1
|
Venkatachalam P, Muthu M, Gopal J. Reviewing the audacity of elixirs of inflammatory bowel disease from mushroom β-glucans: The solved and unresolved. Carbohydr Polym 2025; 348:122832. [PMID: 39562106 DOI: 10.1016/j.carbpol.2024.122832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/01/2024] [Accepted: 10/03/2024] [Indexed: 11/21/2024]
Abstract
BACKGROUND Mushrooms are known as the elixirs of life, they are packed with various bioactive compounds that make them not only tasty but also healthy. Thus, they not just fall within the category of nutritional foods, but also functional foods. When medicinal bioactive components are sought after from every other available resource, these natural reservoirs are easily accessible therapeutic sources. Of the various bioactive that mushrooms have to offer, β-glucans are the most enriching. METHODS β-glucans are available in other sources as well, but their relative abundance is higher in mushrooms. Amidst the cascade of biological benefits from β-glucans, anti-inflammatory benefits are highly promising. In this present review, the anti-inflammatory properties of mushroom β-glucans have been discussed and its specific contributions against inflammatory bowel disease have been reviewed. DISCUSSION What is known regarding the modulus operandi of β-glucans against inflammatory bowel disease has been summarized and the gaps and lapses in the current understanding highlighted. This is the first state-of-the-art review that presents a comprehensive executive summary and discussion in this subject area.
Collapse
Affiliation(s)
- Prasanth Venkatachalam
- Department of Research and Innovation, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai 602105, Tamil Nadu, India
| | - Manikandan Muthu
- Department of Research and Innovation, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai 602105, Tamil Nadu, India
| | - Judy Gopal
- Department of Research and Innovation, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai 602105, Tamil Nadu, India.
| |
Collapse
|
2
|
Zhang Y, Zhang T, Miao M. Semi-rational design in simultaneous improvement of thermostability and activity of β-1,3-glucanase from Alkalihalobacillus clausii KSMK16. Int J Biol Macromol 2024; 283:137779. [PMID: 39557250 DOI: 10.1016/j.ijbiomac.2024.137779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 11/12/2024] [Accepted: 11/15/2024] [Indexed: 11/20/2024]
Abstract
Endo-β-1,3-glucanase (β-1,3-GA) is a key enzyme capable of acting on the β-1,3-glycosidic bond of β-1,3-glucan, resulting in the production of β-1,3-gluco-oligosaccharides with higher water solubility. Higher temperatures are beneficial for curdlan hydrolysis; however, low enzymatic activity and thermal stability limit their applicability. In this study, a mutant library of Endo-β-1,3-glucanase (AC-GA) derived from Alkalihalobacillus clausii KSM-K16 was constructed by a semi-rational design using amino-acid-based multiple sequence alignment and protein structure-based computer-aided engineering. The best combination mutant (S52T/M120L) was screened through ordered recombination mutations, which showed a 24.88 % increase in specific enzyme activity over the wild-type. The melting temperature (Tm) value, an enzyme protein denaturation temperature, was raised to 82.99 °C from 78.60 of the wild type. In comparison, the Km for hydrolysis of curdlan by S52T/M120L was reduced by 12.1 %, while the kcat was increased by 59.39 %, thus leading to a higher catalytic efficiency (kcat/Km, 227.73 vs 125.46 mL·s-1·mg-1). Molecular dynamics (MD) simulations showed that mutations resulted in a reduction in the overall flexibility of the enzyme, an increase in rigidity, and a more stable structure. An increase in the hydrophobic network at the entrance of the substrate increases the accessibility of the substrate to the enzyme, resulting in increased enzyme activity. High-efficiency mutants have potential industrial applications in the enzymatic preparation of β-1,3-gluco-oligosaccharides.
Collapse
Affiliation(s)
- Yiling Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Tao Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Ming Miao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Science and Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
3
|
Wang Y, Xie T, Ma C, Zhao Y, Li J, Li Z, Ye X. Biochemical characterization and antifungal activity of a recombinant β-1,3-glucanase FlGluA from Flavobacterium sp. NAU1659. Protein Expr Purif 2024; 224:106563. [PMID: 39122061 DOI: 10.1016/j.pep.2024.106563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/07/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024]
Abstract
β-1,3-glucanases can degrade β-1,3-glucoside bonds in β-glucan which is the main cell-wall component of most of fungi, and have the crucial application potential in plant protection and food processing. Herein, a β-1,3-glucanase FlGluA from Flavobacterium sp. NAU1659 composed of 333 amino acids with a predicted molecular mass of 36.6 kDa was expressed in Escherichia coli BL21, purified and characterized. The deduced amino acid sequence of FlGluA showed the high identity with the β-1,3-glucanase belonging to glycoside hydrolase (GH) family 16. Enzymological characterization indicated FlGluA had the highest activity on zymosan A, with a specific activity of 3.87 U/mg, followed by curdlan (1.16 U/mg) and pachymaran (0.88 U/mg). It exhibited optimal catalytic activity at the pH 5.0 and 40 °C, and was stable when placed at 4 °C for 12 h in the range of pH 3.0-8.0 or at a temperature below 50 °C for 3 h. Its catalytic activity was enhanced by approximately 36 % in the presence of 1 mM Cr3+. The detection of thin-layer chromatography and mass spectrometry showed FlGluA hydrolyzed zymosan A mainly to glucose and disaccharide, and trace amounts of tetrasaccharide and pentasaccharide, however, it had no action on laminaribiose, indicating its endo-β-1,3-glucanase activity. The mycelium growth of F. oxysporum treated by FlGluA was inhibited, with approximately 37 % of inhibition rate, revealing the potential antifungal activity of the enzyme. These results revealed the hydrolytic properties and biocontrol activity of FlGluA, laying a crucial foundation for its potential application in agriculture and industry.
Collapse
Affiliation(s)
- Yanxin Wang
- College of Life Sciences of Liaocheng University, 252000, Liaocheng, PR China; Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences of Nanjing Agricultural University, 210095, Nanjing, PR China.
| | - Tingting Xie
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences of Nanjing Agricultural University, 210095, Nanjing, PR China
| | - Chenlong Ma
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences of Nanjing Agricultural University, 210095, Nanjing, PR China
| | - Yujie Zhao
- College of Life Sciences of Liaocheng University, 252000, Liaocheng, PR China
| | - Jingchen Li
- College of Life Sciences of Liaocheng University, 252000, Liaocheng, PR China
| | - Zhendong Li
- College of Life Sciences of Liaocheng University, 252000, Liaocheng, PR China
| | - Xianfeng Ye
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences of Nanjing Agricultural University, 210095, Nanjing, PR China.
| |
Collapse
|
4
|
Gao Y, Feng X, Zhang R, Xiao J, Huang Q, Li J, Shi T. Molecular dynamics simulation: Effect of sulfation on the structure of curdlan triple helix in aqueous solution. Int J Biol Macromol 2024; 282:137119. [PMID: 39505189 DOI: 10.1016/j.ijbiomac.2024.137119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 10/02/2024] [Accepted: 10/29/2024] [Indexed: 11/08/2024]
Abstract
In this work, by using molecular dynamics simulations, we elucidate the effect of sulfation substitution on the stability of the curdlan triple helix structure. The simulation results indicate that the stability of the triple helix structure is significantly influenced by the sites of sulfation substitution. The substitution at the O2 site directly disrupts the hydrogen bonding network between the triple helix chains, significantly destroying the triple helix conformation. When substitutions occur at both the O4 and O6 sites simultaneously (O4,6), the electrostatic repulsion between numerous sulfate groups introduces considerable energy perturbation to the triple helix, leading to alterations in the glucan chain conformation and consequent destabilization of the triple helix structure. Meanwhile, we find that even if the sulfation substitution is performed at the same substitution sites, the difference in the degree of substitution also has an impact on the triple helix stability. The resistance of the triple helix to sulfation substitution at O2 is weak, and low degree of substitution can lead to the unwinding of the triple helix. However, it demonstrates higher resistance to substitution at O4,6 where only higher degree of substitution results in triple helix destabilization.
Collapse
Affiliation(s)
- Yufu Gao
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Xuan Feng
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 62 Nanyang Drive, 637459 Singapore, Singapore.
| | - Ran Zhang
- BASF Advanced Chemicals Co. Ltd, No. 300, Jiangxinsha Road, Pudong, Shanghai 200137, China
| | - Jie Xiao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Qingrong Huang
- Rutgers State Univ, Dept Food Sci, 65 Dudley Rd, New Brunswick, NJ 08901, USA
| | - Jiawei Li
- Department of Mathematics & Statistics, Boston University, 665 Commonwealth Avenue, Boston, MA 02215, USA
| | - Tongfei Shi
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China.
| |
Collapse
|
5
|
van Boerdonk S, Saake P, Wanke A, Neumann U, Zuccaro A. β-Glucan-binding proteins are key modulators of immunity and symbiosis in mutualistic plant-microbe interactions. CURRENT OPINION IN PLANT BIOLOGY 2024; 81:102610. [PMID: 39106787 DOI: 10.1016/j.pbi.2024.102610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/10/2024] [Accepted: 07/12/2024] [Indexed: 08/09/2024]
Abstract
In order to discriminate between detrimental, commensal, and beneficial microbes, plants rely on polysaccharides such as β-glucans, which are integral components of microbial and plant cell walls. The conversion of cell wall-associated β-glucan polymers into a specific outcome that affects plant-microbe interactions is mediated by hydrolytic and non-hydrolytic β-glucan-binding proteins. These proteins play crucial roles during microbial colonization: they influence the composition and resilience of host and microbial cell walls, regulate the homeostasis of apoplastic concentrations of β-glucan oligomers, and mediate β-glucan perception and signaling. This review outlines the dual roles of β-glucans and their binding proteins in plant immunity and symbiosis, highlighting recent discoveries on the role of β-glucan-binding proteins as modulators of immunity and as symbiosis receptors involved in the fine-tuning of microbial accommodation.
Collapse
Affiliation(s)
- Sarah van Boerdonk
- Institute for Plant Sciences, University of Cologne, Cologne, Germany; Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Pia Saake
- Institute for Plant Sciences, University of Cologne, Cologne, Germany; Cluster of Excellence on Plant Sciences (CEPLAS), Cologne, Germany
| | - Alan Wanke
- Sainsbury Laboratory, University of Cambridge, Cambridge, United Kingdom
| | - Ulla Neumann
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Alga Zuccaro
- Institute for Plant Sciences, University of Cologne, Cologne, Germany; Cluster of Excellence on Plant Sciences (CEPLAS), Cologne, Germany.
| |
Collapse
|
6
|
Zhang Y, Zhang Y, Jian M, Pei Y, Liu J, Zheng X, Tang K. Sustained-release, antibacterial, adhesive gelatin composite hydrogel with AgNPs double-capped with curdlan derivatives. Int J Biol Macromol 2024; 277:134222. [PMID: 39074697 DOI: 10.1016/j.ijbiomac.2024.134222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/30/2024] [Accepted: 07/26/2024] [Indexed: 07/31/2024]
Abstract
In this work, carboxymethylated curdlan (CMCD) was utilized as a capping and stabilizing agent for the green synthesis of silver nanoparticles. Subsequently, quaternized curdlan (QCD) was introduced as the second capping layer through electrostatic attraction, leading to the preparation of double-capped silver nanoparticles (AgNPs@CQ). The successful synthesis of silver nanoparticles was characterized using UV-vis, FTIR, XRD, TEM, and DLS. AgNPs@CQ were incorporated into gelatin and a AgNPs@CQ/Gel composite hydrogel was obtained. The incorporation of AgNPs@CQ imparts excellent antibacterial properties to the composite hydrogel, thereby enhancing its antimicrobial efficacy. The presence of double-capping layers significantly retards the release rate of silver, contributing to prolonged antimicrobial activity. The MTT and live/dead fluorescence staining results demonstrate that the gelatin hydrogel incorporating double-capped AgNPs exhibits enhanced cell viability compared to the one incorporating single-capped AgNPs. Additionally, the composite hydrogel exhibits remarkable mechanical strength and adhesive performance. The AgNPs@CQ/Gel composite hydrogel demonstrates a cost-effective and facile preparation, showing significant potential in the field of dressings.
Collapse
Affiliation(s)
- Yunlai Zhang
- School of Materials Science and Engineering, Zhengzhou University, Henan 450000, China
| | - Yan Zhang
- School of Materials Science and Engineering, Zhengzhou University, Henan 450000, China
| | - Mengqi Jian
- School of Materials Science and Engineering, Zhengzhou University, Henan 450000, China
| | - Ying Pei
- School of Materials Science and Engineering, Zhengzhou University, Henan 450000, China
| | - Jie Liu
- School of Materials Science and Engineering, Zhengzhou University, Henan 450000, China.
| | - Xuejing Zheng
- School of Materials Science and Engineering, Zhengzhou University, Henan 450000, China.
| | - Keyong Tang
- School of Materials Science and Engineering, Zhengzhou University, Henan 450000, China
| |
Collapse
|
7
|
Li H, Niu L, Wang J, Chang Q, Zhang S, Wang J, Zeng J, Gao M, Ge J. Strategy against super-resistant bacteria: Curdlan-induced trained immunity combined with multi-epitope subunit vaccine. Int J Biol Macromol 2024; 280:135663. [PMID: 39284466 DOI: 10.1016/j.ijbiomac.2024.135663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 09/03/2024] [Accepted: 09/12/2024] [Indexed: 09/20/2024]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is rapidly spreading worldwide, emerging as a leading cause of bacterial infections in healthcare and community settings. This poses serious risks to human health. The shortage of novel antibiotics and the absence of effective vaccines make MRSA particularly challenging to treat. Existing vaccine development strategies often fail to provide early protection against infections, highlighting the urgent need for solutions. Herein, we propose a novel strategy combining trained immunity with a multi-epitope subunit vaccine to combat MRSA infections. We comprehensively evaluated the trained immune phenotypes induced by β-glucan from barley and curdlan. Macrophages trained with curdlan exhibited a more balanced inflammatory response compared to β-glucan from barley, expressing higher levels of IL-1β, IFN-β, TGF-β, and CCL2 upon secondary stimulation. Furthermore, curdlan-induced trained immunity rapidly provided excellent protection against S. aureus infection in mice. RNA-sequencing analysis revealed that curdlan modulates the Wnt signaling pathway in macrophages, resolves inflammation, and promotes tissue repair. When combined with one or two doses of S. aureus multivalent epitope antigen against MRSA infection, curdlan-induced trained immunity enhanced early protection and promoted recovery. Our study demonstrates the feasibility of combining trained immunity with vaccine protection against MRSA, providing a strategy against multi-drug resistant bacteria.
Collapse
Affiliation(s)
- Hai Li
- Heilongjiang Provincial Key Laboratory of Zoonosis, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Lingdi Niu
- Heilongjiang Provincial Key Laboratory of Zoonosis, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Jiaqing Wang
- Heilongjiang Provincial Key Laboratory of Zoonosis, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Qingru Chang
- Heilongjiang Provincial Key Laboratory of Zoonosis, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Shuhe Zhang
- Heilongjiang Provincial Key Laboratory of Zoonosis, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Jiaqi Wang
- Heilongjiang Provincial Key Laboratory of Zoonosis, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Jiankai Zeng
- Heilongjiang Provincial Key Laboratory of Zoonosis, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Mingchun Gao
- Heilongjiang Provincial Key Laboratory of Zoonosis, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China.
| | - Junwei Ge
- Heilongjiang Provincial Key Laboratory of Zoonosis, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
8
|
Adekunle A, Ukaigwe S, Bezerra Dos Santos A, Iorhemen OT. Potential for curdlan recovery from aerobic granular sludge wastewater treatment systems - A review. CHEMOSPHERE 2024; 362:142504. [PMID: 38825243 DOI: 10.1016/j.chemosphere.2024.142504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/29/2024] [Accepted: 05/31/2024] [Indexed: 06/04/2024]
Abstract
The aerobic granular sludge (AGS) biotechnology has been explored for wastewater treatment for over two decades. AGS is gaining increased interest due to its enhanced treatment performance ability and the potential for resource recovery from AGS-based wastewater treatment systems. Resource recovery from AGS is a promising approach to sustainable wastewater treatment and attaining a circular economy in the wastewater management industry. Currently, research is at an advanced stage on recovering value-added resources such as phosphorus, polyhydroxyalkanoates, alginate-like exopolysaccharides, and tryptophan from waste aerobic granules. Recently, other value-added resources, including curdlan, have been identified in the aerobic granule matrix, and this may increase the sustainability of biotechnology in the wastewater industry. This paper provides an overview of AGS resource recovery potential. In particular, the potential for enhanced curdlan biosynthesis in the granule matrix and its recovery from AGS wastewater treatment systems is outlined.
Collapse
Affiliation(s)
- Adedoyin Adekunle
- School of Engineering, University of Northern British Columbia, 3333 University Way, Prince George, BC, V2N 4Z9, Canada
| | - Sandra Ukaigwe
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - André Bezerra Dos Santos
- Department of Hydraulic and Environmental Engineering, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Oliver Terna Iorhemen
- School of Engineering, University of Northern British Columbia, 3333 University Way, Prince George, BC, V2N 4Z9, Canada.
| |
Collapse
|
9
|
Zhong C, Nidetzky B. Bottom-Up Synthesized Glucan Materials: Opportunities from Applied Biocatalysis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2400436. [PMID: 38514194 DOI: 10.1002/adma.202400436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/05/2024] [Indexed: 03/23/2024]
Abstract
Linear d-glucans are natural polysaccharides of simple chemical structure. They are comprised of d-glucosyl units linked by a single type of glycosidic bond. Noncovalent interactions within, and between, the d-glucan chains give rise to a broad variety of macromolecular nanostructures that can assemble into crystalline-organized materials of tunable morphology. Structure design and functionalization of d-glucans for diverse material applications largely relies on top-down processing and chemical derivatization of naturally derived starting materials. The top-down approach encounters critical limitations in efficiency, selectivity, and flexibility. Bottom-up approaches of d-glucan synthesis offer different, and often more precise, ways of polymer structure control and provide means of functional diversification widely inaccessible to top-down routes of polysaccharide material processing. Here the natural and engineered enzymes (glycosyltransferases, glycoside hydrolases and phosphorylases, glycosynthases) for d-glucan polymerization are described and the use of applied biocatalysis for the bottom-up assembly of specific d-glucan structures is shown. Advanced material applications of the resulting polymeric products are further shown and their important role in the development of sustainable macromolecular materials in a bio-based circular economy is discussed.
Collapse
Affiliation(s)
- Chao Zhong
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Petersgasse 12, Graz, 8010, Austria
| | - Bernd Nidetzky
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Petersgasse 12, Graz, 8010, Austria
- Austrian Centre of Industrial Biotechnology (acib), Krenngasse 37, Graz, 8010, Austria
| |
Collapse
|
10
|
Suflet DM, Popescu I, Stanciu MC, Rimbu CM. Antimicrobial Hydrogels Based on Cationic Curdlan Derivatives for Biomedical Applications. Gels 2024; 10:424. [PMID: 39057447 PMCID: PMC11276469 DOI: 10.3390/gels10070424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/20/2024] [Accepted: 06/24/2024] [Indexed: 07/28/2024] Open
Abstract
Hydrogels based on biocompatible polysaccharides with biological activity that can slowly release an active principle at the wound site represent promising alternatives to traditional wound dressing materials. In this respect, new hydrogels based on curdlan derivative with 2-hydroxypropyl dimethyl octyl ammonium groups (QCurd) and native curdlan (Curd) were obtained at room temperature by covalent cross-linking using a diepoxy cross-linking agent. The chemical structure of the QCurd/Curd hydrogels was investigated by Fourier transform infrared spectroscopy (FTIR) spectroscopy. Scanning electron microscopy (SEM) revealed well-defined regulated pores with an average diameter between 50 and 75 μm, and hydrophobic micro-domains of about 5 μm on the pore walls. The high swelling rate (21-24 gwater/ghydrogel) and low elastic modulus values (7-14 kPa) make them ideal for medical applications as wound dressings. To evaluate the possible use of the curdlan-based hydrogels as active dressings, the loading capacity and release kinetics of diclofenac, taken as a model drug, were studied under simulated physiological skin conditions. Several mathematical models have been applied to evaluate drug transport processes and to calculate the diffusion coefficients. The prepared QCurd/Curd hydrogels were found to have good antibacterial properties, showing a bacteriostatic effect after 48 h against S. aureus, MRSA, E. coli, and P. aeruginosa. The retarded drug delivery and antimicrobial properties of the new hydrogels support our hypothesis that they are candidates for the manufacture of wound dressings.
Collapse
Affiliation(s)
- Dana M. Suflet
- Petru Poni Institute of Macromolecular Chemistry, Aleea Grigore Ghica Voda 41A, 700487 Iasi, Romania; (I.P.); (M.-C.S.)
| | - Irina Popescu
- Petru Poni Institute of Macromolecular Chemistry, Aleea Grigore Ghica Voda 41A, 700487 Iasi, Romania; (I.P.); (M.-C.S.)
| | - Magdalena-Cristina Stanciu
- Petru Poni Institute of Macromolecular Chemistry, Aleea Grigore Ghica Voda 41A, 700487 Iasi, Romania; (I.P.); (M.-C.S.)
| | - Cristina Mihaela Rimbu
- Faculty of Veterinary Medicine, “Ion Ionescu de la Brad” University of Life Sciences, Mihail Sadoveanu Alley 8, 707027 Iasi, Romania;
| |
Collapse
|
11
|
Xue Y, Yu C, Ouyang H, Huang J, Kang X. Uncovering the Molecular Composition and Architecture of the Bacillus subtilis Biofilm via Solid-State NMR Spectroscopy. J Am Chem Soc 2024; 146:11906-11923. [PMID: 38629727 DOI: 10.1021/jacs.4c00889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
The complex and dynamic compositions of biofilms, along with their sophisticated structural assembly mechanisms, endow them with exceptional capabilities to thrive in diverse conditions that are typically unfavorable for individual cells. Characterizing biofilms in their native state is significantly challenging due to their intrinsic complexities and the limited availability of noninvasive techniques. Here, we utilized solid-state nuclear magnetic resonance (NMR) spectroscopy to analyze Bacillus subtilis biofilms in-depth. Our data uncover a dynamically distinct organization within the biofilm: a dominant, hydrophilic, and mobile framework interspersed with minor, rigid cores of limited water accessibility. In these heterogeneous rigid cores, the major components are largely self-assembled. TasA fibers, the most robust elements, further provide a degree of mechanical support for the cell aggregates and some lipid vesicles. Notably, rigid cell aggregates can persist even without the major extracellular polymeric substance (EPS) polymers, although this leads to slight variations in their rigidity and water accessibility. Exopolysaccharides are exclusively present in the mobile domain, playing a pivotal role in its water retention property. Specifically, all water molecules are tightly bound within the biofilm matrix. These findings reveal a dual-layered defensive strategy within the biofilm: a diffusion barrier through limited water mobility in the mobile phase and a physical barrier posed by limited water accessibility in the rigid phase. Complementing these discoveries, our comprehensive, in situ compositional analysis is not only essential for delineating the sophisticated biofilm architecture but also reveals the presence of alternative genetic mechanisms for synthesizing exopolysaccharides beyond the known pathway.
Collapse
Affiliation(s)
- Yi Xue
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Chenjie Yu
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Han Ouyang
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Jiaofang Huang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xue Kang
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, Zhejiang 315211, China
| |
Collapse
|
12
|
Cifuente JO, Colleoni C, Kalscheuer R, Guerin ME. Architecture, Function, Regulation, and Evolution of α-Glucans Metabolic Enzymes in Prokaryotes. Chem Rev 2024; 124:4863-4934. [PMID: 38606812 PMCID: PMC11046441 DOI: 10.1021/acs.chemrev.3c00811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
Bacteria have acquired sophisticated mechanisms for assembling and disassembling polysaccharides of different chemistry. α-d-Glucose homopolysaccharides, so-called α-glucans, are the most widespread polymers in nature being key components of microorganisms. Glycogen functions as an intracellular energy storage while some bacteria also produce extracellular assorted α-glucans. The classical bacterial glycogen metabolic pathway comprises the action of ADP-glucose pyrophosphorylase and glycogen synthase, whereas extracellular α-glucans are mostly related to peripheral enzymes dependent on sucrose. An alternative pathway of glycogen biosynthesis, operating via a maltose 1-phosphate polymerizing enzyme, displays an essential wiring with the trehalose metabolism to interconvert disaccharides into polysaccharides. Furthermore, some bacteria show a connection of intracellular glycogen metabolism with the genesis of extracellular capsular α-glucans, revealing a relationship between the storage and structural function of these compounds. Altogether, the current picture shows that bacteria have evolved an intricate α-glucan metabolism that ultimately relies on the evolution of a specific enzymatic machinery. The structural landscape of these enzymes exposes a limited number of core catalytic folds handling many different chemical reactions. In this Review, we present a rationale to explain how the chemical diversity of α-glucans emerged from these systems, highlighting the underlying structural evolution of the enzymes driving α-glucan bacterial metabolism.
Collapse
Affiliation(s)
- Javier O. Cifuente
- Instituto
Biofisika (UPV/EHU, CSIC), University of
the Basque Country, E-48940 Leioa, Spain
| | - Christophe Colleoni
- University
of Lille, CNRS, UMR8576-UGSF -Unité de Glycobiologie Structurale
et Fonctionnelle, F-59000 Lille, France
| | - Rainer Kalscheuer
- Institute
of Pharmaceutical Biology and Biotechnology, Heinrich Heine University, 40225 Dusseldorf, Germany
| | - Marcelo E. Guerin
- Structural
Glycobiology Laboratory, Department of Structural and Molecular Biology, Molecular Biology Institute of Barcelona (IBMB), Spanish
National Research Council (CSIC), Barcelona Science Park, c/Baldiri Reixac 4-8, Tower R, 08028 Barcelona, Catalonia, Spain
| |
Collapse
|
13
|
Noorbakhsh Varnosfaderani SM, Ebrahimzadeh F, Akbari Oryani M, Khalili S, Almasi F, Mosaddeghi Heris R, Payandeh Z, Li C, Nabi Afjadi M, Alagheband Bahrami A. Potential promising anticancer applications of β-glucans: a review. Biosci Rep 2024; 44:BSR20231686. [PMID: 38088444 PMCID: PMC10776902 DOI: 10.1042/bsr20231686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/20/2023] [Accepted: 12/13/2023] [Indexed: 01/10/2024] Open
Abstract
β-Glucans are valuable functional polysaccharides distributed in nature, especially in the cell walls of fungi, yeasts, bacteria, and cereals. The unique features of β-glucans, such as water solubility, viscosity, molecular weight, and so on, have rendered them to be broadly applied in various food systems as well as in medicine to improve human health. Moreover, inhibition of cancer development could be achieved by an increase in immune system activity via β-glucans. β-glucans, which are part of a class of naturally occurring substances known as biological response modifiers (BRMs), have also shown evidence of being anti-tumorogenic, anti-cytotoxic, and anti-mutagenic. These properties make them attractive candidates for use as pharmaceutical health promoters. Along these lines, they could activate particular proteins or receptors, like lactosylceramide (LacCer), Dickin-1, complement receptor 3 (CR3), scavenge receptors (SR), and the toll-like receptor (TLR). This would cause the release of cytokines, which would then activate other antitumor immune cells, like macrophages stimulating neutrophils and monocytes. These cells are biased toward pro-inflammatory cytokine synthesis and phagocytosis enhancing the elicited immunological responses. So, to consider the importance of β-glucans, the present review introduces the structure characteristics, biological activity, and antitumor functions of fungal β-glucans, as well as their application.
Collapse
Affiliation(s)
| | - Farnoosh Ebrahimzadeh
- Department of Internal Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahsa Akbari Oryani
- Department of Pathology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saeed Khalili
- Department of Biology Sciences, Shahid Rajaee Teacher Training University, Tehran, Iran
| | - Faezeh Almasi
- Pharmaceutical Biotechnology Lab, Department of Microbial Biotechnology, School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran, Iran
| | | | - Zahra Payandeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Chen Li
- Department of Biology, Chemistry, Pharmacy, Free University of Berlin, Berlin, Germany
| | - Mohsen Nabi Afjadi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Armina Alagheband Bahrami
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran
| |
Collapse
|
14
|
McIntosh M. Genetic Engineering of Agrobacterium Increases Curdlan Production through Increased Expression of the crdASC Genes. Microorganisms 2023; 12:55. [PMID: 38257882 PMCID: PMC10819609 DOI: 10.3390/microorganisms12010055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/26/2023] [Accepted: 12/26/2023] [Indexed: 01/24/2024] Open
Abstract
Curdlan is a water-insoluble polymer that has structure and gelling properties that are useful in a wide variety of applications such as in medicine, cosmetics, packaging and the food and building industries. The capacity to produce curdlan has been detected in certain soil-dwelling bacteria of various phyla, although the role of curdlan in their survival remains unclear. One of the major limitations of the extensive use of curdlan in industry is the high cost of production during fermentation, partly because production involves specific nutritional requirements such as nitrogen limitation. Engineering of the industrially relevant curdlan-producing strain Agrobacterium sp. ATTC31749 is a promising approach that could decrease the cost of production. Here, during investigations on curdlan production, it was found that curdlan was deposited as a capsule. Curiously, only a part of the bacterial population produced a curdlan capsule. This heterogeneous distribution appeared to be due to the activity of Pcrd, the native promoter responsible for the expression of the crdASC biosynthetic gene cluster. To improve curdlan production, Pcrd was replaced by a promoter (PphaP) from another Alphaproteobacterium, Rhodobacter sphaeroides. Compared to Pcrd, PphaP was stronger and only mildly affected by nitrogen levels. Consequently, PphaP dramatically boosted crdASC gene expression and curdlan production. Importantly, the genetic modification overrode the strict nitrogen depletion regulation that presents a hindrance for maximal curdlan production and from nitrogen rich, complex media, demonstrating excellent commercial potential for achieving high yields using cheap substrates under relaxed fermentation conditions.
Collapse
Affiliation(s)
- Matthew McIntosh
- Institute of Microbiology and Molecular Biology, IFZ, Justus-Liebig-Universität, 35292 Giessen, Germany
| |
Collapse
|
15
|
Elgendy DI, Othman AA, Eid MM, El-Kowrany SI, Sallam FA, Mohamed DA, Zineldeen DH. The impact of β-glucan on the therapeutic outcome of experimental Trichinella spiralis infection. Parasitol Res 2023; 122:2807-2818. [PMID: 37737322 PMCID: PMC10667415 DOI: 10.1007/s00436-023-07964-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 09/02/2023] [Indexed: 09/23/2023]
Abstract
Trichinellosis is a cosmopolitan zoonosis that is caused mainly by Trichinella spiralis infection. The human disease ranges from mild to severe and fatality may occur. The treatment of trichinellosis still presents a challenge for physicians. Anti-inflammatory drugs are usually added to antiparasitic agents to alleviate untoward immuno-inflammatory responses and possible tissue damage but they are not without adverse effects. Thus, there is a need for the discovery of safe and effective compounds with anti-inflammatory properties. This study aimed to evaluate the activity of β-glucan during enteral and muscular phases of experimental T. spiralis infection as well as its therapeutic potential as an adjuvant to albendazole in treating trichinellosis. For this aim, mice were infected with T. spiralis and divided into the following groups: early and late β-glucan treatment, albendazole treatment, and combined treatment groups. Infected mice were subjected to assessment of parasite burden, immunological markers, and histopathological changes in the small intestines and muscles. Immunohistochemical evaluation of NF-κB expression in small intestinal and muscle tissues was carried out in order to investigate the mechanism of action of β-glucan. Interestingly, β-glucan potentiated the efficacy of albendazole as noted by the significant reduction of counts of muscle larvae. The inflammatory responses in the small intestine and skeletal muscles were mitigated with some characteristic qualitative changes. β-glucan also increased the expression of NF-κB in tissues which may account for some of its effects. In conclusion, β-glucan showed a multifaceted beneficial impact on the therapeutic outcome of Trichinella infection and can be regarded as a promising adjuvant in the treatment of trichinellosis.
Collapse
Affiliation(s)
- Dina I Elgendy
- Medical Parasitology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Ahmad A Othman
- Medical Parasitology Department, Faculty of Medicine, Tanta University, Tanta, Egypt.
| | - Mohamed M Eid
- Medical Parasitology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Samy I El-Kowrany
- Medical Parasitology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Fersan A Sallam
- Pathology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Dareen A Mohamed
- Pathology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Doaa H Zineldeen
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
- College of Medicine, Sulaiman AlRajhi University, 51942, Albukairiyah, Saudi Arabia
| |
Collapse
|
16
|
Takashima T, Komori N, Uechi K, Taira T. Characterization of an antifungal β-1,3-glucanase from Ficus microcarpa latex and comparison of plant and bacterial β-1,3-glucanases for fungal cell wall β-glucan degradation. PLANTA 2023; 258:116. [PMID: 37946063 DOI: 10.1007/s00425-023-04271-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 10/20/2023] [Indexed: 11/12/2023]
Abstract
MAIN CONCLUSION Each β-1,3-glucanase with antifungal activity or yeast lytic activity hydrolyzes different structures of β-1,3-glucans in the fungal cell wall, respectively. Plants express several glycoside hydrolases that target chitin and β-glucan in fungal cell walls and inhibit pathogenic fungal infection. An antifungal β-1,3-glucanase was purified from gazyumaru (Ficus microcarpa) latex, designated as GlxGluA, and the corresponding gene was cloned and expressed in Escherichia coli. The sequence shows that GlxGluA belongs to glycoside hydrolase family 17 (GH17). To investigate how GlxGluA acts to degrade fungal cell wall β-glucan, it was compared with β-1,3-glucanase with different substrate specificities. We obtained recombinant β-1,3-glucanase (designated as CcGluA), which belongs to GH64, from the bacterium Cellulosimicrobium cellulans. GlxGluA inhibited the growth of the filamentous fungus Trichoderma viride but was unable to lyse the yeast Saccharomyces cerevisiae. In contrast, CcGluA lysed yeast cells but had a negligible inhibitory effect on the growth of filamentous fungi. GlxGluA degraded the cell wall of T. viride better than CcGluA, whereas CcGluA degraded the cell wall of S. cerevisiae more efficiently than GlxGluA. These results suggest that the target substrates in fungal cell walls differ between GlxGluA (GH17 class I β-1,3-glucanase) and CcGluA (GH64 β-1,3-glucanase).
Collapse
Affiliation(s)
- Tomoya Takashima
- Department of Bioscience and Biotechnology, University of the Ryukyus, Okinawa, 903-0213, Japan
| | - Nao Komori
- Department of Bioscience and Biotechnology, University of the Ryukyus, Okinawa, 903-0213, Japan
| | - Keiko Uechi
- Department of Bioscience and Biotechnology, University of the Ryukyus, Okinawa, 903-0213, Japan
| | - Toki Taira
- Department of Bioscience and Biotechnology, University of the Ryukyus, Okinawa, 903-0213, Japan.
- Graduate School of Agricultural Science, Kagoshima University, Kagoshima, 890-8580, Japan.
| |
Collapse
|
17
|
Braian C, Karlsson L, Das J, Lerm M. Selected β-Glucans Act as Immune-Training Agents by Improving Anti-Mycobacterial Activity in Human Macrophages: A Pilot Study. J Innate Immun 2023; 15:751-764. [PMID: 37734337 PMCID: PMC10616672 DOI: 10.1159/000533873] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 08/28/2023] [Indexed: 09/23/2023] Open
Abstract
Epigenetic reprogramming of innate immune cells by β-glucan in a process called trained immunity leads to an enhanced host response to a secondary infection. β-Glucans are structural components of plants, algae, fungi, and bacteria and thus recognized as non-self by human macrophages. We selected the β-glucan curdlan from Alcaligenes faecalis, WGP dispersible from Saccharomyces cerevisiae, and β-glucan-rich culture supernatant of Alternaria and investigated whether they could produce trained immunity effects leading to an increased control of virulent Mycobacterium tuberculosis. We observed a significant M. tuberculosis growth reduction in macrophages trained with curdlan and Alternaria, which also correlated with increased IL-6 and IL-1β release. WGP dispersible-trained macrophages were stratified into "non-responders" and "responders," according to their ability to control M. tuberculosis, with "responders" producing higher IL-6 levels. The addition of neutrophils to infected macrophage cultures further enhanced macrophage control of virulent M. tuberculosis, but not in a stimuli-dependent manner. Pathway enrichment analysis of DNA methylome data also highlighted hypomethylation of genes in pathways associated with signaling and cellular reorganization and motility, and "responders" to WGP training were enriched in the interferon-gamma signaling pathway. This study adds evidence that certain β-glucans show promise as immune-training agents.
Collapse
Affiliation(s)
- Clara Braian
- Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Faculty of Medicine, Linköping University, Linköping, Sweden,
| | - Lovisa Karlsson
- Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Faculty of Medicine, Linköping University, Linköping, Sweden
| | - Jyotirmoy Das
- Bioinformatics, Core Facility, Cell Biology, Faculty of Medical and Health Sciences, Linköping University, Linköping, Sweden
- Department of Biomedical and Clinical Sciences, Clinical Genomics Linköping, SciLife Laboratory, Linköping University, Linköping, Sweden
| | - Maria Lerm
- Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Faculty of Medicine, Linköping University, Linköping, Sweden
- SciLifeLab, CBCS, Linköping University, Linköping, Sweden
| |
Collapse
|
18
|
Bourdon M, Lyczakowski JJ, Cresswell R, Amsbury S, Vilaplana F, Le Guen MJ, Follain N, Wightman R, Su C, Alatorre-Cobos F, Ritter M, Liszka A, Terrett OM, Yadav SR, Vatén A, Nieminen K, Eswaran G, Alonso-Serra J, Müller KH, Iuga D, Miskolczi PC, Kalmbach L, Otero S, Mähönen AP, Bhalerao R, Bulone V, Mansfield SD, Hill S, Burgert I, Beaugrand J, Benitez-Alfonso Y, Dupree R, Dupree P, Helariutta Y. Ectopic callose deposition into woody biomass modulates the nano-architecture of macrofibrils. NATURE PLANTS 2023; 9:1530-1546. [PMID: 37666966 PMCID: PMC10505557 DOI: 10.1038/s41477-023-01459-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 06/14/2023] [Indexed: 09/06/2023]
Abstract
Plant biomass plays an increasingly important role in the circular bioeconomy, replacing non-renewable fossil resources. Genetic engineering of this lignocellulosic biomass could benefit biorefinery transformation chains by lowering economic and technological barriers to industrial processing. However, previous efforts have mostly targeted the major constituents of woody biomass: cellulose, hemicellulose and lignin. Here we report the engineering of wood structure through the introduction of callose, a polysaccharide novel to most secondary cell walls. Our multiscale analysis of genetically engineered poplar trees shows that callose deposition modulates cell wall porosity, water and lignin contents and increases the lignin-cellulose distance, ultimately resulting in substantially decreased biomass recalcitrance. We provide a model of the wood cell wall nano-architecture engineered to accommodate the hydrated callose inclusions. Ectopic polymer introduction into biomass manifests in new physico-chemical properties and offers new avenues when considering lignocellulose engineering.
Collapse
Affiliation(s)
- Matthieu Bourdon
- The Sainsbury Laboratory, University of Cambridge, Cambridge, UK.
- Friedrich Miescher Institute for Biomedical Research (FMI), Basel, Switzerland.
| | - Jan J Lyczakowski
- Department of Biochemistry, University of Cambridge, Cambridge, UK
- Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | | | - Sam Amsbury
- Centre for Plant Science, Faculty of Biological Sciences, University of Leeds, Leeds, UK
- Plants, Photosynthesis and Soil, School of Biosciences, The University of Sheffield, Sheffield, UK
| | - Francisco Vilaplana
- Division of Glycoscience, Department of Chemistry, KTH Royal Institute of Technology, Stockholm, Sweden
- Wallenberg Wood Science Centre (WWSC), KTH Royal Institute of Technology, Stockholm, Sweden
| | | | - Nadège Follain
- Normandie Université, UNIROUEN Normandie, INSA Rouen, CNRS, PBS, Rouen, France
| | - Raymond Wightman
- The Sainsbury Laboratory, University of Cambridge, Cambridge, UK
| | - Chang Su
- Wood Development Group, University of Helsinki, Helsinki, Finland
| | - Fulgencio Alatorre-Cobos
- The Sainsbury Laboratory, University of Cambridge, Cambridge, UK
- Conacyt-Unidad de Bioquimica y Biologia Molecular de Plantas, Centro de Investigación Científica de Yucatán, Mérida, Mexico
| | - Maximilian Ritter
- Wood Materials Science, Institute for Building Materials, ETH Zürich, Zürich, Switzerland
- Empa Wood Tec, Cellulose and Wood Materials Laboratory, Dübendorf, Switzerland
| | - Aleksandra Liszka
- Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Krakow, Poland
| | - Oliver M Terrett
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Shri Ram Yadav
- Wood Development Group, University of Helsinki, Helsinki, Finland
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - Anne Vatén
- Wood Development Group, University of Helsinki, Helsinki, Finland
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences and Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
- Stomatal Development and Plasticity group, University of Helsinki, Helsinki, Finland
| | - Kaisa Nieminen
- Wood Development Group, University of Helsinki, Helsinki, Finland
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences and Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
- Production systems / Tree Breeding Department, Natural Resources Institute Finland (Luke), Helsinki, Finland
| | - Gugan Eswaran
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences and Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| | - Juan Alonso-Serra
- Wood Development Group, University of Helsinki, Helsinki, Finland
- UMR 5667 Reproduction et Développement Des Plantes, ENS de Lyon, France
| | - Karin H Müller
- Cambridge Advanced Imaging Centre, Department of Physiology, Development and Neuroscience, Cambridge, UK
| | - Dinu Iuga
- Department of Physics, University of Warwick, Coventry, UK
| | - Pal Csaba Miskolczi
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Lothar Kalmbach
- The Sainsbury Laboratory, University of Cambridge, Cambridge, UK
- Molecular Plant Physiology, Institute of Biology II, University of Freiburg, Freiburg, Germany
| | - Sofia Otero
- The Sainsbury Laboratory, University of Cambridge, Cambridge, UK
- Science and Technology Office of the Congress of Deputies, Madrid, Spain
| | - Ari Pekka Mähönen
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences and Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| | - Rishikesh Bhalerao
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Vincent Bulone
- Division of Glycoscience, Department of Chemistry, KTH Royal Institute of Technology, Stockholm, Sweden
- College of Medicine and Public Health, Flinders University, Bedford Park, South Australia, Australia
| | - Shawn D Mansfield
- Department of Wood Science, Faculty of Forestry, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| | - Stefan Hill
- Scion, Te Papa Tipu Innovation Park, Rotorua, New Zealand
| | - Ingo Burgert
- Wood Materials Science, Institute for Building Materials, ETH Zürich, Zürich, Switzerland
- Empa Wood Tec, Cellulose and Wood Materials Laboratory, Dübendorf, Switzerland
| | - Johnny Beaugrand
- Biopolymères Interactions Assemblages (BIA), INRA, Nantes, France
| | - Yoselin Benitez-Alfonso
- The Centre for Plant Science, The Bragg Centre, The Astbury Centre, University of Leeds, Leeds, UK
| | - Ray Dupree
- Department of Physics, University of Warwick, Coventry, UK
| | - Paul Dupree
- Department of Biochemistry, University of Cambridge, Cambridge, UK.
| | - Ykä Helariutta
- The Sainsbury Laboratory, University of Cambridge, Cambridge, UK.
- Wood Development Group, University of Helsinki, Helsinki, Finland.
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences and Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
19
|
Wu Z, Yang Y, Li J, Bossier P, Wei X, Guo Z, Han B, Ye J. β-Glucans in particulate and solubilized forms elicit varied immunomodulatory and apoptosis effects in teleost macrophages in a dosedependent manner. Front Immunol 2023; 14:1243358. [PMID: 37675105 PMCID: PMC10477985 DOI: 10.3389/fimmu.2023.1243358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/07/2023] [Indexed: 09/08/2023] Open
Abstract
β-Glucans are a group of heterogeneous glucose polymers that possess immunomodulatory activities. The complex nature of their structures, uncertainty regarding the doses, and variable immune effects pose a challenge to comprehensive understanding. In this study, we investigated the immune responses and apoptosis effects in Nile tilapia (Oreochromis niloticus) head kidney macrophages (MФ) upon exposure to two β-Glucans (Paramylon and Laminarin) at low and high doses. Our results demonstrate that Paramylon elicits more robust immune responses than Laminarin, albeit with a dose-limiting effect. We also observed that the high-dose Paramylon induces apoptosis, whereas no such effect was detected in Laminarin treatment. Mechanistically, high-dose Paramylon activates the intrinsic apoptosis pathway, with significantly up-regulation of intrinsic apoptosis-related genes and impaired mitochondrial function. On the other hand, Laminarin triggers metabolic reprogramming in MФ, resulting in the enrichment of the metabolite α-Ketoglutarate, which protects the MФ from apoptosis. Overall, our findings highlight the importance of identifying the optimal dose range for β-Glucans, based on sources or structures, to achieve maximal immunomodulatory effects. These results have important implications for the design and optimization of β-Glucans-based drugs or adjuvants in immunotherapies.
Collapse
Affiliation(s)
- Zhelin Wu
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Yanjian Yang
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Jiadong Li
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Peter Bossier
- Laboratory of Aquaculture & Artemia Reference Center, Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Gent, Belgium
| | - Xiayi Wei
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Zheng Guo
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Biao Han
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Jianmin Ye
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, School of Life Sciences, South China Normal University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| |
Collapse
|
20
|
Paul P, Nair R, Mahajan S, Gupta U, Aalhate M, Maji I, Singh PK. Traversing the diverse avenues of exopolysaccharides-based nanocarriers in the management of cancer. Carbohydr Polym 2023; 312:120821. [PMID: 37059549 DOI: 10.1016/j.carbpol.2023.120821] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 03/13/2023] [Accepted: 03/14/2023] [Indexed: 04/16/2023]
Abstract
Exopolysaccharides are unique polymers generated by living organisms such as algae, fungi and bacteria to protect them from environmental factors. After a fermentative process, these polymers are extracted from the medium culture. Exopolysaccharides have been explored for their anti-viral, anti-bacterial, anti-tumor, and immunomodulatory effects. Specifically, they have acquired massive attention in novel drug delivery strategies owing to their indispensable properties like biocompatibility, biodegradability, and lack of irritation. Exopolysaccharides such as dextran, alginate, hyaluronic acid, pullulan, xanthan gum, gellan gum, levan, curdlan, cellulose, chitosan, mauran, and schizophyllan exhibited excellent drug carrier properties. Specific exopolysaccharides, such as levan, chitosan, and curdlan, have demonstrated significant antitumor activity. Moreover, chitosan, hyaluronic acid and pullulan can be employed as targeting ligands decorated on nanoplatforms for effective active tumor targeting. This review shields light on the classification, unique characteristics, antitumor activities and nanocarrier properties of exopolysaccharides. In addition, in vitro human cell line experiments and preclinical studies associated with exopolysaccharide-based nanocarriers have also been highlighted.
Collapse
Affiliation(s)
- Priti Paul
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad 500037, India
| | - Rahul Nair
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad 500037, India
| | - Srushti Mahajan
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad 500037, India
| | - Ujala Gupta
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad 500037, India
| | - Mayur Aalhate
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad 500037, India
| | - Indrani Maji
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad 500037, India
| | - Pankaj Kumar Singh
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad 500037, India.
| |
Collapse
|
21
|
Calderon JJ, Prieto K, Lasso P, Fiorentino S, Barreto A. Modulation of Myeloid-Derived Suppressor Cells in the Tumor Microenvironment by Natural Products. Arch Immunol Ther Exp (Warsz) 2023; 71:17. [PMID: 37410164 DOI: 10.1007/s00005-023-00681-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/29/2023] [Indexed: 07/07/2023]
Abstract
During carcinogenesis, the microenvironment plays a fundamental role in tumor progression and resistance. This tumor microenvironment (TME) is characterized by being highly immunosuppressive in most cases, which makes it an important target for the development of new therapies. One of the most important groups of cells that orchestrate immunosuppression in TME is myeloid-derived suppressor cells (MDSCs), which have multiple mechanisms to suppress the immune response mediated by T lymphocytes and thus protect the tumor. In this review, we will discuss the importance of modulating MDSCs as a therapeutic target and how the use of natural products, due to their multiple mechanisms of action, can be a key alternative for modulating these cells and thus improve response to therapy in cancer patients.
Collapse
Affiliation(s)
- Jhon Jairo Calderon
- Grupo de Inmunobiología y Biología Celular, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Karol Prieto
- Grupo de Inmunobiología y Biología Celular, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Paola Lasso
- Grupo de Inmunobiología y Biología Celular, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Susana Fiorentino
- Grupo de Inmunobiología y Biología Celular, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Alfonso Barreto
- Grupo de Inmunobiología y Biología Celular, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia.
- Departamento de Microbiología, Pontificia Universidad Javeriana, Carrera 7 # 43-82. Edificio 50 Laboratorio 101, Bogotá, Colombia.
| |
Collapse
|
22
|
Podell S, Oliver A, Kelly LW, Sparagon WJ, Plominsky AM, Nelson RS, Laurens LML, Augyte S, Sims NA, Nelson CE, Allen EE. Herbivorous Fish Microbiome Adaptations to Sulfated Dietary Polysaccharides. Appl Environ Microbiol 2023; 89:e0215422. [PMID: 37133385 PMCID: PMC10231202 DOI: 10.1128/aem.02154-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 04/13/2023] [Indexed: 05/04/2023] Open
Abstract
Marine herbivorous fish that feed primarily on macroalgae, such as those from the genus Kyphosus, are essential for maintaining coral health and abundance on tropical reefs. Here, deep metagenomic sequencing and assembly of gut compartment-specific samples from three sympatric, macroalgivorous Hawaiian kyphosid species have been used to connect host gut microbial taxa with predicted protein functional capacities likely to contribute to efficient macroalgal digestion. Bacterial community compositions, algal dietary sources, and predicted enzyme functionalities were analyzed in parallel for 16 metagenomes spanning the mid- and hindgut digestive regions of wild-caught fishes. Gene colocalization patterns of expanded carbohydrate (CAZy) and sulfatase (SulfAtlas) digestive enzyme families on assembled contigs were used to identify likely polysaccharide utilization locus associations and to visualize potential cooperative networks of extracellularly exported proteins targeting complex sulfated polysaccharides. These insights into the gut microbiota of herbivorous marine fish and their functional capabilities improve our understanding of the enzymes and microorganisms involved in digesting complex macroalgal sulfated polysaccharides. IMPORTANCE This work connects specific uncultured bacterial taxa with distinct polysaccharide digestion capabilities lacking in their marine vertebrate hosts, providing fresh insights into poorly understood processes for deconstructing complex sulfated polysaccharides and potential evolutionary mechanisms for microbial acquisition of expanded macroalgal utilization gene functions. Several thousand new marine-specific candidate enzyme sequences for polysaccharide utilization have been identified. These data provide foundational resources for future investigations into suppression of coral reef macroalgal overgrowth, fish host physiology, the use of macroalgal feedstocks in terrestrial and aquaculture animal feeds, and the bioconversion of macroalgae biomass into value-added commercial fuel and chemical products.
Collapse
Affiliation(s)
- Sheila Podell
- Center for Marine Biotechnology & Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California, USA
| | - Aaron Oliver
- Center for Marine Biotechnology & Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California, USA
| | - Linda Wegley Kelly
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California, USA
| | - Wesley J. Sparagon
- Daniel K. Inouye Center for Microbial Oceanography, School of Ocean and Earth Science and Technology, University of Hawaiʻi at Mānoa, Honolulu, Hawaii, USA
| | - Alvaro M. Plominsky
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California, USA
| | | | | | | | | | - Craig E. Nelson
- Daniel K. Inouye Center for Microbial Oceanography, School of Ocean and Earth Science and Technology, University of Hawaiʻi at Mānoa, Honolulu, Hawaii, USA
| | - Eric E. Allen
- Center for Marine Biotechnology & Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California, USA
- Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, La Jolla, California, USA
- Center for Microbiome Innovation, University of California, San Diego, La Jolla, California, USA
| |
Collapse
|
23
|
Young ES, Butler JD, Molesworth-Kenyon SJ, Kenyon WJ. Biofilm-Mediated Fragmentation and Degradation of Microcrystalline Cellulose by Cellulomonas flavigena KU (ATCC 53703). Curr Microbiol 2023; 80:200. [PMID: 37129770 DOI: 10.1007/s00284-023-03309-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 04/19/2023] [Indexed: 05/03/2023]
Abstract
Cellulomonas flavigena KU (ATCC 53703) produces an extracellular matrix involved in the degradation of microcrystalline cellulose. This extracellular material is primarily composed of the gel-forming, β-1,3-glucan known as curdlan and associated, cellulose-degrading enzymes. In this study, the effects of various forms of nutrient limitation on cellulose attachment, cellular aggregation, curdlan production, and biofilm formation were investigated throughout a 7-day incubation period by using phase-contrast microscopy. Compared to cultures grown in non-limiting media, nitrogen-limitation promoted early attachment of C. flavigena KU cells to the cellulose surface, and cellulose attachment was congruent with cellular aggregation and curdlan production. Over the course of the experiment, microcolonies of attached cells grew into curdlan-producing biofilms on the cellulose. By contrast, bacterial cells grown on cellulose in non-limiting media remained unattached and unaggregated throughout most of the incubation period. By 7 days of incubation, bacterial aggregation was ninefold greater in N-limited cultures compared to nutritionally complete cultures. In a similar way, phosphorus- and vitamin-limitation (i.e., yeast extract-limitation) also resulted in early cellulose attachment and biofilm formation. Furthermore, nutrient limitation promoted more rapid and efficient fragmentation and degradation of cellulose, with cellulose fragments in low-N media averaging half the size of those in high-N media after 7 days. Two modes of cellulose degradation are proposed for C. flavigena KU, a "planktonic mode" and a "biofilm mode". Similar observations have been reported for other curdlan-producing cellulomonads, and these differing cellulose degradation strategies may ultimately prove to reflect sequential stages of a multifaceted biofilm cycle important in the bioconversion of this abundant and renewable natural resource.
Collapse
Affiliation(s)
- Emma S Young
- Biology Program, Department of Natural Sciences, University of West Georgia, Carrollton, GA, 30118, USA
| | - John D Butler
- Biology Program, Department of Natural Sciences, University of West Georgia, Carrollton, GA, 30118, USA
| | - Sara J Molesworth-Kenyon
- Biology Program, Department of Natural Sciences, University of West Georgia, Carrollton, GA, 30118, USA
| | - William J Kenyon
- Biology Program, Department of Natural Sciences, University of West Georgia, Carrollton, GA, 30118, USA.
| |
Collapse
|
24
|
Hu X, Yang P, Chai C, Liu J, Sun H, Wu Y, Zhang M, Zhang M, Liu X, Yu H. Structural and mechanistic insights into fungal β-1,3-glucan synthase FKS1. Nature 2023; 616:190-198. [PMID: 36949198 PMCID: PMC10032269 DOI: 10.1038/s41586-023-05856-5] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 02/16/2023] [Indexed: 03/24/2023]
Abstract
The membrane-integrated synthase FKS is involved in the biosynthesis of β-1,3-glucan, the core component of the fungal cell wall1,2. FKS is the target of widely prescribed antifungal drugs, including echinocandin and ibrexafungerp3,4. Unfortunately, the mechanism of action of FKS remains enigmatic and this has hampered development of more effective medicines targeting the enzyme. Here we present the cryo-electron microscopy structures of Saccharomyces cerevisiae FKS1 and the echinocandin-resistant mutant FKS1(S643P). These structures reveal the active site of the enzyme at the membrane-cytoplasm interface and a glucan translocation path spanning the membrane bilayer. Multiple bound lipids and notable membrane distortions are observed in the FKS1 structures, suggesting active FKS1-membrane interactions. Echinocandin-resistant mutations are clustered at a region near TM5-6 and TM8 of FKS1. The structure of FKS1(S643P) reveals altered lipid arrangements in this region, suggesting a drug-resistant mechanism of the mutant enzyme. The structures, the catalytic mechanism and the molecular insights into drug-resistant mutations of FKS1 revealed in this study advance the mechanistic understanding of fungal β-1,3-glucan biosynthesis and establish a foundation for developing new antifungal drugs by targeting FKS.
Collapse
Affiliation(s)
- Xinlin Hu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ping Yang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Changdong Chai
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jia Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huanhuan Sun
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yanan Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mingjie Zhang
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
- Greater Bay Biomedical Innocenter, Shenzhen Bay Laboratory, Shenzhen, China
| | - Min Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Xiaotian Liu
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, China.
| | - Hongjun Yu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Cell Architecture Research Center, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
25
|
Controlled processivity in glycosyltransferases: A way to expand the enzymatic toolbox. Biotechnol Adv 2023; 63:108081. [PMID: 36529206 DOI: 10.1016/j.biotechadv.2022.108081] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/20/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022]
Abstract
Glycosyltransferases (GT) catalyse the biosynthesis of complex carbohydrates which are the most abundant group of molecules in nature. They are involved in several key mechanisms such as cell signalling, biofilm formation, host immune system invasion or cell structure and this in both prokaryotic and eukaryotic cells. As a result, research towards complete enzyme mechanisms is valuable to understand and elucidate specific structure-function relationships in this group of molecules. In a next step this knowledge could be used in GT protein engineering, not only for rational drug design but also for multiple biotechnological production processes, such as the biosynthesis of hyaluronan, cellooligosaccharides or chitooligosaccharides. Generation of these poly- and/or oligosaccharides is possible due to a common feature of several of these GTs: processivity. Enzymatic processivity has the ability to hold on to the growing polymer chain and some of these GTs can even control the number of glycosyl transfers. In a first part, recent advances in understanding the mechanism of various processive enzymes are discussed. To this end, an overview is given of possible engineering strategies for the purpose of new industrial and fundamental applications. In the second part of this review, we focused on specific chain length-controlling mechanisms, i.e., key residues or conserved regions, and this for both eukaryotic and prokaryotic enzymes.
Collapse
|
26
|
Scafati V, Troilo F, Ponziani S, Giovannoni M, Scortica A, Pontiggia D, Angelucci F, Di Matteo A, Mattei B, Benedetti M. Characterization of two 1,3-β-glucan-modifying enzymes from Penicillium sumatraense reveals new insights into 1,3-β-glucan metabolism of fungal saprotrophs. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:138. [PMID: 36510318 PMCID: PMC9745967 DOI: 10.1186/s13068-022-02233-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 11/23/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND 1,3-β-glucan is a polysaccharide widely distributed in the cell wall of several phylogenetically distant organisms, such as bacteria, fungi, plants and microalgae. The presence of highly active 1,3-β-glucanases in fungi evokes the biological question on how these organisms can efficiently metabolize exogenous sources of 1,3-β-glucan without incurring in autolysis. RESULTS To elucidate the molecular mechanisms at the basis of 1,3-β-glucan metabolism in fungal saprotrophs, the putative exo-1,3-β-glucanase G9376 and a truncated form of the putative glucan endo-1,3-β-glucosidase (ΔG7048) from Penicillium sumatraense AQ67100 were heterologously expressed in Pichia pastoris and characterized both in terms of activity and structure. G9376 efficiently converted laminarin and 1,3-β-glucan oligomers into glucose by acting as an exo-glycosidase, whereas G7048 displayed a 1,3-β-transglucanase/branching activity toward 1,3-β-glucan oligomers with a degree of polymerization higher than 5, making these oligomers more recalcitrant to the hydrolysis acted by exo-1,3-β-glucanase G9376. The X-ray crystallographic structure of the catalytic domain of G7048, solved at 1.9 Å of resolution, consists of a (β/α)8 TIM-barrel fold characteristic of all the GH17 family members. The catalytic site is in a V-shaped cleft containing the two conserved catalytic glutamic residues. Molecular features compatible with the activity of G7048 as 1,3-β-transglucanase are discussed. CONCLUSIONS The antagonizing activity between ΔG7048 and G9376 indicates how opportunistic fungi belonging to Penicillium genus can feed on substrates similar for composition and structure to their own cell wall without incurring in a self-deleterious autohydrolysis.
Collapse
Affiliation(s)
- Valentina Scafati
- grid.158820.60000 0004 1757 2611Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Francesca Troilo
- grid.5326.20000 0001 1940 4177Institute of Molecular Biology and Pathology, CNR, P.Le Aldo Moro 5, 00185 Rome, Italy
| | - Sara Ponziani
- grid.158820.60000 0004 1757 2611Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Moira Giovannoni
- grid.158820.60000 0004 1757 2611Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Anna Scortica
- grid.158820.60000 0004 1757 2611Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Daniela Pontiggia
- grid.7841.aDepartment of Biology and Biotechnology “Charles Darwin”, Sapienza University of Rome, 00185 Rome, Italy
| | - Francesco Angelucci
- grid.158820.60000 0004 1757 2611Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Adele Di Matteo
- grid.5326.20000 0001 1940 4177Institute of Molecular Biology and Pathology, CNR, P.Le Aldo Moro 5, 00185 Rome, Italy
| | - Benedetta Mattei
- grid.158820.60000 0004 1757 2611Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Manuel Benedetti
- grid.158820.60000 0004 1757 2611Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| |
Collapse
|
27
|
Tudu M, Samanta A. Natural polysaccharides: Chemical properties and application in pharmaceutical formulations. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
28
|
Sharma VK, Liu X, Oyarzún DA, Abdel-Azeem AM, Atanasov AG, Hesham AEL, Barik SK, Gupta VK, Singh BN. Microbial polysaccharides: An emerging family of natural biomaterials for cancer therapy and diagnostics. Semin Cancer Biol 2022; 86:706-731. [PMID: 34062265 DOI: 10.1016/j.semcancer.2021.05.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/07/2021] [Accepted: 05/19/2021] [Indexed: 02/06/2023]
Abstract
Microbial polysaccharides (MPs) offer immense diversity in structural and functional properties. They are extensively used in advance biomedical science owing to their superior biodegradability, hemocompatibility, and capability to imitate the natural extracellular matrix microenvironment. Ease in tailoring, inherent bio-activity, distinct mucoadhesiveness, ability to absorb hydrophobic drugs, and plentiful availability of MPs make them prolific green biomaterials to overcome the significant constraints of cancer chemotherapeutics. Many studies have demonstrated their application to obstruct tumor development and extend survival through immune activation, apoptosis induction, and cell cycle arrest by MPs. Synoptic investigations of MPs are compulsory to decode applied basics in recent inclinations towards cancer regimens. The current review focuses on the anticancer properties of commercially available and newly explored MPs, and outlines their direct and indirect mode of action. The review also highlights cutting-edge MPs-based drug delivery systems to augment the specificity and efficiency of available chemotherapeutics, as well as their emerging role in theranostics.
Collapse
Affiliation(s)
- Vivek K Sharma
- Pharmacology Division, CSIR-National Botanical Research Institute, Lucknow 226001, India
| | - Xiaowen Liu
- Department of Gastric Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, 270 Dongan Road, Xuhui, Shanghai 200032, China.
| | - Diego A Oyarzún
- School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom; School of Informatics, University of Edinburgh, Edinburgh, United Kingdom
| | - Ahmed M Abdel-Azeem
- Botany and Microbiology Department, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt
| | - Atanas G Atanasov
- Institute for Digital Health and Patient Safety, Medical University of Vienna, Spitalgasse 23, 1090 Vienna, Austria; Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Jastrzebiec, 05-552 Magdalenka, Poland; Institute of Neurobiology, Bulgarian Academy of Sciences, 23 Acad. G. Bonchev Str., 1113 Sofia, Bulgaria; Department of Pharmacognosy, University of Vienna, Althanstraße 14, 1090 Vienna, Austria
| | - Abd El-Latif Hesham
- Genetics Department, Faculty of Agriculture, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Saroj K Barik
- Pharmacology Division, CSIR-National Botanical Research Institute, Lucknow 226001, India
| | - Vijai Kumar Gupta
- Biorefining and Advanced Materials Research Center, Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh, EH9 3JG, United Kingdom; Center for Safe and Improved Food, Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh, EH9 3JG, United Kingdom.
| | - Brahma N Singh
- Pharmacology Division, CSIR-National Botanical Research Institute, Lucknow 226001, India.
| |
Collapse
|
29
|
Pérez-Mendoza D, Romero-Jiménez L, Rodríguez-Carvajal MÁ, Lorite MJ, Muñoz S, Olmedilla A, Sanjuán J. The Role of Two Linear β-Glucans Activated by c-di-GMP in Rhizobium etli CFN42. BIOLOGY 2022; 11:biology11091364. [PMID: 36138843 PMCID: PMC9495663 DOI: 10.3390/biology11091364] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/06/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022]
Abstract
Simple Summary Bacterial exopolysaccharides (EPS) are secreted biopolymers with often critical roles in bacterial physiology and ecology. In addition to their biological role, there is increasing interest for EPS in various industrial sectors. β-glucans are among the most important ones including cellulose as the most abundant organic polymer on earth, but also newcomers, such as the bacterial Mixed Linkage β-Glucan (MLG), displaying a unique repeating unit suggestive of biotechnological potential. In this work we describe Rhizobium etli as the first bacterium reported to be able to produce these two linear β-glucans cellulose and MLG. Rhizobium etli is an agronomic relevant rhizobacteria able to perform Biological Nitrogen Fixation (BNF) in a symbiotic association with common bean plants. The production and regulation of cellulose and MLG by Rhizobium etli CFN42 is discussed and their impact on its free-living and symbiotic lifestyles evaluated. Abstract Bacterial exopolysaccharides (EPS) have been implicated in a variety of functions that assist in bacterial survival, colonization, and host–microbe interactions. Among them, bacterial linear β-glucans are polysaccharides formed by D-glucose units linked by β-glycosidic bonds, which include curdlan, cellulose, and the new described Mixed Linkage β-Glucan (MLG). Bis-(3′,5′)-cyclic dimeric guanosine monophosphate (c-di-GMP) is a universal bacterial second messenger that usually promote EPS production. Here, we report Rhizobium etli as the first bacterium capable of producing cellulose and MLG. Significant amounts of these two β-glucans are not produced under free-living laboratory conditions, but their production is triggered upon elevation of intracellular c-di-GMP levels, both contributing to Congo red (CR+) and Calcofluor (CF+) phenotypes. Cellulose turned out to be more relevant for free-living phenotypes promoting flocculation and biofilm formation under high c-di-GMP conditions. None of these two EPS are essential for attachment to roots of Phaseolus vulgaris, neither for nodulation nor for symbiotic nitrogen fixation. However, both β-glucans separately contribute to the fitness of interaction between R. etli and its host. Overproduction of these β-glucans, particularly cellulose, appears detrimental for symbiosis. This indicates that their activation by c-di-GMP must be strictly regulated in time and space and should be controlled by different, yet unknown, regulatory pathways.
Collapse
Affiliation(s)
- Daniel Pérez-Mendoza
- Department of Soil and Plant Microbiology, Estación Experimental del Zaidín, CSIC, 18008 Granada, Spain
- Correspondence: (D.P.-M.); (J.S.); Tel.: +34-958-526-522 (D.P.-M.); +34-958-526-552 (J.S.)
| | - Lorena Romero-Jiménez
- Department of Soil and Plant Microbiology, Estación Experimental del Zaidín, CSIC, 18008 Granada, Spain
| | | | - María J. Lorite
- Department of Soil and Plant Microbiology, Estación Experimental del Zaidín, CSIC, 18008 Granada, Spain
| | - Socorro Muñoz
- Department of Soil and Plant Microbiology, Estación Experimental del Zaidín, CSIC, 18008 Granada, Spain
| | - Adela Olmedilla
- Department of Stress, Development and Signaling in Plants, CSIC, 18008 Granada, Spain
| | - Juan Sanjuán
- Department of Soil and Plant Microbiology, Estación Experimental del Zaidín, CSIC, 18008 Granada, Spain
- Correspondence: (D.P.-M.); (J.S.); Tel.: +34-958-526-522 (D.P.-M.); +34-958-526-552 (J.S.)
| |
Collapse
|
30
|
Vandana, Das S. Genetic regulation, biosynthesis and applications of extracellular polysaccharides of the biofilm matrix of bacteria. Carbohydr Polym 2022; 291:119536. [DOI: 10.1016/j.carbpol.2022.119536] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/22/2022] [Accepted: 04/22/2022] [Indexed: 11/02/2022]
|
31
|
Long H, Xiao J, Wang X, Liang M, Fan Y, Xu Y, Lin M, Ren Z, Wu C, Wang Y. Laminarin acetyl esters: Synthesis, conformational analysis and anti-viral effects. Int J Biol Macromol 2022; 216:528-536. [PMID: 35809670 DOI: 10.1016/j.ijbiomac.2022.06.208] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/30/2022] [Accepted: 06/30/2022] [Indexed: 01/08/2023]
Abstract
Chemical modification of polysaccharides is important for expanding their applications and gaining new insights into their structure-property relationships. Here we reported the synthesis, characterization, and anti-viral activities of laminarin acetyl derivatives. The chemical structure and chain conformation of acetylated laminarin were characterized by FT-IR, H1 NMR, AFM, UV-vis spectrum, and induced circular dichroism based on a modified Congo Red assay (ICD-CR assay). The inhibition effect of laminarin and its acetyl derivatives on HSV-1 was evaluated by viral plaque assay and virus-associated DNA/protein change. Acetylation modification was found to trigger the conformation transition of laminarin from triple helix to single helix, and the extent of transition can be tuned by the degree of substitution. The single helical acetylated laminarins were found to be stable in neutral aqueous solution and exhibited no cytotoxicity. However, the acetylated laminarin exhibited declined antiviral activity after modification.
Collapse
Affiliation(s)
- Haiyue Long
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, Guangdong Provincial Key Laboratory of Virology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Ji Xiao
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, Guangdong Provincial Key Laboratory of Virology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Xiaohui Wang
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, Guangdong Provincial Key Laboratory of Virology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Minting Liang
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, Guangdong Provincial Key Laboratory of Virology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Yapei Fan
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, Guangdong Provincial Key Laboratory of Virology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Yuying Xu
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, Guangdong Provincial Key Laboratory of Virology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Mengting Lin
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, Guangdong Provincial Key Laboratory of Virology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Zhe Ren
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, Guangdong Provincial Key Laboratory of Virology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Chaoxi Wu
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, Guangdong Provincial Key Laboratory of Virology, College of Life Science and Technology, Jinan University, Guangzhou, China.
| | - Yifei Wang
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, Guangdong Provincial Key Laboratory of Virology, College of Life Science and Technology, Jinan University, Guangzhou, China.
| |
Collapse
|
32
|
Qin X, Ma G, Liu L, Feng J, Zhou S, Han W, Zhou J, Liu Y, Zhang J. Microwave-assisted degradation of β-D-glucan from Ganoderma lucidum and the structural and immunoregulatory properties of oligosaccharide fractions. Int J Biol Macromol 2022; 220:1197-1211. [PMID: 36007700 DOI: 10.1016/j.ijbiomac.2022.08.128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 11/25/2022]
Abstract
Microwave-assisted degradation of β-(1 → 3,1 → 6)-D-glucan from Ganoderma lucidum and correlated immunoregulatory activities were investigated in this study. The optimal temperature and degradation time for microwave hydrothermal hydrolysis were 140 °C and 40 min, respectively. Under these conditions, a high yield of degradation rate (98.4 %) and abundant β-oligosaccharide products (GLOS) with different degrees of polymerization (DP 2-24) were obtained. Four fractions including F1 (DP 2-8), F2 (DP 6-19), F3 (DP 8-24) and F4 (high DPs) with different average ratios of β-(1 → 3) to β-(1 → 6)-linked glucose units were isolated from GLOS. The structures of oligosaccharides with DP (2-6) in F1 were identified as linear β-(1 → 3)-linked glucooligosaccharides without or with β-(1 → 6)-linked glucose residues based on MS/MS analysis. The immunoregulation activity of β-glucooligosaccharides was correlated with their DPs and the average ratios of β-(1 → 3) to β-(1 → 6)-linked glucose units. F4 fraction with high DPs and ratio of 3.29:1 exhibited higher immunoenhancing activity on inducing NF-κB activation through binding to dectin-1. Surface plasmon resonance (SPR) analysis indicated that β-glucooligosaccharides could bind to Dectin-1 directly and the binding affinity increased with the increase of DPs and the ratios of β-(1 → 3)-linked glucose.
Collapse
Affiliation(s)
- Xiu Qin
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, National Engineering Research Center of Edible Fungi, Shanghai 201403, China; Engineering Research Centre of Pharmaceutical Process Chemistry, Ministry of Education, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Guanhua Ma
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, National Engineering Research Center of Edible Fungi, Shanghai 201403, China
| | - Liping Liu
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, National Engineering Research Center of Edible Fungi, Shanghai 201403, China
| | - Jie Feng
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, National Engineering Research Center of Edible Fungi, Shanghai 201403, China
| | - Shuai Zhou
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, National Engineering Research Center of Edible Fungi, Shanghai 201403, China.
| | - Wei Han
- Engineering Research Centre of Pharmaceutical Process Chemistry, Ministry of Education, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China.
| | - Jing Zhou
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, National Engineering Research Center of Edible Fungi, Shanghai 201403, China; Shanghai Baixin Bio-Tech Co., Ltd., Shanghai 201403, China.
| | - Yanfang Liu
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, National Engineering Research Center of Edible Fungi, Shanghai 201403, China.
| | - Jingsong Zhang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, National Engineering Research Center of Edible Fungi, Shanghai 201403, China.
| |
Collapse
|
33
|
Manzoor A, Dar AH, Pandey VK, Shams R, Khan S, Panesar PS, Kennedy JF, Fayaz U, Khan SA. Recent insights into polysaccharide-based hydrogels and their potential applications in food sector: A review. Int J Biol Macromol 2022; 213:987-1006. [PMID: 35705126 DOI: 10.1016/j.ijbiomac.2022.06.044] [Citation(s) in RCA: 91] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 05/28/2022] [Accepted: 06/08/2022] [Indexed: 12/16/2022]
Abstract
Hydrogels are ideal for various food applications because of their softness, elasticity, absorbent nature, flexibility, and hygroscopic nature. Polysaccharide hydrogels are particularly suitable because of the hydrophilic nature, their food compatibility, and their non-immunogenic character. Such hydrogels offer a wide range of successful applications such as food preservation, pharmaceuticals, agriculture, and food packaging. Additionally, polysaccharide hydrogels have proven to play a significant role in the formulation of food flavor carrier systems, thus diversifying the horizons of newer developments in food processing sector. Polysaccharide hydrogels are comprised of natural polymers such as alginate, chitosan, starch, pectin and hyaluronic acid when crosslinked physically or chemically. Hydrogels with interchangeable, antimicrobial and barrier properties are referred to as smart hydrogels. This review brings together the recent and relevant polysaccharide research in these polysaccharide hydrogel applications areas and seeks to point the way forward for future research and interventions. Applications in carrying out the process of flavor carrier system directly through their incorporation in food matrices, broadening the domain for food application innovations. The classification and important features of polysaccharide-based hydrogels in food processing are the topics of the current review study.
Collapse
Affiliation(s)
- Arshied Manzoor
- Department of Post-Harvest Engineering and Technology, Faculty of Agricultural Sciences, A.M.U., Aligarh, 202002, UP, India
| | - Aamir Hussain Dar
- Department of Food Technology, Islamic University of Science and Technology, Kashmir 1921222, India.
| | - Vinay Kumar Pandey
- Department of Bioengineering, Integral University, Lucknow, 226026, UP, India
| | - Rafeeya Shams
- Division of Food Science and Technology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, 180009, India
| | - Sadeeya Khan
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, UPM Serdang, Selangor 43400, Malaysia
| | - Parmjit S Panesar
- Department of Food Engineering and Technology, Sant Longowal Institute of Engineering and Technology Longowal, 148106, Punjab, India
| | - John F Kennedy
- Chembiotech Laboratories, Kyrewood House, Tenbury Wells, Worcestershire WR15 8SG, United Kingdom
| | - Ufaq Fayaz
- Division of Food Science and Technology, Sher-e-Kashmir University of Agricultural Sciences and Technology, Kashmir 190025, India
| | - Shafat Ahmad Khan
- Department of Food Technology, Islamic University of Science and Technology, Kashmir 1921222, India
| |
Collapse
|
34
|
Feuzing F, Mbakidi JP, Marchal L, Bouquillon S, Leroy E. A review of paramylon processing routes from microalga biomass to non-derivatized and chemically modified products. Carbohydr Polym 2022; 288:119181. [PMID: 35450615 DOI: 10.1016/j.carbpol.2022.119181] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 01/04/2022] [Accepted: 01/21/2022] [Indexed: 11/02/2022]
Abstract
Paramylon is a linear β-1,3-glucan, similar to curdlan, produced as intracellular granules by the microalga Euglena gracilis, a highly versatile and robust strain, able to grow under various trophic conditions, with valorization of CO2, wastewaters, or food byproducts as nutrients. This review focuses in particular on the various processing routes leading to new potential paramylon based products. Due to its crystalline structure, involving triple helices stabilized by internal intermolecular hydrogen bonds, paramylon is neither water-soluble nor thermoplastic. The few solvents able to disrupt the triple helices, and to fully solubilize the polymer as random coils, allow non derivatizing shaping into films, fibers, and even nanofibers by a specific self-assembly mechanism. Chemical modification in homogeneous or heterogeneous conditions is also possible. The non-selective or regioselective substitution of the hydroxyl groups of glucosidic units leads to water-soluble ionic derivatives and thermoplastic paramylon esters with foreseen applications ranging from health to bioplastics.
Collapse
Affiliation(s)
- Frédérica Feuzing
- Université de Nantes, Oniris, CNRS, GEPEA, UMR 6144, F- 44470 Carquefou, France; Institut de Chimie Moléculaire de Reims, CNRS UMR 7312, Université de Reims Champagne-Ardenne, BP 1039, 51687 Reims Cedex, France
| | - Jean Pierre Mbakidi
- Institut de Chimie Moléculaire de Reims, CNRS UMR 7312, Université de Reims Champagne-Ardenne, BP 1039, 51687 Reims Cedex, France
| | - Luc Marchal
- Université de Nantes, Oniris, CNRS, GEPEA, UMR 6144, F- 44470 Carquefou, France
| | - Sandrine Bouquillon
- Institut de Chimie Moléculaire de Reims, CNRS UMR 7312, Université de Reims Champagne-Ardenne, BP 1039, 51687 Reims Cedex, France
| | - Eric Leroy
- Université de Nantes, Oniris, CNRS, GEPEA, UMR 6144, F- 44470 Carquefou, France.
| |
Collapse
|
35
|
Chen C, Huang X, Wang H, Geng F, Nie S. Effect of β-glucan on metabolic diseases: A review from the gut microbiota perspective. Curr Opin Food Sci 2022. [DOI: 10.1016/j.cofs.2022.100907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
36
|
Yang YF, Li DW, Balamurugan S, Wang X, Yang WD, Li HY. Chrysolaminarin biosynthesis in the diatom is enhanced by overexpression of 1,6-β-transglycosylase. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
37
|
Bhambri A, Srivastava M, Mahale VG, Mahale S, Karn SK. Mushrooms as Potential Sources of Active Metabolites and Medicines. Front Microbiol 2022; 13:837266. [PMID: 35558110 PMCID: PMC9090473 DOI: 10.3389/fmicb.2022.837266] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 02/15/2022] [Indexed: 12/12/2022] Open
Abstract
Background Mushrooms exist as an integral and vital component of the ecosystem and are very precious fungi. Mushrooms have been traditionally used in herbal medicines for many centuries. Scope and Approach There are a variety of medicinal mushrooms mentioned in the current work such as Agaricus, Amanita, Calocybe, Cantharellus, Cordyceps, Coprinus, Cortinarius, Ganoderma, Grifola, Huitlacoche, Hydnum, Lentinus, Morchella, Pleurotus, Rigidoporus, Tremella, Trametes sp., etc., which play a vital role in various diseases because of several metabolic components and nutritional values. Medicinal mushrooms can be identified morphologically on the basis of their size, color (white, black, yellow, brown, cream, pink and purple-brown, etc.), chemical reactions, consistency of the stalk and cap, mode of attachment of the gills to the stalk, and spore color and mass, and further identified at a molecular level by Internal Transcribed Spacer (ITS) regions of gene sequencing. There are also other methods that have recently begun to be used for the identification of mushrooms such as high-pressure liquid chromatography (HPLC), nuclear magnetic resonance spectroscopy (NMR), microscopy, thin-layer chromatography (TLC), DNA sequencing, gas chromatography-mass spectrometry (GC-MS), chemical finger printing, ultra-performance liquid chromatography (UPLC), fourier transform infrared spectroscopy (FTIR), liquid chromatography quadrupole time-of-flight mass spectrometry (LCMS-TOF) and high-performance thin-layer chromatography (HPTLC). Lately, the matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) technique is also used for the identification of fungi. Key Finding and Conclusion Medicinal mushrooms possess various biological activities like anti-oxidant, anti-cancer, anti-inflammatory, anti-aging, anti-tumor, anti-viral, anti-parasitic, anti-microbial, hepatoprotective, anti-HIV, anti-diabetic, and many others that will be mentioned in this article. This manuscript will provide future direction, action mechanisms, applications, and the recent collective information of medicinal mushrooms. In addition to many unknown metabolites and patented active metabolites are also included.
Collapse
Affiliation(s)
- Anne Bhambri
- Department of Biochemistry and Biotechnology, Sardar Bhagwan Singh University, Dehradun, India
| | | | | | | | - Santosh Kumar Karn
- Department of Biochemistry and Biotechnology, Sardar Bhagwan Singh University, Dehradun, India
| |
Collapse
|
38
|
Hiengrach P, Visitchanakun P, Finkelman MA, Chancharoenthana W, Leelahavanichkul A. More Prominent Inflammatory Response to Pachyman than to Whole-Glucan Particle and Oat-β-Glucans in Dextran Sulfate-Induced Mucositis Mice and Mouse Injection through Proinflammatory Macrophages. Int J Mol Sci 2022; 23:4026. [PMID: 35409384 PMCID: PMC8999416 DOI: 10.3390/ijms23074026] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 03/28/2022] [Accepted: 04/01/2022] [Indexed: 02/07/2023] Open
Abstract
(1→3)-β-D-glucans (BG) (the glucose polymers) are recognized as pathogen motifs, and different forms of BGs are reported to have various effects. Here, different BGs, including Pachyman (BG with very few (1→6)-linkages), whole-glucan particles (BG with many (1→6)-glycosidic bonds), and Oat-BG (BG with (1→4)-linkages), were tested. In comparison with dextran sulfate solution (DSS) alone in mice, DSS with each of these BGs did not alter the weight loss, stool consistency, colon injury (histology and cytokines), endotoxemia, serum BG, and fecal microbiome but Pachyman-DSS-treated mice demonstrated the highest serum cytokine elicitation (TNF-α and IL-6). Likewise, a tail vein injection of Pachyman together with intraperitoneal lipopolysaccharide (LPS) induced the highest levels of these cytokines at 3 h post-injection than LPS alone or LPS with other BGs. With bone marrow-derived macrophages, BG induced only TNF-α (most prominent with Pachyman), while LPS with BG additively increased several cytokines (TNF-α, IL-6, and IL-10); inflammatory genes (iNOS, IL-1β, Syk, and NF-κB); and cell energy alterations (extracellular flux analysis). In conclusion, Pachyman induced the highest LPS proinflammatory synergistic effect on macrophages, followed by WGP, possibly through Syk-associated interactions between the Dectin-1 and TLR-4 signal transduction pathways. Selection of the proper form of BGs for specific clinical conditions might be beneficial.
Collapse
Affiliation(s)
- Pratsanee Hiengrach
- Center of Excellence on Translational Research in Inflammation and Immunology (CETRII), Department of Microbiology, Chulalongkorn University, Bangkok 10330, Thailand; (P.H.); (P.V.)
| | - Peerapat Visitchanakun
- Center of Excellence on Translational Research in Inflammation and Immunology (CETRII), Department of Microbiology, Chulalongkorn University, Bangkok 10330, Thailand; (P.H.); (P.V.)
| | | | - Wiwat Chancharoenthana
- Tropical Nephrology Research Unit, Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
- Tropical Immunology and Translational Research Unit, Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Asada Leelahavanichkul
- Center of Excellence on Translational Research in Inflammation and Immunology (CETRII), Department of Microbiology, Chulalongkorn University, Bangkok 10330, Thailand; (P.H.); (P.V.)
- Nephrology Unit, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
39
|
Macoy DMJ, Uddin S, Ahn G, Peseth S, Ryu GR, Cha JY, Lee JY, Bae D, Paek SM, Chung HJ, Mackey D, Lee SY, Kim WY, Kim MG. Effect of Hydroxycinnamic Acid Amides, Coumaroyl Tyramine and Coumaroyl Tryptamine on Biotic Stress Response in Arabidopsis. JOURNAL OF PLANT BIOLOGY 2022; 65:145-155. [DOI: 10.1007/s12374-021-09341-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/26/2021] [Accepted: 11/03/2021] [Indexed: 08/28/2023]
|
40
|
Wan J, Shao Z, Jiang D, Gao H, Yang X. Curdlan production from cassava starch hydrolysates by Agrobacterium sp. DH-2. Bioprocess Biosyst Eng 2022; 45:969-979. [PMID: 35312865 DOI: 10.1007/s00449-022-02718-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 03/07/2022] [Indexed: 11/30/2022]
Abstract
Curdlan is an edible microbial polysaccharide and can be used in food, biomedical and biomaterial fields. To reduce the cost of curdlan production, this study investigated the suitability of cassava starch hydrolysates as carbon source for curdlan production. Cassava starch was hydrolyzed into maltose syrup using β-amylase and pullulanase at various enzyme dosages, temperature, time and addition order of two enzymes. The maltose yield of 53.17% was achieved at starch loading 30% by simultaneous addition β-amylase 210 U/g starch and pullulanase 3 U/g starch at 60 °C for 9 h. Cassava starch hydrolysates were used as carbon source for curdlan production by Agrobacterium sp. DH-2. The curdlan production reached 28.4 g/L with the yield of 0.79 g/g consumed sugar and molecular weight of 1.26 × 106 Da at 96 h with cassava starch hydrolysate at 90 g/L initial sugar concentration. Curdlan produced from cassava starch hydrolysates was characterized using FT-IR spectra and thermo gravimetric analysis. This work indicated that cassava starch was a potential renewable feedstock for curdlan production.
Collapse
Affiliation(s)
- Jie Wan
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, China
| | - Zhiyu Shao
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, China
| | - Deming Jiang
- School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Hongliang Gao
- School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| | - Xuexia Yang
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, China.
| |
Collapse
|
41
|
Jiao M, Li W, Yu Y, Yu Y. Anisotropic presentation of ligands on cargos modulates degradative function of phagosomes. BIOPHYSICAL REPORTS 2022; 2:100041. [PMID: 35382229 PMCID: PMC8978551 DOI: 10.1016/j.bpr.2021.100041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 12/07/2021] [Indexed: 06/14/2023]
Abstract
Anisotropic arrangement of cell wall components is ubiquitous among bacteria and fungi, but how such functional anisotropy affects interactions between microbes and host immune cells is not known. Here we address this question with regard to phagosome maturation, the process used by host immune cells to degrade internalized microbes. We developed two-faced microparticles as model pathogens that display ligands on only one hemisphere and simultaneously function as fluorogenic sensors for probing biochemical reactions inside phagosomes during degradation. The fluorescent indicator on just one hemisphere gives the particle sensors a moon-like appearance. We show that anisotropic presentation of ligands on particles delays the start of acidification and proteolysis in phagosomes, but does not affect their degradative capacity. Our work suggests that the spatial presentation of ligands on pathogens plays a critical role in modulating the degradation process in phagosomes during host-pathogen interactions.
Collapse
Affiliation(s)
- Mengchi Jiao
- Department of Chemistry, Indiana University, Bloomington, Indiana
| | - Wenqian Li
- Department of Chemistry, Indiana University, Bloomington, Indiana
| | - Yanqi Yu
- Department of Chemistry, Indiana University, Bloomington, Indiana
| | - Yan Yu
- Department of Chemistry, Indiana University, Bloomington, Indiana
| |
Collapse
|
42
|
Gao M, Liu Z, Zhao Z, Wang Z, Hu X, Jiang Y, Yan J, Li Z, Zheng Z, Zhan X. Exopolysaccharide synthesis repressor genes (exoR and exoX) related to curdlan biosynthesis by Agrobacterium sp. Int J Biol Macromol 2022; 205:193-202. [PMID: 35181324 DOI: 10.1016/j.ijbiomac.2022.02.063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 01/20/2022] [Accepted: 02/12/2022] [Indexed: 11/25/2022]
Abstract
Curdlan is a neutral, water-insoluble, unbranched, linear β-(1,3)-glucan. This study explored the roles of exoR and exoX in curdlan biosynthesis in Agrobacterium sp. ATCC 31749. The microcapsule biosynthesis of ΔexoR strain was reduced, and the motility of this strain increased remarkably compared with the wild-type (WT) strain during the cell growth phase. The curdlan yields of ΔexoR and ΔexoX strains enhanced by 19% and 17%, and the glucose utilization increased by 12% and 11%, respectively, compared with the WT strain during batch fermentation. By contrast, the curdlan yields of exoR and exoX overexpression strains decreased by 28% and 33%, respectively. The gel strength produced by ΔexoR and exoX overexpression strains decreased compared with the WT strain. RT-qPCR analysis at the transcriptional level revealed that key genes in exopolysaccharide synthesis and central metabolic pathways were up-regulated in ΔexoX and ΔexoR strains during gel production. Metabolomics analysis of ΔexoR and ΔexoX mutants proved the rates of central metabolic and electron transport chain were accelerated.
Collapse
Affiliation(s)
- Minjie Gao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, PR China
| | - Zhilei Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, PR China
| | - Zhongsheng Zhao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, PR China
| | - Zichao Wang
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, PR China
| | - Xiuyu Hu
- China Biotech Fermentation Industry Association, Beijing 100833, PR China
| | - Yun Jiang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, PR China
| | - Jiajun Yan
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, PR China
| | - Zhitao Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, PR China
| | - Zhiyong Zheng
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, PR China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, PR China.
| | - Xiaobei Zhan
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, PR China.
| |
Collapse
|
43
|
Feng X, Li F, Ding M, Zhang R, Shi T, Lu Y, Jiang W. Molecular dynamic simulation: Study on the recognition mechanism of linear β-(1 → 3)-D-glucan by Dectin-1. Carbohydr Polym 2022; 286:119276. [DOI: 10.1016/j.carbpol.2022.119276] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 02/13/2022] [Accepted: 02/18/2022] [Indexed: 12/26/2022]
|
44
|
Chen J, Wang L, Li W, Zheng X, Li X. Genomic Insights Into Cadmium Resistance of a Newly Isolated, Plasmid-Free Cellulomonas sp. Strain Y8. Front Microbiol 2022; 12:784575. [PMID: 35154027 PMCID: PMC8832061 DOI: 10.3389/fmicb.2021.784575] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 12/17/2021] [Indexed: 11/13/2022] Open
Abstract
Our current knowledge on bacterial cadmium (Cd) resistance is mainly based on the functional exploration of specific Cd-resistance genes. In this study, we carried out a genomic study on Cd resistance of a newly isolated Cellulomonas strain with a MIC of 5 mM Cd. Full genome of the strain, with a genome size of 4.47 M bp and GC-content of 75.35%, was obtained through high-quality sequencing. Genome-wide annotations identified 54 heavy metal-related genes. Four potential Cd-resistance genes, namely zntAY8, copAY8, HMTY8, and czcDY8, were subjected to functional exploration. Quantitative PCR determination of in vivo expression showed that zntAY8, copAY8, and HMTY8 were strongly Cd-inducible. Expression of the three inducible genes against time and Cd concentrations were further quantified. It is found that zntAY8 responded more strongly to higher Cd concentrations, while expression of copAY8 and HMTY8 increased over time at lower Cd concentrations. Heterologous expression of the four genes in Cd-sensitive Escherichia coli led to different impacts on hosts’ Cd sorption, with an 87% reduction by zntAY8 and a 3.7-fold increase by HMTY8. In conclusion, a Cd-resistant Cellulomonas sp. strain was isolated, whose genome harbors a diverse panel of metal-resistance genes. Cd resistance in the strain is not controlled by a dedicated gene alone, but by several gene systems collectively whose roles are probably time- and dose-dependent. The plasmid-free, high-GC strain Y8 may provide a platform for exploring heavy metal genomics of the Cellulomonas genus.
Collapse
Affiliation(s)
- Jinghao Chen
- Hebei Key Laboratory of Soil Ecology, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Likun Wang
- Hebei Key Laboratory of Soil Ecology, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, China
| | - Wenjun Li
- Hebei Key Laboratory of Soil Ecology, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xin Zheng
- Hebei Key Laboratory of Soil Ecology, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, China
| | - Xiaofang Li
- Hebei Key Laboratory of Soil Ecology, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, China
- *Correspondence: Xiaofang Li,
| |
Collapse
|
45
|
Velamakanni RP, Sree BS, Vuppugalla P, Velamakanni RS, Merugu R. Biopolymers from Microbial Flora. Biopolymers 2022. [DOI: 10.1007/978-3-030-98392-5_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
46
|
Liu H, Liang Y, Chen Z, Liu M, Qu Z, He B, Zhang X, Wang J. Effect of curdlan on the aggregation behavior of gluten protein in frozen cooked noodles during cooking. J Cereal Sci 2022. [DOI: 10.1016/j.jcs.2021.103395] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
47
|
Basiri S. Applications of Microbial Exopolysaccharides in the Food Industry. AVICENNA JOURNAL OF MEDICAL BIOCHEMISTRY 2021. [DOI: 10.34172/ajmb.2021.16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Exopolysaccharides (EPSs) are high molecular weight polysaccharides secreted by microorganisms in the surrounding environment. In addition to the favorable benefits of these compounds for microorganisms, including microbial cell protection, they are used in various food, pharmaceutical, and cosmetic industries. Investigating the functional and health-promoting characteristics of microbial EPS, identifying the isolation method of these valuable compounds, and their applications in the food industry are the objectives of this study. EPS are used in food industries as thickeners, gelling agents, viscosifiers, and film formers. The antioxidative, anticancer, prebiotic, and cholesterol-lowering effects of some of these compounds make it possible to use them in functional food production.
Collapse
Affiliation(s)
- Sara Basiri
- Department of Food Hygiene and Public Health, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| |
Collapse
|
48
|
Biosynthesis and applications of curdlan. Carbohydr Polym 2021; 273:118597. [PMID: 34560997 DOI: 10.1016/j.carbpol.2021.118597] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 01/01/2023]
Abstract
Curdlan is widely applied in the food and pharmaceutical industries. This review focuses on the biosynthetic pathways, regulatory mechanisms and metabolic engineering strategies for curdlan production. Firstly, curdlan biosynthesis is discussed. Furthermore, various strategies to increase curdlan production are summarized from four aspects, including the overexpression of genes for curdlan biosynthesis, weakening/knockdown of genes from competing pathways, increasing the supply of curdlan precursors, and optimization of fermentation conditions. Moreover, the emerging and advanced applications of curdlan are introduced. Finally, the challenges that are frequently encountered during curdlan biosynthesis are noted with a discussion of directions for curdlan production.
Collapse
|
49
|
Engineering of a chitosanase fused to a carbohydrate-binding module for continuous production of desirable chitooligosaccharides. Carbohydr Polym 2021; 273:118609. [PMID: 34561008 DOI: 10.1016/j.carbpol.2021.118609] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 08/17/2021] [Accepted: 08/20/2021] [Indexed: 01/16/2023]
Abstract
Chitooligosaccharides (CHOS) with multiple biological activities are usually produced through enzymatic hydrolysis of chitosan or chitin. However, purification and recycling of the enzyme have largely limited the advancement of CHOS bioproduction. Here, we engineered a novel enzyme by fusing the native chitosanase Csn75 with a carbohydrate-binding module (CBM) that can specifically bind to curdlan. The recombinase Csn75-CBM was successfully expressed by Pichia pastoris and allowed one-step purification and immobilization in the chitosanase immobilized curdlan packed-bed reactor (CICPR), where a maximum adsorption capacity of 39.59 mg enzyme/g curdlan was achieved. CHOS with degrees of polymerization of 2-5 (a hydrolysis yield of 97.75%), 3-6 (75.45%), and 3-7 (73.2%) were continuously produced by adjusting the ratio of enzyme and chitosan or the flow rate of chitosan. Moreover, the CICPR exhibited good stability and reusability after several cycles. The recombinase Csn75-CBM has greatly improved the efficiency of the bioproduction of CHOS.
Collapse
|
50
|
Mahmoud YAG, El-Naggar ME, Abdel-Megeed A, El-Newehy M. Recent Advancements in Microbial Polysaccharides: Synthesis and Applications. Polymers (Basel) 2021; 13:polym13234136. [PMID: 34883639 PMCID: PMC8659985 DOI: 10.3390/polym13234136] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/15/2021] [Accepted: 11/22/2021] [Indexed: 12/21/2022] Open
Abstract
Polysaccharide materials are widely applied in different applications including food, food packaging, drug delivery, tissue engineering, wound dressing, wastewater treatment, and bioremediation sectors. They were used in these domains due to their efficient, cost-effective, non-toxicity, biocompatibility, and biodegradability. As is known, polysaccharides can be synthesized by different simple, facile, and effective methods. Of these polysaccharides are cellulose, Arabic gum, sodium alginate, chitosan, chitin, curdlan, dextran, pectin, xanthan, pullulan, and so on. In this current article review, we focused on discussing the synthesis and potential applications of microbial polysaccharides. The biosynthesis of polysaccharides from microbial sources has been considered. Moreover, the utilization of molecular biology tools to modify the structure of polysaccharides has been covered. Such polysaccharides provide potential characteristics to transfer toxic compounds and decrease their resilience to the soil. Genetically modified microorganisms not only improve yield of polysaccharides, but also allow economically efficient production. With the rapid advancement of science and medicine, biosynthesis of polysaccharides research has become increasingly important. Synthetic biology approaches can play a critical role in developing polysaccharides in simple and facile ways. In addition, potential applications of microbial polysaccharides in different fields with a particular focus on food applications have been assessed.
Collapse
Affiliation(s)
- Yehia A.-G. Mahmoud
- Department of Botany and Microbiology, Faculty of Science, Tanta University, Tanta 31527, Egypt;
| | - Mehrez E. El-Naggar
- Textile Research Division, National Research Center (Affiliation ID: 60014618), Cairo 12622, Egypt
- Correspondence: (M.E.E.-N.); (M.E.-N.)
| | - Ahmed Abdel-Megeed
- Department of Plant Protection, Faculty of Agriculture Saba Basha, Alexandria University, Alexandria 21531, Egypt;
| | - Mohamed El-Newehy
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
- Department of Chemistry, Faculty of Science, Tanta University, Tanta 31527, Egypt
- Correspondence: (M.E.E.-N.); (M.E.-N.)
| |
Collapse
|