1
|
Choi EJ, Baek IC, Park S, Kim HJ, Kim TG. Development of cost-effective and fast KIR genotyping by multiplex PCR-SSP. HLA 2024; 103:e15191. [PMID: 37688498 DOI: 10.1111/tan.15191] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/24/2023] [Accepted: 08/01/2023] [Indexed: 09/11/2023]
Abstract
Killer-cell immunoglobulin-like receptors (KIR) control natural killer (NK) cell functions by recognizing HLA molecules and modulating the activity of NK cells. The KIR gene cluster contains polymorphic and highly homologous genes. Diversity of the KIR region is achieved through differences in gene content, allelic polymorphism, and gene copy number, which result in unrelated individuals having different KIR genotypes and individualized immune responses that are relevant to multiple aspects of human health and disease. Therefore, KIR genotyping is increasingly used in epidemiological studies. Here, we developed multiplex polymerase chain reaction with sequence-specific primers (PCR-SSP) to compensate for the shortcomings of the conventional PCR-SSP method, which is most commonly used for KIR analysis. Multiplex PCR-SSP method involves six multiplex reactions that detect 16 KIR genes and distinguish variant types of some KIR genes by adding two reactions. The assay was evaluated in a blind survey using a panel of 40 reference DNA standards from the UCLA KIR Exchange Program. The results are 100% concordant with the genotype determined using Luminex-based reverse sequence-specific oligonucleotide typing systems. Additionally, we investigated the currently known 16 KIR genes and their common variants in 120 unrelated Korean individuals. The results were consistent with the KIR genotype previously reported by Hwang et al. This multiplex PCR-SSP is an efficient method for analyzing KIR genotypes in both small- and large-scale studies with minimal labor, reagents, and DNA. Furthermore, by providing a better definition of KIR polymorphisms it can contribute to developments in immunogenetics.
Collapse
Affiliation(s)
- Eun-Jeong Choi
- Hematopoietic Stem Cell Bank, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - In-Cheol Baek
- Hematopoietic Stem Cell Bank, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Silvia Park
- Department of Internal Medicine, Catholic Blood and Marrow Transplantation Center, Leukemia Research Institute, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hee-Je Kim
- Department of Internal Medicine, Catholic Blood and Marrow Transplantation Center, Leukemia Research Institute, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Tai-Gyu Kim
- Hematopoietic Stem Cell Bank, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
2
|
NurWaliyuddin HZA, Norazmi MN, Zafarina Z. Allelic Polymorphisms of Killer Immunoglobulin-Like Receptor Genes in Malay and Orang Asli Populations of Peninsular Malaysia. Hum Immunol 2022; 83:564-573. [PMID: 35483989 DOI: 10.1016/j.humimm.2022.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 02/25/2022] [Accepted: 04/18/2022] [Indexed: 11/04/2022]
Abstract
Next-generation DNA sequencing (NGS) technology advancements provide new insight into the level of variation in killer immunoglobulin-like receptor (KIR) genes. High resolution allele genotyping of seven KIR genes was conducted among 94 unrelated Malay and Orang Asli (OA) individuals of Peninsular Malaysia. A manual bioinformatics analysis is performed and optimised by Sanger sequencing method. The Malays expressed a total of 22 alleles, as compared to only 15 alleles in the OA population. In total, 12 centromeric and 9 telomeric allelic haplotypes were identified in the Malays, whereas 8 centromeric and 5 telomeric allelic haplotypes were identified in the OA. The KIR2DL1, KIR2DL3, and KIR2DS4 genes exhibited a high degree of variation and balanced distribution in the Malay and OA populations. On the other hand, KIR2DL4, KIR3DL1, KIR3DL2 and KIR3DL3 genes exhibited a high degree of conservation, with less number of alleles identified and the dominance of a single allele at high frequency. High-resolution KIR allele genotyping has revealed unique sequence variations and allelic haplotypes between individuals and populations. The distributions of KIR alleles and haplotypes are useful for genetic population studies and serve as a baseline for future transplantation matching and disease association research.
Collapse
Affiliation(s)
- Hanis Z A NurWaliyuddin
- Human Identification/DNA Unit, School of Health Sciences, Universiti Sains Malaysia, 16150, Kubang Kerian, Kelantan, Malaysia
| | - Mohd Nor Norazmi
- Human Identification/DNA Unit, School of Health Sciences, Universiti Sains Malaysia, 16150, Kubang Kerian, Kelantan, Malaysia
| | - Zainuddin Zafarina
- Human Identification/DNA Unit, School of Health Sciences, Universiti Sains Malaysia, 16150, Kubang Kerian, Kelantan, Malaysia; Analytical Biochemistry Research Centre (ABrC), Inkubator Inovasi Universiti (I(2)U), SAINS@usm, Universiti Sains Malaysia, 11900, Bayan Lepas, Penang, Malaysia.
| |
Collapse
|
3
|
Hovhannisyan A, Madelian V, Avagyan S, Nazaretyan M, Hyussyan A, Sirunyan A, Arakelyan R, Manukyan Z, Yepiskoposyan L, Mayilyan KR, Jordan F. HLA-C*04:01 Affects HLA Class I Heterozygosity and Predicted Affinity to SARS-CoV-2 Peptides, and in Combination With Age and Sex of Armenian Patients Contributes to COVID-19 Severity. Front Immunol 2022; 13:769900. [PMID: 35185875 PMCID: PMC8850920 DOI: 10.3389/fimmu.2022.769900] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 01/13/2022] [Indexed: 12/14/2022] Open
Abstract
The novel SARS-CoV-2 coronavirus infection has become a global health concern, causing the COVID-19 pandemic. The disease symptoms and outcomes depend on the host immunity, in which the human leukocyte antigen (HLA) molecules play a distinct role. The HLA alleles have an inter-population variability, and understanding their link to the COVID-19 in an ethnically distinct population may contribute to personalized medicine. The present study aimed at detecting associations between common HLA alleles and COVID-19 susceptibility and severity in Armenians. In 299 COVID-19 patients (75 asymptomatic, 102 mild/moderate, 122 severe), the association between disease severity and classic HLA-I and II loci was examined. We found that the advanced age, male sex of patients, and sex and age interaction significantly contributed to the severity of the disease. We observed that an age-dependent effect of HLA-B*51:01 carriage [odds ratio (OR)=0.48 (0.28-0.80), Pbonf <0.036] is protective against severe COVID-19. Contrary, the HLA-C*04:01 allele, in a dose-dependent manner, was associated with a significant increase in the disease severity [OR (95% CI) =1.73 (1.20-2.49), Pbonf <0.021] and an advancing age (P<0.013). The link between HLA-C*04:01 and age was secondary to a stronger association between HLA-C*04:01 and disease severity. However, HLA-C*04:01 exerted a sex-dependent differential distribution between clinical subgroups [females: P<0.0012; males: P=0.48]. The comparison of HLA-C*04:01 frequency between subgroups and 2,781 Armenian controls revealed a significant incidence of HLA-C*04:01 deficiency in asymptomatic COVID-19. HLA-C*04:01 homozygous genotype in patients blueprinted a decrease in heterozygosity of HLA-B and HLA class-I loci. In HLA-C*04:01 carriers, these changes translated to the SARS-CoV-2 peptide presentation predicted inefficacy by HLA-C and HLA class-I molecules, simultaneously enhancing the appropriate HLA-B potency. In patients with clinical manifestation, due to the high prevalence of HLA-C*04:01, these effects provided a decrease of the HLA class-I heterozygosity and an ability to recognize SARS-CoV-2 peptides. Based on our observations, we developed a prediction model involving demographic variables and HLA-C*04:01 allele for the identification of potential cases with the risk of hospitalization (the area under the curve (AUC) = 86.2%) or severe COVID-19 (AUC =71%).
Collapse
Affiliation(s)
- Anahit Hovhannisyan
- Institute of Molecular Biology, National Academy of Sciences, Yerevan, Armenia
- Russian-Armenian University, Yerevan, Armenia
| | - Vergine Madelian
- Armenian Bone Marrow Donor Registry Charitable Trust, Yerevan, Armenia
| | - Sevak Avagyan
- Armenian Bone Marrow Donor Registry Charitable Trust, Yerevan, Armenia
| | - Mihran Nazaretyan
- Armenian Bone Marrow Donor Registry Charitable Trust, Yerevan, Armenia
| | - Armine Hyussyan
- Armenian Bone Marrow Donor Registry Charitable Trust, Yerevan, Armenia
| | - Alina Sirunyan
- Armenian Bone Marrow Donor Registry Charitable Trust, Yerevan, Armenia
| | | | | | | | - Karine R. Mayilyan
- Institute of Molecular Biology, National Academy of Sciences, Yerevan, Armenia
| | - Frieda Jordan
- Armenian Bone Marrow Donor Registry Charitable Trust, Yerevan, Armenia
| |
Collapse
|
4
|
Dubis J, Niepiekło-Miniewska W, Jędruchniewicz N, Sobczyński M, Witkiewicz W, Zapotoczny N, Kuśnierczyk P. Associations of Genes for Killer Cell Immunoglobulin-like Receptors and Their Human Leukocyte Antigen-A/B/C Ligands with Abdominal Aortic Aneurysm. Cells 2021; 10:cells10123357. [PMID: 34943866 PMCID: PMC8699266 DOI: 10.3390/cells10123357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/20/2021] [Accepted: 11/25/2021] [Indexed: 11/28/2022] Open
Abstract
Abdominal aortic aneurysm (AAA) is an immune-mediated disease with a genetic component. The multifactorial pathophysiology is not clear and there is still no pharmacotherapy to slow the growth of aneurysms. The signal integration of cell-surface KIRs (killer cell immunoglobulin-like receptors) with HLA (ligands, human leukocyte class I antigen molecules) modulates the activity of natural killer immune cells. The genetic diversity of the KIR/HLA system is associated with the risk of immune disorders. This study was a multivariate analysis of the association between genetic variants of KIRs, HLA ligands, clinical data and AAA formation. Genotyping was performed by single polymerase chain reaction with sequence-specific primers using commercial assays. Patients with HLA-A-Bw4 have a larger aneurysm by an average of 4 mm (p = 0.008). We observed a relationship between aneurysm diameter and BMI in patients with AAA and co-existing CAD; its shape was determined by the presence of HLA-A-Bw4. There was also a nearly 10% difference in KIR3DL1 allele frequency between the study and control groups. High expression of the cell surface receptor KIR3DL1 may protect, to some extent, against AAA. The presence of HLA-A-Bw4 may affect the rate of aneurysm growth and represents a potential regional pathogenetic risk of autoimmune injury to the aneurysmal aorta.
Collapse
Affiliation(s)
- Joanna Dubis
- Research and Development Centre, Regional Specialist Hospital, 51-124 Wroclaw, Poland;
- Correspondence: (J.D.); (P.K.)
| | - Wanda Niepiekło-Miniewska
- Laboratory of Immunogenetics and Tissue Immunology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wrocław, Poland;
| | | | - Maciej Sobczyński
- Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland;
| | - Wojciech Witkiewicz
- Department of Vascular Surgery, Regional Specialist Hospital in Wroclaw, 51-124 Wrocław, Poland; (W.W.); (N.Z.)
| | - Norbert Zapotoczny
- Department of Vascular Surgery, Regional Specialist Hospital in Wroclaw, 51-124 Wrocław, Poland; (W.W.); (N.Z.)
| | - Piotr Kuśnierczyk
- Laboratory of Immunogenetics and Tissue Immunology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wrocław, Poland;
- Correspondence: (J.D.); (P.K.)
| |
Collapse
|
5
|
Killer-cell immunoglobulin-like receptor genotype and haplotype combinations in children treated for acute lymphoblastic leukemia. Cent Eur J Immunol 2021; 46:210-216. [PMID: 34764789 PMCID: PMC8568030 DOI: 10.5114/ceji.2021.108178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 12/28/2020] [Indexed: 11/17/2022] Open
Abstract
Introduction Acute lymphoblastic leukemia (ALL) is the most common malignancy diagnosed in children. The factors predisposing to ALL remain mostly unknown. Natural killer (NK) cells are a component of innate immunity. Their role is to eliminate cells that were infected with viruses or underwent a neoplastic transformation. The activity of NK cells is regulated by their activating and inhibitory receptors, inter alia killer-cell immunoglobulin-like receptors (KIRs). The available data about a link between the incidence of ALL and KIR genotype are highly inconclusive, and further research is needed to explain whether such a relationship truly exists. The aim of this study was to analyze KIR genotype and haplotype combinations in children treated for ALL. Material and methods The study included 49 children diagnosed with ALL at 1.2-19.8 years of age. The control group was composed of 43 healthy subjects aged between 1.2 and 21.9 years. DNA was isolated using QIAamp DNA Mini kits. KIR genotypes were identified by a polymerase chain reaction (PCR) with sequence-specific primers (SSPs). The analysis also included KIR haplotype combinations: AA, AB and BB. Results Patients with ALL and controls did not differ significantly in the frequencies of individual KIR genes and haplotypes. However, the overall frequency of all 6 activating KIR genes in patients with ALL was significantly higher than in the controls (24.5% vs. 4.7%, p = 0.019). Conclusions The findings presented here imply that individual KIR genes do not play a significant role in the pathogenesis of ALL. Nevertheless, a higher number of activating KIR genes may constitute a risk factor for this malignancy.
Collapse
|
6
|
Relevance of Polymorphic KIR and HLA Class I Genes in NK-Cell-Based Immunotherapies for Adult Leukemic Patients. Cancers (Basel) 2021; 13:cancers13153767. [PMID: 34359667 PMCID: PMC8345033 DOI: 10.3390/cancers13153767] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/22/2021] [Accepted: 07/23/2021] [Indexed: 11/30/2022] Open
Abstract
Simple Summary Immunotherapies are promising approaches to curing different acute leukemias. Natural killer (NK) cells are lymphocytes that are efficient in the elimination of leukemic cells. NK-cell-based immunotherapies are particularly attractive, but the landscape of the heterogeneity of NK cells must be deciphered. This review provides an overview of the polymorphic KIR and HLA class I genes that modulate the NK cell repertoire and how these markers can improve the outcomes of patients with acute leukemia. A better knowledge of these genetic markers that are linked to NK cell subsets that are efficient against hematological diseases will optimize hematopoietic stem-cell donor selection and NK immunotherapy design. Abstract Since the mid-1990s, the biology and functions of natural killer (NK) cells have been deeply investigated in healthy individuals and in people with diseases. These effector cells play a particularly crucial role after allogeneic hematopoietic stem-cell transplantation (HSCT) through their graft-versus-leukemia (GvL) effect, which is mainly mediated through polymorphic killer-cell immunoglobulin-like receptors (KIRs) and their cognates, HLA class I ligands. In this review, we present how KIRs and HLA class I ligands modulate the structural formation and the functional education of NK cells. In particular, we decipher the current knowledge about the extent of KIR and HLA class I gene polymorphisms, as well as their expression, interaction, and functional impact on the KIR+ NK cell repertoire in a physiological context and in a leukemic context. In addition, we present the impact of NK cell alloreactivity on the outcomes of HSCT in adult patients with acute leukemia, as well as a description of genetic models of KIRs and NK cell reconstitution, with a focus on emergent T-cell-repleted haplo-identical HSCT using cyclosphosphamide post-grafting (haplo-PTCy). Then, we document how the immunogenetics of KIR/HLA and the immunobiology of NK cells could improve the relapse incidence after haplo-PTCy. Ultimately, we review the emerging NK-cell-based immunotherapies for leukemic patients in addition to HSCT.
Collapse
|
7
|
Hanis Zainal Abidin NW, Mohd Nor N, Sundararajulu P, Zafarina Z. Understanding the genetic history of Malay populations in Peninsular Malaysia via KIR genes diversity. Am J Hum Biol 2020; 33:e23545. [PMID: 33289243 DOI: 10.1002/ajhb.23545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 11/06/2020] [Accepted: 11/18/2020] [Indexed: 11/11/2022] Open
Abstract
OBJECTIVES Killer cell immunoglobulin-like receptor (KIR) genes with high polymorphism at genotypic levels are important in providing immune defense and have been expanded towards human population genetics. The aim of this study is to provide supporting information from this new biomarker to strengthen the comprehension of genetic history of the complex Malay population. METHODS KIR genotyping for 213 unadmixed Malay individuals from six subethnic groups (Acheh, Bugis, Champa, Mandailing, Minang and Kedah) was carried out using PCR-SSP (sequence specific primers) method in 16 independent reactions. RESULTS The most frequent KIR genotype observed is AA1, followed by AB4 and AB5. Five genotypes; AA1, AB4, AB5, AB7 and AB8 were shared among all Malay subethnic groups. The highest frequency of KIR haplotype A was observed in Minang Malays, whereas Acheh and Kedah Malays carry a balanced distribution of A and B KIR haplotypes. PCA for the KIR genes clearly illustrated six ethnogeographical population clusters; Africans, Amerindian, Northeast Asian, South Asian, Oceania and Southeast Asian populations. All six Malay subethnic groups fell within the Southeast Asian cluster. CONCLUSIONS The complex array of KIR genotypes observed in the Malays indicates their historical interactions with various populations, especially with the Chinese, Indians and Orang Asli. This study has demonstrated the potential of KIR genes as a genetic marker for deducing population structure and genetic relationship between populations.
Collapse
Affiliation(s)
| | - Norazmi Mohd Nor
- Human Identification/DNA Unit, School of Health Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| | - Panneerchelvam Sundararajulu
- Human Identification/DNA Unit, School of Health Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| | - Zainuddin Zafarina
- Analytical Biochemistry Research Centre, Universiti Sains Malaysia, 11800, USM, Penang, Malaysia
| |
Collapse
|
8
|
Mansour L, Alkhuriji A, Babay ZA, Alqadheeb S, Al-Khulaifi F, Al-Talhi R, Alomar S. Association of Killer Immunoglobulin-Like Receptor and Human Leukocyte Antigen Class I Ligand with Recurrent Abortion in Saudi Women. Genet Test Mol Biomarkers 2020; 24:78-84. [PMID: 31999488 DOI: 10.1089/gtmb.2019.0224] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Aims: This study was designed to determine whether genetic polymorphisms of the killer immunoglobulin-like receptor (KIR) and human leukocyte antigen class I (HLA-C) genes are associated with recurrent spontaneous abortion (RSA) in Saudi women. Materials and Methods: Sixty-five healthy women with a history of RSA (three or more spontaneous abortions) and 65 healthy controls (with two or more healthy-born children) living in Riyadh were typed for 17 KIR genes and the HLA-C1 and HLA-C2 allotypes using polymerase chain reaction-sequence-specific primer methodology. Results: The frequencies of KIR2DS2 and KIR2DL5A were significantly lower among RSA women compared to healthy controls (odds ratio [OR] = 0.17; p < 0.001; OR = 0.16; p < 0.001, respectively). No association with maternal HLA-C genotypes was observed. Analysis of KIR-HLA-C combinations indicated a protective effect of KIR2DS2 with its cognate HLA-C1 ligand in both homozygote or heterozygote combinations. Conclusion: Our results demonstrate that the KIR genes of the B haplotype may play an important role in ensuring the success of pregnancy.
Collapse
Affiliation(s)
- Lamjed Mansour
- Doping Research Chair, Zoology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Afrah Alkhuriji
- Zoology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Zeneb Ahmed Babay
- College of Medicine, King Khalid University Hospital, King Saud University, Riyadh, Saudi Arabia
| | - Sarah Alqadheeb
- Zoology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Fadwa Al-Khulaifi
- Zoology Department, College of Science, King Saud University, Riyadh, Saudi Arabia.,Biology Department, College of Science, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Razan Al-Talhi
- Zoology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Suliman Alomar
- Doping Research Chair, Zoology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
9
|
Alicata C, Ashouri E, Nemat-Gorgani N, Guethlein LA, Marin WM, Tao S, Moretta L, Hollenbach JA, Trowsdale J, Traherne JA, Ghaderi A, Parham P, Norman PJ. KIR Variation in Iranians Combines High Haplotype and Allotype Diversity With an Abundance of Functional Inhibitory Receptors. Front Immunol 2020; 11:556. [PMID: 32300348 PMCID: PMC7142237 DOI: 10.3389/fimmu.2020.00556] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 03/11/2020] [Indexed: 01/03/2023] Open
Abstract
Natural killer (NK) cells are innate lymphocytes that eliminate infected and transformed cells. They discriminate healthy from diseased tissue through killer cell Ig-like receptor (KIR) recognition of HLA class I ligands. Directly impacting NK cell function, KIR polymorphism associates with infection control and multiple autoimmune and pregnancy syndromes. Here we analyze KIR diversity of 241 individuals from five groups of Iranians. These five populations represent Baloch, Kurd, and Lur, together comprising 15% of the ethnically diverse Iranian population. We identified 159 KIR alleles, including 11 not previously characterized. We also identified 170 centromeric and 94 telomeric haplotypes, and 15 different KIR haplotypes carrying either a deletion or duplication encompassing one or more complete KIR genes. As expected, comparing our data with those representing major worldwide populations revealed the greatest similarity between Iranians and Europeans. Despite this similarity we observed higher frequencies of KIR3DL1*001 in Iran than any other population, and the highest frequency of HLA-B*51, a Bw4-containing allotype that acts as a strong educator of KIR3DL1*001+ NK cells. Compared to Europeans, the Iranians we studied also have a reduced frequency of 3DL1*004, which encodes an allotype that is not expressed at the NK cell surface. Concurrent with the resulting high frequency of strong viable interactions between inhibitory KIR and polymorphic HLA class I, the majority of KIR-A haplotypes characterized do not express a functional activating receptor. By contrast, the most frequent KIR-B haplotype in Iran expresses only one functional inhibitory KIR and the maximum number of activating KIR. This first complete, high-resolution, characterization of the KIR locus of Iranians will form a valuable reference for future clinical and population studies.
Collapse
Affiliation(s)
- Claudia Alicata
- Department of Immunology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Elham Ashouri
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, United States.,Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, United States.,Hematology-Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran.,School of Medicine, Shiraz Institute for Cancer Research, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Neda Nemat-Gorgani
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, United States.,Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, United States.,Division of Immunology, Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Lisbeth A Guethlein
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, United States.,Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, United States
| | - Wesley M Marin
- Department of Neurology, University of California, San Francisco, San Francisco, CA, United States
| | - Sudan Tao
- Blood Center of Zhejiang Province, Hangzhou, China.,Division of Personalized Medicine, Department of Immunology and Microbiology, University of Colorado, Anschutz Medical Campus, Aurora, CO, United States
| | - Lorenzo Moretta
- Department of Immunology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Jill A Hollenbach
- Department of Neurology, University of California, San Francisco, San Francisco, CA, United States
| | - John Trowsdale
- Division of Immunology, Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - James A Traherne
- Division of Immunology, Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Abbas Ghaderi
- School of Medicine, Shiraz Institute for Cancer Research, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Peter Parham
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, United States.,Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, United States
| | - Paul J Norman
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, United States.,Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, United States.,Division of Personalized Medicine, Department of Immunology and Microbiology, University of Colorado, Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
10
|
Cisneros E, Moraru M, Gómez-Lozano N, Muntasell A, López-Botet M, Vilches C. Haplotype-Based Analysis of KIR-Gene Profiles in a South European Population-Distribution of Standard and Variant Haplotypes, and Identification of Novel Recombinant Structures. Front Immunol 2020; 11:440. [PMID: 32256494 PMCID: PMC7089957 DOI: 10.3389/fimmu.2020.00440] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 02/26/2020] [Indexed: 12/12/2022] Open
Abstract
Inhibitory Killer-cell Immunoglobulin-like Receptors (KIR) specific for HLA class I molecules enable human natural killer cells to monitor altered antigen presentation in pathogen-infected and tumor cells. KIR genes display extensive copy-number variation and allelic polymorphism. They organize in a series of variable arrangements, designated KIR haplotypes, which derive from duplications of ancestral genes and sequence diversification through point mutation and unequal crossing-over events. Genomic studies have established the organization of multiple KIR haplotypes—many of them are fixed in most human populations, whereas variants of those have less certain distributions. Whilst KIR-gene diversity of many populations and ethnicities has been explored superficially (frequencies of individual genes and presence/absence profiles), less abundant are in-depth analyses of how such diversity emerges from KIR-haplotype structures. We characterize here the genetic diversity of KIR in a sample of 414 Spanish individuals. Using a parsimonious approach, we manage to explain all 38 observed KIR-gene profiles by homo- or heterozygous combinations of six fixed centromeric and telomeric motifs; of six variant gene arrangements characterized previously by us and others; and of two novel haplotypes never detected before in Caucasoids. Associated to the latter haplotypes, we also identified the novel transcribed KIR2DL5B*0020202 allele, and a chimeric KIR2DS2/KIR2DL3 gene (designated KIR2DL3*033) that challenges current criteria for classification and nomenclature of KIR genes and haplotypes.
Collapse
Affiliation(s)
- Elisa Cisneros
- Immunogenetics and Histocompatibility, Instituto de Investigación Sanitaria Puerta de Hierro Segovia de Arana, Madrid, Spain
| | - Manuela Moraru
- Immunogenetics and Histocompatibility, Instituto de Investigación Sanitaria Puerta de Hierro Segovia de Arana, Madrid, Spain
| | - Natalia Gómez-Lozano
- Immunogenetics and Histocompatibility, Instituto de Investigación Sanitaria Puerta de Hierro Segovia de Arana, Madrid, Spain
| | - Aura Muntasell
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Miguel López-Botet
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain.,Department of Experimental and Health Sciences, University Pompeu Fabra, Barcelona, Spain
| | - Carlos Vilches
- Immunogenetics and Histocompatibility, Instituto de Investigación Sanitaria Puerta de Hierro Segovia de Arana, Madrid, Spain
| |
Collapse
|
11
|
Solloch UV, Schefzyk D, Schäfer G, Massalski C, Kohler M, Pruschke J, Heidl A, Schetelig J, Schmidt AH, Lange V, Sauter J. Estimation of German KIR Allele Group Haplotype Frequencies. Front Immunol 2020; 11:429. [PMID: 32226430 PMCID: PMC7080815 DOI: 10.3389/fimmu.2020.00429] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 02/25/2020] [Indexed: 01/09/2023] Open
Abstract
The impact of the highly polymorphic Killer-cell immunoglobulin-like receptor (KIR) gene cluster on the outcome of hematopoietic stem cell transplantation (HCST) is subject of current research. To further understand the involvement of this gene family into Natural Killer (NK) cell-mediated graft-versus-leukemia reactions, knowledge of haplotype structures, and allelic linkage is of importance. In this analysis, we estimate population-specific KIR haplotype frequencies at allele group resolution in a cohort of n = 458 German families. We addressed the polymorphism of the KIR gene complex and phasing ambiguities by a combined approach. Haplotype inference within first-degree family relations allowed us to limit the number of possible diplotypes. Structural restriction to a pattern set of 92 previously described KIR copy number haplotypes further reduced ambiguities. KIR haplotype frequency estimation was finally accomplished by means of an expectation-maximization algorithm. Applying a resolution threshold of ½ n, we were able to identify a set of 551 KIR allele group haplotypes, representing 21 KIR copy number haplotypes. The haplotype frequencies allow studying linkage disequilibrium in two-locus as well as in multi-locus analyses. Our study reveals associations between KIR haplotype structures and allele group frequencies, thereby broadening our understanding of the KIR gene complex.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Johannes Schetelig
- DKMS, Tübingen, Germany.,University Hospital Carl Gustav Carus, Dresden, Germany
| | | | | | | |
Collapse
|
12
|
Abstract
Natural killer (NK) cells are bone marrow-derived large granular lymphocytes defined by CD3negCD56pos and represent 5% to 25% of peripheral blood mononuclear cell fraction of the healthy humans. NK cells have a highly specific and sophisticated target cell recognition receptor system arbitrated by the integration of signals triggered by a multitude of inhibitory and activating receptors. Human NK cells express distinct families of receptors, including (1) killer cell immunoglobulin-like receptors, (2) killer cell lectin-like receptors, (3) leukocyte immunoglobulin-like receptors, and (4) natural cytotoxicity receptors.
Collapse
Affiliation(s)
- Raja Rajalingam
- Department of Surgery, Immunogenetics and Transplantation Laboratory, University of California San Francisco, 3333 California Street, Suite 150, San Francisco, CA 94118, USA.
| |
Collapse
|
13
|
Chinniah R, Vijayan M, Sivanadham R, Ravi P, Panneerselvam D, Kannan A, Karuppiah B. Diversity and association of HLA/KIR receptors with type 2 diabetes in South India. Int J Immunogenet 2019; 46:166-178. [PMID: 30809938 DOI: 10.1111/iji.12417] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Revised: 12/08/2018] [Accepted: 01/03/2019] [Indexed: 12/21/2022]
Abstract
The present study was undertaken to delineate the association(s) of KIR-HLA combination in South Indian Type 2 diabetes mellitus (T2DM) patients. The T2DM patients (n = 343) and healthy controls (n = 309) were genotyped for KIR/HLA ligands by PCR-SSP method. The increased frequency of activatory KIR (aKIR) 2DS2 (OR = 1.91; p < 2.91 × 10-4 ) was observed in patients suggesting a susceptible association. The frequencies of iKIR 2DL2 (OR = 0.38; p < 1.55 × 10-5 ) and aKIRs 2DS1 (OR = 0.60; p < 0.001) and 3DS1 (OR = 0.52; p < 5.83 × 10-5 ) were decreased in patients suggesting protective associations. The C1/C2 combinatorial analysis has revealed an increased frequency of C1+ /C2- in T2DM patients (OR = 1.62; p < 0.014). The KIR "AB" genotype (OR = 2.41; p < 3.87 × 10-5 ) was observed to be higher in patients. However, the "BB" genotype (OR = 0.32; p < 4.71 × 10-7 ) was increased in controls. The KIR motifs, "Tel-B/B" (OR = 1.84; p < 0.007), were observed higher among patients. However, the frequency of "Tel-A/B" motif genotype was decreased in patients (OR = 0.56; p < 3.13 × 10-4 ). The iKIR/HLA combinations such as 2DL2/3 +C1 and 3DL2+A3/A11 were increased in patients (OR = 3.90; p < 7.5 × 10-5 ) suggesting susceptible associations. On the contrary, the aKIR+HLA combinations such as 2DS2+C1, 2DS1+C2 and 3DS1+Bw4 were less frequent in patients (OR = 0.32; p < 4.2 × 10-4 ) suggesting protective associations. Thus, the present study clearly establishes the positive and negative associations of different KIR-HLA receptor combinations with T2DM in South India.
Collapse
Affiliation(s)
- Rathika Chinniah
- Department of Immunology, School of Biological Sciences, Madurai Kamaraj University, Madurai, Tamil Nadu, India
| | - Murali Vijayan
- Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Ramgopal Sivanadham
- Department of Immunology, School of Biological Sciences, Madurai Kamaraj University, Madurai, Tamil Nadu, India
| | - Padmamalini Ravi
- Department of Immunology, School of Biological Sciences, Madurai Kamaraj University, Madurai, Tamil Nadu, India
| | | | - Arun Kannan
- Endocrinology and Diabetology, Madurai Institute of Diabetes and Endocrine Practice and Research, Madurai, Tamil Nadu, India
| | - Balakrishnan Karuppiah
- Department of Immunology, School of Biological Sciences, Madurai Kamaraj University, Madurai, Tamil Nadu, India
| |
Collapse
|
14
|
Misra MK, Augusto DG, Martin GM, Nemat-Gorgani N, Sauter J, Hofmann JA, Traherne JA, González-Quezada B, Gorodezky C, Bultitude WP, Marin W, Vierra-Green C, Anderson KM, Balas A, Caro-Oleas JL, Cisneros E, Colucci F, Dandekar R, Elfishawi SM, Fernández-Viña MA, Fouda M, González-Fernández R, Große A, Herrero-Mata MJ, Hollenbach SQ, Marsh SGE, Mentzer A, Middleton D, Moffett A, Moreno-Hidalgo MA, Mossallam GI, Nakimuli A, Oksenberg JR, Oppenheimer SJ, Parham P, Petzl-Erler ML, Planelles D, Sánchez-García F, Sánchez-Gordo F, Schmidt AH, Trowsdale J, Vargas LB, Vicario JL, Vilches C, Norman PJ, Hollenbach JA. Report from the Killer-cell Immunoglobulin-like Receptors (KIR) component of the 17th International HLA and Immunogenetics Workshop. Hum Immunol 2018; 79:825-833. [PMID: 30321631 DOI: 10.1016/j.humimm.2018.10.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 10/07/2018] [Accepted: 10/08/2018] [Indexed: 12/16/2022]
Abstract
The goals of the KIR component of the 17th International HLA and Immunogenetics Workshop (IHIW) were to encourage and educate researchers to begin analyzing KIR at allelic resolution, and to survey the nature and extent of KIR allelic diversity across human populations. To represent worldwide diversity, we analyzed 1269 individuals from ten populations, focusing on the most polymorphic KIR genes, which express receptors having three immunoglobulin (Ig)-like domains (KIR3DL1/S1, KIR3DL2 and KIR3DL3). We identified 13 novel alleles of KIR3DL1/S1, 13 of KIR3DL2 and 18 of KIR3DL3. Previously identified alleles, corresponding to 33 alleles of KIR3DL1/S1, 38 of KIR3DL2, and 43 of KIR3DL3, represented over 90% of the observed allele frequencies for these genes. In total we observed 37 KIR3DL1/S1 allotypes, 40 for KIR3DL2 and 44 for KIR3DL3. As KIR allotype diversity can affect NK cell function, this demonstrates potential for high functional diversity worldwide. Allelic variation further diversifies KIR haplotypes. We determined KIR3DL3 ∼ KIR3DL1/S1 ∼ KIR3DL2 haplotypes from five of the studied populations, and observed multiple population-specific haplotypes in each. This included 234 distinct haplotypes in European Americans, 191 in Ugandans, 35 in Papuans, 95 in Egyptians and 86 in Spanish populations. For another 35 populations, encompassing 642,105 individuals we focused on KIR3DL2 and identified another 375 novel alleles, with approximately half of them observed in more than one individual. The KIR allelic level data gathered from this project represents the most comprehensive summary of global KIR allelic diversity to date, and continued analysis will improve understanding of KIR allelic polymorphism in global populations. Further, the wealth of new data gathered in the course of this workshop component highlights the value of collaborative, community-based efforts in immunogenetics research, exemplified by the IHIW.
Collapse
Affiliation(s)
- Maneesh K Misra
- Department of Neurology, University of California San Francisco, San Francisco, CA 94158, USA
| | - Danillo G Augusto
- Department of Neurology, University of California San Francisco, San Francisco, CA 94158, USA; Department of Genetics, Universidade Federal do Paraná, Curitiba, Brazil
| | - Gonzalo Montero Martin
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94304, USA
| | - Neda Nemat-Gorgani
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | | | | - Betsy González-Quezada
- Department of Immunology and Immunogenetics, InDRE, Secretary of Health, Francisco P. Miranda #177, Colonia Lomas de Plateros, Del. Álvaro Obregón, CP 01480, Mexico City, Mexico; Fundación Comparte Vida, A.C. Galileo #92, Col. Polanco, Del. Miguel Hidalgo, CP 11550 Mexico City, Mexico
| | - Clara Gorodezky
- Department of Immunology and Immunogenetics, InDRE, Secretary of Health, Francisco P. Miranda #177, Colonia Lomas de Plateros, Del. Álvaro Obregón, CP 01480, Mexico City, Mexico; Fundación Comparte Vida, A.C. Galileo #92, Col. Polanco, Del. Miguel Hidalgo, CP 11550 Mexico City, Mexico
| | - Will P Bultitude
- Anthony Nolan Research Institute and UCL Cancer Institute, Royal Free Campus, Pond Street, London NW3 2QG, UK
| | - Wesley Marin
- Department of Neurology, University of California San Francisco, San Francisco, CA 94158, USA
| | - Cynthia Vierra-Green
- Center for International Blood and Marrow Transplant Research, Minneapolis, MN, USA
| | - Kirsten M Anderson
- Department of Neurology, University of California San Francisco, San Francisco, CA 94158, USA
| | - Antonio Balas
- Histocompatibility, Centro de Transfusión de la Comunidad de Madrid, Madrid, Spain
| | - Jose L Caro-Oleas
- Histocompatibility and Immunogenetics, Banc de Sang i Teixits, Barcelona, Spain
| | - Elisa Cisneros
- Immunogenetics and Histocompatibility, Instituto de Investigación Sanitaria Puerta de Hierro, Madrid, Spain
| | - Francesco Colucci
- Department of Obstetrics and Gynaecology, National Institute for Health Research Cambridge Biomedical Research Centre, University of Cambridge School of Clinical Medicine, Cambridge, UK; Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
| | - Ravi Dandekar
- Department of Neurology, University of California San Francisco, San Francisco, CA 94158, USA
| | | | | | - Merhan Fouda
- National Cancer Institute, Cairo University, Cairo, Egypt
| | | | | | | | | | - Steven G E Marsh
- Anthony Nolan Research Institute and UCL Cancer Institute, Royal Free Campus, Pond Street, London NW3 2QG, UK
| | - Alex Mentzer
- Wellcome Trust Centre for Human Genetics, and Jenner Institute, University of Oxford, Oxford, UK
| | | | - Ashley Moffett
- Department of Pathology, University of Cambridge, Cambridge, UK; Centre for Trophoblast Research, Cambridge, UK
| | | | | | - Annettee Nakimuli
- Department of Obstetrics and Gynecology, School of Medicine, Makerere University College of Health Sciences, Kampala, Uganda
| | - Jorge R Oksenberg
- Department of Neurology, University of California San Francisco, San Francisco, CA 94158, USA
| | | | - Peter Parham
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | - Dolores Planelles
- Histocompatibility, Centro de Transfusión de la Comunidad Valenciana, Valencia, Spain
| | | | | | | | - John Trowsdale
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Luciana B Vargas
- Department of Genetics, Universidade Federal do Paraná, Curitiba, Brazil
| | - Jose L Vicario
- Histocompatibility, Centro de Transfusión de la Comunidad de Madrid, Madrid, Spain
| | - Carlos Vilches
- Department of Neurology, University of California San Francisco, San Francisco, CA 94158, USA
| | - Paul J Norman
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Division of Biomedical Informatics and Personalized Medicine, and Department of Immunology, University of Colorado, Denver, CO 80045, United States
| | - Jill A Hollenbach
- Department of Neurology, University of California San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
15
|
Misra MK, Damotte V, Hollenbach JA. The immunogenetics of neurological disease. Immunology 2018; 153:399-414. [PMID: 29159928 PMCID: PMC5838423 DOI: 10.1111/imm.12869] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 11/09/2017] [Accepted: 11/14/2017] [Indexed: 12/18/2022] Open
Abstract
Genes encoding antigen-presenting molecules within the human major histocompatibility complex (MHC) account for the highest component of genetic risk for many neurological diseases, such as multiple sclerosis, neuromyelitis optica, Parkinson's disease, Alzheimer's disease, schizophrenia, myasthenia gravis and amyotrophic lateral sclerosis. Myriad genetic, immunological and environmental factors may contribute to an individual's susceptibility to neurological disease. Here, we review and discuss the decades long research on the influence of genetic variation at the MHC locus and the role of immunogenetic killer cell immunoglobulin-like receptor (KIR) loci in neurological diseases, including multiple sclerosis, neuromyelitis optica, Parkinson's disease, Alzheimer's disease, schizophrenia, myasthenia gravis and amyotrophic lateral sclerosis. The findings of immunogenetic association studies are consistent with a polygenic model of inheritance in the heterogeneous and multifactorial nature of complex traits in various neurological diseases. Future investigation is highly recommended to evaluate both coding and non-coding variation in immunogenetic loci using high-throughput high-resolution next-generation sequencing technologies in diverse ethnic groups to fully appreciate their role in neurological diseases.
Collapse
Affiliation(s)
- Maneesh K. Misra
- Department of NeurologySan Francisco School of MedicineUniversity of CaliforniaSan FranciscoCAUSA
| | - Vincent Damotte
- Department of NeurologySan Francisco School of MedicineUniversity of CaliforniaSan FranciscoCAUSA
| | - Jill A. Hollenbach
- Department of NeurologySan Francisco School of MedicineUniversity of CaliforniaSan FranciscoCAUSA
| |
Collapse
|
16
|
Nemat-Gorgani N, Hilton HG, Henn BM, Lin M, Gignoux CR, Myrick JW, Werely CJ, Granka JM, Möller M, Hoal EG, Yawata M, Yawata N, Boelen L, Asquith B, Parham P, Norman PJ. Different Selected Mechanisms Attenuated the Inhibitory Interaction of KIR2DL1 with C2 + HLA-C in Two Indigenous Human Populations in Southern Africa. THE JOURNAL OF IMMUNOLOGY 2018; 200:2640-2655. [PMID: 29549179 DOI: 10.4049/jimmunol.1701780] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 02/21/2018] [Indexed: 01/03/2023]
Abstract
The functions of human NK cells in defense against pathogens and placental development during reproduction are modulated by interactions of killer cell Ig-like receptors (KIRs) with HLA-A, -B and -C class I ligands. Both receptors and ligands are highly polymorphic and exhibit extensive differences between human populations. Indigenous to southern Africa are the KhoeSan, the most ancient group of modern human populations, who have highest genomic diversity worldwide. We studied two KhoeSan populations, the Nama pastoralists and the ≠Khomani San hunter-gatherers. Comprehensive next-generation sequence analysis of HLA-A, -B, and -C and all KIR genes identified 248 different KIR and 137 HLA class I, which assort into ∼200 haplotypes for each gene family. All 74 Nama and 78 ≠Khomani San studied have different genotypes. Numerous novel KIR alleles were identified, including three arising by intergenic recombination. On average, KhoeSan individuals have seven to eight pairs of interacting KIR and HLA class I ligands, the highest diversity and divergence of polymorphic NK cell receptors and ligands observed to date. In this context of high genetic diversity, both the Nama and the ≠Khomani San have an unusually conserved, centromeric KIR haplotype that has arisen to high frequency and is different in the two KhoeSan populations. Distinguishing these haplotypes are independent mutations in KIR2DL1, which both prevent KIR2DL1 from functioning as an inhibitory receptor for C2+ HLA-C. The relatively high frequency of C2+ HLA-C in the Nama and the ≠Khomani San appears to have led to natural selection against strong inhibitory C2-specific KIR.
Collapse
Affiliation(s)
- Neda Nemat-Gorgani
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305.,Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305
| | - Hugo G Hilton
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305.,Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305
| | - Brenna M Henn
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY 11794
| | - Meng Lin
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY 11794
| | - Christopher R Gignoux
- Colorado Center for Personalized Medicine, University of Colorado, Denver, CO 80045.,Department of Biostatistics, University of Colorado, Denver, CO 80045
| | - Justin W Myrick
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY 11794
| | - Cedric J Werely
- South African Medical Research Council Centre for Tuberculosis Research, Department of Science and Technology/National Research Foundation Centre of Excellence for Biomedical Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg 7505, South Africa
| | - Julie M Granka
- Department of Biology, Stanford University, Stanford, CA 94305
| | - Marlo Möller
- South African Medical Research Council Centre for Tuberculosis Research, Department of Science and Technology/National Research Foundation Centre of Excellence for Biomedical Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg 7505, South Africa
| | - Eileen G Hoal
- South African Medical Research Council Centre for Tuberculosis Research, Department of Science and Technology/National Research Foundation Centre of Excellence for Biomedical Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg 7505, South Africa
| | - Makoto Yawata
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305.,Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305.,Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, National University of Singapore, Singapore 119077, Singapore.,Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore 117609, Singapore
| | - Nobuyo Yawata
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305.,Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305.,Section of Ophthalmology, Department of Medicine, Fukuoka Dental College, Fukuoka 814-0193, Japan; and
| | - Lies Boelen
- Section of Immunology, Imperial College London, London SW7 2BX, United Kingdom
| | - Becca Asquith
- Section of Immunology, Imperial College London, London SW7 2BX, United Kingdom
| | - Peter Parham
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305.,Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305
| | - Paul J Norman
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305; .,Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305
| |
Collapse
|
17
|
He LM, Wang DM, Deng ZH, Zhen JX. The novel KIR2DL1*00602 allele identified in an individual from a southern Chinese Han population. HLA 2017; 89:173-175. [PMID: 28168843 DOI: 10.1111/tan.12969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 01/10/2017] [Accepted: 01/11/2017] [Indexed: 11/28/2022]
Abstract
KIR2DL1*00602 differs from KIR2DL1*00302 by a non-synonymous mutation in exon 7.
Collapse
Affiliation(s)
- L-M He
- Immunogenetics Laboratory, Shenzhen Blood Center, Shenzhen, China
| | - D-M Wang
- Immunogenetics Laboratory, Shenzhen Blood Center, Shenzhen, China
| | - Z-H Deng
- Immunogenetics Laboratory, Shenzhen Blood Center, Shenzhen, China
| | - J-X Zhen
- Central Laboratory, Shenzhen Baoan Maternal and Child Health Hospital, Shenzhen, China.,Shenzhen Key Laboratory of Birth Defects, Shenzhen, China
| |
Collapse
|
18
|
He LM, Deng ZH, Hu HY, Zhen JX, Liu ZH. Identification and characterization of the novel KIR2DL1*030 allele by sequence-based typing in a southern Chinese Han individual. HLA 2017; 89:263-264. [PMID: 28164468 DOI: 10.1111/tan.12978] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 01/17/2017] [Accepted: 01/18/2017] [Indexed: 11/30/2022]
Abstract
KIR2DL1*030 differs from KIR2DL1*00302 by a single non-synonymous mutation in exon 4.
Collapse
Affiliation(s)
- L-M He
- Immunogenetics Laboratory, Shenzhen Blood Center, Shenzhen, China
| | - Z-H Deng
- Immunogenetics Laboratory, Shenzhen Blood Center, Shenzhen, China
| | - H-Y Hu
- Department of Obstetrics and Gynecology, Shenzhen Maternity and Child Healthcare Hospital, Southern Medical University, Shenzhen, China
| | - J-X Zhen
- Central Laboratory, Shenzhen Baoan Maternal and Child Health Hospital, Shenzhen, China
| | - Z-H Liu
- Department of Obstetrics and Gynecology, Shenzhen Maternity and Child Healthcare Hospital, Southern Medical University, Shenzhen, China
| |
Collapse
|
19
|
Rettman P, Willem C, David G, Riou R, Legrand N, Esbelin J, Cesbron A, Senitzer D, Gagne K, Retière C. New insights on the natural killer cell repertoire from a thorough analysis of cord blood cells. J Leukoc Biol 2016; 100:471-9. [DOI: 10.1189/jlb.1hi0116-036r] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 03/10/2016] [Indexed: 11/24/2022] Open
|
20
|
Vojvodić S, Ademović-Sazdanić D. KIR and HLA haplotype analysis in a family lacking the KIR 2DL1-2DP1 genes. Balkan J Med Genet 2016; 18:55-64. [PMID: 26929906 PMCID: PMC4768826 DOI: 10.1515/bjmg-2015-0006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The killer cell immunoglobulin-like receptor (KIR) gene cluster exhibits extensive allelic and haplotypic diversity that is observed as presence/absence of genes, resulting in expansion and contraction of KIR haplotypes and by allelic variation of individual KIR genes. We report a case of KIR pseudogene 2DP1 and 2DL1 gene absence in members of one family with the children suffering from acute myelogenous leukemia (AML). Killer cell immunoglobulin-like receptor low resolution genotyping was performed by the polymerase chain reaction (PCR)-sequence-specific primers (SSP)/sequence-specific oligonucleotide (SSO) method and haplotype assignment was done by gene content analysis. Both parents and the maternal grandfather, shared the same Cen-B2 KIR haplotype, containing KIR 3DL3, -2DS2, -2DL2 and -3DP1 genes. The second haplotype in the KIR genotype of the mother and grandfather was Tel-A1 with KIR 2DL4 (normal and deleted variant), -3DL1, -22 bp deletion variant of the 2DS4 gene and -3DL2, while the second haplotype in the KIR genotype of the father was Tel-B1 with 2DL4 (normal variant), -3DS1, -2DL5, -2DS5, -2DS1 and 3DL2 genes. Haplotype analysis in all three offsprings revealed that the children inherited the Cen-B2 haplotype with the same gene content but two of the children inherited a deleted variant of the 2DL4 gene, while the third child inherited a normal one. The second haplotype of all three offspring contained KIR 2DL4, -2DL5, -2DS1, -2DS4 (del 22bp variant), -2DS5, -3DL1 and -3DL2 genes, which was the basis of the assumption that there is a hybrid haplotype and that the present 3DL1 gene is a variant of the 3DS1 gene. Due to consanguinity among the ancestors, the results of KIR segregation analysis showed the existence of a very rare KIR genotype in the offspring. The family who is the subject of this case is even more interesting because the father was 10/10 human leukocyte antigen (HLA)-matched to his daughter, all members of the family have the “best” donor KIR-B content and the presence of a rare KIR genotype with KIR 2DP1-2DL1 genes absence.
Collapse
Affiliation(s)
- S Vojvodić
- Tissue Typing Compartment, Institute for Blood Transfusion of Vojvodina, Novi Sad, Serbia
| | - D Ademović-Sazdanić
- Tissue Typing Compartment, Institute for Blood Transfusion of Vojvodina, Novi Sad, Serbia
| |
Collapse
|
21
|
Zhen J, He L, Xu Y, Zhao J, Yu Q, Zou H, Sun G, Deng Z. Allelic polymorphism of KIR2DL2/2DL3 in a southern Chinese population. ACTA ACUST UNITED AC 2015; 86:362-7. [PMID: 26423800 DOI: 10.1111/tan.12681] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 09/09/2015] [Accepted: 09/10/2015] [Indexed: 11/30/2022]
Abstract
KIR2DL2 and KIR2DL3 segregate as alleles of the same killer cell immunoglobulin-like receptor (KIR) gene locus. They have been associated with viral infectious diseases and certain cancers and their allelic information may help to better comprehend mechanisms. The allelic polymorphism of KIR2DL2/2DL3 has been shown to influence their binding specificity and affinity to the HLA-C1 ligands. The present study aims to investigate the distribution of the allelic polymorphism of KIR2DL2/2DL3 in a southern Chinese population using sequence-specific primer polymerase chain reaction (PCR-SSP) and PCR-sequence-based typing (SBT) at the entire coding sequence. Of the 306 tested individuals, 1.96% were positive for KIR2DL2 only, 78.10% for KIR2DL3 only, and 19.93% for both KIR2DL2 and 2DL3. KIR2DL3 showed a high degree of diversity in the study population with 15 alleles detected including 8 novel ones. The predominant 2DL3 allele in the study population is 2DL3*00101 (92.81%) followed by 2DL3*00201 (24.18%), 2DL3*023 (4.25%), and 2DL3*00109 (1.31%). The remaining 11 2DL3 alleles all had a frequency below 1%. Three detected 2DL2 alleles were 2DL2*00301 (18.95%), 2DL2*00101 (3.59%), and the novel 2DL2*013 (0.33%). These results provide further insight into the KIR gene diversity in Southern Chinese and may help to better understand the role played by KIR genes in associated diseases.
Collapse
Affiliation(s)
- J Zhen
- Immunogenetics Laboratory, Shenzhen Blood Center, Shenzhen, China
| | - L He
- Immunogenetics Laboratory, Shenzhen Blood Center, Shenzhen, China
| | - Y Xu
- Immunogenetics Laboratory, Shenzhen Blood Center, Shenzhen, China
| | - J Zhao
- Shenzhen Eye Hospital Affiliated to Jinan University, Shenzhen, China
| | - Q Yu
- Immunogenetics Laboratory, Shenzhen Blood Center, Shenzhen, China
| | - H Zou
- Immunogenetics Laboratory, Shenzhen Blood Center, Shenzhen, China
| | - G Sun
- Immunogenetics Laboratory, Shenzhen Blood Center, Shenzhen, China
| | - Z Deng
- Immunogenetics Laboratory, Shenzhen Blood Center, Shenzhen, China
| |
Collapse
|
22
|
Guha P, Das A, Dutta S, Bhattacharjee S, Chaudhuri TK. Study of genetic diversity of KIR and TLR in the Rabhas, an endogamous primitive tribe of India. Hum Immunol 2015; 76:789-94. [PMID: 26429322 DOI: 10.1016/j.humimm.2015.09.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Revised: 07/13/2015] [Accepted: 09/27/2015] [Indexed: 12/18/2022]
Abstract
The Rabha tribe is a little known small endogamous population belonging to Indo-mongoloid group of north-eastern India. We have analyzed 16 KIR and 5 TLR gene polymorphisms in the Rabha population of northern West Bengal, India for the first time. The observed frequencies of the KIR genes (except framework and pseudogene loci) ranged between 0.26 (KIR2DS3) and 0.96 (KIR2DL1). Comparisons based on KIR polymorphism have revealed that although the Rabhas are of Indian origin the presence of mongoloid component in their gene pool cannot be denied. The frequencies of the 5 TLR genes ranged between 0.90 (TLR4) and 0.46 (TLR5). TLR variations found in the Rabhas may play a synergistic role in fighting against the bacterial invasions. Our results may contribute to the understanding of (1) genetic background and extent of genetic admixture in the Rabhas, (2) population migration events and (3) KIR-disease-TLR interactions.
Collapse
Affiliation(s)
- Pokhraj Guha
- Cellular Immunology Laboratory, Department of Zoology, University of North Bengal, Raja Rammohunpur, Siliguri, West Bengal 734013, India
| | - Avishek Das
- Cellular Immunology Laboratory, Department of Zoology, University of North Bengal, Raja Rammohunpur, Siliguri, West Bengal 734013, India
| | - Somit Dutta
- Cellular Immunology Laboratory, Department of Zoology, University of North Bengal, Raja Rammohunpur, Siliguri, West Bengal 734013, India
| | - Soumen Bhattacharjee
- Cell and Molecular Biology Laboratory, Department of Zoology, University of North Bengal, Raja Rammohunpur, Siliguri, West Bengal 734013, India
| | - Tapas Kumar Chaudhuri
- Cellular Immunology Laboratory, Department of Zoology, University of North Bengal, Raja Rammohunpur, Siliguri, West Bengal 734013, India.
| |
Collapse
|
23
|
Deng Z, Zhen J, Zhu B, Zhang G, Yu Q, Wang D, Xu Y, He L, Lu L. Allelic diversity of KIR3DL1/3DS1 in a southern Chinese population. Hum Immunol 2015; 76:663-6. [PMID: 26416088 DOI: 10.1016/j.humimm.2015.09.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 08/14/2015] [Accepted: 09/25/2015] [Indexed: 11/25/2022]
Abstract
The inhibitory KIR3DL1 and the activating KIR3DS1 segregate as alleles of the same locus. KIR3DL1 is highly diversified at the allele level and KIR3DL1 alleles exhibit varied levels of expression and ligand binding affinity resulting in varied degrees of NK cell inhibition. Previous studies have shown that the KIR3DL1/3DS1 polymorphism associated with viral infection, cancer and transplantation. However, little is known about the population distribution of KIR3DL1/3DS1 alleles in Chinese. The present study examined allelic diversity of KIR3DL1/3DS1 in a southern Chinese population (N=306) using PCR-SSP and sequencing based typing. The presence of KIR3DL1 and KIR3DS1 were detected in 97.1% and 34.0% of the tested individuals respectively. A total of 10 KIR3DL1 alleles (including 2 novel ones) and 6 KIR3DS1 alleles (including 5 novel ones) were identified. Common KIR3DL1 alleles (>10%) were KIR3DL1*01502 (74.8%), KIR3DL1*00501 (23.9%) and KIR3DL1*00701 (15.7%). KIR3DS1*01301 was the predominant KIR3DS1 allele with other KIR3DS1 alleles only sporadically observed. The knowledge of the allelic polymorphism of KIR3DL1/3DS1 may help to better understand the role played by KIR3DL1/3DS1 in associated diseases and clinical transplantation in southern Chinese.
Collapse
Affiliation(s)
- Zhihui Deng
- Immunogenetics Laboratory, Shenzhen Blood Center, Shenzhen, Guangdong 518035, China.
| | - Jianxin Zhen
- Immunogenetics Laboratory, Shenzhen Blood Center, Shenzhen, Guangdong 518035, China.
| | - Bofeng Zhu
- College of Medicine, Xi'An Jiaotong University, Xi'an, Shaanxi 710049, China.
| | - Guobing Zhang
- Immunogenetics Laboratory, Shenzhen Blood Center, Shenzhen, Guangdong 518035, China.
| | - Qiong Yu
- Immunogenetics Laboratory, Shenzhen Blood Center, Shenzhen, Guangdong 518035, China.
| | - Daming Wang
- Immunogenetics Laboratory, Shenzhen Blood Center, Shenzhen, Guangdong 518035, China.
| | - Yunping Xu
- Immunogenetics Laboratory, Shenzhen Blood Center, Shenzhen, Guangdong 518035, China.
| | - Liumei He
- Immunogenetics Laboratory, Shenzhen Blood Center, Shenzhen, Guangdong 518035, China.
| | - Liang Lu
- Immunogenetics Laboratory, Shenzhen Blood Center, Shenzhen, Guangdong 518035, China.
| |
Collapse
|
24
|
Hilton HG, Guethlein LA, Goyos A, Nemat-Gorgani N, Bushnell DA, Norman PJ, Parham P. Polymorphic HLA-C Receptors Balance the Functional Characteristics of KIR Haplotypes. THE JOURNAL OF IMMUNOLOGY 2015; 195:3160-70. [PMID: 26311903 DOI: 10.4049/jimmunol.1501358] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 07/22/2015] [Indexed: 01/04/2023]
Abstract
The human killer cell Ig-like receptor (KIR) locus comprises two groups of KIR haplotypes, termed A and B. These are present in all human populations but with different relative frequencies, suggesting they have different functional properties that underlie their balancing selection. We studied the genomic organization and functional properties of the alleles of the inhibitory and activating HLA-C receptors encoded by KIR haplotypes. Because every HLA-C allotype functions as a ligand for KIR, the interactions between KIR and HLA-C dominate the HLA class I-mediated regulation of human NK cells. The C2 epitope is recognized by inhibitory KIR2DL1 and activating KIR2DS1, whereas the C1 epitope is recognized by inhibitory KIR2DL2 and KIR2DL3. This study shows that the KIR2DL1, KIR2DS1, and KIR2DL2/3 alleles form distinctive phylogenetic clades that associate with specific KIR haplotypes. KIR A haplotypes are characterized by KIR2DL1 alleles that encode strong inhibitory C2 receptors and KIR2DL3 alleles encoding weak inhibitory C1 receptors. In striking contrast, KIR B haplotypes are characterized by KIR2DL1 alleles that encode weak inhibitory C2 receptors and KIR2DL2 alleles encoding strong inhibitory C1 receptors. The wide-ranging properties of KIR allotypes arise from substitutions throughout the KIR molecule. Such substitutions can influence cell surface expression, as well as the avidity and specificity for HLA-C ligands. Consistent with the crucial role of inhibitory HLA-C receptors in self-recognition, as well as NK cell education and response, most KIR haplotypes have both a functional C1 and C2 receptor, despite the considerable variation that occurs in ligand recognition and surface expression.
Collapse
Affiliation(s)
- Hugo G Hilton
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305; and Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305
| | - Lisbeth A Guethlein
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305; and Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305
| | - Ana Goyos
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305; and Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305
| | - Neda Nemat-Gorgani
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305; and Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305
| | - David A Bushnell
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305; and
| | - Paul J Norman
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305; and Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305
| | - Peter Parham
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305; and Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305
| |
Collapse
|
25
|
Hilton HG, Norman PJ, Nemat-Gorgani N, Goyos A, Hollenbach JA, Henn BM, Gignoux CR, Guethlein LA, Parham P. Loss and Gain of Natural Killer Cell Receptor Function in an African Hunter-Gatherer Population. PLoS Genet 2015; 11:e1005439. [PMID: 26292085 PMCID: PMC4546388 DOI: 10.1371/journal.pgen.1005439] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 07/13/2015] [Indexed: 12/12/2022] Open
Abstract
Modulating natural killer cell functions in human immunity and reproduction are diverse interactions between the killer cell immunoglobulin-like receptors (KIR) of Natural Killer (NK) cells and HLA class I ligands on the surface of tissue cells. Dominant interactions are between KIR2DL1 and the C2 epitope of HLA-C and between KIR2DL2/3 and the C1 epitope of HLA-C. KhoeSan hunter-gatherers of Southern Africa represent the earliest population divergence known and are the most genetically diverse indigenous people, qualities reflected in their KIR and HLA genes. Of the ten KhoeSan KIR2DL1 alleles, KIR2DL1*022 and KIR2DL1*026 likely originated in the KhoeSan, and later were transmitted at low frequency to the neighboring Zulus through gene flow. These alleles arose by point mutation from other KhoeSan KIR2DL1 alleles that are more widespread globally. Mutation of KIR2DL1*001 gave rise to KIR2DL1*022, causing loss of C2 recognition and gain of C1 recognition. This makes KIR2DL1*022 a more avid and specific C1 receptor than any KIR2DL2/3 allotype. Mutation of KIR2DL1*012 gave rise to KIR2DL1*026, causing premature termination of translation at the end of the transmembrane domain. This makes KIR2DL1*026 a membrane-associated receptor that lacks both a cytoplasmic tail and signaling function. At higher frequencies than their parental allotypes, the combined effect of the KhoeSan-specific KIR2DL1*022 and KIR2DL1*026 is to reduce the frequency of strong inhibitory C2 receptors and increase the frequency of strong inhibitory C1 receptors. Because interaction of KIR2DL1 with C2 is associated with risk of pregnancy disorder, these functional changes are potentially advantageous. Whereas all other KhoeSan KIR2DL1 alleles are present on a wide diversity of centromeric KIR haplotypes, KIR2DL1*026 is present on a single KIR haplotype and KIR2DL1*022 is present on two very similar haplotypes. The high linkage disequilibrium across their haplotypes is consistent with a recent emergence for these KIR2DL1 alleles that have distinctive functions.
Collapse
Affiliation(s)
- Hugo G. Hilton
- Departments of Structural Biology and Microbiology & Immunology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Paul J. Norman
- Departments of Structural Biology and Microbiology & Immunology, Stanford University School of Medicine, Stanford, California, United States of America
- * E-mail:
| | - Neda Nemat-Gorgani
- Departments of Structural Biology and Microbiology & Immunology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Ana Goyos
- Departments of Structural Biology and Microbiology & Immunology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Jill A. Hollenbach
- Department of Neurology, University of California, San Francisco, California, United States of America
| | - Brenna M. Henn
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, New York, United States of America
| | - Christopher R. Gignoux
- Department of Genetics, Stanford University School of Medicine, Stanford, California, United States of America
| | - Lisbeth A. Guethlein
- Departments of Structural Biology and Microbiology & Immunology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Peter Parham
- Departments of Structural Biology and Microbiology & Immunology, Stanford University School of Medicine, Stanford, California, United States of America
| |
Collapse
|
26
|
Comparison of high-resolution human leukocyte antigen haplotype frequencies in different ethnic groups: Consequences of sampling fluctuation and haplotype frequency distribution tail truncation. Hum Immunol 2015; 76:374-80. [PMID: 25637668 DOI: 10.1016/j.humimm.2015.01.029] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 01/16/2015] [Accepted: 01/21/2015] [Indexed: 11/23/2022]
Abstract
High-resolution haplotype frequency estimations and descriptive metrics are becoming increasingly popular for accurately describing human leukocyte antigen diversity. In this study, we compared sample sets of publically available haplotype frequencies from different populations to characterize the consequences of unequal sample size on haplotype frequency estimation. We found that for low samples sizes (a few thousand), haplotype frequencies were overestimated, affecting all descriptive metrics of the underlying distribution, such as most frequent haplotype, the number of haplotypes, and the mean/median frequency. This overestimation was a result of random sample fluctuation and truncation of the tail end of the frequency distribution that comprises the least frequent haplotypes. Finally, we simulated balanced datasets through resampling and contrasted the disparities of descriptive metrics among equal and unequal datasets. This simulation resulted in the global description of the most frequent human leukocyte antigen haplotypes worldwide.
Collapse
|
27
|
Zhen JX, Wang DM, Deng ZH. Identification of the novel KIR2DL2*013 allele from a southern Chinese Han individual. ACTA ACUST UNITED AC 2015; 85:148-50. [PMID: 25582216 DOI: 10.1111/tan.12500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 12/08/2014] [Indexed: 11/30/2022]
Abstract
The novel KIR2DL2*013 allele differs from the closest allele KIR2DL2*00302 by two non-synonymous mutations.
Collapse
Affiliation(s)
- J-X Zhen
- Immunogenetics Laboratory, Shenzhen Blood Center, Shenzhen, China
| | | | | |
Collapse
|
28
|
Zhen JX, Deng ZH. A novel KIR2DL3 allele, KIR2DL3*027, identified in an individual from a southern Chinese Han population. ACTA ACUST UNITED AC 2014; 84:592-4. [PMID: 25352250 DOI: 10.1111/tan.12463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 08/26/2014] [Accepted: 09/28/2014] [Indexed: 11/26/2022]
Abstract
KIR2DL3*027 differs from the closest allele KIR2DL3*00101 by a nonsynonymous mutation in exon 7.
Collapse
Affiliation(s)
- J-X Zhen
- Immunogenetics Laboratory, Shenzhen Blood Center, Shenzhen, China
| | | |
Collapse
|
29
|
Zhen JX, Wang DM, Deng ZH. A novel KIR2DL3 allele, KIR2DL3*026, found in an individual from a southern Chinese Han population. ACTA ACUST UNITED AC 2014; 84:591-2. [PMID: 25346343 DOI: 10.1111/tan.12459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2014] [Revised: 08/26/2014] [Accepted: 09/28/2014] [Indexed: 11/28/2022]
Abstract
KIR2DL3*026 differs from the closest allele KIR2DL3*00101 by a nonsynonymous mutation in exon 4.
Collapse
Affiliation(s)
- J-X Zhen
- Immunogenetics Laboratory, Shenzhen Blood Center, Shenzhen, China
| | | | | |
Collapse
|
30
|
Zhen JX, Xu YP, Deng ZH. A novel KIR2DL3*00110 allele identified in a southern Chinese Han individual. TISSUE ANTIGENS 2014; 84:424-426. [PMID: 24903265 DOI: 10.1111/tan.12394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 05/12/2014] [Indexed: 06/03/2023]
Abstract
KIR2DL3*00110 differs from KIR2DL3*00101 by a single silent mutation at coding sequence (CDS) nt618 A>C in exon 5.
Collapse
Affiliation(s)
- J-X Zhen
- Immunogenetics Laboratory, Shenzhen Blood Center, Shenzhen, China
| | | | | |
Collapse
|
31
|
Guha P, Bhattacharjee S, Chaudhuri TK. Diversity of killer cell immunoglobulin-like receptor genes in the Bengali population of northern West Bengal, India. Scand J Immunol 2014; 80:441-51. [PMID: 25205074 DOI: 10.1111/sji.12239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 08/06/2014] [Indexed: 11/26/2022]
Abstract
The Indian Subcontinent exhibits extensive diversity in its culture, religion, ethnicity and linguistic heritage, which symbolizes extensive genetic variations within the populations. The highly polymorphic Killer cell Immunoglobulin-like Receptor (KIR) family plays an important role in tracing genetic differentiation in human population. In this study, we aimed to analyse the KIR gene polymorphism in the Bengali population of northern West Bengal, India. To our knowledge, this is the first report on the KIR gene polymorphism in the Bengalis of West Bengal, India. Herein, we have studied the distribution of 14 KIR genes (KIR3DL1-3DL3, KIR2DL1-2DL5, KIR2DS1-2DS5 AND KIR3DS1) and two pseudogenes (KIR3DP1 and 2DP1) in the Bengalis. Apart from the framework genes (KIR2DL4, 3DL2, 3DL3 and 3DP1), which are present in all the individuals, the gene frequencies of other KIR genes varied between 0.34 and 0.88. Moreover, upon comparing the KIR polymorphism of the Bengalis with the available published data of other world populations, it has been found that the Indo-European-speaking Bengalis from the region share both Dravidian and Indo-Aryan gene pool with considerable influences of mongoloid and European descents. Furthermore, evidences from previously published data on human leucocyte antigen and Y-chromosome haplogroup diversity support the view. Our results will help to understand the genetic background of the Bengali population, in illustrating the population migration events in the eastern and north-eastern part of India, in explaining the extensive genetic admixture amongst the different linguistic groups of the region and also in KIR-related disease researches.
Collapse
Affiliation(s)
- P Guha
- Cellular Immunology Laboratory, Department of Zoology, University of North Bengal, Siliguri, India
| | | | | |
Collapse
|
32
|
Zhen JX, Wang DM, Deng ZH. The novel KIR2DL3*025 allele identified in an individual from a southern Chinese Han population. ACTA ACUST UNITED AC 2014; 84:432-3. [PMID: 25155234 DOI: 10.1111/tan.12421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 07/14/2014] [Indexed: 11/30/2022]
Abstract
The novel KIR2DL3*025 allele differs from the closest allele KIR2DL3*0010101 by a non-synonymous mutation at CDS nt280 C>A in exon 4.
Collapse
Affiliation(s)
- J-X Zhen
- Immunogenetics Laboratory, Shenzhen Blood Center, Shenzhen, Guangdong, 518035, China
| | | | | |
Collapse
|
33
|
Nemat-Gorgani N, Edinur HA, Hollenbach JA, Traherne JA, Dunn PPJ, Chambers GK, Parham P, Norman PJ. KIR diversity in Māori and Polynesians: populations in which HLA-B is not a significant KIR ligand. Immunogenetics 2014; 66:597-611. [PMID: 25139336 DOI: 10.1007/s00251-014-0794-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 08/04/2014] [Indexed: 12/25/2022]
Abstract
HLA class I molecules and killer cell immunoglobulin-like receptors (KIR) form a diverse system of ligands and receptors that individualize human immune systems in ways that improve the survival of individuals and populations. Human settlement of Oceania by island-hopping East and Southeast Asian migrants started ~3,500 years ago. Subsequently, New Zealand was reached ~750 years ago by ancestral Māori. To examine how this history impacted KIR and HLA diversity, and their functional interaction, we defined at high resolution the allelic and haplotype diversity of the 13 expressed KIR genes in 49 Māori and 34 Polynesians. Eighty KIR variants, including four 'new' alleles, were defined, as were 35 centromeric and 22 telomeric KIR region haplotypes, which combine to give >50 full-length KIR haplotypes. Two new and divergent variant KIR form part of a telomeric KIR haplotype, which appears derived from Papua New Guinea and was probably obtained by the Asian migrants en route to Polynesia. Māori and Polynesian KIR are very similar, but differ significantly from African, European, Japanese, and Amerindian KIR. Māori and Polynesians have high KIR haplotype diversity with corresponding allotype diversity being maintained throughout the KIR locus. Within the population, each individual has a unique combination of HLA class I and KIR. Characterizing Māori and Polynesians is a paucity of HLA-B allotypes recognized by KIR. Compensating for this deficiency are high frequencies (>50 %) of HLA-A allotypes recognized by KIR. These HLA-A allotypes are ones that modern humans likely acquired from archaic humans at a much earlier time.
Collapse
Affiliation(s)
- Neda Nemat-Gorgani
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Deng ZH, Zhen JX, Xu YP, Yu Q, Zhao J. Description of the novel KIR2DL3*028 allele identified in a southern Chinese Han individual. ACTA ACUST UNITED AC 2014; 84:249-50. [PMID: 24837608 DOI: 10.1111/tan.12366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 04/15/2014] [Indexed: 11/27/2022]
Affiliation(s)
- Z-H Deng
- Immunogenetics Laboratory, Shenzhen Blood Center, Shenzhen, Guangdong, 518035, China
| | | | | | | | | |
Collapse
|
35
|
Zhen JX, Deng ZH, Xu YP. Characterization of the novel KIR2DL3*00109 allele identified in a southern Chinese Han individual. ACTA ACUST UNITED AC 2014; 84:248-9. [PMID: 24837976 DOI: 10.1111/tan.12376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 04/20/2014] [Indexed: 11/26/2022]
Affiliation(s)
- J-X Zhen
- Immunogenetics Laboratory, Shenzhen Blood Center, Shenzhen, Guangdong, 518035, China
| | | | | |
Collapse
|
36
|
Roberts CH, Jiang W, Jayaraman J, Trowsdale J, Holland MJ, Traherne JA. Killer-cell Immunoglobulin-like Receptor gene linkage and copy number variation analysis by droplet digital PCR. Genome Med 2014; 6:20. [PMID: 24597950 PMCID: PMC4062048 DOI: 10.1186/gm537] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 03/03/2014] [Indexed: 01/19/2023] Open
Abstract
The Killer-cell Immunoglobulin-like Receptor (KIR) gene complex has considerable biomedical importance. Patterns of polymorphism in the KIR region include variability in the gene content of haplotypes and diverse structural arrangements. Droplet digital PCR (ddPCR) was used to identify different haplotype motifs and to enumerate KIR copy number variants (CNVs). ddPCR detected a variety of KIR haplotype configurations in DNA from well-characterized cell lines. Mendelian segregation of ddPCR-estimated KIR2DL5 CNVs was observed in Gambian families and CNV typing of other KIRs was shown to be accurate when compared to an established quantitative PCR method.
Collapse
Affiliation(s)
- Chrissy H Roberts
- London School of Hygiene and Tropical Medicine, Keppel St, London WC1E 7HT, UK
| | - Wei Jiang
- Cambridge Institute for Medical Research, Addenbrooke's Hospital, Cambridge CB2 0XY, UK ; Division of Immunology, Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK
| | - Jyothi Jayaraman
- Cambridge Institute for Medical Research, Addenbrooke's Hospital, Cambridge CB2 0XY, UK ; Division of Immunology, Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK
| | - John Trowsdale
- Cambridge Institute for Medical Research, Addenbrooke's Hospital, Cambridge CB2 0XY, UK ; Division of Immunology, Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK
| | - Martin J Holland
- London School of Hygiene and Tropical Medicine, Keppel St, London WC1E 7HT, UK
| | - James A Traherne
- Cambridge Institute for Medical Research, Addenbrooke's Hospital, Cambridge CB2 0XY, UK ; Division of Immunology, Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK
| |
Collapse
|
37
|
Roberts CH, Molina S, Makalo P, Joof H, Harding-Esch EM, Burr SE, Mabey DCW, Bailey RL, Burton MJ, Holland MJ. Conjunctival scarring in trachoma is associated with the HLA-C ligand of KIR and is exacerbated by heterozygosity at KIR2DL2/KIR2DL3. PLoS Negl Trop Dis 2014; 8:e2744. [PMID: 24651768 PMCID: PMC3961204 DOI: 10.1371/journal.pntd.0002744] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Accepted: 01/30/2014] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Chlamydia trachomatis is globally the predominant infectious cause of blindness and one of the most common bacterial causes of sexually transmitted infection. Infections of the conjunctiva cause the blinding disease trachoma, an immuno-pathological disease that is characterised by chronic conjunctival inflammation and fibrosis. The polymorphic Killer-cell Immunoglobulin-like Receptors (KIR) are found on Natural Killer cells and have co-evolved with the Human Leucocyte Antigen (HLA) class I system. Certain genetic constellations of KIR and HLA class I polymorphisms are associated with a number of diseases in which modulation of the innate responses to viral and intracellular bacterial pathogens is central. METHODOLOGY A sample of 134 Gambian pedigrees selected to contain at least one individual with conjunctival scarring in the F1 generation was used. Individuals (n = 830) were genotyped for HLA class I and KIR gene families. Family Based Association Tests and Case Pseudo-control tests were used to extend tests for transmission disequilibrium to take full advantage of the family design, genetic model and phenotype. PRINCIPLE FINDINGS We found that the odds of trachomatous scarring increased with the number of genome copies of HLA-C2 (C1/C2 OR = 2.29 BHP-value = 0.006; C2/C2 OR = 3.97 BHP-value = 0.0004) and further increased when both KIR2DL2 and KIR2DL3 (C2/C2 OR = 5.95 BHP-value = 0.006) were present. CONCLUSIONS To explain the observations in the context of chlamydial infection and trachoma we propose a two-stage model of response and disease that balances the cytolytic response of KIR expressing NK cells with the ability to secrete interferon gamma, a combination that may cause pathology. The data presented indicate that HLA-C genotypes are important determinants of conjunctival scarring in trachoma and that KIR2DL2/KIR2DL3 heterozygosity further increases risk of conjunctival scarring in individuals carrying HLA-C2.
Collapse
Affiliation(s)
- Chrissy h. Roberts
- Clinical Research Department, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Sandra Molina
- Clinical Research Department, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Pateh Makalo
- Medical Research Council Unit, The Gambia, Atlantic Boulevard, Fajara, The Gambia
| | - Hassan Joof
- Medical Research Council Unit, The Gambia, Atlantic Boulevard, Fajara, The Gambia
| | - Emma M. Harding-Esch
- Clinical Research Department, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Sarah E. Burr
- Clinical Research Department, London School of Hygiene and Tropical Medicine, London, United Kingdom
- Medical Research Council Unit, The Gambia, Atlantic Boulevard, Fajara, The Gambia
| | - David C. W. Mabey
- Clinical Research Department, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Robin L. Bailey
- Clinical Research Department, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Matthew J. Burton
- International Centre for Eye Health, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Martin J. Holland
- Clinical Research Department, London School of Hygiene and Tropical Medicine, London, United Kingdom
- Medical Research Council Unit, The Gambia, Atlantic Boulevard, Fajara, The Gambia
| |
Collapse
|
38
|
Norman PJ, Hollenbach JA, Nemat-Gorgani N, Guethlein LA, Hilton HG, Pando MJ, Koram KA, Riley EM, Abi-Rached L, Parham P. Co-evolution of human leukocyte antigen (HLA) class I ligands with killer-cell immunoglobulin-like receptors (KIR) in a genetically diverse population of sub-Saharan Africans. PLoS Genet 2013; 9:e1003938. [PMID: 24204327 PMCID: PMC3814319 DOI: 10.1371/journal.pgen.1003938] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Accepted: 09/16/2013] [Indexed: 02/06/2023] Open
Abstract
Interactions between HLA class I molecules and killer-cell immunoglobulin-like receptors (KIR) control natural killer cell (NK) functions in immunity and reproduction. Encoded by genes on different chromosomes, these polymorphic ligands and receptors correlate highly with disease resistance and susceptibility. Although studied at low-resolution in many populations, high-resolution analysis of combinatorial diversity of HLA class I and KIR is limited to Asian and Amerindian populations with low genetic diversity. At the other end of the spectrum is the West African population investigated here: we studied 235 individuals, including 104 mother-child pairs, from the Ga-Adangbe of Ghana. This population has a rich diversity of 175 KIR variants forming 208 KIR haplotypes, and 81 HLA-A, -B and -C variants forming 190 HLA class I haplotypes. Each individual we studied has a unique compound genotype of HLA class I and KIR, forming 1-14 functional ligand-receptor interactions. Maintaining this exceptionally high polymorphism is balancing selection. The centromeric region of the KIR locus, encoding HLA-C receptors, is highly diverse whereas the telomeric region encoding Bw4-specific KIR3DL1, lacks diversity in Africans. Present in the Ga-Adangbe are high frequencies of Bw4-bearing HLA-B*53:01 and Bw4-lacking HLA-B*35:01, which otherwise are identical. Balancing selection at key residues maintains numerous HLA-B allotypes having and lacking Bw4, and also those of stronger and weaker interaction with LILRB1, a KIR-related receptor. Correspondingly, there is a balance at key residues of KIR3DL1 that modulate its level of cell-surface expression. Thus, capacity to interact with NK cells synergizes with peptide binding diversity to drive HLA-B allele frequency distribution. These features of KIR and HLA are consistent with ongoing co-evolution and selection imposed by a pathogen endemic to West Africa. Because of the prevalence of malaria in the Ga-Adangbe and previous associations of cerebral malaria with HLA-B*53:01 and KIR, Plasmodium falciparum is a candidate pathogen.
Collapse
Affiliation(s)
- Paul J. Norman
- Departments of Structural Biology and Microbiology & Immunology, Stanford University School of Medicine, Stanford, California, United States of America
- * E-mail:
| | - Jill A. Hollenbach
- Center for Genetics, Children's Hospital Oakland Research Institute, Oakland, California, United States of America
| | - Neda Nemat-Gorgani
- Departments of Structural Biology and Microbiology & Immunology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Lisbeth A. Guethlein
- Departments of Structural Biology and Microbiology & Immunology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Hugo G. Hilton
- Departments of Structural Biology and Microbiology & Immunology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Marcelo J. Pando
- Department of Pathology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Kwadwo A. Koram
- Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
| | - Eleanor M. Riley
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Laurent Abi-Rached
- Departments of Structural Biology and Microbiology & Immunology, Stanford University School of Medicine, Stanford, California, United States of America
- Centre National de la Recherche Scientifique, Laboratoire d'Analyse, Topologie, Probabilités - Unité Mixte de Recherche 7353, Equipe ATIP, Aix-Marseille Université, Marseille, France
| | - Peter Parham
- Departments of Structural Biology and Microbiology & Immunology, Stanford University School of Medicine, Stanford, California, United States of America
| |
Collapse
|
39
|
David G, Djaoud Z, Willem C, Legrand N, Rettman P, Gagne K, Cesbron A, Retière C. Large spectrum of HLA-C recognition by killer Ig-like receptor (KIR)2DL2 and KIR2DL3 and restricted C1 SPECIFICITY of KIR2DS2: dominant impact of KIR2DL2/KIR2DS2 on KIR2D NK cell repertoire formation. THE JOURNAL OF IMMUNOLOGY 2013; 191:4778-88. [PMID: 24078689 DOI: 10.4049/jimmunol.1301580] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The interactions of killer Ig-like receptor 2D (KIR2D) with HLA-C ligands contribute to functional NK cell education and regulate NK cell functions. Although simple alloreactive rules have been established for inhibitory KIR2DL, those governing activating KIR2DS function are still undefined, and those governing the formation of the KIR2D repertoire are still debated. In this study, we investigated the specificity of KIR2DL1/2/3 and KIR2DS1/2, dissected each KIR2D function, and assessed the impact of revisited specificities on the KIR2D NK cell repertoire formation from a large cohort of 159 KIR and HLA genotyped individuals. We report that KIR2DL2(+) and KIR2DL3(+) NK cells reacted similarly against HLA-C(+) target cells, irrespective of C1 or C2 allele expression. In contrast, KIR2DL1(+) NK cells specifically reacted against C2 alleles, suggesting a larger spectrum of HLA-C recognition by KIR2DL2 and KIR2DL3 than KIR2DL1. KIR2DS2(+) KIR2DL2(-) NK cell clones were C1-reactive irrespective of their HLA-C environment. However, when KIR2DS2 and KIR2DL2 were coexpressed, NK cell inhibition via KIR2DL2 overrode NK cell activation via KIR2DS2. In contrast, KIR2DL1 and KIR2DS2 had an additive enhancing effect on NK cell responses against C1C1 target cells. KIR2DL2/3/S2 NK cells predominated within the KIR repertoire in KIR2DL2/S2(+) individuals. In contrast, the KIR2DL1/S1 NK cell compartment is dominant in C2C2 KIR2DL2/S2(-) individuals. Moreover, our results suggest that together with KIR2DL2, activating KIR2DS1 and KIR2DS2 expression limits KIR2DL1 acquisition on NK cells. Altogether, our results suggest that the NK cell repertoire is remolded by the activating and inhibitory KIR2D and their cognate ligands.
Collapse
Affiliation(s)
- Gaëlle David
- EA4271 - "ImmunoVirologie et Polymorphisme Génétique", Etablissement Français du Sang/Pays de la Loire, Université de Nantes, 44011 Nantes Cedex 01, France
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Rea IM, Maxwell LD, McNerlan SE, Alexander HD, Curran MD, Middleton D, Ross OA. Killer Immunoglobulin-like Receptors (KIR) haplogroups A and B track with Natural Killer Cells and Cytokine Profile in Aged Subjects: Observations from Octo/Nonagenarians in the Belfast Elderly Longitudinal Free-living Aging STudy (BELFAST). Immun Ageing 2013; 10:35. [PMID: 23957956 PMCID: PMC3827941 DOI: 10.1186/1742-4933-10-35] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 08/10/2013] [Indexed: 11/10/2022]
Abstract
BACKGROUND Natural Killer Cells (NK) play an important role in detection and elimination of virus-infected, damaged or cancer cells. NK cell function is guided by expression of Killer Immunoglobulin-like Receptors (KIRs) and contributed to by the cytokine milieu. KIR molecules are grouped on NK cells into stimulatory and inhibitory KIR haplotypes A and B, through which NKs sense and tolerate HLA self-antigens or up-regulate the NK-cytotoxic response to cells with altered HLA self-antigens, damaged by viruses or tumours. We have previously described increased numbers of NK and NK-related subsets in association with sIL-2R cytokine serum levels in BELFAST octo/nonagenarians. We hypothesised that changes in KIR A and B haplotype gene frequencies could explain the increased cytokine profiles and NK compartments previously described in Belfast Elderly Longitudinal Free-living Aging STudy (BELFAST) octo/nonagenarians, who show evidence of ageing well. RESULTS In the BELFAST study, 24% of octo/nonagenarians carried the KIR A haplotype and 76% KIR B haplotype with no differences for KIR A haplogroup frequency between male or female subjects (23% v 24%; p=0.88) or for KIR B haplogroup (77% v 76%; p=0.99). Octo/nonagenarian KIR A haplotype carriers showed increased NK numbers and percentage compared to Group B KIR subjects (p=0.003; p=0.016 respectively). There were no KIR A/ B haplogroup-associated changes for related CD57+CD8 (high or low) subsets. Using logistic regression, KIR B carriers were predicted to have higher IL-12 cytokine levels compared to KIR A carriers by about 3% (OR 1.03, confidence limits CI 0.99-1.09; p=0.027) and 14% higher levels for TGF-β (active), a cytokine with an anti-inflammatory role, (OR 1.14, confidence limits CI 0.99-1.09; p=0.002). CONCLUSION In this observational study, BELFAST octo/nonagenarians carrying KIR A haplotype showed higher NK cell numbers and percentage compared to KIR B carriers. Conversely, KIR B haplotype carriers, with genes encoding for activating KIRs, showed a tendency for higher serum pro-inflammatory cytokines compared to KIR A carriers. While the findings in this study should be considered exploratory they may serve to stimulate debate about the immune signatures of those who appear to age slowly and who represent a model for good quality survivor-hood.
Collapse
Affiliation(s)
- Irene Maeve Rea
- School of Medicine, Dentistry and Biomedical Science Queens University, Belfast, UK
| | - Lynn D Maxwell
- Immunology and Microbiology Laboratory, Belfast Health and Social Care Trust, Belfast, UK
| | - Susan E McNerlan
- Cytogenetics Laboratory, Belfast Health and Social Care Trust, Belfast, UK
| | | | - Martin D Curran
- Molecular Diagnostic Microbiology Section, Health Protection Agency, Addenbrookes Hospital, Cambridge, UK
| | | | - Owen A Ross
- Mayo Clinic Jacksonville, Jacksonville, FL, USA
| |
Collapse
|
41
|
Burek MK, Grubic Z, Stingl K, Zunec R. Distribution of KIR genes in the Croatian population. Hum Immunol 2013; 74:952-6. [DOI: 10.1016/j.humimm.2013.04.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Revised: 01/23/2013] [Accepted: 04/10/2013] [Indexed: 01/07/2023]
|
42
|
Frazier WR, Steiner N, Hou L, Dakshanamurthy S, Hurley CK. Allelic variation in KIR2DL3 generates a KIR2DL2-like receptor with increased binding to its HLA-C ligand. THE JOURNAL OF IMMUNOLOGY 2013; 190:6198-208. [PMID: 23686481 DOI: 10.4049/jimmunol.1300464] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Although extensive homology exists between their extracellular domains, NK cell inhibitory receptors killer Ig-like receptor (KIR) 2DL2*001 and KIR2DL3*001 have previously been shown to differ substantially in their HLA-C binding avidity. To explore the largely uncharacterized impact of allelic diversity, the most common KIR2DL2/3 allelic products in European American and African American populations were evaluated for surface expression and binding affinity to their HLA-C group 1 and 2 ligands. Although no significant differences in the degree of cell membrane localization were detected in a transfected human NKL cell line by flow cytometry, surface plasmon resonance and KIR binding to a panel of HLA allotypes demonstrated that KIR2DL3*005 differed significantly from other KIR2DL3 allelic products in its ability to bind HLA-C. The increased affinity and avidity of KIR2DL3*005 for its ligand was also demonstrated to have a larger impact on the inhibition of IFN-γ production by the human KHYG-1 NK cell line compared with KIR2DL3*001, a low-affinity allelic product. Site-directed mutagenesis established that the combination of arginine at residue 11 and glutamic acid at residue 35 in KIR2DL3*005 were critical to the observed phenotype. Although these residues are distal to the KIR/HLA-C interface, molecular modeling suggests that alteration in the interdomain hinge angle of KIR2DL3*005 toward that found in KIR2DL2*001, another strong receptor of the KIR2DL2/3 family, may be the cause of this increased affinity. The regain of inhibitory capacity by KIR2DL3*005 suggests that the rapidly evolving KIR locus may be responding to relatively recent selective pressures placed upon certain human populations.
Collapse
Affiliation(s)
- William R Frazier
- Department of Oncology, C.W. Bill Young Marrow Donor Recruitment and Research Program, Georgetown University Medical Center, Washington, DC 20057, USA
| | | | | | | | | |
Collapse
|
43
|
Study of the KIR gene profiles and analysis of the phylogenetic relationships of Rajbanshi population of West Bengal, India. Hum Immunol 2013; 74:673-80. [DOI: 10.1016/j.humimm.2013.01.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Revised: 01/06/2013] [Accepted: 01/14/2013] [Indexed: 01/30/2023]
|
44
|
Rajalingam R, Ashouri E. Gene-specific PCR typing of killer cell immunoglobulin-like receptors. Methods Mol Biol 2013; 1034:239-55. [PMID: 23775740 DOI: 10.1007/978-1-62703-493-7_12] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
By interacting with specific HLA class I molecules, the killer cell immunoglobulin-like receptors (KIR) regulate the effector function of natural killer (NK) cells and subsets of CD8 T cells. The KIR receptors and HLA class I ligands are encoded by unlinked polymorphic gene families located on different human chromosomes, 19 and 6, respectively. The number and type of KIR genes are substantially variable between individuals, which may contribute to human diversity in responding to infection, malignancy and allogeneic transplants. PCR typing using sequence-specific primers (PCR-SSP) is the most commonly used method to determine KIR gene content. This chapter describes a step-by-step protocol for PCR-SSP typing to identify the presence and absence of all 16 known KIR genes. Moreover, the chapter provides the basic rules to verify the accuracy of KIR genotyping results and explains specific methods for the data analysis.
Collapse
Affiliation(s)
- Raja Rajalingam
- Department of Pathology and Laboratory Medicine, UCLA Immunogenetics Center, David Geffen School of Medicine at UCLA, University of California at Los Angeles, Los Angeles, CA, USA
| | | |
Collapse
|
45
|
Vierra-Green C, Roe D, Hou L, Hurley CK, Rajalingam R, Reed E, Lebedeva T, Yu N, Stewart M, Noreen H, Hollenbach JA, Guethlein LA, Wang T, Spellman S, Maiers M. Allele-level haplotype frequencies and pairwise linkage disequilibrium for 14 KIR loci in 506 European-American individuals. PLoS One 2012; 7:e47491. [PMID: 23139747 PMCID: PMC3489906 DOI: 10.1371/journal.pone.0047491] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Accepted: 09/11/2012] [Indexed: 11/19/2022] Open
Abstract
The immune responses of natural killer cells are regulated, in part, by killer cell immunoglobulin-like receptors (KIR). The 16 closely-related genes in the KIR gene system have been diversified by gene duplication and unequal crossing over, thereby generating haplotypes with variation in gene copy number. Allelic variation also contributes to diversity within the complex. In this study, we estimated allele-level haplotype frequencies and pairwise linkage disequilibrium statistics for 14 KIR loci. The typing utilized multiple methodologies by four laboratories to provide at least 2x coverage for each allele. The computational methods generated maximum-likelihood estimates of allele-level haplotypes. Our results indicate the most extensive allele diversity was observed for the KIR framework genes and for the genes localized to the telomeric region of the KIR A haplotype. Particular alleles of the stimulatory loci appear to be nearly fixed on specific, common haplotypes while many of the less frequent alleles of the inhibitory loci appeared on multiple haplotypes, some with common haplotype structures. Haplotype structures cA01 and/or tA01 predominate in this cohort, as has been observed in most populations worldwide. Linkage disequilibrium is high within the centromeric and telomeric haplotype regions but not between them and is particularly strong between centromeric gene pairs KIR2DL5∼KIR2DS3S5 and KIR2DS3S5∼KIR2DL1, and telomeric KIR3DL1∼KIR2DS4. Although 93% of the individuals have unique pairs of full-length allelic haplotypes, large genomic blocks sharing specific sets of alleles are seen in the most frequent haplotypes. These high-resolution, high-quality haplotypes extend our basic knowledge of the KIR gene system and may be used to support clinical studies beyond single gene analysis.
Collapse
Affiliation(s)
- Cynthia Vierra-Green
- Center for International Blood and Marrow Transplant Research, Minneapolis, Minnesota, United States of America
| | - David Roe
- National Marrow Donor Program, Minneapolis, Minnesota, United States of America
| | - Lihua Hou
- Departments of Oncology and Pediatrics, Georgetown University, Washington D.C., United States of America
| | - Carolyn Katovich Hurley
- Departments of Oncology and Pediatrics, Georgetown University, Washington D.C., United States of America
| | - Raja Rajalingam
- UCLA Immunogenetics Center, Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, University of California Los Angeles, Los Angeles, California, United States of America
| | - Elaine Reed
- UCLA Immunogenetics Center, Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, University of California Los Angeles, Los Angeles, California, United States of America
| | - Tatiana Lebedeva
- American Red Cross, HLA Laboratory, Dedham, Massachussets, United States of America
| | - Neng Yu
- American Red Cross, HLA Laboratory, Dedham, Massachussets, United States of America
| | - Mary Stewart
- University of Minnesota Medical Center, Fairview, Minneapolis, Minnesota, United States of America
| | - Harriet Noreen
- University of Minnesota Medical Center, Fairview, Minneapolis, Minnesota, United States of America
| | - Jill A. Hollenbach
- National Marrow Donor Program, Minneapolis, Minnesota, United States of America
- Children’s Hospital Oakland Research Institute, Oakland, California, United States of America
| | | | - Tao Wang
- Center for International Blood and Marrow Transplant Research, Milwaukee, Wisconsin, United States of America
| | - Stephen Spellman
- Center for International Blood and Marrow Transplant Research, Minneapolis, Minnesota, United States of America
| | - Martin Maiers
- National Marrow Donor Program, Minneapolis, Minnesota, United States of America
- * E-mail:
| |
Collapse
|
46
|
Cai J, Liu X, Wang J, Tian W. Killer cell immunoglobulin-like receptor (KIR) genes in 4 distinct populations and 51 families in mainland China. Hum Immunol 2012; 73:1023-30. [PMID: 22836043 DOI: 10.1016/j.humimm.2012.07.324] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Revised: 06/19/2012] [Accepted: 07/13/2012] [Indexed: 10/28/2022]
Abstract
In this study, we investigated the killer cell immunoglobulin-like receptor (KIR) genes and HLA-C1/C2 dimorphism in 819 healthy, unrelated individuals composed of two southern Chinese Han populations (Hunan Han and Guangdong Han) and two northern Chinese populations (Inner Mongolia Han and Inner Mongolia Mongol), using polymerase chain reaction-sequence-specific priming (PCR-SSP) method. Fifty-one Chinese families were used to determine KIR haplotypic configuration. Our data showed that KIR2DL4, KIR3DL2, KIR3DL3, and KIR3DP1 genes were present in all of the 819 individuals. However, KIR2DL4 and KIR3DP1 genes were not detected in two members of a northern Chinese family. None of the KIR genes showed significant difference between the four populations. Thirty-five different KIR gene profiles were identified, one of which has not been previously reported in the Allele Frequencies KIR database. Eleven distinct KIR haplotypic configurations were determined through family analysis. Individuals with KIR2DLl and KIR2DL3 genes but lacking KIR2DSl and KIR2DS2 genes, coupled with HLA-C1 (Asn(80)) homozygosity, predominated in each population. At least one known inhibitory KIR-HLA pair was detected in each individual. The findings shown here are valuable for future studies of the potential role of KIR genes as well as KIR-HLA interaction in disease susceptibility in related ethnic groups.
Collapse
Affiliation(s)
- JinHong Cai
- Immunogenetics Research Group, Department of Immunology, College of Basic Medical Sciences, Central South University, Changsha, Hunan, People's Republic of China
| | | | | | | |
Collapse
|
47
|
Hollenbach JA, Nocedal I, Ladner MB, Single RM, Trachtenberg EA. Killer cell immunoglobulin-like receptor (KIR) gene content variation in the HGDP-CEPH populations. Immunogenetics 2012; 64:719-37. [PMID: 22752190 PMCID: PMC3438391 DOI: 10.1007/s00251-012-0629-x] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Accepted: 06/06/2012] [Indexed: 11/27/2022]
Abstract
In the present study, we investigate patterns of variation in the KIR cluster in a large and well-characterized sample of worldwide human populations in the Human Genome Diversity Project—Centre d'Etude du Polymorphisme Humain (HGDP-CEPH) panel in order to better understand the patterns of diversity in the region. Comparison of KIR data with that from other genomic regions allows control for strictly demographic factors; over 500,000 additional genomic markers have been typed in this panel by other investigators and the data made publicly available. Presence/absence frequencies and haplotypic associations for the KIR region are analyzed in the 52 populations comprising the panel and in accordance with major world regions (Africa, Middle East, Central Asia, East Asia, Europe, Americas, and Oceania). These data represent the first overview of KIR population genetics in the well-documented HGDP-CEPH panel and suggest different evolutionary histories and recent selection in the KIR gene cluster.
Collapse
Affiliation(s)
- Jill A. Hollenbach
- Center for Genetics, Children’s Hospital Oakland Research Institute, Oakland, CA 94609 USA
| | - Isobel Nocedal
- Center for Genetics, Children’s Hospital Oakland Research Institute, Oakland, CA 94609 USA
| | - Martha B. Ladner
- Center for Genetics, Children’s Hospital Oakland Research Institute, Oakland, CA 94609 USA
| | - Richard M. Single
- Department of Mathematics and Statistics, University of Vermont, Burlington, VT 05405 USA
| | | |
Collapse
|
48
|
Singh KM, Phung YT, Kohla MS, Lan BYA, Chan S, Suen DL, Murad S, Rheault S, Davidson P, Evans J, Singh M, Dohil S, Osorio RW, Wakil AE, Page K, Feng S, Cooper SL. KIR genotypic diversity can track ancestries in heterogeneous populations: a potential confounder for disease association studies. Immunogenetics 2012; 64:97-109. [PMID: 21898189 PMCID: PMC4143378 DOI: 10.1007/s00251-011-0569-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Accepted: 08/25/2011] [Indexed: 10/17/2022]
Abstract
Killer cell immunoglobulin-like receptors (KIR) are encoded by highly polymorphic genes that regulate the activation of natural killer (NK) cells and other lymphocyte subsets and likely play key roles in innate and adaptive immunity. Association studies increasingly implicate KIR in disease predisposition and outcome but could be confounded by unknown KIR genetic structure in heterogeneous populations. To examine this, we characterized the diversity of 16 KIR genes in 712 Northern Californians (NC) stratified by self-assigned ethnicities and compared the profiles of KIR polymorphism with other US and global populations using a reference database. Sixty-eight distinct KIR genotypes were characterized: 58 in 457 Caucasians (NCC), 17 in 47 African Americans (NCAA), 21 in 80 Asians (NCA), 20 in 74 Hispanics (NCH), and 18 in 54 "other" ethnicities (NCO). KIR genotype patterns and frequencies in the 4 defined ethnicities were compared with each other and with 34 global populations by phylogenetic analysis. Although there were no population-specific genotypes, the KIR genotype frequency patterns faithfully traced the ancestry of NCC, NCAA, and NCA but not of NCH whose ancestries are known to be more heterogeneous. KIR genotype frequencies can therefore track ethnic ancestries in modern urban populations. Our data emphasize the importance of selecting ethnically matched controls in KIR-based studies to avert spurious associations.
Collapse
Affiliation(s)
- Komal Manpreet Singh
- Kalmanovitz Liver Immunology Laboratory, California Pacific Medical Center & Research Institute, San Francisco, California, USA
| | - Yume T. Phung
- Kalmanovitz Liver Immunology Laboratory, California Pacific Medical Center & Research Institute, San Francisco, California, USA
| | - Mohamed S. Kohla
- Kalmanovitz Liver Immunology Laboratory, California Pacific Medical Center & Research Institute, San Francisco, California, USA
- The National Liver Institute, Menoufiya, Egypt
| | - Billy Y-A Lan
- Department of Transplantation, University of California, San Francisco, San Francisco, California, USA
| | - Sharon Chan
- Department of Transplantation, University of California, San Francisco, San Francisco, California, USA
| | - Diana L. Suen
- Kalmanovitz Liver Immunology Laboratory, California Pacific Medical Center & Research Institute, San Francisco, California, USA
| | - Sahar Murad
- Kalmanovitz Liver Immunology Laboratory, California Pacific Medical Center & Research Institute, San Francisco, California, USA
- Department of Transplantation, California Pacific Medical Center, San Francisco, California, USA
| | - Shana Rheault
- Kalmanovitz Liver Immunology Laboratory, California Pacific Medical Center & Research Institute, San Francisco, California, USA
| | - Peter Davidson
- Department of Epidemiology, University of California, San Francisco, San Francisco, California, USA
| | - Jennifer Evans
- Department of Epidemiology, University of California, San Francisco, San Francisco, California, USA
| | | | - Sofie Dohil
- Kalmanovitz Liver Immunology Laboratory, California Pacific Medical Center & Research Institute, San Francisco, California, USA
| | - Robert W. Osorio
- Department of Transplantation, California Pacific Medical Center, San Francisco, California, USA
| | - Adil E. Wakil
- Kalmanovitz Liver Immunology Laboratory, California Pacific Medical Center & Research Institute, San Francisco, California, USA
- Division of Hepatology, California Pacific Medical Center & Sutter Pacific Medical Foundation, San Francisco, California, USA
- Department of Transplantation, California Pacific Medical Center, San Francisco, California, USA
| | - Kimberly Page
- Department of Epidemiology, University of California, San Francisco, San Francisco, California, USA
| | - Sandy Feng
- Department of Transplantation, University of California, San Francisco, San Francisco, California, USA
| | - Stewart L. Cooper
- Kalmanovitz Liver Immunology Laboratory, California Pacific Medical Center & Research Institute, San Francisco, California, USA
- Division of Hepatology, California Pacific Medical Center & Sutter Pacific Medical Foundation, San Francisco, California, USA
- Department of Transplantation, California Pacific Medical Center, San Francisco, California, USA
| |
Collapse
|
49
|
Abstract
Natural killer (NK) cells are more than simple killers and have been implicated in control and clearance of malignant and virally infected cells, regulation of adaptive immune responses, rejection of bone marrow transplants, and autoimmunity and the maintenance of pregnancy. Human NK cells largely use a family of germ-line encoded killer cell immunoglobulin-like receptors (KIR) to respond to the perturbations from self-HLA class I molecules present on infected, malignant, or HLA-disparate fetal or allogenic transplants. Genes encoding KIR receptors and HLA class I ligands are located on different chromosomes, and both feature extraordinary diversity in the number and type of genes. The independent segregation of KIR and HLA gene families produce diversity in the number and type of KIR-HLA gene combinations inherited in individuals, which may determine their immunity and susceptibility to diseases. This chapter provides an overview of NK cells and their unprecedented phenotypic and functional diversity within and between individuals.
Collapse
Affiliation(s)
- Raja Rajalingam
- UCLA Immunogenetics Center, Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, University of California, Los Angeles, CA, USA.
| |
Collapse
|
50
|
Rajalingam R. Human diversity of killer cell immunoglobulin-like receptors and disease. THE KOREAN JOURNAL OF HEMATOLOGY 2011; 46:216-28. [PMID: 22259627 PMCID: PMC3259513 DOI: 10.5045/kjh.2011.46.4.216] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Accepted: 12/05/2011] [Indexed: 01/19/2023]
Abstract
Natural Killer (NK) cells are the third population of lymphocyte in the mononuclear cell compartment that triggers first-line of defense against viral infection and tumor transformation. Historically, NK cells were thought of as components of innate immunity based on their intrinsic ability to spontaneously kill target cells independent of HLA antigen restriction. However, it is now clear that NK cells are quite sophisticated and use a highly specific and complex target cell recognition receptor system arbitrated via a multitude of inhibitory and activating receptors. Killer cell immunoglobulin-like receptors (KIR) are the key receptors of human NK cells development and function. To date, fourteen distinct KIRs have been identified: eight are inhibitory types, and six are activating types. The number and type of KIR genes present varies substantially between individuals. Inhibitory KIRs recognize distinct motifs of polymorphic HLA class I molecules. Upon engagement of their specific HLA class I ligands, inhibitory KIR dampen NK cell reactivity. In contrast, activating KIRs are believed to stimulate NK cell reactivity when they sense their ligands (unknown). KIR and HLA gene families map to different human chromosomes (19 and 6, respectively), and their independent segregation produces a wide diversity in the number and type of inherited KIR-HLA combinations, likely contributing to overall immune competency. Consistent with this hypothesis, certain combinations of KIR-HLA variants have been correlated with susceptibility to diseases as diverse as autoimmunity, viral infections, and cancer. This review summarizes our emerging understanding of KIR-HLA diversity in human health and disease.
Collapse
Affiliation(s)
- Raja Rajalingam
- Department of Pathology and Laboratory Medicine, UCLA Immunogenetics Center, David Geffen School of Medicine at UCLA, University of California, Los Angeles, CA, USA
| |
Collapse
|