1
|
Obanya HE, Khan FR, Carrasco-Navarro V, Rødland ES, Walker-Franklin I, Thomas J, Cooper A, Molden N, Amaeze NH, Patil RS, Kukkola A, Michie L, Green-Ojo B, Rauert C, Couceiro F, Hutchison G, Tang J, Ugor J, Lee S, Hofmann T, Ford AT. Priorities to inform research on tire particles and their chemical leachates: A collective perspective. ENVIRONMENTAL RESEARCH 2024:120222. [PMID: 39490547 DOI: 10.1016/j.envres.2024.120222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/04/2024] [Accepted: 10/21/2024] [Indexed: 11/05/2024]
Abstract
Concerns over the ecological impacts of urban road runoff have increased, partly due to recent research into the harmful impacts of tire particles and their chemical leachates. This study aimed to help the community of researchers, regulators and policy advisers in scoping out the priority areas for further study. To improve our understanding of these issues an interdisciplinary, international network consisting of experts (United Kingdom, Norway, United States, Australia, South Korea, Bangladesh, Finland, Austria, China and Canada) was formed. We synthesised the current state of the knowledge and highlighted priority research areas for tire particles (in their different forms) and their leachates. Ten priority research questions with high importance were identified under four themes (environmental presence and detection; chemicals of concern; biotic impacts; mitigation and regulation). The priority research questions include the importance of increasing the understanding of the fate and transport of these contaminants; better alignment of toxicity studies; obtaining the holistic understanding of the impacts; and risks they pose across different ecosystem services. These issues have to be addressed globally for a sustainable solution. We highlight how the establishment of the intergovernmental science-policy panel on chemicals, waste, and pollution prevention could further address these issues on a global level through coordinated knowledge transfer of car tire research and regulation. We hope that the outputs from this research paper will reduce scientific uncertainty in assessing and managing environmental risks from TWP and their leachates and aid any potential future policy and regulatory development.
Collapse
Affiliation(s)
- Henry E Obanya
- School of Biological Sciences, University of Portsmouth, Portsmouth, Hampshire PO1 2DY, United Kingdom
| | - Farhan R Khan
- Norwegian Research Centre (NORCE), Nygårdsporten 112, NO-5008, Bergen, Norway
| | - Victor Carrasco-Navarro
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio campus, PO Box 1627, 70211, Kuopio, Finland
| | - Elisabeth Støhle Rødland
- Norwegian Institute for Water Research, Økernveien 94, NO-0579 Oslo, Norway; Norwegian University of Life Sciences, Faculty of Environmental Sciences and Natural Resource
| | | | - Jomin Thomas
- School of Polymer Science and Polymer Engineering, University of Akron, Akron, Ohio 44325, United States
| | - Adam Cooper
- Department of Chemistry & Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| | - Nick Molden
- Emissions Analytics, Unit 2 CR Bates Industrial Estate, Stokenchurch, High Wycombe, Buckinghamshire, HP14 3PD
| | - Nnamdi H Amaeze
- School of the Environment, Memorial Hall, University of Windsor, 401 Sunset Avenue Windsor, Ontario N9B 3P4, Canada
| | - Renuka S Patil
- School of Polymer Science and Polymer Engineering, University of Akron, Akron, Ohio 44325, United States
| | - Anna Kukkola
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Laura Michie
- School of Biological Sciences, University of Portsmouth, Portsmouth, Hampshire PO1 2DY, United Kingdom
| | - Bidemi Green-Ojo
- School of Biological Sciences, University of Portsmouth, Portsmouth, Hampshire PO1 2DY, United Kingdom
| | - Cassandra Rauert
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, 4102, QLD, Australia
| | - Fay Couceiro
- School of Civil Engineering and Surveying at the University of Portsmouth, Hampshire, PO1 3AH, United Kingdom
| | - Gary Hutchison
- School of Applied Sciences, Edinburgh Napier University, Edinburgh, United Kingdom
| | - Jinglong Tang
- School of Public Health, Qingdao University, Qingdao, 266071, China
| | - Joshua Ugor
- School of the Environment, Geography and Geosciences, University of Portsmouth, UK
| | - Seokhwan Lee
- Environment System Research Division, Korea Institute of Machinery and Materials, 156, Gajeongbuk-ro, Yuseong-gu, Daejeon 34103, Republic of Korea
| | - Thilo Hofmann
- University of Vienna, Centre for Microbiology and Environmental Systems Science, Department for Environmental Geosciences, Josef-Holaubek-Platz 2, 1090 Vienna, Austria; University of Vienna, Research Platform Plastics in the Environment and Society (Plenty), Josef-Holaubek-Platz 2, 1090 Vienna, Austria
| | - Alex T Ford
- School of Biological Sciences, University of Portsmouth, Portsmouth, Hampshire PO1 2DY, United Kingdom.
| |
Collapse
|
2
|
Peter KT, Gilbreath A, Gonzalez M, Tian Z, Wong A, Yee D, Miller EL, Avellaneda PM, Chen D, Patterson A, Fitzgerald N, Higgins CP, Kolodziej EP, Sutton R. Storms mobilize organophosphate esters, bisphenols, PFASs, and vehicle-derived contaminants to San Francisco Bay watersheds. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2024; 26:1760-1779. [PMID: 39291694 DOI: 10.1039/d4em00117f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
In urban to peri-urban watersheds such as those surrounding San Francisco Bay, stormwater runoff is a major pathway by which contaminants enter aquatic ecosystems. We evaluated the occurrence of 154 organic contaminants via liquid chromatography coupled to tandem mass spectrometry, including organophosphate esters (OPEs), bisphenols, per- and polyfluoroalkyl substances (PFASs), and a suite of novel urban stormwater tracers (SWCECs; i.e., vehicle-derived chemicals, pesticides, pharmaceuticals/personal care products, benzothiazoles/benzotriazoles). Time-averaged composite sampling focused on storms in highly developed watersheds over four wet seasons, with complementary sampling in less-urban reference watersheds, near-shore estuarine sites, and the open Bay. Of the targeted contaminants, 68 (21 SWCECs, 29 OPEs, 3 bisphenols, 15 PFASs) were detected in ≥10 of 26 urban stormwater samples. Median concentrations exceeded 500 ng L-1 for 1,3-diphenylguanidine, hexa(methoxymethyl)melamine, and caffeine, and exceeded 300 ng L-1 for 2-hydroxy-benzothiazole, 5-methyl-1H-benzotriazole, pentachlorophenol, and tris(2-butoxyethyl) phosphate. Median individual PFAS concentrations were <10 ng L-1, with highest concentrations for PFHxA (180 ng L-1), PFOA (110 ng L-1), and PFOS (81 ng L-1). In six of eight urban stormwater samples analyzed for 6PPD-quinone (a tire rubber-derived transformation product), concentrations exceeded coho salmon acute toxicity thresholds, suggesting (sub)lethal impacts for sensitive species. Observed concentrations were generally significantly higher in highly developed watersheds relative to reference watersheds, but not statistically different in near-shore estuarine sites, suggesting substantial transient exposure potential at stormwater outfalls or creek outflows. Results emphasized the role of stormwater in contaminant transport, the importance of vehicles/roadways as contaminant sources, and the value of monitoring broad multi-analyte contaminant suites to enable comprehensive source and toxicity evaluations.
Collapse
Affiliation(s)
- Katherine T Peter
- Center for Urban Waters, Tacoma, WA 98421, USA
- Interdisciplinary Arts and Sciences, University of Washington Tacoma, Tacoma, WA 98421, USA
| | | | - Melissa Gonzalez
- Center for Urban Waters, Tacoma, WA 98421, USA
- Interdisciplinary Arts and Sciences, University of Washington Tacoma, Tacoma, WA 98421, USA
| | - Zhenyu Tian
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA
| | - Adam Wong
- San Francisco Estuary Institute, Richmond, CA 94804, USA.
| | - Don Yee
- San Francisco Estuary Institute, Richmond, CA 94804, USA.
| | - Ezra L Miller
- San Francisco Estuary Institute, Richmond, CA 94804, USA.
| | | | - Da Chen
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, Guangdong 510632, China
| | | | - Nicole Fitzgerald
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, CO 80401, USA
| | - Christopher P Higgins
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, CO 80401, USA
| | - Edward P Kolodziej
- Center for Urban Waters, Tacoma, WA 98421, USA
- Interdisciplinary Arts and Sciences, University of Washington Tacoma, Tacoma, WA 98421, USA
- Department of Civil and Environmental Engineering, University of Washington, Seattle, WA 98195, USA
| | - Rebecca Sutton
- San Francisco Estuary Institute, Richmond, CA 94804, USA.
| |
Collapse
|
3
|
Liu YH, Mei YX, Wang JY, Chen SS, Chen JL, Li N, Liu WR, Zhao JL, Zhang QQ, Ying GG. Precipitation contributes to alleviating pollution of rubber-derived chemicals in receiving watersheds: Combining confluent stormwater runoff from different functional areas. WATER RESEARCH 2024; 264:122240. [PMID: 39146854 DOI: 10.1016/j.watres.2024.122240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 08/04/2024] [Accepted: 08/07/2024] [Indexed: 08/17/2024]
Abstract
The release of rubber-derived chemicals (RDCs) in road surface runoff has received significant attention. Urban surface runoff is often the confluence of stormwater runoff from specific areas. However, the impact of precipitation on RDCs contamination in confluent stormwater runoff and receiving watersheds remains poorly understood. Herein, we investigated the profiles of RDCs and their transformation products in confluent stormwater runoff and receiving rivers affected by precipitation events. The results showed that 34 RDCs are ubiquitously present in confluent stormwater runoff and surface water, with mean concentrations of 1.03-2749 and 0.28-436 ng/L, respectively. The most dominant target compounds in each category were N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine (6PPD), 6PPD-quinone, 2-benzothiazolol, and 1,3-diphenylguanidine. Total RDCs concentrations in confluent stormwater runoff decreased spatially from industrial areas to business districts to college towns. A significant decrease in RDCs levels in surface water after rainfall was observed (P < 0.01), indicating that precipitation contributes to alleviating RDCs pollution in receiving watersheds. To our knowledge, this is the first report of N,N'-ditolyl-p-phenylenediamine quinone (DTPD-Q) levels in surface waters in China. The annual mass load of ∑RDCs reached 72,818 kg/y in confluent stormwater runoff, while 38,799 kg/y in surface water. The monitoring of confluent stormwater runoff is an efficient measure for predicting contamination loads from RDCs in rivers. Risk assessment suggested that most RDCs posed at least medium risks to aquatic organisms, especially 6PPD-quinone. The findings help to understand the environmental fate and risks of RDCs in the confluent stormwater runoff and receiving environments after precipitation events.
Collapse
Affiliation(s)
- Yue-Hong Liu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, People's Republic of China; School of Environment, South China Normal University, Guangzhou 510006, People's Republic of China
| | - Yu-Xian Mei
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, People's Republic of China; School of Environment, South China Normal University, Guangzhou 510006, People's Republic of China
| | - Jing-Yi Wang
- School of Environment, South China Normal University, Guangzhou 510006, People's Republic of China
| | - Shan-Shan Chen
- School of Environment, South China Normal University, Guangzhou 510006, People's Republic of China
| | - Jia-Li Chen
- School of Environment, South China Normal University, Guangzhou 510006, People's Republic of China
| | - Nan Li
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, People's Republic of China; School of Environment, South China Normal University, Guangzhou 510006, People's Republic of China
| | - Wang-Rong Liu
- Guangdong Engineering & Technology Research Center for System Control of Livestock and Poultry Breeding Pollution, South China Institute of Environmental Sciences, Ministry of Ecology and Environment of the PR China, Guangzhou 510655, People's Republic of China
| | - Jian-Liang Zhao
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, People's Republic of China; School of Environment, South China Normal University, Guangzhou 510006, People's Republic of China.
| | - Qian-Qian Zhang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, People's Republic of China; School of Environment, South China Normal University, Guangzhou 510006, People's Republic of China.
| | - Guang-Guo Ying
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, People's Republic of China; School of Environment, South China Normal University, Guangzhou 510006, People's Republic of China
| |
Collapse
|
4
|
Liu YH, Mei YX, Liang XN, Ge ZY, Huang Z, Zhang HY, Zhao JL, Liu A, Shi C, Ying GG. Small-Intensity Rainfall Triggers Greater Contamination of Rubber-Derived Chemicals in Road Stormwater Runoff from Various Functional Areas in Megalopolis Cities. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:13056-13064. [PMID: 38900493 DOI: 10.1021/acs.est.3c10737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Rubber-derived chemicals (RDCs) originating from tire and road wear particles are transported into road stormwater runoff, potentially threatening organisms in receiving watersheds. However, there is a lack of knowledge on time variation of novel RDCs in runoff, limiting initial rainwater treatment and subsequent rainwater resource utilization. In this study, we investigated the levels and time-concentration profiles of 35 target RDCs in road stormwater runoff from eight functional areas in the Greater Bay Area, South China. The results showed that the total concentrations of RDCs were the highest on the expressway compared with other seven functional areas. N-(1,3-Dimethylbutyl)-N'-phenyl-p-phenylenediamine (6PPD), 6PPD-quinone, benzothiazole, and 1,3-diphenylguanidine were the top four highlighted RDCs (ND-228840 ng/L). Seasonal and spatial differences revealed higher RDC concentrations in the dry season as well as in less-developed regions. A lag effect of reaching RDC peak concentrations in road stormwater runoff was revealed, with a lag time of 10-90 min on expressways. Small-intensity rainfall triggers greater contamination of rubber-derived chemicals in road stormwater runoff. Environmental risk assessment indicated that 35% of the RDCs posed a high risk, especially PPD-quinones (risk quotient up to 2663). Our findings contribute to a better understanding of managing road stormwater runoff for RDC pollution.
Collapse
Affiliation(s)
- Yue-Hong Liu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, People's Republic of China
- School of Environment, South China Normal University, Guangzhou 510006, People's Republic of China
| | - Yu-Xian Mei
- School of Environment, South China Normal University, Guangzhou 510006, People's Republic of China
| | - Xiang-Ning Liang
- School of Environment, South China Normal University, Guangzhou 510006, People's Republic of China
| | - Zhen-Yu Ge
- School of Environment, South China Normal University, Guangzhou 510006, People's Republic of China
| | - Zheng Huang
- School of Environment, South China Normal University, Guangzhou 510006, People's Republic of China
| | - Hai-Yan Zhang
- School of Environment, South China Normal University, Guangzhou 510006, People's Republic of China
| | - Jian-Liang Zhao
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, People's Republic of China
- School of Environment, South China Normal University, Guangzhou 510006, People's Republic of China
| | - An Liu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, People's Republic of China
| | - Chenhao Shi
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, People's Republic of China
| | - Guang-Guo Ying
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, People's Republic of China
- School of Environment, South China Normal University, Guangzhou 510006, People's Republic of China
| |
Collapse
|
5
|
Philibert D, Stanton RS, Tang C, Stock NL, Benfey T, Pirrung M, de Jourdan B. The lethal and sublethal impacts of two tire rubber-derived chemicals on brook trout (Salvelinus fontinalis) fry and fingerlings. CHEMOSPHERE 2024; 360:142319. [PMID: 38735497 DOI: 10.1016/j.chemosphere.2024.142319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 05/07/2024] [Accepted: 05/09/2024] [Indexed: 05/14/2024]
Abstract
Recent toxicity studies of stormwater runoff implicated N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine-quinone (6PPD-quinone) as the contaminant responsible for the mass mortality of coho salmon (Oncorhynchus kisutch). In the wake of this discovery, 6PPD-quinone has been measured in waterways around urban centers, along with other tire wear leachates like hexamethoxymethylmelamine (HMMM). The limited data available for 6PPD-quinone have shown toxicity can vary depending on the species. In this study we compared the acute toxicity of 6PPD-quinone and HMMM to Brook trout (Salvelinus fontinalis) fry and fingerlings. Our results show that fry are ∼3 times more sensitive to 6PPD-quinone than fingerlings. Exposure to HMMM ≤6.6 mg/L had no impact on fry survival. These results highlight the importance of conducting toxicity tests on multiple life stages of fish species, and that relying on fingerling life stages for species-based risk assessment may underestimate the impacts of exposure. 6PPD-quinone also had many sublethal effects on Brook trout fingerlings, such as increased interlamellar cell mass (ILCM) size, hematocrit, blood glucose, total CO2, and decreased blood sodium and chloride concentrations. Linear relationships between ILCM size and select blood parameters support the conclusion that 6PPD-quinone toxicity is an outcome of osmorespiratory challenges imposed by gill impairment.
Collapse
Affiliation(s)
| | | | | | - Naomi L Stock
- Water Quality Centre, Trent University, Peterborough, ON, Canada
| | - Tillmann Benfey
- Department of Biology, University of New Brunswick, Fredericton, NB, Canada
| | | | | |
Collapse
|
6
|
Liu H, Zhao B, Jin M, Wang R, Ding Z, Wang X, Xu W, Chen Q, Tao R, Fu J, Xie D. Anthropogenic-induced ecological risks on marine ecosystems indicated by characterizing emerging pollutants in Pearl River Estuary, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:172030. [PMID: 38547985 DOI: 10.1016/j.scitotenv.2024.172030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 03/05/2024] [Accepted: 03/25/2024] [Indexed: 04/06/2024]
Abstract
Anthropogenic Contaminants of Emerging Concern (CECs) in marine environments have raised significant concerns. Yet, analyses detailing their origins, fate, and environmental effects are limited. This study employs an integrated non-target screening methodology to elucidate CECs existence across 46 sampling sites in the Pearl River Estuary (PRE) of the South China Sea. Assisted by advanced liquid chromatography-high resolution mass spectrometry, we discovered 208 chemicals in six usage categories, with pesticides (33 %) and pharmaceuticals (29 %) predominating. Several CECs drew attention for their consistent detections, profound abundance, and significant ecotoxicities. The wide detection of them at offshore sites further implies that anthropogenic activities may contribute to large-scale contamination. Meanwhile, distinct distribution patterns of CECs across PRE are evident in semi-quantitative results, indicating regional anthropogenic influences. Identified transformation products may establish a novel and non-negligible negative contribution to ecology through elevated environmental toxicities, exemplified by HMMM and atrazine. Based on the ecological risks, we compiled a prioritized list of 21 CECs warranting intensified scrutiny. Our findings indicate the introduction of various CECs into the South China Sea via PRE, emphasizing the urgent necessity for ongoing surveillance of discharged CECs at estuary areas and assessment of their marine ecological consequences.
Collapse
Affiliation(s)
- He Liu
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China; State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China
| | - Bo Zhao
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China; State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China
| | - Meng Jin
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China; State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China
| | - Rui Wang
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China; State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China
| | - Zirong Ding
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China; State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China
| | - Xiong Wang
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China; State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China
| | - Wenjie Xu
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China; State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China
| | - Qianghua Chen
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China; State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China
| | - Rizhu Tao
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China; State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China
| | - Jianping Fu
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China; State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China; Guangxi Key Laboratory of Emerging Contaminants Monitoring, Early Warning and Environmental Health Risk Assessment, Nanning 530029, PR China
| | - Danping Xie
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China; State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China.
| |
Collapse
|
7
|
Gehrke I, Schläfle S, Bertling R, Öz M, Gregory K. Review: Mitigation measures to reduce tire and road wear particles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166537. [PMID: 37640075 DOI: 10.1016/j.scitotenv.2023.166537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/03/2023] [Accepted: 08/22/2023] [Indexed: 08/31/2023]
Abstract
The generation of tire wear is an inevitable outcome of the friction between the road and the tire which is necessary for the safe operation of vehicles on roadways. Tire wear particles form agglomerates with road surface material. These agglomerates are called tire and road wear particles (TRWP). Due to their persistence in the environmental compartments and their potentially harmful effects, research on preventative and end-of-pipe mitigation strategies for TRWP is essential. The major goal of this study is to summarize and assess the state of the art in science and technology of mitigation measures for TRWP as the basis for further research activities. Approximately 500 literature sources were found and analyzed in terms of the efficiency, maturity, implementation, and impact of the mitigation measures. Generally, technological and management mitigation measures to reduce the generation of TRWP are beneficial since they prevent TRWP from entering the environment. Once released into environmental compartments, their mobility and dispersion would increase, making removing the particles more challenging. Technological and management mitigation measures after the release of TRWP into the environment are mainly well established in industrialized countries. Street cleaning and wastewater technologies show good removal efficiencies for TRWP and microplastics. In any case, no individual measure can solely solve the TRWP issue, but a set of combined measures could potentially be more effective. The absence of fully-developed and standardized methods for tire abrasion testing and measuring TRWP in the environment makes it impossible to reliably compare the tire abrasion behavior of different tire types, determine thresholds, and control mitigation actions. Field tests and pilot studies are highly needed to demonstrate the effectiveness of the abatement measures under real conditions.
Collapse
Affiliation(s)
- Ilka Gehrke
- Fraunhofer Institute for Environmental, Safety, and Energy Technology UMSICHT, Osterfelder Straße 3, 46047 Oberhausen, Germany.
| | - Stefan Schläfle
- Karlsruhe Institute of Technology (KIT), Institute of Vehicle System Technology, Kaiserstraße 12, 76131 Karlsruhe, Germany.
| | - Ralf Bertling
- Fraunhofer Institute for Environmental, Safety, and Energy Technology UMSICHT, Osterfelder Straße 3, 46047 Oberhausen, Germany.
| | - Melisa Öz
- Fraunhofer Institute for Environmental, Safety, and Energy Technology UMSICHT, Osterfelder Straße 3, 46047 Oberhausen, Germany.
| | - Kelvin Gregory
- Carnegie Mellon University, Civil & Environmental Engineering, 5000 Forbes Avenue, Porter Hall 119, Pittsburgh, PA 15213, United States.
| |
Collapse
|
8
|
Zhao HN, Thomas SP, Zylka MJ, Dorrestein PC, Hu W. Urine Excretion, Organ Distribution, and Placental Transfer of 6PPD and 6PPD-Quinone in Mice and Potential Developmental Toxicity through Nuclear Receptor Pathways. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:13429-13438. [PMID: 37642336 DOI: 10.1021/acs.est.3c05026] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
The rubber antioxidant 6PPD has gained significant attention due to its highly toxic transformation product, 6PPD-quinone (6PPDQ). Despite their detection in urines of pregnant women, the placental transfer and developmental toxicity of 6PPD and 6PPDQ are unknown. Here, we treated C57Bl/6 mice with 4 mg/kg 6PPD or 6PPDQ to investigate their urine excretion and placental transfer. Female and male mice exhibited sex difference in excretion profiles of 6PPD and 6PPDQ. Urine concentrations of 6PPDQ were one order of magnitude lower than those of 6PPD, suggesting lower excretion and higher bioaccumulation of 6PPDQ. In pregnant mice treated with 6PPD or 6PPDQ from embryonic day 11.5 to 15.5, 6PPDQ showed ∼1.5-8 times higher concentrations than 6PPD in placenta, embryo body, and embryo brain, suggesting higher placental transfer of 6PPDQ. Using in vitro dual-luciferase reporter assays, we revealed that 6PPDQ activated the human retinoic acid receptor α (RARα) and retinoid X receptor α (RXRα) at concentrations as low as 0.3 μM, which was ∼10-fold higher than the concentrations detected in human urines. 6PPD activated the RXRα at concentrations as low as 1.2 μM. These results demonstrate the exposure risks of 6PPD and 6PPDQ during pregnancy and emphasize the need for further toxicological and epidemiological investigations.
Collapse
Affiliation(s)
- Haoqi Nina Zhao
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California 92093, United States
| | - Sydney P Thomas
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California 92093, United States
| | - Mark J Zylka
- University of North Carolina Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Carolina Institute for Developmental Disabilities, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Pieter C Dorrestein
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California 92093, United States
- Collaborative Mass Spectrometry Innovation Center, University of California San Diego, La Jolla, California 92093, United States
- Department of Pharmacology, University of California San Diego, La Jolla, California 92093, United States
- Center for Microbiome Innovation, University of California San Diego, La Jolla, California 92093, United States
| | - Wenxin Hu
- University of North Carolina Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
9
|
Zhao HN, Hu X, Tian Z, Gonzalez M, Rideout CA, Peter KT, Dodd MC, Kolodziej EP. Transformation Products of Tire Rubber Antioxidant 6PPD in Heterogeneous Gas-Phase Ozonation: Identification and Environmental Occurrence. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:5621-5632. [PMID: 36996351 DOI: 10.1021/acs.est.2c08690] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
6PPD, a tire rubber antioxidant, poses substantial ecological risks because it can form a highly toxic quinone transformation product (TP), 6PPD-quinone (6PPDQ), during exposure to gas-phase ozone. Important data gaps exist regarding the structures, reaction mechanisms, and environmental occurrence of TPs from 6PPD ozonation. To address these data gaps, gas-phase ozonation of 6PPD was conducted over 24-168 h and ozonation TPs were characterized using high-resolution mass spectrometry. The probable structures were proposed for 23 TPs with 5 subsequently standard-verified. Consistent with prior findings, 6PPDQ (C18H22N2O2) was one of the major TPs in 6PPD ozonation (∼1 to 19% yield). Notably, 6PPDQ was not observed during ozonation of 6QDI (N-(1,3-dimethylbutyl)-N'-phenyl-p-quinonediimine), indicating that 6PPDQ formation does not proceed through 6QDI or associated 6QDI TPs. Other major 6PPD TPs included multiple C18H22N2O and C18H22N2O2 isomers, with presumptive N-oxide, N,N'-dioxide, and orthoquinone structures. Standard-verified TPs were quantified in roadway-impacted environmental samples, with total concentrations of 130 ± 3.2 μg/g in methanol extracts of tire tread wear particles (TWPs), 34 ± 4 μg/g-TWP in aqueous TWP leachates, 2700 ± 1500 ng/L in roadway runoff, and 1900 ± 1200 ng/L in roadway-impacted creeks. These data demonstrate that 6PPD TPs are likely an important and ubiquitous class of contaminants in roadway-impacted environments.
Collapse
Affiliation(s)
- Haoqi Nina Zhao
- Department of Civil and Environmental Engineering, University of Washington, Seattle, Washington 98195, United States
- Center for Urban Waters, Tacoma, Washington 98421, United States
| | - Ximin Hu
- Department of Civil and Environmental Engineering, University of Washington, Seattle, Washington 98195, United States
- Center for Urban Waters, Tacoma, Washington 98421, United States
| | - Zhenyu Tian
- Center for Urban Waters, Tacoma, Washington 98421, United States
- Interdisciplinary Arts and Sciences, University of Washington Tacoma, Tacoma, Washington 98421, United States
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| | - Melissa Gonzalez
- Center for Urban Waters, Tacoma, Washington 98421, United States
| | - Craig A Rideout
- Center for Urban Waters, Tacoma, Washington 98421, United States
| | - Katherine T Peter
- Center for Urban Waters, Tacoma, Washington 98421, United States
- Interdisciplinary Arts and Sciences, University of Washington Tacoma, Tacoma, Washington 98421, United States
| | - Michael C Dodd
- Department of Civil and Environmental Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Edward P Kolodziej
- Department of Civil and Environmental Engineering, University of Washington, Seattle, Washington 98195, United States
- Center for Urban Waters, Tacoma, Washington 98421, United States
- Interdisciplinary Arts and Sciences, University of Washington Tacoma, Tacoma, Washington 98421, United States
| |
Collapse
|
10
|
Maurer L, Carmona E, Machate O, Schulze T, Krauss M, Brack W. Contamination Pattern and Risk Assessment of Polar Compounds in Snow Melt: An Integrative Proxy of Road Runoffs. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:4143-4152. [PMID: 36862848 PMCID: PMC10018729 DOI: 10.1021/acs.est.2c05784] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
To assess the contamination and potential risk of snow melt with polar compounds, road and background snow was sampled during a melting event at 23 sites at the city of Leipzig and screened for 489 chemicals using liquid chromatography high-resolution mass spectrometry with target screening. Additionally, six 24 h composite samples were taken from the influent and effluent of the Leipzig wastewater treatment plant (WWTP) during the snow melt event. 207 compounds were at least detected once (concentrations between 0.80 ng/L and 75 μg/L). Consistent patterns of traffic-related compounds dominated the chemical profile (58 compounds in concentrations from 1.3 ng/L to 75 μg/L) and among them were 2-benzothiazole sulfonic acid and 1-cyclohexyl-3-phenylurea from tire wear and denatonium used as a bittern in vehicle fluids. Besides, the analysis unveiled the presence of the rubber additive 6-PPD and its transformation product N-(1.3-dimethylbutyl)-N'-phenyl-p-phenylenediamine quinone (6-PPDQ) at concentrations known to cause acute toxicity in sensitive fish species. The analysis also detected 149 other compounds such as food additives, pharmaceuticals, and pesticides. Several biocides were identified as major risk contributors, with a more site-specific occurrence, to acute toxic risks to algae (five samples) and invertebrates (six samples). Ametryn, flumioxazin, and 1,2-cyclohexane dicarboxylic acid diisononyl ester are the main compounds contributing to toxic risk for algae, while etofenprox and bendiocarb are found as the main contributors for crustacean risk. Correlations between concentrations in the WWTP influent and flow rate allowed us to discriminate compounds with snow melt and urban runoff as major sources from other compounds with other dominant sources. Removal rates in the WWTP showed that some traffic-related compounds were largely eliminated (removal rate higher than 80%) during wastewater treatment and among them was 6-PPDQ, while others persisted in the WWTP.
Collapse
Affiliation(s)
- Loïc Maurer
- Department
of Effect-Directed Analysis, UFZ—Helmholtz
Centre for Environmental Research, Permoserstr. 15, 04318 Leipzig, Germany
| | - Eric Carmona
- Department
of Effect-Directed Analysis, UFZ—Helmholtz
Centre for Environmental Research, Permoserstr. 15, 04318 Leipzig, Germany
| | - Oliver Machate
- Department
of Effect-Directed Analysis, UFZ—Helmholtz
Centre for Environmental Research, Permoserstr. 15, 04318 Leipzig, Germany
| | - Tobias Schulze
- Department
of Effect-Directed Analysis, UFZ—Helmholtz
Centre for Environmental Research, Permoserstr. 15, 04318 Leipzig, Germany
| | - Martin Krauss
- Department
of Effect-Directed Analysis, UFZ—Helmholtz
Centre for Environmental Research, Permoserstr. 15, 04318 Leipzig, Germany
| | - Werner Brack
- Department
of Effect-Directed Analysis, UFZ—Helmholtz
Centre for Environmental Research, Permoserstr. 15, 04318 Leipzig, Germany
- Institute
of Ecology, Evolution and Diversity, Goethe
University, Max-von-Laue-Str.
13, 60438 Frankfurt
am Main, Germany
| |
Collapse
|
11
|
Zhao HN, Hu X, Gonzalez M, Rideout CA, Hobby GC, Fisher MF, McCormick CJ, Dodd MC, Kim KE, Tian Z, Kolodziej EP. Screening p-Phenylenediamine Antioxidants, Their Transformation Products, and Industrial Chemical Additives in Crumb Rubber and Elastomeric Consumer Products. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:2779-2791. [PMID: 36758188 DOI: 10.1021/acs.est.2c07014] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Recently, roadway releases of N,N'-substituted p-phenylenediamine (PPD) antioxidants and their transformation products (TPs) received significant attention due to the highly toxic 6PPD-quinone. However, the occurrence of PPDs and TPs in recycled tire rubber products remains uncharacterized. Here, we analyzed tire wear particles (TWPs), recycled rubber doormats, and turf-field crumb rubbers for seven PPD antioxidants, five PPD-quinones (PPDQs), and five other 6PPD TPs using liquid chromatography-tandem mass spectrometry. PPD antioxidants, PPDQs, and other TPs were present in all samples with chemical profiles dominated by 6PPD, DTPD, DPPD, and their corresponding PPDQs. Interestingly, the individual [PPDQ]/[PPD] and [TP]/[PPD] ratios significantly increased as total concentrations of the PPD-derived chemical decreased, indicating that TPs (including PPDQs) dominated the PPD-derived compounds with increased environmental weathering. Furthermore, we quantified 15 other industrial rubber additives (including bonding agents, vulcanization accelerators, benzotriazole and benzothiazole derivatives, and diphenylamine antioxidants), observing that PPD-derived chemical concentrations were 0.5-6 times higher than these often-studied additives. We also screened various other elastomeric consumer products, consistently detecting PPD-derived compounds in lab stoppers, sneaker soles, and rubber garden hose samples. These data emphasize that PPD antioxidants, PPDQs, and related TPs are important, previously overlooked contaminant classes in tire rubbers and elastomeric consumer products.
Collapse
Affiliation(s)
- Haoqi Nina Zhao
- Department of Civil and Environmental Engineering, University of Washington, Seattle, Washington 98195, USA
- Center for Urban Waters, Tacoma, Washington 98421, USA
| | - Ximin Hu
- Department of Civil and Environmental Engineering, University of Washington, Seattle, Washington 98195, USA
- Center for Urban Waters, Tacoma, Washington 98421, USA
| | | | | | - Grant C Hobby
- Interdisciplinary Arts and Sciences, University of Washington Tacoma, Tacoma, Washington 98421, USA
| | - Matthew F Fisher
- Interdisciplinary Arts and Sciences, University of Washington Tacoma, Tacoma, Washington 98421, USA
| | - Carter J McCormick
- Interdisciplinary Arts and Sciences, University of Washington Tacoma, Tacoma, Washington 98421, USA
| | - Michael C Dodd
- Department of Civil and Environmental Engineering, University of Washington, Seattle, Washington 98195, USA
| | - Kelly E Kim
- Interdisciplinary Arts and Sciences, University of Washington Tacoma, Tacoma, Washington 98421, USA
| | - Zhenyu Tian
- Center for Urban Waters, Tacoma, Washington 98421, USA
- Interdisciplinary Arts and Sciences, University of Washington Tacoma, Tacoma, Washington 98421, USA
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, USA
| | - Edward P Kolodziej
- Department of Civil and Environmental Engineering, University of Washington, Seattle, Washington 98195, USA
- Center for Urban Waters, Tacoma, Washington 98421, USA
- Interdisciplinary Arts and Sciences, University of Washington Tacoma, Tacoma, Washington 98421, USA
| |
Collapse
|
12
|
Castan S, Sherman A, Peng R, Zumstein MT, Wanek W, Hüffer T, Hofmann T. Uptake, Metabolism , and Accumulation of Tire Wear Particle-Derived Compounds in Lettuce. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:168-178. [PMID: 36576319 PMCID: PMC9835885 DOI: 10.1021/acs.est.2c05660] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 12/15/2022] [Accepted: 12/15/2022] [Indexed: 05/28/2023]
Abstract
Tire wear particle (TWP)-derived compounds may be of high concern to consumers when released in the root zone of edible plants. We exposed lettuce plants to the TWP-derived compounds diphenylguanidine (DPG), hexamethoxymethylmelamine (HMMM), benzothiazole (BTZ), N-phenyl-N'-(1,3-dimethylbutyl)-p-phenylenediamine (6PPD), and its quinone transformation product (6PPD-q) at concentrations of 1 mg L-1 in hydroponic solutions over 14 days to analyze if they are taken up and metabolized by the plants. Assuming that TWP may be a long-term source of TWP-derived compounds to plants, we further investigated the effect of leaching from TWP on the concentration of leachate compounds in lettuce leaves by adding constantly leaching TWP to the hydroponic solutions. Concentrations in leaves, roots, and nutrient solution were quantified by triple quadrupole mass spectrometry, and metabolites in the leaves were identified by Orbitrap high resolution mass spectrometry. This study demonstrates that TWP-derived compounds are readily taken up by lettuce with measured maximum leaf concentrations between ∼0.75 (6PPD) and 20 μg g-1 (HMMM). Although these compounds were metabolized in the plant, we identified several transformation products, most of which proved to be more stable in the lettuce leaves than the parent compounds. Furthermore, continuous leaching from TWP led to a resupply and replenishment of the metabolized compounds in the lettuce leaves. The stability of metabolized TWP-derived compounds with largely unknown toxicities is particularly concerning and is an important new aspect for the impact assessment of TWP in the environment.
Collapse
Affiliation(s)
- Stephanie Castan
- Centre
for Microbiology and Environmental Systems Science, Environmental
Geosciences EDGE, University of Vienna, 1090Vienna, Austria
- Doctoral
School in Microbiology and Environmental Science, University of Vienna, 1090Vienna, Austria
| | - Anya Sherman
- Centre
for Microbiology and Environmental Systems Science, Environmental
Geosciences EDGE, University of Vienna, 1090Vienna, Austria
- Doctoral
School in Microbiology and Environmental Science, University of Vienna, 1090Vienna, Austria
- Research
Platform for Plastics in the Environment and Society (PLENTY), University of Vienna, 1090Vienna, Austria
| | - Ruoting Peng
- Centre
for Microbiology and Environmental Systems Science, Environmental
Geosciences EDGE, University of Vienna, 1090Vienna, Austria
- Doctoral
School in Microbiology and Environmental Science, University of Vienna, 1090Vienna, Austria
| | - Michael T. Zumstein
- Centre
for Microbiology and Environmental Systems Science, Environmental
Geosciences EDGE, University of Vienna, 1090Vienna, Austria
| | - Wolfgang Wanek
- Centre
for Microbiology and Environmental Systems Science, Division of Terrestrial
Ecosystem Research, University of Vienna, 1030Vienna, Austria
| | - Thorsten Hüffer
- Centre
for Microbiology and Environmental Systems Science, Environmental
Geosciences EDGE, University of Vienna, 1090Vienna, Austria
- Research
Platform for Plastics in the Environment and Society (PLENTY), University of Vienna, 1090Vienna, Austria
| | - Thilo Hofmann
- Centre
for Microbiology and Environmental Systems Science, Environmental
Geosciences EDGE, University of Vienna, 1090Vienna, Austria
- Research
Platform for Plastics in the Environment and Society (PLENTY), University of Vienna, 1090Vienna, Austria
| |
Collapse
|
13
|
Zhang HY, Huang Z, Liu YH, Hu LX, He LY, Liu YS, Zhao JL, Ying GG. Occurrence and risks of 23 tire additives and their transformation products in an urban water system. ENVIRONMENT INTERNATIONAL 2023; 171:107715. [PMID: 36577297 DOI: 10.1016/j.envint.2022.107715] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/23/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
Tire wear particles (TWPs) enter road surface with the friction between tires and road surfaces. Under the volatilization, leaching, and transformation action on TWPs by sunlight and rain, tire additives are released into urban water systems, such as surface rainfall runoff, wastewater treatment plants (WWTPs), receiving surface waters, and drinking water treatment plant (DWTP). In this study, we investigated the occurrence of 23 tire additives and their transformation products in the urban water system of the Pearl River Delta region, South China. Nineteen target compounds were detected in the surface runoff, with 1,3-Diphenylguanidine (DPG) showing highest maximum concentration of 58780 ng/L. Benzothiazole and its transformation products are detected at the frequency of 100 % with the total concentrations of 480-42160 ng/L. The antioxidant derivative N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine-quinone (6PPD-Q) was also detected up to 1562 ng/L, which was considerably higher than that of the parent compound 6PPD (the maximum concentration of 7.52 ng/L). Eleven and 8 compounds were detected in WWTPs influents and effluents, respectively, with removal rates of - 62-100 %. Seventeen compounds were detected in the receiving Zhujiang and Dongjiang rivers, while 9 compounds were detected in drinking water sources and DWTP samples. Road runoff, with total concentrations of target compounds up to 79200 ng/L, is suggested as the main non-point source for receiving rivers, while WWTPs effluents are the point sources due to incomplete removal of target compounds after accepting the initial runoff. 6PPD-Q and other 10 compounds displayed median to high ecological risks in surface waters, and the human daily intake of tire additives was estimated to be 2.63 × 10-8-3.16 × 10-5 mg/(kg d) via drinking water. This is the first report of the 6PPD-Q and 1,3-Diphenylurea levels in surface waters in China.
Collapse
Affiliation(s)
- Hai-Yan Zhang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, Guangzhou 510006, China
| | - Zheng Huang
- School of Environment, South China Normal University, Guangzhou 510006, China
| | - Yue-Hong Liu
- School of Environment, South China Normal University, Guangzhou 510006, China
| | - Li-Xin Hu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, Guangzhou 510006, China
| | - Liang-Ying He
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, Guangzhou 510006, China
| | - You-Sheng Liu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, Guangzhou 510006, China
| | - Jian-Liang Zhao
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, Guangzhou 510006, China.
| | - Guang-Guo Ying
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, Guangzhou 510006, China
| |
Collapse
|
14
|
Xu J, Hao Y, Yang Z, Li W, Xie W, Huang Y, Wang D, He Y, Liang Y, Matsiko J, Wang P. Rubber Antioxidants and Their Transformation Products: Environmental Occurrence and Potential Impact. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph192114595. [PMID: 36361475 PMCID: PMC9657274 DOI: 10.3390/ijerph192114595] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/29/2022] [Accepted: 11/03/2022] [Indexed: 05/28/2023]
Abstract
Antioxidants are prevalently used during rubber production to improve rubber performance, delay aging, and extend service life. However, recent studies have revealed that their transformation products (TPs) could adversely affect environmental organisms and even lead to environmental events, which led to great public concern about environmental occurrence and potential impacts of rubber antioxidants and their TPs. In this review, we first summarize the category and application of rubber antioxidants in the world, and then demonstrate the formation mechanism of their TPs in the environment, emphasizing their influence on the ozone oxidative degradation. The potential toxic effects of antioxidants and their TPs are further reviewed to improve understanding of their biological health impact and environmental risks. Finally, the environmental occurrences of antioxidants and their TPs are summarized and their environmental impacts are demonstrated based on the recent studies. Due to the currently limited understanding on the toxic and biological effects of these compounds, further studies are required in order to better assess various TPs of these antioxidants and their environmental impact. To our knowledge, this is the first review on antioxidants and their TPs in the environment, which may elevate the environmental risk awareness of rubber products and their TPs in the near future.
Collapse
Affiliation(s)
- Jing Xu
- State Key Laboratory of Precision Blasting, Jianghan University, Wuhan 430056, China
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Yanfen Hao
- State Key Laboratory of Precision Blasting, Jianghan University, Wuhan 430056, China
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Zhiruo Yang
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Wenjuan Li
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Wenjing Xie
- State Key Laboratory of Precision Blasting, Jianghan University, Wuhan 430056, China
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Yani Huang
- State Key Laboratory of Precision Blasting, Jianghan University, Wuhan 430056, China
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Deliang Wang
- State Key Laboratory of Precision Blasting, Jianghan University, Wuhan 430056, China
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Yuqing He
- State Key Laboratory of Precision Blasting, Jianghan University, Wuhan 430056, China
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Yong Liang
- State Key Laboratory of Precision Blasting, Jianghan University, Wuhan 430056, China
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Julius Matsiko
- Department of Chemistry, Faculty of Science, Muni University, Arua P.O. Box 725, Uganda
| | - Pu Wang
- State Key Laboratory of Precision Blasting, Jianghan University, Wuhan 430056, China
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China
| |
Collapse
|
15
|
Johannessen C, Metcalfe CD. The occurrence of tire wear compounds and their transformation products in municipal wastewater and drinking water treatment plants. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 194:731. [PMID: 36066775 DOI: 10.1007/s10661-022-10450-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 08/30/2022] [Indexed: 06/15/2023]
Abstract
In the present study, 29 chemicals derived from tire wear were monitored by deploying Polar Organic Chemical Integrative Samplers (POCIS) in four WWTPs and two drinking water treatment plants (DWTPs) located in a municipality in southern Ontario, Canada. Target analytes included 1,3-diphenylguanidine (DPG), the oxidation byproduct of N-(1,3-dimethylbutyl)-N'-phenyl-1,4-benzenediamine called 6PPD-quinone, hexamethoxymethylmelamine (HMMM), and 26 of HMMM's known transformation products (TPs). This study is the first to monitor all these target compounds in DWTPs, as well as to report data for the presence of 6PPD-quinone in WWTPs. HMMM and selected TPs of this compound were detected in POCIS deployed in the WWTPs and in the DWTPs. The maximum estimated time-weighted average (TWA) concentration of HMMM of 83.2 ± 25.2 ng/L was observed in the effluent of one of the WWTPs. The TWA concentrations were not determined for any of the other target analytes, as POCIS sampling rates have not been determined for these chemicals. The total mass of HMMM and its TPs accumulated on POCIS frequently exceeded 4000 ng and the masses were generally lower in WWTP effluents relative to the influents. For other target analytes, the amounts accumulated on POCIS deployed in WWTP effluents frequently exceeded the amounts accumulated on POCIS deployed in the influents. DPG was detected in POCIS deployed in both the WWTPs and the DWTPs, and 6PPD-quinone was detected in POCIS deployed in both the influent and the effluent of WWTPs. We speculate that these tire wear compounds are entering WWTPs through stormwater overflows into the sewers or from commercial sources (e.g., car washes). This study highlights the need for an assessment of both WWTPs and DWTPs as sinks and sources of these tire wear compounds and the efficacy of treatment processes to remove them from both wastewater and drinking water.
Collapse
Affiliation(s)
| | - Chris D Metcalfe
- Water Quality Center, Trent University, Peterborough, ON, Canada
| |
Collapse
|
16
|
Wiener E, LeFevre GH. White Rot Fungi Produce Novel Tire Wear Compound Metabolites and Reveal Underappreciated Amino Acid Conjugation Pathways. ENVIRONMENTAL SCIENCE & TECHNOLOGY LETTERS 2022; 9:391-399. [PMID: 35578639 PMCID: PMC9100321 DOI: 10.1021/acs.estlett.2c00114] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/14/2022] [Accepted: 03/16/2022] [Indexed: 06/01/2023]
Abstract
There is increasing concern about tire wear compounds (TWCs) in surface water and stormwater as evidence grows on their toxicity and widespread detection in the environment. Because TWCs are prevalent in stormwater, there is a need to understand fate and treatment options including biotransformation in green infrastructure (e.g., bioretention). Particularly, fungal biotransformation is not well-studied in a stormwater context despite the known ability of certain fungi to remove recalcitrant contaminants. Here, we report the first study on fungal biotransformation of the TWCs acetanilide and hexamethoxymethylmelamine (HMMM). We found that the model white rot fungus, Trametes versicolor, removed 81.9% and 69.6% of acetanilide and HMMM, respectively, with no significant sorption to biomass. The bicyclic amine 1,3-diphenylguanidine was not removed. Additionally, we identified novel TWC metabolites using semi-untargeted metabolomics via high-resolution mass spectrometry. Key metabolites include multiple isomers of HMMM biotransformation products, melamine as a possible "dead-end" product of HMMM (verified with an authentic standard), and a glutamine-conjugated product of acetanilide. These metabolites have implications for environmental toxicity and treatment. Our discovery of the first fungal glutamine-conjugated product highlights the need to investigate amino acid conjugation as an important pathway in biotransformation of contaminants, with implications in other fields including natural products discovery.
Collapse
Affiliation(s)
- Erica
A. Wiener
- Department
of Civil & Environmental Engineering, University of Iowa, 4105 Seamans Center, Iowa City, Iowa 52242, United
States
- C.
Maxwell Stanley Hydraulics Laboratory, IIHR−Hydroscience
& Engineering, Iowa City, Iowa 52242, United States
| | - Gregory H. LeFevre
- Department
of Civil & Environmental Engineering, University of Iowa, 4105 Seamans Center, Iowa City, Iowa 52242, United
States
- C.
Maxwell Stanley Hydraulics Laboratory, IIHR−Hydroscience
& Engineering, Iowa City, Iowa 52242, United States
| |
Collapse
|
17
|
Rauert C, Charlton N, Okoffo ED, Stanton RS, Agua AR, Pirrung MC, Thomas KV. Concentrations of Tire Additive Chemicals and Tire Road Wear Particles in an Australian Urban Tributary. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:2421-2431. [PMID: 35099932 DOI: 10.1021/acs.est.1c07451] [Citation(s) in RCA: 118] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Tire road wear particles (TRWPs) are one of the largest sources of microplastics to the urban environment with recent concerns as they also provide a pathway for additive chemicals to leach into the environment. Stormwater is a major source of TRWPs and associated additives to urban surface water, with additives including the antioxidant derivative N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine-quinone (6PPD-quinone) demonstrating links to aquatic toxicity at environmentally relevant concentrations. The present study used complementary analysis methods to quantify both TRWPs and a suite of known tire additive chemicals (including 6PPD-quinone) to an urban tributary in Australia during severe storm events. Concentrations of additives increased more than 40 times during storms, with a maximum concentration of 2760 ng/L for ∑15additives, 88 ng/L for 6PPD-quinone, and a similar profile observed in each storm. TRWPs were detected during storm peaks with a maximum concentration between 6.4 and 18 mg/L, and concentrations of TRWPs and all additives were highly correlated. Contaminant mass loads to this catchment were estimated as up to 100 g/storm for ∑15additives, 3 g/storm for 6PPD-quinone, and between 252 and 730 kg of TRWPs/storm. While 6PPD-quinone concentrations in this catchment were lower than previous studies, elevated concentrations post storm suggest prolonged aquatic exposure.
Collapse
Affiliation(s)
- Cassandra Rauert
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba 4102, QLD, Australia
| | - Nathan Charlton
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba 4102, QLD, Australia
| | - Elvis D Okoffo
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba 4102, QLD, Australia
| | - Ryan S Stanton
- Chemical Sciences, University of California Riverside, Riverside, California 92521, United States
| | - Alon R Agua
- Chemical Sciences, University of California Riverside, Riverside, California 92521, United States
| | - Michael C Pirrung
- Chemical Sciences, University of California Riverside, Riverside, California 92521, United States
| | - Kevin V Thomas
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba 4102, QLD, Australia
| |
Collapse
|
18
|
Siddiqui E, Pandey J. Atmospheric Deposition: An Important Determinant of Nutrients and Heavy Metal Levels in Urban Surface Runoff Reaching to the Ganga River. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2022; 82:191-205. [PMID: 33758990 DOI: 10.1007/s00244-021-00820-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 02/06/2021] [Indexed: 05/26/2023]
Abstract
Excessive loading of water bodies with surface runoff-driven nutrients and heavy metals has become a serious concern worldwide. We investigated the surface runoff quality for nutrients and heavy metals being flushed to the Ganga River, as influenced by atmospheric deposition (AD). We selected three city sites in India, Haridwar, Varanasi, and Howrah, which differ widely with respect to population density and anthropogenic activities. We found distinct spatio-temporal trends in AD input of nutrients and heavy metal with values being highest in Varanasi region followed by Howrah and Haridwar. The runoff nutrients and metals showed strong synchrony with their respective levels in AD input. The concentrations were higher in the first flush. We found strong correlations (R2 = 0.83-0.93; p < 0.001) between AD metals and nutrients with their respective concentration in runoff. For all the studied metals, except Cd, the major proportions were in particulate form. The Cd was present in almost equal proportions in particulate and dissolved fractions. Metals in runoff were found in order as: Zn > Pb > Cu > Ni > Cr > Cd. In general, the concentrations of metals were higher than those reported in other studies. The contamination factor and geo-accumulation index show that the Cd was a major pollutant in the runoff. The pollution load index (PLI) indicates that all three sites are highly polluted. Our study indicates that there is a need to reduce particulate loads. Furthermore, because of the high concentrations of pollutants in the first flush, strategies may be developed to enhance the efficiency of treatment of the first flush of runoff.
Collapse
Affiliation(s)
- Ekabal Siddiqui
- Ganga River Ecology Research Laboratory, Environmental Science Division, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Jitendra Pandey
- Ganga River Ecology Research Laboratory, Environmental Science Division, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
19
|
Johannessen C, Helm P, Lashuk B, Yargeau V, Metcalfe CD. The Tire Wear Compounds 6PPD-Quinone and 1,3-Diphenylguanidine in an Urban Watershed. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2022; 82:171-179. [PMID: 34347118 PMCID: PMC8335451 DOI: 10.1007/s00244-021-00878-4] [Citation(s) in RCA: 80] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 07/21/2021] [Indexed: 05/19/2023]
Abstract
Prompted by a recent report that 6PPD-quinone (6PPD-q), a by-product of a common tire manufacturing additive that is present in road runoff, is toxic to coho salmon (Oncorhynchus kisutch), extracts of water samples collected from an urban river were re-analyzed to determine if this compound was present in stormwater-influenced flows. In addition, extracts were analyzed for 1,3-diphenylguanidine (DPG), which is also used in tire manufacturing. Samples were originally collected in the fall of 2019 and winter of 2020 in the Greater Toronto Area of Canada from the Don River, a highly urbanized watershed in close proximity to several major multi-lane highways. These target compounds were analyzed using ultra-high pressure liquid chromatography with high resolution mass spectrometric detection with parallel reaction monitoring. Both 6PPD-q and DPG were detected above limits of quantification (i.e., 0.0098 µg/L) in all extracts. Maximum concentrations for 6PPD-quinone of 2.30 ± 0.05 µg/L observed in the river during storm events exceeded the LC50 for this compound for coho salmon (i.e., > 0.8 µg/L). In composite samples collected at intervals throughout one rain event, both compounds reached peak concentrations a few hours after initiation of the event (i.e., 0.52 µg/L for DPG and 2.85 µg/L for 6PPD-q), but the concentrations of 6PPD-q remained elevated above 2 µg/L for over 10-h in the middle of the event. Estimates of cumulative loads of these compounds in composite samples indicated that kg amounts of these compounds entered the Don River during each hydrological event, and the loads were proportional to the amounts of precipitation. This study contributes to the growing literature indicating that potentially toxic tire-wear compounds are present at elevated levels and are transported via road runoff into urban surface waters during rain events.
Collapse
Affiliation(s)
| | - Paul Helm
- Ontario Ministry of the Environment, Conservation and Parks, Toronto, ON, Canada
| | - Brent Lashuk
- Department of Chemical Engineering, McGill University, Montreal, QC, Canada
| | - Viviane Yargeau
- Department of Chemical Engineering, McGill University, Montreal, QC, Canada
| | - Chris D Metcalfe
- Water Quality Center, Trent University, Peterborough, ON, Canada
| |
Collapse
|
20
|
Gillis PL, Parrott JL, Helm P. Environmental Fate and Effects of Road Run-Off. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2022; 82:159-161. [PMID: 34977971 PMCID: PMC8817996 DOI: 10.1007/s00244-021-00906-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Affiliation(s)
- Patricia L Gillis
- Aquatic Contaminants Research Division, Environment and Climate Change Canada, Burlington, ON, Canada.
| | - Joanne L Parrott
- Aquatic Contaminants Research Division, Environment and Climate Change Canada, Burlington, ON, Canada
| | - Paul Helm
- Ontario Ministry of the Environment, Conservation and Parks, Toronto, ON, Canada
| |
Collapse
|
21
|
Johannessen C, Shetranjiwalla S. Role of Structural Morphology of Commodity Polymers in Microplastics and Nanoplastics Formation: Fragmentation, Effects and Associated Toxicity in the Aquatic Environment. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 259:123-169. [PMID: 34652560 DOI: 10.1007/398_2021_80] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
With the continued growth in plastic production, its ubiquitous use and insufficient waste management and disposal, the increased levels of plastics in the environment have led to growing ecological concerns. The breakdown of these plastic macromolecules to smaller micro and nanosized particles and their detection in the aerial, aquatic, marine and terrestrial environments has been reviewed extensively, especially for thermoplastics. However, the formation of micro and nanoplastics has typically been explained as a physical abrasion process, largely overlooking the underlying chemical structure-morphology correlations to the degradation mechanisms of the plastics. This is particularly true for the common commodity thermosets. This review focuses on the degradation pathways for the most widely produced commodity thermoplastics and thermosets into microplastics (MP)s and nanoplastics (NP)s, as well as their behaviour and associated toxicity. Special emphasis is placed on NPs, which are associated with greater risks for toxicity compared to MPs, due to their higher surface area to volume ratios. This review also assesses the current state of standardized detection and quantification methods as well as comprehensive regulations for these fragments in the aquatic environment.
Collapse
|