective in localizing left-lateralized phonological encoding regions in individual participants, and, in conjunction with the adaptive semantic paradigm, can be used to map individual language networks.
Collapse
Affiliation(s)
- Melodie Yen
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - Andrew T DeMarco
- Department of Neurology, Georgetown University Medical Center, Washington, DC, USA
| | - Stephen M Wilson
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
21
|
Jeong W, Lee H, Kim JS, Chung CK. Characterization of brain network supporting episodic memory in the absence of one medial temporal lobe. Hum Brain Mapp 2019; 40:2188-2199. [PMID: 30648325 PMCID: PMC6590340 DOI: 10.1002/hbm.24516] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 12/04/2018] [Accepted: 01/01/2019] [Indexed: 12/25/2022] Open
Abstract
How the brain supports normal episodic memory function without medial temporal lobe (MTL) structures has not been well characterized, which could provide clues for new therapeutic targets for people with MTL dysfunction‐related memory impairment. To characterize brain network supporting effective episodic memory function in the absence of unilateral MTL, we investigated the whole‐brain cortical interactions during functional magnetic resonance imaging memory encoding paradigms of words and figures in patients who showed a normal range of memory capacity following unilateral MTL resection and healthy controls (HC). Compared to the HC, the patients showed less activation in the left inferior frontal areas and right thalamus together with greater activation in the many cortical areas including the medial prefrontal cortex (mPFC). Task‐based functional connectivity (FC) analysis revealed that the mPFC showed stronger interactions with widespread brain areas in both patient groups, including the hippocampus contralateral to the resection. Moreover, the strength of the mPFC FC predicts the individual memory capacity of the patients. Our data suggest that hyperconnectivity of distributed brain areas, especially the mPFC, is a neural mechanism for memory function in the absence of one MTL.
Collapse
Affiliation(s)
- Woorim Jeong
- Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, Korea.,Department of Neurosurgery, Seoul National University Hospital, Seoul, Korea
| | - Hyeongrae Lee
- Department of Mental Health Research, National Center for Mental Health, Seoul, Korea
| | - June Sic Kim
- Research Institute of Basic Sciences, Seoul National University, Seoul, Korea
| | - Chun Kee Chung
- Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, Korea.,Department of Neurosurgery, Seoul National University Hospital, Seoul, Korea.,Department of Brain and Cognitive Sciences, Seoul National University, Seoul, Korea
| |
Collapse
|
22
|
Agarwal S, Hua J, Sair HI, Gujar S, Bettegowda C, Lu H, Pillai JJ. Repeatability of language fMRI lateralization and localization metrics in brain tumor patients. Hum Brain Mapp 2018; 39:4733-4742. [PMID: 30076768 PMCID: PMC6218318 DOI: 10.1002/hbm.24318] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 06/29/2018] [Accepted: 07/05/2018] [Indexed: 11/12/2022] Open
Abstract
To assess the within-subject intra-scan session repeatability of language functional MRI (fMRI) activation maps in patients with brain tumors who were undergoing presurgical fMRI as part of their preoperative clinical workup. Sentence completion (SC) and silent word generation (SWG) tasks were used for language localization and hemispheric lateralization for identifying the primary language cortex. Within-subject repeatability for each of these paradigms was assessed in right-handed patients-37 for SC and 78 for SWG. Repeatability of activation maps between consecutive runs of the same task within the same scan session was evaluated by comparing lateralization indexes in holohemispheric and regional language areas. Displacement of center of activation between consecutive runs was also used to assess the repeatability of activation maps. Holohemispheric and regional language lateralization results demonstrated high intra-subject intra-scan repeatability when lateralization indices were calculated using threshold-dependent and threshold-independent approaches. The high repeatability is demonstrated both when centers of mass of activation are considered within key eloquent regions of the brain, such as Broca's area and Wernicke's area, as well as in larger more inclusive expressive and receptive language regions. We examined two well-known and widely accepted language tasks that are known to activate eloquent language cortex. We have demonstrated very high degree of repeatability at a single-subject level within single scan sessions of language mapping in a large cohort of brain tumor patients undergoing presurgical fMRI across several years at our institution.
Collapse
Affiliation(s)
- Shruti Agarwal
- Division of Neuroradiology, Russell H. Morgan Department of Radiology and Radiological ScienceJohns Hopkins University School of MedicineBaltimoreMaryland
| | - Jun Hua
- Division of MR Research, Russell H. Morgan Department of Radiology and Radiological ScienceJohns Hopkins University School of MedicineBaltimoreMaryland
- F. M. Kirby Research Center For Functional Brain ImagingKennedy Krieger InstituteBaltimoreMaryland
| | - Haris I. Sair
- Division of Neuroradiology, Russell H. Morgan Department of Radiology and Radiological ScienceJohns Hopkins University School of MedicineBaltimoreMaryland
| | - Sachin Gujar
- Division of Neuroradiology, Russell H. Morgan Department of Radiology and Radiological ScienceJohns Hopkins University School of MedicineBaltimoreMaryland
| | - Chetan Bettegowda
- Department of NeurosurgeryJohns Hopkins University School of MedicineBaltimoreMaryland
| | - Hanzhang Lu
- Division of MR Research, Russell H. Morgan Department of Radiology and Radiological ScienceJohns Hopkins University School of MedicineBaltimoreMaryland
- F. M. Kirby Research Center For Functional Brain ImagingKennedy Krieger InstituteBaltimoreMaryland
| | - Jay J. Pillai
- Division of Neuroradiology, Russell H. Morgan Department of Radiology and Radiological ScienceJohns Hopkins University School of MedicineBaltimoreMaryland
- Department of NeurosurgeryJohns Hopkins University School of MedicineBaltimoreMaryland
| |
Collapse
|
23
|
Zacà D, Corsini F, Rozzanigo U, Dallabona M, Avesani P, Annicchiarico L, Zigiotto L, Faraca G, Chioffi F, Jovicich J, Sarubbo S. Whole-Brain Network Connectivity Underlying the Human Speech Articulation as Emerged Integrating Direct Electric Stimulation, Resting State fMRI and Tractography. Front Hum Neurosci 2018; 12:405. [PMID: 30364298 PMCID: PMC6193478 DOI: 10.3389/fnhum.2018.00405] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Accepted: 09/20/2018] [Indexed: 11/16/2022] Open
Abstract
Production of fluent speech in humans is based on a precise and coordinated articulation of sounds. A speech articulation network (SAN) has been observed in multiple brain studies typically using either neuroimaging or direct electrical stimulation (DES), thus giving limited knowledge about the whole brain structural and functional organization of this network. In this study, seven right-handed patients underwent awake surgery resection of low-grade gliomas (4) and cavernous angiomas. We combined pre-surgical resting state fMRI (rs-fMRI) and diffusion MRI together with speech arrest sites obtained intra-operatively with DES to address the following goals: (i) determine the cortical areas contributing to the intrinsic functional SAN using the speech arrest sites as functional seeds for rs-fMRI; (ii) evaluate the relative contribution of gray matter terminations from the two major language dorsal stream bundles, the superior longitudinal fasciculus (SLF III) and the arcuate fasciculus (AF); and (iii) evaluate the possible pre-surgical prediction of SAN with rs-fMRI. In all these right-handed patients the intrinsic functional SAN included frontal, inferior parietal, temporal, and insular regions symmetrically and bilaterally distributed across the two hemispheres regardless of the side (four right) of speech arrest evocation. The SLF III provided a much higher density of terminations in the cortical regions of SAN in respect to AF. Pre-surgical rs-fMRI data demonstrated moderate ability to predict the SAN. The set of functional and structural data provided in this multimodal study characterized, at a whole-brain level, a distributed and bi-hemispherical network subserving speech articulation.
Collapse
Affiliation(s)
- Domenico Zacà
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Trento, Italy
| | - Francesco Corsini
- Division of Neurosurgery, "S. Chiara" Hospital, Azienda Provinciale per i Servizi Sanitari, Trento, Italy.,Structural and Functional Connectivity Lab (SFC-Lab) Project, Division of Neurosurgery, "S. Chiara" Hospital, Azienda Provinciale per i Servizi Sanitari, Trento, Italy
| | - Umberto Rozzanigo
- Department of Radiology, Neuroradiology Unit, "S. Chiara" Hospital, Azienda Provinciale per i Servizi Sanitari, Trento, Italy
| | - Monica Dallabona
- Division of Neurosurgery, "S. Chiara" Hospital, Azienda Provinciale per i Servizi Sanitari, Trento, Italy
| | - Paolo Avesani
- NiLab, Bruno Kessler Foundation - FBK, Trento, Italy
| | - Luciano Annicchiarico
- Division of Neurosurgery, "S. Chiara" Hospital, Azienda Provinciale per i Servizi Sanitari, Trento, Italy.,Department of Neurosciences, Biomedicine and Movement Sciences, Section of Neurosurgery, University of Verona, Verona, Italy
| | - Luca Zigiotto
- Division of Neurosurgery, "S. Chiara" Hospital, Azienda Provinciale per i Servizi Sanitari, Trento, Italy
| | - Giovanna Faraca
- Division of Neurosurgery, "S. Chiara" Hospital, Azienda Provinciale per i Servizi Sanitari, Trento, Italy
| | - Franco Chioffi
- Division of Neurosurgery, "S. Chiara" Hospital, Azienda Provinciale per i Servizi Sanitari, Trento, Italy.,Structural and Functional Connectivity Lab (SFC-Lab) Project, Division of Neurosurgery, "S. Chiara" Hospital, Azienda Provinciale per i Servizi Sanitari, Trento, Italy
| | - Jorge Jovicich
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Trento, Italy
| | - Silvio Sarubbo
- Division of Neurosurgery, "S. Chiara" Hospital, Azienda Provinciale per i Servizi Sanitari, Trento, Italy.,Structural and Functional Connectivity Lab (SFC-Lab) Project, Division of Neurosurgery, "S. Chiara" Hospital, Azienda Provinciale per i Servizi Sanitari, Trento, Italy
| |
Collapse
|
24
|
Agarwal S, Sair HI, Pillai JJ. Limitations of Resting-State Functional MR Imaging in the Setting of Focal Brain Lesions. Neuroimaging Clin N Am 2018; 27:645-661. [PMID: 28985935 DOI: 10.1016/j.nic.2017.06.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Methods of image acquisition and analysis for resting-state functional MR imaging (rsfMR imaging) are still evolving. Neurovascular uncoupling and susceptibility artifact are important confounds of rsfMR imaging in the setting of focal brain lesions such as brain tumors. This article reviews the detection of these confounds using rsfMR imaging metrics in the setting of focal brain lesions. In the near future, with the wide range of ongoing research in rsfMR imaging, these issues likely will be overcome and will open new windows into brain function and connectivity.
Collapse
Affiliation(s)
- Shruti Agarwal
- Division of Neuroradiology, The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Phipps B-100, 1800 Orleans Street, Baltimore, MD 21287, USA
| | - Haris I Sair
- Division of Neuroradiology, The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Phipps B-100, 1800 Orleans Street, Baltimore, MD 21287, USA
| | - Jay J Pillai
- Division of Neuroradiology, The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Phipps B-100, 1800 Orleans Street, Baltimore, MD 21287, USA.
| |
Collapse
|
25
|
On the relative merits of invasive and non-invasive pre-surgical brain mapping: New tools in ablative epilepsy surgery. Epilepsy Res 2018; 142:153-155. [DOI: 10.1016/j.eplepsyres.2017.07.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 06/01/2017] [Accepted: 07/01/2017] [Indexed: 11/23/2022]
|
26
|
Black DF, Vachha B, Mian A, Faro SH, Maheshwari M, Sair HI, Petrella JR, Pillai JJ, Welker K. American Society of Functional Neuroradiology-Recommended fMRI Paradigm Algorithms for Presurgical Language Assessment. AJNR Am J Neuroradiol 2017; 38:E65-E73. [PMID: 28860215 DOI: 10.3174/ajnr.a5345] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
INTRODUCTION Functional MR imaging is increasingly being used for presurgical language assessment in the treatment of patients with brain tumors, epilepsy, vascular malformations, and other conditions. The inherent complexity of fMRI, which includes numerous processing steps and selective analyses, is compounded by institution-unique approaches to patient training, paradigm choice, and an eclectic array of postprocessing options from various vendors. Consequently, institutions perform fMRI in such markedly different manners that data sharing, comparison, and generalization of results are difficult. The American Society of Functional Neuroradiology proposes widespread adoption of common fMRI language paradigms as the first step in countering this lost opportunity to advance our knowledge and improve patient care. LANGUAGE PARADIGM REVIEW PROCESS A taskforce of American Society of Functional Neuroradiology members from multiple institutions used a broad literature review, member polls, and expert opinion to converge on 2 sets of standard language paradigms that strike a balance between ease of application and clinical usefulness. ASFNR RECOMMENDATIONS The taskforce generated an adult language paradigm algorithm for presurgical language assessment including the following tasks: Sentence Completion, Silent Word Generation, Rhyming, Object Naming, and/or Passive Story Listening. The pediatric algorithm includes the following tasks: Sentence Completion, Rhyming, Antonym Generation, or Passive Story Listening. DISCUSSION Convergence of fMRI language paradigms across institutions offers the first step in providing a "Rosetta Stone" that provides a common reference point with which to compare and contrast the usefulness and reliability of fMRI data. From this common language task battery, future refinements and improvements are anticipated, particularly as objective measures of reliability become available. Some commonality of practice is a necessary first step to develop a foundation on which to improve the clinical utility of this field.
Collapse
Affiliation(s)
- D F Black
- From the Mayo Clinic (D.F.B., K.W.), Rochester Minnesota
| | - B Vachha
- Memorial Sloan Kettering Cancer Center (B.V.), New York, New York
| | - A Mian
- Boston University School of Medicine (A.M.), Boston, Massachusetts
| | - S H Faro
- Johns Hopkins University School of Medicine and the Johns Hopkins Hospital (S.H.F., H.I.S., J.J.P.), Baltimore, Maryland
| | - M Maheshwari
- Children's Hospital of Wisconsin (M.M.), Milwaukee, Wisconsin
| | - H I Sair
- Johns Hopkins University School of Medicine and the Johns Hopkins Hospital (S.H.F., H.I.S., J.J.P.), Baltimore, Maryland
| | - J R Petrella
- Duke University School of Medicine, (J.R.P.) Durham, North Carolina
| | - J J Pillai
- Johns Hopkins University School of Medicine and the Johns Hopkins Hospital (S.H.F., H.I.S., J.J.P.), Baltimore, Maryland
| | - K Welker
- From the Mayo Clinic (D.F.B., K.W.), Rochester Minnesota
| |
Collapse
|
27
|
Gębska-Kośla K, Bryszewski B, Jaskólski DJ, Fortuniak J, Niewodniczy M, Stefańczyk L, Majos A. Reorganization of language centers in patients with brain tumors located in eloquent speech areas - A pre- and postoperative preliminary fMRI study. Neurol Neurochir Pol 2017; 51:403-410. [PMID: 28780063 DOI: 10.1016/j.pjnns.2017.07.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 03/06/2017] [Accepted: 07/06/2017] [Indexed: 11/18/2022]
Abstract
INTRODUCTION The aim of this study was to determine in pre- and postsurgical fMRI studies the rearrangement of the Broca's and Wernicke's areas and the lateralization index for these areas in patients with brain tumors located near speech centers. Impact of the surgical treatment on the brain plasticity was evaluated. MATERIALS AND METHODS Pre- and postoperative fMRI examinations were performed in 10 patients with low grade glial, left-sided brain tumors located close to the Broca's (5 patients) or Wernicke's area (5 patients). BOLD signal was recorded in regions of interest: Broca's and Wernicke's areas, and their anatomic right-sided homologues. RESULTS In the preoperative fMRI study the left Broca's area was activated in all cases. The right Broca's area was activated in all the patients with no speech disorders. In the postoperative fMRI the activation of both Broca's areas increased in two cases. In other two cases activation of one of the Broca's area increased along with the decrease in the contralateral hemisphere. In all patients with temporal lobe tumors, the right Wernicke's area was activated in the pre- and postsurgical fMRI. After the operation, in two patients with speech disorder, the activation of both Broca's areas decreased and the activation of one of the Wernicke's areas increased. CONCLUSIONS In the cases of tumors localized near the left Broca's area, a transfer of the function to the healthy hemisphere seems to take place. Resection of tumors located near Broca's or Wernicke's areas may lead to relocation of the brain language centers.
Collapse
Affiliation(s)
- Katarzyna Gębska-Kośla
- Department of Radiological and Isotopic Diagnosis and Therapy, Medical University of Lodz, Central Clinical Hospital, Czechoslowacka 8/10, 92-216 Lodz, Poland.
| | - Bartosz Bryszewski
- Department of Neurosurgery, Medical University of Łódź, Kopcińskiego 22, 90-153 Łódź, Poland.
| | - Dariusz J Jaskólski
- Department of Neurosurgery, Medical University of Łódź, Kopcińskiego 22, 90-153 Łódź, Poland.
| | - Jan Fortuniak
- Department of Neurosurgery, Medical University of Łódź, Kopcińskiego 22, 90-153 Łódź, Poland.
| | - Maciej Niewodniczy
- Institute of Health Sciences, University of Social Sciences, Gdańska 121, 90-508 Łódź, Poland.
| | - Ludomir Stefańczyk
- Department of Radiology and Diagnostic Imaging, Medical University of Łódź, Kopcińskiego 22, 90-153 Łódź, Poland.
| | - Agata Majos
- Department of Radiological and Isotopic Diagnosis and Therapy, Medical University of Lodz, Central Clinical Hospital, Czechoslowacka 8/10, 92-216 Lodz, Poland.
| |
Collapse
|
28
|
Comparing the Intracarotid Amobarbital Test and Functional MRI for the Presurgical Evaluation of Language in Epilepsy. Curr Neurol Neurosci Rep 2017. [DOI: 10.1007/s11910-017-0763-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
29
|
Hua J, Miao X, Agarwal S, Bettegowda C, Quiñones-Hinojosa A, Laterra J, Van Zijl PCM, Pekar JJ, Pillai JJ. Language Mapping Using T2-Prepared BOLD Functional MRI in the Presence of Large Susceptibility Artifacts-Initial Results in Patients With Brain Tumor and Epilepsy. ACTA ACUST UNITED AC 2017; 3:105-113. [PMID: 28804779 PMCID: PMC5552052 DOI: 10.18383/j.tom.2017.00006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
At present, presurgical functional mapping is the most prevalent clinical application of functional magnetic resonance imaging (fMRI). Signal dropouts and distortions caused by susceptibility effects in the current standard echo planar imaging (EPI)-based fMRI images are well-known problems and pose a major hurdle for the application of fMRI in several brain regions, many of which are related to language mapping in presurgical planning. Such artifacts are particularly problematic in patients with previous surgical resection cavities, craniotomy hardware, hemorrhage, and vascular malformation. A recently developed T2-prepared (T2prep) fMRI approach showed negligible distortion and dropouts in the entire brain even in the presence of large susceptibility effects. Here, we present initial results comparing T2prep- and multiband EPI-fMRI scans for presurgical language mapping using a sentence completion task in patients with brain tumor and epilepsy. In all patients scanned, T2prep-fMRI showed minimal image artifacts (distortion and dropout) and greater functional sensitivity than EPI-fMRI around the lesions containing blood products and in air-filled cavities. This enhanced sensitivity in T2prep-fMRI was also evidenced by the fact that functional activation during the sentence completion task was detected with T2prep-fMRI but not with EPI-fMRI in the affected areas with the same statistical threshold, whereas cerebrovascular reactivity during a breath-hold task was preserved in these same regions, implying intact neurovascular coupling in these patients. Although further investigations are required to validate these findings with invasive methods such as direct cortical stimulation mapping as the gold standard, this approach provides an alternative method for performing fMRI in brain regions with large susceptibility effects.
Collapse
Affiliation(s)
- Jun Hua
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland.,Neurosection, Division of MRI Research, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Xinyuan Miao
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland.,Neurosection, Division of MRI Research, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Shruti Agarwal
- Division of Neuroradiology, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Chetan Bettegowda
- Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | | | - John Laterra
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Peter C M Van Zijl
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland.,Neurosection, Division of MRI Research, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - James J Pekar
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland.,Neurosection, Division of MRI Research, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jay J Pillai
- Division of Neuroradiology, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
30
|
Połczyńska M, Japardi K, Curtiss S, Moody T, Benjamin C, Cho A, Vigil C, Kuhn T, Jones M, Bookheimer S. Improving language mapping in clinical fMRI through assessment of grammar. NEUROIMAGE-CLINICAL 2017; 15:415-427. [PMID: 28616382 PMCID: PMC5458087 DOI: 10.1016/j.nicl.2017.05.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Revised: 05/03/2017] [Accepted: 05/25/2017] [Indexed: 11/27/2022]
Abstract
Introduction Brain surgery in the language dominant hemisphere remains challenging due to unintended post-surgical language deficits, despite using pre-surgical functional magnetic resonance (fMRI) and intraoperative cortical stimulation. Moreover, patients are often recommended not to undergo surgery if the accompanying risk to language appears to be too high. While standard fMRI language mapping protocols may have relatively good predictive value at the group level, they remain sub-optimal on an individual level. The standard tests used typically assess lexico-semantic aspects of language, and they do not accurately reflect the complexity of language either in comprehension or production at the sentence level. Among patients who had left hemisphere language dominance we assessed which tests are best at activating language areas in the brain. Method We compared grammar tests (items testing word order in actives and passives, wh-subject and object questions, relativized subject and object clauses and past tense marking) with standard tests (object naming, auditory and visual responsive naming), using pre-operative fMRI. Twenty-five surgical candidates (13 females) participated in this study. Sixteen patients presented with a brain tumor, and nine with epilepsy. All participants underwent two pre-operative fMRI protocols: one including CYCLE-N grammar tests (items testing word order in actives and passives, wh-subject and object questions, relativized subject and object clauses and past tense marking); and a second one with standard fMRI tests (object naming, auditory and visual responsive naming). fMRI activations during performance in both protocols were compared at the group level, as well as in individual candidates. Results The grammar tests generated more volume of activation in the left hemisphere (left/right angular gyrus, right anterior/posterior superior temporal gyrus) and identified additional language regions not shown by the standard tests (e.g., left anterior/posterior supramarginal gyrus). The standard tests produced more activation in left BA 47. Ten participants had more robust activations in the left hemisphere in the grammar tests and two in the standard tests. The grammar tests also elicited substantial activations in the right hemisphere and thus turned out to be superior at identifying both right and left hemisphere contribution to language processing. Conclusion The grammar tests may be an important addition to the standard pre-operative fMRI testing. We added comprehensive grammar tests to standard presurgical fMRI of language. The grammar tests generated more volume of activation bilaterally. The tests identified additional language regions not shown by the standard tests. The grammar tests may be an important addition to standard pre-operative fMRI.
Collapse
Affiliation(s)
- Monika Połczyńska
- UCLA Department of Psychiatry and Biobehavioral Sciences, Los Angeles, CA 90095, USA; Faculty of English, Adam Mickiewicz University, Poznań, Poland.
| | - Kevin Japardi
- UCLA Department of Psychiatry and Biobehavioral Sciences, Los Angeles, CA 90095, USA
| | | | - Teena Moody
- UCLA Department of Psychiatry and Biobehavioral Sciences, Los Angeles, CA 90095, USA.
| | | | - Andrew Cho
- UCLA Department of Psychiatry and Biobehavioral Sciences, Los Angeles, CA 90095, USA
| | - Celia Vigil
- UCLA Department of Psychiatry and Biobehavioral Sciences, Los Angeles, CA 90095, USA
| | - Taylor Kuhn
- UCLA Department of Psychiatry and Biobehavioral Sciences, Los Angeles, CA 90095, USA.
| | - Michael Jones
- UCLA Department of Psychiatry and Biobehavioral Sciences, Los Angeles, CA 90095, USA
| | - Susan Bookheimer
- UCLA Department of Psychiatry and Biobehavioral Sciences, Los Angeles, CA 90095, USA.
| |
Collapse
|
31
|
Benjamin CF, Walshaw PD, Hale K, Gaillard WD, Baxter LC, Berl MM, Polczynska M, Noble S, Alkawadri R, Hirsch LJ, Constable RT, Bookheimer SY. Presurgical language fMRI: Mapping of six critical regions. Hum Brain Mapp 2017; 38:4239-4255. [PMID: 28544168 PMCID: PMC5518223 DOI: 10.1002/hbm.23661] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 05/12/2017] [Accepted: 05/15/2017] [Indexed: 02/01/2023] Open
Abstract
Language mapping is a key goal in neurosurgical planning. fMRI mapping typically proceeds with a focus on Broca's and Wernicke's areas, although multiple other language‐critical areas are now well‐known. We evaluated whether clinicians could use a novel approach, including clinician‐driven individualized thresholding, to reliably identify six language regions, including Broca's Area, Wernicke's Area (inferior, superior), Exner's Area, Supplementary Speech Area, Angular Gyrus, and Basal Temporal Language Area. We studied 22 epilepsy and tumor patients who received Wada and fMRI (age 36.4[12.5]; Wada language left/right/mixed in 18/3/1). fMRI tasks (two × three tasks) were analyzed by two clinical neuropsychologists who flexibly thresholded and combined these to identify the six regions. The resulting maps were compared to fixed threshold maps. Clinicians generated maps that overlapped significantly, and were highly consistent, when at least one task came from the same set. Cases diverged when clinicians prioritized different language regions or addressed noise differently. Language laterality closely mirrored Wada data (85% accuracy). Activation consistent with all six language regions was consistently identified. In blind review, three external, independent clinicians rated the individualized fMRI language maps as superior to fixed threshold maps; identified the majority of regions significantly more frequently; and judged language laterality to mirror Wada lateralization more often. These data provide initial validation of a novel, clinician‐based approach to localizing language cortex. They also demonstrate clinical fMRI is superior when analyzed by an experienced clinician and that when fMRI data is of low quality judgments of laterality are unreliable and should be withheld. Hum Brain Mapp 38:4239–4255, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Christopher F Benjamin
- Department of Neurology, Comprehensive Epilepsy Center, Yale School of Medicine, New Haven, Connecticut.,Department of Neurosurgery, Yale School of Medicine, New Haven, Connecticut
| | - Patricia D Walshaw
- UCLA Department of Psychiatry and Biobehavioral Sciences, Los Angeles, California
| | - Kayleigh Hale
- U.S. Department of Veterans Affairs, War Related Illness and Injury Study Center, Washington, DC
| | - William D Gaillard
- Center for Neuroscience Research, Children's National Health System, Washington, DC
| | - Leslie C Baxter
- Department of Neuroimaging Research, Barrow Neurological Institute, Phoenix, Arizona
| | - Madison M Berl
- Center for Neuroscience Research, Children's National Health System, Washington, DC
| | - Monika Polczynska
- UCLA Department of Psychiatry and Biobehavioral Sciences, Los Angeles, California.,Faculty of English, Adam Mickiewicz University, Poznań, Poland
| | - Stephanie Noble
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut
| | - Rafeed Alkawadri
- Department of Neurology, Comprehensive Epilepsy Center, Yale School of Medicine, New Haven, Connecticut
| | - Lawrence J Hirsch
- Department of Neurology, Comprehensive Epilepsy Center, Yale School of Medicine, New Haven, Connecticut
| | - R Todd Constable
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut
| | - Susan Y Bookheimer
- UCLA Department of Psychiatry and Biobehavioral Sciences, Los Angeles, California
| |
Collapse
|
32
|
Language Mapping Using fMRI and Direct Cortical Stimulation for Brain Tumor Surgery: The Good, the Bad, and the Questionable. Top Magn Reson Imaging 2016; 25:1-10. [PMID: 26848555 DOI: 10.1097/rmr.0000000000000074] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Language functional magnetic resonance imaging for neurosurgical planning is a useful but nuanced technique. Consideration of primary and secondary language anatomy, task selection, and data analysis choices all impact interpretation. In the following chapter, we consider practical considerations and nuances alike for language functional magnetic resonance imaging in the support of and comparison with the neurosurgical gold standard, direct cortical stimulation. Pitfalls and limitations are discussed.
Collapse
|
33
|
Batouli SAH, Hasani N, Gheisari S, Behzad E, Oghabian MA. Evaluation of the factors influencing brain language laterality in presurgical planning. Phys Med 2016; 32:1201-1209. [PMID: 27742256 DOI: 10.1016/j.ejmp.2016.06.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Revised: 06/07/2016] [Accepted: 06/17/2016] [Indexed: 10/20/2022] Open
Abstract
Brain lesions cause functional deficits, and one treatment for this condition is lesion resection. In most cases, presurgical planning (PSP) and the information from laterality indices are necessary for maximum preservation of the critical functions after surgery. Language laterality index (LI) is reliably estimated using functional magnetic resonance imaging (fMRI); however, this measure is under the influence of some external factors. In this study, we investigated the influence of a number of factors on language LI, using data from 120 patients (mean age=35.65 (±13.4) years) who underwent fMRI for PSP. Using two proposed language tasks from our previous works, brain left hemisphere was showed to be dominant for the language function, although a higher LI was obtained using the "Word Generation" task, compared to the "Reverse Word Reading". In addition, decline of LIs with age, and lower LI when the lesion invaded brain language area were observed. Meanwhile, gender, lesion side (affected hemisphere), LI calculation strategy, and fMRI analysis Z-values did not statistically show any influences on the LIs. Although fMRI is widely used to estimate language LI, it is shown here that in order to present a reliable language LI and to correctly select the dominant hemisphere of the brain, the influence of external factors should be carefully considered.
Collapse
Affiliation(s)
- Seyed Amir Hossein Batouli
- Neuroimaging and Analysis Group, Research Center for Cellular and Molecular Imaging, Tehran University of Medical Sciences, Tehran, Iran
| | - Nafiseh Hasani
- Neuroimaging and Analysis Group, Research Center for Cellular and Molecular Imaging, Tehran University of Medical Sciences, Tehran, Iran
| | - Sara Gheisari
- Neuroimaging and Analysis Group, Research Center for Cellular and Molecular Imaging, Tehran University of Medical Sciences, Tehran, Iran
| | - Ebrahim Behzad
- School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Ali Oghabian
- Neuroimaging and Analysis Group, Research Center for Cellular and Molecular Imaging, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
34
|
Validity and reliability of four language mapping paradigms. NEUROIMAGE-CLINICAL 2016; 16:399-408. [PMID: 28879081 PMCID: PMC5574842 DOI: 10.1016/j.nicl.2016.03.015] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 03/01/2016] [Accepted: 03/20/2016] [Indexed: 11/22/2022]
Abstract
Language areas of the brain can be mapped in individual participants with functional MRI. We investigated the validity and reliability of four language mapping paradigms that may be appropriate for individuals with acquired aphasia: sentence completion, picture naming, naturalistic comprehension, and narrative comprehension. Five neurologically normal older adults were scanned on each of the four paradigms on four separate occasions. Validity was assessed in terms of whether activation patterns reflected the known typical organization of language regions, that is, lateralization to the left hemisphere, and involvement of the left inferior frontal gyrus and the left middle and/or superior temporal gyri. Reliability (test-retest reproducibility) was quantified in terms of the Dice coefficient of similarity, which measures overlap of activations across time points. We explored the impact of different absolute and relative voxelwise thresholds, a range of cluster size cutoffs, and limitation of analyses to a priori potential language regions. We found that the narrative comprehension and sentence completion paradigms offered the best balance of validity and reliability. However, even with optimal combinations of analysis parameters, there were many scans on which known features of typical language organization were not demonstrated, and test-retest reproducibility was only moderate for realistic parameter choices. These limitations in terms of validity and reliability may constitute significant limitations for many clinical or research applications that depend on identifying language regions in individual participants. Validity and reliability were investigated for four language mapping paradigms. Narrative comprehension and sentence completion paradigms performed best. Lateralization to the left hemisphere was not always apparent. Test-retest reproducibility was only moderate.
Collapse
|
35
|
Dong JW, Brennan NMP, Izzo G, Peck KK, Holodny AI. fMRI activation in the middle frontal gyrus as an indicator of hemispheric dominance for language in brain tumor patients: a comparison with Broca's area. Neuroradiology 2016; 58:513-20. [PMID: 26847705 DOI: 10.1007/s00234-016-1655-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 01/29/2016] [Indexed: 11/26/2022]
Abstract
INTRODUCTION Functional MRI (fMRI) can assess language lateralization in brain tumor patients; however, this can be limited if the primary language area-Broca's area (BA)-is affected by the tumor. We hypothesized that the middle frontal gyrus (MFG) can be used as a clinical indicator of hemispheric dominance for language during presurgical workup. METHODS Fifty-two right-handed subjects with solitary left-hemispheric primary brain tumors were retrospectively studied. Subjects performed a verbal fluency task during fMRI. The MFG was compared to BA for fMRI voxel activation, language laterality index (LI), and the effect of tumor grade on the LI. RESULTS Language fMRI (verbal fluency) activated more voxels in MFG than in BA (MFG = 315, BA = 216, p < 0.001). Voxel activations in the left-hemispheric MFG and BA were positively correlated (r = 0.69, p < 0.001). Mean LI in the MFG was comparable to that in BA (MFG = 0.48, BA = 0.39, p = 0.06). LIs in MFG and BA were positively correlated (r = 0.62, p < 0.001). Subjects with high-grade tumors demonstrate lower language lateralization than those with low-grade tumors in both BA and MFG (p = 0.02, p = 0.02, respectively). CONCLUSION MFG is comparable to BA in its ability to indicate hemispheric dominance for language using a measure of verbal fluency and may be an adjunct measure in the clinical determination of language laterality for presurgical planning.
Collapse
Affiliation(s)
- Jian W Dong
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY, 10065, USA
- New York University School of Medicine, New York, NY, USA
| | - Nicole M Petrovich Brennan
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY, 10065, USA
| | - Giana Izzo
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY, 10065, USA
- Department of Bioimaging and Radiological Sciences, Catholic University of Rome, A. Gemelli Hospital, Rome, Italy
| | - Kyung K Peck
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY, 10065, USA
- Department of Medical Physics and the Brain Tumor Center, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Andrei I Holodny
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY, 10065, USA.
- Department of Medical Physics and the Brain Tumor Center, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
36
|
Sair HI, Yahyavi-Firouz-Abadi N, Calhoun VD, Airan RD, Agarwal S, Intrapiromkul J, Choe AS, Gujar SK, Caffo B, Lindquist MA, Pillai JJ. Presurgical brain mapping of the language network in patients with brain tumors using resting-state fMRI: Comparison with task fMRI. Hum Brain Mapp 2015; 37:913-23. [PMID: 26663615 DOI: 10.1002/hbm.23075] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 11/16/2015] [Accepted: 11/23/2015] [Indexed: 01/23/2023] Open
Abstract
PURPOSE To compare language networks derived from resting-state fMRI (rs-fMRI) with task-fMRI in patients with brain tumors and investigate variables that affect rs-fMRI vs task-fMRI concordance. MATERIALS AND METHODS Independent component analysis (ICA) of rs-fMRI was performed with 20, 30, 40, and 50 target components (ICA20 to ICA50) and language networks identified for patients presenting for presurgical fMRI mapping between 1/1/2009 and 7/1/2015. 49 patients were analyzed fulfilling criteria for presence of brain tumors, no prior brain surgery, and adequate task-fMRI performance. Rs-vs-task-fMRI concordance was measured using Dice coefficients across varying fMRI thresholds before and after noise removal. Multi-thresholded Dice coefficient volume under the surface (DiceVUS) and maximum Dice coefficient (MaxDice) were calculated. One-way Analysis of Variance (ANOVA) was performed to determine significance of DiceVUS and MaxDice between the four ICA order groups. Age, Sex, Handedness, Tumor Side, Tumor Size, WHO Grade, number of scrubbed volumes, image intensity root mean square (iRMS), and mean framewise displacement (FD) were used as predictors for VUS in a linear regression. RESULTS Artificial elevation of rs-fMRI vs task-fMRI concordance is seen at low thresholds due to noise. Noise-removed group-mean DiceVUS and MaxDice improved as ICA order increased, however ANOVA demonstrated no statistically significant difference between the four groups. Linear regression demonstrated an association between iRMS and DiceVUS for ICA30-50, and iRMS and MaxDice for ICA50. CONCLUSION Overall there is moderate group level rs-vs-task fMRI language network concordance, however substantial subject-level variability exists; iRMS may be used to determine reliability of rs-fMRI derived language networks.
Collapse
Affiliation(s)
- Haris I Sair
- Division of Neuroradiology, the Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Noushin Yahyavi-Firouz-Abadi
- Division of Neuroradiology, the Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Vince D Calhoun
- The Mind Research Network, Departments of Electrical and Computer Engineering, University of New Mexico, Albuquerque, New Mexico
| | - Raag D Airan
- Division of Neuroradiology, the Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Shruti Agarwal
- Division of Neuroradiology, the Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jarunee Intrapiromkul
- Division of Neuroradiology, the Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Ann S Choe
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland
| | - Sachin K Gujar
- Division of Neuroradiology, the Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Brian Caffo
- Department of Biostatistics, Johns Hopkins University, Baltimore, Maryland
| | - Martin A Lindquist
- Department of Biostatistics, Johns Hopkins University, Baltimore, Maryland
| | - Jay J Pillai
- Division of Neuroradiology, the Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
37
|
Bailey PD, Zacà D, Basha MM, Agarwal S, Gujar SK, Sair HI, Eng J, Pillai JJ. Presurgical fMRI and DTI for the Prediction of Perioperative Motor and Language Deficits in Primary or Metastatic Brain Lesions. J Neuroimaging 2015; 25:776-784. [DOI: 10.1111/jon.12273] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
Affiliation(s)
- Paul D. Bailey
- Division of Neuroradiology, Russell H. Morgan Department of Radiology and Radiological Science; The Johns Hopkins Hospital & The Johns Hopkins University School of Medicine; Baltimore MD
| | - Domenico Zacà
- Center for Mind/Brain Sciences; University of Trento; Trento Italy
| | | | - Shruti Agarwal
- Division of Neuroradiology, Russell H. Morgan Department of Radiology and Radiological Science; The Johns Hopkins Hospital & The Johns Hopkins University School of Medicine; Baltimore MD
| | - Sachin K. Gujar
- Division of Neuroradiology, Russell H. Morgan Department of Radiology and Radiological Science; The Johns Hopkins Hospital & The Johns Hopkins University School of Medicine; Baltimore MD
| | - Haris I. Sair
- Division of Neuroradiology, Russell H. Morgan Department of Radiology and Radiological Science; The Johns Hopkins Hospital & The Johns Hopkins University School of Medicine; Baltimore MD
| | - John Eng
- Division of General and Diagnostic Radiology, Russell H. Morgan Department of Radiology and Radiological Science; The Johns Hopkins Hospital & The Johns Hopkins University School of Medicine; Baltimore MD
| | - Jay J. Pillai
- Division of Neuroradiology, Russell H. Morgan Department of Radiology and Radiological Science; The Johns Hopkins Hospital & The Johns Hopkins University School of Medicine; Baltimore MD
| |
Collapse
|
38
|
Wang AL, Elman I, Lowen SB, Blady SJ, Lynch KG, Hyatt JM, O'Brien CP, Langleben DD. Neural correlates of adherence to extended-release naltrexone pharmacotherapy in heroin dependence. Transl Psychiatry 2015; 5:e531. [PMID: 25781230 PMCID: PMC4354350 DOI: 10.1038/tp.2015.20] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 01/12/2015] [Accepted: 01/12/2015] [Indexed: 11/17/2022] Open
Abstract
Injectable extended-release naltrexone (XRNTX) presents an effective therapeutic strategy for opioid addiction, however its utility could be hampered by poor adherence. To gain a better insight into this phenomenon, we utilized blood oxygenation level-dependent functional magnetic resonance imaging (fMRI) in conjunction with a validated cue-induced craving procedure to examine neural correlates of XRNTX adherence. We operationalized treatment adherence as the number of monthly XRNTX injections (range: 0-3) administered to a group of fully detoxified heroin-dependent subjects (n=32). Additional outcomes included urine toxicology screening and self-reported tobacco use. The presented heroin-related visual cues reliably elicited heroin craving in all tested subjects. Nine, five, three and 15 of the participants, respectively, received zero, one, two and three XRNTX injections, predicted by the individual baseline fMRI signal change in response to the cues in the medial prefrontal cortex, a brain region involved in inhibitory self-control and emotional appraisal. The incidence of opioid-positive urines during the XRNTX therapy was low and remained about half the pre-treatment rate after the XRNTX ended. During the treatment, cigarette smoking behaviors followed patterns of opioid use, while cocaine consumption was increased with reductions in opioid use. The present data support the hypothesis that medial prefrontal cortex functions are involved in adherence to opioid antagonist therapy. A potential role of concurrent non-opioid addictive substances consumption during the XRNTX pharmacotherapy warrants further investigation. Our findings set the stage for further bio-behavioral investigations of the mechanisms of relapse prevention in opioid dependence.
Collapse
Affiliation(s)
- A-L Wang
- Annenberg Public Policy Center, University of Pennsylvania, Philadelphia, PA, USA
| | - I Elman
- Cambridge Health Alliance, Department of Psychiatry, Harvard Medical School, Cambridge, MA, USA
| | - S B Lowen
- Brain Imaging Center, McLean Hospital, Department of Psychiatry, Harvard Medical School, Belmont, MA, USA
| | - S J Blady
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - K G Lynch
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - J M Hyatt
- Department of Criminology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - C P O'Brien
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - D D Langleben
- Annenberg Public Policy Center, University of Pennsylvania, Philadelphia, PA, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Behavioral Health Service, Veterans Administration Medical Center, Philadelphia, PA, USA
| |
Collapse
|
39
|
Usage of fMRI for pre-surgical planning in brain tumor and vascular lesion patients: task and statistical threshold effects on language lateralization. NEUROIMAGE-CLINICAL 2014; 7:415-23. [PMID: 25685705 PMCID: PMC4310930 DOI: 10.1016/j.nicl.2014.12.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 12/19/2014] [Accepted: 12/22/2014] [Indexed: 11/22/2022]
Abstract
BACKGROUND AND PURPOSE Functional magnetic resonance imaging (fMRI) is a non-invasive pre-surgical tool used to assess localization and lateralization of language function in brain tumor and vascular lesion patients in order to guide neurosurgeons as they devise a surgical approach to treat these lesions. We investigated the effect of varying the statistical thresholds as well as the type of language tasks on functional activation patterns and language lateralization. We hypothesized that language lateralization indices (LIs) would be threshold- and task-dependent. MATERIALS AND METHODS Imaging data were collected from brain tumor patients (n = 67, average age 48 years) and vascular lesion patients (n = 25, average age 43 years) who received pre-operative fMRI scanning. Both patient groups performed expressive (antonym and/or letter-word generation) and receptive (tumor patients performed text-reading; vascular lesion patients performed text-listening) language tasks. A control group (n = 25, average age 45 years) performed the letter-word generation task. RESULTS Brain tumor patients showed left-lateralization during the antonym-word generation and text-reading tasks at high threshold values and bilateral activation during the letter-word generation task, irrespective of the threshold values. Vascular lesion patients showed left-lateralization during the antonym and letter-word generation, and text-listening tasks at high threshold values. CONCLUSION Our results suggest that the type of task and the applied statistical threshold influence LI and that the threshold effects on LI may be task-specific. Thus identifying critical functional regions and computing LIs should be conducted on an individual subject basis, using a continuum of threshold values with different tasks to provide the most accurate information for surgical planning to minimize post-operative language deficits.
Collapse
|
40
|
Black DF, DeLone DR, Kaufmann TJ, Fitz-Gibbon PD, Carter RE, Machulda MM, Welker KM. Retrospective Analysis of Interobserver Spatial Variability in the Localization of Broca's and Wernicke's Areas Using Three Different fMRI Language Paradigms. J Neuroimaging 2014; 25:626-33. [PMID: 25496329 DOI: 10.1111/jon.12179] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2014] [Revised: 05/29/2014] [Accepted: 07/13/2014] [Indexed: 11/28/2022] Open
Abstract
PURPOSE To determine interobserver spatial variability in language area localization using three commonly employed language tasks. MATERIALS AND METHODS With institutional review board approval, 125 fMRI time series from 50 different clinical language cases were retrospectively reviewed by three blinded readers who selected 3-dimensional points representing the perceived center of Wernicke's and Broca's areas using three language tasks (semantic decision, SD; sentence comprehension, SC; and silent word generation, WG). Point dispersion values were then calculated using the perimeter of the 3-dimensional triangle defined by the three readers' selections. RESULTS After resolving interobserver laterality disagreements, there was no difference in spatial variability between the three tasks (P = .069). The SD task had the fewest interobserver laterality disagreements (P = .028) and the SC task had fewer failed localizations for Broca's area (P = .050) and Wernicke's area (P = .013). CONCLUSION While there were no differences between interobserver spatial variability in language area localization between the three tasks, language task choice impacts the accuracy of fMRI language area identification because tasks vary in their rates of interobserver laterality disagreements and failed localizations. A combination of tasks including one with low laterality disagreements (eg, SD) and one with few failed localizations (eg, SC) may offer the best combination.
Collapse
Affiliation(s)
| | | | | | | | - Rickey E Carter
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN
| | - Mary M Machulda
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN
| | | |
Collapse
|
41
|
Mazoyer B, Zago L, Jobard G, Crivello F, Joliot M, Perchey G, Mellet E, Petit L, Tzourio-Mazoyer N. Gaussian mixture modeling of hemispheric lateralization for language in a large sample of healthy individuals balanced for handedness. PLoS One 2014; 9:e101165. [PMID: 24977417 PMCID: PMC4076312 DOI: 10.1371/journal.pone.0101165] [Citation(s) in RCA: 200] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 06/03/2014] [Indexed: 12/22/2022] Open
Abstract
Hemispheric lateralization for language production and its relationships with manual preference and manual preference strength were studied in a sample of 297 subjects, including 153 left-handers (LH). A hemispheric functional lateralization index (HFLI) for language was derived from fMRI acquired during a covert sentence generation task as compared with a covert word list recitation. The multimodal HFLI distribution was optimally modeled using a mixture of 3 and 4 Gaussian functions in right-handers (RH) and LH, respectively. Gaussian function parameters helped to define 3 types of language hemispheric lateralization, namely "Typical" (left hemisphere dominance with clear positive HFLI values, 88% of RH, 78% of LH), "Ambilateral" (no dominant hemisphere with HFLI values close to 0, 12% of RH, 15% of LH) and "Strongly-atypical" (right-hemisphere dominance with clear negative HFLI values, 7% of LH). Concordance between dominant hemispheres for hand and for language did not exceed chance level, and most of the association between handedness and language lateralization was explained by the fact that all Strongly-atypical individuals were left-handed. Similarly, most of the relationship between language lateralization and manual preference strength was explained by the fact that Strongly-atypical individuals exhibited a strong preference for their left hand. These results indicate that concordance of hemispheric dominance for hand and for language occurs barely above the chance level, except in a group of rare individuals (less than 1% in the general population) who exhibit strong right hemisphere dominance for both language and their preferred hand. They call for a revisit of models hypothesizing common determinants for handedness and for language dominance.
Collapse
Affiliation(s)
- Bernard Mazoyer
- Groupe d’Imagerie Neurofonctionnelle, Centre National de la Recherche Scientifique, Commissariat à l’Energie Atomique, et Université de Bordeaux, Bordeaux, France
| | - Laure Zago
- Groupe d’Imagerie Neurofonctionnelle, Centre National de la Recherche Scientifique, Commissariat à l’Energie Atomique, et Université de Bordeaux, Bordeaux, France
| | - Gaël Jobard
- Groupe d’Imagerie Neurofonctionnelle, Centre National de la Recherche Scientifique, Commissariat à l’Energie Atomique, et Université de Bordeaux, Bordeaux, France
| | - Fabrice Crivello
- Groupe d’Imagerie Neurofonctionnelle, Centre National de la Recherche Scientifique, Commissariat à l’Energie Atomique, et Université de Bordeaux, Bordeaux, France
| | - Marc Joliot
- Groupe d’Imagerie Neurofonctionnelle, Centre National de la Recherche Scientifique, Commissariat à l’Energie Atomique, et Université de Bordeaux, Bordeaux, France
| | - Guy Perchey
- Groupe d’Imagerie Neurofonctionnelle, Centre National de la Recherche Scientifique, Commissariat à l’Energie Atomique, et Université de Bordeaux, Bordeaux, France
| | - Emmanuel Mellet
- Groupe d’Imagerie Neurofonctionnelle, Centre National de la Recherche Scientifique, Commissariat à l’Energie Atomique, et Université de Bordeaux, Bordeaux, France
| | - Laurent Petit
- Groupe d’Imagerie Neurofonctionnelle, Centre National de la Recherche Scientifique, Commissariat à l’Energie Atomique, et Université de Bordeaux, Bordeaux, France
| | - Nathalie Tzourio-Mazoyer
- Groupe d’Imagerie Neurofonctionnelle, Centre National de la Recherche Scientifique, Commissariat à l’Energie Atomique, et Université de Bordeaux, Bordeaux, France
| |
Collapse
|
42
|
Using neuroimaging to inform clinical practice for the diagnosis and treatment of mild cognitive impairment. Clin Geriatr Med 2014; 29:829-45. [PMID: 24094299 DOI: 10.1016/j.cger.2013.07.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Advances in structural and functional neuroimaging techniques have unquestionably improved understanding of the development and progression of Alzheimer disease (AD), with evidence supporting regional (and network) change that underlies cognitive decline across the "healthy" aging/mild cognitive impairment (MCI)/AD spectrum. This review focuses on visual rating scales and volumetric analyses that could be easily integrated into clinical practice, followed by a review of functional neuroimaging findings suggesting that widespread cerebral dysfunction underlies the learning and memory deficits in MCI. Evidence of preserved neuroplasticity in this population and that cognitive rehabilitation techniques may capitalize on this plasticity to improve cognition in those with MCI is also discussed.
Collapse
|
43
|
Presurgical language fMRI and postsurgical deficits: a single centre experience. Can J Neurol Sci 2013; 40:819-23. [PMID: 24257223 DOI: 10.1017/s031716710001595x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND In this study, we conducted a retrospective investigation of our initial single-centre experience with the clinical use of functional magnetic resonance imaging (fMRI) of hemisphere dominance for language processing (i.e., language lateralization). We demonstrated its association with surgical outcome and its potential impact on surgical planning and patient management. METHODS Fifty-two cases were reviewed, covering the period from July 2007 to July 2010. Clinical fMRI reports were examined to determine the hemisphere dominance for language processing. Neurological reports were examined to determine if new language deficits were present post-surgery. Neurosurgeon notes were also reviewed to determine if fMRI had an impact on surgical planning. RESULTS Of the cases reviewed, 49 (94%) generated conclusive fMRI. Eleven (22%) patients exhibited fMRI language lateralization contralateral to pathology; zero of nine of these patients that had surgery experienced post-surgical deficits. Twenty-two (44%) patients exhibited fMRI language lateralization ipsilateral to pathology; three of 13 of these patients that had surgery experienced post-surgical deficits. Sixteen (34%) patients exhibited bilateral lateralization of language; five of 13 of these patients that had surgery experienced post-surgery deficits. Several post-fMRI reports indicated that fMRI results had an impact on surgical planning. CONCLUSIONS Our results suggest that fMRI demonstrations of language processing within the hemisphere ipsilateral to pathology (either ipsilateral alone or bilateral) is associated with a greater risk for post-surgical language deficits, and in these cases, fMRI results should be taken into consideration for pre-surgical planning. IRMf du langage avant la chirurgie et déficits après la chirurgie : expérience d'un centre.
Collapse
|
44
|
Zacà D, Jarso S, Pillai JJ. Role of semantic paradigms for optimization of language mapping in clinical FMRI studies. AJNR Am J Neuroradiol 2013; 34:1966-71. [PMID: 23788599 DOI: 10.3174/ajnr.a3628] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE The optimal paradigm choice for language mapping in clinical fMRI studies is challenging due to the variability in activation among different paradigms, the contribution to activation of cognitive processes other than language, and the difficulties in monitoring patient performance. In this study, we compared language localization and lateralization between 2 commonly used clinical language paradigms and 3 newly designed dual-choice semantic paradigms to define a streamlined and adequate language-mapping protocol. MATERIALS AND METHODS Twelve healthy volunteers performed 5 language paradigms: Silent Word Generation, Sentence Completion, Visual Antonym Pair, Auditory Antonym Pair, and Noun-Verb Association. Group analysis was performed to assess statistically significant differences in fMRI percentage signal change and lateralization index among these paradigms in 5 ROIs: inferior frontal gyrus, superior frontal gyrus, middle frontal gyrus for expressive language activation, middle temporal gyrus, and superior temporal gyrus for receptive language activation. RESULTS In the expressive ROIs, Silent Word Generation was the most robust and best lateralizing paradigm (greater percentage signal change and lateralization index than semantic paradigms at P < .01 and P < .05 levels, respectively). In the receptive region of interest, Sentence Completion and Noun-Verb Association were the most robust activators (greater percentage signal change than other paradigms, P < .01). All except Auditory Antonym Pair were good lateralizing tasks (the lateralization index was significantly lower than other paradigms, P < .05). CONCLUSIONS The combination of Silent Word Generation and ≥1 visual semantic paradigm, such as Sentence Completion and Noun-Verb Association, is adequate to determine language localization and lateralization; Noun-Verb Association has the additional advantage of objective monitoring of patient performance.
Collapse
Affiliation(s)
- D Zacà
- Division of Neuroradiology, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | | | | |
Collapse
|
45
|
Kundu B, Penwarden A, Wood JM, Gallagher TA, Andreoli MJ, Voss J, Meier T, Nair VA, Kuo JS, Field AS, Moritz C, Meyerand ME, Prabhakaran V. Association of functional magnetic resonance imaging indices with postoperative language outcomes in patients with primary brain tumors. Neurosurg Focus 2013; 34:E6. [PMID: 23544412 PMCID: PMC3954579 DOI: 10.3171/2013.2.focus12413] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT Functional MRI (fMRI) has the potential to be a useful presurgical planning tool to treat patients with primary brain tumor. In this study the authors retrospectively explored relationships between language-related postoperative outcomes in such patients and multiple factors, including measures estimated from task fMRI maps (proximity of lesion to functional activation area, or lesion-to-activation distance [LAD], and activation-based language lateralization, or lateralization index [LI]) used in the clinical setting for presurgical planning, as well as other factors such as patient age, patient sex, tumor grade, and tumor volume. METHODS Patient information was drawn from a database of patients with brain tumors who had undergone preoperative fMRI-based language mapping of the Broca and Wernicke areas. Patients had performed a battery of tasks, including word-generation tasks and a text-versus-symbols reading task, as part of a clinical fMRI protocol. Individually thresholded task fMRI activation maps had been provided for use in the clinical setting. These clinical imaging maps were used to retrospectively estimate LAD and LI for the Broca and Wernicke areas. RESULTS There was a relationship between postoperative language deficits and the proximity between tumor and Broca area activation (the LAD estimate), where shorter LADs were related to the presence of postoperative aphasia. Stratification by tumor location further showed that for posterior tumors within the temporal and parietal lobes, more bilaterally oriented Broca area activation (LI estimate close to 0) and a shorter Wernicke area LAD were associated with increased postoperative aphasia. Furthermore, decreasing LAD was related to decreasing LI for both Broca and Wernicke areas. Preoperative deficits were related to increasing patient age and a shorter Wernicke area LAD. CONCLUSIONS Overall, LAD and LI, as determined using fMRI in the context of these paradigms, may be useful indicators of postsurgical outcomes. Whereas tumor location may influence postoperative deficits, the results indicated that tumor proximity to an activation area might also interact with how the language network is affected as a whole by the lesion. Although the derivation of LI must be further validated in individual patients by using spatially specific statistical methods, the current results indicated that fMRI is a useful tool for predicting postoperative outcomes in patients with a single brain tumor.
Collapse
Affiliation(s)
- Bornali Kundu
- School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|