1
|
Mwale PF, Hsieh CT, Yen TL, Jan JS, Taliyan R, Yang CH, Yang WB. Chitinase-3-like-1: a multifaceted player in neuroinflammation and degenerative pathologies with therapeutic implications. Mol Neurodegener 2025; 20:7. [PMID: 39827337 PMCID: PMC11742494 DOI: 10.1186/s13024-025-00801-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 01/08/2025] [Indexed: 01/22/2025] Open
Abstract
Chitinase-3-like-1 (CHI3L1) is an evolutionarily conserved protein involved in key biological processes, including tissue remodeling, angiogenesis, and neuroinflammation. It has emerged as a significant player in various neurodegenerative diseases and brain disorders. Elevated CHI3L1 levels have been observed in neurological conditions such as traumatic brain injury (TBI), Alzheimer's disease (AD), Parkinson's disease (PD), Amyotrophic lateral sclerosis (ALS), Creutzfeldt-Jakob disease (CJD), multiple sclerosis (MS), Neuromyelitis optica (NMO), HIV-associated dementia (HAD), Cerebral ischemic stroke (CIS), and brain tumors. This review explores the role of CHI3L1 in the pathogenesis of these disorders, with a focus on its contributions to neuroinflammation, immune cell infiltration, and neuronal degeneration. As a key regulator of neuroinflammation, CHI3L1 modulates microglia and astrocyte activity, driving the release of proinflammatory cytokines that exacerbate disease progression. In addition to its role in disease pathology, CHI3L1 has emerged as a promising biomarker for the diagnosis and monitoring of brain disorders. Elevated cerebrospinal fluid (CSF) levels of CHI3L1 have been linked to disease severity and cognitive decline, particularly in AD and MS, highlighting its potential for clinical diagnostics. Furthermore, therapeutic strategies targeting CHI3L1, such as small-molecule inhibitors and neutralizing antibodies, have shown promise in preclinical studies, demonstrating reduced neuroinflammation, amyloid plaque accumulation, and improved neuronal survival. Despite its therapeutic potential, challenges remain in developing selective and safe CHI3L1-targeted therapies, particularly in ensuring effective delivery across the blood-brain barrier and mitigating off-target effects. This review addresses the complexities of targeting CHI3L1, highlights its potential in precision medicine, and outlines future research directions aimed at unlocking its full therapeutic potential in treating neurodegenerative diseases and brain pathologies.
Collapse
Affiliation(s)
- Pharaoh Fellow Mwale
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, No. 250, Wu Hsing St., Taipei, 110, Taiwan
| | - Cheng-Ta Hsieh
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, No. 250, Wu Hsing St., Taipei, 110, Taiwan
- Division of Neurosurgery, Department of Surgery, Cathay General Hospital, Taipei City, 106438, Taiwan
- School of Medicine, National Tsing Hua University, Hsinchu, 300044, Taiwan
- Department of Medicine, School of Medicine, Fu Jen Catholic University, New Taipei City, 24205, Taiwan
| | - Ting-Lin Yen
- Department of Medical Research, Cathay General Hospital, Taipei, 22174, Taiwan
| | - Jing-Shiun Jan
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, No. 250, Wu Hsing St., Taipei, 110, Taiwan
| | - Rajeev Taliyan
- Neuropsychopharmacology Division, Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Pilani Campus, Pilani, Rajasthan, India
| | - Chih-Hao Yang
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, No. 250, Wu Hsing St., Taipei, 110, Taiwan.
- Research Center for Neuroscience, Taipei Medical University, Taipei, Taiwan.
| | - Wen-Bin Yang
- Research Center for Neuroscience, Taipei Medical University, Taipei, Taiwan.
- Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
2
|
Balastegui-Alarcón M, Moros-Nicolás C, Ballesta J, Izquierdo-Rico MJ, Chevret P, Avilés M. Molecular Evolution of the Ovgp1 Gene in the Subfamily Murinae. Animals (Basel) 2024; 15:55. [PMID: 39794998 PMCID: PMC11719014 DOI: 10.3390/ani15010055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/16/2024] [Accepted: 12/26/2024] [Indexed: 01/13/2025] Open
Abstract
OGP, encoded by the Ovgp1 gene, is the major non-serum oviductal protein in most mammals. In the genome of Rattus norvegicus, Ovgp1 has been identified as a pseudogene. However, Mus musculus presents a functional gene. As the rat and the mouse belong to the subfamily Murinae, Ovgp1 has probably been lost after their divergence. This study aims to determine when the pseudogenization event occurred and which proteins could replace its function. To attain that, the potential expression of members belonging to the GH18 family is investigated in the rat oviduct by means of molecular and proteomic analyses. Specific Ovgp1 regions are sequenced in different murine rodent species. The analysis reveals the presence of stop codons only in some species of the Rattini tribe, suggesting that the majority of the murine species present a functional gene. Thus, the pseudogenization of Ovgp1 could be dated back to around 10 Mya, after the divergence of the Rattini tribe. The expression of several genes and proteins of the GH18 family, such as Chia, Chit1, Chi3l1, and Chid1, are detected in the rat oviduct. This study opens the door for further research on GH18 family proteins that mimic the OGP functions in species where Ovgp1 is pseudogenized.
Collapse
Affiliation(s)
- Miriam Balastegui-Alarcón
- Departamento de Biología Celular e Histología, Facultad de Medicina y de Enfermería, Universidad de Murcia, 30120 Murcia, Spain; (M.B.-A.); (C.M.-N.); (J.B.); (M.J.I.-R.)
- Instituto Murciano de Investigación Biosanitaria Pascual Parrilla (IMIB), 30120 Murcia, Spain
| | - Carla Moros-Nicolás
- Departamento de Biología Celular e Histología, Facultad de Medicina y de Enfermería, Universidad de Murcia, 30120 Murcia, Spain; (M.B.-A.); (C.M.-N.); (J.B.); (M.J.I.-R.)
- Instituto Murciano de Investigación Biosanitaria Pascual Parrilla (IMIB), 30120 Murcia, Spain
| | - José Ballesta
- Departamento de Biología Celular e Histología, Facultad de Medicina y de Enfermería, Universidad de Murcia, 30120 Murcia, Spain; (M.B.-A.); (C.M.-N.); (J.B.); (M.J.I.-R.)
- Instituto Murciano de Investigación Biosanitaria Pascual Parrilla (IMIB), 30120 Murcia, Spain
| | - Mª José Izquierdo-Rico
- Departamento de Biología Celular e Histología, Facultad de Medicina y de Enfermería, Universidad de Murcia, 30120 Murcia, Spain; (M.B.-A.); (C.M.-N.); (J.B.); (M.J.I.-R.)
- Instituto Murciano de Investigación Biosanitaria Pascual Parrilla (IMIB), 30120 Murcia, Spain
| | - Pascale Chevret
- Laboratoire de Biométrie et Biologie Evolutive, UMR 5558, CNRS, Université Claude Bernard Lyon 1, Université de Lyon, 69100 Villeurbanne, France
| | - Manuel Avilés
- Departamento de Biología Celular e Histología, Facultad de Medicina y de Enfermería, Universidad de Murcia, 30120 Murcia, Spain; (M.B.-A.); (C.M.-N.); (J.B.); (M.J.I.-R.)
- Instituto Murciano de Investigación Biosanitaria Pascual Parrilla (IMIB), 30120 Murcia, Spain
| |
Collapse
|
3
|
Mengkrog Holen M, Tuveng TR, Kent MP, Vaaje‐Kolstad G. The gastric mucosa of Atlantic salmon (Salmo salar) is abundant in highly active chitinases. FEBS Open Bio 2024; 14:23-36. [PMID: 37581908 PMCID: PMC10761930 DOI: 10.1002/2211-5463.13694] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 07/19/2023] [Accepted: 08/14/2023] [Indexed: 08/16/2023] Open
Abstract
Atlantic salmon (Salmo salar) possesses a genome containing 10 genes encoding chitinases, yet their functional roles remain poorly understood. In other fish species, chitinases have been primarily linked to digestion, but also to other functions, as chitinase-encoding genes are transcribed in a variety of non-digestive organs. In this study, we investigated the properties of two chitinases belonging to the family 18 glycoside hydrolase group, namely Chia.3 and Chia.4, both isolated from the stomach mucosa. Chia.3 and Chia.4, exhibiting 95% sequence identity, proved inseparable using conventional chromatographic methods, necessitating their purification as a chitinase pair. Biochemical analysis revealed sustained chitinolytic activity against β-chitin for up to 24 h, spanning a pH range of 2 to 6. Moreover, subsequent in vitro investigations established that this chitinase pair efficiently degrades diverse chitin-containing substrates into chitobiose, highlighting the potential of Atlantic salmon to utilize novel chitin-containing feed sources. Analysis of the gastric matrix proteome demonstrates that the chitinases are secreted and rank among the most abundant proteins in the gastric matrix. This finding correlates well with the previously observed high transcription of the corresponding chitinase genes in Atlantic salmon stomach tissue. By shedding light on the secreted chitinases in the Atlantic salmon's stomach mucosa and elucidating their functional characteristics, this study enhances our understanding of chitinase biology in this species. Moreover, the observed capacity to effectively degrade chitin-containing materials implies the potential utilization of alternative feed sources rich in chitin, offering promising prospects for sustainable aquaculture practices.
Collapse
Affiliation(s)
- Matilde Mengkrog Holen
- Center for Integrative Genetics, Department of Animal and Aquacultural Sciences, Faculty of BiosciencesNorwegian University of Life SciencesÅsNorway
| | - Tina Rise Tuveng
- Faculty of Chemistry, Biotechnology and Food ScienceNorwegian University of Life SciencesÅsNorway
| | - Matthew Peter Kent
- Center for Integrative Genetics, Department of Animal and Aquacultural Sciences, Faculty of BiosciencesNorwegian University of Life SciencesÅsNorway
| | - Gustav Vaaje‐Kolstad
- Faculty of Chemistry, Biotechnology and Food ScienceNorwegian University of Life SciencesÅsNorway
| |
Collapse
|
4
|
Holen MM, Vaaje-Kolstad G, Kent MP, Sandve SR. Gene family expansion and functional diversification of chitinase and chitin synthase genes in Atlantic salmon (Salmo salar). G3 (BETHESDA, MD.) 2023; 13:jkad069. [PMID: 36972305 PMCID: PMC10234404 DOI: 10.1093/g3journal/jkad069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 03/16/2023] [Indexed: 12/07/2023]
Abstract
Chitin is one of the most abundant polysaccharides in nature, forming important structures in insects, crustaceans, and fungal cell walls. Vertebrates on the other hand are generally considered "nonchitinous" organisms, despite having highly conserved chitin metabolism-associated genes. Recent work has revealed that the largest group of vertebrates, the teleosts, have the potential to both synthesize and degrade endogenous chitin. Yet, little is known about the genes and proteins responsible for these dynamic processes. Here, we used comparative genomics, transcriptomics, and chromatin accessibility data to characterize the repertoire, evolution, and regulation of genes involved in chitin metabolism in teleosts, with a particular focus on Atlantic salmon. Reconstruction of gene family phylogenies provides evidence for an expansion of teleost and salmonid chitinase and chitin synthase genes after multiple whole-genome duplications. Analyses of multi-tissue gene expression data demonstrated a strong bias of gastrointestinal tract expression for chitin metabolism genes, but with different spatial and temporal tissue specificities. Finally, we integrated transcriptomes from a developmental time series of the gastrointestinal tract with chromatin accessibility data to identify putative transcription factors responsible for regulating chitin metabolism gene expression (CDX1 and CDX2) as well as tissue-specific divergence in the regulation of gene duplicates (FOXJ2). The findings presented here support the hypothesis that chitin metabolism genes in teleosts play a role in developing and maintaining a chitin-based barrier in the teleost gut and provide a basis for further investigations into the molecular basis of this barrier.
Collapse
Affiliation(s)
- Matilde Mengkrog Holen
- Section for Genome Biology, Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås NO-1432, Norway
| | - Gustav Vaaje-Kolstad
- Department of Chemistry, Biotechnology and Food Science (IKBM), Norwegian University of Life Sciences, Ås NO-1432, Norway
| | - Matthew Peter Kent
- Section for Genome Biology, Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås NO-1432, Norway
| | - Simen Rød Sandve
- Section for Genome Biology, Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås NO-1432, Norway
| |
Collapse
|
5
|
Declercq J, Hammad H, Lambrecht BN, Smole U. Chitinases and chitinase-like proteins in asthma. Semin Immunol 2023; 67:101759. [PMID: 37031560 DOI: 10.1016/j.smim.2023.101759] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 03/27/2023] [Indexed: 04/11/2023]
Abstract
Despite the lack of endogenous chitin synthesis, mammalian genomes encode two enzymatically active true chitinases (chitotriosidase and acidic mammalian chitinase) and a variable number of chitinase-like proteins (CLPs) that have no enzyme activity but bind chitin. Chitinases and CLPs are prominent components of type-2 immune response-mediated respiratory diseases. However, despite extensive research into their role in allergic airway disease, there is still no agreement on whether they are mere biomarkers of disease or actual disease drivers. Functions ascribed to chitinases and CLPs include, but are not limited to host defense against chitin-containing pathogens, directly promoting inflammation, and modulating tissue remodeling and fibrosis. Here, we discuss in detail the chitin-dependent and -independent roles of chitinases and CLPs in the context of allergic airway disease, and recent advances and emerging concepts in the field that might identify opportunities for new therapies.
Collapse
Affiliation(s)
- Jozefien Declercq
- Immunoregulation Unit, VIB Center for Inflammation Research, Ghent, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Hamida Hammad
- Immunoregulation Unit, VIB Center for Inflammation Research, Ghent, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Bart N Lambrecht
- Immunoregulation Unit, VIB Center for Inflammation Research, Ghent, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium; Department of Pulmonary Medicine, ErasmusMC, Rotterdam, the Netherlands.
| | - Ursula Smole
- Immunoregulation Unit, VIB Center for Inflammation Research, Ghent, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium.
| |
Collapse
|
6
|
NIO-KOBAYASHI J, OWHASHI M, IWANAGA T. Pathological examination of Ym1, a chitinase family protein, in <i>Mesocestoides corti</i>-infected mice. Biomed Res 2022; 43:161-171. [DOI: 10.2220/biomedres.43.161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Junko NIO-KOBAYASHI
- Laboratory of Histology and Cytology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University
| | - Makoto OWHASHI
- Faculty of Integrated Arts and Science, Tokushima University
| | - Toshihiko IWANAGA
- Laboratory of Histology and Cytology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University
| |
Collapse
|
7
|
Kang Q, Li L, Pang Y, Zhu W, Meng L. An update on Ym1 and its immunoregulatory role in diseases. Front Immunol 2022; 13:891220. [PMID: 35967383 PMCID: PMC9366555 DOI: 10.3389/fimmu.2022.891220] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 07/06/2022] [Indexed: 11/23/2022] Open
Abstract
Ym1 is a rodent-specific chitinase-like protein (CLP) lacking catalytic activity, whose cellular origins are mainly macrophages, neutrophils and other cells. Although the detailed function of Ym1 remains poorly understood, Ym1 has been generally recognized as a fundamental feature of alternative activation of macrophages in mice and hence one of the prevalent detecting targets in macrophage phenotype distinguishment. Studies have pointed out that Ym1 may have regulatory effects, which are multifaceted and even contradictory, far more than just a mere marker. Allergic lung inflammation, parasite infection, autoimmune diseases, and central nervous system diseases have been found associations with Ym1 to varying degrees. Thus, insights into Ym1’s role in diseases would help us understand the pathogenesis of different diseases and clarify the genuine roles of CLPs in mammals. This review summarizes the information on Ym1 from the gene to its expression and regulation and focuses on the association between Ym1 and diseases.
Collapse
Affiliation(s)
- Qi Kang
- Institute of Molecular and Translational Medicine, and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
- Key Laboratory of Environment and Genes Related to Diseases, Xi’an Jiaotong University, Ministry of Education, Xi’an, China
- Department of Clinical Medicine, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Luyao Li
- Institute of Molecular and Translational Medicine, and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
- Key Laboratory of Environment and Genes Related to Diseases, Xi’an Jiaotong University, Ministry of Education, Xi’an, China
- Department of Clinical Medicine, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Yucheng Pang
- Institute of Molecular and Translational Medicine, and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
- Key Laboratory of Environment and Genes Related to Diseases, Xi’an Jiaotong University, Ministry of Education, Xi’an, China
- Department of Clinical Medicine, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Wenhua Zhu
- Institute of Molecular and Translational Medicine, and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
- Key Laboratory of Environment and Genes Related to Diseases, Xi’an Jiaotong University, Ministry of Education, Xi’an, China
- *Correspondence: Wenhua Zhu, ; Liesu Meng,
| | - Liesu Meng
- Institute of Molecular and Translational Medicine, and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
- Key Laboratory of Environment and Genes Related to Diseases, Xi’an Jiaotong University, Ministry of Education, Xi’an, China
- National Joint Engineering Research Center of Biodiagnostics and Biotherapy, Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
- *Correspondence: Wenhua Zhu, ; Liesu Meng,
| |
Collapse
|
8
|
Raza F, Hussain M. Birth and death of CYLD paralogues in vertebrates. GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2021.101190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
9
|
Glycoside hydrolase family 18 chitinases: The known and the unknown. Biotechnol Adv 2020; 43:107553. [DOI: 10.1016/j.biotechadv.2020.107553] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 03/09/2020] [Accepted: 04/20/2020] [Indexed: 12/13/2022]
|
10
|
Kimura M, Watanabe T, Sekine K, Ishizuka H, Ikejiri A, Sakaguchi M, Kamaya M, Yamanaka D, Matoska V, Bauer PO, Oyama F. Comparative functional analysis between human and mouse chitotriosidase: Substitution at amino acid 218 modulates the chitinolytic and transglycosylation activity. Int J Biol Macromol 2020; 164:2895-2902. [PMID: 32853624 DOI: 10.1016/j.ijbiomac.2020.08.173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 08/11/2020] [Accepted: 08/21/2020] [Indexed: 01/07/2023]
Abstract
Chitotriosidase (Chit1) and acidic mammalian chitinase (AMCase) have been attracting research interest due to their involvement in various pathological conditions such as Gaucher's disease and asthma, respectively. Both enzymes are highly expressed in mice, while the level of AMCase mRNA was low in human tissues. In addition, the chitinolytic activity of the recombinant human AMCase was significantly lower than that of the mouse counterpart. Here, we revealed a substantially higher chitinolytic and transglycosylation activity of human Chit1 against artificial and natural chitin substrates as compared to the mouse enzyme. We found that the substitution of leucine (L) by tryptophan (W) at position 218 markedly reduced both activities in human Chit1. Conversely, the L218W substitution in mouse Chit1 increased the activity of the enzyme. These results suggest that Chit1 may compensate for the low of AMCase activity in humans, while in mice, highly active AMCase may supplements low Chit1 activity.
Collapse
Affiliation(s)
- Masahiro Kimura
- Department of Chemistry and Life Science, Kogakuin University, Hachioji, Tokyo 192-0015, Japan; Research Fellow of Japan Society for the Promotion of Science (PD), Koujimachi, Chiyoda-ku, Tokyo 102-0083, Japan; Laboratory for Immunopharmacology of Microbial Products, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Takashi Watanabe
- Department of Chemistry and Life Science, Kogakuin University, Hachioji, Tokyo 192-0015, Japan
| | - Kazutaka Sekine
- Department of Chemistry and Life Science, Kogakuin University, Hachioji, Tokyo 192-0015, Japan
| | - Hitomi Ishizuka
- Department of Chemistry and Life Science, Kogakuin University, Hachioji, Tokyo 192-0015, Japan
| | - Aoi Ikejiri
- Department of Chemistry and Life Science, Kogakuin University, Hachioji, Tokyo 192-0015, Japan
| | - Masayoshi Sakaguchi
- Department of Chemistry and Life Science, Kogakuin University, Hachioji, Tokyo 192-0015, Japan
| | - Minori Kamaya
- Department of Applied Chemistry, Kogakuin University, Hachioji, Tokyo 192-0015, Japan
| | - Daisuke Yamanaka
- Laboratory for Immunopharmacology of Microbial Products, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Vaclav Matoska
- Laboratory of Molecular Diagnostics, Department of Clinical Biochemistry, Hematology and Immunology, Homolka Hospital, Roentgenova 37/2, Prague 150 00, Czech Republic
| | - Peter O Bauer
- Laboratory of Molecular Diagnostics, Department of Clinical Biochemistry, Hematology and Immunology, Homolka Hospital, Roentgenova 37/2, Prague 150 00, Czech Republic; Bioinova Ltd., Videnska 1083, Prague 142 20, Czech Republic
| | - Fumitaka Oyama
- Department of Chemistry and Life Science, Kogakuin University, Hachioji, Tokyo 192-0015, Japan.
| |
Collapse
|
11
|
Behr M, Riedel D. Glycosylhydrolase genes control respiratory tubes sizes and airway stability. Sci Rep 2020; 10:13377. [PMID: 32770153 PMCID: PMC7414880 DOI: 10.1038/s41598-020-70185-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 07/24/2020] [Indexed: 11/09/2022] Open
Abstract
Tight barriers are crucial for animals. Insect respiratory cells establish barriers through their extracellular matrices. These chitinous-matrices must be soft and flexible to provide ventilation, but also tight enough to allow oxygen flow and protection against dehydration, infections, and environmental stresses. However, genes that control soft, flexible chitin-matrices are poorly known. We investigated the genes of the chitinolytic glycosylhydrolase-family 18 in the tracheal system of Drosophila melanogaster. Our findings show that five chitinases and three chitinase-like genes organize the tracheal chitin-cuticles. Most of the chitinases degrade chitin from airway lumina to enable oxygen delivery. They further improve chitin-cuticles to enhance tube stability and integrity against stresses. Unexpectedly, some chitinases also support chitin assembly to expand the tube lumen properly. Moreover, Chitinase2 plays a decisive role in the chitin-cuticle formation that establishes taenidial folds to support tube stability. Chitinase2 is apically enriched on the surface of tracheal cells, where it controls the chitin-matrix architecture independently of other known cuticular proteins or chitinases. We suppose that the principle mechanisms of chitin-cuticle assembly and degradation require a set of critical glycosylhydrolases for flexible and not-flexible cuticles. The same glycosylhydrolases support thick laminar cuticle formation and are evolutionarily conserved among arthropods.
Collapse
Affiliation(s)
- Matthias Behr
- Institute for Biology, Leipzig University, Philipp-Rosenthal-Str. 55, 04103, Leipzig, Germany.
| | - Dietmar Riedel
- Max-Planck-Institute for Biophysical Chemistry, Electron Microscopy Group, 37077, Göttingen, Germany
| |
Collapse
|
12
|
Zhao Y, Li Z, Gu X, Su Y, Liu L. Imaginal Disc Growth Factor 6 (Idgf6) Is Involved in Larval and Adult Wing Development in Bactrocera correcta (Bezzi) (Diptera: Tephritidae). Front Genet 2020; 11:451. [PMID: 32435262 PMCID: PMC7218075 DOI: 10.3389/fgene.2020.00451] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 04/14/2020] [Indexed: 01/13/2023] Open
Abstract
In insects, imaginal disk growth factors (IDGFs), an important component of the glycoside hydrolase 18 (GH18) family of chitinases, have been reported to be associated with the maintenance of the cuticle and molting. However, there is little knowledge of their function. In this study, imaginal disk growth factor 6 (Idgf6), which is an Idgf, was first identified and cloned from the guava fruit fly Bactrocera correcta (Bezzi) (Diptera: Tephritidae), one of the most serious pest insects in South China and surrounding Southeast Asian countries. This gene encodes IDGF6 protein with a conserved domain similar to ChiA chitinases, the glycoside hydrolase 18 (GH18) family of chitinases, according to NCBI BLAST. Phylogenetic analysis indicated that all Idgf6s were highly conserved among similar species. Subsequent temporal expression profiling revealed that Idgf6 was highly expressed in both the late-pupal and mid-adult stages, suggesting that this gene plays a predominant role in pupal and adult development. Furthermore, RNA interference experiments against Idgf6 in B. correcta, which led to the specific decrease in Idgf6 expression, resulted in larval death as well as adult wing malformation. The direct effects of Idgf6 silencing on B. correcta indicated its important role in development, and Idgf6 might be further exploited as a novel insecticide target in the context of pest management.
Collapse
Affiliation(s)
- Yan Zhao
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Zhihong Li
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Xinyue Gu
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Yun Su
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Lijun Liu
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
| |
Collapse
|
13
|
Madland E, Crasson O, Vandevenne M, Sørlie M, Aachmann FL. NMR and Fluorescence Spectroscopies Reveal the Preorganized Binding Site in Family 14 Carbohydrate-Binding Module from Human Chitotriosidase. ACS OMEGA 2019; 4:21975-21984. [PMID: 31891077 PMCID: PMC6933781 DOI: 10.1021/acsomega.9b03043] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 11/26/2019] [Indexed: 05/02/2023]
Abstract
Carbohydrate-binding modules (CBM) play important roles in targeting and increasing the concentration of carbohydrate active enzymes on their substrates. Using NMR to get the solution structure of CBM14, we can gain insight into secondary structure elements and intramolecular interactions with our assigned nuclear overhauser effect peaks. This reveals that two conserved aromatic residues (Phe437 and Phe456) make up the hydrophobic core of the CBM. These residues are also responsible for connecting the two β-sheets together, by being part of β2 and β4, respectively, and together with disulfide bridges, they create CBM14's characteristic "hevein-like" fold. Most CBMs rely on aromatic residues for substrate binding; however, CBM14 contains just a single tryptophan (Trp465) that together with Asn466 enables substrate binding. Interestingly, an alanine mutation of a single residue (Leu454) located behind Trp465 renders the CBM incapable of binding. Fluorescence spectroscopy performed on this mutant reveals a significant blue shift, as well as a minor blue shift for its neighbor Val455. The reduction in steric hindrance causes the tryptophan to be buried into the hydrophobic core of the structure and therefore suggests a preorganized binding site for this CBM. Our results show that both Trp465 and Asn466 are affected when CBM14 interacts with both (GlcNAc)3 and β-chitin, that the binding interactions are weak, and that CBM14 displays a slightly higher affinity toward β-chitin.
Collapse
Affiliation(s)
- Eva Madland
- Department
of Biotechnology and Food Science, Norwegian Biopolymer Laboratory
(NOBIPOL), NTNU Norwegian University of
Science and Technology, Trondheim 7491, Norway
| | - Oscar Crasson
- InBioS—Center
for Protein Engineering, Institut de Chimie B6a, Université de Liège, Sart-Tilman, Liège 4000, Belgium
| | - Maryléne Vandevenne
- InBioS—Center
for Protein Engineering, Institut de Chimie B6a, Université de Liège, Sart-Tilman, Liège 4000, Belgium
| | - Morten Sørlie
- Department
of Chemistry, Biotechnology and Food Science, NMBU Norwegian University of Life Sciences, Ås 1430, Norway
| | - Finn L. Aachmann
- Department
of Biotechnology and Food Science, Norwegian Biopolymer Laboratory
(NOBIPOL), NTNU Norwegian University of
Science and Technology, Trondheim 7491, Norway
| |
Collapse
|
14
|
Amarsaikhan N, Stolz DJ, Wilcox A, Sands EM, Tsoggerel A, Gravely H, Templeton SP. Reciprocal Inhibition of Adiponectin and Innate Lung Immune Responses to Chitin and Aspergillus fumigatus. Front Immunol 2019; 10:1057. [PMID: 31134096 PMCID: PMC6524459 DOI: 10.3389/fimmu.2019.01057] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 04/25/2019] [Indexed: 12/14/2022] Open
Abstract
Chitin is a structural biopolymer found in numerous organisms, including pathogenic fungi, and recognized as an immune-stimulating pathogen associated molecular pattern by pattern recognition molecules of the host immune system. However, programming and regulation of lung innate immunity to chitin inhalation in the context of inhalation of fungal pathogens such as Aspergillus fumigatus is complex and our understanding incomplete. Here we report that the systemic metabolism-regulating cytokine adiponectin is decreased in the lungs and serum of mice after chitin inhalation, with a concomitant decrease in surface expression of the adiponectin receptor AdipoR1 on lung leukocytes. Constitutive lung expression of acidic mammalian chitinase resulted in decreased inflammatory cytokine gene expression and neutrophil recruitment, but did not significantly affect lung adiponectin transcription. Exogenous recombinant adiponectin specifically dampened airway chitin-mediated eosinophil recruitment, while adiponectin deficiency resulted in increased airway eosinophils. The presence of adiponectin also resulted in decreased CCL11-mediated migration of bone marrow-derived eosinophils. In contrast to purified chitin, aspiration of viable conidia from the high chitin-expressing A. fumigatus isolate Af5517 resulted in increased neutrophil recruitment and inflammatory cytokine gene expression in adiponectin-deficient mice, while no significant changes were observed in response to the isolate Af293. Our results identify a novel role for the adiponectin pathway in inhibition of lung inflammatory responses to chitin and A. fumigatus inhalation.
Collapse
Affiliation(s)
- Nansalmaa Amarsaikhan
- Department of Microbiology and Immunology, Indiana University School of Medicine-Terre Haute, Terre Haute, IN, United States
| | - Dylan J Stolz
- Department of Microbiology and Immunology, Indiana University School of Medicine-Terre Haute, Terre Haute, IN, United States
| | - Amber Wilcox
- Department of Microbiology and Immunology, Indiana University School of Medicine-Terre Haute, Terre Haute, IN, United States
| | - Ethan M Sands
- Department of Microbiology and Immunology, Indiana University School of Medicine-Terre Haute, Terre Haute, IN, United States
| | - Angar Tsoggerel
- Department of Microbiology and Immunology, Indiana University School of Medicine-Terre Haute, Terre Haute, IN, United States
| | - Haley Gravely
- Department of Microbiology and Immunology, Indiana University School of Medicine-Terre Haute, Terre Haute, IN, United States
| | - Steven P Templeton
- Department of Microbiology and Immunology, Indiana University School of Medicine-Terre Haute, Terre Haute, IN, United States
| |
Collapse
|
15
|
Kumar A, Zhang KYJ. Human Chitinases: Structure, Function, and Inhibitor Discovery. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1142:221-251. [PMID: 31102249 DOI: 10.1007/978-981-13-7318-3_11] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Chitinases are glycosyl hydrolases that hydrolyze the β-(1-4)-linkage of N-acetyl-D-glucosamine units present in chitin polymers. Chitinases are widely distributed enzymes and are present in a wide range of organisms including insects, plants, bacteria, fungi, and mammals. These enzymes play key roles in immunity, nutrition, pathogenicity, and arthropod molting. Humans express two chitinases, chitotriosidase 1 (CHIT1) and acid mammalian chitinase (AMCase) along with several chitinase-like proteins (CLPs). Human chitinases are reported to play a protective role against chitin-containing pathogens through their capability to degrade chitin present in the cell wall of pathogens. Now, human chitinases are gaining attention as the key players in innate immune response. Although the exact mechanism of their role in immune response is not known, studies in recent years begin to relate chitin recognition and degradation with the activation of signaling pathways involved in inflammation. The roles of both CHIT1 and AMCase in the development of various diseases have been revealed and several classes of inhibitors have been developed. However, a clear understanding could not be established due to complexities in the design of the right experiment for studying the role of human chitinase in various diseases. In this chapter, we will first outline the structural features of CHIT1 and AMcase. We will then review the progress in understanding the role of human chitinases in the development of various diseases. Finally, we will summarize the inhibitor discovery efforts targeting both CHIT1 and AMCase.
Collapse
Affiliation(s)
- Ashutosh Kumar
- Laboratory for Structural Bioinformatics, Center for Biosystems Dynamics Research, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan
| | - Kam Y J Zhang
- Laboratory for Structural Bioinformatics, Center for Biosystems Dynamics Research, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan.
| |
Collapse
|
16
|
Steven J. VD, Richard M. L. Chitins and chitinase activity in airway diseases. J Allergy Clin Immunol 2018; 142:364-369. [PMID: 29959948 PMCID: PMC6078791 DOI: 10.1016/j.jaci.2018.06.017] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 06/19/2018] [Accepted: 06/22/2018] [Indexed: 01/04/2023]
Abstract
Chitin, one of the most abundant biopolymers on Earth, is bound and degraded by chitinases, specialized enzymes that are similarly widespread in nature. Chitin catabolism affects global carbon and nitrogen cycles through a host of diverse biological processes, but recent work has focused attention on systems of chitin recognition and degradation conserved in mammals, connecting an ancient pathway of polysaccharide processing to human diseases influenced by persistent immune triggering. Here we review current advances in our understanding of how chitin-chitinase interactions affect mucosal immune feedback mechanisms essential to maintaining homeostasis and organ health.
Collapse
Affiliation(s)
- Van Dyken Steven J.
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO USA.
| | - Locksley Richard M.
- Howard Hughes Medical Institute, Departments of Medicine and Microbiology / Immuology, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
17
|
Emerling CA, Delsuc F, Nachman MW. Chitinase genes ( CHIAs) provide genomic footprints of a post-Cretaceous dietary radiation in placental mammals. SCIENCE ADVANCES 2018; 4:eaar6478. [PMID: 29774238 PMCID: PMC5955627 DOI: 10.1126/sciadv.aar6478] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Accepted: 03/30/2018] [Indexed: 05/21/2023]
Abstract
The end-Cretaceous extinction led to a massive faunal turnover, with placental mammals radiating in the wake of nonavian dinosaurs. Fossils indicate that Cretaceous stem placentals were generally insectivorous, whereas their earliest Cenozoic descendants occupied a variety of dietary niches. It is hypothesized that this dietary radiation resulted from the opening of niche space, following the extinction of dinosaurian carnivores and herbivores. We provide the first genomic evidence for the occurrence and timing of this dietary radiation in placental mammals. By comparing the genomes of 107 placental mammals, we robustly infer that chitinase genes (CHIAs), encoding enzymes capable of digesting insect exoskeletal chitin, were present as five functional copies in the ancestor of all placental mammals, and the number of functional CHIAs in the genomes of extant species positively correlates with the percentage of invertebrates in their diets. The diverse repertoire of CHIAs in early placental mammals corroborates fossil evidence of insectivory in Cretaceous eutherians, with descendant lineages repeatedly losing CHIAs beginning at the Cretaceous/Paleogene (K/Pg) boundary as they radiated into noninsectivorous niches. Furthermore, the timing of gene loss suggests that interordinal diversification of placental mammals in the Cretaceous predates the dietary radiation in the early Cenozoic, helping to reconcile a long-standing debate between molecular timetrees and the fossil record. Our results demonstrate that placental mammal genomes, including humans, retain a molecular record of the post-K/Pg placental adaptive radiation in the form of numerous chitinase pseudogenes.
Collapse
Affiliation(s)
- Christopher A. Emerling
- Museum of Vertebrate Zoology, University of California, Berkeley, CA 94720, USA
- Institut des Sciences de l’Évolution de Montpellier (ISEM), Université de Montpellier, CNRS, IRD, EPHE, Montpellier, France
- Corresponding author.
| | - Frédéric Delsuc
- Institut des Sciences de l’Évolution de Montpellier (ISEM), Université de Montpellier, CNRS, IRD, EPHE, Montpellier, France
| | - Michael W. Nachman
- Museum of Vertebrate Zoology, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
18
|
Chitinase-like proteins as regulators of innate immunity and tissue repair: helpful lessons for asthma? Biochem Soc Trans 2018; 46:141-151. [PMID: 29351964 DOI: 10.1042/bst20170108] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 11/17/2017] [Accepted: 11/23/2017] [Indexed: 12/19/2022]
Abstract
Chitinases and chitinase-like proteins (CLPs) belong to the glycoside hydrolase family 18 of proteins. Chitinases are expressed in mammals and lower organisms, facilitate chitin degradation, and hence act as host-defence enzymes. Gene duplication and loss-of-function mutations of enzymatically active chitinases have resulted in the expression of a diverse range of CLPs across different species. CLPs are genes that are increasingly associated with inflammation and tissue remodelling not only in mammals but also across distant species. While the focus has remained on understanding the functions and expression patterns of CLPs during disease in humans, studies in mouse and lower organisms have revealed important and overlapping roles of the CLP family during physiology, host defence and pathology. This review will summarise recent insights into the regulatory functions of CLPs on innate immune pathways and discuss how these effects are not only important for host defence and tissue injury/repair after pathogen invasion, but also how they have extensive implications for pathological processes involved in diseases such as asthma.
Collapse
|
19
|
Sanfilippo C, Longo A, Lazzara F, Cambria D, Distefano G, Palumbo M, Cantarella A, Malaguarnera L, Di Rosa M. CHI3L1 and CHI3L2 overexpression in motor cortex and spinal cord of sALS patients. Mol Cell Neurosci 2017; 85:162-169. [PMID: 28989002 DOI: 10.1016/j.mcn.2017.10.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Revised: 06/07/2017] [Accepted: 10/04/2017] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Amyotrophic Lateral Sclerosis (ALS) is a rapidly progressive neurodegenerative disease characterized by the degeneration and death of upper (UMN) and lower (LMN) motor neurons. In the last decade, it has been shown that Chitinases are an important prognostic indicator of neuro-inflammatory damage induced by microglia and astrocytes. MATERIALS AND METHODS We analyzed microarray datasets obtained from the Array Express in order to verify the expression levels of CHI3L1 and CHI3L2 in motor cortex biopsies of sALS patients with different survival times. We also divided the sALS patients into smokers and non-smokers. In order to extend our analysis, we explored two additional microarray datasets, GSE833 and GSE26927, of post-mortem spinal cord biopsies from sALS patients. RESULTS The analysis showed that CHI3L1 and CHI3L2 expression levels were significantly upregulated in the motor cortex of sALS patients, compared to the healthy controls. Moreover, their expression levels were negatively correlated with survival time. Interesting results were obtained when we compared the expression levels of Chitinases among smokers. We showed that CHI3L1 and CHI3L2 were significantly upregulated in sALS smokers compared to non-smokers. Furthermore, we found that four genes belonging to the Chitinases network (SERPINA3, C1s, RRAD, HLA-DQA1) were significantly upregulated in the motor cortex of sALS patients and positively correlated with Chitinases expression levels. Similar results were obtained during the exploration of the two-microarray dataset. CONCLUSIONS This study suggests that CHI3L1 and CHI3L2 are associated with the progression of neurodegeneration in motor cortex and spinal cord of sALS patients.
Collapse
Affiliation(s)
- C Sanfilippo
- Department of Biomedical and Biotechnological Sciences, Human Anatomy and Histology Section, University of Catania, Italy
| | - A Longo
- Department of Biomedical and Biotechnological Sciences, Human Anatomy and Histology Section, University of Catania, Italy
| | - F Lazzara
- Department of Biomedical and Biotechnological Sciences, Human Anatomy and Histology Section, University of Catania, Italy
| | - D Cambria
- Department of Biomedical and Biotechnological Sciences, Human Anatomy and Histology Section, University of Catania, Italy
| | - G Distefano
- Department of Biomedical and Biotechnological Sciences, Human Anatomy and Histology Section, University of Catania, Italy
| | - M Palumbo
- Department of Biomedical and Biotechnological Sciences, Human Anatomy and Histology Section, University of Catania, Italy
| | - A Cantarella
- Department of Biomedical and Biotechnological Sciences, Human Anatomy and Histology Section, University of Catania, Italy
| | - L Malaguarnera
- Department of Biomedical and Biotechnological Sciences, Human Anatomy and Histology Section, University of Catania, Italy
| | - M Di Rosa
- Department of Biomedical and Biotechnological Sciences, Human Anatomy and Histology Section, University of Catania, Italy.
| |
Collapse
|
20
|
Gastric and intestinal proteases resistance of chicken acidic chitinase nominates chitin-containing organisms for alternative whole edible diets for poultry. Sci Rep 2017; 7:6662. [PMID: 28751762 PMCID: PMC5532213 DOI: 10.1038/s41598-017-07146-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 07/03/2017] [Indexed: 12/14/2022] Open
Abstract
Chitin, a polymer of N-acetyl-D-glucosamine (GlcNAc), functions as a major structural component in crustaceans, insects and fungi and is the second most abundant polysaccharide in the nature. Although these chitin-containing organisms have been suggested as novel animal feed resources, chitin has long been considered as indigestible fibers in the animal body. Recently, we reported that acidic chitinase (Chia) is a protease-resistant major glycosidase in mouse gastrointestinal tract (GIT) and that it digests chitin in the mouse stomach. However, the physiological role of Chia in other animals including poultry remains unknown. Here, we report that Chia can function as a digestive enzyme that breaks down chitin-containing organisms in chicken GIT. Chia mRNA is predominantly expressed in the glandular stomach tissue in normal chicken. We also show that chicken Chia has a robust chitinolytic activity at pH 2.0 and is highly resistant to proteolysis by pepsin and trypsin/chymotrypsin under conditions mimicking GIT. Chia degraded shells of mealworm larvae in the presence of digestive proteases and produced (GlcNAc)2. Thus, functional similarity of chicken Chia with the mouse enzyme suggests that chitin-containing organisms can be used for alternative poultry diets not only as whole edible resources but also as enhancers of their nutritional value.
Collapse
|
21
|
Van Dyken SJ, Liang HE, Naikawadi RP, Woodruff PG, Wolters PJ, Erle DJ, Locksley RM. Spontaneous Chitin Accumulation in Airways and Age-Related Fibrotic Lung Disease. Cell 2017; 169:497-509.e13. [PMID: 28431248 DOI: 10.1016/j.cell.2017.03.044] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 02/22/2017] [Accepted: 03/28/2017] [Indexed: 01/21/2023]
Abstract
The environmentally widespread polysaccharide chitin is degraded and recycled by ubiquitous bacterial and fungal chitinases. Although vertebrates express active chitinases from evolutionarily conserved loci, their role in mammalian physiology is unclear. We show that distinct lung epithelial cells secrete acidic mammalian chitinase (AMCase), which is required for airway chitinase activity. AMCase-deficient mice exhibit premature morbidity and mortality, concomitant with accumulation of environmentally derived chitin polymers in the airways and expression of pro-fibrotic cytokines. Over time, these mice develop spontaneous pulmonary fibrosis, which is ameliorated by restoration of lung chitinase activity by genetic or therapeutic approaches. AMCase-deficient epithelial cells express fibrosis-associated gene sets linked with cell stress pathways. Mice with lung fibrosis due to telomere dysfunction and humans with interstitial lung disease also accumulate excess chitin polymers in their airways. These data suggest that altered chitin clearance could exacerbate fibrogenic pathways in the setting of lung diseases characterized by epithelial cell dysfunction.
Collapse
Affiliation(s)
- Steven J Van Dyken
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Hong-Erh Liang
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Ram P Naikawadi
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Prescott G Woodruff
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Paul J Wolters
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - David J Erle
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Richard M Locksley
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA; Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
22
|
Human Chitotriosidase: Catalytic Domain or Carbohydrate Binding Module, Who's Leading HCHT's Biological Function. Sci Rep 2017; 7:2768. [PMID: 28584264 PMCID: PMC5459812 DOI: 10.1038/s41598-017-02382-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 04/10/2017] [Indexed: 01/07/2023] Open
Abstract
Chitin is an important structural component of numerous fungal pathogens and parasitic nematodes. The human macrophage chitotriosidase (HCHT) is a chitinase that hydrolyses glycosidic bonds between the N-acetyl-D-glucosamine units of this biopolymer. HCHT belongs to the Glycoside Hydrolase (GH) superfamily and contains a well-characterized catalytic domain appended to a chitin-binding domain (ChBDCHIT1). Although its precise biological function remains unclear, HCHT has been described to be involved in innate immunity. In this study, the molecular basis for interaction with insoluble chitin as well as with soluble chito-oligosaccharides has been determined. The results suggest a new mechanism as a common binding mode for many Carbohydrate Binding Modules (CBMs). Furthermore, using a phylogenetic approach, we have analysed the modularity of HCHT and investigated the evolutionary paths of its catalytic and chitin binding domains. The phylogenetic analyses indicate that the ChBDCHIT1 domain dictates the biological function of HCHT and not its appended catalytic domain. This observation may also be a general feature of GHs. Altogether, our data have led us to postulate and discuss that HCHT acts as an immune catalyser.
Collapse
|
23
|
Pohls P, González-Dávalos L, Mora O, Shimada A, Varela-Echavarria A, Toledo-Cuevas EM, Martínez-Palacios CA. A complete chitinolytic system in the atherinopsid pike silverside Chirostoma estor: gene expression and activities. JOURNAL OF FISH BIOLOGY 2016; 88:2130-2143. [PMID: 27161769 DOI: 10.1111/jfb.12988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 02/17/2016] [Indexed: 06/05/2023]
Abstract
The expression and digestive activity of pike silverside Chirostoma estor endogenous chitinases were analysed in samples from four life stages: whole eggs; larvae; juvenile intestine and hepatopancreas and adult intestine and hepatopancreas. A chitinase cDNA was cloned and partially sequenced (GenBank accession number: FJ785521). It was highly homologous to non-acidic chitinase sequences from other fish species, suggesting that it is a chitotriosidase. Quantitative PCR showed that this chitinase was expressed throughout the life span of C. estor, with maximum expression in the hepatopancreas of juveniles. Chitotriosidase and chitobiosidase activities were found at all life stages, along with a very high level of N-acetyl glucosaminidase (NAGase). The chitotriosidase activity could be encoded by the cloned complementary (c)DNA, although additional chitinase genes may be present. The chitotriosidase activity appeared to be transcriptionally regulated only at the juvenile stage. The expression and activity of chitinases tended to increase from the early to juvenile stages, suggesting that these variables are stimulated by chitin-rich live food. Nevertheless, the feeding of juvenile and adult fish with both live food and a balanced commercial diet seemed to provoke significant reductions in pancreatic NAGase secretion and/or synthesis in the gut. Moreover, all chitinase activities were lower in adults, probably reflecting a higher intake and use of the balanced diet. The observation of chitotriosidase and chitobiosidase activities together with a very high NAGase activity suggest the presence of a complete and compensatory chitinolytic chitinase system that enables this stomachless short-gut fish species to use chitin as an energy substrate. These novel findings suggest that dietary inclusions of chitin-rich ingredients or by-products might reduce the farming costs of C. estor without impairing performance.
Collapse
Affiliation(s)
- P Pohls
- Programa de Posgrado en Ciencias de la Producción y de la Salud Animal (PPCPSA), Universidad Nacional Autónoma de México (UNAM), México City, México
| | - L González-Dávalos
- Laboratorio de Rumiología y Metabolismo Nutricional (RuMeN), Facultad de Estudios Superiores-Cuautitlán (FES-C), UNAM, Querétaro, Qro., 76140, México
| | - O Mora
- Laboratorio de Rumiología y Metabolismo Nutricional (RuMeN), Facultad de Estudios Superiores-Cuautitlán (FES-C), UNAM, Querétaro, Qro., 76140, México
| | - A Shimada
- Laboratorio de Rumiología y Metabolismo Nutricional (RuMeN), Facultad de Estudios Superiores-Cuautitlán (FES-C), UNAM, Querétaro, Qro., 76140, México
| | | | - E M Toledo-Cuevas
- Instituto de Investigaciones Agropecuarias y Forestales, Universidad Michoacana de San Nicolás de Hidalgo, San Juanito Itzícuaro, Morelia, Michoacán 58330, México
| | - C A Martínez-Palacios
- Instituto de Investigaciones Agropecuarias y Forestales, Universidad Michoacana de San Nicolás de Hidalgo, San Juanito Itzícuaro, Morelia, Michoacán 58330, México
| |
Collapse
|
24
|
Chitinases and Imaginal disc growth factors organize the extracellular matrix formation at barrier tissues in insects. Sci Rep 2016; 6:18340. [PMID: 26838602 PMCID: PMC4738247 DOI: 10.1038/srep18340] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 11/16/2015] [Indexed: 12/27/2022] Open
Abstract
The cuticle forms an apical extracellular-matrix (ECM) that covers exposed organs, such as epidermis, trachea and gut, for organizing morphogenesis and protection of insects. Recently, we reported that cuticle proteins and chitin are involved in ECM formation. However, molecular mechanisms that control assembly, maturation and replacement of the ECM and its components are not well known. Here we investigated the poorly described glyco-18-domain hydrolase family in Drosophila and identified the Chitinases (Chts) and imaginal-disc-growth-factors (Idgfs) that are essential for larval and adult molting. We demonstrate that Cht and idgf depletion results in deformed cuticles, larval and adult molting defects, and insufficient protection against wounding and bacterial infection, which altogether leads to early lethality. We show that Cht2/Cht5/Cht7/Cht9/Cht12 and idgf1/idgf3/idgf4/idgf5/idgf6 are needed for organizing proteins and chitin-matrix at the apical cell surface. Our data indicate that normal ECM formation requires Chts, which potentially hydrolyze chitin-polymers. We further suggest that the non-enzymatic idgfs act as structural proteins to maintain the ECM scaffold against chitinolytic degradation. Conservation of Chts and Idgfs proposes analogous roles in ECM dynamics across the insect taxa, indicating that Chts/Idgfs are new targets for species specific pest control.
Collapse
|
25
|
Yamaguchi T, Takizawa F, Fischer U, Dijkstra JM. Along the Axis between Type 1 and Type 2 Immunity; Principles Conserved in Evolution from Fish to Mammals. BIOLOGY 2015; 4:814-59. [PMID: 26593954 PMCID: PMC4690019 DOI: 10.3390/biology4040814] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 10/10/2015] [Accepted: 10/19/2015] [Indexed: 02/07/2023]
Abstract
A phenomenon already discovered more than 25 years ago is the possibility of naïve helper T cells to polarize into TH1 or TH2 populations. In a simplified model, these polarizations occur at opposite ends of an "immune 1-2 axis" (i1-i2 axis) of possible conditions. Additional polarizations of helper/regulatory T cells were discovered later, such as for example TH17 and Treg phenotypes; although these polarizations are not selected by the axis-end conditions, they are affected by i1-i2 axis factors, and may retain more potential for change than the relatively stable TH1 and TH2 phenotypes. I1-i2 axis conditions are also relevant for polarizations of other types of leukocytes, such as for example macrophages. Tissue milieus with "type 1 immunity" ("i1") are biased towards cell-mediated cytotoxicity, while the term "type 2 immunity" ("i2") is used for a variety of conditions which have in common that they inhibit type 1 immunity. The immune milieus of some tissues, like the gills in fish and the uterus in pregnant mammals, probably are skewed towards type 2 immunity. An i2-skewed milieu is also created by many tumors, which allows them to escape eradication by type 1 immunity. In this review we compare a number of i1-i2 axis factors between fish and mammals, and conclude that several principles of the i1-i2 axis system seem to be ancient and shared between all classes of jawed vertebrates. Furthermore, the present study is the first to identify a canonical TH2 cytokine locus in a bony fish, namely spotted gar, in the sense that it includes RAD50 and bona fide genes of both IL-4/13 and IL-3/ IL-5/GM-CSF families.
Collapse
Affiliation(s)
- Takuya Yamaguchi
- Laboratory of Fish Immunology, Institute of Infectology, Friedrich-Loeffler-Institut, Südufer 10, Greifswald-Insel Riems 17493, Germany.
| | - Fumio Takizawa
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Uwe Fischer
- Laboratory of Fish Immunology, Institute of Infectology, Friedrich-Loeffler-Institut, Südufer 10, Greifswald-Insel Riems 17493, Germany.
| | - Johannes M Dijkstra
- Institute for Comprehensive Medical Science, Fujita Health University, Dengakugakubo 1-98, Toyoake, Aichi 470-1192, Japan.
| |
Collapse
|
26
|
Żurawska-Płaksej E, Kratz EM, Ferens-Sieczkowska M, Knapik-Kordecka M, Piwowar A. Changes in glycosylation of human blood plasma chitotriosidase in patients with type 2 diabetes. Glycoconj J 2015; 33:29-39. [DOI: 10.1007/s10719-015-9629-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Revised: 10/13/2015] [Accepted: 10/14/2015] [Indexed: 01/03/2023]
|
27
|
Hamilton G, Rath B, Ulsperger E. How to target small cell lung cancer. Oncoscience 2015; 2:684-92. [PMID: 26425658 PMCID: PMC4580060 DOI: 10.18632/oncoscience.212] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 08/15/2015] [Indexed: 12/27/2022] Open
Abstract
Small cell lung cancer (SCLC) is a highly malignant disease with dismal prognosis. Although great progress has been made in investigating genetic aberrations and putative drivers of this tumor entity, the mechanisms of rapid dissemination and acquisition of drug resistance are not clear. The majority of SCLC cases are characterized by inactivation of the tumor suppressors p53 and retinoblastoma (Rb) and, therefore, interchangeable drivers will be difficult to target successfully. Access to pure cultures of SCLC circulating tumor cells (CTCs) and study of their tumor biology has revealed a number of new potential targets. Most important, expression of chitinase-3-like-1/YKL-40 (CHI3L1) which controls expression of vascular epithelial growth factor (VEGF) and matrix metalloproteinase-9 (MMP9) was newly described in these cells. The process switching CHI3L1-negative SCLC cells to CHI3L1-positive CTCs seems to be associated with cytokines released by inflammatory immune cells. Furthermore, these CTCs were found to promote monocyte-macrophage differentiation, most likely of the M2 tumor-promoting type, recently described to express PD-1 immune checkpoint antigen in SCLC. In conclusion, dissemination of SCLC seems to be linked to conversion of regular tumor cells to highly invasive CHI3L1-positive CTCs, which are protected by immune system suppression. Besides the classical targets VEGF, MMP-9 and PD-1, CHI3L1 constitutes a new possibly drugable molecule to retard down dissemination of SCLC cells, which may be similarly relevant for glioblastoma and other tumor entities.
Collapse
Affiliation(s)
- Gerhard Hamilton
- Ludwig Boltzmann Cluster of Translational Oncology, A-1090 Vienna, Austria
| | - Barbara Rath
- Ludwig Boltzmann Cluster of Translational Oncology, A-1090 Vienna, Austria
| | - Ernst Ulsperger
- Ludwig Boltzmann Cluster of Translational Oncology, A-1090 Vienna, Austria
| |
Collapse
|
28
|
Koch BEV, Stougaard J, Spaink HP. Keeping track of the growing number of biological functions of chitin and its interaction partners in biomedical research. Glycobiology 2015; 25:469-82. [PMID: 25595947 PMCID: PMC4373397 DOI: 10.1093/glycob/cwv005] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Chitin is a vital polysaccharide component of protective structures in many eukaryotic organisms but seems absent in vertebrates. Chitin or chitin oligomers are therefore prime candidates for non-self-molecules, which are recognized and degraded by the vertebrate immune system. Despite the absence of polymeric chitin in vertebrates, chitinases and chitinase-like proteins (CLPs) are well conserved in vertebrate species. In many studies, these proteins have been found to be involved in immune regulation and in mediating the degradation of chitinous external protective structures of invading pathogens. Several important aspects of chitin immunostimulation have recently been uncovered, advancing our understanding of the complex regulatory mechanisms that chitin mediates. Likewise, the last few years have seen large advances in our understanding of the mechanisms and molecular interactions of chitinases and CLPs in relation to immune response regulation. It is becoming increasingly clear that their function in this context is not exclusive to chitin producing pathogens, but includes bacterial infections and cancer signaling as well. Here we provide an overview of the immune signaling properties of chitin and other closely related biomolecules. We also review the latest literature on chitinases and CLPs of the GH18 family. Finally, we examine the existing literature on zebrafish chitinases, and propose the use of zebrafish as a versatile model to complement the existing murine models. This could especially be of benefit to the exploration of the function of chitinases in infectious diseases using high-throughput approaches and pharmaceutical interventions.
Collapse
Affiliation(s)
- Bjørn E V Koch
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus C, Denmark Leiden University, Institute of Biology, Leiden, The Netherlands
| | - Jens Stougaard
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus C, Denmark
| | - Herman P Spaink
- Leiden University, Institute of Biology, Leiden, The Netherlands
| |
Collapse
|
29
|
Żurawska-Płaksej E, Ługowska A, Hetmańczyk K, Knapik-Kordecka M, Adamiec R, Piwowar A. Proteins from the 18 glycosyl hydrolase family are associated with kidney dysfunction in patients with diabetes type 2. Biomarkers 2014; 20:52-7. [PMID: 25519006 DOI: 10.3109/1354750x.2014.992475] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
OBJECTIVES To investigate chitotriosidase (CHIT1) activity and chitinase-3-like protein 1 (YKL-40) concentration in plasma of type 2 diabetic patients and evaluate their relationship with kidney dysfunction. MATERIALS AND METHODS 94 diabetic subjects and 33 controls were enrolled in the study. Plasma CHIT1 activity and YKL-40 concentration were measured along with routine laboratory parameters. RESULTS Levels of CHIT1 and YKL-40 in plasma of type 2 diabetic patients increased progressively with the degree of albuminuria. CHIT1 discriminated normoalbuminuric subjects from those with abnormal albuminuria better than YKL-40. CONCLUSIONS CHIT1represent a supportive biomarker connected with development of diabetic vascular complications, especially kidney dysfunction.
Collapse
Affiliation(s)
- Ewa Żurawska-Płaksej
- Department of Pharmaceutical Biochemistry, Wroclaw Medical University , Wroclaw , Poland
| | | | | | | | | | | |
Collapse
|
30
|
Spatial and temporal expression patterns of chitinase genes in developing zebrafish embryos. Gene Expr Patterns 2014; 14:69-77. [DOI: 10.1016/j.gep.2014.01.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Revised: 01/03/2014] [Accepted: 01/04/2014] [Indexed: 12/20/2022]
|
31
|
Kashimura A, Okawa K, Ishikawa K, Kida Y, Iwabuchi K, Matsushima Y, Sakaguchi M, Sugahara Y, Oyama F. Protein A-mouse acidic mammalian chitinase-V5-His expressed in periplasmic space of Escherichia coli possesses chitinase functions comparable to CHO-expressed protein. PLoS One 2013; 8:e78669. [PMID: 24244337 PMCID: PMC3823863 DOI: 10.1371/journal.pone.0078669] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Accepted: 09/13/2013] [Indexed: 11/18/2022] Open
Abstract
Acidic mammalian chitinase (AMCase) has been shown to be associated with asthma in mouse models, allergic inflammation and food processing. Here, we describe an E. coli-expression system that allows for the periplasmic production of active AMCase fused to Protein A at the N-terminus and V5 epitope and (His)6 tag (V5-His) at the C-terminus (Protein A-AMCase-V5-His) in E. coli. The mouse AMCase cDNA was cloned into the vector pEZZ18, which is an expression vector containing the Staphylococcus Protein A promoter, with the signal sequence and truncated form of Protein A for extracellular expression in E. coli. Most of the Protein A-AMCase-V5-His was present in the periplasmic space with chitinolytic activity, which was measured using a chromogenic substrate, 4-nitrophenyl N,N'-diacetyl-β-D-chitobioside. The Protein A-AMCase-V5-His was purified from periplasmic fractions using an IgG Sepharose column followed by a Ni Sepharose chromatography. The recombinant protein showed a robust peak of activity with a maximum observed activity at pH 2.0, where an optimal temperature was 54°C. When this protein was preincubated between pH 1.0 and pH 11.0 on ice for 1 h, full chitinolytic activity was retained. This protein was also heat-stable till 54°C, both at pH 2.0 and 7.0. The chitinolytic activity of the recombinant AMCase against 4-nitrophenyl N,N'-diacetyl-β-D-chitobioside was comparable to the CHO-expressed AMCase. Furthermore, the recombinant AMCase bound to chitin beads, cleaved colloidal chitin and released mainly N,N'-diacetylchitobiose fragments. Thus, the E. coli-expressed Protein A-mouse AMCase-V5-His fusion protein possesses chitinase functions comparable to the CHO-expressed AMCase. This recombinant protein can be used to elucidate detailed biomedical functions of the mouse AMCase.
Collapse
Affiliation(s)
- Akinori Kashimura
- Department of Applied Chemistry, Kogakuin University, Hachioji, Tokyo, Japan
| | - Kazuaki Okawa
- Department of Applied Chemistry, Kogakuin University, Hachioji, Tokyo, Japan
| | - Kotarou Ishikawa
- Department of Applied Chemistry, Kogakuin University, Hachioji, Tokyo, Japan
| | - Yuta Kida
- Department of Applied Chemistry, Kogakuin University, Hachioji, Tokyo, Japan
| | - Kokoro Iwabuchi
- Department of Applied Chemistry, Kogakuin University, Hachioji, Tokyo, Japan
| | - Yudai Matsushima
- Department of Applied Chemistry, Kogakuin University, Hachioji, Tokyo, Japan
| | - Masayoshi Sakaguchi
- Department of Applied Chemistry, Kogakuin University, Hachioji, Tokyo, Japan
| | - Yasusato Sugahara
- Department of Applied Chemistry, Kogakuin University, Hachioji, Tokyo, Japan
| | - Fumitaka Oyama
- Department of Applied Chemistry, Kogakuin University, Hachioji, Tokyo, Japan
- * E-mail:
| |
Collapse
|