1
|
Zhang M, Li W, Zhang X, Bi M, Wang X, Sun F, Lu J, Chi Y, Han Y, Li Q, Li T. Lamprey VDAC2: Suppressing hydrogen peroxide-induced 293T cell apoptosis by downregulating BAK expression. FISH & SHELLFISH IMMUNOLOGY 2024; 150:109622. [PMID: 38740227 DOI: 10.1016/j.fsi.2024.109622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/08/2024] [Accepted: 05/11/2024] [Indexed: 05/16/2024]
Abstract
The voltage-dependent anion channel 2 (VDAC2) is the abundant protein in the outer mitochondrial membrane. Opening VDAC2 pores leads to the induction of mitochondrial energy and material transport, facilitating interaction with various mitochondrial proteins implicated in essential processes such as cell apoptosis and proliferation. To investigate the VDAC2 in lower vertebrates, we identified Lr-VDAC2, a homologue of VDAC2 found in lamprey (Lethenteron reissneri), sharing a sequence identity of greater than 50 % with its counterparts. Phylogenetic analysis revealed that the position of Lr-VDAC2 aligns with the lamprey phylogeny, indicating its evolutionary relationship within the species. The Lr-VDAC2 protein was primarily located in the mitochondria of lamprey cells. The expression of the Lr-VDAC2 protein was elevated in high energy-demanding tissues, such as the gills, muscles, and myocardial tissue in normal lampreys. Lr-VDAC2 suppressed H2O2 (hydrogen peroxide)-induced 293 T cell apoptosis by reducing the expression levels of Caspase 3, Caspase 9, and Cyt C (cytochrome c). Further research into the mechanism indicated that the Lr-VDAC2 protein inhibited the pro-apoptotic activity of BAK (Bcl-2 antagonist/killer) protein by downregulating its expression at the protein translational level, thus exerting an anti-apoptotic function similar to the role of VDAC2 in humans.
Collapse
Affiliation(s)
- Mingjian Zhang
- College of Life Sciences, Lamprey Research Center, Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Liaoning Normal University, Dalian, 116081, China
| | - Wenwei Li
- College of Life Sciences, Lamprey Research Center, Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Liaoning Normal University, Dalian, 116081, China
| | - Xue Zhang
- College of Life Sciences, Lamprey Research Center, Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Liaoning Normal University, Dalian, 116081, China
| | - Mengfei Bi
- College of Life Sciences, Lamprey Research Center, Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Liaoning Normal University, Dalian, 116081, China
| | - Xinyu Wang
- College of Life Sciences, Lamprey Research Center, Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Liaoning Normal University, Dalian, 116081, China
| | - Feng Sun
- College of Life Sciences, Lamprey Research Center, Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Liaoning Normal University, Dalian, 116081, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116023, China
| | - Jiali Lu
- College of Life Sciences, Lamprey Research Center, Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Liaoning Normal University, Dalian, 116081, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116023, China
| | - Yan Chi
- College of Life Sciences, Lamprey Research Center, Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Liaoning Normal University, Dalian, 116081, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116023, China
| | - Yinglun Han
- College of Life Sciences, Lamprey Research Center, Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Liaoning Normal University, Dalian, 116081, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116023, China
| | - Qingwei Li
- College of Life Sciences, Lamprey Research Center, Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Liaoning Normal University, Dalian, 116081, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116023, China
| | - Tiesong Li
- College of Life Sciences, Lamprey Research Center, Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Liaoning Normal University, Dalian, 116081, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116023, China.
| |
Collapse
|
2
|
Bamberger C, Pankow S, Yates JR. Nvp63 and nvPIWIL1 Suppress Retrotransposon Activation in the Sea Anemone Nematostella vectensis. J Proteome Res 2022; 21:2586-2595. [PMID: 36195974 DOI: 10.1021/acs.jproteome.2c00296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The transcription factors p63 and p73 have high similarity to the tumor suppressor protein p53. While the importance of p53 in DNA damage control is established, the functions of p63 or p73 remain elusive. Here, we analyzed nvp63, the cnidarian homologue of p63, that is expressed in the mesenteries of the starlet sea anemone Nematostella vectensis and that is activated in response to DNA damage. We used ultraviolet light (UV) to induce DNA damage and determined the chromatin-bound proteome with quantitative, bottom-up proteomics. We found that genotoxic stress or nvp63 knockdown recruited the protein nvPIWIL1, a homologue of the piRNA-binding PIWI protein family. Knockdown nvPIWIL1 increased protein expression from open reading frames (ORFs) that overlap with class I and II transposable element DNA sequences in the genome of N. vectensis. UV irradiation induced apoptosis, and apoptosis was reduced in the absence of nvp63 but increased with the loss of nvPIWIL1. Loss of nvp63 increased the presence of class I LTR and non-LTR retrotransposon but not of class II DNA transposon-associated protein products. These results suggest that an evolutionary early function of nvp63 might be to control genome stability in response to activation of transposable elements, which induce DNA damage during reintegration in the genome.
Collapse
Affiliation(s)
- Casimir Bamberger
- Department for Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 9203 United States
| | - Sandra Pankow
- Department for Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 9203 United States
| | - John R Yates
- Department for Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 9203 United States
| |
Collapse
|
3
|
Karachitos A, Grabiński W, Baranek M, Kmita H. Redox-Sensitive VDAC: A Possible Function as an Environmental Stress Sensor Revealed by Bioinformatic Analysis. Front Physiol 2021; 12:750627. [PMID: 34966287 PMCID: PMC8710658 DOI: 10.3389/fphys.2021.750627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 11/12/2021] [Indexed: 11/13/2022] Open
Abstract
Voltage-dependent anion-selective channel (VDAC) allows the exchange of small metabolites and inorganic ions across the mitochondrial outer membrane. It is involved in complex interactions that regulate mitochondrial and cellular functioning. Many organisms have several VDAC paralogs that play distinct but poorly understood roles in the life and death of cells. It is assumed that such a large diversity of VDAC-encoding genes might cause physiological plasticity to cope with abiotic and biotic stresses known to impact mitochondrial function. Moreover, cysteine residues in mammalian VDAC paralogs may contribute to the reduction-oxidation (redox) sensor function based on disulfide bond formation and elimination, resulting in redox-sensitive VDAC (rsVDAC). Therefore, we analyzed whether rsVDAC is possible when only one VDAC variant is present in mitochondria and whether all VDAC paralogs present in mitochondria could be rsVDAC, using representatives of currently available VDAC amino acid sequences. The obtained results indicate that rsVDAC can occur when only one VDAC variant is present in mitochondria; however, the possibility of all VDAC paralogs in mitochondria being rsVDAC is very low. Moreover, the presence of rsVDAC may correlate with habitat conditions as rsVDAC appears to be prevalent in parasites. Thus, the channel may mediate detection and adaptation to environmental conditions.
Collapse
Affiliation(s)
- Andonis Karachitos
- Department of Bioenergetics, Faculty of Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznań, Poland
| | - Wojciech Grabiński
- Department of Bioenergetics, Faculty of Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznań, Poland
| | - Martyna Baranek
- Department of Bioenergetics, Faculty of Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznań, Poland
| | - Hanna Kmita
- Department of Bioenergetics, Faculty of Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznań, Poland
| |
Collapse
|
4
|
Zinghirino F, Pappalardo XG, Messina A, Nicosia G, De Pinto V, Guarino F. VDAC Genes Expression and Regulation in Mammals. Front Physiol 2021; 12:708695. [PMID: 34421651 PMCID: PMC8374620 DOI: 10.3389/fphys.2021.708695] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 07/02/2021] [Indexed: 11/13/2022] Open
Abstract
VDACs are pore-forming proteins, coating the mitochondrial outer membrane, and playing the role of main regulators for metabolites exchange between cytosol and mitochondria. In mammals, three isoforms have evolutionary originated, VDAC1, VDAC2, and VDAC3. Despite similarity in sequence and structure, evidence suggests different biological roles in normal and pathological conditions for each isoform. We compared Homo sapiens and Mus musculus VDAC genes and their regulatory elements. RNA-seq transcriptome analysis shows that VDAC isoforms are expressed in human and mouse tissues at different levels with a predominance of VDAC1 and VDAC2 over VDAC3, with the exception of reproductive system. Numerous transcript variants for each isoform suggest specific context-dependent regulatory mechanisms. Analysis of VDAC core promoters has highlighted that, both in a human and a mouse, VDAC genes show features of TATA-less ones. The level of CG methylation of the human VDAC genes revealed that VDAC1 promoter is less methylated than other two isoforms. We found that expression of VDAC genes is mainly regulated by transcription factors involved in controlling cell growth, proliferation and differentiation, apoptosis, and bioenergetic metabolism. A non-canonical initiation site termed "the TCT/TOP motif," the target for translation regulation by the mTOR pathway, was identified in human VDAC2 and VDAC3 and in every murine VDACs promoter. In addition, specific TFBSs have been identified in each VDAC promoter, supporting the hypothesis that there is a partial functional divergence. These data corroborate our experimental results and reinforce the idea that gene regulation could be the key to understanding the evolutionary specialization of VDAC isoforms.
Collapse
Affiliation(s)
- Federica Zinghirino
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Xena Giada Pappalardo
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Angela Messina
- Section of Molecular Biology, Department of Biological, Geological and Environmental Sciences, University of Catania, Catania, Italy
- we.MitoBiotech.srl, Catania, Italy
| | - Giuseppe Nicosia
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Vito De Pinto
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
- we.MitoBiotech.srl, Catania, Italy
- Section of Catania, National Institute of Biostructures and Biosystems, Catania, Italy
| | - Francesca Guarino
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
- we.MitoBiotech.srl, Catania, Italy
- Section of Catania, National Institute of Biostructures and Biosystems, Catania, Italy
| |
Collapse
|
5
|
Najbauer EE, Becker S, Giller K, Zweckstetter M, Lange A, Steinem C, de Groot BL, Griesinger C, Andreas LB. Structure, gating and interactions of the voltage-dependent anion channel. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2021; 50:159-172. [PMID: 33782728 PMCID: PMC8071794 DOI: 10.1007/s00249-021-01515-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 02/19/2021] [Accepted: 03/08/2021] [Indexed: 12/14/2022]
Abstract
The voltage-dependent anion channel (VDAC) is one of the most highly abundant proteins found in the outer mitochondrial membrane, and was one of the earliest discovered. Here we review progress in understanding VDAC function with a focus on its structure, discussing various models proposed for voltage gating as well as potential drug targets to modulate the channel's function. In addition, we explore the sensitivity of VDAC structure to variations in the membrane environment, comparing DMPC-only, DMPC with cholesterol, and near-native lipid compositions, and use magic-angle spinning NMR spectroscopy to locate cholesterol on the outside of the β-barrel. We find that the VDAC protein structure remains unchanged in different membrane compositions, including conditions with cholesterol.
Collapse
Affiliation(s)
- Eszter E Najbauer
- Department of NMR-Based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany
| | - Stefan Becker
- Department of NMR-Based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany
| | - Karin Giller
- Department of NMR-Based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany
| | - Markus Zweckstetter
- Department of NMR-Based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany
- Senior Research Group of Translational Structural Biology in Dementia, Deutsches Zentrum Für Neurodegenerative Erkrankungen (DZNE), Von-Siebold-Str. 3a, 37075, Göttingen, Germany
- Department of Neurology, University Medical Center Göttingen, University of Göttingen, Waldweg 33, 37073, Göttingen, Germany
| | - Adam Lange
- Department of Molecular Biophysics, Leibniz-Forschungsinstitut Für Molekulare Pharmakologie, 13125, Berlin, Germany
- Institut Für Biologie, Humboldt-Universität Zu Berlin, 10115, Berlin, Germany
| | - Claudia Steinem
- Institute of Organic and Biomolecular Chemistry, University of Göttingen, Göttingen, Germany
- Max-Planck Institute for Dynamics and Self-Organization, Göttingen, Germany
| | - Bert L de Groot
- Department of Theoretical and Computational Biophysics, Max-Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany
| | - Christian Griesinger
- Department of NMR-Based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany
| | - Loren B Andreas
- Department of NMR-Based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany.
| |
Collapse
|
6
|
Abstract
The evolution of the eukaryotic cell from the primal endosymbiotic event involved a complex series of adaptations driven primarily by energy optimization. Transfer of genes from endosymbiont to host and concomitant expansion (by infolding) of the endosymbiont's chemiosmotic membrane greatly increased output of adenosine triphosphate (ATP) and placed selective pressure on the membrane at the host-endosymbiont interface to sustain the energy advantage. It is hypothesized that critical functions at this interface (metabolite exchange, polypeptide import, barrier integrity to proteins and DNA) were managed by a precursor β-barrel protein ("pβB") from which the voltage-dependent anion-selective channel (VDAC) descended. VDAC's role as hub for disparate and increasingly complex processes suggests an adaptability that likely springs from a feature inherited from pβB, retained because of important advantages conferred. It is proposed that this property is the remarkable structural flexibility evidenced in VDAC's gating mechanism, a possible origin of which is discussed.
Collapse
Affiliation(s)
- Carmen A Mannella
- Department of Physiology, Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD 20201, USA
| |
Collapse
|
7
|
Choudhury S. A comparative analysis of BCL-2 family. Bioinformation 2019; 15:299-306. [PMID: 31285648 PMCID: PMC6599443 DOI: 10.6026/97320630015299] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 01/07/2019] [Indexed: 11/23/2022] Open
Abstract
The BCL-2 family is conserved in evolution and shares a BCL-2 homology domain. It promotes and inhibits apoptosis. It is also known that apoptosis has a major role in effective cancer treatment. Therefore, it is of interest to document information related to the BCL-2 family of proteins for analysis by prediction tools. Hence, insights from a prediction based comparative functional analysis of 108 genes in this family are documented.
Collapse
|
8
|
González-Sánchez A, Cubillas CA, Miranda F, Dávalos A, García-de Los Santos A. The ropAe gene encodes a porin-like protein involved in copper transit in Rhizobium etli CFN42. Microbiologyopen 2017; 7:e00573. [PMID: 29280343 PMCID: PMC6011978 DOI: 10.1002/mbo3.573] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Revised: 11/19/2017] [Accepted: 11/21/2017] [Indexed: 11/16/2022] Open
Abstract
Copper (Cu) is an essential micronutrient for all aerobic forms of life. Its oxidation states (Cu+/Cu2+) make this metal an important cofactor of enzymes catalyzing redox reactions in essential biological processes. In gram‐negative bacteria, Cu uptake is an unexplored component of a finely regulated trafficking network, mediated by protein–protein interactions that deliver Cu to target proteins and efflux surplus metal to avoid toxicity. Rhizobium etliCFN42 is a facultative symbiotic diazotroph that must ensure its appropriate Cu supply for living either free in the soil or as an intracellular symbiont of leguminous plants. In crop fields, rhizobia have to contend with copper‐based fungicides. A detailed deletion analysis of the pRet42e (505 kb) plasmid from an R. etli mutant with enhanced CuCl2 tolerance led us to the identification of the ropAe gene, predicted to encode an outer membrane protein (OMP) with a β–barrel channel structure that may be involved in Cu transport. In support of this hypothesis, the functional characterization of ropAe revealed that: (I) gene disruption increased copper tolerance of the mutant, and its complementation with the wild‐type gene restored its wild‐type copper sensitivity; (II) the ropAe gene maintains a low basal transcription level in copper overload, but is upregulated when copper is scarce; (III) disruption of ropAe in an actP (copA) mutant background, defective in copper efflux, partially reduced its copper sensitivity phenotype. Finally, BLASTP comparisons and a maximum likelihood phylogenetic analysis highlight the diversification of four RopA paralogs in members of the Rhizobiaceae family. Orthologs of RopAe are highly conserved in the Rhizobiales order, poorly conserved in other alpha proteobacteria and phylogenetically unrelated to characterized porins involved in Cu or Mn uptake.
Collapse
Affiliation(s)
- Antonio González-Sánchez
- Programa de Ingeniería Genómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Ciro A Cubillas
- Deparment of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Fabiola Miranda
- Deparment of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Araceli Dávalos
- Programa de Ingeniería Genómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Alejandro García-de Los Santos
- Programa de Ingeniería Genómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| |
Collapse
|
9
|
VDAC2-specific cellular functions and the underlying structure. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:2503-14. [PMID: 27116927 DOI: 10.1016/j.bbamcr.2016.04.020] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 04/20/2016] [Accepted: 04/20/2016] [Indexed: 01/30/2023]
Abstract
Voltage Dependent Anion-selective Channel 2 (VDAC2) contributes to oxidative metabolism by sharing a role in solute transport across the outer mitochondrial membrane (OMM) with other isoforms of the VDAC family, VDAC1 and VDAC3. Recent studies revealed that VDAC2 also has a distinctive role in mediating sarcoplasmic reticulum to mitochondria local Ca(2+) transport at least in cardiomyocytes, which is unlikely to be explained simply by the expression level of VDAC2. Furthermore, a strictly isoform-dependent VDAC2 function was revealed in the mitochondrial import and OMM-permeabilizing function of pro-apoptotic Bcl-2 family proteins, primarily Bak in many cell types. In addition, emerging evidence indicates a variety of other isoform-specific engagements for VDAC2. Since VDAC isoforms display 75% sequence similarity, the distinctive structure underlying VDAC2-specific functions is an intriguing problem. In this paper we summarize studies of VDAC2 structure and functions, which suggest a fundamental and exclusive role for VDAC2 in health and disease. This article is part of a Special Issue entitled: Mitochondrial Channels edited by Pierre Sonveaux, Pierre Maechler and Jean-Claude Martinou.
Collapse
|
10
|
Li Y, Zhang L, Qu T, Li L, Zhang G. Characterization of Oyster Voltage-Dependent Anion Channel 2 (VDAC2) Suggests Its Involvement in Apoptosis and Host Defense. PLoS One 2016; 11:e0146049. [PMID: 26727366 PMCID: PMC4700975 DOI: 10.1371/journal.pone.0146049] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2015] [Accepted: 12/11/2015] [Indexed: 01/03/2023] Open
Abstract
Genomic and transcriptomic studies have revealed a sophisticated and powerful apoptosis regulation network in oyster, highlighting its adaptation to sessile life in a highly stressful intertidal environment. However, the functional molecular basis of apoptosis remains largely unexplored in oysters. In this study, we focused on a representative apoptotic gene encoding voltage-dependent anion channel 2 (VDAC2), a porin that abounds at the mitochondrial outer membrane. This is the first report on the identification and characterization of a VDAC gene in the Pacific oyster, Crassostrea gigas (CgVDAC2). The full length of CgVDAC2 was 1,738 bp with an open reading frame of 843 bp that encoded a protein of 281 amino acids. A four-element eukaryotic porin signature motif, a conserved ATP binding motif, and a VKAKV-like sequence were identified in the predicted CgVDAC2. Expression pattern analysis in different tissues and developmental stages as well as upon infection by ostreid herpesvirus 1 revealed the energy supply-related and immunity-related expression of CgVDAC2. CgVDAC2 was co-localized with mitochondria when it was transiently transfected into HeLa cells. Overexpression of CgVDAC2 in HEK293T cells suppressed the UV irradiation-induced apoptosis by inhibiting the pro-apoptotic function of CgBak. RNA interference induced reduction in CgVDAC2 expression showed a promoted apoptosis level upon UV light irradiation in hemocytes. The yeast two-hybrid system and co-immunoprecipitation assay indicated a direct interaction between CgVDAC2 and the pro-apoptotic protein CgBak. This study revealed the function of VDAC2 in oyster and provided new insights into its involvement in apoptosis modulation and host defense in mollusks.
Collapse
Affiliation(s)
- Yingxiang Li
- University of Chinese Academy of Sciences, Beijing, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- National & Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Linlin Zhang
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- National & Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Tao Qu
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- National & Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Li Li
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- National & Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- * E-mail: (LL); (GZ)
| | - Guofan Zhang
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- National & Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- * E-mail: (LL); (GZ)
| |
Collapse
|
11
|
Mato E, Barceló-Batllori S, Orera I, Selva L, Corra M, González C, Bell O, Lerma E, Moral A, Pérez JI, de Leiva A. The proteomic 2D-DIGE approach reveals the protein voltage-dependent anion channel 2 as a potential therapeutic target in epithelial thyroid tumours. Mol Cell Endocrinol 2015; 404:37-45. [PMID: 25617717 DOI: 10.1016/j.mce.2015.01.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 12/29/2014] [Accepted: 01/15/2015] [Indexed: 02/08/2023]
Abstract
We investigated the role of VDAC2 in human epithelial thyroid tumours using proteomic 2D-DIGE analysis and qRT-PCR. We found a significant up-regulation of VDAC2 in thyroid tumours and in thyroid tumour cell lines (TPC-1 and CAL-62). We did not detect overexpression of VDAC2 in a normal thyroid cell line (Nthy-ori 3-1). Silico analysis revealed that two proteins, BAK1 and BAX, had a strong relationship with VDAC2. BAK1 gene expression showed down-regulation in thyroid tumours (follicular and papillary tumours) and in TPC-1 and CAL-62 cell lines. Transient knockdown of VDAC2 in TPC-1 and CAL-62 promoted upregulation of the BAK1 gene and protein expression, and increased susceptibility to sorafenib treatment. Overexpression of the BAK1 gene in CAL-62 showed lower sorafenib sensitivity than VDAC2 knockdown cells. We propose the VDAC2 gene as a novel therapeutic target in these tumours.
Collapse
Affiliation(s)
- Eugenia Mato
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institut d'Investigació Biomèdica Sant Pau (IIB), Autonomous University, Barcelona, Spain; EDUAB-HSP Neoplasia Thyroid Study Group, IIB, Autonomous University, Barcelona, Spain.
| | - Sílvia Barceló-Batllori
- Proteomics Unit, Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - Irene Orera
- Centro Investigaciones Biomédicas Aragón (CIBA), Instituto Aragonés de Ciencias de la Salud-Instituto de Investigación Sanitaria Aragón (IACS-IIS), Zaragoza, Spain
| | - Laia Selva
- EDUAB-HSP Neoplasia Thyroid Study Group, IIB, Autonomous University, Barcelona, Spain
| | - Martina Corra
- EDUAB-HSP Neoplasia Thyroid Study Group, IIB, Autonomous University, Barcelona, Spain
| | - Cintia González
- EDUAB-HSP Neoplasia Thyroid Study Group, IIB, Autonomous University, Barcelona, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institut d'Investigació Biomèdica Sant Pau (IIB), Autonomous University, Barcelona, Spain
| | - Olga Bell
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institut d'Investigació Biomèdica Sant Pau (IIB), Autonomous University, Barcelona, Spain; EDUAB-HSP Neoplasia Thyroid Study Group, IIB, Autonomous University, Barcelona, Spain
| | - Enrique Lerma
- Department of Pathology, Hospital de la Santa Creu i Sant Pau, Autonomous University, Barcelona, Spain
| | - Antonio Moral
- General Surgery, Hospital de la Santa Creu I Sant Pau, Barcelona, Spain
| | | | - Alberto de Leiva
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institut d'Investigació Biomèdica Sant Pau (IIB), Autonomous University, Barcelona, Spain; EDUAB-HSP Neoplasia Thyroid Study Group, IIB, Autonomous University, Barcelona, Spain
| |
Collapse
|
12
|
Pan X, Chen Z, Yang X, Liu G. Arabidopsis voltage-dependent anion channel 1 (AtVDAC1) is required for female development and maintenance of mitochondrial functions related to energy-transaction. PLoS One 2014; 9:e106941. [PMID: 25192453 PMCID: PMC4156401 DOI: 10.1371/journal.pone.0106941] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Accepted: 08/10/2014] [Indexed: 11/18/2022] Open
Abstract
The voltage-dependent anion channels (VDACs), prominently localized in the outer mitochondrial membrane, play important roles in the metabolite exchange, energy metabolism and mitochondria-mediated apoptosis process in mammalian cells. However, relatively little is known about the functions of VDACs in plants. To further investigate the function of AtVDAC1 in Arabidopsis, we analyzed a T-DNA insertion line for the AtVDAC1 gene. The knock-out mutant atvdac1 showed reduced seed set due to a large number of undeveloped ovules in siliques. Genetic analyses indicated that the mutation of AtVDAC1 affected female fertility and belonged to a sporophytic mutation. Abnormal ovules in the process of female gametogenesis were observed using a confocal laser scanning microscope. Interestingly, both mitochondrial transmembrane potential (ΔΨ) and ATP synthesis rate were obviously reduced in the mitochondria isolated from atvdac1 plants.
Collapse
Affiliation(s)
- Xiaodi Pan
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Ziwei Chen
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xueyong Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Guoqin Liu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
- * E-mail:
| |
Collapse
|
13
|
Complexity of gene expression evolution after duplication: protein dosage rebalancing. GENETICS RESEARCH INTERNATIONAL 2014; 2014:516508. [PMID: 25197576 PMCID: PMC4150538 DOI: 10.1155/2014/516508] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 08/03/2014] [Indexed: 11/17/2022]
Abstract
Ongoing debates about functional importance of gene duplications have been recently intensified by a heated discussion of the “ortholog conjecture” (OC). Under the OC, which is central to functional annotation of genomes, orthologous genes are functionally more similar than paralogous genes at the same level of sequence divergence. However, a recent study challenged the OC by reporting a greater functional similarity, in terms of gene ontology (GO) annotations and expression profiles, among within-species paralogs compared to orthologs. These findings were taken to indicate that functional similarity of homologous genes is primarily determined by the cellular context of the genes, rather than evolutionary history. Subsequent studies suggested that the OC appears to be generally valid when applied to mammalian evolution but the complete picture of evolution of gene expression also has to incorporate lineage-specific aspects of paralogy. The observed complexity of gene expression evolution after duplication can be explained through selection for gene dosage effect combined with the duplication-degeneration-complementation model. This paper discusses expression divergence of recent duplications occurring before functional divergence of proteins encoded by duplicate genes.
Collapse
|
14
|
Ido Y, Yoshitomi T, Ohkura K, Yamamoto T, Shinohara Y. Utility of syntenic relationships of VDAC1 pseudogenes for not only an understanding of the phylogenetic divergence history of rodents, but also ascertaining possible pseudogene candidates as genuine pseudogenes. Genomics 2014; 104:128-33. [PMID: 24858958 DOI: 10.1016/j.ygeno.2014.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 05/06/2014] [Accepted: 05/14/2014] [Indexed: 11/20/2022]
Abstract
Rodent and human genomes were screened to identify pseudogenes of the type 1 voltage-dependent anion channel (VDAC1) in mitochondria. In addition to the 16 pseudogenes of rat VDAC1 identified in our recent study, 15 and 13 sequences were identified as pseudogenes of VDAC1 in mouse and human genome, respectively; and 4, 2, and 1 sequences, showing lower similarities with the VDAC1 sequence, were identified as "possible pseudogene candidates" in rat, mouse, and human, respectively. No syntenic combination was observed between rodent and human pseudogenes, but 2 and 1 possible pseudogene candidates of VDAC1 of rat and mouse, respectively, were found to have syntenic counterparts in mouse and rat genome, respectively; and these syntenic counterparts were genuine VDAC1 pseudogenes. Therefore, syntenic combinations of pseudogenes of VDAC1 were useful not only for a better understanding of the phylogenetic divergence history of rodents but also for ascertaining possible pseudogene candidates as genuine pseudogenes.
Collapse
Affiliation(s)
- Yusuke Ido
- Institute for Genome Research, University of Tokushima, Kuramoto-cho-3, Tokushima 770-8503, Japan; Faculty of Pharmaceutical Sciences, University of Tokushima, Shomachi-1, Tokushima 770-8505, Japan
| | - Tatsuki Yoshitomi
- Institute for Genome Research, University of Tokushima, Kuramoto-cho-3, Tokushima 770-8503, Japan; Faculty of Pharmaceutical Sciences, University of Tokushima, Shomachi-1, Tokushima 770-8505, Japan
| | - Kazuto Ohkura
- Faculty of Pharmaceutical Science, Suzuka University of Medical Science, Minamitamagaki-cho, Suzuka 513-8670, Japan
| | - Takenori Yamamoto
- Institute for Genome Research, University of Tokushima, Kuramoto-cho-3, Tokushima 770-8503, Japan; Faculty of Pharmaceutical Sciences, University of Tokushima, Shomachi-1, Tokushima 770-8505, Japan
| | - Yasuo Shinohara
- Institute for Genome Research, University of Tokushima, Kuramoto-cho-3, Tokushima 770-8503, Japan; Faculty of Pharmaceutical Sciences, University of Tokushima, Shomachi-1, Tokushima 770-8505, Japan.
| |
Collapse
|
15
|
Maurya SR, Mahalakshmi R. Influence of protein-micelle ratios and cysteine residues on the kinetic stability and unfolding rates of human mitochondrial VDAC-2. PLoS One 2014; 9:e87701. [PMID: 24494036 PMCID: PMC3907894 DOI: 10.1371/journal.pone.0087701] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Accepted: 01/01/2014] [Indexed: 12/14/2022] Open
Abstract
Delineating the kinetic and thermodynamic factors which contribute to the stability of transmembrane β-barrels is critical to gain an in-depth understanding of membrane protein behavior. Human mitochondrial voltage-dependent anion channel isoform 2 (hVDAC-2), one of the key anti-apoptotic eukaryotic β-barrel proteins, is of paramount importance, owing to its indispensable role in cell survival. We demonstrate here that the stability of hVDAC-2 bears a strong kinetic contribution that is dependent on the absolute micellar concentration used for barrel folding. The refolding efficiency and ensuing stability is sensitive to the lipid-to-protein (LPR) ratio, and displays a non-linear relationship, with both low and high micellar amounts being detrimental to hVDAC-2 structure. Unfolding and aggregation process are sequential events and show strong temperature dependence. We demonstrate that an optimal lipid-to-protein ratio of 2600∶1 – 13000∶1 offers the highest protection against thermal denaturation. Activation energies derived only for lower LPRs are ∼17 kcal mol−1 for full-length hVDAC-2 and ∼23 kcal mol−1 for the Cys-less mutant, suggesting that the nine cysteine residues of hVDAC-2 impart additional malleability to the barrel scaffold. Our studies reveal that cysteine residues play a key role in the kinetic stability of the protein, determine barrel rigidity and thereby give rise to strong micellar association of hVDAC-2. Non-linearity of the Arrhenius plot at high LPRs coupled with observation of protein aggregation upon thermal denaturation indicates that contributions from both kinetic and thermodynamic components stabilize the 19-stranded β-barrel. Lipid-protein interaction and the linked kinetic contribution to free energy of the folded protein are together expected to play a key role in hVDAC-2 recycling and the functional switch at the onset of apoptosis.
Collapse
Affiliation(s)
- Svetlana Rajkumar Maurya
- Molecular Biophysics Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, Madhya Pradesh, India
| | - Radhakrishnan Mahalakshmi
- Molecular Biophysics Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, Madhya Pradesh, India
- * E-mail:
| |
Collapse
|
16
|
Reddy PH. Is the mitochondrial outermembrane protein VDAC1 therapeutic target for Alzheimer's disease? BIOCHIMICA ET BIOPHYSICA ACTA 2013; 1832:67-75. [PMID: 22995655 PMCID: PMC3518645 DOI: 10.1016/j.bbadis.2012.09.003] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Revised: 09/10/2012] [Accepted: 09/11/2012] [Indexed: 10/27/2022]
Abstract
Mitochondrial dysfunction and synaptic damage have been described as early events in Alzheimer's disease (AD) pathogenesis. Recent research using AD postmortem brains, and AD mouse and cell models revealed that amyloid beta (Aβ) and tau hyperphosphorylation are involved in mitochondrial dysfunction and synaptic damage in AD. Further, recent research also revealed that the protein levels of mitochondrial outer membrane protein, voltage-dependent anion channel 1 (VDAC1), are elevated in the affected regions of AD postmortem brains and cortical tissues from APP transgenic mice. In addition, emerging research using AD postmortem brains and AD mouse models revealed that VDAC1 is linked to Aβ and phosphorylated tau, blocks the mitochondrial permeability transition (MPT) pores, disrupts the transport of mitochondrial proteins and metabolites, impairs gating of VDAC, and causes defects in oxidative phosphorylation, leading to mitochondrial dysfunction in AD neurons. The purpose of this article is to review research that has investigated the relationship between VDAC1 and the regulation of MPT pores in AD progression.
Collapse
Affiliation(s)
- P Hemachandra Reddy
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA.
| |
Collapse
|
17
|
Wojtkowska M, Jąkalski M, Pieńkowska JR, Stobienia O, Karachitos A, Przytycka TM, Weiner J, Kmita H, Makałowski W. Phylogenetic analysis of mitochondrial outer membrane β-barrel channels. Genome Biol Evol 2011; 4:110-25. [PMID: 22155732 PMCID: PMC3273162 DOI: 10.1093/gbe/evr130] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Transport of molecules across mitochondrial outer membrane is pivotal for a proper function of mitochondria. The transport pathways across the membrane are formed by ion channels that participate in metabolite exchange between mitochondria and cytoplasm (voltage-dependent anion-selective channel, VDAC) as well as in import of proteins encoded by nuclear genes (Tom40 and Sam50/Tob55). VDAC, Tom40, and Sam50/Tob55 are present in all eukaryotic organisms, encoded in the nuclear genome, and have β-barrel topology. We have compiled data sets of these protein sequences and studied their phylogenetic relationships with a special focus on the position of Amoebozoa. Additionally, we identified these protein-coding genes in Acanthamoeba castellanii and Dictyostelium discoideum to complement our data set and verify the phylogenetic position of these model organisms. Our analysis show that mitochondrial β-barrel channels from Archaeplastida (plants) and Opisthokonta (animals and fungi) experienced many duplication events that resulted in multiple paralogous isoforms and form well-defined monophyletic clades that match the current model of eukaryotic evolution. However, in representatives of Amoebozoa, Chromalveolata, and Excavata (former Protista), they do not form clearly distinguishable clades, although they locate basally to the plant and algae branches. In most cases, they do not posses paralogs and their sequences appear to have evolved quickly or degenerated. Consequently, the obtained phylogenies of mitochondrial outer membrane β-channels do not entirely reflect the recent eukaryotic classification system involving the six supergroups: Chromalveolata, Excavata, Archaeplastida, Rhizaria, Amoebozoa, and Opisthokonta.
Collapse
Affiliation(s)
- Małgorzata Wojtkowska
- Laboratory of Bioenergetics, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznań, Poland
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Homblé F, Krammer EM, Prévost M. Plant VDAC: facts and speculations. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1818:1486-501. [PMID: 22155681 DOI: 10.1016/j.bbamem.2011.11.028] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Revised: 11/12/2011] [Accepted: 11/22/2011] [Indexed: 01/01/2023]
Abstract
The voltage-dependent anion-selective channel (VDAC) is the most abundant protein in the mitochondrial outer membrane and the major transport pathway for a large variety of compounds ranging from ions to large polymeric molecules such as DNA and tRNA. Plant VDACs feature a secondary structure content and electrophysiological properties akin to those of VDACs from other organisms. They however undergo a specific regulation. The general importance of VDAC in plant physiology has only recently emerged. Besides their role in metabolite transport, plant VDACs are also involved in the programmed cell death triggered in response to biotic and abiotic stresses. Moreover, their colocalization in non-mitochondrial membranes suggests a diversity of function. This review summarizes our current understanding of the structure and function of plant VDACs. This article is part of a Special Issue entitled: VDAC structure, function, and regulation of mitochondrial metabolism.
Collapse
Affiliation(s)
- Fabrice Homblé
- Structure et Fontion des Membranes Biologiques, Centre de Biologie Structurale et de Bioinformatique, Université Libre de Bruxelles, Boulevard du Triomphe CP, Brussels, Belgium.
| | | | | |
Collapse
|
19
|
Abstract
This chapter describes methods for isolating and imaging metabolically and toxicologically challenged mitochondria with atomic force microscopy. Mitochondria were isolated from rat dorsal root ganglia or brain and exposed to glucose or dinitrobenzene (DNB) to simulate the cellular environment of a diabetic animal that has been exposed to excess glucose or to DNB. It is one of only a few articles to present images of membrane structures, such as voltage-dependent, anion-selective channel pores, on intact organelles. The purpose of the chapter is not to report on the metabolic or toxic effects, but to communicate in more detail than a typical journal paper allows the methods used to image isolated organelles. We also provide a series images revealing the outer membrane and outer membrane pores. An image of an isolated nucleus as well as a set of notes written to avoid common pitfalls in isolation, labeling, and imaging is also included.
Collapse
Affiliation(s)
- Bradley E Layton
- Applied Computing and Electronics, The University of Montana College of Technology, Missoula, MT, USA.
| | | |
Collapse
|
20
|
VDAC isoforms in mammals. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1818:1466-76. [PMID: 22020053 DOI: 10.1016/j.bbamem.2011.10.005] [Citation(s) in RCA: 180] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Revised: 10/03/2011] [Accepted: 10/06/2011] [Indexed: 11/23/2022]
Abstract
VDACs (Voltage Dependent Anion selective Channels) are a family of pore-forming proteins discovered in the mitochondrial outer membrane. In the animal kingdom, mammals show a conserved genetic organization of the VDAC genes, corresponding to a group of three active genes. Three VDAC protein isoforms thus exist. From a historically point of view most of the data collected about this protein refer to the VDAC1 isoform, the first to be identified and also the most abundant in the organisms. In this work we compare the information available about the three VDAC isoforms, with a special emphasis upon the human proteins, here considered prototypical of the group, and we try to shed some light on specific functional roles of this apparently redundant group of proteins. A new hypothesis about the VDAC(s) involvement in ROS control is proposed. This article is part of a Special Issue entitled: VDAC structure, function, and regulation of mitochondrial metabolism.
Collapse
|
21
|
Ogura A, Yoshida MA, Fukuzaki M, Sese J. In vitro homology search array comprehensively reveals highly conserved genes and their functional characteristics in non-sequenced species. BMC Genomics 2010; 11 Suppl 4:S9. [PMID: 21143818 PMCID: PMC3005928 DOI: 10.1186/1471-2164-11-s4-s9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND With the increase in genomic and transcriptomic data produced by the recent advancements in next generation sequencers and microarrays, it is now easier than ever to conduct large-scale comparative genomic studies for familiar species. However, there are more than ten million species on earth, and the study of all remaining species is not realistic in terms of cost and time. There have been a number of attempts at using microarrays for cross-species hybridization; however, those approaches only utilized the same probes for each species or different probes designed from orthologous genes. To establish easier and cheaper methods for the large-scale comparative genomic study of non-sequenced species, we developed an in vitro homology search array with the aid of a bioinformatic approach to probe design. RESULTS To perform large-scale genomic comparisons of non-sequenced species, we chose squid, one of the most intelligent species among Protostomes, for comparison with human genes. We designed a microarray using human single copy genes and conducted microarray experiments with mRNAs extracted from the squid. Multi-copy genes could not be detected using the microarray in this study because their sequence similarity caused cross-hybridization. A search for squid homologous genes among human genes revealed that 68% of the human probes tested showed the expression of squid homolog genes and 95 genes were confirmed to be expressed highly in squid. Functional classification analysis showed that these highly expressed genes comprise DNA binding proteins, which are under pressure of DNA level mutation and, consequently, show high similarity at the nucleotide level. CONCLUSIONS Our array could detect homologous genes in squids and humans in spite of the distant phylogenic relationships between the species. This experimental method will be useful for identifying homologs in non-sequenced species, for the development of genetic resources and for the collection of information on biodiversity, particularly when using the genome of sibling or closely related species.
Collapse
Affiliation(s)
- Atsushi Ogura
- Ochadai Academic Production, Ochanomizu University, Bunkyo, Tokyo, Japan.
| | | | | | | |
Collapse
|
22
|
Kouwenhoven EN, van Heeringen SJ, Tena JJ, Oti M, Dutilh BE, Alonso ME, de la Calle-Mustienes E, Smeenk L, Rinne T, Parsaulian L, Bolat E, Jurgelenaite R, Huynen MA, Hoischen A, Veltman JA, Brunner HG, Roscioli T, Oates E, Wilson M, Manzanares M, Gómez-Skarmeta JL, Stunnenberg HG, Lohrum M, van Bokhoven H, Zhou H. Genome-wide profiling of p63 DNA-binding sites identifies an element that regulates gene expression during limb development in the 7q21 SHFM1 locus. PLoS Genet 2010; 6:e1001065. [PMID: 20808887 PMCID: PMC2924305 DOI: 10.1371/journal.pgen.1001065] [Citation(s) in RCA: 147] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2010] [Accepted: 07/12/2010] [Indexed: 12/04/2022] Open
Abstract
Heterozygous mutations in p63 are associated with split hand/foot malformations (SHFM), orofacial clefting, and ectodermal abnormalities. Elucidation of the p63 gene network that includes target genes and regulatory elements may reveal new genes for other malformation disorders. We performed genome-wide DNA–binding profiling by chromatin immunoprecipitation (ChIP), followed by deep sequencing (ChIP–seq) in primary human keratinocytes, and identified potential target genes and regulatory elements controlled by p63. We show that p63 binds to an enhancer element in the SHFM1 locus on chromosome 7q and that this element controls expression of DLX6 and possibly DLX5, both of which are important for limb development. A unique micro-deletion including this enhancer element, but not the DLX5/DLX6 genes, was identified in a patient with SHFM. Our study strongly indicates disruption of a non-coding cis-regulatory element located more than 250 kb from the DLX5/DLX6 genes as a novel disease mechanism in SHFM1. These data provide a proof-of-concept that the catalogue of p63 binding sites identified in this study may be of relevance to the studies of SHFM and other congenital malformations that resemble the p63-associated phenotypes. Mammalian embryonic development requires precise control of gene expression in the right place at the right time. One level of control of gene expression is through cis-regulatory elements controlled by transcription factors. Deregulation of gene expression by mutations in such cis-regulatory elements has been described in developmental disorders. Heterozygous mutations in the transcription factor p63 are found in patients with limb malformations, cleft lip/palate, and defects in skin and other epidermal appendages, through disruption of normal ectodermal development during embryogenesis. We reasoned that the identification of target genes and cis-regulatory elements controlled by p63 would provide candidate genes for defects arising from abnormally regulated ectodermal development. To test our hypothesis, we carried out a genome-wide binding site analysis and identified a large number of target genes and regulatory elements regulated by p63. We further showed that one of these regulatory elements controls expression of DLX6 and possibly DLX5 in the apical ectodermal ridge in the developing limbs. Loss of this element through a micro-deletion was associated with split hand foot malformation (SHFM1). The list of p63 binding sites provides a resource for the identification of mutations that cause ectodermal dysplasias and malformations in humans.
Collapse
MESH Headings
- Animals
- Base Sequence
- Binding Sites
- Cells, Cultured
- Child, Preschool
- Chromatin Immunoprecipitation
- Chromosomes, Human, Pair 7/genetics
- Chromosomes, Human, Pair 7/metabolism
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Enhancer Elements, Genetic
- Female
- Gene Expression Regulation, Developmental
- Genome-Wide Association Study
- Homeodomain Proteins/genetics
- Homeodomain Proteins/metabolism
- Humans
- Keratinocytes/metabolism
- Limb Deformities, Congenital/genetics
- Limb Deformities, Congenital/metabolism
- Male
- Membrane Proteins/genetics
- Membrane Proteins/metabolism
- Mice
- Molecular Sequence Data
- Proteasome Endopeptidase Complex/genetics
- Proteasome Endopeptidase Complex/metabolism
- Protein Binding
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Zebrafish
Collapse
Affiliation(s)
- Evelyn N. Kouwenhoven
- Department of Human Genetics, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Simon J. van Heeringen
- Department of Molecular Biology, Faculty of Science, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Juan J. Tena
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide, Consejo Superior de Investigaciones Científicas, Sevilla, Spain
| | - Martin Oti
- Centre for Molecular and Biomolecular Informatics, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Bas E. Dutilh
- Centre for Molecular and Biomolecular Informatics, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - M. Eva Alonso
- Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
| | - Elisa de la Calle-Mustienes
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide, Consejo Superior de Investigaciones Científicas, Sevilla, Spain
| | - Leonie Smeenk
- Department of Molecular Biology, Faculty of Science, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Tuula Rinne
- Department of Human Genetics, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Lilian Parsaulian
- Department of Human Genetics, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Emine Bolat
- Department of Human Genetics, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Rasa Jurgelenaite
- Centre for Molecular and Biomolecular Informatics, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Martijn A. Huynen
- Centre for Molecular and Biomolecular Informatics, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Alexander Hoischen
- Department of Human Genetics, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Joris A. Veltman
- Department of Human Genetics, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Han G. Brunner
- Department of Human Genetics, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Tony Roscioli
- Department of Human Genetics, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Emily Oates
- Department of Clinical Genetics, Children's Hospital at Westmead, Westmead, Australia
| | - Meredith Wilson
- Department of Clinical Genetics, Children's Hospital at Westmead, Westmead, Australia
| | - Miguel Manzanares
- Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
| | - José Luis Gómez-Skarmeta
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide, Consejo Superior de Investigaciones Científicas, Sevilla, Spain
| | - Hendrik G. Stunnenberg
- Department of Molecular Biology, Faculty of Science, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Marion Lohrum
- Department of Molecular Biology, Faculty of Science, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Hans van Bokhoven
- Department of Human Genetics, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition, and Behavior, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
- * E-mail: (HZ); (HvB)
| | - Huiqing Zhou
- Department of Human Genetics, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
- * E-mail: (HZ); (HvB)
| |
Collapse
|
23
|
Wang KCHC, Kondo H, Hirono I, Aoki T. The Marsupenaeus japonicus voltage-dependent anion channel (MjVDAC) protein is involved in white spot syndrome virus (WSSV) pathogenesis. FISH & SHELLFISH IMMUNOLOGY 2010; 29:94-103. [PMID: 20202479 DOI: 10.1016/j.fsi.2010.02.020] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2009] [Revised: 02/19/2010] [Accepted: 02/22/2010] [Indexed: 05/28/2023]
Abstract
Voltage-dependent anion channel (VDAC) proteins abound in the outer membrane of mitochondria. They play an important role in mitochondrial membrane permeabilization (MMP), which can lead to stress-induced cellular apoptosis and necrosis. Several pathogens regulate this MMP in their host cells to benefit their replication cycle, while in other cases, the host can use the same mechanism to combat pathogenesis. In this study, the first shrimp VDAC gene was identified and characterized from Marsupenaeus japonicus (MjVDAC). Its open reading frame (ORF) contained 849 bp encoding 282 amino acids. The deduced MjVDAC protein includes the 4-element eukaryotic porin signature motif, the conserved ATP binding motif (the GLK motif) and a VKAKV-like sequence known in other organisms to be involved in the protein's incorporation in the mitochondrial outer membrane. Tissue tropism analysis indicated that MjVDAC is abundant in the heart, muscle, stomach and pleopod. MjVDAC proteins colocalized with mitochondria in transiently transfected Sf9 cells and in shrimp hemocytes. dsRNA silencing of shrimp VDAC delayed white spot syndrome virus (WSSV) infection by 1 day in different shrimp organs. Taken together, these findings suggest that MjVDAC is likely to be involved in WSSV pathogenesis.
Collapse
Affiliation(s)
- K C Han-Ching Wang
- Laboratory of Genome Science, Tokyo University of Marine Science and Technology, Tokyo 108-8477, Japan
| | | | | | | |
Collapse
|
24
|
Structure and evolution of mitochondrial outer membrane proteins of beta-barrel topology. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2010; 1797:1292-9. [PMID: 20450883 DOI: 10.1016/j.bbabio.2010.04.019] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2009] [Revised: 04/25/2010] [Accepted: 04/27/2010] [Indexed: 11/22/2022]
Abstract
Gram-negative bacteria are the ancestors of mitochondrial organelles. Consequently, both entities contain two surrounding lipid bilayers known as the inner and outer membranes. While protein synthesis in bacteria is accomplished in the cytoplasm, mitochondria import 90-99% of their protein ensemble from the cytosol in the opposite direction. Three protein families including Sam50, VDAC and Tom40 together with Mdm10 compose the set of integral beta-barrel proteins embedded in the mitochondrial outer membrane in S. cerevisiae (MOM). The 16-stranded Sam50 protein forms part of the sorting and assembly machinery (SAM) and shows a clear evolutionary relationship to members of the bacterial Omp85 family. By contrast, the evolution of VDAC and Tom40, both adopting the same fold cannot be traced to any bacterial precursor. This finding is in agreement with the specific function of Tom40 in the TOM complex not existent in the enslaved bacterial precursor cell. Models of Tom40 and Sam50 have been developed using X-ray structures of related proteins. These models are analyzed with respect to properties such as conservation and charge distribution yielding features related to their individual functions.
Collapse
|
25
|
VDAC, a multi-functional mitochondrial protein regulating cell life and death. Mol Aspects Med 2010; 31:227-85. [PMID: 20346371 DOI: 10.1016/j.mam.2010.03.002] [Citation(s) in RCA: 552] [Impact Index Per Article: 39.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2010] [Accepted: 03/17/2010] [Indexed: 01/22/2023]
Abstract
Research over the past decade has extended the prevailing view of the mitochondrion to include functions well beyond the generation of cellular energy. It is now recognized that mitochondria play a crucial role in cell signaling events, inter-organellar communication, aging, cell proliferation, diseases and cell death. Thus, mitochondria play a central role in the regulation of apoptosis (programmed cell death) and serve as the venue for cellular decisions leading to cell life or death. One of the mitochondrial proteins controlling cell life and death is the voltage-dependent anion channel (VDAC), also known as mitochondrial porin. VDAC, located in the mitochondrial outer membrane, functions as gatekeeper for the entry and exit of mitochondrial metabolites, thereby controlling cross-talk between mitochondria and the rest of the cell. VDAC is also a key player in mitochondria-mediated apoptosis. Thus, in addition to regulating the metabolic and energetic functions of mitochondria, VDAC appears to be a convergence point for a variety of cell survival and cell death signals mediated by its association with various ligands and proteins. In this article, we review what is known about the VDAC channel in terms of its structure, relevance to ATP rationing, Ca(2+) homeostasis, protection against oxidative stress, regulation of apoptosis, involvement in several diseases and its role in the action of different drugs. In light of our recent findings and the recently solved NMR- and crystallography-based 3D structures of VDAC1, the focus of this review will be on the central role of VDAC in cell life and death, addressing VDAC function in the regulation of mitochondria-mediated apoptosis with an emphasis on structure-function relations. Understanding structure-function relationships of VDAC is critical for deciphering how this channel can perform such a variety of functions, all important for cell life and death. This review also provides insight into the potential of VDAC1 as a rational target for new therapeutics.
Collapse
|
26
|
Pankow S, Bamberger C. The p53 tumor suppressor-like protein nvp63 mediates selective germ cell death in the sea anemone Nematostella vectensis. PLoS One 2007; 2:e782. [PMID: 17848985 PMCID: PMC1964547 DOI: 10.1371/journal.pone.0000782] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2007] [Accepted: 07/22/2007] [Indexed: 11/29/2022] Open
Abstract
Here we report the identification and molecular function of the p53 tumor suppressor-like protein nvp63 in a non-bilaterian animal, the starlet sea anemone Nematostella vectensis. So far, p53-like proteins had been found in bilaterians only. The evolutionary origin of p53-like proteins is highly disputed and primordial p53-like proteins are variably thought to protect somatic cells from genotoxic stress. Here we show that ultraviolet (UV) irradiation at low levels selectively induces programmed cell death in early gametes but not somatic cells of adult N. vectensis polyps. We demonstrate with RNA interference that nvp63 mediates this cell death in vivo. Nvp63 is the most archaic member of three p53-like proteins found in N. vectensis and in congruence with all known p53-like proteins, nvp63 binds to the vertebrate p53 DNA recognition sequence and activates target gene transcription in vitro. A transactivation inhibitory domain at its C-terminus with high homology to the vertebrate p63 may regulate nvp63 on a molecular level. The genotoxic stress induced and nvp63 mediated apoptosis in N. vectensis gametes reveals an evolutionary ancient germ cell protective pathway which relies on p63-like proteins and is conserved from cnidarians to vertebrates.
Collapse
Affiliation(s)
- Sandra Pankow
- Department of Cell Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Casimir Bamberger
- Sundgauallee 64, Freiburg, Germany
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
27
|
Lü AJ, Dong CW, Du CS, Zhang QY. Characterization and expression analysis of Paralichthys olivaceus voltage-dependent anion channel (VDAC) gene in response to virus infection. FISH & SHELLFISH IMMUNOLOGY 2007; 23:601-13. [PMID: 17467295 DOI: 10.1016/j.fsi.2007.01.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2006] [Revised: 12/16/2006] [Accepted: 01/09/2007] [Indexed: 05/15/2023]
Abstract
Voltage-dependent anion channel (VDAC, also known as mitochondrial porin) is acknowledged to play an important role in stress-induced mammalian apoptosis. In this study, Paralichthys olivaceus VDAC (PoVDAC) gene was identified as a virally induced gene from Scophthalmus Maximus Rhabdovirus (SMRV)-infected flounder embryonic cells (FEC). The full length of PoVDAC cDNA is 1380 bp with an open reading frame of 852 bp encoding a 283 amino acid protein. The deduced PoVDAC contains one alpha-helix, 13 transmembrane beta-strands and one eukaryotic mitochondrial porin signature motif. Constitutive expression of PoVDAC was confirmed in all tested tissues by real-time PCR. Further expression analysis revealed PoVDAC mRNA was upregulated by viral infection. We prepared fish antiserum against recombinant VDAC proteins and detected the PoVDAC in heart lysates from flounder as a 32 kDa band on western blot. Overexpression of PoVDAC in fish cells induced apoptosis. Immunofluoresence localization indicated that the significant distribution changes of PoVDAC have occurred in virus-induced apoptotic cells. This is the first report on the inductive expression of VDAC by viral infection, suggesting that PoVDAC might be mediated flounder antiviral immune response through induction of apoptosis.
Collapse
Affiliation(s)
- Ai-Jun Lü
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Graduate University of the Chinese Academy of Sciences, Wuhan 430072, China
| | | | | | | |
Collapse
|
28
|
Abstract
BACKGROUND Mitochondrial porins, or voltage-dependent anion-selective channels (VDAC) allow the passage of small molecules across the mitochondrial outer membrane, and are involved in complex interactions regulating organellar and cellular metabolism. Numerous organisms possess multiple porin isoforms, and initial studies indicated an intriguing evolutionary history for these proteins and the genes that encode them. RESULTS In this work, the wealth of recent sequence information was used to perform a comprehensive analysis of the evolutionary history of mitochondrial porins. Fungal porin sequences were well represented, and newly-released sequences from stramenopiles, alveolates, and seed and flowering plants were analyzed. A combination of Neighbour-Joining and Bayesian methods was used to determine phylogenetic relationships among the proteins. The aligned sequences were also used to reassess the validity of previously described eukaryotic porin motifs and to search for signature sequences characteristic of VDACs from plants, animals and fungi. Secondary structure predictions were performed on the aligned VDAC primary sequences and were used to evaluate the sites of intron insertion in a representative set of the corresponding VDAC genes. CONCLUSION Our phylogenetic analysis clearly shows that paralogs have appeared several times during the evolution of VDACs from the plants, metazoans, and even the fungi, suggesting that there are no "ancient" paralogs within the gene family. Sequence motifs characteristic of the members of the crown groups of organisms were identified. Secondary structure predictions suggest a common 16 beta-strand framework for the transmembrane arrangement of all porin isoforms. The GLK (and homologous or analogous motifs) and the eukaryotic porin motifs in the four representative Chordates tend to be in exons that appear to have changed little during the evolution of these metazoans. In fact there is phase correlation among the introns in these genes. Finally, our preliminary data support the notion that introns usually do not interrupt structural protein motifs, namely the predicted beta-strands. These observations concur with the concept of exon shuffling, wherein exons encode structural modules of proteins and the loss and gain of introns and the shuffling of exons via recombination events contribute to the complexity of modern day proteomes.
Collapse
|
29
|
Garufi C, Vanni B, Aschelter AM, Zappalà AR, Bria E, Nisticò C, Sperduti I, Cognetti F, Terzoli E. Randomised phase II study of standard versus chronomodulated CPT-11 plus chronomodulated 5-fluorouracil and folinic acid in advanced colorectal cancer patients. Eur J Cancer 2006; 42:608-16. [PMID: 16246545 DOI: 10.1016/j.ejca.2005.03.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2005] [Accepted: 03/01/2005] [Indexed: 11/26/2022]
Abstract
In this study, a randomised phase II trial explored the effects of 6-h chronomodulated CPT-11 infusion in advanced colorectal cancer patients. Sixty-eight pre-treated patients were randomly assigned to CPT-11 administered at 180 mg/m2 on day 1, by 1-h infusion (Arm A) or 6-h sinusoidal infusion with peak timing at 5:00 a.m. (Arm B). All patients also received chronomodulated folinic acid/5-fluorouracil (FA/5-FU). Patients in Arm B obtained a 25.7% response rate for 7.0 months duration, a progression-free survival for 8.0 months and a median survival of 28 months. The same data in Arm A were 18.2%, 4.5, 6.0 and 18 months, respectively. No differences in drugs dose-intensity or increased toxicity with prolonged chronomodulated infusion were detected. Major grade 3-4 toxicity was diarrhoea: 10 patients in Arm A and 13 in Arm B. In conclusion, this study has shown that chronomodulated infusion of CPT-11 and FA/5-FU is safe, active and can be integrated with oxaliplatin (EORTC 05011) for the treatment of advanced colorectal cancer.
Collapse
Affiliation(s)
- Carlo Garufi
- Department of Medical Oncology, Istituto Regina Elena, Via Chianesi, 53, 00144 Rome, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
De Grassi A, Caggese C, D'Elia D, Lanave C, Pesole G, Saccone C. Evolution of nuclearly encoded mitochondrial genes in Metazoa. Gene 2005; 354:181-8. [PMID: 15975737 DOI: 10.1016/j.gene.2005.03.046] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2004] [Revised: 02/25/2005] [Accepted: 03/24/2005] [Indexed: 10/25/2022]
Abstract
All Metazoan nuclear genomes underwent a continuous process of both complete and partial genetic material gain and loss. The forces modulating these events are also subject to the strict interaction between nuclear and mitochondrial (mt) genome. In this context we investigate the evolution of nuclear genes encoding proteins which target the mitochondrion, with a particular attention to genes involved in oxidative phosphorylation (OXPHOS), one of the most ancient and conserved functions. To examine thoroughly the evolutionary strategies that preserve OXPHOS and coordinate the two cellular genomes, a comparative analysis has been carried out for 78 OXPHOS gene families in several Metazoa (insects, tunicates, fishes and mammals). We demonstrate that the duplication rate of OXPHOS genes increases passing from invertebrates to vertebrates consistently with the total increase in genome size, but all species are prone to negatively select OXPHOS duplicates compared to the general trend of nuclear gene families. These results are consistent with the 'balance hypothesis' and, at least in insects, the expression of duplicate genes is low and strongly testis-biased.
Collapse
Affiliation(s)
- Anna De Grassi
- Istituto di Tecnologie Biomediche, Sezione di Bari, CNR, Bari, Italy
| | | | | | | | | | | |
Collapse
|
31
|
Santamaria M, Lanave C, Saccone C. The evolution of the adenine nucleotide translocase family. Gene 2004; 333:51-9. [PMID: 15177680 DOI: 10.1016/j.gene.2004.02.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2003] [Revised: 11/12/2003] [Accepted: 02/05/2004] [Indexed: 11/19/2022]
Abstract
Homologous genes are grouped into families whose evolution may be different in the various organisms. For the variety of the processes and the well-known mechanism of gene gain and gene loss, which takes place in genome evolution, we deal in comparative analyses with a "one-to-many" or a "many-to-many" relationship between homologous genes going from invertebrates to vertebrates. In this scenario, it is important to understand how gene function has been preserved and in addition the innovations originated in a given lineage or species. The phylogenetic relations between gene family members and their molecular clock behavior may be very helpful to elucidate their functional fates in various organisms. This in turn can direct laboratory experiments and practical applications. In order to track the evolutionary history of the ANT gene family, we have collected and analyzed 46 sequences from fungi to mammals. Phylogenetic analyses have been performed on nucleotide and amino acidic sequences which have produced basically the same results. We observe the presence of multiple isoforms both in lower and higher eukaryotic species, thus a "many-to-many" correspondence between genes. The molecular phylogeny of ANT genes, reported in the present study, allows to date the time of divergence of ANT isoforms in various lineages. Furthermore, the logo analysis has been carried out to characterize the conservation features of ANT proteins particularly in their three similar domains originated by duplication.
Collapse
Affiliation(s)
- Monica Santamaria
- Department of Biochemistry and Molecular Biology, University of Bari, Bari, Italy
| | | | | |
Collapse
|