1
|
Han P, Wang R, Yao T, Liu X, Wang X. Genome-wide identification of olive flounder (Paralichthys olivaceus) SOCS genes: Involvement in immune response regulation to temperature stress and Edwardsiella tarda infection. FISH & SHELLFISH IMMUNOLOGY 2023; 133:108515. [PMID: 36603791 DOI: 10.1016/j.fsi.2023.108515] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/25/2022] [Accepted: 01/01/2023] [Indexed: 06/17/2023]
Abstract
The suppressors of cytokine signaling (SOCS) gene family participates in development and immunity through negative regulation of cytokine signaling pathways. Although the immune response of SOCS gene family members has been extensively characterized in teleost, no similar study has been reported in olive flounder yet. In our present study, a total of 13 SOCSs in olive flounder were identified and characterized systematically. By querying the SOCS sequences of ten teleost fish species, we found there were exactly more members of SOCSs in fish than mammals, which indicated that there were more duplication events occurred in fish than in higher vertebrates. Phylogenetic analysis clearly illuminated that SOCS genes were highly conserved. The analysis of gene structure and motif showed SOCS proteins of olive flounder shared a high level of sequence similarity strikingly. The expression profiles of tissues and developmental stages indicated that SOCS members had a kind of specificity in temporality and spatiality. RNA-Seq analysis of temperature stress and E. Tarda infection demonstrated SOCS members were involved in inflammatory response. In a word, our results would provide a further reference for understanding the mechanism of SOCS genes in olive flounder.
Collapse
Affiliation(s)
- Ping Han
- Key Laboratory of Aquacultural Biotechnology (Ningbo University), Ministry of Education, Ningbo, Zhejiang, China; Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao, Shandong, China.
| | - Ruoxin Wang
- Key Laboratory of Aquacultural Biotechnology (Ningbo University), Ministry of Education, Ningbo, Zhejiang, China.
| | - Tingyan Yao
- Key Laboratory of Aquacultural Biotechnology (Ningbo University), Ministry of Education, Ningbo, Zhejiang, China.
| | - Xiumei Liu
- College of Life Sciences, Yantai University, Yantai, 264005, China.
| | - Xubo Wang
- Key Laboratory of Aquacultural Biotechnology (Ningbo University), Ministry of Education, Ningbo, Zhejiang, China.
| |
Collapse
|
2
|
Wang G, Liu W, Wang C, Wang J, Liu H, Hao D, Zhang M. Molecular characterization and immunoregulatory analysis of suppressors of cytokine signaling 1 (SOCS1) in black rockfish, Sebastes schlegeli. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 130:104355. [PMID: 35077723 DOI: 10.1016/j.dci.2022.104355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/12/2022] [Accepted: 01/16/2022] [Indexed: 06/14/2023]
Abstract
The suppressors of cytokine signaling (SOCS) family are important soluble mediators to inhibit signal transduction via the Janus kinase/signal transducer and activator of transcription (JAK-STAT) pathway in the innate and adaptive immune responses. SOCS1 is the primary regulator of a number of cytokines. In this study, two spliced transcripts of SOCS1 were identified and characterized from black rockfish (Sebastes schlegeli), named SsSOCS1a and SsSOCS1b. SsSOCS1a and SsSOCS1b contained conserved structural and functional domains including KIR region, ESS region, SH2 domain and SOCS box. SsSOCS1a and SsSOCS1b were distributed ubiquitously in all the detected tissues with the higher expression level in liver and spleen. After stimulation in vivo with Vibrio anguillarum and Edwardsiella tarda, the mRNA expression of SsSOCS1a and SsSOCS1b were induced in most of the immune-related tissues, including head kidney, spleen and liver. Meanwhile, poly I:C and IFNγ up-regulated the expression of SsSOCS1a and SsSOCS1b that reached the highest level at 24 h in macrophages in vitro. Luciferase assays in HEK293 cells showed SsSOCS1a and SsSOCS1b had the similar function in inhibiting ISRE activity after poly I:C and IFNγ treatment. Furthermore, KIR domain in black rockfish was determined to have a negative regulatory role in IFN signaling. SsSOCS1a and SsSOCS1b were found to interact strongly with each other by Co-immunoprecipitation analyses. These results indicated that the function of SOCS1 in the negative regulation of IFN signaling is conserved from teleost to mammals which will be helpful to further understanding of the biological functions of teleosts SOCS1 in innate immunity.
Collapse
Affiliation(s)
- Guanghua Wang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China
| | - Wenqing Liu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China
| | - Changbiao Wang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China
| | - Jingjing Wang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China
| | - Hongmei Liu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China
| | - Dongfang Hao
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China
| | - Min Zhang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, Shandong Province, 266109, China.
| |
Collapse
|
3
|
Huo R, Chu Q, Zhao X, Liu X, Xu T. Molecular evolution and functional characterization of SOCS3a and SOCS3b in miiuy croaker (Miichthys miiuy). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 110:103723. [PMID: 32387555 DOI: 10.1016/j.dci.2020.103723] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 04/26/2020] [Accepted: 04/26/2020] [Indexed: 06/11/2023]
Abstract
The suppressor of cytokine signaling 3 (SOCS3), as a negative regulator in inferferon (IFN) signaling pathways in mammals, has a vital role in immune systems. However, studies on the function of SOCS3 in lower vertebrates are limited. In this study, we identified SOCS3a and fish-specific SOCS3b gene in miiuy croaker. Sequence analysis results showed that SOCS3a and SOCS3b were evolutionarily conservative in fish. Expression analysis indicated that miiuy croaker SOCS3a and SOCS3b (mmSOCS3a and mmSOCS3b) were expressed in all of the tested miiuy croaker tissues, thus revealing the potential ability to perceive poly (I:C) stimulation. Further functional experiments showed that mmSOCS3a and mmSOCS3b could inhibit the IFNγ- and IFNα-induced ISRE reporter activation, respectively. Accordingly, the investigation of mmSOCS3a and mmSOCS3b can provide insights into fish SOCS3 and a basis for future research on the SOCS family of fish immune systems.
Collapse
Affiliation(s)
- Ruixuan Huo
- Laboratory of Fish Biogenetics & Immune Evolution, College of Marine Science, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Qing Chu
- Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266200, China; Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Xueyan Zhao
- Laboratory of Fish Biogenetics & Immune Evolution, College of Marine Science, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Xuezhu Liu
- Laboratory of Fish Biogenetics & Immune Evolution, College of Marine Science, Zhejiang Ocean University, Zhoushan, 316022, China.
| | - Tianjun Xu
- Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266200, China; Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China.
| |
Collapse
|
4
|
Tian B, Tang D, Wu J, Liang M, Hao D, Wei Q. Molecular characterization, expression pattern and evolution of nine suppressors of cytokine signaling (SOCS) gene in the swamp eel (Monopterus albus). FISH & SHELLFISH IMMUNOLOGY 2020; 96:177-189. [PMID: 31811887 DOI: 10.1016/j.fsi.2019.11.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 11/06/2019] [Accepted: 11/09/2019] [Indexed: 06/10/2023]
Abstract
Suppressors of cytokine signaling (SOCS) family members have negative effects on cytokine signaling pathways involved in immunity, growth and development. Owing to their typical feature, they have been extensively studied in mammalians, but they have not offered systematic studies among teleosts. In the present study, nine SOCS family genes were identified in the swamp eel genome and analyzed regulation mechanisms of SOCS family members in swamp eels. The open reading frames of MaSOCS1a, MaSOCS1b, MaSOCS2, MaSOCS3a, MaSOCS3b, MaSOCS4, MaSOCS5, MaSOCS6 and MaSOCS7 were 663 bp, 603 bp, 717 bp, 618 bp, 645 bp, 1188 bp, 1488 bp, 1611 bp and 1998 bp and encoded 220, 238, 200, 205, 214, 395, 496, 536 and 655 amino acids, respectively. All SOCS proteins have no signal peptides. Multiple alignment revealed that MaSOCS family members possessed a typical conserved SOCS box and SH2 region. Phylogenetic analyses showed that all SOCS proteins were divided into two main clusters. Taken together with the similarity and identity of SOCS protein amino acids, these results indicated that MaSOCS family members shared conserved with other homologous genes, in which MaSOCS7 was more conserved. Further syntenic analysis confirmed the phylogenetic analysis results and annotation of SOCS protein, suggesting that MaSOCS5 shared a common ancestor gene with that of fish and humans. MaSOCS family members were constitutively expressed in a wide range of tissues with different levels. In particular, spleen and head kidneys play an important role in immune-related pathways. After Aeromonas veronii and polyinosinic-polycytidylic acid (poly I:C) challenge in the spleen and head kidney, MaSOCS family members exhibit different expression profiles. These expression patterns indicated that MaSOCS family members could make acute responses after pathogen invasion. Taken together, these results indicate that MaSOCS family members participate in the immune response against pathogens and offer a solid foundation for future studies of SOCS function.
Collapse
Affiliation(s)
- Bo Tian
- School of Animal Science, Yangtze University, Jingzhou, 434020, China; Engineering Research Centre of Ecology and Agricultural Use of Wetland, Ministry of Education, Jingzhou, 434020, China; Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture of China, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China
| | - Dongdong Tang
- School of Animal Science, Yangtze University, Jingzhou, 434020, China; Engineering Research Centre of Ecology and Agricultural Use of Wetland, Ministry of Education, Jingzhou, 434020, China
| | - Jinming Wu
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture of China, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China
| | - Meng Liang
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture of China, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China
| | - Du Hao
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture of China, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China
| | - Qiwei Wei
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture of China, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China.
| |
Collapse
|
5
|
Zhao XY, Zhao SS, Zheng GD, Zhou JG, Zou SM. Functional conservation and divergence of duplicated the suppressor of cytokine signaling 1 in blunt snout bream (Megalobrama amblycephala). Gen Comp Endocrinol 2019; 284:113243. [PMID: 31408625 DOI: 10.1016/j.ygcen.2019.113243] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 07/13/2019] [Accepted: 08/09/2019] [Indexed: 02/01/2023]
Abstract
The suppressor of cytokine signaling 1 (SOCS1) is an essential feedback regulator extensively involved in many different cytokine signaling pathways, such as regulation of the immune system and growth of organism. However, the molecular and functional information on socs1 genes in freshwater fish is unclear. In the present paper, we identified and characterized the full-length closely related but distinct socs1 genes (socs 1a and -1b) in blunt snout bream (Megalobrama amblycephala). The bioinformatic analysis results showed that duplicated socs1s shared majority conserved motifs with other vertebrates. Both socs1a and -1b mRNAs were detected throughout embryogenesis, and gradually increase and then constantly expressed after 16 hpf. Whole-mount in situ hybridization demonstrated that socs1a and socs1b mRNAs were detected in the brain at 12hpf and 24hpf, and in the notochord and brain at 36hpf. In adult fish, the socs1a mRNA were strongly expressed in the heart, eye, kidney, spleen and gonad, but were found to be relatively low in the intestine and liver. On the other hand, the expression of socs1b mRNA was significantly high in the muscle, eye and spleen, and relatively low in the intestine, liver, skin and heart. The results of hGH treatment experiment showed that socs1a and 1b mRNAs were upregulated markedly in the kidney, muscle and liver. Overexpression of socs1s significantly inhibit the GH and JAK/STAT factor stat3 and the inhibitory effect of SOCS1s on GH may be involved in JAK-STAT signaling pathway. These results indicate that SOCS1 plays an important role in regulating growth and development.
Collapse
Affiliation(s)
- Xin-Yu Zhao
- Genetics and Breeding Center for Blunt Snout Bream, Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Huchenghuan Road 999, Shanghai 201306, China
| | - Shan-Shan Zhao
- Genetics and Breeding Center for Blunt Snout Bream, Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Huchenghuan Road 999, Shanghai 201306, China
| | - Guo-Dong Zheng
- Genetics and Breeding Center for Blunt Snout Bream, Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Huchenghuan Road 999, Shanghai 201306, China
| | - Jian-Guang Zhou
- Yangtze River Fisheries Research Institute, CAFS, Fishery Products Quality Safety Risk Assessment Laboratory (Wuhan) of Minstry of Agriculture and Rural Affaris of the P.R. China, Wuhan 430223, China.
| | - Shu-Ming Zou
- Genetics and Breeding Center for Blunt Snout Bream, Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Huchenghuan Road 999, Shanghai 201306, China.
| |
Collapse
|
6
|
Song Y, Cheng X, Jiang X, Gao J, Xue Y, Tian J, Zhang C, Wang S, Zhou J, Zou J, Qi Z, Gao Q. Identification and expression analysis of suppressors of cytokine signaling (SOCS) from soiny mullet (Liza haematocheila). FISH & SHELLFISH IMMUNOLOGY 2019; 90:102-108. [PMID: 31048038 DOI: 10.1016/j.fsi.2019.04.299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 04/24/2019] [Accepted: 04/27/2019] [Indexed: 06/09/2023]
Abstract
The suppressor of cytokine signaling (SOCS) family members play crucial roles in regulating immune signal pathways by acting as inhibitors of cytokine receptor signaling. In this study, 10 SOCS genes were identified in soiny mullet (Liza haematocheila), an economically important aquaculture mugilid species in China and other Asian countries. Sequence comparison showed that the sequence identity between mullet SOCSs and their counterparts from other vertebrates ranged from 38.2% to 92.5%. All mullet SOCS genes were constitutively expressed in tissues examined, but their expression patterns were different. Further, following Streptococcus dysgalactiae infection, all mullet SOCS genes exhibited distinct expression patterns in tissues. These results suggest that SOCSs are involved in immune response to bacterial infection and provide the basis for understanding the complex cytokine regulatory network of teleosts.
Collapse
Affiliation(s)
- Yunjie Song
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Xingxing Cheng
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Xinyu Jiang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Jingduo Gao
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Yujie Xue
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Jiayin Tian
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Chang Zhang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Sisi Wang
- Key Laboratory of Biochemistry and Biotechnology of Marine Wetland of Jiangsu Province, Yancheng Institute of Technology, Yancheng, Jiangsu Province, 224051, China
| | - Jie Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, 430072, China
| | - Jun Zou
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Zhitao Qi
- Key Laboratory of Biochemistry and Biotechnology of Marine Wetland of Jiangsu Province, Yancheng Institute of Technology, Yancheng, Jiangsu Province, 224051, China.
| | - Qian Gao
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China.
| |
Collapse
|
7
|
Wang B, Wangkahart E, Secombes CJ, Wang T. Insights into the Evolution of the Suppressors of Cytokine Signaling (SOCS) Gene Family in Vertebrates. Mol Biol Evol 2019; 36:393-411. [PMID: 30521052 PMCID: PMC6368001 DOI: 10.1093/molbev/msy230] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The SOCS family are key negative regulators of cytokine and growth factor signaling. Typically, 8-17 SOCS genes are present in vertebrate species with eight known in mammals, classified as type I (SOCS4-7) and type II (CISH and SOCS1-3) SOCS. It was believed that the type II SOCS were expanded through the two rounds of whole genome duplication (1R and 2R WGDs) from a single CISH/SOCS1-3 precursor. Previously, 12 genes were identified in rainbow trout but here we report 15 additional loci are present, and confirm 26 of the genes are expressed, giving rainbow trout the largest SOCS gene repertoire identified to date. The discovery of the additional SOCS genes in trout has led to a novel model of SOCS family evolution, whereby the vertebrate SOCS gene family was derived from CISH/SOCS2, SOCS1/SOCS3, SOCS4/5, SOCS6, and SOCS7 ancestors likely present before the two WGD events. It is also apparent that teleost SOCS2b, SOCS4, and SOCS5b molecules are not true orthologues of mammalian SOCS2, SOCS4, and SOCS5, respectively. The rate of SOCS gene structural changes increased from 2R vertebrates, to 4R rainbow trout, and the genes with structural changes show large differences and low correlation coefficient of expression levels relative to their paralogues, suggesting a role of structural changes in expression and functional diversification. This study has important impacts in the functional prediction and understanding of the SOCS gene family in different vertebrates, and provides a framework for determining how many SOCS genes could be expected in a particular vertebrate species/lineage.
Collapse
Affiliation(s)
- Bei Wang
- Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animal, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, College of Fishery, Guangdong Ocean University, Zhanjiang, P.R. China.,Scottish Fish Immunology Research Centre, Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Eakapol Wangkahart
- Scottish Fish Immunology Research Centre, Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, United Kingdom.,Research Unit of Excellence for Tropical Fisheries and Technology, Division of Fisheries, Department of Agricultural Technology, Faculty of Technology, Mahasarakham University, Khamriang Sub-District, Kantarawichai, Mahasarakham, Thailand
| | - Christopher J Secombes
- Scottish Fish Immunology Research Centre, Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Tiehui Wang
- Scottish Fish Immunology Research Centre, Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, United Kingdom
| |
Collapse
|
8
|
Ye HM, Zhao T, Wu LX, Cheng J, Tan XY. Molecular characterization of nine suppressors of cytokine signaling (SOCS) genes from yellow catfish Pelteobagrus fulvidraco and their changes in mRNA expression to dietary carbohydrate levels. FISH & SHELLFISH IMMUNOLOGY 2019; 86:906-912. [PMID: 30580042 DOI: 10.1016/j.fsi.2018.12.037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 12/14/2018] [Accepted: 12/19/2018] [Indexed: 06/09/2023]
Abstract
Suppressors of cytokine signaling (SOCS) are important molecules that mediates the regulation of glucose homeostasis. Here, we cloned and characterized the full-length cDNA sequences of nine genes of the SOCS family (SOCS1, 2, 3, 3b, 5, 5b, 6, 7 and CISH) from yellow catfish P. fulvidraco, explored their mRNA abundance across the tissues and their mRNA changes to dietary carbohydrate levels. Structural analysis indicated that the nine members shared conserved functional domains to the orthologues of the mammalian SOCS members, such as SRC homology 2 and the SOCS domains. Their mRNAs were constitutively expressed in various tissues but changed among the tissues. Their mRNA expression in response to dietary carbohydrate levels were explored in the liver, muscle, intestine, testis and ovary. Dietary carbohydrate addition showed significant effects on the mRNA levels of the nine SOCS members. Moreover, their mRNA expressions in response to dietary carbohydrate levels were also tissue-dependent. These indicated that SOCS members potentially mediated the utilization of dietary carbohydrate in yellow catfish.
Collapse
Affiliation(s)
- Han-Mei Ye
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Fishery College, Huazhong Agricultural University, Wuhan, 430070, China
| | - Tao Zhao
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Fishery College, Huazhong Agricultural University, Wuhan, 430070, China
| | - Li-Xiang Wu
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Fishery College, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jie Cheng
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Fishery College, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiao-Ying Tan
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Fishery College, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
9
|
Immune-Endocrine Interactions in the Fish Gonad during Infection: An Open Door to Vertical Transmission. FISHES 2018. [DOI: 10.3390/fishes3020024] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
10
|
Rebl A, Goldammer T. Under control: The innate immunity of fish from the inhibitors' perspective. FISH & SHELLFISH IMMUNOLOGY 2018; 77:328-349. [PMID: 29631025 DOI: 10.1016/j.fsi.2018.04.016] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 04/04/2018] [Accepted: 04/05/2018] [Indexed: 06/08/2023]
Abstract
The innate immune response involves a concerted network of induced gene products, preformed immune effectors, biochemical signalling cascades and specialised cells. However, the multifaceted activation of these defensive measures can derail or overshoot and, if left unchecked, overwhelm the host. A plenty of regulatory devices therefore mediate the fragile equilibrium between pathogen defence and pathophysiological manifestations. Over the past decade in particular, an almost complete set of teleostean sequences orthologous to mammalian immunoregulatory factors has been identified in various fish species, which prove the remarkable conservation of innate immune-control concepts among vertebrates. This review will present the current knowledge on more than 50 teleostean regulatory factors (plus additional fish-specific paralogs) that are of paramount importance for controlling the clotting cascade, the complement system, pattern-recognition pathways and cytokine-signalling networks. A special focus lies on those immunoregulatory features that have emerged as potential biomarker genes in transcriptome-wide research studies. Moreover, we report on the latest progress in elucidating control elements that act directly with immune-gene-encoding nucleic acids, such as transcription factors, hormone receptors and micro- and long noncoding RNAs. Investigations into the function of teleostean inhibitory factors are still mainly based on gene-expression profiling or overexpression studies. However, in support of structural and in-vitro analyses, evidence from in-vivo trials is also available and revealed many biochemical details on piscine immune regulation. The presence of multiple gene copies in fish adds a degree of complexity, as it is so far hardly understood if they might play distinct roles during inflammation. The present review addresses this and other open questions that should be tackled by fish immunologists in future.
Collapse
Affiliation(s)
- Alexander Rebl
- Leibniz Institute for Farm Animal Biology (FBN), Institute of Genome Biology, Fish Genetics Unit, Dummerstorf, Germany.
| | - Tom Goldammer
- Leibniz Institute for Farm Animal Biology (FBN), Institute of Genome Biology, Fish Genetics Unit, Dummerstorf, Germany
| |
Collapse
|
11
|
Minami S, Suzuki K, Watanabe S, Sano M, Kato G. Maturation-associated changes in the non-specific immune response against Flavobacterium psychrophilum in Ayu Plecoglossus altivelis. FISH & SHELLFISH IMMUNOLOGY 2018; 76:167-173. [PMID: 29510257 DOI: 10.1016/j.fsi.2018.03.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 02/22/2018] [Accepted: 03/02/2018] [Indexed: 06/08/2023]
Abstract
In this study, we investigated maturation-associated changes in non-specific immune responses of ayu against Flavobacterium psychrophilum. The gonadosomatic index was minimum on 16 June, began to increase on 17 July, and reached the maximum value during August. The highest phagocytic rate (16.3%) was observed on 16 June, which decreased significantly to 5.6% on 26 August. The number of viable bacteria after the serum treatment was highest during August, suggesting that bactericidal activity of the serum decreased along with the sexual maturation. Gene expression levels of interleukin-8, and tumor necrosis factor-α in the spleen did not change significantly during this period, whereas the level of suppressor of cytokine signaling (SOCS)3 was significantly higher on 26 August than that on 16 July (p < 0.05). These results suggest that phagocytic activity of trunk kidney leukocytes and serum bactericidal activity against F. psychrophilum decreased with sexual maturation, and that SOCS3 may be related to the decrease in non-specific immune activity in ayu.
Collapse
Affiliation(s)
- Shungo Minami
- Tokyo University of Marine Science and Technology, Konan 4-5-7, Minato, Tokyo, 108-8477 Japan
| | - Kyuma Suzuki
- Gunma Prefectural Fisheries Experiment Station, Shikishima 13, Maebashi, Gunma, 371-0036 Japan
| | - Shun Watanabe
- Gunma Prefectural Fisheries Experiment Station, Shikishima 13, Maebashi, Gunma, 371-0036 Japan
| | - Motohiko Sano
- Tokyo University of Marine Science and Technology, Konan 4-5-7, Minato, Tokyo, 108-8477 Japan
| | - Goshi Kato
- Tokyo University of Marine Science and Technology, Konan 4-5-7, Minato, Tokyo, 108-8477 Japan.
| |
Collapse
|
12
|
Sequeida A, Maisey K, Imarai M. Interleukin 4/13 receptors: An overview of genes, expression and functional role in teleost fish. Cytokine Growth Factor Rev 2017; 38:66-72. [PMID: 28988781 DOI: 10.1016/j.cytogfr.2017.09.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Revised: 09/26/2017] [Accepted: 09/26/2017] [Indexed: 12/11/2022]
Abstract
In superior vertebrates, Interleukin 4 (IL-4) and Interleukin 13 (IL-13) play key and diverse roles to support immune responses acting on cell surface receptors. When stimulated, receptors activate intracellular signalling cascades switching cell phenotypes according to stimuli. In teleost fish, Interleukin 4/13 (IL-4/13) is the ancestral family cytokine related to both IL-4 and IL-13. Every private and common receptor subunit for IL-4/13 have in fish at least two paralogues and, as in mammals, soluble forms are also part of the receptor system. Reports for findings of fish IL-4/13 receptors have covered comparative analysis, transcriptomic profiles and to a lesser extent, functional analysis regarding ligand-receptor interactions and their biological effects. This review addresses available information from fish IL-4/13 receptors and discusses overall implications on teleost immunity, summarized gene induction strategies and pathogen-induced gene modulation, which may be useful tools to enhance immune response. Additionally, we present novel coding sequences for Atlantic salmon (Salmo salar) common gamma chain receptor (γC), Interleukin 13 receptor alpha 1A chain (IL-13Rα1A) and Interleukin 13 receptor alpha 1B chain (IL-13Rα1B).
Collapse
Affiliation(s)
- A Sequeida
- Laboratory of Immunology, Center for Aquatic Biotechnology, Department of Biology, Faculty of Chemistry and Biology, University of Santiago of Chile, Av. Bernardo O'Higgins, 3363 Santiago, Chile
| | - K Maisey
- Laboratory of Immunology, Center for Aquatic Biotechnology, Department of Biology, Faculty of Chemistry and Biology, University of Santiago of Chile, Av. Bernardo O'Higgins, 3363 Santiago, Chile; Laboratory of Comparative Immunology, Center for Aquatic Biotechnology, Department of Biology, Faculty of Chemistry and Biology, University of Santiago of Chile,Av. Bernardo O'Higgins, 3363 Santiago, Chile
| | - M Imarai
- Laboratory of Immunology, Center for Aquatic Biotechnology, Department of Biology, Faculty of Chemistry and Biology, University of Santiago of Chile, Av. Bernardo O'Higgins, 3363 Santiago, Chile.
| |
Collapse
|
13
|
Gonçalves AF, Neves JV, Coimbra J, Rodrigues P, Vijayan MM, Wilson JM. Cortisol plays a role in the high environmental ammonia associated suppression of the immune response in zebrafish. Gen Comp Endocrinol 2017; 249:32-39. [PMID: 28263819 DOI: 10.1016/j.ygcen.2017.02.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Revised: 02/13/2017] [Accepted: 02/24/2017] [Indexed: 12/24/2022]
Abstract
Exposure to high environmental ammonia (HEA) levels increases the vulnerability of fishes to parasitic, viral and bacterial diseases. We tested the hypothesis that elevated plasma cortisol levels play a role in the HEA-mediated immunosuppression in fishes. To this end, we tested the effect of exogenous cortisol treatment on the lipopolysaccharide (LPS)-induced immune response in zebrafish (Danio rerio). Also, to test whether glucocorticoid receptor (GR) signaling is involved in HEA-mediated immunosuppression, zebrafish were treated with mifepristone, a GR antagonist, and the LPS-induced immune response assessed after HEA exposure. We evaluated a panel of important immunity-related genes including interleukin 1β (il1b) and suppressor of cytokine signaling (socs-1a, 2, 3) and acute phase response genes [serum amyloid A (saa), transferrin (tfa), leukocyte cell-derived chemotaxin 2-like (lect2l), haptoglobin (hp), hepcidin (=hepatic anti-microbial peptide hamp), and complement component 3b (c3b)] by real-time quantitative PCR. Our results demonstrate that exogenous cortisol administration as well as elevated cortisol levels in response to HEA exposure modulate mRNA transcript levels of key mediators of the innate immune response in zebrafish. Mifepristone treatment reduced whole body cortisol levels and eliminated the HEA-mediated changes in transcript abundance of socs1a, il1b, as well as APR genes. Together, these results suggest that the HEA effect on the innate immune response is in part mediated by cortisol signaling, while the mode of action, including the receptors involved remains to be elucidated.
Collapse
Affiliation(s)
- A F Gonçalves
- Centro Interdisciplinar de Investigação Marinha e Ambiental, Porto, Portugal; Instituto de Ciências Biomédicas Abel Salazar, Porto, Portugal
| | - J V Neves
- Instituto de Biologia Molecular e Celular, Porto, Portugal
| | - J Coimbra
- Centro Interdisciplinar de Investigação Marinha e Ambiental, Porto, Portugal; Instituto de Ciências Biomédicas Abel Salazar, Porto, Portugal
| | - P Rodrigues
- Instituto de Biologia Molecular e Celular, Porto, Portugal; Instituto de Ciências Biomédicas Abel Salazar, Porto, Portugal
| | - M M Vijayan
- Department of Biology, University of Waterloo, Waterloo, Canada
| | - J M Wilson
- Centro Interdisciplinar de Investigação Marinha e Ambiental, Porto, Portugal.
| |
Collapse
|
14
|
Thanasaksiri K, Hirono I, Kondo H. Identification and expression analysis of suppressors of cytokine signaling (SOCS) of Japanese flounder Paralichthys olivaceus. FISH & SHELLFISH IMMUNOLOGY 2016; 58:145-152. [PMID: 27640157 DOI: 10.1016/j.fsi.2016.09.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 08/29/2016] [Accepted: 09/11/2016] [Indexed: 06/06/2023]
Abstract
Suppressor of cytokine signaling (SOCS) family members are key regulators of the immune system, particularly cytokine action, and have now been discovered in a number of fish species. Here we identified eight SOCS proteins (CISH, SOCS1a, SOCS1b, SOCS3a, SOCS3b, SOCS5, SOCS6 and SOCS9) in the Japanese flounder and analyzed their mRNA expressions after injection of poly (I:C) and formalin-killed cells (FKC) of Edwardsiella tarda. The expressions of all eight SOCS genes were detected in all the tissues examined. Stimulation of Japanese flounder reared at 15 or 25 °C with poly (I:C) affected the gene expressions of CISH, SOCS1a, SOCS1b and SOCS3a. All SOCS genes mRNA levels were significantly changed after FKC injection. Significant up-regulation of SOCS1a, SOCS1b, SOCS3a and SOCS3b genes was detected at 3, 12 and 24 hpi. SOCS5 and SOCS6 genes were significantly down-regulated at 3 hpi. SOCS9 gene was significantly up-regulated at 12 hpi. These results suggest that all eight of the SOCS genes are involved in immune responses, and that the CISH, SOCS1 and SOCS3 genes have functions distinct from those of the other SOCS members.
Collapse
Affiliation(s)
- Kittipong Thanasaksiri
- Laboratory of Genome Science, Graduate School of Tokyo University of Marine Science and Technology, Konan 4-5-7, Minato, Tokyo 108-8477, Japan
| | - Ikuo Hirono
- Laboratory of Genome Science, Graduate School of Tokyo University of Marine Science and Technology, Konan 4-5-7, Minato, Tokyo 108-8477, Japan
| | - Hidehiro Kondo
- Laboratory of Genome Science, Graduate School of Tokyo University of Marine Science and Technology, Konan 4-5-7, Minato, Tokyo 108-8477, Japan.
| |
Collapse
|
15
|
Hao LX, Sun L. Comparative analysis of the expression patterns of eight suppressors of cytokine signaling in tongue sole, Cynoglossus semilaevis. FISH & SHELLFISH IMMUNOLOGY 2016; 55:595-601. [PMID: 27346156 DOI: 10.1016/j.fsi.2016.06.034] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 06/15/2016] [Accepted: 06/22/2016] [Indexed: 06/06/2023]
Abstract
Suppressor of cytokine signaling (SOCS) family members are inhibitors of cytokine signaling pathways and key regulators of immunological homeostasis. They have been extensively studied in mammalian models, but systematic analyses of SOCS in fish are limited. In the current study, a total of eight SOCS genes from tongue sole (Cynoglossus semilaevis) were characterized. All eight CsSOCS exhibit conserved structures of SOCS and were phylogenetically grouped together with the respective SCOS members known in mammalian and teleost species. Under normal physiological conditions, the expressions of the eight CsSOCS genes were detected at varied levels in nine major tissues, with most CsSOCS highly expressed in kidney. Following challenge with intracellular and extracellular bacterial pathogens, the majority of CsSOCS genes exhibited distinctly different expression profiles in a time-, tissue-, and pathogen-dependent manner. In general, intracellular pathogen caused wider and higher levels of CsSOCS expressions than extracellular pathogen. These results suggest that different members of SOCSs in teleost may play different roles in the infection processes of different bacterial pathogens.
Collapse
Affiliation(s)
- Lian-Xu Hao
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; University of Chinese Academy of Sciences, Beijing, China
| | - Li Sun
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| |
Collapse
|
16
|
Jiang X, Xiao J, He M, Ma A, Wong AOL. Type II SOCS as a feedback repressor for GH-induced Igf1 expression in carp hepatocytes. J Endocrinol 2016; 229:171-86. [PMID: 27271287 DOI: 10.1530/joe-15-0423] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 03/14/2016] [Indexed: 01/16/2023]
Abstract
Type II suppressor of cytokine signaling (SOCS) serve as feedback repressors for cytokines and are known to inhibit growth hormone (GH) actions. However, direct evidence for SOCS modulation of GH-induced insulin-like growth factor 1 (Igf1) expression is lacking, and the post-receptor signaling for SOCS expression at the hepatic level is still unclear. To shed light on the comparative aspects of SOCS in GH functions, grass carp was used as a model to study the role of type II SOCS in GH-induced Igf1 expression. Structural identity of type II SOCS, Socs1-3 and cytokine-inducible SH2-containing protein (Cish), was established in grass carp by 5'/3'-RACE, and their expression at both transcript and protein levels were confirmed in the liver by RT-PCR and LC/MS/MS respectively. In carp hepatocytes, GH treatment induced rapid phosphorylation of JAK2, STATs, MAPK, PI3K, and protein kinase B (Akt) with parallel rises in socs1-3 and cish mRNA levels, and these stimulatory effects on type II SOCS were shown to occur before the gradual loss of igf1 gene expression caused by prolonged exposure of GH. Furthermore, GH-induced type II SOCS gene expression could be negated by inhibiting JAK2, STATs, MEK1/2, P38 (MAPK), PI3K, and/or Akt respectively. In CHO cells transfected with carp GH receptor, over-expression of these newly cloned type II SOCS not only suppressed JAK2/STAT5 signaling with GH treatment but also inhibited GH-induced grass carp Igf1 promoter activity. These results, taken together, suggest that type II SOCS could be induced by GH in the carp liver via JAK2/STATs, MAPK, and PI3K/Akt cascades and serve as feedback repressors for GH signaling and induction of igf1 gene expression.
Collapse
Affiliation(s)
- Xue Jiang
- School of Biological SciencesUniversity of Hong Kong, Pokfulam, Hong Kong
| | - Jia Xiao
- School of Biological SciencesUniversity of Hong Kong, Pokfulam, Hong Kong
| | - Mulan He
- School of Biological SciencesUniversity of Hong Kong, Pokfulam, Hong Kong
| | - Ani Ma
- School of Biological SciencesUniversity of Hong Kong, Pokfulam, Hong Kong
| | - Anderson O L Wong
- School of Biological SciencesUniversity of Hong Kong, Pokfulam, Hong Kong
| |
Collapse
|
17
|
Liu CZ, He AY, Chen LQ, Limbu SM, Wang YW, Zhang ML, Du ZY. Molecular characterization and immune response to lipopolysaccharide (LPS) of the suppressor of cytokine signaling (SOCS)-1, 2 and 3 genes in Nile tilapia (Oreochromis niloticus). FISH & SHELLFISH IMMUNOLOGY 2016; 50:160-167. [PMID: 26820103 DOI: 10.1016/j.fsi.2016.01.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 01/21/2016] [Accepted: 01/22/2016] [Indexed: 06/05/2023]
Abstract
Suppressor of cytokine signaling (SOCS) proteins are inverse feedback regulators of cytokine and hormone signaling mediated by the Janus kinase/signal transducer and activator of transcription (JAK/STAT) signaling pathway that are involved in immunity, growth and development of organisms. In the present study, three SOCS genes, SOCS-1, SOCS-2 and SOCS-3, were identified in an economically important fish, Nile tilapia (Oreochromis niloticus) referred to as NtSOCS-1, NtSOCS-2 and NtSOCS-3. Multiple alignments showed that, the three SOCS molecules share highly conserved functional domains, including the SRC homology 2 (SH2) domain, the extended SH2 subdomain (ESS) and the SOCS box with others vertebrate counterparts. Phylogenetic analysis indicated that NtSOCS-1, 2 and 3 belong to the SOCS type II subfamily. Whereas NtSOCS-1 and 3 showed close evolutionary relationship with Perciformes, NtSOCS-2 was more related to Salmoniformes. Tissue specific expression results showed that, NtSOCS-1, 2 and 3 were constitutively expressed in all nine tissues examined. NtSOCS-1 and 3 were highly expressed in immune-related tissues, such as gills, foregut and head kidney. However, NtSOCS-2 was superlatively expressed in liver, brain and heart. In vivo, NtSOCS-1 and 3 mRNA levels were up-regulated after lipopolysaccharide (LPS) challenge while NtSOCS-2 was down-regulated. In vitro, LPS stimulation increased NtSOCS-3 mRNA expression, however it inhibited the transcription of NtSOCS-1 and 2. Collectively, our findings suggest that, the NtSOCS-1 and 3 might play significant role(s) in innate immune response, while NtSOCS-2 may be more involved in metabolic regulation.
Collapse
Affiliation(s)
- Cai-Zhi Liu
- Laboratory of Aquaculture Nutrition and Environmental Health (LANEH), School of Life Sciences, East China Normal University, Shanghai, PR China
| | - An-Yuan He
- Laboratory of Aquaculture Nutrition and Environmental Health (LANEH), School of Life Sciences, East China Normal University, Shanghai, PR China
| | - Li-Qiao Chen
- Laboratory of Aquaculture Nutrition and Environmental Health (LANEH), School of Life Sciences, East China Normal University, Shanghai, PR China.
| | - Samwel Mchele Limbu
- Laboratory of Aquaculture Nutrition and Environmental Health (LANEH), School of Life Sciences, East China Normal University, Shanghai, PR China; Department of Aquatic Sciences and Fisheries Technologies, University of Dar es Salaam, Dar es Salaam, Tanzania
| | - Ya-Wen Wang
- Laboratory of Aquaculture Nutrition and Environmental Health (LANEH), School of Life Sciences, East China Normal University, Shanghai, PR China
| | - Mei-Ling Zhang
- Laboratory of Aquaculture Nutrition and Environmental Health (LANEH), School of Life Sciences, East China Normal University, Shanghai, PR China
| | - Zhen-Yu Du
- Laboratory of Aquaculture Nutrition and Environmental Health (LANEH), School of Life Sciences, East China Normal University, Shanghai, PR China.
| |
Collapse
|
18
|
Dai Z, Wang H, Jin X, Wang H, He J, Liu M, Yin Z, Sun Y, Lou Q. Depletion of suppressor of cytokine signaling-1a causes hepatic steatosis and insulin resistance in zebrafish. Am J Physiol Endocrinol Metab 2015; 308:E849-59. [PMID: 25759395 DOI: 10.1152/ajpendo.00540.2014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 03/02/2015] [Indexed: 02/08/2023]
Abstract
Suppressor of cytokine signaling-1a (SOCS1a) is a member of the suppressor of cytokine signaling family, a group of related molecules that mediate the negative regulation of the JAK-STAT pathway. Here, we depleted SOCS1a using the transcription activator-like (TAL) effector nuclease (TALEN) technique to understand its physiological roles in zebrafish. Although elevated levels of JAK-STAT5 activation and erythropoiesis have been observed in socs1a-deficient zebrafish, these animals exhibited normal growth during the early stages. Socs1a-deficient zebrafish began to grow slowly with certain mortalities after 20 days postfertilization (dpf), whereas the heterozygous socs1a-deficient zebrafish exhibited enhanced somatic growth. Decreased adiposity, hepatic steatosis, and insulin resistance were observed in our socs1a-deficient adult zebrafish, which is similar to the lipodystrophy phenotypes observed in mammals. Comparative transcriptomic analyses revealed elevated levels of gluconeogenesis, lipolysis, and hypoxia-inducible response and decreased activities of lipogenesis and glycolysis in the hepatocytes of socs1a-deflicient adult zebrafish. Evident mitochondrial dysfunction has also been observed in hepatocytes from socs1a-deficient zebrafish. Taken together, our results suggest that the negative regulatory roles of SOCS1a on JAK-STAT5 signaling may be involved in the suppression of the erythropoiesis and growth hormone activities, which was also reflected in the enhanced somatic growth performance observed in the heterozygous socs1a-deficient fish. The differences in the effects caused by SOCS1a depletion on insulin sensitivity, lipid metabolism, and inflammatory responses between zebrafish and mammalian models observed here may reflect differences between the functional mechanisms of SOCS members in terrestrial mammals and aquatic teleosts.
Collapse
Affiliation(s)
- Ziru Dai
- Key Laboratory of Molecular Biophysics, Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Aquatic Biodiversity and Conservation of the Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China; and
| | - Hualin Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Wuhan, Hubei, China
| | - Xia Jin
- Key Laboratory of Aquatic Biodiversity and Conservation of the Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China; and
| | - Houpeng Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Wuhan, Hubei, China
| | - Jiangyan He
- Key Laboratory of Aquatic Biodiversity and Conservation of the Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China; and
| | - Mugen Liu
- Key Laboratory of Molecular Biophysics, Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhan Yin
- Key Laboratory of Molecular Biophysics, Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Aquatic Biodiversity and Conservation of the Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China; and
| | - Yonghua Sun
- State Key Laboratory of Freshwater Ecology and Biotechnology, Wuhan, Hubei, China
| | - Qiyong Lou
- Key Laboratory of Aquatic Biodiversity and Conservation of the Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China; and
| |
Collapse
|
19
|
Four CISH paralogues are present in rainbow trout Oncorhynchus mykiss: differential expression and modulation during immune responses and development. Mol Immunol 2014; 62:186-98. [PMID: 25014904 DOI: 10.1016/j.molimm.2014.06.021] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 06/10/2014] [Accepted: 06/12/2014] [Indexed: 01/20/2023]
Abstract
Suppressor of cytokine signalling (SOCS) family members are crucial in the control and attenuation of cytokine induced responses via activation of the JAK/STAT, TLR and NF-kB signalling pathways. SOCS proteins orchestrate the termination of many types of immune responses and are often the targets of microbial pathogens exploiting SOCS mechanisms to evade the host's immune response. Through whole and lineage specific genome duplication events, the teleost cytokine/SOCS network is complex. Not only are the orthologues of all mammalian SOCS members present, namely cytokine inducible Src homology 2 (SH2)-containing protein (CISH) and SOCS-1 to -7, but multiple gene copies exist that may potentially become functionally divergent. In this paper we focus on the CISH genes in rainbow trout (Oncorhynchus mykiss), and have cloned two further paralogues, CISHa2 and CISHb2, additional to the known CISHa1 and CISHb1 genes. We present for the first time a comparative expression analysis of these four paralogues, to establish whether subfunctionalisation is apparent. In vivo examination of gene expression revealed a higher constitutive expression level of CISHa paralogues compared to CISHb expression in adult trout tissues. All CISHs were relatively highly abundant in immune tissues but CISHa2 and CISHb2 had highest expression in the heart and muscle. An inverse picture of CISH abundance during trout ontogeny was seen, and further hints at differential roles of the four genes in immune regulation and development. Stimulation of head kidney (HK) leukocytes with trout recombinant interleukin (rIL)-15 and rIL-21 had a major effect on CISHa2 and to a lesser extent CISHa1 expression. In HK macrophages rIL-1β, phytohemagglutinin, and phorbol 12-myristate 13-acetate also had a strong impact on CISHa2 expression. Yersinia ruckeri infection caused a temporally and spatially differential onset of CISH expression that may be viewed in the context of pathogen evasion strategies. These data, against the backdrop of fish specific whole genome duplication events and functional divergence, provide the first evidence for differential roles of the four trout CISH genes in immune control and development.
Collapse
|
20
|
Skjesol A, Liebe T, Iliev DB, Thomassen EIS, Tollersrud LG, Sobhkhez M, Lindenskov Joensen L, Secombes CJ, Jørgensen JB. Functional conservation of suppressors of cytokine signaling proteins between teleosts and mammals: Atlantic salmon SOCS1 binds to JAK/STAT family members and suppresses type I and II IFN signaling. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 45:177-189. [PMID: 24582990 DOI: 10.1016/j.dci.2014.02.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 02/18/2014] [Accepted: 02/18/2014] [Indexed: 06/03/2023]
Abstract
Suppressor of cytokine signaling (SOCS) proteins are crucially involved in the control of inflammatory responses through their impact on various signaling pathways including the JAK/STAT pathway. Although all SOCS protein family members are identified in teleost fish, their functional properties in non-mammalian vertebrates have not been extensively studied. To gain further insight into SOCS functions in bony fish, we have identified and characterized the Atlantic salmon (Salmo salar) SOCS1, SOCS2 and CISH genes. These genes exhibited sequence conservation with their mammalian counterparts and they were ubiquitously expressed. SOCS1 in mammalian species has been recognized as a key negative regulator of interferon (IFN) signaling and recent data for the two model fish Tetraodon (Tetraodon nigroviridis) and zebrafish (Danio rerio) suggest that these functions are conserved from teleost to mammals. In agreement with this we here demonstrate a strong negative regulatory activity of salmon SOCS1 on type I and type II IFN signaling, while SOCS2a and b and CISH only moderately affected IFN responses. SOCS1 also inhibited IFNγ-induced nuclear localization of STAT1 and a direct interaction between SOCS1 and STAT1 and between SOCS1 and the Tyk2 kinase was found. Using SOCS1 mutants lacking either the KIR domain or the ESS, SH2 and SOCS box domains showed that all domains affected the ability of SOCS1 to inhibit IFN-mediated signaling. These results are the first to demonstrate that SOCS1 is a potent inhibitor of IFN-mediated JAK-STAT signaling in teleost fish.
Collapse
Affiliation(s)
- Astrid Skjesol
- The Norwegian College of Fishery Science, UiT The Arctic University of Norway, N-9037 Tromsø, Norway
| | - Theresa Liebe
- The Norwegian College of Fishery Science, UiT The Arctic University of Norway, N-9037 Tromsø, Norway; Center for Molecular Biomedicine (CMB), Dept. of Biochemistry, University of Jena, D-07745 Jena, Germany
| | - Dimitar B Iliev
- The Norwegian College of Fishery Science, UiT The Arctic University of Norway, N-9037 Tromsø, Norway
| | - Ernst I S Thomassen
- The Norwegian College of Fishery Science, UiT The Arctic University of Norway, N-9037 Tromsø, Norway
| | - Linn Greiner Tollersrud
- The Norwegian College of Fishery Science, UiT The Arctic University of Norway, N-9037 Tromsø, Norway
| | - Mehrdad Sobhkhez
- The Norwegian College of Fishery Science, UiT The Arctic University of Norway, N-9037 Tromsø, Norway
| | | | - Christopher J Secombes
- Scottish Fish Immunology Research Centre, Institute of Biological and Environmental Sciences, University of Aberdeen, Tillydrone Avenue, Aberdeen AB24 2TZ, UK
| | - Jorunn B Jørgensen
- The Norwegian College of Fishery Science, UiT The Arctic University of Norway, N-9037 Tromsø, Norway.
| |
Collapse
|
21
|
Nie L, Xiong R, Zhang YS, Zhu LY, Shao JZ, Xiang LX. Conserved inhibitory role of teleost SOCS-1s in IFN signaling pathways. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 43:23-29. [PMID: 24183820 DOI: 10.1016/j.dci.2013.10.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Revised: 10/22/2013] [Accepted: 10/22/2013] [Indexed: 06/02/2023]
Abstract
The suppressor of cytokine signaling 1 (SOCS-1) protein is a critical regulator in the immune systems of humans and mammals, which functions classically as an inhibitor of the IFN signaling pathways. However, data on functional characterisation of SOCS-1 in ancient vertebrates are limited. In this study, we report the function of teleost SOCS-1s in IFN signaling in fish models (zebrafish and Tetraodon) and human cells. Structurally, teleost SOCS-1s share conserved functional domains with their mammalian counterparts. Functionally, teleost SOCS-1s could be significantly induced upon stimulation with IFN stimulants and zebrafish IFNφ1. Overexpression of teleost SOCS-1s could dramatically suppress IFNφ1-induced Mx, Viperin and PKZ activation in zebrafish, and IFN-induced ISG15 activation in HeLa cells. Furthermore, a SOCS-1 variant that lacks the KIR domain was also characterised. This study demonstrates the conserved negative regulatory role of teleost SOCS-1s in IFN signaling pathways, providing perspective into the functional conservation of SOCS-1 proteins during evolution.
Collapse
Affiliation(s)
- Li Nie
- College of Life Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China; Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Hangzhou 310058, People's Republic of China; Key Laboratory of Animal Virology of Ministry of Agriculture, Hangzhou 310058, People's Republic of China
| | - Ran Xiong
- College of Life Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China; Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Hangzhou 310058, People's Republic of China; Key Laboratory of Animal Virology of Ministry of Agriculture, Hangzhou 310058, People's Republic of China
| | - Ying-Sheng Zhang
- College of Life Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China; Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Hangzhou 310058, People's Republic of China; Key Laboratory of Animal Virology of Ministry of Agriculture, Hangzhou 310058, People's Republic of China
| | - Lv-yun Zhu
- College of Life Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China; Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Hangzhou 310058, People's Republic of China; Key Laboratory of Animal Virology of Ministry of Agriculture, Hangzhou 310058, People's Republic of China
| | - Jian-Zhong Shao
- College of Life Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China; Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Hangzhou 310058, People's Republic of China; Key Laboratory of Animal Virology of Ministry of Agriculture, Hangzhou 310058, People's Republic of China.
| | - Li-Xin Xiang
- College of Life Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China; Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Hangzhou 310058, People's Republic of China; Key Laboratory of Animal Virology of Ministry of Agriculture, Hangzhou 310058, People's Republic of China.
| |
Collapse
|
22
|
Zhu LY, Nie L, Zhu G, Xiang LX, Shao JZ. Advances in research of fish immune-relevant genes: a comparative overview of innate and adaptive immunity in teleosts. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2013; 39:39-62. [PMID: 22504163 DOI: 10.1016/j.dci.2012.04.001] [Citation(s) in RCA: 318] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2011] [Revised: 03/18/2012] [Accepted: 04/05/2012] [Indexed: 05/31/2023]
Abstract
Fish is considered to be an important model in comparative immunology studies because it is a representative population of lower vertebrates serving as an essential link to early vertebrate evolution. Fish immune-relevant genes have received considerable attention due to its role in improving understanding of both fish immunology and the evolution of immune systems. In this review, we discuss the current understanding of teleost immune-relevant genes for both innate and adaptive immunity, including pattern recognition receptors, antimicrobial peptides, complement molecules, lectins, interferons and signaling factors, inflammatory cytokines, chemokines, adaptive immunity relevant cytokines and negative regulators, major histocompatibility complexes, immunoglobulins, and costimulatory molecules. The implications of these factors on the evolutionary history of immune systems were discussed and a perspective outline of innate and adaptive immunity of teleost fish was described. This review may provide clues on the evolution of the essential defense system in vertebrates.
Collapse
Affiliation(s)
- Lv-yun Zhu
- College of Life Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China
| | | | | | | | | |
Collapse
|
23
|
Jørgensen EH, Martinsen M, Strøm V, Hansen KER, Ravuri CS, Gong N, Jobling M. Long-term fasting in the anadromous Arctic charr is associated with down-regulation of metabolic enzyme activity and up-regulation of leptin A1 and SOCS expression in the liver. J Exp Biol 2013; 216:3222-30. [DOI: 10.1242/jeb.088344] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Summary
The life-strategy of the anadromous Arctic charr (Salvelinus alpinus) includes several months of voluntary fasting during overwintering in fresh water leading to emaciation prior to seawater migration in spring. In this study we compared changes in condition, substrate utilization and liver metabolism between captive anadromous charr subjected to food-deprivation during late winter and spring, and conspecifics fed in excess. In March, 9 out of the 10 sampled fed fish had not eaten, indicating that they were a voluntary anorexic state. In June, the fed fish were eating and all had higher body mass (BM), condition factor (CF) and adiposity than in March. In fasted fish there were only small decreases in BM, CF and adiposity between March and May, but all these parameters decreased markedly from May to June. The fasted fish were fat- and glycogen-depleted in June, had suppressed activity of hepatic enzymes involved in lipid metabolism (G6PDH and HOAD) and seemed to rely on protein-derived glucose as a major energy source. This was associated with up-regulated liver gene expression of leptin A1, leptin A2, SOCS1, SOCS2 and SOCS3, and reduced IGF-I expression. In an in vitro study with liver slices it was shown that recombinant rainbow trout leptin stimulated SOCS1 and SOCS3 expression, but not SOCS2, IGF-I or genes of enzymes involved in lipid (G6PDH) and amino acid (AspAT) metabolism. It is concluded that liver leptin interacts with SOCS in a paracrine fashion to suppress lipolytic pathways and depress metabolism when fat stores are depleted.
Collapse
|
24
|
Philip AM, Daniel Kim S, Vijayan MM. Cortisol modulates the expression of cytokines and suppressors of cytokine signaling (SOCS) in rainbow trout hepatocytes. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2012; 38:360-7. [PMID: 22878426 DOI: 10.1016/j.dci.2012.07.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Revised: 07/13/2012] [Accepted: 07/15/2012] [Indexed: 05/23/2023]
Abstract
Although liver is a key target for corticosteroid action, its role in immune function is largely unknown. We tested the hypothesis that stress levels of cortisol down regulate immune-relevant genes in rainbow trout (Oncorhynchus mykiss) liver. Hepatocytes were treated with lipopolysaccharide (LPS) for 24h either in the presence or absence of cortisol. LPS stimulated heat shock protein 70 expression, enhanced glycolytic capacity, and reduced glucose output. LPS stimulated mRNA abundance of cytokines and serum amyloid protein A (SAA), while suppressors of cytokine signaling (SOCS)-3 was reduced. Cortisol increased mRNA abundances of IL-1β, SOCS-1 and SOCS-2, while inhibiting either basal or LPS-stimulated IL-8, TNF α2 and SAA. These cortisol-mediated effects were rescued by Mifepristone, a glucocorticoid receptor antagonist. Altogether, cortisol modulates the molecular immune response in trout hepatocytes. The upregulation of SOCS-1 and SOCS-2 by cortisol may be playing a key role in suppressing cytokine signaling and the associated inflammatory response.
Collapse
Affiliation(s)
- Anju M Philip
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
| | | | | |
Collapse
|
25
|
Shepherd BS, Rees CB, Binkowski FP, Goetz FW. Characterization and evaluation of sex-specific expression of suppressors of cytokine signaling (SOCS)-1 and -3 in juvenile yellow perch (Perca flavescens) treated with lipopolysaccharide. FISH & SHELLFISH IMMUNOLOGY 2012; 33:468-481. [PMID: 22634749 DOI: 10.1016/j.fsi.2012.05.026] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2011] [Revised: 05/14/2012] [Accepted: 05/15/2012] [Indexed: 06/01/2023]
Abstract
The suppressor of cytokine signaling (SOCS) proteins are a family of intracellular proteins that are centrally involved with vertebrate growth, development and immunity via their effects as negative feed-back regulators of cytokine (and hormone) signaling. The genes for SOCS-1 & -3 were cloned, sequences analyzed and expression patterns examined in the commercially-important teleost, yellow perch (Perca flavescens). The deduced (mature) proteins for yellow perch (yp)SOCS-1 and (yp)SOCS-3 consist of 211 and 205 amino acids, respectively. Functional domains such as the Src homology-2 (SH2) and SOCS-box were present in ypSOCS-1 and ypSOCS-3 and these domains were well conserved between teleost species. Sequence analysis showed that ypSOCS-1 & -3 share highest homology (among similar teleost sequences), to the stickleback (Gasterosteus aculatus) SOCS-1 & -3 protein homologs. To investigate sex-specific expression of the ypSOCS-1 and ypSOCS-3 mRNAs, juvenile male and female yellow perch were immunologically challenged with a single injection (10 μg/g bw) of lipopolysaccharide (LPS) and tissues (gill, head kidney, kidney, liver and spleen) were sampled over a 48-h time-course. Quantitative real-time PCR analysis showed that ypSOCS-1 & -3 were expressed in all tissues examined and at all sampling time-points. LPS injection significantly induced ypSOCS-1 & -3 mRNA levels in gill, head kidney, liver, kidney and spleen, with maximal induction occurring at 6 h post-injection in each tissue. By 48-h post-injection, expression levels for ypSOCS-1 & -3 mRNAs approached, or reached, control levels in all tissues examined. While there were statistical interactions among variables (treatment, time and sex) for ypSOCS-1, we only found a main effect of sex on SOCS-3 mRNA expression in head kidney with higher copy numbers occurring in males than in females treated with LPS. Sexually-dimorphic expression of SOCS-1 or -3 mRNA has not been examined, or described, in a teleost. Our findings suggest the involvement of the SOCS genes in the yellow perch immune response and that differences among the sexes are evident and should be explored further.
Collapse
Affiliation(s)
- Brian S Shepherd
- USDA/ARS/School of Freshwater Sciences, University of Wisconsin at Milwaukee, 600 E. Greenfield Avenue, Milwaukee, WI 53204, USA.
| | | | | | | |
Collapse
|
26
|
Fish Suppressors of Cytokine Signaling (SOCS): Gene Discovery, Modulation of Expression and Function. JOURNAL OF SIGNAL TRANSDUCTION 2011; 2011:905813. [PMID: 22203897 PMCID: PMC3238403 DOI: 10.1155/2011/905813] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Accepted: 09/12/2011] [Indexed: 01/01/2023]
Abstract
The intracellular suppressors of cytokine signaling (SOCS) family members, including CISH and SOCS1 to 7 in mammals, are important regulators of cytokine signaling pathways. So far, the orthologues of all the eight mammalian SOCS members have been identified in fish, with several of them having multiple copies. Whilst fish CISH, SOCS3, and SOCS5 paralogues are possibly the result of the fish-specific whole genome duplication event, gene duplication or lineage-specific genome duplication may also contribute to some paralogues, as with the three trout SOCS2s and three zebrafish SOCS5s. Fish SOCS genes are broadly expressed and also show species-specific expression patterns. They can be upregulated by cytokines, such as IFN-γ, TNF-α, IL-1β, IL-6, and IL-21, by immune stimulants such as LPS, poly I:C, and PMA, as well as by viral, bacterial, and parasitic infections in member- and species-dependent manners. Initial functional studies demonstrate conserved mechanisms of fish SOCS action via JAK/STAT pathways.
Collapse
|
27
|
Zou J, Secombes CJ. Teleost fish interferons and their role in immunity. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2011; 35:1376-1387. [PMID: 21781984 DOI: 10.1016/j.dci.2011.07.001] [Citation(s) in RCA: 278] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Revised: 05/24/2011] [Accepted: 07/05/2011] [Indexed: 05/31/2023]
Abstract
Interferons (IFNs) are the hallmark of the vertebrate antiviral system. Two of the three IFN families identified in higher vertebrates are now known to be important for antiviral defence in teleost fish. Based on the cysteine patterns, the fish type I IFN family can be divided into two subfamilies, which possibly interact with distinct receptors for signalling. The fish type II IFN family consists of two members, IFN-γ with similar functions to mammalian IFN-γ and a teleost specific IFN-γ related (IFN-γrel) molecule whose functions are not fully elucidated. These two type II IFNs also appear to bind to distinct receptors to exert their functions. It has become clear that fish IFN responses are mediated by the host pattern recognition receptors and an array of transcription factors including the IFN regulatory factors, the Jak/Stat proteins and the suppressor of cytokine signalling (SOCS) molecules.
Collapse
Affiliation(s)
- Jun Zou
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK.
| | | |
Collapse
|
28
|
O'Sullivan LA, Noor SM, Trengove MC, Lewis RS, Liongue C, Sprigg NS, Nicholson SE, Ward AC. Suppressor of cytokine signaling 1 regulates embryonic myelopoiesis independently of its effects on T cell development. THE JOURNAL OF IMMUNOLOGY 2011; 186:4751-61. [PMID: 21421851 DOI: 10.4049/jimmunol.1000343] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Suppressor of cytokine signaling 1 (SOCS1) has been shown to play important roles in the immune system. It acts as a key negative regulator of signaling via receptors for IFNs and other cytokines controlling T cell development, as well as Toll receptor signaling in macrophages and other immune cells. To gain further insight into SOCS1, we have identified and characterized the zebrafish socs1 gene, which exhibited sequence and functional conservation with its mammalian counterparts. Initially maternally derived, the socs1 gene showed early zygotic expression in mesodermal structures, including the posterior intermediate cell mass, a site of primitive hematopoiesis. At later time points, expression was seen in a broad anterior domain, liver, notochord, and intersegmental vesicles. Morpholino-mediated knockdown of socs1 resulted in perturbation of specific hematopoietic populations prior to the commencement of lymphopoiesis, ruling out T cell involvement. However, socs1 knockdown also lead to a reduction in the size of the developing thymus later in embryogenesis. Zebrafish SOCS1 was shown to be able to interact with both zebrafish Jak2a and Stat5.1 in vitro and in vivo. These studies demonstrate a conserved role for SOCS1 in T cell development and suggest a novel T cell-independent function in embryonic myelopoiesis mediated, at least in part, via its effects on receptors using the Jak2-Stat5 pathway.
Collapse
Affiliation(s)
- Lynda A O'Sullivan
- School of Life and Environmental Sciences, Deakin University, Burwood, Victoria 3125, Australia
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Zhang M, Xiao ZZ, Sun L. Suppressor of cytokine signaling 3 inhibits head kidney macrophage activation and cytokine expression in Scophthalmus maximus. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2011; 35:174-181. [PMID: 20869394 DOI: 10.1016/j.dci.2010.09.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2010] [Revised: 09/13/2010] [Accepted: 09/15/2010] [Indexed: 05/29/2023]
Abstract
Proteins of the suppressor of cytokine signaling (SOCS) family function as inducible feedback inhibitors of cytokine signaling via the JAK/STAT pathway. Although several SOCS isoforms have been identified in teleosts, their immunological functions remain largely unknown. In this study, we identified in turbot Scophthalmus maximus a SOCS homologue (named SmSOCS3) of the mammalian SOCS3 type. The deduced amino acid sequence of SmSOCS3 contains 205 residues and shares extensive overall identities (60-82%) with those of known fish SOCS3. In silico analyses revealed that, like typical SOCS3, SmSOCS3 possesses a kinase inhibitor region (KIR), a Src homology 2 (SH2) domain, and a SOCS box domain. Under physiological conditions SmSOCS3 expression was detected, in increasing order, in blood, brain, heart, kidney, liver, spleen, muscle, and gill. Experimental infection of turbot with a bacterial pathogen induced significant SmSOCS3 expression in kidney, spleen, liver, and gill in time-dependent manners. Examination of SmSOCS3 expression in head kidney (HK) macrophages showed that SmSOCS3 transcription was significantly upregulated in the presence of purified recombinant TNF-α. On the other hand, SmSOCS3 overexpression in HK macrophages inhibited the transcription of TNF-α as well as IL-1β and CC-chemokine. In addition, SmSOCS3 overexpression significantly reduced macrophage respiratory burst activity, nitric oxide production, and bactericidal activity. Taken together, these results suggest that SmSOCS3 is a cytokine-inducible suppressor of pro-inflammatory cytokine signaling in HK macrophages and that regulated expression of SmSOCS3 is required for optimal innate immune response against bacterial infection.
Collapse
Affiliation(s)
- Min Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, PR China
| | | | | |
Collapse
|
30
|
Lin AF, Xiang LX, Wang QL, Dong WR, Gong YF, Shao JZ. The DC-SIGN of zebrafish: insights into the existence of a CD209 homologue in a lower vertebrate and its involvement in adaptive immunity. THE JOURNAL OF IMMUNOLOGY 2009; 183:7398-410. [PMID: 19890038 DOI: 10.4049/jimmunol.0803955] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Dendritic cell-specific ICAM-3-grabbing nonintegrin (DC-SIGN/CD209) has become hot topic in recent studies because of its important roles in immune responses and immune escape. CD209 has been well characterized in humans and several other mammals, but little documentation exists about it in lower vertebrates. This is the first report on the identification and functional characterization of a fish DC-SIGN/CD209 molecule. The zebrafish DC-SIGN/CD209 cDNA translates into 343 aa organized into three domains structurally conserved among vertebrates. An EPN motif essential for interacting with Ca(2+) and for recognizing mannose-containing motifs has been identified. Several conserved motifs crucial for internalization and signal transduction are also present within the cytoplasmic tail. Phylogenetic analysis supports the hypothesis that CD209 family members diverged from a common ancestor. The expression of DC-SIGN/CD209 in immune-related tissues can be significantly up-regulated by exogenous Ags and IL-4. This molecule associates with various APCs, including macrophages, B lymphocytes, and a possible dendritic cell-like (CD83(+)/CD80(+)CD209(+)) population. Functionally, T cell activation, Ab (IgM) production, and bacterial vaccination-elicited immunoprotection can be dramatically inhibited by a CD209 blockade after stimulation with keyhole limpet hemocyanin (KLH) in vivo or challenged with Aeromonas hydrophila, suggesting that DC-SIGN/CD209 in zebrafish is crucial for the initiation and development of adaptive immunity. Phagocytosis analysis showed that DC-SIGN/CD209 does not participate in the uptake of KLH Ag, suggesting that other mechanisms might exist that underlie DC-SIGN/CD209 involvement. We hope that the present study will contribute to a better cross-species understanding of the evolutionary history of the DC-SIGN/CD209 family.
Collapse
Affiliation(s)
- Ai-Fu Lin
- College of Life Sciences, Zhejiang University, Hangzhou 310058, Peoples Republic of China
| | | | | | | | | | | |
Collapse
|
31
|
Lai RH, Wang MJ, Yang SH, Chen JY. Genomic organization and functional characterization of the promoter for the human suppressor of cytokine signaling 6 gene. Gene 2009; 448:64-73. [PMID: 19716864 DOI: 10.1016/j.gene.2009.07.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2009] [Revised: 07/02/2009] [Accepted: 07/12/2009] [Indexed: 11/18/2022]
Abstract
In this study, we report the expression and genomic structure of the gene encoding human suppressor of cytokine signaling 6 (SOCS6), and the characterization of the functional promoter region. The human SOCS6 gene, spanning 40 kb on chromosome 18q22.2, is composed of two exons separated by an intron of 35 kb. Two transcripts are ubiquitously expressed, and both encode the full-length open reading frame of SOCS6. A primer extension assay revealed that the major transcription initiation site is located 469 bp upstream the ATG codon. Luciferase promoter analysis demonstrated that the 5'-flanking region is able to drive transcription, and the CpG-rich sequences near the transcription initiation site are important for the TATA-less SOCS6 promoter activity. Analogous to SOCS1 and SOCS3, which are down-regulated in several human cancers, SOCS6 is expressed at lower levels in carcinomas of stomach and colon. We demonstrated that hypermethylation of the SOCS6 promoter is one of the mechanisms for the epigenetic regulation of SOCS6 expression. Firstly, in vitro methylation of the reporter promoter plasmid significantly suppressed the promoter activity. Secondly, SOCS6 expression in vivo was enhanced by treating cells with a methyltransferase inhibitor. The SOCS6 gene from various species shares significant homology in amino acid sequences, transcription factor binding motifs in promoter regions and the two-exon genomic structure, suggesting that the SOCS6 gene is highly conserved.
Collapse
Affiliation(s)
- Rai-Hua Lai
- Institute of Pharmacology, National Yang-Ming University, Taipei, Taiwan, ROC
| | | | | | | |
Collapse
|
32
|
Carradice D, Lieschke GJ. Zebrafish in hematology: sushi or science? Blood 2008; 111:3331-42. [PMID: 18182572 PMCID: PMC2275003 DOI: 10.1182/blood-2007-10-052761] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2007] [Accepted: 12/20/2007] [Indexed: 12/15/2022] Open
Abstract
After a decade of the "modern era" of zebrafish hematology research, what have been their major contributions to hematology and what challenges does the model face? This review argues that, in hematology, zebrafish have demonstrated their suitability, are proving their utility, have supplied timely and novel discoveries, and are poised for further significant contributions. It presents an overview of the anatomy, physiology, and genetics of zebrafish hematopoiesis underpinning their use in hematology research. Whereas reverse genetic techniques enable functional studies of particular genes of interest, forward genetics remains zebrafish's particular strength. Mutants with diverse and interesting hematopoietic defects are emerging from multiple genetic screens. Some mutants model hereditary blood diseases, occasionally leading to disease genes first; others provide insights into developmental hematology. Models of malignant hematologic disorders provide tools for drug-target and pharmaceutics discovery. Numerous transgenic zebrafish with fluorescently marked blood cells enable live-cell imaging of inflammatory responses and host-pathogen interactions previously inaccessible to direct observation in vivo, revealing unexpected aspects of leukocyte behavior. Zebrafish disease models almost uniquely provide a basis for efficient whole animal chemical library screens for new therapeutics. Despite some limitations and challenges, their successes and discovery potential mean that zebrafish are here to stay in hematology research.
Collapse
Affiliation(s)
- Duncan Carradice
- Walter and Eliza Hall Institute of Medical Reserch, Department of Medical Biology, University of Melbourne, and Department of Clinical Haematology and Medical Oncology, Royal Melbourne Hospital, Parkville, Australia
| | | |
Collapse
|
33
|
Global identification and comparative analysis of SOCS genes in fish: Insights into the molecular evolution of SOCS family. Mol Immunol 2008; 45:1258-68. [DOI: 10.1016/j.molimm.2007.09.015] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2007] [Revised: 09/08/2007] [Accepted: 09/15/2007] [Indexed: 11/21/2022]
|
34
|
Wang T, Secombes CJ. Rainbow trout suppressor of cytokine signalling (SOCS)-1, 2 and 3: Molecular identification, expression and modulation. Mol Immunol 2008; 45:1449-57. [DOI: 10.1016/j.molimm.2007.08.016] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2007] [Revised: 08/24/2007] [Accepted: 08/29/2007] [Indexed: 11/30/2022]
|