1
|
Morrissey ZD, Gao J, Shetti A, Li W, Zhan L, Li W, Fortel I, Saido T, Saito T, Ajilore O, Cologna SM, Lazarov O, Leow AD. Temporal Alterations in White Matter in An App Knock-In Mouse Model of Alzheimer's Disease. eNeuro 2024; 11:ENEURO.0496-23.2024. [PMID: 38290851 PMCID: PMC10897532 DOI: 10.1523/eneuro.0496-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/05/2024] [Accepted: 01/17/2024] [Indexed: 02/01/2024] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia and results in neurodegeneration and cognitive impairment. White matter (WM) is affected in AD and has implications for neural circuitry and cognitive function. The trajectory of these changes across age, however, is still not well understood, especially at earlier stages in life. To address this, we used the AppNL-G-F/NL-G-F knock-in (APPKI) mouse model that harbors a single copy knock-in of the human amyloid precursor protein (APP) gene with three familial AD mutations. We performed in vivo diffusion tensor imaging (DTI) to study how the structural properties of the brain change across age in the context of AD. In late age APPKI mice, we observed reduced fractional anisotropy (FA), a proxy of WM integrity, in multiple brain regions, including the hippocampus, anterior commissure (AC), neocortex, and hypothalamus. At the cellular level, we observed greater numbers of oligodendrocytes in middle age (prior to observations in DTI) in both the AC, a major interhemispheric WM tract, and the hippocampus, which is involved in memory and heavily affected in AD, prior to observations in DTI. Proteomics analysis of the hippocampus also revealed altered expression of oligodendrocyte-related proteins with age and in APPKI mice. Together, these results help to improve our understanding of the development of AD pathology with age, and imply that middle age may be an important temporal window for potential therapeutic intervention.
Collapse
Affiliation(s)
- Zachery D Morrissey
- Graduate Program in Neuroscience, University of Illinois Chicago, Chicago, Illinois 60612
- Department of Psychiatry, University of Illinois Chicago, Chicago, Illinois 60612
- Department of Anatomy & Cell Biology, University of Illinois Chicago, Chicago, Illinois 60612
| | - Jin Gao
- Department of Electrical & Computer Engineering, University of Illinois Chicago, Chicago, Illinois 60607
- Preclinical Imaging Core, University of Illinois Chicago, Chicago, Illinois 60612
| | - Aashutosh Shetti
- Department of Anatomy & Cell Biology, University of Illinois Chicago, Chicago, Illinois 60612
| | - Wenping Li
- Department of Chemistry, University of Illinois Chicago, Chicago, Illinois 60607
| | - Liang Zhan
- Department of Electrical & Computer Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| | - Weiguo Li
- Preclinical Imaging Core, University of Illinois Chicago, Chicago, Illinois 60612
- Department of Bioengineering, University of Illinois Chicago, Chicago, Illinois 60607
- Department of Radiology, Northwestern University, Chicago, Illinois 60611
| | - Igor Fortel
- Department of Bioengineering, University of Illinois Chicago, Chicago, Illinois 60607
| | - Takaomi Saido
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Wako 351-0198, Japan
| | - Takashi Saito
- Department of Neurocognitive Science, Institute of Brain Science, Nagoya City University, Nagoya 467-8601, Japan
| | - Olusola Ajilore
- Department of Psychiatry, University of Illinois Chicago, Chicago, Illinois 60612
| | - Stephanie M Cologna
- Department of Chemistry, University of Illinois Chicago, Chicago, Illinois 60607
| | - Orly Lazarov
- Department of Anatomy & Cell Biology, University of Illinois Chicago, Chicago, Illinois 60612
| | - Alex D Leow
- Department of Psychiatry, University of Illinois Chicago, Chicago, Illinois 60612
- Department of Bioengineering, University of Illinois Chicago, Chicago, Illinois 60607
- Department of Computer Science, University of Illinois Chicago, Chicago, Illinois 60607
| |
Collapse
|
2
|
Schregel K, Heinz L, Hunger J, Pan C, Bode J, Fischer M, Sturm V, Venkataramani V, Karimian-Jazi K, Agardy DA, Streibel Y, Zerelles R, Wick W, Heiland S, Bunse T, Tews B, Platten M, Winkler F, Bendszus M, Breckwoldt MO. A Cellular Ground Truth to Develop MRI Signatures in Glioma Models by Correlative Light Sheet Microscopy and Atlas-Based Coregistration. J Neurosci 2023; 43:5574-5587. [PMID: 37429718 PMCID: PMC10376935 DOI: 10.1523/jneurosci.1470-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 05/21/2023] [Accepted: 06/25/2023] [Indexed: 07/12/2023] Open
Abstract
Glioblastoma is the most common malignant primary brain tumor with poor overall survival. Magnetic resonance imaging (MRI) is the main imaging modality for glioblastoma but has inherent shortcomings. The molecular and cellular basis of MR signals is incompletely understood. We established a ground truth-based image analysis platform to coregister MRI and light sheet microscopy (LSM) data to each other and to an anatomic reference atlas for quantification of 20 predefined anatomic subregions. Our pipeline also includes a segmentation and quantification approach for single myeloid cells in entire LSM datasets. This method was applied to three preclinical glioma models in male and female mice (GL261, U87MG, and S24), which exhibit different key features of the human glioma. Multiparametric MR data including T2-weighted sequences, diffusion tensor imaging, T2 and T2* relaxometry were acquired. Following tissue clearing, LSM focused on the analysis of tumor cell density, microvasculature, and innate immune cell infiltration. Correlated analysis revealed differences in quantitative MRI metrics between the tumor-bearing and the contralateral hemisphere. LSM identified tumor subregions that differed in their MRI characteristics, indicating tumor heterogeneity. Interestingly, MRI signatures, defined as unique combinations of different MRI parameters, differed greatly between the models. The direct correlation of MRI and LSM allows an in-depth characterization of preclinical glioma and can be used to decipher the structural, cellular, and, likely, molecular basis of tumoral MRI biomarkers. Our approach may be applied in other preclinical brain tumor or neurologic disease models, and the derived MRI signatures could ultimately inform image interpretation in a clinical setting.SIGNIFICANCE STATEMENT We established a histologic ground truth-based approach for MR image analyses and tested this method in three preclinical glioma models exhibiting different features of glioblastoma. Coregistration of light sheet microscopy to MRI allowed for an evaluation of quantitative MRI data in histologically distinct tumor subregions. Coregistration to a mouse brain atlas enabled a regional comparison of MRI parameters with a histologically informed interpretation of the results. Our approach is transferable to other preclinical models of brain tumors and further neurologic disorders. The method can be used to decipher the structural, cellular, and molecular basis of MRI signal characteristics. Ultimately, information derived from such analyses could strengthen the neuroradiological evaluation of glioblastoma as they enhance the interpretation of MRI data.
Collapse
Affiliation(s)
- Katharina Schregel
- Department of Neuroradiology, Heidelberg University Hospital, 69120 Heidelberg, Germany
- Clinical Cooperation Unit Neurooncology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Lennart Heinz
- Department of Neuroradiology, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Jessica Hunger
- Department of Neuroradiology, Heidelberg University Hospital, 69120 Heidelberg, Germany
- Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Chenchen Pan
- Clinical Cooperation Unit Neurooncology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Department of Neurology, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Julia Bode
- Molecular Mechanisms of Tumor Invasion, Schaller Research Group at the University of Heidelberg and the German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Manuel Fischer
- Department of Neuroradiology, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Volker Sturm
- Department of Neuroradiology, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Varun Venkataramani
- Clinical Cooperation Unit Neurooncology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Department of Neurology, Heidelberg University Hospital, 69120 Heidelberg, Germany
- Department of Functional Neuroanatomy, Institute for Anatomy and Cell Biology, Heidelberg University, 69120 Heidelberg, Germany
| | - Kianush Karimian-Jazi
- Department of Neuroradiology, Heidelberg University Hospital, 69120 Heidelberg, Germany
- Clinical Cooperation Unit Neurooncology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Dennis A Agardy
- Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Department of Neurology, Medical Faculty Mannheim, Mannheim Center for Translational Neurosciences, Heidelberg University, 68167 Mannheim, Germany
| | - Yannik Streibel
- Department of Neuroradiology, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Roland Zerelles
- Department of Neuroradiology, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Wolfgang Wick
- Clinical Cooperation Unit Neurooncology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Department of Neurology, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Sabine Heiland
- Department of Neuroradiology, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Theresa Bunse
- Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Department of Neurology, Medical Faculty Mannheim, Mannheim Center for Translational Neurosciences, Heidelberg University, 68167 Mannheim, Germany
| | - Björn Tews
- Molecular Mechanisms of Tumor Invasion, Schaller Research Group at the University of Heidelberg and the German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Michael Platten
- Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Department of Neurology, Medical Faculty Mannheim, Mannheim Center for Translational Neurosciences, Heidelberg University, 68167 Mannheim, Germany
| | - Frank Winkler
- Clinical Cooperation Unit Neurooncology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Department of Neurology, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Martin Bendszus
- Department of Neuroradiology, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Michael O Breckwoldt
- Department of Neuroradiology, Heidelberg University Hospital, 69120 Heidelberg, Germany
- Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| |
Collapse
|
3
|
Bergamino M, Nelson MR, Numani A, Scarpelli M, Healey D, Fuentes A, Turner G, Stokes AM. Assessment of complementary white matter microstructural changes and grey matter atrophy in a preclinical model of Alzheimer's disease. Magn Reson Imaging 2023; 101:57-66. [PMID: 37028608 DOI: 10.1016/j.mri.2023.03.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/30/2023] [Accepted: 03/31/2023] [Indexed: 04/08/2023]
Abstract
Alzheimer's disease (AD) has been associated with amyloid and tau pathology, as well as neurodegeneration. Beyond these hallmark features, white matter microstructural abnormalities have been observed using MRI. The objective of this study was to assess grey matter atrophy and white matter microstructural changes in a preclinical mouse model of AD (3xTg-AD) using voxel-based morphometry (VBM) and free-water (FW) diffusion tensor imaging (FW-DTI). Compared to controls, lower grey matter density was observed in the 3xTg-AD model, corresponding to the small clusters in the caudate-putamen, hypothalamus, and cortex. DTI-based fractional anisotropy (FA) was decreased in the 3xTg model, while the FW index was increased. Notably, the largest clusters for both FW-FA and FW index were in the fimbria, with other regions including the anterior commissure, corpus callosum, forebrain septum, and internal capsule. Additionally, the presence of amyloid and tau in the 3xTg model was confirmed with histopathology, with significantly higher levels observed across many regions of the brain. Taken together, these results are consistent with subtle neurodegenerative and white matter microstructural changes in the 3xTg-AD model that manifest as increased FW, decreased FW-FA, and decreased grey matter density.
Collapse
Affiliation(s)
- Maurizio Bergamino
- Division of Neuroimaging Research, Barrow Neurological Institute, Phoenix, AZ 85013, USA
| | - Megan R Nelson
- Division of Neuroimaging Research, Barrow Neurological Institute, Phoenix, AZ 85013, USA
| | - Asfia Numani
- Division of Neuroimaging Research, Barrow Neurological Institute, Phoenix, AZ 85013, USA
| | - Matthew Scarpelli
- Division of Neuroimaging Research, Barrow Neurological Institute, Phoenix, AZ 85013, USA
| | - Deborah Healey
- Division of Neuroimaging Research, Barrow Neurological Institute, Phoenix, AZ 85013, USA
| | - Alberto Fuentes
- Division of Neuroimaging Research, Barrow Neurological Institute, Phoenix, AZ 85013, USA
| | - Gregory Turner
- Division of Neuroimaging Research, Barrow Neurological Institute, Phoenix, AZ 85013, USA
| | - Ashley M Stokes
- Division of Neuroimaging Research, Barrow Neurological Institute, Phoenix, AZ 85013, USA.
| |
Collapse
|
4
|
Engels-Domínguez N, Koops EA, Prokopiou PC, Van Egroo M, Schneider C, Riphagen JM, Singhal T, Jacobs HIL. State-of-the-art imaging of neuromodulatory subcortical systems in aging and Alzheimer's disease: Challenges and opportunities. Neurosci Biobehav Rev 2023; 144:104998. [PMID: 36526031 PMCID: PMC9805533 DOI: 10.1016/j.neubiorev.2022.104998] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/30/2022] [Accepted: 11/07/2022] [Indexed: 12/14/2022]
Abstract
Primary prevention trials have shifted their focus to the earliest stages of Alzheimer's disease (AD). Autopsy data indicates that the neuromodulatory subcortical systems' (NSS) nuclei are specifically vulnerable to initial tau pathology, indicating that these nuclei hold great promise for early detection of AD in the context of the aging brain. The increasing availability of new imaging methods, ultra-high field scanners, new radioligands, and routine deep brain stimulation implants has led to a growing number of NSS neuroimaging studies on aging and neurodegeneration. Here, we review findings of current state-of-the-art imaging studies assessing the structure, function, and molecular changes of these nuclei during aging and AD. Furthermore, we identify the challenges associated with these imaging methods, important pathophysiologic gaps to fill for the AD NSS neuroimaging field, and provide future directions to improve our assessment, understanding, and clinical use of in vivo imaging of the NSS.
Collapse
Affiliation(s)
- Nina Engels-Domínguez
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Faculty of Health, Medicine and Life Sciences, School for Mental Health and Neuroscience, Alzheimer Centre Limburg, Maastricht University, Maastricht, the Netherlands
| | - Elouise A Koops
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Prokopis C Prokopiou
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Maxime Van Egroo
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Faculty of Health, Medicine and Life Sciences, School for Mental Health and Neuroscience, Alzheimer Centre Limburg, Maastricht University, Maastricht, the Netherlands
| | - Christoph Schneider
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Joost M Riphagen
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Tarun Singhal
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Heidi I L Jacobs
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Faculty of Health, Medicine and Life Sciences, School for Mental Health and Neuroscience, Alzheimer Centre Limburg, Maastricht University, Maastricht, the Netherlands.
| |
Collapse
|
5
|
Falangola MF, Nie X, Voltin J, Ward R, Dhiman S, Nietert PJ, Jensen JH. Brain microstructure abnormalities in the 3xTg-AD mouse - A diffusion MRI and morphology correlation study. Magn Reson Imaging 2022; 94:48-55. [PMID: 36116712 PMCID: PMC9695071 DOI: 10.1016/j.mri.2022.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/26/2022] [Accepted: 09/13/2022] [Indexed: 10/14/2022]
Abstract
The widely studied triple transgenic (3xTg-AD) mouse provides a robust model of Alzheimer's disease (AD) with region dependent patterns of progressive amyloid-β (Aß) and tau pathology. Using diffusion MRI (dMRI), we investigated the sensitivity of dMRI measures in capturing AD pathology associated microstructure alterations in older 3xTg-AD mice, and the degree to which dMRI changes correlate with measurements of Aβ and tau pathology. 3xTg-AD and normal control (NC) mice, 15 to 21 months of age, were used in this study. In vivo dMRI data were acquired for the generation of diffusion tensor (DT) and diffusional kurtosis (DK) measures within the hippocampus and fimbria (Fi). For these same brain regions, Aβ and tau pathology were quantified by morphological analysis of Aß1-42 and AT8 immunoreactivity. Two-tailed, two-sample t-tests were performed to assess group differences in each brain region of interest (ROI), with the Benjamini-Hochberg false discovery rate (FDR) method being applied to adjust for multiple comparisons. Spearman correlation coefficients were calculated to investigate associations between diffusion and morphological measures. Our results revealed, depending on the brain region, DT and DK measures were able to detect group differences. In the dorsal hippocampus (HD), fractional anisotropy (FA) was significantly higher in the 3xTg-AD mice compared with NC mice. In the subiculum (SUB), FA, axial diffusivity (D||) and radial kurtosis (K┴) were significantly higher in 3xTg-AD mice compared with NC mice. Morphological quantification of Aß1-42 and AT8 immunoreactivity showed elevated Aß and tau in the Fi, ventral hippocampus (HV) and SUB of 3xTg-AD mice. The presence of Aβ and tau was significantly correlated with several DT and DK measures, particularly in the SUB, where an increase in tau correlated with an increase in mean kurtosis (MK) and K┴. This work demonstrates significant dMRI differences between older 3xTg-AD and NC mice in the hippocampus and Fi. Significant correlations were found between dMRI and morphological measures of Aβ and tau pathology. These results support the potential of dMRI-derived parameters as biomarkers of AD pathology. Since the imaging methods employed here are easily translatable to clinical MRI, our results are also relevant for human AD patients.
Collapse
Affiliation(s)
- Maria Fatima Falangola
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA; Center for Biomedical Imaging, Medical University of South Carolina, Charleston, SC, USA.
| | - Xingju Nie
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA; Center for Biomedical Imaging, Medical University of South Carolina, Charleston, SC, USA
| | - Joshua Voltin
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA; Center for Biomedical Imaging, Medical University of South Carolina, Charleston, SC, USA
| | - Ralph Ward
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Siddhartha Dhiman
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - Paul J Nietert
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Jens H Jensen
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA; Center for Biomedical Imaging, Medical University of South Carolina, Charleston, SC, USA; Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
6
|
Zhao H, Wen W, Cheng J, Jiang J, Kochan N, Niu H, Brodaty H, Sachdev P, Liu T. An accelerated degeneration of white matter microstructure and networks in the nondemented old-old. Cereb Cortex 2022; 33:4688-4698. [PMID: 36178117 DOI: 10.1093/cercor/bhac372] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/26/2022] [Accepted: 08/27/2022] [Indexed: 11/12/2022] Open
Abstract
The nondemented old-old over the age of 80 comprise a rapidly increasing population group; they can be regarded as exemplars of successful aging. However, our current understanding of successful aging in advanced age and its neural underpinnings is limited. In this study, we measured the microstructural and network-based topological properties of brain white matter using diffusion-weighted imaging scans of 419 community-dwelling nondemented older participants. The participants were further divided into 230 young-old (between 72 and 79, mean = 76.25 ± 2.00) and 219 old-old (between 80 and 92, mean = 83.98 ± 2.97). Results showed that white matter connectivity in microstructure and brain networks significantly declined with increased age and that the declined rates were faster in the old-old compared with young-old. Mediation models indicated that cognitive decline was in part through the age effect on the white matter connectivity in the old-old but not in the young-old. Machine learning predictive models further supported the crucial role of declines in white matter connectivity as a neural substrate of cognitive aging in the nondemented older population. Our findings shed new light on white matter connectivity in the nondemented aging brains and may contribute to uncovering the neural substrates of successful brain aging.
Collapse
Affiliation(s)
- Haichao Zhao
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Wei Wen
- Centre for Healthy Brain Ageing, School of Psychiatry (CHeBA), University of New South Wales, Sydney, NSW, Australia.,Neuropsychiatric Institute, Prince of Wales Hospital, Sydney, NSW, Australia
| | - Jian Cheng
- School of Computer Science and Engineering, Beihang University, Beijing, China
| | - Jiyang Jiang
- Centre for Healthy Brain Ageing, School of Psychiatry (CHeBA), University of New South Wales, Sydney, NSW, Australia
| | - Nicole Kochan
- Centre for Healthy Brain Ageing, School of Psychiatry (CHeBA), University of New South Wales, Sydney, NSW, Australia.,Neuropsychiatric Institute, Prince of Wales Hospital, Sydney, NSW, Australia
| | - Haijun Niu
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Henry Brodaty
- Centre for Healthy Brain Ageing, School of Psychiatry (CHeBA), University of New South Wales, Sydney, NSW, Australia.,Neuropsychiatric Institute, Prince of Wales Hospital, Sydney, NSW, Australia
| | - Perminder Sachdev
- Centre for Healthy Brain Ageing, School of Psychiatry (CHeBA), University of New South Wales, Sydney, NSW, Australia.,Neuropsychiatric Institute, Prince of Wales Hospital, Sydney, NSW, Australia
| | - Tao Liu
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| |
Collapse
|
7
|
Maharjan S, Tsai AP, Lin PB, Ingraham C, Jewett MR, Landreth GE, Oblak AL, Wang N. Age-dependent microstructure alterations in 5xFAD mice by high-resolution diffusion tensor imaging. Front Neurosci 2022; 16:964654. [PMID: 36061588 PMCID: PMC9428354 DOI: 10.3389/fnins.2022.964654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 07/18/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose To evaluate the age-dependent microstructure changes in 5xFAD mice using high-resolution diffusion tensor imaging (DTI). Methods The 5xFAD mice at 4, 7.5, and 12 months and the wild-type controls at 4 months were scanned at 9.4T using a 3D echo-planar imaging (EPI) pulse sequence with the isotropic spatial resolution of 100 μm. The b-value was 3000 s/mm2 for all the diffusion MRI scans. The samples were also acquired with a gradient echo pulse sequence at 50 μm isotropic resolution. The microstructure changes were quantified with DTI metrics, including fractional anisotropy (FA) and mean diffusivity (MD). The conventional histology was performed to validate with MRI findings. Results The FA values (p = 0.028) showed significant differences in the cortex between wild-type (WT) and 5xFAD mice at 4 months, while hippocampus, anterior commissure, corpus callosum, and fornix showed no significant differences for either FA and MD. FA values of 5xFAD mice gradually decreased in cortex (0.140 ± 0.007 at 4 months, 0.132 ± 0.008 at 7.5 months, 0.126 ± 0.013 at 12 months) and fornix (0.140 ± 0.007 at 4 months, 0.132 ± 0.008 at 7.5 months, 0.126 ± 0.013 at 12 months) with aging. Both FA (p = 0.029) and MD (p = 0.037) demonstrated significant differences in corpus callosum between 4 and 12 months age old. FA and MD were not significantly different in the hippocampus or anterior commissure. The age-dependent microstructure alterations were better captured by FA when compared to MD. Conclusion FA showed higher sensitivity to monitor amyloid deposition in 5xFAD mice. DTI may be utilized as a sensitive biomarker to monitor beta-amyloid progression for preclinical studies.
Collapse
Affiliation(s)
- Surendra Maharjan
- Department of Radiology and Imaging Sciences, Indiana University, Indianapolis, IN, United States
| | - Andy P. Tsai
- Stark Neurosciences Research Institute, Indiana University, Indianapolis, IN, United States
| | - Peter B. Lin
- Stark Neurosciences Research Institute, Indiana University, Indianapolis, IN, United States
| | - Cynthia Ingraham
- Stark Neurosciences Research Institute, Indiana University, Indianapolis, IN, United States
| | - Megan R. Jewett
- Department of Radiology and Imaging Sciences, Indiana University, Indianapolis, IN, United States
| | - Gary E. Landreth
- Stark Neurosciences Research Institute, Indiana University, Indianapolis, IN, United States
- Department of Anatomy, Cell Biology and Physiology, Indiana University, Indianapolis, IN, United States
| | - Adrian L. Oblak
- Department of Radiology and Imaging Sciences, Indiana University, Indianapolis, IN, United States
- Stark Neurosciences Research Institute, Indiana University, Indianapolis, IN, United States
| | - Nian Wang
- Department of Radiology and Imaging Sciences, Indiana University, Indianapolis, IN, United States
- Stark Neurosciences Research Institute, Indiana University, Indianapolis, IN, United States
- *Correspondence: Nian Wang,
| |
Collapse
|
8
|
Neuroimaging of Mouse Models of Alzheimer’s Disease. Biomedicines 2022; 10:biomedicines10020305. [PMID: 35203515 PMCID: PMC8869427 DOI: 10.3390/biomedicines10020305] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/25/2022] [Accepted: 01/25/2022] [Indexed: 12/23/2022] Open
Abstract
Magnetic resonance imaging (MRI) and positron emission tomography (PET) have made great strides in the diagnosis and our understanding of Alzheimer’s Disease (AD). Despite the knowledge gained from human studies, mouse models have and continue to play an important role in deciphering the cellular and molecular evolution of AD. MRI and PET are now being increasingly used to investigate neuroimaging features in mouse models and provide the basis for rapid translation to the clinical setting. Here, we provide an overview of the human MRI and PET imaging landscape as a prelude to an in-depth review of preclinical imaging in mice. A broad range of mouse models recapitulate certain aspects of the human AD, but no single model simulates the human disease spectrum. We focused on the two of the most popular mouse models, the 3xTg-AD and the 5xFAD models, and we summarized all known published MRI and PET imaging data, including contrasting findings. The goal of this review is to provide the reader with broad framework to guide future studies in existing and future mouse models of AD. We also highlight aspects of MRI and PET imaging that could be improved to increase rigor and reproducibility in future imaging studies.
Collapse
|
9
|
Borcuk C, Héraud C, Herbeaux K, Diringer M, Panzer É, Scuto J, Hashimoto S, Saido TC, Saito T, Goutagny R, Battaglia D, Mathis C. Early memory deficits and extensive brain network disorganization in the AppNL-F/MAPT double knock-in mouse model of familial Alzheimer's disease. AGING BRAIN 2022; 2:100042. [PMID: 36908877 PMCID: PMC9997176 DOI: 10.1016/j.nbas.2022.100042] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 05/18/2022] [Indexed: 10/18/2022] Open
Abstract
A critical challenge in current research on Alzheimer's disease (AD) is to clarify the relationship between network dysfunction and the emergence of subtle memory deficits in itspreclinical stage. The AppNL-F/MAPT double knock-in (dKI) model with humanized β-amyloid peptide (Aβ) and tau was used to investigate both memory and network dysfunctions at an early stage. Young male dKI mice (2 to 6 months) were tested in three tasks taxing different aspects of recognition memory affected in preclinical AD. An early deficit first appeared in the object-place association task at the age of 4 months, when increased levels of β-CTF and Aβ were detected in both the hippocampus and the medial temporal cortex, and tau pathology was found only in the medial temporal cortex. Object-place task-dependent c-Fos activation was then analyzed in 22 subregions across the medial prefrontal cortex, claustrum, retrosplenial cortex, and medial temporal lobe. Increased c-Fos activation was detected in the entorhinal cortex and the claustrum of dKI mice. During recall, network efficiency was reduced across cingulate regions with a major disruption of information flow through the retrosplenial cortex. Our findings suggest that early perirhinal-entorhinal pathology is associated with abnormal activity which may spread to downstream regions such as the claustrum, the medial prefrontal cortex and ultimately the key retrosplenial hub which relays information from frontal to temporal lobes. The similarity between our findings and those reported in preclinical stages of AD suggests that the AppNL-F/MAPT dKI model has a high potential for providing key insights into preclinical AD.
Collapse
Key Words
- AD, Alzheimer’s disease
- ADAD, autosomal dominant Alzheimer’s disease
- Associative memory
- CLA, claustrum
- Claustrum
- DMN, default mode network
- EI, exploration index
- FC, functional connectivity
- Functional connectivity
- MI, Memory index
- MTC, medial temporal cortex
- MTL, medial temporal lobe
- Medial temporal cortex
- NOR, novel object recognition
- OL, Object location
- OP, object-place
- PS, Pattern Separation
- Preclinical Alzheimer disease
- Retrosplenial cortex
- aMCI, amnestic mild cognitive impairment
- amyloid beta, Aβ
- dKI, AppNL-F/MAPT double knock-in
- ptau Thr 181, Thr181phosphorylated tau protein
Collapse
Affiliation(s)
- Christopher Borcuk
- Université de Strasbourg, CNRS, Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA) UMR 7364, F-67000 Strasbourg, France
| | - Céline Héraud
- Université de Strasbourg, CNRS, Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA) UMR 7364, F-67000 Strasbourg, France
| | - Karine Herbeaux
- Université de Strasbourg, CNRS, Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA) UMR 7364, F-67000 Strasbourg, France
| | - Margot Diringer
- Université de Strasbourg, CNRS, Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA) UMR 7364, F-67000 Strasbourg, France
| | - Élodie Panzer
- Université de Strasbourg, CNRS, Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA) UMR 7364, F-67000 Strasbourg, France
| | - Jil Scuto
- Université de Strasbourg, CNRS, Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA) UMR 7364, F-67000 Strasbourg, France
| | - Shoko Hashimoto
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako-city, Saitama 351-0198, Japan
| | - Takaomi C Saido
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako-city, Saitama 351-0198, Japan
| | - Takashi Saito
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako-city, Saitama 351-0198, Japan
| | - Romain Goutagny
- Université de Strasbourg, CNRS, Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA) UMR 7364, F-67000 Strasbourg, France
| | - Demian Battaglia
- Université de Strasbourg, CNRS, Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA) UMR 7364, F-67000 Strasbourg, France.,University of Strasbourg Institute for Advanced Studies (USIAS), F-67000 Strasbourg, France.,Université d'Aix-Marseille, Inserm, Institut de Neurosciences des Systèmes (INS) UMR_S 1106, F-13005 Marseille, France
| | - Chantal Mathis
- Université de Strasbourg, CNRS, Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA) UMR 7364, F-67000 Strasbourg, France
| |
Collapse
|
10
|
Ni R. Magnetic Resonance Imaging in Animal Models of Alzheimer's Disease Amyloidosis. Int J Mol Sci 2021; 22:12768. [PMID: 34884573 PMCID: PMC8657987 DOI: 10.3390/ijms222312768] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/18/2021] [Accepted: 11/23/2021] [Indexed: 02/07/2023] Open
Abstract
Amyloid-beta (Aβ) plays an important role in the pathogenesis of Alzheimer's disease. Aberrant Aβ accumulation induces neuroinflammation, cerebrovascular alterations, and synaptic deficits, leading to cognitive impairment. Animal models recapitulating the Aβ pathology, such as transgenic, knock-in mouse and rat models, have facilitated the understanding of disease mechanisms and the development of therapeutics targeting Aβ. There is a rapid advance in high-field MRI in small animals. Versatile high-field magnetic resonance imaging (MRI) sequences, such as diffusion tensor imaging, arterial spin labeling, resting-state functional MRI, anatomical MRI, and MR spectroscopy, as well as contrast agents, have been developed for preclinical imaging in animal models. These tools have enabled high-resolution in vivo structural, functional, and molecular readouts with a whole-brain field of view. MRI has been used to visualize non-invasively the Aβ deposits, synaptic deficits, regional brain atrophy, impairment in white matter integrity, functional connectivity, and cerebrovascular and glymphatic system in animal models of Alzheimer's disease amyloidosis. Many of the readouts are translational toward clinical MRI applications in patients with Alzheimer's disease. In this review, we summarize the recent advances in MRI for visualizing the pathophysiology in amyloidosis animal models. We discuss the outstanding challenges in brain imaging using MRI in small animals and propose future outlook in visualizing Aβ-related alterations in the brains of animal models.
Collapse
Affiliation(s)
- Ruiqing Ni
- Institute for Biomedical Engineering, ETH Zurich & University of Zurich, 8093 Zurich, Switzerland;
- Institute for Regenerative Medicine, University of Zurich, 8952 Zurich, Switzerland
| |
Collapse
|
11
|
Zhao H, Cheng J, Liu T, Jiang J, Koch F, Sachdev PS, Basser PJ, Wen W. Orientational changes of white matter fibers in Alzheimer's disease and amnestic mild cognitive impairment. Hum Brain Mapp 2021; 42:5397-5408. [PMID: 34412149 PMCID: PMC8519856 DOI: 10.1002/hbm.25628] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 08/07/2021] [Indexed: 12/13/2022] Open
Abstract
White matter abnormalities represent early neuropathological events in neurodegenerative diseases such as Alzheimer's disease (AD), investigating these white matter alterations would likely provide valuable insights into pathological changes over the course of AD. Using a novel mathematical framework called "Director Field Analysis" (DFA), we investigated the geometric microstructural properties (i.e., splay, bend, twist, and total distortion) in the orientation of white matter fibers in AD, amnestic mild cognitive impairment (aMCI), and cognitively normal (CN) individuals from the Alzheimer's Disease Neuroimaging Initiative 2 database. Results revealed that AD patients had extensive orientational changes in the bilateral anterior thalamic radiation, corticospinal tract, inferior and superior longitudinal fasciculus, inferior fronto-occipital fasciculus, and uncinate fasciculus in comparison with CN. We postulate that these orientational changes of white matter fibers may be partially caused by the expansion of lateral ventricle, white matter atrophy, and gray matter atrophy in AD. In contrast, aMCI individuals showed subtle orientational changes in the left inferior longitudinal fasciculus and right uncinate fasciculus, which showed a significant association with the cognitive performance, suggesting that these regions may be preferential vulnerable to breakdown by neurodegenerative brain disorders, thereby resulting in the patients' cognitive impairment. To our knowledge, this article is the first to examine geometric microstructural changes in the orientation of white matter fibers in AD and aMCI. Our findings demonstrate that the orientational information of white matter fibers could provide novel insight into the underlying biological and pathological changes in AD and aMCI.
Collapse
Affiliation(s)
- Haichao Zhao
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical EngineeringBeihang UniversityBeijingChina
| | - Jian Cheng
- Beijing Advanced Innovation Center for Big Data‐Based Precision MedicineBeihang UniversityBeijingChina
| | - Tao Liu
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical EngineeringBeihang UniversityBeijingChina
- Beijing Advanced Innovation Center for Big Data‐Based Precision MedicineBeihang UniversityBeijingChina
| | - Jiyang Jiang
- Centre for Healthy Brain Ageing, School of Psychiatry (CHeBA)University of New South WalesSydneyNew South WalesAustralia
| | - Forrest Koch
- Centre for Healthy Brain Ageing, School of Psychiatry (CHeBA)University of New South WalesSydneyNew South WalesAustralia
| | - Perminder S. Sachdev
- Centre for Healthy Brain Ageing, School of Psychiatry (CHeBA)University of New South WalesSydneyNew South WalesAustralia
| | - Peter J. Basser
- Section on Quantitative Imaging and Tissue SciencesNIBIB, NICHD, National Institutes of HealthBethesdaMaryland
| | - Wei Wen
- Centre for Healthy Brain Ageing, School of Psychiatry (CHeBA)University of New South WalesSydneyNew South WalesAustralia
| | | |
Collapse
|
12
|
Massalimova A, Ni R, Nitsch RM, Reisert M, von Elverfeldt D, Klohs J. Diffusion Tensor Imaging Reveals Whole-Brain Microstructural Changes in the P301L Mouse Model of Tauopathy. NEURODEGENER DIS 2021; 20:173-184. [PMID: 33975312 DOI: 10.1159/000515754] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 03/05/2021] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION Increased expression of hyperphosphorylated tau and the formation of neurofibrillary tangles are associated with neuronal loss and white matter damage. Using high-resolution ex vivo diffusion tensor imaging (DTI), we investigated microstructural changes in the white and grey matter in the P301L mouse model of human tauopathy at 8.5 months of age. For unbiased computational analysis, we implemented a pipeline for voxel-based analysis (VBA) and atlas-based analysis (ABA) of DTI mouse brain data. METHODS Hemizygous and homozygous transgenic P301L mice and non-transgenic littermates were used. DTI data were acquired for generation of fractional anisotropy (FA), mean diffusivity (MD), radial diffusivity (RD), and axial diffusivity (AD) maps. VBA on the entire brain was performed using SPM8 and the SPM Mouse toolbox. Initially, all DTI maps were coregistered with the Allen mouse brain atlas to bring them to one common coordinate space. In VBA, coregistered DTI maps were normalized and smoothed in order to perform two-sample and unpaired t tests with false discovery rate correction to compare hemizygotes with non-transgenic littermates, homozygotes with non-transgenic littermates, and hemizygotes with homozygotes on each DTI parameter map. In ABA, the average values for selected regions of interests were computed with coregistered DTI maps and labels in Allen mouse brain atlas. Afterwards, a Kruskal-Wallis one-way ANOVA on ranks with a Tukey post hoc test was executed on the estimated average values. RESULTS With VBA, we found pronounced and brain-wide spread changes when comparing homozygous, P301L mice with non-transgenic littermates, which were not seen when comparing hemizygous P301L with non-transgenic animals. Statistical comparison of DTI metrics in selected brain regions by ABA corroborated findings from VBA. FA was found to be decreased in most brain regions, while MD, RD, and AD were increased in homozygotes compared to hemizygotes and non-transgenic littermates. DISCUSSION/CONCLUSION High-resolution ex vivo DTI demonstrated brain-wide microstructural and gene-dose-dependent changes in the P301L mouse model of human tauopathy. The DTI analysis pipeline may serve for the phenotyping of models of tauopathy and other brain diseases.
Collapse
Affiliation(s)
- Aidana Massalimova
- Institute for Biomedical Engineering, ETH & University of Zurich, Zurich, Switzerland
| | - Ruiqing Ni
- Institute for Biomedical Engineering, ETH & University of Zurich, Zurich, Switzerland
| | - Roger M Nitsch
- Zurich Neuroscience Center (ZNZ), Zurich, Switzerland.,Institute for Regenerative Medicine, University of Zurich, Schlieren, Switzerland
| | - Marco Reisert
- Department of Radiology, Medical Physics, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Dominik von Elverfeldt
- Department of Radiology, Medical Physics, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Jan Klohs
- Institute for Biomedical Engineering, ETH & University of Zurich, Zurich, Switzerland.,Zurich Neuroscience Center (ZNZ), Zurich, Switzerland
| |
Collapse
|
13
|
Martínez-García I, Hernández-Soto R, Villasana-Salazar B, Ordaz B, Peña-Ortega F. Alterations in Piriform and Bulbar Activity/Excitability/Coupling Upon Amyloid-β Administration in vivo Related to Olfactory Dysfunction. J Alzheimers Dis 2021; 82:S19-S35. [PMID: 33459655 DOI: 10.3233/jad-201392] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Deficits in odor detection and discrimination are premature symptoms of Alzheimer's disease (AD) that correlate with pathological signs in the olfactory bulb (OB) and piriform cortex (PCx). Similar olfactory dysfunction has been characterized in AD transgenic mice that overproduce amyloid-β peptide (Aβ), which can be prevented by reducing Aβ levels by immunological and pharmacological means, suggesting that olfactory dysfunction depends on Aβ accumulation and Aβ-driven alterations in the OB and/or PCx, as well as on their activation. However, this possibility needs further exploration. OBJECTIVE To characterize the effects of Aβ on OB and PCx excitability/coupling and on olfaction. METHODS Aβ oligomerized solution (containing oligomers, monomers, and protofibrils) or its vehicle were intracerebroventricularlly injected two weeks before OB and PCx excitability and synchrony were evaluated through field recordings in vivo and in brain slices. Synaptic transmission from the OB to the PCx was also evaluated in slices. Olfaction was assessed through the habituation/dishabituation test. RESULTS Aβ did not affect lateral olfactory tract transmission into the PCx but reduced odor habituation and cross-habituation. This olfactory dysfunction was related to a reduction of PCx and OB network activity power in vivo. Moreover, the coherence between PCx-OB activities was also reduced by Aβ. Finally, Aβ treatment exacerbated the 4-aminopyridine-induced excitation in the PCx in slices. CONCLUSION Our results show that Aβ-induced olfactory dysfunction involves a complex set of pathological changes at different levels of the olfactory pathway including alterations in PCx excitability and its coupling with the OB. These pathological changes might contribute to hyposmia in AD.
Collapse
Affiliation(s)
- Ignacio Martínez-García
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, UNAM-Campus Juriquilla, México
| | - Rebeca Hernández-Soto
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, UNAM-Campus Juriquilla, México
| | - Benjamín Villasana-Salazar
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, UNAM-Campus Juriquilla, México
| | - Benito Ordaz
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, UNAM-Campus Juriquilla, México
| | - Fernando Peña-Ortega
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, UNAM-Campus Juriquilla, México
| |
Collapse
|
14
|
Stephen R, Solomon A, Ngandu T, Levälahti E, Rinne JO, Kemppainen N, Parkkola R, Antikainen R, Strandberg T, Kivipelto M, Soininen H, Liu Y. White Matter Changes on Diffusion Tensor Imaging in the FINGER Randomized Controlled Trial. J Alzheimers Dis 2020; 78:75-86. [PMID: 32925045 PMCID: PMC7683078 DOI: 10.3233/jad-200423] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Background: Early pathological changes in white matter microstructure can be studied using the diffusion tensor imaging (DTI). It is not only important to study these subtle pathological changes leading to cognitive decline, but also to ascertain how an intervention would impact the white matter microstructure and cognition in persons at-risk of dementia. Objectives: To study the impact of a multidomain lifestyle intervention on white matter and cognitive changes during the 2-year Finnish Geriatric Intervention Study to prevent Cognitive Impairment and Disability (FINGER), a randomized controlled trial in at-risk older individuals (age 60–77 years) from the general population. Methods: This exploratory study consisted of a subsample of 60 FINGER participants. Participants were randomized to either a multidomain intervention (diet, exercise, cognitive training, and vascular risk management, n = 34) or control group (general health advice, n = 26). All underwent baseline and 2-year brain DTI. Changes in fractional anisotropy (FA), diffusivity along domain (F1) and non-domain (F2) diffusion orientations, mean diffusivity (MD), axial diffusivity (AxD), radial diffusivity (RD), and their correlations with cognitive changes during the 2-year multidomain intervention were analyzed. Results: FA decreased, and cognition improved more in the intervention group compared to the control group (p < 0.05), with no significant intergroup differences for changes in F1, F2, MD, AxD, or RD. The cognitive changes were significantly positively related to FA change, and negatively related to RD change in the control group, but not in the intervention group. Conclusion: The 2-year multidomain FINGER intervention may modulate white matter microstructural alterations.
Collapse
Affiliation(s)
- Ruth Stephen
- Institute of Clinical Medicine/Neurology, University of Eastern Finland, Kuopio, Finland
| | - Alina Solomon
- Institute of Clinical Medicine/Neurology, University of Eastern Finland, Kuopio, Finland.,Division of Clinical Geriatrics, Center for Alzheimer Research, NVS, Karolinska Institutet, Stockholm, Sweden
| | - Tiia Ngandu
- Division of Clinical Geriatrics, Center for Alzheimer Research, NVS, Karolinska Institutet, Stockholm, Sweden.,Public Health Promotion Unit, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Esko Levälahti
- Public Health Promotion Unit, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Juha O Rinne
- Division of Clinical Neurosciences, Turku University Hospital, Turku, Finland.,Turku PET Centre, University of Turku, Turku, Finland
| | - Nina Kemppainen
- Division of Clinical Neurosciences, Turku University Hospital, Turku, Finland.,Turku PET Centre, University of Turku, Turku, Finland
| | - Riitta Parkkola
- Division of Clinical Neurosciences, Turku University Hospital, Turku, Finland
| | - Riitta Antikainen
- Center for Life Course Health Research/Geriatrics, University of Oulu, Oulu, Finland.,Medical Research Center Oulu, Oulu University Hospital and Oulu City Hospital, Oulu, Finland
| | - Timo Strandberg
- Center for Life Course Health Research/Geriatrics, University of Oulu, Oulu, Finland.,Department of Medicine, Geriatric Clinic, University of Helsinki, Helsinki University Central Hospital, Helsinki, Finland
| | - Miia Kivipelto
- Institute of Clinical Medicine/Neurology, University of Eastern Finland, Kuopio, Finland.,Division of Clinical Geriatrics, Center for Alzheimer Research, NVS, Karolinska Institutet, Stockholm, Sweden.,Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland.,Ageing Epidemiology (AGE) Research Unit, School of Public Health, Imperial College London, London, United Kingdom
| | - Hilkka Soininen
- Institute of Clinical Medicine/Neurology, University of Eastern Finland, Kuopio, Finland.,Neurocenter, Neurology, Kuopio University Hospital, Kuopio, Finland
| | - Yawu Liu
- Institute of Clinical Medicine/Neurology, University of Eastern Finland, Kuopio, Finland.,Department of Clinical Radiology, Kuopio University Hospital, Kuopio, Finland
| | | |
Collapse
|
15
|
Eed A, Cerdán Cerdá A, Lerma J, De Santis S. Diffusion-weighted MRI in neurodegenerative and psychiatric animal models: Experimental strategies and main outcomes. J Neurosci Methods 2020; 343:108814. [PMID: 32569785 DOI: 10.1016/j.jneumeth.2020.108814] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 06/15/2020] [Accepted: 06/16/2020] [Indexed: 12/31/2022]
Abstract
Preclinical MRI approaches constitute a key tool to study a wide variety of neurological and psychiatric illnesses, allowing a more direct investigation of the disorder substrate and, at the same time, the possibility of back-translating such findings to human subjects. However, the lack of consensus on the optimal experimental scheme used to acquire the data has led to relatively high heterogeneity in the choice of protocols, which can potentially impact the comparison between results obtained by different groups, even using the same animal model. This is especially true for diffusion-weighted MRI data, where certain experimental choices can impact not only on the accuracy and precision of the extracted biomarkers, but also on their biological meaning. With this in mind, we extensively examined preclinical imaging studies that used diffusion-weighted MRI to investigate neurodegenerative, neurodevelopmental and psychiatric disorders in rodent models. In this review, we discuss the main findings for each preclinical model, with a special focus on the analysis and comparison of the different acquisition strategies used across studies and their impact on the heterogeneity of the findings.
Collapse
Affiliation(s)
- Amr Eed
- Instituto de Neurociencias, CSIC, UMH, San Juan de Alicante, Alicante, Spain
| | | | - Juan Lerma
- Instituto de Neurociencias, CSIC, UMH, San Juan de Alicante, Alicante, Spain
| | - Silvia De Santis
- Instituto de Neurociencias, CSIC, UMH, San Juan de Alicante, Alicante, Spain; CUBRIC, School of Psychology, Cardiff University, Cardiff, UK.
| |
Collapse
|
16
|
Müller HP, Roselli F, Rasche V, Kassubek J. Diffusion Tensor Imaging-Based Studies at the Group-Level Applied to Animal Models of Neurodegenerative Diseases. Front Neurosci 2020; 14:734. [PMID: 32982659 PMCID: PMC7487414 DOI: 10.3389/fnins.2020.00734] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 06/22/2020] [Indexed: 12/11/2022] Open
Abstract
The understanding of human and non-human microstructural brain alterations in the course of neurodegenerative diseases has substantially improved by the non-invasive magnetic resonance imaging (MRI) technique of diffusion tensor imaging (DTI). Animal models (including disease or knockout models) allow for a variety of experimental manipulations, which are not applicable to humans. Thus, the DTI approach provides a promising tool for cross-species cross-sectional and longitudinal investigations of the neurobiological targets and mechanisms of neurodegeneration. This overview with a systematic review focuses on the principles of DTI analysis as used in studies at the group level in living preclinical models of neurodegeneration. The translational aspect from in-vivo animal models toward (clinical) applications in humans is covered as well as the DTI-based research of the non-human brains' microstructure, the methodological aspects in data processing and analysis, and data interpretation at different abstraction levels. The aim of integrating DTI in multiparametric or multimodal imaging protocols will allow the interrogation of DTI data in terms of directional flow of information and may identify the microstructural underpinnings of neurodegeneration-related patterns.
Collapse
Affiliation(s)
| | - Francesco Roselli
- Department of Neurology, University of Ulm, Ulm, Germany.,German Center for Neurodegenerative Diseases (DZNE), Ulm, Germany
| | - Volker Rasche
- Core Facility Small Animal MRI, University of Ulm, Ulm, Germany
| | - Jan Kassubek
- Department of Neurology, University of Ulm, Ulm, Germany
| |
Collapse
|
17
|
Colon-Perez LM, Ibanez KR, Suarez M, Torroella K, Acuna K, Ofori E, Levites Y, Vaillancourt DE, Golde TE, Chakrabarty P, Febo M. Neurite orientation dispersion and density imaging reveals white matter and hippocampal microstructure changes produced by Interleukin-6 in the TgCRND8 mouse model of amyloidosis. Neuroimage 2019; 202:116138. [PMID: 31472250 DOI: 10.1016/j.neuroimage.2019.116138] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 08/15/2019] [Accepted: 08/27/2019] [Indexed: 02/07/2023] Open
Abstract
Extracellular β-amyloid (Aβ) plaque deposits and inflammatory immune activation are thought to alter various aspects of tissue microstructure, such as extracellular free water, fractional anisotropy and diffusivity, as well as the density and geometric arrangement of axonal processes. Quantifying these microstructural changes in Alzheimer's disease and related neurodegenerative dementias could serve to monitor or predict disease course. In the present study we used high-field diffusion magnetic resonance imaging (dMRI) to investigate the effects of Aβ and inflammatory interleukin-6 (IL6), alone or in combination, on in vivo tissue microstructure in the TgCRND8 mouse model of Alzheimer's-type Aβ deposition. TgCRND8 and non-transgenic (nTg) mice expressing brain-targeted IL6 or enhanced glial fibrillary protein (EGFP controls) were scanned at 8 months of age using a 2-shell, 54-gradient direction dMRI sequence at 11.1 T. Images were processed using the diffusion tensor imaging (DTI) model or the neurite orientation dispersion and density imaging (NODDI) model. DTI and NODDI processing in TgCRND8 mice revealed a microstructure pattern in white matter (WM) and hippocampus consistent with radial and longitudinal diffusivity deficits along with an increase in density and geometric complexity of axonal and dendritic processes. This included reduced FA, mean, axial and radial diffusivity, and increased orientation dispersion (ODI) and intracellular volume fraction (ICVF) measured in WM and hippocampus. IL6 produced a 'protective-like' effect on WM FA in TgCRND8 mice, observed as an increased FA that counteracted a reduction in FA observed with endogenous Aβ production and accumulation. In addition, we found that ICVF and ODI had an inverse relationship with the functional connectome clustering coefficient. The relationship between NODDI and graph theory metrics suggests that currently unknown microstructure alterations in WM and hippocampus are associated with diminished functional network organization in the brain.
Collapse
Affiliation(s)
- Luis M Colon-Perez
- Florida Alzheimer's Disease Research Center, University of Florida, Gainesville, United States; Department of Psychiatry, University of Florida, Gainesville, United States
| | - Kristen R Ibanez
- Center for Translational Research on Neurodegenerative Diseases, University of Florida, Gainesville, United States; Department of Neuroscience, University of Florida, Gainesville, United States
| | - Mallory Suarez
- Department of Psychiatry, University of Florida, Gainesville, United States
| | - Kristin Torroella
- Department of Psychiatry, University of Florida, Gainesville, United States
| | - Kelly Acuna
- Department of Psychiatry, University of Florida, Gainesville, United States
| | - Edward Ofori
- Florida Alzheimer's Disease Research Center, University of Florida, Gainesville, United States; Applied Physiology & Kinesiology, University of Florida, Gainesville, United States
| | - Yona Levites
- Florida Alzheimer's Disease Research Center, University of Florida, Gainesville, United States; Center for Translational Research on Neurodegenerative Diseases, University of Florida, Gainesville, United States; Department of Neuroscience, University of Florida, Gainesville, United States; McKnight Brain Institute, University of Florida, Gainesville, United States
| | - David E Vaillancourt
- Florida Alzheimer's Disease Research Center, University of Florida, Gainesville, United States; Advanced Magnetic Resonance Imaging and Spectroscopy Facility, University of Florida, Gainesville, United States; Department of Psychiatry, University of Florida, Gainesville, United States; Applied Physiology & Kinesiology, University of Florida, Gainesville, United States
| | - Todd E Golde
- Florida Alzheimer's Disease Research Center, University of Florida, Gainesville, United States; Center for Translational Research on Neurodegenerative Diseases, University of Florida, Gainesville, United States; Department of Neuroscience, University of Florida, Gainesville, United States; McKnight Brain Institute, University of Florida, Gainesville, United States
| | - Paramita Chakrabarty
- Florida Alzheimer's Disease Research Center, University of Florida, Gainesville, United States; Center for Translational Research on Neurodegenerative Diseases, University of Florida, Gainesville, United States; Department of Neuroscience, University of Florida, Gainesville, United States; McKnight Brain Institute, University of Florida, Gainesville, United States.
| | - Marcelo Febo
- Florida Alzheimer's Disease Research Center, University of Florida, Gainesville, United States; Advanced Magnetic Resonance Imaging and Spectroscopy Facility, University of Florida, Gainesville, United States; Department of Psychiatry, University of Florida, Gainesville, United States; McKnight Brain Institute, University of Florida, Gainesville, United States.
| |
Collapse
|
18
|
Dorsal hippocampal changes in T2 relaxation times are associated with early spatial cognitive deficits in 5XFAD mice. Brain Res Bull 2019; 153:150-161. [PMID: 31422072 DOI: 10.1016/j.brainresbull.2019.08.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 08/12/2019] [Accepted: 08/13/2019] [Indexed: 01/01/2023]
Abstract
T2 relaxation time (T2) alterations may serve as markers for early detection and disease progression monitoring by reflecting brain microstructural integrity in Alzheimer's disease (AD). However, the characteristics of T2 alterations during the early stage of AD remain elusive. We explored T2 alterations and their possible correlations with cognitive function in 5XFAD mice at early ages (1, 2, 3, and 5 months of age). Voxel-based analysis (VBA) and region of interest (ROI) analysis showed a decreased T2 in the hippocampus of 2-, 3-, and 5-month-old 5XFAD mice compared to those of controls. The dorsal hippocampal T2 decreased earlier than the ventral hippocampus T2. A significant correlation was observed between Morris water maze (MWM) test cognitive behavior and the dorsal hippocampus T2 in 5XFAD mice. These results indicated that the microstructural integrity of brain tissues, particularly the hippocampus, was impaired early and the impairment became more extensive and severe during disease progression. Furthermore, the dorsal hippocampus is a crucial component involved in spatial cognition impairment in young 5XFAD mice.
Collapse
|
19
|
Fekonja L, Wang Z, Bährend I, Rosenstock T, Rösler J, Wallmeroth L, Vajkoczy P, Picht T. Manual for clinical language tractography. Acta Neurochir (Wien) 2019; 161:1125-1137. [PMID: 31004240 PMCID: PMC6525736 DOI: 10.1007/s00701-019-03899-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 03/28/2019] [Indexed: 11/30/2022]
Abstract
Background We introduce a user-friendly, standardized protocol for tractography of the major language fiber bundles. Method The introduced method uses dMRI images for tractography whereas the ROI definition is based on structural T1 MPRAGE MRI templates, without normalization to MNI space. ROIs for five language-relevant fiber bundles were visualized on an axial, coronal, or sagittal view of T1 MPRAGE images. The ROIs were defined based upon the tracts’ obligatory pathways, derived from literature and own experiences in peritumoral tractography. Results The resulting guideline was evaluated for each fiber bundle in ten healthy subjects and ten patients by one expert and three raters. Overall, 300 ROIs were evaluated and compared. The targeted language fiber bundles could be tracked in 88% of the ROI pairs, based on the raters’ result blinded ROI placements. The evaluation indicated that the precision of the ROIs did not relate to the varying experience of the raters. Conclusions Our guideline introduces a standardized language tractography method for routine preoperative workup and for research contexts. The ROI placement guideline based on easy-to-identify anatomical landmarks proved to be user-friendly and accurate, also in inexperienced test persons.
Collapse
Affiliation(s)
- Lucius Fekonja
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Berlin, Germany.
- Cluster of Excellence: "Matters of Activity. Image Space Material", Humboldt University, Berlin, Germany.
| | - Ziqian Wang
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Ina Bährend
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Tizian Rosenstock
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Judith Rösler
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Lara Wallmeroth
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Peter Vajkoczy
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Thomas Picht
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Cluster of Excellence: "Matters of Activity. Image Space Material", Humboldt University, Berlin, Germany
| |
Collapse
|
20
|
Hoffmann J, Kreutz KM, Csapó-Schmidt C, Becker N, Kunte H, Fekonja LS, Jadan A, Wiener E. The effect of CSF drain on the optic nerve in idiopathic intracranial hypertension. J Headache Pain 2019; 20:59. [PMID: 31122204 PMCID: PMC6734439 DOI: 10.1186/s10194-019-1004-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 04/22/2019] [Indexed: 01/03/2023] Open
Abstract
Background Elevation of intracranial pressure in idiopathic intracranial hypertension induces an edema of the prelaminar section of the optic nerve (papilledema). Beside the commonly observed optic nerve sheath distention, information on a potential pathology of the retrolaminar section of the optic nerve and the short-term effect of normalization of intracranial pressure on these abnormalities remains scarce. Methods In this exploratory study 8 patients diagnosed with idiopathic intracranial hypertension underwent a MRI scan (T2 mapping) as well as a diffusion tensor imaging analysis (fractional anisotropy and mean diffusivity). In addition, the clinical presentation of headache and its accompanying symptoms were assessed. Intracranial pressure was then normalized by lumbar puncture and the initial parameters (MRI and clinical features) were re-assessed within 26 h. Results After normalization of CSF pressure, the morphometric MRI scans of the optic nerve and optic nerve sheath remained unchanged. In the diffusion tensor imaging, the fractional anisotropy value was reduced suggesting a tissue decompression of the optic nerve after lumbar puncture. In line with these finding, headache and most of the accompanying symptoms also improved or remitted within that short time frame. Conclusion The findings support the hypothesis that the elevation of intracranial pressure induces a microstructural compression of the optic nerve impairing axoplasmic flow and thereby causing the prelaminar papilledema. The microstructural compression of the optic nerve as well as the clinical symptoms improve within hours of normalization of intracranial pressure.
Collapse
Affiliation(s)
- Jan Hoffmann
- Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany. .,Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Wellcome Foundation Building, Denmark Hill Campus, London, SE5 9PJ, UK.
| | - Katharina Maria Kreutz
- Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany.,Department of Neuroradiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany
| | - Christoph Csapó-Schmidt
- Department of Neuroradiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany
| | - Nils Becker
- Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany.,Department of Neuroradiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany
| | - Hagen Kunte
- Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany.,Faculty of Natural Sciences, Medical School Berlin, Berlin, Germany
| | - Lucius Samo Fekonja
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Berlin, Germany
| | - Anas Jadan
- Department of Neuroradiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany
| | - Edzard Wiener
- Department of Neuroradiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany.
| |
Collapse
|
21
|
Resting-state white matter-cortical connectivity in non-human primate brain. Neuroimage 2018; 184:45-55. [PMID: 30205207 DOI: 10.1016/j.neuroimage.2018.09.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 09/05/2018] [Accepted: 09/07/2018] [Indexed: 02/03/2023] Open
Abstract
Numerous studies have used functional magnetic resonance imaging (fMRI) to characterize functional connectivity between cortical regions by analyzing correlations in blood oxygenation level dependent (BOLD) signals in a resting state. However, to date, there have been only a handful of studies reporting resting state BOLD signals in white matter. Nonetheless, a growing number of reports has emerged in recent years suggesting white matter BOLD signals can be reliably detected, though their biophysical origins remain unclear. Moreover, recent studies have identified robust correlations in a resting state between signals from cortex and specific white matter tracts. In order to further validate and interpret these findings, we studied a non-human primate model to investigate resting-state connectivity patterns between parcellated cortical volumes and specific white matter bundles. Our results show that resting-state connectivity patterns between white and gray matter structures are not randomly distributed but share notable similarities with diffusion- and histology-derived anatomic connectivities. This suggests that resting-state BOLD correlations between white matter fiber tracts and the gray matter regions to which they connect are directly related to the anatomic arrangement and density of WM fibers. We also measured how different levels of baseline neural activity, induced by varying levels of anesthesia, modulate these patterns. As anesthesia levels were raised, we observed weakened correlation coefficients between specific white matter tracts and gray matter regions while key features of the connectivity pattern remained similar. Overall, results from this study provide further evidence that neural activity is detectable by BOLD fMRI in both gray and white matter throughout the resting brain. The combined use of gray and white matter functional connectivity could also offer refined full-scale functional parcellation of the entire brain to characterize its functional architecture.
Collapse
|
22
|
Shen Z, Lei J, Li X, Wang Z, Bao X, Wang R. Multifaceted assessment of the APP/PS1 mouse model for Alzheimer's disease: Applying MRS, DTI, and ASL. Brain Res 2018; 1698:114-120. [PMID: 30077647 DOI: 10.1016/j.brainres.2018.08.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 07/28/2018] [Accepted: 08/01/2018] [Indexed: 01/01/2023]
Abstract
Transgenic animal models of Alzheimer's disease (AD) can mimic pathological and behavioral changes occurring in AD patients, and are usually viewed as the first choice for testing novel therapeutics. Validated biomarkers, particularly non-invasive ones, are urgently needed for AD diagnosis or evaluation of treatment results. However, there are few studies that systematically characterize pathological changes in AD animal models. Here, we investigated the brain of 8-month-old amyloid precursor protein/presenilin 1 (APP/PS1) transgenic and wild-type (WT) mice, employing 7.0-T magnetic resonance imaging (MRI). Magnetic resonance spectroscopy (MRS), diffusion tensor imaging (DTI), and arterial spin labeling (ASL) were obtained through micro-MRI scanning. After MRI examination in both transgenic (n = 12) and WT (n = 12) mice, immunohistochemical staining and ultrastructural analysis were subsequently performed. Cerebral blood flow (CBF) was significantly decreased in the left hippocampus, left thalamus, and right cortex of AD mice (P < 0.05). Moreover, MRS showed significantly changed NAA/Cr, Glu/Cr, and mI/Cr ratios in the hippocampus of transgenic mice. While only NAA/Cr and mI/Cr ratios varied significantly in the cortex of transgenic mice. Regarding DTI imaging, however, the values of FA, MD, DA and DR were not significantly different between transgenic and WT mice. Finally, it is worth noting that pathological damage of metabolism, CBF, and white matter was more distinct between transgenic and WT mice by pathological examination. Altogether, our results suggest that intravital imaging evaluation of 8-month-old APP/PS1 transgenic mice by MRS and ASL is an alternative tool for AD research.
Collapse
Affiliation(s)
- Zhiwei Shen
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jianfeng Lei
- Center for Medical Experiments and Testing, Capital Medical University, Beijing, China
| | - Xueyuan Li
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Zhanjing Wang
- Center for Medical Experiments and Testing, Capital Medical University, Beijing, China
| | - Xinjie Bao
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| | - Renzhi Wang
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| |
Collapse
|
23
|
Li MZ, Zhang Y, Zou HY, Ouyang JY, Zhan Y, Yang L, Cheng BCY, Wang L, Zhang QX, Lei JF, Zhao YY, Zhao H. Investigation of Ginkgo biloba extract (EGb 761) promotes neurovascular restoration and axonal remodeling after embolic stroke in rat using magnetic resonance imaging and histopathological analysis. Biomed Pharmacother 2018; 103:989-1001. [DOI: 10.1016/j.biopha.2018.04.125] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 04/14/2018] [Accepted: 04/17/2018] [Indexed: 02/06/2023] Open
|
24
|
Tolomeo D, Micotti E, Serra SC, Chappell M, Snellman A, Forloni G. Chemical exchange saturation transfer MRI shows low cerebral 2-deoxy-D-glucose uptake in a model of Alzheimer's Disease. Sci Rep 2018; 8:9576. [PMID: 29934551 PMCID: PMC6015016 DOI: 10.1038/s41598-018-27839-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 06/11/2018] [Indexed: 12/17/2022] Open
Abstract
Glucose is the central nervous system's only energy source. Imaging techniques capable to detect pathological alterations of the brain metabolism are useful in different diagnostic processes. Such techniques are also beneficial for assessing the evaluation efficacy of therapies in pre-clinical and clinical stages of diseases. Chemical exchange saturation transfer (CEST) magnetic resonance imaging (MRI) is a possible alternative to positron emission tomography (PET) imaging that has been widely explored in cancer research in humans and animal models. We propose that pathological alterations in brain 2-deoxy-D-glucose (2DG) uptake, typical of neurodegenerative diseases, can be detected with CEST MRI. Transgenic mice overexpressing a mutated form of amyloid precusrsor protein (APP23), a model of Alzheimer's disease, analyzed with CEST MRI showed a clear reduction of 2DG uptake in different brain regions. This was reminiscent of the cerebral condition observed in Alzheimer's patients. The results indicate the feasibility of CEST for analyzing the brain metabolic state, with better image resolution than PET in experimental models.
Collapse
Affiliation(s)
- Daniele Tolomeo
- Laboratory of Biology of Neurodegenerative Disorders, Department of Neuroscience, IRCCS, Mario Negri Institute for Pharmacological Research, Milan, (MI), Italy
| | - Edoardo Micotti
- Laboratory of Biology of Neurodegenerative Disorders, Department of Neuroscience, IRCCS, Mario Negri Institute for Pharmacological Research, Milan, (MI), Italy
| | | | - Michael Chappell
- Department of Engineering Science, Institute of Biomedical Engineering, University of Oxford, 6396, Oxford, UK
| | - Anniina Snellman
- Medicity Research Laboratory, University of Turku, (Tykistökatu 6, FI-20510), Turku, Finland.,Turku PET Centre, University of Turku, (Kiinamyllynkatu 4-8, FI-20520,), Turku, Finland
| | - Gianluigi Forloni
- Laboratory of Biology of Neurodegenerative Disorders, Department of Neuroscience, IRCCS, Mario Negri Institute for Pharmacological Research, Milan, (MI), Italy.
| |
Collapse
|
25
|
Snow WM, Dale R, O'Brien-Moran Z, Buist R, Peirson D, Martin M, Albensi BC. In Vivo Detection of Gray Matter Neuropathology in the 3xTg Mouse Model of Alzheimer's Disease with Diffusion Tensor Imaging. J Alzheimers Dis 2018; 58:841-853. [PMID: 28505976 DOI: 10.3233/jad-170136] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
A diagnosis of Alzheimer's disease (AD), a neurodegenerative disorder accompanied by severe functional and cognitive decline, is based on clinical findings, with final confirmation of the disease at autopsy by the presence of amyloid-β (Aβ) plaques and neurofibrillary tangles. Given that microstructural brain alterations occur years prior to clinical symptoms, efforts to detect brain changes early could significantly enhance our ability to diagnose AD sooner. Diffusion tensor imaging (DTI), a type of MRI that characterizes the magnitude, orientation, and anisotropy of the diffusion of water in tissues, has been used to infer neuropathological changes in vivo. Its utility in AD, however, is still under investigation. The current study used DTI to examine brain regions susceptible to AD-related pathology; the cerebral cortex, entorhinal cortex, and hippocampus, in 12-14-month-old 3xTg AD mice that possess both Aβ plaques and neurofibrillary tangles. Mean diffusivity did not differ between 3xTg and control mice in any region. Decreased fractional anisotropy (p < 0.01) and axial diffusivity (p < 0.05) were detected only in the hippocampus, in which both congophilic Aβ plaques and hyperphosphorylated tau accumulation, consistent with neurofibrillary tangle formation, were detected. Pathological tau accumulation was seen in the cortex. The entorhinal cortex was largely spared from AD-related neuropathology. This is the first study to demonstrate DTI abnormalities in gray matter in a mouse model of AD in which both pathological hallmarks are present, suggesting the feasibility of DTI as a non-invasive means of detecting brain pathology in vivo in early-stage AD.
Collapse
Affiliation(s)
- Wanda M Snow
- Division of Neurodegenerative Disorders, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB, Canada.,Department of Pharmacology & Therapeutics, University of Manitoba, Winnipeg, MB, Canada
| | - Ryan Dale
- Division of Neurodegenerative Disorders, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB, Canada.,Department of Pharmacology & Therapeutics, University of Manitoba, Winnipeg, MB, Canada
| | | | - Richard Buist
- Department of Radiology, University of Manitoba, Winnipeg, MB, Canada
| | - Danial Peirson
- Division of Neurodegenerative Disorders, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB, Canada.,Department of Pharmacology & Therapeutics, University of Manitoba, Winnipeg, MB, Canada
| | - Melanie Martin
- Department of Pharmacology & Therapeutics, University of Manitoba, Winnipeg, MB, Canada.,Department of Physics, University of Winnipeg, Winnipeg, MB, Canada.,Department of Radiology, University of Manitoba, Winnipeg, MB, Canada
| | - Benedict C Albensi
- Division of Neurodegenerative Disorders, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB, Canada.,Department of Pharmacology & Therapeutics, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
26
|
Ma W, Li M, Gao F, Zhang X, Shi L, Yu L, Zhao B, Chen W, Wang G, Wang X. DTI Analysis of Presbycusis Using Voxel-Based Analysis. AJNR Am J Neuroradiol 2016; 37:2110-2114. [PMID: 27418468 DOI: 10.3174/ajnr.a4870] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 05/09/2016] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE Presbycusis is the most common sensory deficit in the aging population. A recent study reported using a DTI-based tractography technique to identify a lack of integrity in a portion of the auditory pathway in patients with presbycusis. The aim of our study was to investigate the white matter pathology of patients with presbycusis by using a voxel-based analysis that is highly sensitive to local intensity changes in DTI data. MATERIALS AND METHODS Fifteen patients with presbycusis and 14 age- and sex-matched healthy controls were scanned on a 3T scanner. Fractional anisotropy, mean diffusivity, axial diffusivity, and radial diffusivity were obtained from the DTI data. Intergroup statistics were implemented on these measurements, which were transformed to Montreal Neurological Institute coordinates by using a nonrigid image registration method called large deformation diffeomorphic metric mapping. RESULTS Increased axial diffusivity, radial diffusivity, and mean diffusivity and decreased fractional anisotropy were found near the right-side hearing-related areas in patients with presbycusis. Increased radial diffusivity and mean diffusivity were also found near a language-related area (Broca area) in patients with presbycusis. CONCLUSIONS Our findings could be important for exploring reliable imaging evidence of presbycusis and could complement an ROI-based approach.
Collapse
Affiliation(s)
- W Ma
- From the Department of Otolaryngology (W.M., L.S.)
- the Second Hospital of Shandong University, The Central Hospital of Jinan City (W.M., L.Y.)
| | - M Li
- College of Electronics and Information Engineering (M.L.), Sichuan University, Chengdu, China
| | - F Gao
- Shandong Medical Imaging Research Institute (F.G., X.Z., B.Z., G.W.), Shandong University, Jinan, China
| | - X Zhang
- Shandong Medical Imaging Research Institute (F.G., X.Z., B.Z., G.W.), Shandong University, Jinan, China
| | - L Shi
- From the Department of Otolaryngology (W.M., L.S.)
| | - L Yu
- the Second Hospital of Shandong University, The Central Hospital of Jinan City (W.M., L.Y.)
| | - B Zhao
- Shandong Medical Imaging Research Institute (F.G., X.Z., B.Z., G.W.), Shandong University, Jinan, China
| | - W Chen
- Philips Healthcare (W.C.), Shanghai, China
| | - G Wang
- Shandong Medical Imaging Research Institute (F.G., X.Z., B.Z., G.W.), Shandong University, Jinan, China
| | - X Wang
- the Department of Radiation Oncology (X.W.), University of Nebraska Medical Center, Omaha, Nebraska
| |
Collapse
|
27
|
Badea A, Kane L, Anderson RJ, Qi Y, Foster M, Cofer GP, Medvitz N, Buckley AF, Badea AK, Wetsel WC, Colton CA. The fornix provides multiple biomarkers to characterize circuit disruption in a mouse model of Alzheimer's disease. Neuroimage 2016; 142:498-511. [PMID: 27521741 DOI: 10.1016/j.neuroimage.2016.08.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 06/23/2016] [Accepted: 08/09/2016] [Indexed: 12/19/2022] Open
Abstract
Multivariate biomarkers are needed for detecting Alzheimer's disease (AD), understanding its etiology, and quantifying the effect of therapies. Mouse models provide opportunities to study characteristics of AD in well-controlled environments that can help facilitate development of early interventions. The CVN-AD mouse model replicates multiple AD hallmark pathologies, and we identified multivariate biomarkers characterizing a brain circuit disruption predictive of cognitive decline. In vivo and ex vivo magnetic resonance imaging (MRI) revealed that CVN-AD mice replicate the hippocampal atrophy (6%), characteristic of humans with AD, and also present changes in subcortical areas. The largest effect was in the fornix (23% smaller), which connects the septum, hippocampus, and hypothalamus. In characterizing the fornix with diffusion tensor imaging, fractional anisotropy was most sensitive (20% reduction), followed by radial (15%) and axial diffusivity (2%), in detecting pathological changes. These findings were strengthened by optical microscopy and ultrastructural analyses. Ultrastructual analysis provided estimates of axonal density, diameters, and myelination-through the g-ratio, defined as the ratio between the axonal diameter, and the diameter of the axon plus the myelin sheath. The fornix had reduced axonal density (47% fewer), axonal degeneration (13% larger axons), and abnormal myelination (1.5% smaller g-ratios). CD68 staining showed that white matter pathology could be secondary to neuronal degeneration, or due to direct microglial attack. In conclusion, these findings strengthen the hypothesis that the fornix plays a role in AD, and can be used as a disease biomarker and as a target for therapy.
Collapse
Affiliation(s)
- Alexandra Badea
- Center for In Vivo Microscopy, Duke University Medical Center, Department of Radiology, Durham, NC 27710, USA.
| | - Lauren Kane
- Trinity College of Arts & Sciences, Duke University, Durham, NC 27710, USA
| | - Robert J Anderson
- Center for In Vivo Microscopy, Duke University Medical Center, Department of Radiology, Durham, NC 27710, USA
| | - Yi Qi
- Center for In Vivo Microscopy, Duke University Medical Center, Department of Radiology, Durham, NC 27710, USA
| | - Mark Foster
- Center for In Vivo Microscopy, Duke University Medical Center, Department of Radiology, Durham, NC 27710, USA
| | - Gary P Cofer
- Center for In Vivo Microscopy, Duke University Medical Center, Department of Radiology, Durham, NC 27710, USA
| | - Neil Medvitz
- Department of Pathology, and Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC 27710, USA
| | - Anne F Buckley
- Department of Pathology, and Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC 27710, USA
| | - Andreas K Badea
- Center for In Vivo Microscopy, Duke University Medical Center, Department of Radiology, Durham, NC 27710, USA
| | - William C Wetsel
- Departments of Psychiatry and Behavioral Sciences, Cell Biology, and Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Carol A Colton
- Department of Neurology, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
28
|
Selective Persistence of Sensorimotor Mismatch Signals in Visual Cortex of Behaving Alzheimer’s Disease Mice. Curr Biol 2016; 26:956-64. [DOI: 10.1016/j.cub.2016.01.070] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 12/23/2015] [Accepted: 01/28/2016] [Indexed: 11/20/2022]
|
29
|
Holmes HE, Colgan N, Ismail O, Ma D, Powell NM, O'Callaghan JM, Harrison IF, Johnson RA, Murray TK, Ahmed Z, Heggenes M, Fisher A, Cardoso MJ, Modat M, Walker-Samuel S, Fisher EMC, Ourselin S, O'Neill MJ, Wells JA, Collins EC, Lythgoe MF. Imaging the accumulation and suppression of tau pathology using multiparametric MRI. Neurobiol Aging 2016; 39:184-94. [PMID: 26923415 PMCID: PMC4782737 DOI: 10.1016/j.neurobiolaging.2015.12.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 12/08/2015] [Accepted: 12/09/2015] [Indexed: 01/30/2023]
Abstract
Mouse models of Alzheimer's disease have served as valuable tools for investigating pathogenic mechanisms relating to neurodegeneration, including tau-mediated and neurofibrillary tangle pathology-a major hallmark of the disease. In this work, we have used multiparametric magnetic resonance imaging (MRI) in a longitudinal study of neurodegeneration in the rTg4510 mouse model of tauopathy, a subset of which were treated with doxycycline at different time points to suppress the tau transgene. Using this paradigm, we investigated the sensitivity of multiparametric MRI to both the accumulation and suppression of pathologic tau. Tau-related atrophy was discernible from 5.5 months within the cortex and hippocampus. We observed markedly less atrophy in the treated rTg4510 mice, which was enhanced after doxycycline intervention from 3.5 months. We also observed differences in amide proton transfer, cerebral blood flow, and diffusion tensor imaging parameters in the rTg4510 mice, which were significantly less altered after doxycycline treatment. We propose that these non-invasive MRI techniques offer insight into pathologic mechanisms underpinning Alzheimer's disease that may be important when evaluating emerging therapeutics targeting one of more of these processes.
Collapse
Affiliation(s)
- Holly E Holmes
- Division of Medicine, Centre for Advanced Biomedical Imaging, University College London, London, UK.
| | - Niall Colgan
- Division of Medicine, Centre for Advanced Biomedical Imaging, University College London, London, UK
| | - Ozama Ismail
- Division of Medicine, Centre for Advanced Biomedical Imaging, University College London, London, UK
| | - Da Ma
- Division of Medicine, Centre for Advanced Biomedical Imaging, University College London, London, UK; Translational Imaging Group, Centre for Medical Image Computing, University College London, London, UK
| | - Nick M Powell
- Division of Medicine, Centre for Advanced Biomedical Imaging, University College London, London, UK; Translational Imaging Group, Centre for Medical Image Computing, University College London, London, UK
| | - James M O'Callaghan
- Division of Medicine, Centre for Advanced Biomedical Imaging, University College London, London, UK
| | - Ian F Harrison
- Division of Medicine, Centre for Advanced Biomedical Imaging, University College London, London, UK
| | - Ross A Johnson
- Tailored Therapeutics, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN, USA
| | | | | | | | | | - M J Cardoso
- Translational Imaging Group, Centre for Medical Image Computing, University College London, London, UK
| | - Marc Modat
- Translational Imaging Group, Centre for Medical Image Computing, University College London, London, UK
| | - Simon Walker-Samuel
- Division of Medicine, Centre for Advanced Biomedical Imaging, University College London, London, UK
| | - Elizabeth M C Fisher
- Department of Neurodegenerative Diseases, Institute of Neurology, University College London, London, UK
| | - Sebastien Ourselin
- Translational Imaging Group, Centre for Medical Image Computing, University College London, London, UK
| | | | - Jack A Wells
- Division of Medicine, Centre for Advanced Biomedical Imaging, University College London, London, UK
| | - Emily C Collins
- Tailored Therapeutics, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN, USA
| | - Mark F Lythgoe
- Division of Medicine, Centre for Advanced Biomedical Imaging, University College London, London, UK
| |
Collapse
|
30
|
Wolf D, Fischer FU, Scheurich A, Fellgiebel A. Non-Linear Association between Cerebral Amyloid Deposition and White Matter Microstructure in Cognitively Healthy Older Adults. J Alzheimers Dis 2015; 47:117-27. [DOI: 10.3233/jad-150049] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
31
|
Fischer FU, Wolf D, Scheurich A, Fellgiebel A. Altered whole-brain white matter networks in preclinical Alzheimer's disease. NEUROIMAGE-CLINICAL 2015; 8:660-6. [PMID: 26288751 PMCID: PMC4536470 DOI: 10.1016/j.nicl.2015.06.007] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 06/17/2015] [Accepted: 06/20/2015] [Indexed: 11/28/2022]
Abstract
Surrogates of whole-brain white matter (WM) networks reconstructed using diffusion tensor imaging (DTI) are novel markers of structural brain connectivity. Global connectivity of networks has been found impaired in clinical Alzheimer's disease (AD) compared to cognitively healthy aging. We hypothesized that network alterations are detectable already in preclinical AD and investigated major global WM network properties. Other structural markers of neurodegeneration typically affected in prodromal AD but seeming largely unimpaired in preclinical AD were also examined. 12 cognitively healthy elderly with preclinical AD as classified by florbetapir-PET (mean age 73.4 ± 4.9) and 31 age-matched controls without cerebral amyloidosis (mean age 73.1 ± 6.7) from the ADNI were included. WM networks were reconstructed from DTI using tractography and graph theory. Indices of network capacity and the established imaging markers of neurodegeneration hippocampal volume, and cerebral glucose utilization as measured by fludeoxyglucose-PET were compared between the two groups. Additionally, we measured surrogates of global WM integrity (fractional anisotropy, mean diffusivity, volume). We found an increase of shortest path length and a decrease of global efficiency in preclinical AD. These results remained largely unchanged when controlling for WM integrity. In contrast, neither markers of neurodegeneration nor WM integrity were altered in preclinical AD subjects. Our results suggest an impairment of WM networks in preclinical AD that is detectable while other structural imaging markers do not yet indicate incipient neurodegeneration. Moreover, these findings are specific to WM networks and cannot be explained by other surrogates of global WM integrity.
Collapse
Affiliation(s)
- Florian Udo Fischer
- University Medical Center Mainz, Untere Zahlbacher Str. 8, Mainz 55131, Germany
| | - Dominik Wolf
- University Medical Center Mainz, Untere Zahlbacher Str. 8, Mainz 55131, Germany
| | - Armin Scheurich
- University Medical Center Mainz, Untere Zahlbacher Str. 8, Mainz 55131, Germany
| | - Andreas Fellgiebel
- University Medical Center Mainz, Untere Zahlbacher Str. 8, Mainz 55131, Germany
| | | |
Collapse
|
32
|
Sahara N, Perez PD, Lin WL, Dickson DW, Ren Y, Zeng H, Lewis J, Febo M. Age-related decline in white matter integrity in a mouse model of tauopathy: an in vivo diffusion tensor magnetic resonance imaging study. Neurobiol Aging 2014; 35:1364-74. [PMID: 24411290 PMCID: PMC4729397 DOI: 10.1016/j.neurobiolaging.2013.12.009] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2013] [Revised: 12/03/2013] [Accepted: 12/12/2013] [Indexed: 10/25/2022]
Abstract
Elevated expression of human hyperphosphorylated tau is associated with neuronal loss and white matter (WM) pathology in Alzheimer's disease (AD) and related neurodegenerative disorders. Using in vivo diffusion tensor magnetic resonance imaging (DT-MRI) at 11.1 Tesla we measured age-related alterations in WM diffusion anisotropy indices in a mouse model of human tauopathy (rTg4510) and nontransgenic (nonTg) control mice at the age of 2.5, 4.5, and 8 months. Similar to previous DT-MRI studies in AD subjects, 8-month-old rTg4510 mice showed lower fractional anisotropy (FA) values in WM structures than nonTg. The low WM FA in rTg4510 mice was observed in the genu and splenium of the corpus callosum, anterior commissure, fimbria, and internal capsule and was associated with a higher radial diffusivity than nonTg. Interestingly, rTg4510 mice showed lower estimates for the mode of anisotropy than controls at 2.5 months suggesting that changes in this diffusivity metric are detectable at an early stage preceding severe tauopathy. Immunogold electron microscopy partly supports our diffusion tensor imaging findings. At the age of 4 months, rTg4510 mice show axonal tau inclusions and unmyelinated processes. At later ages (12 months and 14 months) we observed inclusions in myelin sheath, axons, and unmyelinated processes, and a "disorganized" pattern of myelinated fiber arrangement with enlarged inter-axonal spaces in rTg4510 but not in nonTg mice. Our data support a role for the progression of tau pathology in reduced WM integrity measured by DT-MRI. Further in vivo DT-MRI studies in the rTg4510 mouse should help better discern the detailed mechanisms of reduced FA and anisotropy mode, and the specific role of tau during neurodegeneration.
Collapse
Affiliation(s)
- Naruhiko Sahara
- Department of Neuroscience, University of Florida, Gainesville, FL, USA; Evelyn F. and William L. McKnight Brain Institute, University of Florida, Gainesville, FL, USA; Center for Translational Research on Neurodegenerative Disease (CTRND), University of Florida, Gainesville, FL, USA; Molecular Imaging Center, National Institute on Radiological Sciences, Chiba, Japan
| | - Pablo D Perez
- Department of Psychiatry, University of Florida, Gainesville, FL, USA
| | - Wen-Lang Lin
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | | | - Yan Ren
- Center for Translational Research on Neurodegenerative Disease (CTRND), University of Florida, Gainesville, FL, USA
| | - Huadong Zeng
- Advanced Magnetic Resonance Imaging and Spectroscopy Facility (AMRIS), University of Florida, Gainesville, FL, USA
| | - Jada Lewis
- Department of Neuroscience, University of Florida, Gainesville, FL, USA; Evelyn F. and William L. McKnight Brain Institute, University of Florida, Gainesville, FL, USA; Center for Translational Research on Neurodegenerative Disease (CTRND), University of Florida, Gainesville, FL, USA
| | - Marcelo Febo
- Department of Psychiatry, University of Florida, Gainesville, FL, USA; Department of Neuroscience, University of Florida, Gainesville, FL, USA; Evelyn F. and William L. McKnight Brain Institute, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
33
|
Racine AM, Adluru N, Alexander AL, Christian BT, Okonkwo OC, Oh J, Cleary CA, Birdsill A, Hillmer AT, Murali D, Barnhart TE, Gallagher CL, Carlsson CM, Rowley HA, Dowling NM, Asthana S, Sager MA, Bendlin BB, Johnson SC. Associations between white matter microstructure and amyloid burden in preclinical Alzheimer's disease: A multimodal imaging investigation. NEUROIMAGE-CLINICAL 2014; 4:604-14. [PMID: 24936411 PMCID: PMC4053642 DOI: 10.1016/j.nicl.2014.02.001] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 01/29/2014] [Accepted: 02/10/2014] [Indexed: 10/30/2022]
Abstract
Some cognitively healthy individuals develop brain amyloid accumulation, suggestive of incipient Alzheimer's disease (AD), but the effect of amyloid on other potentially informative imaging modalities, such as Diffusion Tensor Imaging (DTI), in characterizing brain changes in preclinical AD requires further exploration. In this study, a sample (N = 139, mean age 60.6, range 46 to 71) from the Wisconsin Registry for Alzheimer's Prevention (WRAP), a cohort enriched for AD risk factors, was recruited for a multimodal imaging investigation that included DTI and [C-11]Pittsburgh Compound B (PiB) positron emission tomography (PET). Participants were grouped as amyloid positive (Aβ+), amyloid indeterminate (Aβi), or amyloid negative (Aβ-) based on the amount and pattern of amyloid deposition. Regional voxel-wise analyses of four DTI metrics, fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (Da), and radial diffusivity (Dr), were performed based on amyloid grouping. Three regions of interest (ROIs), the cingulum adjacent to the corpus callosum, hippocampal cingulum, and lateral fornix, were selected based on their involvement in the early stages of AD. Voxel-wise analysis revealed higher FA among Aβ+ compared to Aβ- in all three ROIs and in Aβi compared to Aβ- in the cingulum adjacent to the corpus callosum. Follow-up exploratory whole-brain analyses were consistent with the ROI findings, revealing multiple regions where higher FA was associated with greater amyloid. Lower fronto-lateral gray matter MD was associated with higher amyloid burden. Further investigation showed a negative correlation between MD and PiB signal, suggesting that Aβ accumulation impairs diffusion. Interestingly, these findings in a largely presymptomatic sample are in contradistinction to relationships reported in the literature in symptomatic disease stages of Mild Cognitive Impairment and AD, which usually show higher MD and lower FA. Together with analyses showing that cognitive function in these participants is not associated with any of the four DTI metrics, the present results suggest an early relationship between PiB and DTI, which may be a meaningful indicator of the initiating or compensatory mechanisms of AD prior to cognitive decline.
Collapse
Key Words
- AD risk
- ANCOVA, Analysis of Covariance
- ANTs, Advanced Normalization Tools
- APOE4, apolipoprotein E gene ε4
- Alzheimer's disease
- Amyloid imaging
- Aβ+, amyloid positive
- Aβi, amyloid indeterminate
- Aβ−, amyloid negative
- BET, Brain Extraction Tool
- Cingulum–CC, cingulum adjacent to corpus callosum
- Cingulum–HC, hippocampal cingulum (projecting to medial temporal lobe)
- DTI, Diffusion Tensor Imaging
- DTI-TK, Diffusion Tensor Imaging Toolkit
- DVR, distribution volume ratio
- Da, axial diffusivity
- Dr, radial diffusivity
- FA, fractional anisotropy
- FH, (parental) family history
- FSL, FMRIB Software Library
- FUGUE, FMRIB's utility for geometrically unwarping EPIs
- FWE, family wise error
- GM, gray matter
- HARDI, high angular resolution diffusion imaging
- ICBM, International Consortium for Brain Mapping
- MD, mean diffusivity
- PCC, posterior cingulate cortex
- PIB, Pittsburgh compound B
- PRELUDE, phase region expanding labeler for unwrapping discrete estimates
- RAVLT, Rey Auditory Verbal Learning Test
- SPM, Statistical Parametric Mapping
- TMT, Trail Making Test
- WASI, Wechsler Abbreviated Scale of Intelligence
- WM, white matter
- WRAP, Wisconsin Registry for Alzheimer's Prevention
- WRAT, Wide Range Achievement Test
- White matter
Collapse
Affiliation(s)
- Annie M Racine
- Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Nagesh Adluru
- Waisman Laboratory for Brain Imaging and Behavior, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Andrew L Alexander
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA ; Waisman Laboratory for Brain Imaging and Behavior, University of Wisconsin-Madison, Madison, WI 53705, USA ; Department of Psychiatry, University of Wisconsin School of Medicine and Public Health, Madison, WI 53719, USA
| | - Bradley T Christian
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA ; Waisman Laboratory for Brain Imaging and Behavior, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Ozioma C Okonkwo
- Geriatric Research Education and Clinical Center, Wm. S. Middleton Veterans Hospital, Madison, WI 53705, USA ; Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Jennifer Oh
- Geriatric Research Education and Clinical Center, Wm. S. Middleton Veterans Hospital, Madison, WI 53705, USA ; Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Caitlin A Cleary
- Geriatric Research Education and Clinical Center, Wm. S. Middleton Veterans Hospital, Madison, WI 53705, USA ; Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Alex Birdsill
- Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Ansel T Hillmer
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA ; Department of Psychiatry, University of Wisconsin School of Medicine and Public Health, Madison, WI 53719, USA
| | - Dhanabalan Murali
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA ; Waisman Laboratory for Brain Imaging and Behavior, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Todd E Barnhart
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Catherine L Gallagher
- Geriatric Research Education and Clinical Center, Wm. S. Middleton Veterans Hospital, Madison, WI 53705, USA ; Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Cynthia M Carlsson
- Geriatric Research Education and Clinical Center, Wm. S. Middleton Veterans Hospital, Madison, WI 53705, USA ; Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Howard A Rowley
- Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA ; Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - N Maritza Dowling
- Geriatric Research Education and Clinical Center, Wm. S. Middleton Veterans Hospital, Madison, WI 53705, USA ; Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Sanjay Asthana
- Geriatric Research Education and Clinical Center, Wm. S. Middleton Veterans Hospital, Madison, WI 53705, USA ; Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA ; Wisconsin Alzheimer's Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Mark A Sager
- Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA ; Wisconsin Alzheimer's Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Barbara B Bendlin
- Geriatric Research Education and Clinical Center, Wm. S. Middleton Veterans Hospital, Madison, WI 53705, USA ; Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Sterling C Johnson
- Geriatric Research Education and Clinical Center, Wm. S. Middleton Veterans Hospital, Madison, WI 53705, USA ; Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA ; Wisconsin Alzheimer's Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA ; Waisman Laboratory for Brain Imaging and Behavior, University of Wisconsin-Madison, Madison, WI 53705, USA
| |
Collapse
|