1
|
Porras-Rivera G, Górski K, Colin N. Behavioral biomarkers in fishes: A non-lethal approach to assess the effects of chemical pollution on freshwater ecosystems. ENVIRONMENTAL RESEARCH 2024; 260:119607. [PMID: 39002628 DOI: 10.1016/j.envres.2024.119607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/11/2024] [Accepted: 07/10/2024] [Indexed: 07/15/2024]
Abstract
The expansion of the human population and the escalating use of chemical products pose a considerable threat to aquatic biodiversity. Consequently, there is an imperative need for the implementation of non-lethal, cost-effective, and easily deployable biomonitoring tools. In this context, fish and their behavior as biomarkers have gained prominence in monitoring of freshwater ecosystems. The aim of this study was to assess the state of art in the use of behavioral biomarkers in ecotoxicology, emphasizing their role as informative tools for global environmental monitoring. Through a systematic literature search, ninety-two articles focusing on the evaluation of behavioral changes in freshwater fish in response to pollution were identified. The most prevalent keywords were "behavior" (7%) and "zebrafish" (6%). Experiments were conducted in countries with expansive territories, such as the United States (18%) and Brazil (17%). Exotic species were primarily employed (58%), with Danio rerio (26%) being the most frequently studied species. Among pollutants, pesticides (32%) and medicines (25%) were the most frequently studied, while locomotion (38%) and social behaviors (18%) were the most frequently evaluated behaviors. Across these studies, authors consistently reported significant changes in the behavior of fish exposed to contaminants, including decreased swimming speed and compromised feeding efficiency. The review findings affirm that evaluating behavioral biomarkers in freshwater fish offers an informative, non-lethal, cost-effective, and easily implementable approach to understanding pollution impacts on freshwater ecosystems. Although few studies on behavioral biomarkers were available to date, the number has rapidly increased in recent years. Furthermore, a variety of novel approaches and study models are being included. Research into behavioral biomarkers is crucial for understanding and managing environmental risks in freshwater ecosystems. Nevertheless, further studies are needed to enhance our understanding of behavioral toxicity indicators, considering factors such as life stage, sex, and breeding season in the tested species.
Collapse
Affiliation(s)
- Geraldine Porras-Rivera
- Doctorado en Ciencias Mención Ecología y Evolución, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, 5090000, Chile; Instituto de Ciencias Ambientales y Evolutivas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, 5090000, Chile
| | - Konrad Górski
- Instituto de Ciencias Marinas y Limnológicas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, 5090000, Chile; Facultad de Ciencias, Universidad Católica de La Santísima Concepción, Concepción, 4030000, Chile
| | - Nicole Colin
- Instituto de Ciencias Ambientales y Evolutivas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, 5090000, Chile; Programa Austral Patagonia, Universidad Austral de Chile, Valdivia, 5090000, Chile.
| |
Collapse
|
2
|
Bortolon Ribas E, Colombo Dal-Pont G, Centa A, Bueno MO, Cervini R, Silva Ogoshi RC, Locatelli C. Effects of Low Concentration of Glyphosate-Based Herbicide on Genotoxic, Oxidative, Inflammatory, and Behavioral Meters in Danio rerio (Teleostei and Cyprinidae). Biochem Res Int 2024; 2024:1542152. [PMID: 39290786 PMCID: PMC11407887 DOI: 10.1155/2024/1542152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 04/26/2024] [Accepted: 08/08/2024] [Indexed: 09/19/2024] Open
Abstract
The glyphosate herbicide is a pesticide widely used in the world and can contaminate soil, air, and water. The objective of this work was to evaluate the toxicity of a glyphosate-based herbicide (GBH) in zebrafish (Danio rerio). Fish were exposed to different concentrations of GBH (0, 50, 250, and 500 µg/L) for 96 hours. Brain, liver, and blood were collected for biochemical and genotoxicity analyses, and behavioral tests were performed. The results showed that there was a reduction in the activity of the antioxidant enzymes of catalase (CAT) and glutathione-S-transferase (GST) in the liver at all concentrations and at the highest concentration in the brain. There was also a reduction in lipid peroxidation in the liver at all concentrations of glyphosate. There was an increase in micronuclei in the blood at the 500 µg/L concentration. However, the count of nuclear abnormalities showed no differences from the control. Interleukin-1beta (IL-1β) generation was inhibited at all concentrations in the liver and at the highest concentration in the brain. No significant differences were found in the behavioral test compared to the control. The results showed that acute exposure to GBH promoted an inflammatory event, which reduced the efficiency of antioxidants, thus producing a disturbance in tissues, mainly in the liver, causing immunosuppression and generating genotoxicity.
Collapse
Affiliation(s)
- Eduardo Bortolon Ribas
- Alto Vale do Rio do Peixe University-UNIARP, Caçador, SC, Brazil
- Laboratory of Translational Research in Health Alto Vale do Rio do Peixe University-UNIARP, Caçador, SC, Brazil
| | - Gustavo Colombo Dal-Pont
- Alto Vale do Rio do Peixe University-UNIARP, Caçador, SC, Brazil
- Laboratory of Translational Research in Health Alto Vale do Rio do Peixe University-UNIARP, Caçador, SC, Brazil
| | - Ariana Centa
- Alto Vale do Rio do Peixe University-UNIARP, Caçador, SC, Brazil
- Laboratory of Translational Research in Health Alto Vale do Rio do Peixe University-UNIARP, Caçador, SC, Brazil
| | - Marcos Otávio Bueno
- Alto Vale do Rio do Peixe University-UNIARP, Caçador, SC, Brazil
- Laboratory of Translational Research in Health Alto Vale do Rio do Peixe University-UNIARP, Caçador, SC, Brazil
| | - Ricardo Cervini
- Alto Vale do Rio do Peixe University-UNIARP, Caçador, SC, Brazil
- Laboratory of Translational Research in Health Alto Vale do Rio do Peixe University-UNIARP, Caçador, SC, Brazil
| | | | - Claudriana Locatelli
- Laboratory of Translational Research in Health Alto Vale do Rio do Peixe University-UNIARP, Caçador, SC, Brazil
| |
Collapse
|
3
|
Grott SC, Israel NG, Bitschinski D, Abel G, Carneiro F, Alves TC, Alves de Almeida E. Influence of temperature on biomarker responses of bullfrog tadpoles (Lithobates catesbeianus) exposed to the herbicide ametryn. CHEMOSPHERE 2022; 308:136327. [PMID: 36087723 DOI: 10.1016/j.chemosphere.2022.136327] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 08/23/2022] [Accepted: 09/01/2022] [Indexed: 06/15/2023]
Abstract
The S-triazine herbicide ametryn (AMT) is relatively low adsorbed in soils and has high solubility in water, thus believed to affect non-target aquatic organisms such as amphibians. Temperature increases can intensify the effects of herbicides, possibly increasing the susceptibility of amphibians to these compounds. The aim of this study was to evaluate the influence of temperature (25 and 32 °C) on the responses of biochemical biomarkers in bullfrog tadpoles (Lithobates catesbeianus) exposed to different concentrations of AMT (0, 10, 50 and 200 ng.L-1) for a period of 16 days. The antioxidant enzymes catalase (CAT) and superoxide dismutase (SOD) and the biotransformation enzyme glutathione S-transferase (GST) had their activity decreased at the highest temperature (32 °C). SOD activity was reduced at 200 ng.L-1 and 32 °C compared to the control at the same temperature. AMT exposure also decreased the activities of alanine aminotransferase and gamma glutamyl transferase. On the other hand, the activities of acetylcholinesterase, carboxylesterase, alkaline phosphatase, levels of lipid peroxidation and protein carbonyl, as well genotoxic markers (micronucleus and nuclear abnormalities frequencies) were unchanged. The evaluation of integrated biomarker response index (IBR) indicated highest variations at the concentration of 200 ng.L-1 at 32 °C, suggesting that the combination of high AMT concentrations and temperatures generate more pronounced negative effects to tadpoles.
Collapse
Affiliation(s)
- Suelen Cristina Grott
- Environmental Engineering Post-Graduation Program, University of Blumenau, Blumenau, SC, Brazil.
| | - Nicole Grasmuk Israel
- Environmental Engineering Post-Graduation Program, University of Blumenau, Blumenau, SC, Brazil.
| | - Daiane Bitschinski
- Biodiversity Post-graduate Program, University of Blumenau, Blumenau, SC, Brazil.
| | - Gustavo Abel
- Environmental Engineering Post-Graduation Program, University of Blumenau, Blumenau, SC, Brazil
| | - Francisco Carneiro
- Environmental Engineering Post-Graduation Program, University of Blumenau, Blumenau, SC, Brazil.
| | - Thiago Caique Alves
- Environmental Engineering Post-Graduation Program, University of Blumenau, Blumenau, SC, Brazil.
| | - Eduardo Alves de Almeida
- Environmental Engineering Post-Graduation Program, University of Blumenau, Blumenau, SC, Brazil.
| |
Collapse
|
4
|
Lopes AR, Moraes JS, Martins CDMG. Effects of the herbicide glyphosate on fish from embryos to adults: a review addressing behavior patterns and mechanisms behind them. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 251:106281. [PMID: 36103761 DOI: 10.1016/j.aquatox.2022.106281] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/29/2022] [Accepted: 08/24/2022] [Indexed: 06/15/2023]
Abstract
The use of agrochemicals has grown in recent years following the increase in agricultural productivity, to eliminate weeds that can compromise crop yields. The intensive use of these products combined with the lack of treatment of agricultural wastewater is causing contamination of the natural environments, especially the aquatics. Glyphosate [N-(phosphonomethyl) glycine] is the most commonly used herbicide in agriculture worldwide. Studies have shown that this compound is toxic to a variety of fish species at the concentrations of environmental relevance. Glyphosate-based herbicides can affect fish biochemical, physiological, endocrine, and behavioral pathways. Changes in behaviors such as foraging, escaping from predators, and courtship can compromise the survival of species and even communities. The behavior patterns of fish has been shown to be a sensitive tool for risk assessment. In this sense, this review summarizes and discusses the toxic effects of glyphosate and its formulations on the behavior of fish in different life stages. Additionally, behavioral impairments were associated with other negative effects of glyphosate such as energy imbalance, stress responses, AChE inhibition, and physiological and endocrine disturbances, which are evidenced and described in the literature. Graphical abstract.
Collapse
Affiliation(s)
- Andressa Rubim Lopes
- Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Rio Grande RS, Brazil.
| | - Jenifer Silveira Moraes
- Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Rio Grande RS, Brazil
| | - Camila de Martinez Gaspar Martins
- Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Rio Grande RS, Brazil
| |
Collapse
|
5
|
Zhang Q, Liu X, Gao M, Li X, Wang Y, Chang Y, Zhang X, Huo Z, Zhang L, Shan J, Zhang F, Zhu B, Yao W. The study of human serum metabolome on the health effects of glyphosate and early warning of potential damage. CHEMOSPHERE 2022; 298:134308. [PMID: 35302001 DOI: 10.1016/j.chemosphere.2022.134308] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 02/22/2022] [Accepted: 03/11/2022] [Indexed: 06/14/2023]
Abstract
Glyphosate is one of the most widely used herbicide with high efficiency, low toxicity and broad-spectrum. In recent decades, increasing evidence suggests that glyphosate may cause adverse health effects on human beings. However, until now, there is little data on the human metabolic changes. Since occupational workers are under greater health risks than ordinary people, the understanding regarding the health effects of glyphosate on occupational workers is very important for the early warning of potential damage. In this study, serum metabolic alterations in workers from three chemical factories were analyzed by gas chromatography-mass spectrometry (GC-MS) to assess the potential health risks caused by glyphosate at the molecular level. It was found that the levels of 27 metabolites changed significantly in the exposed group compared to the controls. The altered metabolic pathways, including amino acid metabolism, energy metabolism (glycolysis and TCA cycle) and glutathione metabolism (oxidative stress), etc., indicated a series of changes occur in health profile of the human body after glyphosate exposure, and the suboptimal health status of human may further evolve into various diseases, such as Parkinson's disease, renal and liver dysfunction, hepatocellular carcinoma, and colorectal cancer. Subsequently, 4 biomarkers (i.e., benzoic acid, 2-ketoisocaproic acid, alpha-ketoglutarate, and monoolein) were identified as potential biomarkers related to glyphosate exposure based on the partial correlation analyses, linear regression analyses, and FDR correction. Receiver-operating curve (ROC) analyses manifested that these potential biomarkers and their combinational pattern had good performance and potential clinical value to assess the potential health risk associated with glyphosate exposure while retaining high accuracy. Our findings provided new insights on mechanisms of health effects probably induced by glyphosate, and may be valuable for the health risk assessment of glyphosate exposure.
Collapse
Affiliation(s)
- QiuLan Zhang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xin Liu
- Department of Occupational Disease, Jiangsu Provincial Center for Disease Prevention and Control, Nanjing, 210009, China
| | - MengTing Gao
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xin Li
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - YiFei Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - YueYue Chang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - XueMeng Zhang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - ZongLi Huo
- Department of Occupational Disease, Jiangsu Provincial Center for Disease Prevention and Control, Nanjing, 210009, China
| | - Li Zhang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - JinJun Shan
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatics, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Feng Zhang
- Department of Occupational Disease, Jiangsu Provincial Center for Disease Prevention and Control, Nanjing, 210009, China.
| | - BaoLi Zhu
- Department of Occupational Disease, Jiangsu Provincial Center for Disease Prevention and Control, Nanjing, 210009, China.
| | - WeiFeng Yao
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
6
|
Ivantsova E, Wengrovitz AS, Souders CL, Martyniuk CJ. Developmental and behavioral toxicity assessment of glyphosate and its main metabolite aminomethylphosphonic acid (AMPA) in zebrafish embryos/larvae. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 93:103873. [PMID: 35504511 DOI: 10.1016/j.etap.2022.103873] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/25/2022] [Accepted: 04/27/2022] [Indexed: 06/14/2023]
Abstract
The relative toxicity of glyphosate (GLY) and its metabolite aminomethylphosphonic acid (AMPA) to zebrafish were compared. Embryos/larvae were exposed to one dose of either GLY (0.1, 1, or 10 μM), AMPA (0.1, 1, or 10 μM), or a 1 μM mixture for 7-days post-fertilization. Survival, success of hatch, and deformity frequency were not different from controls. Neither chemical induced reactive oxygen species in larval fish. GLY increased superoxide dismutase 2 mRNA in larvae while AMPA increased catalase and superoxide dismutase 1 in a concentration-specific manner. GLY increased cytochrome c oxidase subunit 4 isoform 1 and citrate synthase mRNA in larvae while AMPA decreased cytochrome c oxidase I and increased 3-hydroxyacyl CoA dehydrogenase transcripts. Hyperactivity was noted in fish treated with GLY, but not AMPA nor the mixture. Anxiety-like behaviors were absent with exposure to GLY or AMPA. GLY and AMPA may exert different effects at the molecular and behavioral level.
Collapse
Affiliation(s)
- Emma Ivantsova
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Andrew S Wengrovitz
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Christopher L Souders
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Christopher J Martyniuk
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA.
| |
Collapse
|
7
|
Mena F, Romero A, Blasco J, Araújo CVM. Can a mixture of agrochemicals (glyphosate, chlorpyrifos and chlorothalonil) mask the perception of an individual chemical? A hidden trap underlying ecological risk. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 230:113172. [PMID: 34998261 DOI: 10.1016/j.ecoenv.2022.113172] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/29/2021] [Accepted: 01/03/2022] [Indexed: 06/14/2023]
Abstract
As aquatic environments associated with conventional agriculture are exposed to various pesticides, it is important to identify any possible interactions that modify their effects when in a mixture. We applied avoidance tests with Danio rerio, exposing juveniles to three relevant current use pesticides: chlorpyrifos (CPF), chlorothalonil (CTL) and glyphosate (Gly), individually and in binary mixtures (CPF-Gly and CTL-Gly). Our goal was to identify the potential of contaminants to trigger the avoidance response in fish and detect any changes to that response resulting from binary mixtures. Avoidance was assessed for three hours using an open gradient system with six levels of increasing concentrations. Fish avoided environmentally relevant concentrations of the three compounds. The avoidance of CPF [AC50 = 7.95 (3.3-36.3) µg/L] and CTL [AC50 = 3.41 (1.2-41.6) µg/L] was evident during the entire period of observation. In the case of Gly, the response changed throughout the experiment: initially (until 100 min) the fish tolerated higher concentrations of the herbicide [AC50 = 52.2 (12.1-2700) µg/L] while during the later period (after 100 min) a clearer avoidance [1.5 (0.8-4.2) µg/L] was observed. The avoidance recorded using CPF and CTL alone was attenuated by the presence of Gly. Applying an additive concentration model, Gly initially acted synergistically with the other two compounds, although this interaction was not observed during the later period. Avoidance gives us an idea of how the distribution of populations may be altered by contamination, our results suggest that in some mixtures this response may be inhibited, at least temporarily, thus masking the ecological risk of the exposure.
Collapse
Affiliation(s)
- Freylan Mena
- Instituto Regional de Estudios en Sustancias Tóxicas (IRET), Universidad Nacional, 86-3000 Heredia, Costa Rica.
| | - Adarli Romero
- Escuela de Biología, Universidad de Costa Rica, 11501-2060 San José, Costa Rica
| | - Julián Blasco
- Department of Ecology and Coastal Management, Institute of Marine Sciences of Andalucía (CSIC), 11510 Puerto Real, Cádiz, Spain
| | - Cristiano V M Araújo
- Department of Ecology and Coastal Management, Institute of Marine Sciences of Andalucía (CSIC), 11510 Puerto Real, Cádiz, Spain
| |
Collapse
|
8
|
Evaluation of Behavioral Changes and Tissue Damages in Common Carp ( Cyprinus carpio) after Exposure to the Herbicide Glyphosate. Vet Sci 2021; 8:vetsci8100218. [PMID: 34679048 PMCID: PMC8540590 DOI: 10.3390/vetsci8100218] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/22/2021] [Accepted: 10/02/2021] [Indexed: 12/16/2022] Open
Abstract
Pesticides can induce changes in behavior and reduce the survival chance of aquatic organisms. In this study, the toxic effects of glyphosate suspension (Glyphosate Aria 41% SL, Tehran Iran) on behavior and tissues of common carp (Cyprinus carpio) were assessed. For this purpose, a 96 h LC50 of glyphosate suspension (68.788 mL·L-1) was used in the toxicity test. All individuals were divided into control and treatment groups with four replicates. Exposure operations were performed under two conditions: increasing concentration of suspension from 0 to 68.788 mL·L-1; then, decreasing to the first level. The swimming pattern was recorded by digital cameras during the test and tissue samples were collected at the end of the test. There were significant differences between the swimming pattern of treated individuals and control ones during both steps. The sublethal concentration of glyphosate led to hypertrophy, hyperplasia and hyperemia in the gill of fish. However, changes were obvious only after sampling. The exposed fish also displayed clinical signs such as darkening of the skin and increasing movement of the operculum. Moreover, glyphosate suspension affected swimming patterns of fish suggest that the swimming behavior test can indicate the potential toxicity of environmental pollutants and be used as a noninvasive, useful method for managing environmental changes and assessing fish health conditions by video monitoring.
Collapse
|
9
|
Marques JGDC, Veríssimo KJDS, Fernandes BS, Ferreira SRDM, Montenegro SMGL, Motteran F. Glyphosate: A Review on the Current Environmental Impacts from a Brazilian Perspective. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 107:385-397. [PMID: 34142191 DOI: 10.1007/s00128-021-03295-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 06/09/2021] [Indexed: 06/12/2023]
Abstract
The indiscriminate use of glyphosate is one of the main agricultural practices to combat weeds and grasses; however, its incorrect application increases soil and water contamination caused by the product. This situation is even more critical due to its great versatility for use in different cultivars and at lower prices, making it the most used pesticide in the world. Nevertheless, there is still a lack of in-depth studies regarding the damage that its use may cause. Therefore, this review focused on the analysis of environmental impacts at the soil-water interface caused by the use of glyphosate. In this sense, studies have shown that the intensive use of glyphosate has the potential to cause harmful effects on soil microorganisms, leading to changes in soil fertility and ecological imbalance, as well as impacts on aquatic environments derived from changes in the food chain. This situation is similar in Brazil, with the harmful effects of glyphosate in nontarget species and the contamination of the atmosphere. Therefore, it is necessary to change this scenario by modifying the type of pest control in agriculture, and actions such as crop rotation and biological control.
Collapse
Affiliation(s)
- Jonathas Gomes de Carvalho Marques
- Department of Civil Engineering, Federal University of Pernambuco - UFPE. Rua Acadêmico Hélio Ramos, s/n, Cidade Universitária, Recife, PE, 50740-530, Brazil.
| | - Klayde Janny da Silva Veríssimo
- Department of Civil Engineering, Federal University of Pernambuco - UFPE. Rua Acadêmico Hélio Ramos, s/n, Cidade Universitária, Recife, PE, 50740-530, Brazil
| | - Bruna Soares Fernandes
- Department of Civil Engineering, Federal University of Pernambuco - UFPE. Rua Acadêmico Hélio Ramos, s/n, Cidade Universitária, Recife, PE, 50740-530, Brazil
| | - Silvio Romero de Melo Ferreira
- Department of Civil Engineering, Federal University of Pernambuco - UFPE. Rua Acadêmico Hélio Ramos, s/n, Cidade Universitária, Recife, PE, 50740-530, Brazil
| | - Suzana Maria Gico Lima Montenegro
- Department of Civil Engineering, Federal University of Pernambuco - UFPE. Rua Acadêmico Hélio Ramos, s/n, Cidade Universitária, Recife, PE, 50740-530, Brazil
| | - Fabrício Motteran
- Department of Civil Engineering, Federal University of Pernambuco - UFPE. Rua Acadêmico Hélio Ramos, s/n, Cidade Universitária, Recife, PE, 50740-530, Brazil
| |
Collapse
|
10
|
Environmentally Relevant Mixture of Pesticides Affect Mobility and DNA Integrity of Early Life Stages of Rainbow Trout ( Oncorhynchus mykiss). TOXICS 2021; 9:toxics9080174. [PMID: 34437492 PMCID: PMC8402510 DOI: 10.3390/toxics9080174] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/15/2021] [Accepted: 07/20/2021] [Indexed: 11/16/2022]
Abstract
The aim of this study was to analyze the impact of three concentrations of a pesticide mixture on the first development stages of rainbow trout (Oncorhynchus mykiss). The mixture was made up of three commonly used pesticides in viticulture: glyphosate (GLY), chlorpyrifos (CPF) and copper sulfate (Cu). Eyed stage embryos were exposed for 3 weeks to three concentrations of the pesticide mixture. Lethal and sub-lethal effects were assessed through a number of phenotypic and molecular endpoints including survival, hatching delay, hatching success, biometry, swimming activity, DNA damage (Comet assay), lipid peroxidation (TBARS), protein carbonyl content and gene expression. Ten target genes involved in antioxidant defenses, DNA repair, mitochondrial metabolism and apoptosis were analyzed using real-time RT-qPCR. No significant increase of mortality, half-hatch, growth defects, TBARS and protein carbonyl contents were observed whatever the pesticide mixture concentration. In contrast, DNA damage and swimming activity were significantly more elevated at the highest pesticide mixture concentration. Gene transcription was up-regulated for genes involved in detoxification (gst and mt1), DNA repair (ogg1), mitochondrial metabolism (cox1 and 12S), and cholinergic system (ache). This study highlighted the induction of adaptive molecular and behavioral responses of rainbow trout larvae when exposed to environmentally realistic concentrations of a mixture of pesticides.
Collapse
|
11
|
Sánchez JAA, Barros DM, de Los Angeles Bistoni M, Ballesteros ML, Roggio MA, Martins CDGM. Glyphosate-based herbicides affect behavioural patterns of the livebearer Jenynsia multidentata. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:29958-29970. [PMID: 33576960 DOI: 10.1007/s11356-020-11958-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 12/02/2020] [Indexed: 06/12/2023]
Abstract
Roundup® is one of the most widely marketed glyphosate-based herbicides in the world. There are many different formulations of this brand that differ from each other in glyphosate concentration, salts and adjuvants, including surfactants, which are labelled as "inert" compounds. Several studies have shown that these formulations are highly toxic to fish, even compared with pure glyphosate. However, mechanisms underlying this toxicity are not fully understood. In this context, this study evaluated the effects of exposure to Roundup Original® (RO), Roundup Transorb® (RT), and Roundup WG® (RWG) on the behavioural patterns of the livebearer Jenynsia multidentata. This fish naturally inhabits agricultural areas in southern Brazil and Argentina where glyphosate is used extensively. In the experiment, animals were exposed to the herbicides for 96 h, at the environmentally relevant concentration of 0.5 mg/L of glyphosate. Swimming performance, anxiety, aggressiveness, long-term memory and male sexual activity were recorded. The formulation RWG negatively affected swimming performance, thigmotaxia and long-term memory consolidation. Conversely, RT reduced the sexual performance of males. These results confirm that Roundup® formulations are extremely harmful and also that they have different targets of toxicity, affecting behaviours that are essential for fish survival.
Collapse
Affiliation(s)
- Jessica Andrea Albañil Sánchez
- Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Av. Itália km 8, 96203-900, Rio Grande, RS, Brazil
| | - Daniela Marti Barros
- Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Av. Itália km 8, 96203-900, Rio Grande, RS, Brazil
| | - Maria de Los Angeles Bistoni
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Córdoba - UNC, Av. Vélez Sársfield 299, CP 5000, Córdoba, Argentina
- Instituto de Diversidad y Ecología Animal (IDEA), Consejo Nacional de investigaciones Científicas y Técnicas (CONICET), Av. Vélez Sársfield 299, CP 5000, Córdoba, Argentina
| | - Maria Laura Ballesteros
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Córdoba - UNC, Av. Vélez Sársfield 299, CP 5000, Córdoba, Argentina
- Instituto de Diversidad y Ecología Animal (IDEA), Consejo Nacional de investigaciones Científicas y Técnicas (CONICET), Av. Vélez Sársfield 299, CP 5000, Córdoba, Argentina
| | - María Angelina Roggio
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Córdoba - UNC, Av. Vélez Sársfield 299, CP 5000, Córdoba, Argentina
| | - Camila De Gaspar Martinez Martins
- Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Av. Itália km 8, 96203-900, Rio Grande, RS, Brazil.
| |
Collapse
|
12
|
Weeks Santos S, Gonzalez P, Cormier B, Mazzella N, Bonnaud B, Morin S, Clérandeau C, Morin B, Cachot J. A glyphosate-based herbicide induces sub-lethal effects in early life stages and liver cell line of rainbow trout, Oncorhynchus mykiss. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 216:105291. [PMID: 31525644 DOI: 10.1016/j.aquatox.2019.105291] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 08/28/2019] [Accepted: 09/01/2019] [Indexed: 06/10/2023]
Abstract
Most pesticides used in agriculture end up in the aquatic environment through runoff and leaching of treated crops. One of the most commonly used herbicides is glyphosate. This compound or its metabolites are frequently detected in surface water in Europe. In the present study, in vivo and in vitro studies were carried out using the early life stages of rainbow trout (Oncorhynchus mykiss) and the cell line RTL-W1 (a liver cell line from rainbow trout) to characterize the toxic effects of glyphosate at environmentally-realistic concentrations. Both studies were performed using the commercial formulation Roundup® GT Max, and technical-grade glyphosate for the in vitro study. Eyed-stage embryos were exposed for 3 weeks to sub-lethal concentrations (0.1 and 1 mg/L) of glyphosate using Roundup. Numerous toxicity endpoints were recorded such as survival, hatching success, larval biometry, developmental abnormalities, swimming activity, genotoxicity (formamidopyrimidine DNA-glycosylase Fpg-modified comet assay), lipid peroxidation (TBARS), protein carbonyls and target gene transcription. Concentrations neither affected embryonic or larval survival nor increased developmental abnormalities. However, a significant decrease was observed in the head size of larvae exposed to 1 mg/L of glyphosate. In addition, a significant increase in mobility was observed for larvae exposed to glyphosate at 0.1 mg/L. TBARS levels were significantly decreased on larvae exposed to 1 mg/L (a.i.), and cat and cox1 genes were differently transcribed from controls. DNA damage was detected by the Fpg-modified comet assay in RTL-W1 cell line exposed to the technical-grade glyphosate and Roundup formulation. The results suggest that chronic exposure to glyphosate, at environmental concentrations, could represent a potential risk for early life stages of fish.
Collapse
Affiliation(s)
- Shannon Weeks Santos
- UMR CNRS 5805 EPOC, University of Bordeaux, Allée Geoffoy Saint-Hilaire, CS 50023, 33615, Pessac Cedex, France
| | - Patrice Gonzalez
- UMR CNRS 5805 EPOC, University of Bordeaux, Allée Geoffoy Saint-Hilaire, CS 50023, 33615, Pessac Cedex, France
| | - Bettie Cormier
- UMR CNRS 5805 EPOC, University of Bordeaux, Allée Geoffoy Saint-Hilaire, CS 50023, 33615, Pessac Cedex, France
| | - Nicolas Mazzella
- IRSTEA, UR EABX, 50 avenue de Verdun, 33612, Cestas cedex, France
| | - Bertille Bonnaud
- IRSTEA, UR EABX, 50 avenue de Verdun, 33612, Cestas cedex, France
| | - Soizic Morin
- IRSTEA, UR EABX, 50 avenue de Verdun, 33612, Cestas cedex, France
| | - Christelle Clérandeau
- UMR CNRS 5805 EPOC, University of Bordeaux, Allée Geoffoy Saint-Hilaire, CS 50023, 33615, Pessac Cedex, France
| | - Bénédicte Morin
- UMR CNRS 5805 EPOC, University of Bordeaux, Allée Geoffoy Saint-Hilaire, CS 50023, 33615, Pessac Cedex, France
| | - Jérôme Cachot
- UMR CNRS 5805 EPOC, University of Bordeaux, Allée Geoffoy Saint-Hilaire, CS 50023, 33615, Pessac Cedex, France.
| |
Collapse
|
13
|
da Costa Chaulet F, de Alcantara Barcellos HH, Fior D, Pompermaier A, Koakoski G, da Rosa JGS, Fagundes M, Barcellos LJG. Glyphosate- and Fipronil-Based Agrochemicals and Their Mixtures Change Zebrafish Behavior. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2019; 77:443-451. [PMID: 31190101 DOI: 10.1007/s00244-019-00644-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Accepted: 06/03/2019] [Indexed: 06/09/2023]
Abstract
Environmental contamination caused by the human occupancy and economic activities that generate a wide range of contaminated effluents that reach natural water resources, is a current reality. Residues of agrichemicals used in plant production were detected in different environments and in different countries. Among these agrochemicals, we studied a glyphosate-based herbicide (GBH), a fipronil-based insecticide (FBI), and their mixtures (GBH + FBI). Zebrafish exposed to 3 and 5 mg/L of GBH spend more time in the top zone and less time in the bottom zone. Fish exposed to 0.009 and 0.018 mg/L of FBI spent less time in the bottom zone, whereas zebrafish exposed to the three GBH + FBI mixtures spend more time in the top zone compared with unexposed control fish. This clear anxiolytic pattern, in an environmental context, can directly impair the ability of fish to avoid or evade predators. We concluded that both glyphosate-based herbicide and fipronil-based insecticide and their mixtures alter zebrafish behavior, which may result in significant repercussions on the maintenance of the species as well as on the food chain and the ecosystem.
Collapse
Affiliation(s)
- Fabiele da Costa Chaulet
- Programa de Pós-Graduação em Ciências Ambientais, Universidade de Passo Fundo (UPF), BR 285, São José, Passo Fundo, RS, 99052-900, Brazil
| | - Heloísa Helena de Alcantara Barcellos
- Curso de Medicina Veterinária, Universidade de Passo Fundo (UPF), BR 285, São José, Passo Fundo, RS, 99052-900, Brazil
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria (UFSM), Av. Roraima 1000, Cidade Universitária, Camobi, Santa Maria, RS, 97105-900, Brazil
| | - Débora Fior
- Programa de Pós-Graduação em Bioexperimentação, Universidade de Passo Fundo (UPF), BR 285, São José, Passo Fundo, RS, 99052-900, Brazil
| | - Aline Pompermaier
- Programa de Pós-Graduação em Ciências Ambientais, Universidade de Passo Fundo (UPF), BR 285, São José, Passo Fundo, RS, 99052-900, Brazil
| | - Gessi Koakoski
- Programa de Pós-Graduação em Bioexperimentação, Universidade de Passo Fundo (UPF), BR 285, São José, Passo Fundo, RS, 99052-900, Brazil
| | | | - Michele Fagundes
- Programa de Pós-Graduação em Ciências Ambientais, Universidade de Passo Fundo (UPF), BR 285, São José, Passo Fundo, RS, 99052-900, Brazil
| | - Leonardo José Gil Barcellos
- Programa de Pós-Graduação em Ciências Ambientais, Universidade de Passo Fundo (UPF), BR 285, São José, Passo Fundo, RS, 99052-900, Brazil.
- Curso de Medicina Veterinária, Universidade de Passo Fundo (UPF), BR 285, São José, Passo Fundo, RS, 99052-900, Brazil.
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria (UFSM), Av. Roraima 1000, Cidade Universitária, Camobi, Santa Maria, RS, 97105-900, Brazil.
- Programa de Pós-Graduação em Bioexperimentação, Universidade de Passo Fundo (UPF), BR 285, São José, Passo Fundo, RS, 99052-900, Brazil.
| |
Collapse
|
14
|
Panetto OS, Gomes HF, Fraga Gomes DS, Campos E, Romeiro NC, Costa EP, do Carmo PRL, Feitosa NM, Moraes J. The effects of Roundup® in embryo development and energy metabolism of the zebrafish (Danio rerio). Comp Biochem Physiol C Toxicol Pharmacol 2019; 222:74-81. [PMID: 30981909 DOI: 10.1016/j.cbpc.2019.04.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 04/05/2019] [Accepted: 04/08/2019] [Indexed: 12/28/2022]
Abstract
Roundup® is currently the most widely used and sold agricultural pesticide in the world. The objective of this work was to investigate the effects of Roundup® on energy metabolism during zebrafish (Danio rerio) embryogenesis. The embryo toxicity test was performed for 96 h post-fertilisation and the sublethal concentration of Roundup® was defined as 58.3 mg/L, which resulted in failure to inflate the swim bladder. Biochemical assays were performed with viable embryos following glyphosate exposure, and no significant effects on protein, glucose, glycogen, triglyceride levels or the enzymatic activities of alanine aminotransferase and aspartate aminotransferase were observed. However, the activity of hexokinase was significantly altered following exposure to 11.7 mg/L Roundup®. Through molecular docking we have shown for the first time that the interactions of glucokinase and hexokinases 1 and 2 with glyphosate showed significant interactions in the active sites, corroborating the biochemical results of hexokinase activity in zebrafish exposed to the chemical. From the results of molecular docking interactions carried out on the Zfishglucok, ZfishHK1 and ZfishHK2 models with the glyphosate linker, it can be concluded that there are significant interactions between glyphosate and active sites of glucokinase and hexokinase 1 and 2 proteins. The present work suggests that Roundup® can induce problems in fish embryogenesis relating to the incapacity of swim bladder to inflate. This represents the first study demonstrating the interaction of glyphosate with hexokinase and its isoforms.
Collapse
Affiliation(s)
- Ottassano S Panetto
- Laboratório Integrado de Bioquímica Hatisaburo Masuda, NUPEM, Núcleo em Ecologia e Desenvolvimento Ambiental de Macaé, Universidade Federal do Rio de Janeiro, Avenida São José Barreto, N° 764, Bairro: São José do Barreto, Macaé, RJ CEP: 27.965-045, Brazil
| | - Helga F Gomes
- Laboratório Integrado de Bioquímica Hatisaburo Masuda, NUPEM, Núcleo em Ecologia e Desenvolvimento Ambiental de Macaé, Universidade Federal do Rio de Janeiro, Avenida São José Barreto, N° 764, Bairro: São José do Barreto, Macaé, RJ CEP: 27.965-045, Brazil
| | - Danielle S Fraga Gomes
- Laboratório Integrado de Bioquímica Hatisaburo Masuda, NUPEM, Núcleo em Ecologia e Desenvolvimento Ambiental de Macaé, Universidade Federal do Rio de Janeiro, Avenida São José Barreto, N° 764, Bairro: São José do Barreto, Macaé, RJ CEP: 27.965-045, Brazil
| | - Eldo Campos
- Laboratório Integrado de Bioquímica Hatisaburo Masuda, NUPEM, Núcleo em Ecologia e Desenvolvimento Ambiental de Macaé, Universidade Federal do Rio de Janeiro, Avenida São José Barreto, N° 764, Bairro: São José do Barreto, Macaé, RJ CEP: 27.965-045, Brazil
| | - Nelilma C Romeiro
- Laboratório Integrado de Computação Científica-LICC-NUPEM, Núcleo em Ecologia e Desenvolvimento Ambiental de Macaé, Universidade Federal do Rio de Janeiro, Avenida São José Barreto, N° 764, Bairro: São José do Barreto, Macaé, RJ CEP: 27.965-045, Brazil
| | - Evenilton P Costa
- Laboratório Integrado de Computação Científica-LICC-NUPEM, Núcleo em Ecologia e Desenvolvimento Ambiental de Macaé, Universidade Federal do Rio de Janeiro, Avenida São José Barreto, N° 764, Bairro: São José do Barreto, Macaé, RJ CEP: 27.965-045, Brazil
| | - Paulo R L do Carmo
- Laboratório Integrado de Computação Científica-LICC-NUPEM, Núcleo em Ecologia e Desenvolvimento Ambiental de Macaé, Universidade Federal do Rio de Janeiro, Avenida São José Barreto, N° 764, Bairro: São José do Barreto, Macaé, RJ CEP: 27.965-045, Brazil
| | - Natália M Feitosa
- Laboratório Integrado de Ciências Morfofuncionais, NUPEM, Núcleo em Ecologia e Desenvolvimento Ambiental de Macaé, Universidade Federal do Rio de Janeiro, Avenida São José Barreto, N° 764, Bairro: São José do Barreto, Macaé, RJ CEP: 27.965-045, Brazil
| | - Jorge Moraes
- Laboratório Integrado de Bioquímica Hatisaburo Masuda, NUPEM, Núcleo em Ecologia e Desenvolvimento Ambiental de Macaé, Universidade Federal do Rio de Janeiro, Avenida São José Barreto, N° 764, Bairro: São José do Barreto, Macaé, RJ CEP: 27.965-045, Brazil.
| |
Collapse
|
15
|
Tapkir SD, Kharat SS, Kumkar P, Gosavi SM. Impact, recovery and carryover effect of Roundup® on predator recognition in common spiny loach, Lepidocephalichthys thermalis. ECOTOXICOLOGY (LONDON, ENGLAND) 2019; 28:189-200. [PMID: 30632094 DOI: 10.1007/s10646-018-02011-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/17/2018] [Indexed: 06/09/2023]
Abstract
Understanding the negative impact of a variety of environmental contaminants on aquatic animals is essential to curb biodiversity loss and stop degradation of ecological functions. Excessive and unrestricted use of pesticides is the most serious threat to aquatic animals including amphibians and fishes. Among the known pesticides, glyphosate based formulations have been shown to have lethal effects on many aquatic organisms. However, negative effects of pesticides on crucial ecological interactions such as prey-predator interactions are relatively unknown from tropics. In many aquatic organisms, recognition of predators is based on odor signatures; and therefore any anthropogenic alteration in water chemistry has the potential to impair recognition and learning of predators. Through a series of behavioral experiments we evaluated the effect of glyphosate based herbicide (Roundup®) on the antipredator behavior of common spiny loach, Lepidocephalichthys thermalis to understand the effects of pesticide-exposure on recognition of conspecific alarm cues, and associative learning to avoid predation. We exposed common spiny loach (for 3 h or 15 days) to sub-lethal concentration (0.5 mg a.e./L) of Roundup® and subsequently with conspecific alarm cues, signaling the proximity of a predator. Unexposed prey fish showed a significant reduction in activity level in response to conspecific alarm cues. Whereas such alarm response was not observed in prey fish that were exposed to Roundup® either for 3 h or 15 days. Such lack of response could be associated with alteration of olfactory function in prey individuals. However, this inability to detect the conspecific alarm cues was found to be transient and exposed fish recovered within 2 days. In subsequent experiments, we showed that Roundup® deactivates the conspecific alarm cues thus making them unavailable for prey to evoke the response. Furthermore, Roundup® mediated degradation of conspecific alarm cues and diminished the associative learning necessary for detection of the invasive/unknown/novel predators. Overall, due to the worldwide occurrence of glyphosate in water bodies, glyphosate mediated behavioral suppression exposes the prey animals to a considerable risk of predation, both by native and non-native predators.
Collapse
Affiliation(s)
- Sandip D Tapkir
- Department of Zoology, Modern College of Arts, Science and Commerce, Ganeshkhind, Pune, Maharashtra, 411 016, India
- Department of Zoology, Savitribai Phule Pune University, Ganeshkhind, Pune, Maharashtra, 400 007, India
| | - Sanjay S Kharat
- Department of Zoology, Modern College of Arts, Science and Commerce, Ganeshkhind, Pune, Maharashtra, 411 016, India
| | - Pradeep Kumkar
- Department of Zoology, Modern College of Arts, Science and Commerce, Ganeshkhind, Pune, Maharashtra, 411 016, India
| | - Sachin M Gosavi
- Department of Zoology, Modern College of Arts, Science and Commerce, Ganeshkhind, Pune, Maharashtra, 411 016, India.
- Department of Zoology, Post Graduate Research Centre, Modern College of Arts, Science and Commerce, Shivajinagar, Pune, Maharashtra, 411 005, India.
- Department of Zoology, Maharashtra College of Arts, Science and Commerce, 246-A, Jahangir Boman Behram Marg, Nagpada, Mumbai, Maharashtra, 400 008, India.
| |
Collapse
|
16
|
Dos Santos Teixeira JM, da Silva Lima V, de Moura FR, da Costa Marisco P, Sinhorin AP, Sinhorin VDG. Acute toxicity and effects of Roundup Original® on pintado da Amazônia. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:25383-25389. [PMID: 29951755 DOI: 10.1007/s11356-018-2630-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 06/20/2018] [Indexed: 06/08/2023]
Abstract
The toxicity of Roundup Original® (GLY), a glyphosate-based herbicide widely used in crops in Mato Grosso state, was determined in hybrid fish jundiara or pintado da Amazônia. The 96 h-LC50 of GLY was 13.57 mg L-1. Moreover, exposure to sublethal concentrations of GLY (0, 0.37, 0.75, 2.25, 4.5, 7.5 mg L-1) has not altered the survival rate (100% for all treatments). In fish liver, protein carbonyl (PC) levels as well as glutathione-S-transferase (GST) activity, reduced glutathione (GSH), and ascorbic acid (ASA) contents increased when compared to control group. Superoxide dismutase (SOD) activity was reduced and catalase (CAT) has not changed. PC content has grown in muscle and brain, and thiobarbituric acid-reactive species (TBARS) levels also increased in muscle, but in the brain, they remained unaltered. Acetylcholinesterase (AChE) activity reduced in muscle but increased in brain when compared to control group. Our results suggest that short-term exposure to GLY induced alterations in the oxidative stress biomarkers in fish and can be interfering with their survival in natural environment; besides, these findings may be considered of high ecotoxicological relevance.
Collapse
Affiliation(s)
- Jhonnes Marcos Dos Santos Teixeira
- Instituto de Ciências da Saúde, Universidade Federal de Mato Grosso, Câmpus de Sinop, Av. Alexandre Ferronato, 1200, Setor Industrial,, Sinop, MT, 78557-267, Brazil
| | - Valfran da Silva Lima
- Instituto de Ciências da Saúde, Universidade Federal de Mato Grosso, Câmpus de Sinop, Av. Alexandre Ferronato, 1200, Setor Industrial,, Sinop, MT, 78557-267, Brazil
| | - Fernando Rafael de Moura
- Programa de Pós-Graduação em Ciências Ambientais, Laboratórios Integrados de Pesquisas em Ciências Químicas, Instituto de Ciências Naturais, Humanas e Sociais, Universidade Federal de Mato Grosso, Câmpus de Sinop, Av. Alexandre Ferronato, 1200, Setor Industrial, Sinop, MT, 78557-267, Brazil
| | - Patrícia da Costa Marisco
- Instituto de Ciências da Saúde, Universidade Federal de Mato Grosso, Câmpus de Sinop, Av. Alexandre Ferronato, 1200, Setor Industrial,, Sinop, MT, 78557-267, Brazil
| | - Adilson Paulo Sinhorin
- Programa de Pós-Graduação em Ciências Ambientais, Laboratórios Integrados de Pesquisas em Ciências Químicas, Instituto de Ciências Naturais, Humanas e Sociais, Universidade Federal de Mato Grosso, Câmpus de Sinop, Av. Alexandre Ferronato, 1200, Setor Industrial, Sinop, MT, 78557-267, Brazil
| | - Valéria Dornelles Gindri Sinhorin
- Programa de Pós-Graduação em Ciências Ambientais, Laboratórios Integrados de Pesquisas em Ciências Químicas, Instituto de Ciências Naturais, Humanas e Sociais, Universidade Federal de Mato Grosso, Câmpus de Sinop, Av. Alexandre Ferronato, 1200, Setor Industrial, Sinop, MT, 78557-267, Brazil.
| |
Collapse
|
17
|
Persch TSP, da Silva PR, Dos Santos SHD, de Freitas BS, Oliveira GT. Changes in intermediate metabolism and oxidative balance parameters in sexually matured three-barbeled catfishes exposed to herbicides from rice crops (Roundup ®, Primoleo ® and Facet ®). ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2018; 58:170-179. [PMID: 29408759 DOI: 10.1016/j.etap.2018.01.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 12/01/2017] [Accepted: 01/08/2018] [Indexed: 06/07/2023]
Abstract
This study analyzed the effect of different concentrations of herbicides (Facet®, Primoleo®, and Roundup®) on metabolism and oxidative balance (superoxide dismutase and catalase activity, lipid peroxidation) in the gills, liver, kidneys, and tail muscle of adult catfish. All herbicides caused protein depletion in gills, increased glycogen and triacylglycerol consumption in the liver, and changes in muscle glycogen. Roundup® and Primoleo® stimulated lipid deposition in the liver, while Roundup® and Facet® stimulated lipid consumption in gills. In kidneys, protein content increased after Roundup® and Primoleo® exposure, glycogen increased after Facet®, and lipids increased after Roundup®. Primoleo® had the strongest effect on muscle, with changes in all metabolites. Regarding oxidative stress, the liver and kidneys were the organs most affected by exposure to herbicides, and catalase was the main enzyme involved in the detoxification of these herbicides. A hierarchy of toxicity was established for the tested chemicals: Facet® > Primoleo® > Roundup®.
Collapse
Affiliation(s)
- Tanilene Sotero Pinto Persch
- Pontifícia Universidade Católica do Rio Grande do Sul, School of Sciences, Conservation Physiology Laboratory, Avenida Ipiranga, 6681 Pd. 12, Bloco C, Sala 250, CP. 1429, Porto Alegre, RS 90619-900, Brazil.
| | - Patrícia Rodrigues da Silva
- Pontifícia Universidade Católica do Rio Grande do Sul, School of Sciences, Conservation Physiology Laboratory, Avenida Ipiranga, 6681 Pd. 12, Bloco C, Sala 250, CP. 1429, Porto Alegre, RS 90619-900, Brazil.
| | - Sarah Helen Dias Dos Santos
- Pontifícia Universidade Católica do Rio Grande do Sul, School of Sciences, Conservation Physiology Laboratory, Avenida Ipiranga, 6681 Pd. 12, Bloco C, Sala 250, CP. 1429, Porto Alegre, RS 90619-900, Brazil.
| | - Betânia Souza de Freitas
- Pontifícia Universidade Católica do Rio Grande do Sul, School of Sciences, Conservation Physiology Laboratory, Avenida Ipiranga, 6681 Pd. 12, Bloco C, Sala 250, CP. 1429, Porto Alegre, RS 90619-900, Brazil.
| | - Guendalina Turcato Oliveira
- Pontifícia Universidade Católica do Rio Grande do Sul, School of Sciences, Conservation Physiology Laboratory, Avenida Ipiranga, 6681 Pd. 12, Bloco C, Sala 250, CP. 1429, Porto Alegre, RS 90619-900, Brazil.
| |
Collapse
|
18
|
Monte TCDC, Braga BV, Vasconcellos MCD, Jurberg AD, Mota EM, Barbosa HS, Garcia JS, Maldonado Júnior A. Morphological effects on helminth parasites caused by herbicide under experimental conditions. REVISTA BRASILEIRA DE PARASITOLOGIA VETERINARIA = BRAZILIAN JOURNAL OF VETERINARY PARASITOLOGY : ORGAO OFICIAL DO COLEGIO BRASILEIRO DE PARASITOLOGIA VETERINARIA 2018; 27:42-51. [PMID: 29641790 DOI: 10.1590/s1984-29612017074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 11/20/2017] [Indexed: 11/21/2022]
Abstract
Helminth parasites have been studied as potential accumulators for different pollutants. Echinostoma paraensei is a foodborne trematode whose vertebrate host, the rodent Nectomys squamipes, is naturally exposed to environmental pesticides. However, little information exists regarding the pesticide's effects on helminths. This study investigated the morphological effects on the trematode, E. paraensei, after experimental Roundup® herbicide exposure, in concentrations below those recommended for agricultural use. After two hours of exposure, scanning electron microscopy (SEM) showed changes to the tegument, such as furrowing, shrinkage, peeling, spines loss on the peristomic collar, and histopathological evidence of altered cells in the cecum and acinus vitelline glands with vacuoles and structural changes to the muscular layers. Glycidic content was decreased, primarily in the connective tissue. As E. paraensei is an intestinal parasite of the semi-aquatic wild rodent, N. squamipes, it is predisposed to pesticide exposure resulting from agricultural practices. Therefore, we emphasize the need to evaluate its impact on helminth parasites, due to their pivotal role in regulating host populations.
Collapse
Affiliation(s)
- Tainá Carneiro de Castro Monte
- Programa de Pós-graduação em Biodiversidade e Saúde, Instituto Oswaldo Cruz - FIOCRUZ, Rio de Janeiro, RJ, Brasil
- Laboratório de Biologia e Parasitologia de Mamíferos Silvestres Reservatórios, Instituto Oswaldo Cruz - FIOCRUZ, Rio de Janeiro, RJ, Brasil
| | - Brunna Vianna Braga
- Laboratório de Biologia e Parasitologia de Mamíferos Silvestres Reservatórios, Instituto Oswaldo Cruz - FIOCRUZ, Rio de Janeiro, RJ, Brasil
- Programa de Pós-graduação em Biologia Parasitária, Instituto Oswaldo Cruz - FIOCRUZ, Rio de Janeiro, RJ, Brasil
| | | | - Arnon Dias Jurberg
- Laboratório de Pesquisas sobre o Timo, Instituto Oswaldo Cruz - FIOCRUZ, Rio de Janeiro, RJ, Brasil
| | - Ester Maria Mota
- Laboratório de Patologia, Instituto Oswaldo Cruz - FIOCRUZ, Rio de Janeiro, RJ, Brasil
| | - Helene Santos Barbosa
- Laboratório de Biologia Estrutural, Instituto Oswaldo Cruz - FIOCRUZ, Rio de Janeiro, RJ, Brasil
| | - Juberlan Silva Garcia
- Laboratório de Biologia e Parasitologia de Mamíferos Silvestres Reservatórios, Instituto Oswaldo Cruz - FIOCRUZ, Rio de Janeiro, RJ, Brasil
| | - Arnaldo Maldonado Júnior
- Laboratório de Biologia e Parasitologia de Mamíferos Silvestres Reservatórios, Instituto Oswaldo Cruz - FIOCRUZ, Rio de Janeiro, RJ, Brasil
| |
Collapse
|
19
|
de Moura FR, da Silva Lima RR, da Cunha APS, da Costa Marisco P, Aguiar DH, Sugui MM, Sinhorin AP, Sinhorin VDG. Effects of glyphosate-based herbicide on pintado da Amazônia: Hematology, histological aspects, metabolic parameters and genotoxic potential. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2017; 56:241-248. [PMID: 29031220 DOI: 10.1016/j.etap.2017.09.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 09/25/2017] [Accepted: 09/27/2017] [Indexed: 06/07/2023]
Abstract
Roundup Original® is an herbicide widely used in Mato Grosso's agriculture and it may contamine water bodies, being an unforeseen xenobiotic to aquatic organisms, particularly fish. This study investigated the effects on the hybrid fish jundiara (Leiarius marmoratus×Pseudoplatystoma reticulatum) of an environmentally relevant exposure to this herbicide. Glucose levels in liver, muscle and plasma decreased after exposure to 1.357mgL-1 of Roundup Original® (glyphosate nominal concentration), while glycogen levels reduced in liver and muscle for different times. Elevated cholesterol and triglycerides revealed an adaptive response. Protein and lactate levels also increased during the experiment, however no changes were observed for muscle lactate. Increment of the transaminases suggests damage to the liver cells. After 96hours of exposure, reductions in all hematological parameters were observed, whereas the micronucleus test findings showed genotoxic scenery. Histological analysis did not display pathological alterations of the hepatic tissue. The results obtained provide valuable data for noticing the effects of pollutants on non-target organisms.
Collapse
Affiliation(s)
- Fernando Rafael de Moura
- Programa de Pós-Graduação em Ciências Ambientais, Laboratórios Integrados de Pesquisas em Ciências Químicas (LIPEQ), Instituto de Ciências Naturais, Humanas e Sociais, Universidade Federal de Mato Grosso, Campus Universitário de Sinop, Sinop, Mato Grosso, Brazil
| | - Ritane Rose da Silva Lima
- Instituto de Ciências da Saúde, Universidade Federal de Mato Grosso, Campus Universitário de Sinop, Sinop, Mato Grosso, Brazil
| | - Ana Paula Simões da Cunha
- Instituto de Ciências da Saúde, Universidade Federal de Mato Grosso, Campus Universitário de Sinop, Sinop, Mato Grosso, Brazil
| | - Patrícia da Costa Marisco
- Instituto de Ciências da Saúde, Universidade Federal de Mato Grosso, Campus Universitário de Sinop, Sinop, Mato Grosso, Brazil
| | - Danilo Henrique Aguiar
- Instituto de Ciências Naturais, Humanas e Sociais, Universidade Federal de Mato Grosso, Campus Universitário de Sinop, Sinop, Mato Grosso, Brazil
| | - Marina Mariko Sugui
- Programa de Pós-Graduação em Ciências Ambientais, Laboratórios Integrados de Pesquisas em Ciências Químicas (LIPEQ), Instituto de Ciências Naturais, Humanas e Sociais, Universidade Federal de Mato Grosso, Campus Universitário de Sinop, Sinop, Mato Grosso, Brazil
| | - Adilson Paulo Sinhorin
- Programa de Pós-Graduação em Ciências Ambientais, Laboratórios Integrados de Pesquisas em Ciências Químicas (LIPEQ), Instituto de Ciências Naturais, Humanas e Sociais, Universidade Federal de Mato Grosso, Campus Universitário de Sinop, Sinop, Mato Grosso, Brazil
| | - Valéria Dornelles Gindri Sinhorin
- Programa de Pós-Graduação em Ciências Ambientais, Laboratórios Integrados de Pesquisas em Ciências Químicas (LIPEQ), Instituto de Ciências Naturais, Humanas e Sociais, Universidade Federal de Mato Grosso, Campus Universitário de Sinop, Sinop, Mato Grosso, Brazil.
| |
Collapse
|
20
|
Antunes AM, Rocha TL, Pires FS, de Freitas MA, Leite VRMC, Arana S, Moreira PC, Sabóia-Morais SMT. Gender-specific histopathological response in guppies Poecilia reticulata exposed to glyphosate or its metabolite aminomethylphosphonic acid. J Appl Toxicol 2017; 37:1098-1107. [PMID: 28425566 DOI: 10.1002/jat.3461] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 01/11/2017] [Accepted: 02/03/2017] [Indexed: 11/11/2022]
Abstract
Ecotoxicity of glyphosate (GLY) and its metabolite aminomethylphosphonic acid (AMPA) was investigated in guppies, Poecilia reticulata. We tested the effects of these chemicals on the gills and liver of both male and female guppies using qualitative and quantitative histopathological analyses associated with histopathological condition indexes. Both genders showed similar median lethal concentration (LC50 ) at 96 h for GLY (68.78 and 70.87 mg l-1 ) and AMPA (180 and 164.32 mg l-1 ). However, the histopathological assessment of both fish organs exposed to sublethal concentrations of GLY (35 mg l-1 ) and AMPA (82 mg l-1 ) for 96 h showed a tissue- and gender-specific histopathological response. In both exposure assays, fish presented mainly progressive changes, such as proliferation of the interlamellar epithelium, partial and total fusion of secondary lamellae. The liver showed mainly regressive changes, such as steatosis, pyknotic nuclei and high distribution of collagen fibers. Unusually large hepatocytes as degenerated cells were also detected. Histopathological changes in gills were similar for the males and females, but the liver response was different between the genders. The hepatic inflammatory changes were more common in males. The increase in the area of hepatocyte vacuoles is gender dependent with higher values in the male compared to the female guppies exposed to GLY and AMPA. Multiparametric analysis indicated that the male guppies are more sensitive than females, particularly in the presence of AMPA. Our study shows that the histopathological assessment associated with gender-specific response can be successfully used in ecotoxicological assessment of GLY and the metabolite AMPA. Copyright © 2017 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Adriana Maria Antunes
- Laboratory of Cellular Behavior, Department of Morphology, Biological Sciences Institute, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Thiago Lopes Rocha
- Laboratory of Cellular Behavior, Department of Morphology, Biological Sciences Institute, Federal University of Goiás, Goiânia, Goiás, Brazil
- CIMA, Faculty of Science and Technology, University of Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | - Fernando Santiago Pires
- Laboratory of Cellular Behavior, Department of Morphology, Biological Sciences Institute, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Meire Alves de Freitas
- Laboratory of Cellular Behavior, Department of Morphology, Biological Sciences Institute, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Vanessa Rafaela Milhomem Cruz Leite
- Laboratory of Cellular Behavior, Department of Morphology, Biological Sciences Institute, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Sarah Arana
- Laboratório de Histofisiologia e Histopatologia Experimental em Animais Ectotérmicos, Instituto de Biologia, Universidade Estadual de Campinas, 13083-970, Campinas, SP, Brazil
| | - Paulo César Moreira
- Department of Morphology, Federal University of Goiás, Goiania, Goiás, Brazil
| | - Simone Maria Teixeira Sabóia-Morais
- Laboratory of Cellular Behavior, Department of Morphology, Biological Sciences Institute, Federal University of Goiás, Goiânia, Goiás, Brazil
| |
Collapse
|
21
|
Saravanan M, Kim JY, Hur KJ, Ramesh M, Hur JH. Responses of the freshwater fish Cyprinus carpio exposed to different concentrations of butachlor and oxadiazon. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2017. [DOI: 10.1016/j.bcab.2017.06.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
22
|
Persch TSP, Weimer RN, Freitas BS, Oliveira GT. Metabolic parameters and oxidative balance in juvenile Rhamdia quelen exposed to rice paddy herbicides: Roundup ®, Primoleo ®, and Facet ®. CHEMOSPHERE 2017; 174:98-109. [PMID: 28160682 DOI: 10.1016/j.chemosphere.2017.01.092] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 01/17/2017] [Accepted: 01/18/2017] [Indexed: 06/06/2023]
Abstract
The present study sought to assess the response of Rhamdia quelen juveniles (6-8 cm total body length) to exposure to different concentrations of three herbicides: Roundup® Original (18, 36, 72, and 144 μg/L), Primoleo® (2.5, 5, 10, and 15 μg/L), and Facet® (1.75, 3.5, 7, and 14 μg/L). Total protein (TP), glycogen (GG), total lipids (TL), triacylglycerols (TAG), lipid peroxidation (TBARS), and activity of the antioxidant enzymes superoxide dismutase (SOD) and catalase (CAT) in gills, liver, kidneys, and muscle were measured by spectrophotometry. Roundup® (glyphosate) reduced the TP, GG, and TL in gills and TL in liver and kidney and increased TP in liver and increased GG in muscle. In contrast to Primoleo® (atrazine), all tissues stored TAG and consumed LT, besides the gills also reduced PT. There was still an increase in GG in the kidneys and muscle. Facet® (quinclorac) induced changes mainly in the liver (increased TP, TL, and TAG content) and muscle (increased GG, TL, and TAG depletion). Gill tissue exhibited TP depletion alone, and kidney tissue metabolism was unchanged. This fish species appears capable of modulating its enzymes to the point where it sustains no oxidative damage as a result of exposure to the herbicides glyphosate (possibly due to increased CAT activity), atrazine (despite no changes in SOD or CAT activity), and quinclorac (with increased lipid peroxidation, particularly in gill, kidney, and muscle tissue, despite elevated SOD activity). Although it is not considered a target species, R. quelen suffers harmful effects from interaction with these herbicides.
Collapse
Affiliation(s)
- Tanilene Sotero Pinto Persch
- Pontifícia Universidade Católica do Rio Grande do Sul, School of Life Sciences, Conservation Physiology Laboratory, Brazil; PPG-Zoology, Brazil.
| | - Rodrigo Nizolli Weimer
- Pontifícia Universidade Católica do Rio Grande do Sul, School of Life Sciences, Conservation Physiology Laboratory, Brazil.
| | - Betânia Souza Freitas
- Pontifícia Universidade Católica do Rio Grande do Sul, School of Life Sciences, Conservation Physiology Laboratory, Brazil.
| | - Guendalina Turcato Oliveira
- Pontifícia Universidade Católica do Rio Grande do Sul, School of Life Sciences, Conservation Physiology Laboratory, Brazil; PPG-Zoology, Brazil; CNPq Productivity Fellow, Brazil.
| |
Collapse
|
23
|
Golombieski JI, Sutili FJ, Salbego J, Seben D, Gressler LT, da Cunha JA, Gressler LT, Zanella R, Vaucher RDA, Marchesan E, Baldisserotto B. Imazapyr+imazapic herbicide determines acute toxicity in silver catfish Rhamdia quelen. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2016; 128:91-99. [PMID: 26896896 DOI: 10.1016/j.ecoenv.2016.02.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 02/04/2016] [Accepted: 02/05/2016] [Indexed: 06/05/2023]
Abstract
Imazapyr (IMY) and imazapic (IMI) are imidazolinone herbicides which have been associated in a commercial formulation (Kifix(®)). To date, there are no studies on the toxicity of an IMY+IMI herbicide in fish. This work aimed to assess the acute toxicity (24 and 96 h) of IMY+IMI (0, 0.488 and 4.88 µg/L) towards Rhamdia quelen through hematological, biochemical, immunological, ionoregulatory and enzymatic indexes. Red blood cell count was lower at 4.88 than at 0.488 µg/L (24 and 96 h); mean corpuscular volume was lower than control at both concentrations (24 h) and at 0.488 µg/L (96 h); lymphocytes declined at 4.88 µg/L comparing to control (96 h); and monocytes increased at 4.88 µg/L (96 h) in comparison with the respective control and with 4.88 µg/L at 24h. Aspartate aminotransferase was higher at 0.488 µg/L (96 h) than the respective control and the respective concentration at 24 h; uric acid reduced at 4.88 µg/L comparing with 0.488 µg/L (96 h); and cortisol was lower at 4.88 µg/L compared to 0.488 µg/L and control (96 h). Herbicide exposure lowered plasma bactericidal activity at both concentrations (24 h) and at 0.488 µg/L (96 h); and plasma complement activity declined at 4.88 µg/L comparing with 0.488 µg/L and control (96 h), and was lower at all concentrations at 96 h than at 24 h. Plasma K(+) levels were higher at 4.88µg/L than in the remaining groups (24 and 96h); and Na(+) levels decreased at 4.88 µg/L compared to control (96 h). Na(+)/K(+)-ATPase and H(+)-ATPase activities in gills were lower at 4.88 µg/L comparing with control (24 h) and with the respective concentration at 96 h; and AChE activity in brain was higher at 0.488 and 4.88 µg/L than control (24 h) and the respective concentrations at 96 h, while in muscle it was higher at 0.488 and 4.88 µg/L than control (96 h) and the respective concentrations at 24 h. The present findings demonstrate that, despite IMY+IMI targets the animal-absent AHAS enzyme, such formulation displayed an acute toxic effect upon R. quelen homeostasis by impacting on vital functions such as immune defense, metabolism, ionoregulation and neurotransmission.
Collapse
Affiliation(s)
- Jaqueline Ineu Golombieski
- Department of Agricultural and Environmental Sciences, Federal University of Santa Maria (UFSM)/CESNORS, Linha 7 de Setembro, BR 386, Km 40, Frederico Westphalen, 98400-000 RS, Brazil.
| | - Fernando Jonas Sutili
- Department of Physiology and Pharmacology, UFSM, Avenida Roraima 1000, Santa Maria (SM), 97105-900 RS, Brazil.
| | - Joseânia Salbego
- Department of Physiology and Pharmacology, UFSM, Avenida Roraima 1000, Santa Maria (SM), 97105-900 RS, Brazil.
| | - Débora Seben
- Department of Agricultural and Environmental Sciences, Federal University of Santa Maria (UFSM)/CESNORS, Linha 7 de Setembro, BR 386, Km 40, Frederico Westphalen, 98400-000 RS, Brazil.
| | - Luciane Tourem Gressler
- Department of Physiology and Pharmacology, UFSM, Avenida Roraima 1000, Santa Maria (SM), 97105-900 RS, Brazil.
| | - Jéssyka Arruda da Cunha
- Department of Physiology and Pharmacology, UFSM, Avenida Roraima 1000, Santa Maria (SM), 97105-900 RS, Brazil.
| | | | - Renato Zanella
- Department of Chemistry, UFSM, Avenida Roraima 1000, SM, 97105-900 RS, Brazil.
| | - Rodrigo de Almeida Vaucher
- Graduate Program in Nanoscience, Franciscan University, Rua dos Andradas 1614, SM, 97010-032 RS, Brazil.
| | - Enio Marchesan
- Department of Plant Science, UFSM, Avenida Roraima 1000, SM, 97105-900 RS, Brazil.
| | - Bernardo Baldisserotto
- Department of Physiology and Pharmacology, UFSM, Avenida Roraima 1000, Santa Maria (SM), 97105-900 RS, Brazil.
| |
Collapse
|
24
|
Dai P, Hu P, Tang J, Li Y, Li C. Effect of glyphosate on reproductive organs in male rat. Acta Histochem 2016; 118:519-26. [PMID: 27286640 DOI: 10.1016/j.acthis.2016.05.009] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Revised: 05/24/2016] [Accepted: 05/24/2016] [Indexed: 11/29/2022]
Abstract
Glyphosate as an active ingredient of Roundup(®) which is thought to be one of the most popular herbicide was used worldwide. Many studies have focused on reproductive toxicity on glyphosate-based herbicide, but few evidence exists to imply the male reproductive toxicity of glyphosate alone in vivo. In this study SD rats were Lavaged with glyphosate at doses of 5, 50, 500mg/kg to detect the toxicity of glyphosate on rat testis. Glyphosate significantly decreased the average daily feed intake at dose of 50mg/kg, and the weight of seminal vesicle gland, coagulating gland as well as the total sperm count at dose of 500mg/kg. Immunohistochemistry of androgen receptor (AR) has no difference among all groups. As to testosterone, estradiol, progesterone and oxidative stress parameters, the level of them has no differences amidst all doses. Taken together, we conclude that glyphosate alone has low toxicity on male rats reproductive system.
Collapse
Affiliation(s)
- Pengyuan Dai
- College of Animal Science and Technology, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, PR China
| | - Ping Hu
- College of Animal Science and Technology, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, PR China
| | - Juan Tang
- College of Animal Science and Technology, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, PR China
| | - Yansen Li
- College of Animal Science and Technology, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, PR China
| | - Chunmei Li
- College of Animal Science and Technology, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, PR China.
| |
Collapse
|