1
|
Solano GSM, Andrioli NB. Genotoxic effects induced by iprodione and tebuconazole in meristematic cells of Allium cepa: responses dependent on concentration and exposure time. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:17289-17298. [PMID: 38340299 DOI: 10.1007/s11356-024-32351-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 02/02/2024] [Indexed: 02/12/2024]
Abstract
The present work explores the genotoxicity of the fungicides iprodione (IP) and tebuconazole (TB) using the Allium cepa assay as an in vivo biological model. Both short-term and long-term exposures were studied, revealing concentration- and time-dependent cytological and genotoxic effects. IP exhibited genotoxicity over a wider concentration range (5-50 µg/ml) and required 30 h of exposure, while TB showed genotoxicity at higher concentrations (10 and 30 µg/ml) within a 4-h exposure period. The study highlights the importance of assessing potential risks associated with fungicide exposure, including handling, disposal practices, and concerns regarding food residue. Moreover, the research underscores the genotoxic effects of IP and TB on plant cells and provides valuable insights into their concentration and time-response patterns.
Collapse
Affiliation(s)
- Grace Stephany Mendoza Solano
- GIBE (Grupo de Investigación en Biología Evolutiva), Facultad de Ciencias Exactas Y Naturales, FCEyN-UBA, Ciudad Universitaria, Pabellón II, 4° Piso Laboratorios, 43-46, C1428EGA, Buenos Aires, Argentina
| | - Nancy Beatriz Andrioli
- GIBE (Grupo de Investigación en Biología Evolutiva), Facultad de Ciencias Exactas Y Naturales, FCEyN-UBA, Ciudad Universitaria, Pabellón II, 4° Piso Laboratorios, 43-46, C1428EGA, Buenos Aires, Argentina.
- Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA-CONICET), , Ciudad Universitaria, Pabellón II, 4° Piso Laboratorios, 43-46, C1428EGA, Buenos Aires, Argentina.
| |
Collapse
|
2
|
Moreira MG, Rodrigues GZP, da Silva DA, Bianchi E, Gehlen G, Ziulkoski AL. Differences in MCF-7 response to endocrine disruptors in waste, superficial, and treated water from Southern Brazil. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:1539. [PMID: 38012428 DOI: 10.1007/s10661-023-12109-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 11/07/2023] [Indexed: 11/29/2023]
Abstract
The aim of this study was to evaluate the effect of possible endocrine disruptors in surface and wastewater using a cell proliferation assay in an estrogen-responsive cell line (MCF-7). This study was conducted in the Sinos River (Brazil). The residual water was collected from a Pilot Treatment Plant (using Typha domingensis) and surface waters of the Luis Rau stream, the Sinos River, and the Water Treatment Station (WTS). After exposures (24-120 h), a Sulforhodamine B assay was performed to determine the proliferation rate. The higher increase in proliferation rate was observed with the Luiz Rau stream and the sewage treated by macrophytes in a flotation filter. The results from WTS water remained with a proliferation rate similar to the negative control at all times, suggesting that the conventional treatment is partially effective for the withdrawal of endocrine-disrupting agents. The study demonstrated the efficiency of the MCF-7 line in assessing endocrine disruption caused by wastewater and surface water samples. Our results indicate that conventional water treatment can partially remove the polluting load of endocrine disruptors, minimizing their environmental and public health impacts. Besides, it demonstrates the need to expand sanitary services to improve the population's quality of life.
Collapse
Affiliation(s)
| | - Gabriela Zimmermann Prado Rodrigues
- Cytotoxicity Laboratory, Feevale University, Novo Hamburgo, Rio Grande Do Sul, Brazil.
- Comparative Histology Laboratory, Feevale University, Novo Hamburgo, Rio Grande Do Sul, Brazil.
| | - Diego Araújo da Silva
- Cytotoxicity Laboratory, Feevale University, Novo Hamburgo, Rio Grande Do Sul, Brazil
| | - Eloisa Bianchi
- Cytotoxicity Laboratory, Feevale University, Novo Hamburgo, Rio Grande Do Sul, Brazil
| | - Günther Gehlen
- Comparative Histology Laboratory, Feevale University, Novo Hamburgo, Rio Grande Do Sul, Brazil
| | - Ana Luiza Ziulkoski
- Cytotoxicity Laboratory, Feevale University, Novo Hamburgo, Rio Grande Do Sul, Brazil
| |
Collapse
|
3
|
Soldi KC, Londero JEL, Schavinski CR, Schuch AP. Genotoxicity of surface waters in Brazil. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2023; 888:503638. [PMID: 37188436 DOI: 10.1016/j.mrgentox.2023.503638] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 04/10/2023] [Accepted: 04/20/2023] [Indexed: 05/17/2023]
Abstract
Brazil has abundant surface water resources, huge aquatic biodiversity and is home to 213 million people. Genotoxicity assays are sensitive tools to detect the effects of contaminants in surface waters and wastewaters, as well as to determine potential risks of contaminated waters to aquatic organisms and human health. This work aimed to survey the articles published in 2000-2021 that evaluated the genotoxicity of surface waters within Brazilian territory to unveil the profile and trends of this topic over time. In our searches, we considered articles focused on assessing aquatic biota, articles that conducted experiments with caged organisms or standardized tests in the aquatic sites, as well as articles that transported water or sediment samples from aquatic sites to the laboratory, where exposures were performed with organisms or standardized tests. We retrieved geographical information on the aquatic sites evaluated, the genotoxicity assays used, the percentage of genotoxicity detected, and, when possible, the causative agent of aquatic pollution. A total of 248 articles were identified. There was a trend of increase in the number of publications and annual diversity of hydrographic regions evaluated over time. Most articles focused on rivers from large metropolises. A very low number of articles were conducted on coastal and marine ecosystems. Water genotoxicity was detected in most articles, regardless of methodological approach, even in little-studied hydrographic regions. The micronucleus test and the alkaline comet assay were widely applied with blood samples, mainly derived from fish. Allium and Salmonella tests were the most frequently used standard protocols. Despite most articles did not confirm polluting sources and genotoxic agents, the detection of genotoxicity provides useful information for the management of water pollution. We discuss key points to be assessed to reach a more complete picture of the genotoxicity of surface waters in Brazil.
Collapse
Affiliation(s)
- Karen Costa Soldi
- Post-Graduation Program in Animal Biodiversity, Department of Ecology and Evolution, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - James Eduardo Lago Londero
- Post-Graduation Program in Biological Sciences: Toxicological Biochemistry, Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Cassiano Ricardo Schavinski
- Post-Graduation Program in Biological Sciences: Toxicological Biochemistry, Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - André Passaglia Schuch
- Post-Graduation Program in Animal Biodiversity, Department of Ecology and Evolution, Federal University of Santa Maria, Santa Maria, RS, Brazil; Post-Graduation Program in Biological Sciences: Toxicological Biochemistry, Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Santa Maria, RS, Brazil.
| |
Collapse
|
4
|
Mierzejewska E, Tołoczko W, Urbaniak M. Behind the plant-bacteria system: The role of zucchini and its secondary metabolite in shaping functional microbial diversity in MCPA-contaminated soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 867:161312. [PMID: 36603641 DOI: 10.1016/j.scitotenv.2022.161312] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/27/2022] [Accepted: 12/27/2022] [Indexed: 06/17/2023]
Abstract
MCPA (2-methyl-4-chlorophenoxyacetic acid) contamination is an emerging problem, especially in water reservoirs. The early removal of MCPA residues from soil can prevent its spread to untreated areas. It has been found that the growth of cucurbits and the addition of selected plant secondary metabolites (PSMs) can stimulate MCPA removal from soil. However, the effect of these treatments on soil microbial activity remains poorly studied. Hence, the aim of this research was to evaluate the influence of zucchini (C. pepo cv Atena Polka) and its characteristic PSM: syringic acid (SA) on the functional diversity of soil microorganisms in MCPA-contaminated soil using Biolog® EcoPlates™. It also examines soil physicochemical properties and the growth parameters of zucchini. Microbial activity was enhanced by both zucchini cultivation and SA. All unplanted variants showed significantly lower microbial activity (average well color development, AWCD, ranging from 0.35 to 0.51) than the planted ones (AWCD ranging from 0.77 to 1.16). SA also stimulated microbial activity in the soil: a positive effect was observed from the beginning of the experiment in the unplanted variants, but over a longer time span in the planted variants. SA ameliorated the toxic effect of MCPA on the studied plants, especially in terms of photosynthetic pigment production: the MCPA+SA group demonstrated significantly increased chlorophyll content (401 ± 4.83 μg/g), compared to the MCPA group without SA (338 ± 50.1 μg/g). Our findings demonstrated that zucchini and the amendment of soils with SA, the characteristic PSM of cucurbits, can shape functional diversity in MCPA-contaminated soil. The changes of soil properties caused by the application of both compounds can trigger changes in functional diversity. Hence, both SA and MCPA exert indirect and direct effects on soil microbial activity.
Collapse
Affiliation(s)
- Elżbieta Mierzejewska
- UNESCO Chair on Ecohydrology and Applied Ecology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland.
| | - Wojciech Tołoczko
- Department of Physical Geography, Faculty of Geography, University of Lodz, Prez. Gabriela Narutowicz 88, 90-139 Lodz, Poland
| | - Magdalena Urbaniak
- UNESCO Chair on Ecohydrology and Applied Ecology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland; European Regional Centre for Ecohydrology of the Polish Academy of Sciences, Tylna 3, 90-364 Lodz, Poland; Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology in Prague, Technicka 3, 166 28 Prague, Czech Republic
| |
Collapse
|
5
|
Coalova I, March H, Ríos de Molina MDC, Chaufan G. Individual and joint effects of glyphosate and cypermethrin formulations on two human cell lines. Toxicol Appl Pharmacol 2023; 461:116398. [PMID: 36702315 DOI: 10.1016/j.taap.2023.116398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 12/26/2022] [Accepted: 01/19/2023] [Indexed: 01/24/2023]
Abstract
The final effect of pesticides and their mixtures on living organisms is determined by the particular toxicodynamics of the system. Oxidative stress is one of the most studied molecular mechanisms of toxicity due to increasing evidence supporting its association with the toxic effects of different agrochemicals. In the present study we evaluated the presence of redox balance alterations in the cell lines HEp-2 and A549 exposed to formulations of glyphosate (March®) and cypermethrin (Superfina®) used separately or in combination (in a proportion equivalent to that used in soybean fields). We determined the activity of catalase, superoxide dismutase, glutathione S-transferase, intracellular GSH content, content of oxidized proteins (as measure of damage) and intracellular ROS content in both cell lines at two different mixture concentrations. Additionally, we evaluated the presence of statistical interaction to determine if the effect of the mixture on the parameters evaluated was additive, synergistic, or antagonistic. For this purpose, we used the Combination Subthresholding, Cooperative Effect and Statistical Linear Interaction approaches. We found that the interaction between pesticides depended on their concentration and the cellular models studied.
Collapse
Affiliation(s)
- Isis Coalova
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, IQUIBICEN-CONICET, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, Argentina.
| | - Hugo March
- Agrofina S.A. Thames 122, Piso 1 (B1607), San Isidro, Provincia de Buenos Aires, Argentina.
| | - María Del Carmen Ríos de Molina
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, IQUIBICEN-CONICET, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, Argentina.
| | - Gabriela Chaufan
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, IQUIBICEN-CONICET, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, Argentina.
| |
Collapse
|
6
|
Picinini J, Oliveira RF, Garcia ALH, da Silva GN, Sebben VC, de Souza GMS, Dias JF, Corrêa DS, da Silva J. In vitro genotoxic and mutagenic effects of water samples from Sapucaia and Esteio streams (Brazil) under the influence of different anthropogenic activities. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2022; 878:503484. [PMID: 35649678 DOI: 10.1016/j.mrgentox.2022.503484] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 03/07/2022] [Accepted: 03/28/2022] [Indexed: 06/15/2023]
Abstract
Pollution of aquatic ecosystems is associated with the discharge of mainly industrial and urban effluents, which may cause damage to public health. This study aims to evaluate the cytotoxic, genotoxic, and mutagenic potential of surface water samples under the influence of different anthropogenic effluents in a human-derived liver cell line (HepG2). Samples were collected in Esteio and Sapucaia streams (Rio Grande do Sul; Brazil), which flow into the Sinos River, a source of water supply for more than one million people. Physicochemical and microbiological analyses were performed as well as an analysis of inorganic elements using the PIXE technique (Particle-Induced X-Ray Emission). The presence of pharmaceutical compounds and caffeine was evaluated by gas chromatography coupled to mass spectrometry. The cytotoxicity, genotoxicity, and mutagenicity of the samples were evaluated in HepG2 cells by cell viability assays, alkaline Comet Assay and Cytokinesis-block micronucleus (CBMN) assay. We verified alterations in the physicochemical and microbiological parameters and detected caffeine, diethyltoluamide, and different inorganic elements that corresponded to elements from domestic and industrial effluents and agricultural runoff. Although the samples in the concentration used were not cytotoxic, water samples from all sites induced DNA damage. However, it is difficult to attribute these damages to a specific substance since the factors are a complex mixture of different compounds. Despite this, it is observed that both urban and industrial contributions had a similar effect in the cells evaluated. Such results demonstrate the need to perform biomonitoring of surface waters under anthropogenic influence, especially those that flow into rivers that are a source of public supply water. We also highlight the need for research into emerging pollutants in these aquatic environments.
Collapse
Affiliation(s)
- Juliana Picinini
- Laboratory of Genetic Toxicology, PPGBioSaúde (Postgraduate Program in Cellular and Molecular Biology Applied to Health), Lutheran University of Brazil (ULBRA), Av. Farroupilha, 8001, Building 22 (4th floor), 92425-900, Canoas, RS, Brazil.
| | - Renata Farias Oliveira
- Product and Development Research Center, Lutheran University of Brazil (ULBRA), Av. Farroupilha, 8001, 92425-900, Canoas, RS, Brazil
| | - Ana Letícia Hilário Garcia
- Laboratory of Genetic Toxicology, PPGBioSaúde (Postgraduate Program in Cellular and Molecular Biology Applied to Health), Lutheran University of Brazil (ULBRA), Av. Farroupilha, 8001, Building 22 (4th floor), 92425-900, Canoas, RS, Brazil; Laboratory of Genetic Toxicology, PPGSDH, La Salle University (UniLaSalle), Av. Victor Barreto, 2288, 92010-000, Canoas, RS, Brazil
| | - Gabrielle Nunes da Silva
- Laboratory of Genetic Toxicology, PPGBioSaúde (Postgraduate Program in Cellular and Molecular Biology Applied to Health), Lutheran University of Brazil (ULBRA), Av. Farroupilha, 8001, Building 22 (4th floor), 92425-900, Canoas, RS, Brazil
| | - Viviane Cristina Sebben
- Rio Grande do Sul Toxicological Information Center (CIT/RS), Av. Ipiranga, 5400, Jardim Botânico, 90610-000, Porto Alegre, RS, Brazil
| | - Guilherme Maurício Soares de Souza
- Ionic Implantation Laboratory, Institute of Physics, Federal University of Rio Grande do Sul (UFRGS), Av. Bento Gonçalves, 9500, 91501-970, Porto Alegre, RS, Brazil
| | - Johnny Ferraz Dias
- Ionic Implantation Laboratory, Institute of Physics, Federal University of Rio Grande do Sul (UFRGS), Av. Bento Gonçalves, 9500, 91501-970, Porto Alegre, RS, Brazil
| | - Dione Silva Corrêa
- Product and Development Research Center, Lutheran University of Brazil (ULBRA), Av. Farroupilha, 8001, 92425-900, Canoas, RS, Brazil
| | - Juliana da Silva
- Laboratory of Genetic Toxicology, PPGBioSaúde (Postgraduate Program in Cellular and Molecular Biology Applied to Health), Lutheran University of Brazil (ULBRA), Av. Farroupilha, 8001, Building 22 (4th floor), 92425-900, Canoas, RS, Brazil; Laboratory of Genetic Toxicology, PPGSDH, La Salle University (UniLaSalle), Av. Victor Barreto, 2288, 92010-000, Canoas, RS, Brazil.
| |
Collapse
|
7
|
de Araújo EP, Caldas ED, Oliveira-Filho EC. Pesticides in surface freshwater: a critical review. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 194:452. [PMID: 35608712 DOI: 10.1007/s10661-022-10005-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 03/28/2022] [Indexed: 05/22/2023]
Abstract
The objective of this study was to critically review studies published up to November 2021 that investigated the presence of pesticides in surface freshwater to answer three questions: (1) in which countries were the studies conducted? (2) which pesticides are most evaluated and detected? and (3) which pesticides have the highest concentrations? Using the Prisma protocol, 146 articles published from 1976 to November 2021 were included in this analysis: 127 studies used grab sampling, 10 used passive sampling, and 9 used both sampling techniques. In the 45-year historical series, the USA, China, and Spain were the countries that conducted the highest number of studies. Atrazine was the most evaluated pesticide (56% of the studies), detected in 43% of the studies using grab sampling, and the most detected in passive sampling studies (68%). The compounds with the highest maximum and mean concentrations in the grab sampling were molinate (211.38 µg/L) and bentazone (53 µg/L), respectively, and in passive sampling, they were oxyfluorfen (16.8 µg/L) and atrazine (4.8 μg/L), respectively. The levels found for atrazine, p,p'-DDD, and heptachlor in Brazil were higher than the regulatory levels for superficial water in the country. The concentrations exceeded the toxicological endpoint for at least 11 pesticides, including atrazine (Daphnia LC50 and fish NOAEC), cypermethrin (algae EC50, Daphnia and fish LC50; fish NOAEC), and chlorpyrifos (Daphnia and fish LC50; fish NOAEC). These results can be used for planning pesticide monitoring programs in surface freshwater, at regional and global levels, and for establishing or updating water quality regulations.
Collapse
Affiliation(s)
| | - Eloisa Dutra Caldas
- Toxicology Laboratory, Faculty of Health Sciences, University of Brasília - UnB, Brasília, Federal District, Brazil
| | | |
Collapse
|
8
|
Tomazelli J, Rodrigues GZP, Franco D, de Souza MS, Burghausen JH, Panizzon J, Kayser JM, Loiko MR, Schneider A, Linden R, Gehlen G. Potential use of distinct biomarkers (trace metals, micronuclei, and nuclear abnormalities) in a heterogeneous sample of birds in southern Brazil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:14791-14805. [PMID: 34622404 DOI: 10.1007/s11356-021-16657-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 09/17/2021] [Indexed: 06/13/2023]
Abstract
The analysis of metal concentrations in bird feathers and genotoxicity tests are tools used to evaluate anthropogenic impacts on ecosystems. We investigated the response of birds, used as bioindicators, to disturbances observed in three areas with distinctive environmental characteristics (natural, agricultural, and urban) in southern Brazil. For this purpose, we quantified metals (Mn, Cu, Cr, and Zn) in feathers and determined the number of micronuclei (MN) and other nuclear abnormalities (NA) in 108 birds from 25 species and 17 families captured in the study area. No significant differences was found in the metal concentrations and the number of MN and NA between the sampling areas. Zn and Cu concentrations were significantly higher in insectivorous than those in omnivorous birds. The Zn concentration was significantly different between some species, and the Cu concentration was significantly higher in juveniles than that in adults. The best generalized linear models showed that omnivorous birds had more MN and NA and that juveniles and birds with better body condition index had increased NA numbers. This study demonstrates that the analyzed variables contribute in different ways to the result of each biomarker, mainly due to particular ecological and physiological characteristics of each species. We conclude that wild birds have the potential to be used as environmental bioindicators in the study area, but future studies should focus on one or a few species whose ecological and physiological habits are well known.
Collapse
Affiliation(s)
- Joana Tomazelli
- Programa de Pós-graduação em Qualidade Ambiental, Universidade Feevale, RS 239, 2755, Novo Hamburgo, RS, CEP 93352-000, Brazil.
| | | | - Danielle Franco
- Programa de Pós-graduação em Biologia Animal, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Mateus Santos de Souza
- Mestre em Biologia Animal, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Jorge Henrique Burghausen
- Programa de Pós-graduação em Qualidade Ambiental, Universidade Feevale, RS 239, 2755, Novo Hamburgo, RS, CEP 93352-000, Brazil
| | - Jenifer Panizzon
- Programa de Pós-graduação em Qualidade Ambiental, Universidade Feevale, RS 239, 2755, Novo Hamburgo, RS, CEP 93352-000, Brazil
| | - Juliana Machado Kayser
- Programa de Pós-graduação em Toxicologia e Análises Toxicológicas, Universidade Feevale, RS 239, 2755, Novo Hamburgo, RS, CEP 93352-000, Brazil
| | - Márcia Regina Loiko
- Programa de Pós-graduação em Virologia, Universidade Feevale, RS 239, 2755, Novo Hamburgo, RS, CEP 93352-000, Brazil
| | - Anelise Schneider
- Estudante de Farmácia, Universidade Feevale, RS 239, 2755, Novo Hamburgo, RS, CEP 93352-000, Brazil
| | - Rafael Linden
- Programa de Pós-graduação em Toxicologia e Análises Toxicológicas, Universidade Feevale, RS 239, 2755, Novo Hamburgo, RS, CEP 93352-000, Brazil
| | - Gunther Gehlen
- Programa de Pós-graduação em Qualidade Ambiental, Universidade Feevale, RS 239, 2755, Novo Hamburgo, RS, CEP 93352-000, Brazil
| |
Collapse
|
9
|
Mierzejewska E, Urbaniak M, Zagibajło K, Vangronsveld J, Thijs S. The Effect of Syringic Acid and Phenoxy Herbicide 4-chloro-2-methylphenoxyacetic acid (MCPA) on Soil, Rhizosphere, and Plant Endosphere Microbiome. FRONTIERS IN PLANT SCIENCE 2022; 13:882228. [PMID: 35712561 PMCID: PMC9195007 DOI: 10.3389/fpls.2022.882228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 05/02/2022] [Indexed: 05/07/2023]
Abstract
The integration of phytoremediation and biostimulation can improve pollutant removal from the environment. Plant secondary metabolites (PSMs), which are structurally related to xenobiotics, can stimulate the presence of microbial community members, exhibiting specialized functions toward detoxifying, and thus mitigating soil toxicity. In this study, we evaluated the effects of enrichment of 4-chloro-2-methylphenoxyacetic acid (MCPA) contaminated soil (unplanted and zucchini-planted) with syringic acid (SA) on the bacterial community structure in soil, the rhizosphere, and zucchini endosphere. Additionally, we measured the concentration of MCPA in soil and fresh biomass of zucchini. The diversity of bacterial communities differed significantly between the studied compartments (i.e., unplanted soil, rhizospheric soil, and plant endosphere: roots or leaves) and between used treatments (MCPA or/and SA application). The highest diversity indices were observed for unplanted soil and rhizosphere. Although the lowest diversity was observed among leaf endophytes, this community was significantly affected by MCPA or SA: the compounds applied separately favored the growth of Actinobacteria (especially Pseudarthrobacter), while their simultaneous addition promoted the growth of Firmicutes (especially Psychrobacillus). The application of MCPA + SA together lead also to enhanced growth of Pseudomonas, Burkholderia, Sphingomonas, and Pandoraea in the rhizosphere, while SA increased the occurrence of Pseudomonas in leaves. In addition, SA appeared to have a positive influence on the degradative potential of the bacterial communities against MCPA: its addition, followed by zucchini planting, significantly increased the removal of the herbicide (50%) from the soil without affecting, neither positively nor negatively, the plant growth.
Collapse
Affiliation(s)
- Elżbieta Mierzejewska
- UNESCO Chair on Ecohydrology and Applied Ecology, Faculty of Biology and Environmental Protection, University of Łódź, Łódź, Poland
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
- *Correspondence: Elżbieta Mierzejewska,
| | - Magdalena Urbaniak
- UNESCO Chair on Ecohydrology and Applied Ecology, Faculty of Biology and Environmental Protection, University of Łódź, Łódź, Poland
| | - Katarzyna Zagibajło
- Food Safety Laboratory, Research Institute of Horticulture, Skierniewice, Poland
| | - Jaco Vangronsveld
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
- Department of Plant Physiology and Biophysics, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Lublin, Poland
| | - Sofie Thijs
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
| |
Collapse
|
10
|
de Oliveira EP, Rovida AFDS, Martins JG, Pileggi SAV, Schemczssen-Graeff Z, Pileggi M. Tolerance of Pseudomonas strain to the 2,4-D herbicide through a peroxidase system. PLoS One 2021; 16:e0257263. [PMID: 34855750 PMCID: PMC8638965 DOI: 10.1371/journal.pone.0257263] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 11/16/2021] [Indexed: 01/22/2023] Open
Abstract
Herbicides are widely used in agricultural practices for preventing the proliferation of weeds. Upon reaching soil and water, herbicides can harm nontarget organisms, such as bacteria, which need an efficient defense mechanism to tolerate stress induced by herbicides. 2,4-Dichlorophenoxyacetic acid (2,4-D) is a herbicide that exerts increased oxidative stress among bacterial communities. Bacterial isolates were obtained from the biofilm of tanks containing washing water from the packaging of different pesticides, including 2,4-D. The Pseudomonas sp. CMA-7.3 was selected because of its tolerance against 2,4-D toxicity, among several sensitive isolates from the biofilm collection. This study aimed to evaluate the antioxidative response system of the selected strain to 2,4-D. It was analyzed the activity of superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), and guaiacol peroxidase GPX enzymes, that are poorly known in the literature for bacterial systems. The Pseudomonas sp. CMA-7.3 presented an efficient response system in balancing the production of hydrogen peroxide, even at 25x the dose of 2,4-D used in agriculture. The antioxidative system was composed of Fe–SOD enzymes, less common than Mn–SOD in bacteria, and through the activities of KatA and KatB isoforms, working together with APX and GPX, having their activities coordinated possibly by quorum sensing molecules. The peroxide control is poorly documented for bacteria, and this work is unprecedented for Pseudomonas and 2,4-D. Not all bacteria harbor efficient response system to herbicides, therefore they could affect the diversity and functionality of microbiome in contaminated soils, thereby impacting agricultural production, environment sustainability and human health.
Collapse
Affiliation(s)
- Elizangela Paz de Oliveira
- Departamento de Biotecnologia, Genética e Biologia Celular, Universidade Estadual de Maringá, Maringá, Brazil
| | | | - Juliane Gabriele Martins
- Departamento de Biologia Estrutural e Molecular e Genética, Laboratório de Microbiologia Ambiental, Setor de Ciências Biológicas e da Saúde, Universidade Estadual de Ponta Grossa, Ponta Grossa, Brazil
| | - Sônia Alvim Veiga Pileggi
- Departamento de Biologia Estrutural e Molecular e Genética, Laboratório de Microbiologia Ambiental, Setor de Ciências Biológicas e da Saúde, Universidade Estadual de Ponta Grossa, Ponta Grossa, Brazil
| | | | - Marcos Pileggi
- Departamento de Biologia Estrutural e Molecular e Genética, Laboratório de Microbiologia Ambiental, Setor de Ciências Biológicas e da Saúde, Universidade Estadual de Ponta Grossa, Ponta Grossa, Brazil
- * E-mail:
| |
Collapse
|
11
|
Fallah Z, Zare EN, Ghomi M, Ahmadijokani F, Amini M, Tajbakhsh M, Arjmand M, Sharma G, Ali H, Ahmad A, Makvandi P, Lichtfouse E, Sillanpää M, Varma RS. Toxicity and remediation of pharmaceuticals and pesticides using metal oxides and carbon nanomaterials. CHEMOSPHERE 2021; 275:130055. [PMID: 33984903 PMCID: PMC8588192 DOI: 10.1016/j.chemosphere.2021.130055] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/17/2021] [Accepted: 02/20/2021] [Indexed: 05/04/2023]
Abstract
The worldwide development of agriculture and industry has resulted in contamination of water bodies by pharmaceuticals, pesticides and other xenobiotics. Even at trace levels of few micrograms per liter in waters, these contaminants induce public health and environmental issues, thus calling for efficient removal methods such as adsorption. Recent adsorption techniques for wastewater treatment involve metal oxide compounds, e.g. Fe2O3, ZnO, Al2O3 and ZnO-MgO, and carbon-based materials such as graphene oxide, activated carbon, carbon nanotubes, and carbon/graphene quantum dots. Here, the small size of metal oxides and the presence various functional groups has allowed higher adsorption efficiencies. Moreover, carbon-based adsorbents exhibit unique properties such as high surface area, high porosity, easy functionalization, low price, and high surface reactivity. Here we review the cytotoxic effects of pharmaceutical drugs and pesticides in terms of human risk and ecotoxicology. We also present remediation techniques involving adsorption on metal oxides and carbon-based materials.
Collapse
Affiliation(s)
- Zari Fallah
- Faculty of Chemistry, University of Mazandaran, Babolsar, 47416-95447, Iran
| | | | - Matineh Ghomi
- School of Chemistry, Damghan University, Damghan, 36716-41167, Iran
| | - Farhad Ahmadijokani
- School of Engineering, University of British Columbia, Kelowna, BC, V1V 1V7, Canada
| | - Majed Amini
- School of Engineering, University of British Columbia, Kelowna, BC, V1V 1V7, Canada
| | - Mahmood Tajbakhsh
- Faculty of Chemistry, University of Mazandaran, Babolsar, 47416-95447, Iran
| | - Mohammad Arjmand
- School of Engineering, University of British Columbia, Kelowna, BC, V1V 1V7, Canada
| | - Gaurav Sharma
- College of Materials Science and Engineering, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, Nanshan District Key Lab. for Biopolymers and Safety Evaluation, Shenzhen University, Shenzhen, 518055, PR China; International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University, Solan 173212, Himachal Pradesh, India
| | - Hamna Ali
- Department of Chemistry, The University of Lahore, Lahore, 54590, Pakistan
| | - Awais Ahmad
- Department of Chemistry, The University of Lahore, Lahore, 54590, Pakistan
| | - Pooyan Makvandi
- Center for Micro-BioRobotics, Istituto Italiano di Tecnologia (IIT), Viale R. Piaggio 34, 56025, Pontedera, Pisa, Italy
| | - Eric Lichtfouse
- Aix-Marseille University, CNRS, IRD, INRA, Coll France, CEREGE, 13100, Aix en Provence, France.
| | - Mika Sillanpää
- Institute of Research and Development, Duy Tan University, Da Nang, 550000, Viet Nam; Faculty of Environment and Chemical Engineering, Duy Tan University, Da Nang, 550000, Viet Nam; Department of Chemical Engineering, School of Mining, Metallurgy and Chemical Engineering, University of Johannesburg, P. O. Box 17011, Doornfontein, 2028, South Africa
| | - Rajender S Varma
- Chemical Methods and Treatment Branch, Water Infrastructure Division, Center for Environmental Solutions and Emergency Response, U. S. Environmental Protection Agency, 26 West Martin Luther King Drive, Cincinnati, OH, 45268, USA; Regional Center of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University, Š lechtitelů 27, 783 71, Olomouc, Czech Republic.
| |
Collapse
|
12
|
Pinheiro JPS, Assis CBD, Muñoz-Peñuela M, Barbosa Júnior F, Correia TG, Moreira RG. Water temperature and acid pH influence the cytotoxic and genotoxic effects of aluminum in the freshwater teleost Astyanax altiparanae (Teleostei: Characidae). CHEMOSPHERE 2019; 220:266-274. [PMID: 30590293 DOI: 10.1016/j.chemosphere.2018.12.143] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 12/05/2018] [Accepted: 12/19/2018] [Indexed: 06/09/2023]
Abstract
The toxicity of metals, including aluminum (Al), can be potentiated by temperature and acid pH, a concern in view of the current global warming scenario. The aim of this study was to evaluate the bioconcentration of Al in the testes and semen of Astyanax altiparanae and the potential of this metal, at different environmental temperatures and acid pH, to cause cytotoxicity and genotocixity in erythrocytes and spermatozoa. A. altiparanae males were divided into nine experimental groups: at each of three different water temperatures (20, 25 and 30 °C), the fish were exposed to a neutral pH, an acid pH and acidic water containing Al (0.5 mg.L-1). The fish were subjected to subacute, semi-static exposure and sampled at 24 and 96 h. After each exposure period the comet assay (blood and semen) and micronucleus test (blood) were performed. Bioconcentration of Al was evaluated in the testes and semen. Exposure time and temperature influenced the Al bioconcentration pattern in the testes. Al concentration in the semen was higher in fish exposed at 20 and 25 °C (24 h). The DNA fragmentation score for the semen and blood was higher in fish exposed to Al at 20 (24 h) and 30 °C (96 h). The frequency of nuclear abnormalities in erythrocytes was higher in the group exposed to Al at 30 °C (96 h). It was concluded that Al bioconcentrates in the testes and semen of A. altiparanae at different temperatures and is potentially cytotoxic and genotoxic to erythrocytes and spermatozoa in this species.
Collapse
Affiliation(s)
- João Paulo Silva Pinheiro
- Universidade de São Paulo, Institute of Biosciences, Department of Physiology, Laboratory of Metabolism and Reproduction of Aquatic Organisms - LAMEROA; Matão Street, 14 lane, number 101 - room 220, Cidade Universitária, São Paulo, SP, Brazil.
| | - Cecília Bertacini de Assis
- Universidade de São Paulo, Institute of Biosciences, Department of Physiology, Laboratory of Metabolism and Reproduction of Aquatic Organisms - LAMEROA; Matão Street, 14 lane, number 101 - room 220, Cidade Universitária, São Paulo, SP, Brazil.
| | - Marcela Muñoz-Peñuela
- Universidade de São Paulo, Institute of Biosciences, Department of Physiology, Laboratory of Metabolism and Reproduction of Aquatic Organisms - LAMEROA; Matão Street, 14 lane, number 101 - room 220, Cidade Universitária, São Paulo, SP, Brazil.
| | - Fernando Barbosa Júnior
- Universidade de São Paulo, Faculty of Pharmaceutical Sciences of Ribeirão Preto (FCFRP), Café Avenue, Ribeirão Preto, SP, Brazil.
| | - Tiago Gabriel Correia
- Universidade Federal do Amapá, Biological Sciences Course, Juscelino Kubitschek Highway, Km 02 - Jardim Marco Zero, Macapá, AP, Brazil.
| | - Renata Guimarães Moreira
- Universidade de São Paulo, Institute of Biosciences, Department of Physiology, Laboratory of Metabolism and Reproduction of Aquatic Organisms - LAMEROA; Matão Street, 14 lane, number 101 - room 220, Cidade Universitária, São Paulo, SP, Brazil.
| |
Collapse
|
13
|
Chaufan G, Galvano C, Nieves M, Mudry MD, Ríos de Molina MDC, Andrioli NB. Oxidative Response and Micronucleus Centromere Assay in HEp-2 Cells Exposed to Fungicide Iprodione. Chem Res Toxicol 2019; 32:745-752. [DOI: 10.1021/acs.chemrestox.8b00405] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Gabriela Chaufan
- Laboratorio de Enzimología Estrés y Metabolismo, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Consejo de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires (IQUIBICEN-CONICET), Ciudad Universitaria, Pabellón II, 4° Piso Laboratories. 43-46, C1428EGA Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Cientificas y Técnicas, Universidad de Buenos Aires, C1428EGA Buenos Aires, Argentina
| | - Camila Galvano
- GIBE (Grupo de Investigación en Biología Evolutiva), FCEyN-UBA, Facultad de Ciencias Exactas y Naturales, Instituto de Ecología, Genética y Evolución de Buenos Aires - Consejo de Investigaciones Científicas y Técnicas), Universidad de Buenos Aires (IEGEBA−CONICET), Ciudad Universitaria, Pabellón II, 4° Piso Laboratories. 43-46, C1428EGA Buenos Aires, Argentina
| | - Mariela Nieves
- GIBE (Grupo de Investigación en Biología Evolutiva), FCEyN-UBA, Facultad de Ciencias Exactas y Naturales, Instituto de Ecología, Genética y Evolución de Buenos Aires - Consejo de Investigaciones Científicas y Técnicas), Universidad de Buenos Aires (IEGEBA−CONICET), Ciudad Universitaria, Pabellón II, 4° Piso Laboratories. 43-46, C1428EGA Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Cientificas y Técnicas, Universidad de Buenos Aires, C1428EGA Buenos Aires, Argentina
| | - Marta D. Mudry
- GIBE (Grupo de Investigación en Biología Evolutiva), FCEyN-UBA, Facultad de Ciencias Exactas y Naturales, Instituto de Ecología, Genética y Evolución de Buenos Aires - Consejo de Investigaciones Científicas y Técnicas), Universidad de Buenos Aires (IEGEBA−CONICET), Ciudad Universitaria, Pabellón II, 4° Piso Laboratories. 43-46, C1428EGA Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Cientificas y Técnicas, Universidad de Buenos Aires, C1428EGA Buenos Aires, Argentina
| | - Maria del Carmen Ríos de Molina
- Laboratorio de Enzimología Estrés y Metabolismo, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Consejo de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires (IQUIBICEN-CONICET), Ciudad Universitaria, Pabellón II, 4° Piso Laboratories. 43-46, C1428EGA Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Cientificas y Técnicas, Universidad de Buenos Aires, C1428EGA Buenos Aires, Argentina
| | - Nancy B. Andrioli
- GIBE (Grupo de Investigación en Biología Evolutiva), FCEyN-UBA, Facultad de Ciencias Exactas y Naturales, Instituto de Ecología, Genética y Evolución de Buenos Aires - Consejo de Investigaciones Científicas y Técnicas), Universidad de Buenos Aires (IEGEBA−CONICET), Ciudad Universitaria, Pabellón II, 4° Piso Laboratories. 43-46, C1428EGA Buenos Aires, Argentina
| |
Collapse
|
14
|
Dalzochio T, Rodrigues GZP, Simões LAR, de Souza MS, Petry IE, Andriguetti NB, Silva GJH, da Silva LB, Gehlen G. In situ monitoring of the Sinos River, southern Brazil: water quality parameters, biomarkers, and metal bioaccumulation in fish. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:9485-9500. [PMID: 29353360 DOI: 10.1007/s11356-018-1244-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 01/08/2018] [Indexed: 06/07/2023]
Abstract
The Sinos River is an important water supply in Southern Brazil and receives industrial, agricultural, and domestic effluents which may affect aquatic biota. Water physicochemical and microbiological analyses, biomarker responses (scaled mass index (SMI), gill histopathology, and micronucleus and nuclear abnormality (MN and NA) frequencies), and metal bioaccumulation in muscle were assessed in the fish species Bryconamericus iheringii (Characidae) captured at three sampling sites (S1, S2, and S3) in four sampling periods. The mean values of five parameters (total phosphorus, thermotolerant coliforms, aluminum, iron, and lead) exceeded the limits established by the Brazilian legislation at the three sampling sites. Although physicochemical analysis indicated higher impacts at S3, in some samples, significantly higher MN frequencies and bioaccumulation of manganese in fish muscle were observed at S1, whereas low SMI and higher concentrations of aluminum and zinc in fish muscle were found at S2. Histopathological alterations in gills were observed in fish collected at the three sampling sites; however, no spatial differences were observed, indicating similar environmental conditions with respect to this biomarker. Moreover, temporal variation of biomarker responses and metal bioaccumulation were found at all sampling sites. Furthermore, the consumption of fish from the Sinos River should be avoided given the concentrations of chromium (all samples), cadmium, and lead in fish muscle above the threshold for safe human consumption.
Collapse
Affiliation(s)
- Thaís Dalzochio
- Programa de Pós-Graduação em Qualidade Ambiental, Universidade Feevale, RS 239, 2755, Novo Hamburgo, RS, CEP 93352-000, Brazil.
| | | | | | | | | | | | | | - Luciano Basso da Silva
- Programa de Pós-Graduação em Qualidade Ambiental, Universidade Feevale, RS 239, 2755, Novo Hamburgo, RS, CEP 93352-000, Brazil
| | - Günther Gehlen
- Programa de Pós-Graduação em Qualidade Ambiental, Universidade Feevale, RS 239, 2755, Novo Hamburgo, RS, CEP 93352-000, Brazil
| |
Collapse
|
15
|
Dalzochio T, Ressel Simões LA, Santos de Souza M, Prado Rodrigues GZ, Petry IE, Andriguetti NB, Herbert Silva GJ, Gehlen G, Basso da Silva L. Water quality parameters, biomarkers and metal bioaccumulation in native fish captured in the Ilha River, southern Brazil. CHEMOSPHERE 2017; 189:609-618. [PMID: 28963978 DOI: 10.1016/j.chemosphere.2017.09.089] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 09/15/2017] [Accepted: 09/18/2017] [Indexed: 06/07/2023]
Abstract
The Ilha River is one of the main tributaries of the Sinos River, southern Brazil, and it is located in an area characterized by low population density and presence of agricultural activities. Thus, this study aimed to assess the water quality of two sites of the Ilha River (source and mouth, S1 and S2 respectively) in five sampling periods using water physicochemical and microbiological analyses, biomarkers, such as condition factor, micronucleus test, gill histopathological analysis, and metal bioaccumulation in the native fish Bryconamericus iheringii. Mean values of BOD5, thermotolerant coliforms, aluminum, iron and lead exceeded the limits established by the Brazilian legislation for surface waters at both sampling sites. Significant higher micronucleus, nuclear abnormalities and mucous cells frequencies were found at S2 in, at least, one sampling period, whereas fish from S1 presented significant lower condition factor, higher frequencies of lamellar alterations and higher concentrations of chromium and nickel in muscle. Additionally, concentrations of cadmium, chromium and lead in fish muscle exceeded the limits considered safe for human consumption at both sites in at least one sampling period. Data from our study evidenced the mouth of the Ilha River suffers from point genotoxic effects, whereas the source is also contaminated by metals, despite being located in an area under minor anthropic activities.
Collapse
Affiliation(s)
- Thaís Dalzochio
- Programa de Pós-Graduação em Qualidade Ambiental, Universidade Feevale, Brazil
| | | | | | | | | | | | | | - Günther Gehlen
- Programa de Pós-Graduação em Qualidade Ambiental, Universidade Feevale, Brazil
| | | |
Collapse
|