1
|
Lokhande KD, Bhakare MA, Bondarde MP, Dhumal PS, Some S. Quick self-grown ternary supramolecules embedded in sodium alginate to fabricate ultralight sponge exhibiting superior flame retardancy. Int J Biol Macromol 2024; 275:133766. [PMID: 38992526 DOI: 10.1016/j.ijbiomac.2024.133766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/22/2024] [Accepted: 07/07/2024] [Indexed: 07/13/2024]
Abstract
To mitigate environmental and health risks associated with the use of halogenated flame retardants, effective halogen-free solutions have been extensively explored. In this study, melamine/boric acid/phosphoric acid (MBP)‑sodium alginate (SA) sponge was synthesized by treating MBP ternary supramolecules with microwave irradiation via one-pot, facile, and speedy synthesis, obtaining an MBP-SA sponge, a polysaccharide biopolymer. Crosslinking of SA with Ca2+ ion formed an intact network, and this was confirmed using scanning electron microscopy (SEM). Thereafter, the flame retardancy of the as-synthesized SA/MBP sponge was investigated by exposing it to a spirit lamp and a Bunsen burner; the sponge remained intact for up to 540 s and 370 s, respectively, demonstrating the enhanced flame retardancy of MBP supramolecules in the SA/MBP sponge. The limiting oxygen index of the SA/MBP sponge was up to 62 %, demonstrating the self-extinguishing and thermal insulation properties of the as-synthesized sponge. The findings of this study provide insights for developing a new strategy to use SA/MBP sponges for fire protection.
Collapse
Affiliation(s)
- Kshama D Lokhande
- Department of Speciality Chemicals Technology, Institute of Chemical Technology, Matunga, Mumbai 400019, India
| | - Madhuri A Bhakare
- Department of Speciality Chemicals Technology, Institute of Chemical Technology, Matunga, Mumbai 400019, India
| | - Mahesh P Bondarde
- Department of Speciality Chemicals Technology, Institute of Chemical Technology, Matunga, Mumbai 400019, India
| | - Pratik S Dhumal
- Department of Speciality Chemicals Technology, Institute of Chemical Technology, Matunga, Mumbai 400019, India
| | - Surajit Some
- Department of Speciality Chemicals Technology, Institute of Chemical Technology, Matunga, Mumbai 400019, India.
| |
Collapse
|
2
|
Gadd GM, Fomina M, Pinzari F. Fungal biodeterioration and preservation of cultural heritage, artwork, and historical artifacts: extremophily and adaptation. Microbiol Mol Biol Rev 2024; 88:e0020022. [PMID: 38179930 PMCID: PMC10966957 DOI: 10.1128/mmbr.00200-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 09/11/2023] [Indexed: 01/06/2024] Open
Abstract
SUMMARYFungi are ubiquitous and important biosphere inhabitants, and their abilities to decompose, degrade, and otherwise transform a massive range of organic and inorganic substances, including plant organic matter, rocks, and minerals, underpin their major significance as biodeteriogens in the built environment and of cultural heritage. Fungi are often the most obvious agents of cultural heritage biodeterioration with effects ranging from discoloration, staining, and biofouling to destruction of building components, historical artifacts, and artwork. Sporulation, morphological adaptations, and the explorative penetrative lifestyle of filamentous fungi enable efficient dispersal and colonization of solid substrates, while many species are able to withstand environmental stress factors such as desiccation, ultra-violet radiation, salinity, and potentially toxic organic and inorganic substances. Many can grow under nutrient-limited conditions, and many produce resistant cell forms that can survive through long periods of adverse conditions. The fungal lifestyle and chemoorganotrophic metabolism therefore enable adaptation and success in the frequently encountered extremophilic conditions that are associated with indoor and outdoor cultural heritage. Apart from free-living fungi, lichens are a fungal growth form and ubiquitous pioneer colonizers and biodeteriogens of outdoor materials, especially stone- and mineral-based building components. This article surveys the roles and significance of fungi in the biodeterioration of cultural heritage, with reference to the mechanisms involved and in relation to the range of substances encountered, as well as the methods by which fungal biodeterioration can be assessed and combated, and how certain fungal processes may be utilized in bioprotection.
Collapse
Affiliation(s)
- Geoffrey Michael Gadd
- Geomicrobiology Group, School of Life Sciences, University of Dundee, Dundee, United Kingdom
- State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Oil and Gas Pollution Control, College of Chemical Engineering and Environment, China University of Petroleum, Beijing, China
| | - Marina Fomina
- Zabolotny Institute of Microbiology and Virology, National Academy of Sciences of Ukraine, Kyiv, Ukraine
- National Reserve “Sophia of Kyiv”, Kyiv, Ukraine
| | - Flavia Pinzari
- Institute for Biological Systems (ISB), Council of National Research of Italy (CNR), Monterotondo (RM), Italy
- Natural History Museum, London, United Kingdom
| |
Collapse
|
3
|
Zhang K, Tang CS, Jiang NJ, Pan XH, Liu B, Wang YJ, Shi B. Microbial‑induced carbonate precipitation (MICP) technology: a review on the fundamentals and engineering applications. ENVIRONMENTAL EARTH SCIENCES 2023; 82:229. [PMID: 37128499 PMCID: PMC10131530 DOI: 10.1007/s12665-023-10899-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 04/08/2023] [Indexed: 05/03/2023]
Abstract
The microbial‑induced carbonate precipitation (MICP), as an emerging biomineralization technology mediated by specific bacteria, has been a popular research focus for scientists and engineers through the previous two decades as an interdisciplinary approach. It provides cutting-edge solutions for various engineering problems emerging in the context of frequent and intense human activities. This paper is aimed at reviewing the fundaments and engineering applications of the MICP technology through existing studies, covering realistic need in geotechnical engineering, construction materials, hydraulic engineering, geological engineering, and environmental engineering. It adds a new perspective on the feasibility and difficulty for field practice. Analysis and discussion within different parts are generally carried out based on specific considerations in each field. MICP may bring comprehensive improvement of static and dynamic characteristics of geomaterials, thus enhancing their bearing capacity and resisting liquefication. It helps produce eco-friendly and durable building materials. MICP is a promising and cost-efficient technology in preserving water resources and subsurface fluid leakage. Piping, internal erosion and surface erosion could also be addressed by this technology. MICP has been proved suitable for stabilizing soils and shows promise in dealing with problematic soils like bentonite and expansive soils. It is also envisaged that this technology may be used to mitigate against impacts of geological hazards such as liquefaction associated with earthquakes. Moreover, global environment issues including fugitive dust, contaminated soil and climate change problems are assumed to be palliated or even removed via the positive effects of this technology. Bioaugmentation, biostimulation, and enzymatic approach are three feasible paths for MICP. Decision makers should choose a compatible, efficient and economical way among them and develop an on-site solution based on engineering conditions. To further decrease the cost and energy consumption of the MICP technology, it is reasonable to make full use of industrial by-products or wastes and non-sterilized media. The prospective direction of this technology is to make construction more intelligent without human intervention, such as autogenous healing. To reach this destination, MICP could be coupled with other techniques like encapsulation and ductile fibers. MICP is undoubtfully a mainstream engineering technology for the future, while ecological balance, environmental impact and industrial applicability should still be cautiously treated in its real practice.
Collapse
Affiliation(s)
- Kuan Zhang
- School of Earth Sciences and Engineering, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023 China
| | - Chao-Sheng Tang
- School of Earth Sciences and Engineering, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023 China
| | - Ning-Jun Jiang
- Institute of Geotechnical Engineering, Southeast University, Nanjing, 211189 China
| | - Xiao-Hua Pan
- School of Earth Sciences and Engineering, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023 China
| | - Bo Liu
- School of Earth Sciences and Engineering, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023 China
| | - Yi-Jie Wang
- Department of Civil and Environmental Engineering, University of Hawaii, Manoa, Honolulu, HI 96822 USA
| | - Bin Shi
- School of Earth Sciences and Engineering, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023 China
| |
Collapse
|
4
|
Sazanova KV, Ponizovskaya VB. Metabolite Profile of the Micromycete Lecanicillium gracile Isolated from Plaster and Limestone. DOKLADY BIOLOGICAL SCIENCES : PROCEEDINGS OF THE ACADEMY OF SCIENCES OF THE USSR, BIOLOGICAL SCIENCES SECTIONS 2022; 507:456-462. [PMID: 36781540 DOI: 10.1134/s0012496622060205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/07/2022] [Accepted: 09/07/2022] [Indexed: 02/15/2023]
Abstract
Lecanicillium gracile is a recently described micromycete species isolated from mineral-based building materials (plaster and limestone) in interiors of cultural heritage sites in Russia. In this work, the composition of L. gracile metabolites, as well as of the culture liquid, have been characterized. The results suggest that L. gracile is a promising candidate for the search for novel biologically active compounds. During the exponential growth phase, the diversity of metabolites in the mycelium was low; the metabolome profile demonstrated predominant accumulation of monosaccharides and polyols. In the stationary phase, the metabolite diversity in the L. gracile mycelium was high; apparently, at this stage biosynthesis dominated over energy-producing processes. L. gracile synthesized extracellular polymer compounds and shifted medium рН to the alkaline range. When fungi are developing on rock substrates, their extracellular polymer matrix not only serves to facilitate the formation of biofilms with other microorganisms of lithobiont communities, but also, at alkaline pH values, it promotes the formation of secondary calcite on calcium-containing substrates, such as limestone and marble. That is, L. gracile possesses certain biochemical traits that facilitate its long-term growth on rock substrates and reflect the specific character of interactions between the fungus and the substrate materials.
Collapse
Affiliation(s)
- K V Sazanova
- Komarov Botanical Institute, Russian Academy of Sciences, 197376, St. Petersburg, Russia. .,St. Petersburg Branch of the Archive of the Russian Academy of Sciences, 196084, St. Petersburg, Russia.
| | | |
Collapse
|
5
|
Qiao J, Cui H, Wang M, Fu X, Wang X, Li X, Huang H. Integrated biorefinery approaches for the industrialization of cellulosic ethanol fuel. BIORESOURCE TECHNOLOGY 2022; 360:127516. [PMID: 35764282 DOI: 10.1016/j.biortech.2022.127516] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/20/2022] [Accepted: 06/22/2022] [Indexed: 06/15/2023]
Abstract
Lignocellulosic biomass is an abundant and sustainable raw material, but its conversion into ethanol fuel has not yet achieved large-scale industrialization and economic benefits. Integrated biorefineries have been widely identified as the key to achieving this goal. Here, four promising routes were summarized to assemble the new industrial plants for cellulose-based fuels and chemicals, including 1) integration of cellulase production systems into current cellulosic ethanol processes; 2) combination of processes and facilities between cellulosic ethanol and first-generation ethanol; 3) application of enzyme-free saccharification processes and computational approaches to increase the bioethanol yield and optimize the integration process; 4) production of multiple products to maximize the value derived from the lignocellulosic biomass. Finally, the remaining challenges and perspectives of this field are also discussed.
Collapse
Affiliation(s)
- Jie Qiao
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, No. 2 Xuelin Road, Nanjing 210097, China
| | - Haiyang Cui
- Institute of Biotechnology, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany
| | - Minghui Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, No. 2 Xuelin Road, Nanjing 210097, China
| | - Xianshen Fu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, No. 2 Xuelin Road, Nanjing 210097, China
| | - Xinyue Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, No. 2 Xuelin Road, Nanjing 210097, China
| | - Xiujuan Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, No. 2 Xuelin Road, Nanjing 210097, China.
| | - He Huang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, No. 2 Xuelin Road, Nanjing 210097, China; School of Pharmaceutical Sciences, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, China
| |
Collapse
|
6
|
Application and challenge of bacteriophage in the food protection. Int J Food Microbiol 2022; 380:109872. [PMID: 35981493 DOI: 10.1016/j.ijfoodmicro.2022.109872] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 08/08/2022] [Accepted: 08/09/2022] [Indexed: 11/23/2022]
Abstract
In recent years, foodborne diseases caused by pathogens have been increasing. Therefore, it is essential to control the growth and transmission of pathogens. Bacteriophages (phages) have the potential to play an important role in the biological prevention, control, and treatment of these foodborne diseases due to their favorable advantages. Phages not only effectively inhibit pathogenic bacteria and prolong the shelf life of food, but also possess the advantages of specificity and an absence of chemical residues. Currently, there are many cases of phage applications in agriculture, animal disease prevention and control, food safety, and the treatment of drug-resistant disease. In this review, we summarize the recent research progress on phages against foodborne pathogenic bacteria, including Escherichia coli, Salmonella, Campylobacter, Listeria monocytogenes, Shigella, Vibrio parahaemolyticus, and Staphylococcus aureus. We also discuss the main issues and their corresponding solutions in the application of phages in the food industry. In recent years, although researchers have discovered more phages with potential applications in the food industry, most researchers use these phages based on their host spectrum, and the application environment is mostly in the laboratory. Therefore, the practical application of these phages in different aspects of the food industry may be unsatisfactory and even have some negative effects. Thus, we suggest that before using these phages, it is necessary to identify their specific receptors. Using their specific receptors as the selection basis for their application and combining phages with other phages or phages with traditional antibacterial agents may further improve their safety and application efficiency. Collectively, this review provides a theoretical reference for the basic research and application of phages in the food industry.
Collapse
|
7
|
Phototrophic and fungal communities inhabiting the Roman cryptoporticus of the national museum Machado de Castro (UNESCO site, Coimbra, Portugal). World J Microbiol Biotechnol 2022; 38:157. [PMID: 35809137 DOI: 10.1007/s11274-022-03345-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 06/21/2022] [Indexed: 10/17/2022]
Abstract
Caves are oligotrophic environments, characterized by constant temperatures, high humidity and low natural light. However, microbial shifts can still happen in such environments, especially with the increase in tourist activity and implementation of artificial lights, making caves even more susceptible to environmental changes. As a result, proliferation of phototrophic organisms can increase dramatically, leading to their settlement on stone surfaces, which in turn facilitates the development of heterotrophic organisms, such as fungi and bacteria. The Roman Cryptoporticus of the National Museum Machado de Castro, erected by the Romans in the 1st or second century, is one of the most emblematic buildings in the city of Coimbra. However, the majority of the rooms that constitute this monument show signs of biodeterioration by microalgae and cyanobacteria as well as of fungi. The aim of this study was to characterize the phototrophic and fungal communities at this site, employing culture-dependent and-independent methodologies. Culture-dependent results showed that the phototrophic communities were mainly composed of green microalgae, whereas the culture-independent showed that cyanobacteria were the most dominant. As to the fungal communities, both approaches identified various entomopathogenic fungal species. In addition, the culture-independent analysis also allowed to verify the presence of animal reads, suggesting the hypothesis that animal vectored dispersion can play an important role in the development of fungi at this environment.
Collapse
|
8
|
Pargoletti E, Comite V, Fermo P, Sabatini V, Annunziata L, Ortenzi MA, Farina H, Cappelletti G. Calcitic-based stones protection by a low-fluorine modified methacrylic coating. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:29455-29466. [PMID: 34312747 PMCID: PMC9001578 DOI: 10.1007/s11356-021-15515-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 07/15/2021] [Indexed: 06/01/2023]
Abstract
Atmospheric pollutants, such as NOx, SO2, and particulate matter, together with water percolation inside the stone pores, represent the main causes of cultural heritage decay. In order to avoid these undesired phenomena, the application of protective coatings represents a reliable solution. In this context, the present study focused on the synthesis of low-fluorine content methacrylic-based (MMA) polymeric resins characterized by seven F atoms (namely F7 monomer) in the lateral chains. Four different percentages (1.0, 2.5, 5.0, and 10.0%) of the present monomer were adopted to obtain a final polymeric structure showing the desired hydrophobicity, processability, and structural and thermal stability (even after accelerated UV aging tests). MMA_F7(1.0) seemed to be the optimal one; therefore, it was further applied onto Candoglia marble. Specifically, the treated substrates showed good surface hydrophobicity, water repellency, and water vapor transpirability. No color variation was observed even after a 1.5-year exposure in a real polluted environment (Monza Cathedral). Interestingly, the application of this coating hindered the atmospheric nitrates penetration inside the stones and, at the same time, it limited the sulfates (gypsum) formation, thus revealing a very promising marbles protection resin.
Collapse
Affiliation(s)
- Eleonora Pargoletti
- Dipartimento di Chimica, Università degli Studi di Milano, via Golgi 19, 20133 Milano, Italy
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), via Giusti 9, 50121 Firenze, Italy
| | - Valeria Comite
- Dipartimento di Chimica, Università degli Studi di Milano, via Golgi 19, 20133 Milano, Italy
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), via Giusti 9, 50121 Firenze, Italy
| | - Paola Fermo
- Dipartimento di Chimica, Università degli Studi di Milano, via Golgi 19, 20133 Milano, Italy
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), via Giusti 9, 50121 Firenze, Italy
| | - Valentina Sabatini
- Dipartimento di Chimica, Università degli Studi di Milano, via Golgi 19, 20133 Milano, Italy
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), via Giusti 9, 50121 Firenze, Italy
| | - Luisa Annunziata
- Dipartimento di Chimica, Università degli Studi di Milano, via Golgi 19, 20133 Milano, Italy
- CRC Materiali Polimerici “LaMPo”, Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, 20133 Milan, Italy
| | - Marco Aldo Ortenzi
- Dipartimento di Chimica, Università degli Studi di Milano, via Golgi 19, 20133 Milano, Italy
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), via Giusti 9, 50121 Firenze, Italy
- CRC Materiali Polimerici “LaMPo”, Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, 20133 Milan, Italy
| | - Hermes Farina
- Dipartimento di Chimica, Università degli Studi di Milano, via Golgi 19, 20133 Milano, Italy
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), via Giusti 9, 50121 Firenze, Italy
- CRC Materiali Polimerici “LaMPo”, Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, 20133 Milan, Italy
| | - Giuseppe Cappelletti
- Dipartimento di Chimica, Università degli Studi di Milano, via Golgi 19, 20133 Milano, Italy
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), via Giusti 9, 50121 Firenze, Italy
- CRC Materiali Polimerici “LaMPo”, Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, 20133 Milan, Italy
| |
Collapse
|
9
|
Bauer MA, Kainz K, Ruckenstuhl C, Madeo F, Carmona-Gutierrez D. Murals meet microbes: at the crossroads of microbiology and cultural heritage. MICROBIAL CELL (GRAZ, AUSTRIA) 2021; 8:276-279. [PMID: 34909431 PMCID: PMC8642884 DOI: 10.15698/mic2021.12.765] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 11/30/2021] [Indexed: 06/14/2023]
Abstract
Our cultural heritage consists of manifold cultural expressions and represents a defining feature of our societies that needs to be further inherited to future generations. Even though humankind always fought a daily struggle for survival, at the same time, it seemed to have a spiritual need that went far beyond mere materialistic satisfaction and nowadays manifests in sometimes very ancient, yet brilliant artistic works. This fundamental legacy is endangered by several instances, including biodeterioration. Indeed, microorganisms play a significant role in the decline of all forms of tangible cultural heritage, including movable, immovable and underwater cultural heritage. Microbial colonization, biofilm formation and damaging metabolite production eventually result in critical decay. Thus, efforts to mitigate the negative impact of damaging microorganisms have been pursued with diverse physical, chemical and biological approaches. Intriguingly, recent advances have unveiled that specific microorganisms and microbial-based technologies also have the potential for cultural heritage preservation and present unique advantages. This short piece provides a quick overview on the duality of microorganisms in the conservation and restoration of cultural heritage.
Collapse
Affiliation(s)
- Maria A Bauer
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
| | - Katharina Kainz
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
| | | | - Frank Madeo
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
- BioHealth Graz, Graz, Austria
- BioHealth Graz, Graz, Austria
| | | |
Collapse
|
10
|
Monitoring Coptic Masonry Affected by Clay Minerals and Microorganisms at the Church of Virgin Mary, Wadi El-Natrun (Egypt). HERITAGE 2021. [DOI: 10.3390/heritage4040223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This paper focuses on the role played by the clay minerals and microorganisms in the deterioration process of Coptic architecture units at the church of Virgin Mary, Wadi El-Natrun region. For this purpose building materials (mainly mortars and plasters) from the studied church were examined using X-ray diffraction (XRD), X-ray fluorescence (XRF) and scanning electron microscope with energy dispersive spectroscopy (SEM-EDS); in order to identify their composition and were investigated petro-graphically to determine the real response of the masonry structure to the deformation imposed at the endogenous factors. Wall gypsum mortars in the church contain halloysite as a dominant clay mineral while plaster is clay free; concerning microorganisms, the fungal flora Aspergillus glaucus represent the most dominant fungi constituting (22.22%), Aspergillus flavus, Aspergillus flavus, Aspergillus fumigatus, Aspergillus occhraceus, and Aspergillus caudidus were also isolated.
Collapse
|
11
|
Microbiological, Health and Comfort Aspects of Indoor Air Quality in a Romanian Historical Wooden Church. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18189908. [PMID: 34574831 PMCID: PMC8467041 DOI: 10.3390/ijerph18189908] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/07/2021] [Accepted: 09/16/2021] [Indexed: 01/02/2023]
Abstract
Monitoring the indoor microclimate in old buildings of cultural heritage and significance is a practice of great importance because of the importance of their identity for local communities and national consciousness. Most aged heritage buildings, especially those made of wood, develop an indoor microclimate conducive to the development of microorganisms. This study aims to analyze one wooden church dating back to the 1710s in Romania from the microclimatic perspective, i.e., temperature and relative humidity and the fungal load of the air and surfaces. One further aim was to determine if the internal microclimate of the monument is favorable for the health of parishioners and visitors, as well as for the integrity of the church itself. The research methodology involved monitoring of the microclimate for a period of nine weeks (November 2020–January 2021) and evaluating the fungal load in indoor air as well as on the surfaces. The results show a very high contamination of air and surfaces (>2000 CFU/m3). In terms of fungal contamination, Aspergillus spp. (two different species), Alternaria spp., Cladosporium spp., Mucor spp., Penicillium spp. (two different species) and Trichopyton spp. were the genera of fungi identified in the indoor wooden church air and Aspergillus spp., Cladosporium spp., Penicillium spp. (two different species) and Botrytis spp. on the surfaces (church walls and iconostasis). The results obtained reveal that the internal microclimate not only imposes a potential risk factor for the parishioners and visitors, but also for the preservation of the wooden church as a historical monument, which is facing a crisis of biodeterioration of its artwork.
Collapse
|
12
|
Enhanced Historical Limestone Protection by New Organic/Inorganic Additive-Modified Resins. COATINGS 2021. [DOI: 10.3390/coatings11010073] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The Cultural Heritage deterioration is a spontaneous decay process due to water percolation and air pollutant deposition. In this context, novel acrylic (Twinswet, TW) and siloxane-based (Alpha®SI30) resins were exploited starting from commercial products and then modified by adding either a commercial polysiloxane-based additive (TegoPhobe 1500N) or a precursor of SiO2 nanoparticles (Tetraethyl ortosilicate, TEOS) to improve the Vicenza stone surface hydrophobicity. Properties of the coated materials were studied using different techniques such as water contact angle (WCA), capillary absorption, colorimetric and water vapor permeability measurements. Accelerated UV aging and eight-month outdoor exposure tests (at Milan University campus) were also performed to determine the coatings durability. Notably, the addition of both additives slightly enhanced the surface hydrophobicity resulting in WCAs of about 140°, and decreased the water absorption especially for Alpha-based resins. Conversely, a reduction of water vapor permeability was observed, even if within the threshold value of 50%. Concerning the color variation, Alpha®SI30 preserved the stone external aspect; instead, TW smoothly modified the surface color. All of the studied coatings were stable to both UV aging and outdoor exposure. Hence, the present modified commercial coatings revealed to be very promising for the protection of historical monuments.
Collapse
|
13
|
Syed AJ, Anderson JC. Applications of bioluminescence in biotechnology and beyond. Chem Soc Rev 2021; 50:5668-5705. [DOI: 10.1039/d0cs01492c] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Bioluminescent probes have hugely benefited from the input of synthetic chemistry and protein engineering. Here we review the latest applications of these probes in biotechnology and beyond, with an eye on current limitations and future directions.
Collapse
Affiliation(s)
- Aisha J. Syed
- Department of Chemistry
- University College London
- London
- UK
| | | |
Collapse
|
14
|
A Review on Sampling Techniques and Analytical Methods for Microbiota of Cultural Properties and Historical Architecture. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10228099] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
World cultural heritage suffers from deterioration caused by both natural and anthropogenic processes, among which microorganisms are significantly involved. Among the key issues of this topic, sampling techniques and analytical methods for revealing the microbiome are fundamental to obtaining useful results for understanding the key players and processes involved, and also for effective protection and management of the cultural heritage for humanity. A non-invasive and non-destructive sampling method is required for sampling of cultural properties prior to further analysis of the microbiome. One example is illustrated in this article. For many years, culture-dependent methods had been used before the invention of polymerase-chain reaction (PCR) methods and, more recently, specifically high-throughput next generation sequencing (NGS). NGS reveals the whole microbial community composition and the active microorganisms from genomic DNA and RNA, respectively. The recovered environmental DNA and RNA from samples provide the information on microbial community and composition, and the active members and biochemical processes of the microbial attributes. It should be emphasized that the metabolically-active members of functional microflora in the biofilm or microbiome on cultural heritage must be determined and identified from the RNA-based analysis to gain a substantially important insight of the active biodeterioration processes and also the effectiveness of the conservation strategies. The importance of the culture-independent technique, based on NGS, is that it can be used in combination with the conventional culturing methods to guide the isolation and enrichment of new microorganisms to gain further biochemical insights to advance the role of the specific microbial groups for biodeterioration of cultural heritage. At the same time, effective restoration and maintenance strategies can be formulated for the protection of world cultural heritage.
Collapse
|
15
|
Favero-Longo SE, Viles HA. A review of the nature, role and control of lithobionts on stone cultural heritage: weighing-up and managing biodeterioration and bioprotection. World J Microbiol Biotechnol 2020; 36:100. [PMID: 32607867 DOI: 10.1007/s11274-020-02878-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 06/23/2020] [Indexed: 12/20/2022]
Abstract
Lithobionts (rock-dwelling organisms) have been recognized as agents of aesthetic and physico-chemical deterioration of stonework. In consequence, their removal from cultural heritage stone surfaces (CHSS) is widely considered a necessary step in conservation interventions. On the other hand, lithobiontic communities, including microbial biofilms ('biological patinas'), can help integrate CHSS with their environmental setting and enhance biodiversity. Moreover, in some cases bioprotective effects have been reported and even interpreted as potential biotechnological solutions for conservation. This paper reviews the plethora of traditional and innovative methodologies to characterize lithobionts on CHSS in terms of biodiversity, interaction with the stone substrate and impacts on durability. In order to develop the best management and conservation strategies for CHSS, such diagnosis should be acquired on a case-by-case basis, as generalized approaches are unlikely to be suitable for all lithobionts, lithologies, environmental and cultural contexts or types of stonework. Strategies to control biodeteriogenic lithobionts on CHSS should similarly be based on experimental evaluation of their efficacy, including long-term monitoring of the effects on bioreceptivity, and of their environmental safety. This review examines what is known about the efficacy of control methods based on traditional-commercial biocides, as well as those based on innovative application of substances of plant and microbial origin, and physical techniques. A framework for providing a balanced scientific assessment of the role of lithobionts on CHSS and integrating this knowledge into management and conservation decision-making is presented.
Collapse
Affiliation(s)
- Sergio Enrico Favero-Longo
- Dipartimento di Scienze della Vita e Biologia dei Sistemi, Università degli Studi di Torino, Viale Mattioli 25, 10125, Torino, Italy.
| | - Heather A Viles
- School of Geography and the Environment, University of Oxford, South Parks Road, Oxford, OX1 3QY, UK
| |
Collapse
|
16
|
Metabolic processes applied to endangered metal and wood heritage objects: Call a microbial plumber! N Biotechnol 2020; 56:21-26. [DOI: 10.1016/j.nbt.2019.11.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 10/30/2019] [Accepted: 11/03/2019] [Indexed: 12/20/2022]
|
17
|
Oliwit AT, Cayetano RDA, Kumar G, Kim JS, Kim SH. Comparative evaluation of biochemical methane potential of various types of Ugandan agricultural biomass following soaking aqueous ammonia pretreatment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:17631-17641. [PMID: 31865571 DOI: 10.1007/s11356-019-07190-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 11/26/2019] [Indexed: 06/10/2023]
Abstract
The feasibility of pretreatment involving soaking in aqueous ammonia (SAA) for the anaerobic digestion (AD) of eight different types of agricultural biomass of Ugandan origin was investigated. Moderate pretreatment temperatures of 60 and 90 °C were employed, and the NH3 concentration, solid-to-liquid ratio, and pretreatment time were fixed at 15.0% (w/w), 1:6, and 6 h, respectively. The delignification efficiencies of the SAA pretreatment ranged from 51.1 to 76.6%, and the maximum value was observed for maize bran pretreated at 90 °C. Biochemical methane potential experiments proved that the breaking of the complex bonds of lignin made fermentable sugars easily accessible to microorganisms. In all cases, the SAA pretreatment enhanced the methane potential of the eight types of Ugandan biomass compared with its untreated counterparts. The pretreated maize bran exhibited the highest methane yield of 291.5 mL CH4/g COD, which is 83.1% of the theoretical conversion. SAA followed by AD is useful for employing Ugandan agricultural biomass as a renewable energy source.
Collapse
Affiliation(s)
- Abura Tobby Oliwit
- Department of Environmental Engineering, Daegu University, Gyeongsan City, Gyeongbuk, 38453, Republic of Korea
| | - Roent Dune A Cayetano
- School of Civil and Environmental Engineering, Yonsei University, 50 Yonsei-ro, Seoul, 03722, Republic of Korea
| | - Gopalakrishnan Kumar
- Institute of Chemistry, Bioscience and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, 4036, Stavanger, Norway
| | - Jun Seok Kim
- Department of Chemical Engineering, Kyonggi University, Suwon, 16227, Republic of Korea
| | - Sang-Hyoun Kim
- School of Civil and Environmental Engineering, Yonsei University, 50 Yonsei-ro, Seoul, 03722, Republic of Korea.
| |
Collapse
|
18
|
Self-Healing Concrete by Biological Substrate. MATERIALS 2019; 12:ma12244099. [PMID: 31817964 PMCID: PMC6947293 DOI: 10.3390/ma12244099] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 11/29/2019] [Accepted: 12/06/2019] [Indexed: 11/17/2022]
Abstract
At present, the commonly used repair materials for concrete cracks mainly include epoxy systems and acrylic resins, which are all environmentally unfriendly materials, and the difference in drying shrinkage and thermal expansion often causes delamination or cracking between the original concrete matrix and the repair material. This study aimed to explore the feasibility of using microbial techniques to repair concrete cracks. The bacteria used were environmentally friendly Bacillus pasteurii. In particular, the use of lightweight aggregates as bacterial carriers in concrete can increase the chance of bacterial survival. Once the external environment meets the growth conditions of the bacteria, the vitality of the strain can be restored. Such a system can greatly improve the feasibility and success rate of bacterial mineralization in concrete. The test project included the microscopic testing of concrete crack repair, mainly to understand the crack repair effect of lightweight aggregate concrete with implanted bacterial strains, and an XRD test to confirm that the repair material was produced by the bacteria. The results show that the implanted bacterial strains can undergo Microbiologically Induced Calcium Carbonate Precipitation (MICP) and can effectively fill the cracks caused by external concrete forces by calcium carbonate deposition. According to the results on the crack profile and crack thickness, the calcium carbonate precipitate produced by the action of Bacillus pasteurii is formed by the interface between the aggregate and the cement paste, and it spreads over the entire fracture surface and then accumulates to a certain thickness to form a crack repairing effect. The analysis results of the XRD test also clearly confirm that the white crystal formed in the concrete crack is calcium carbonate. From the above test results, it is indeed feasible to use Bacillus pasteurii in the self-healing of concrete cracks.
Collapse
|
19
|
Dodero A, Pianella L, Vicini S, Alloisio M, Ottonelli M, Castellano M. Alginate-based hydrogels prepared via ionic gelation: An experimental design approach to predict the crosslinking degree. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.06.028] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
20
|
Sabatini V, Pargoletti E, Comite V, Ortenzi MA, Fermo P, Gulotta D, Cappelletti G. Towards Novel Fluorinated Methacrylic Coatings for Cultural Heritage: A Combined Polymers and Surfaces Chemistry Study. Polymers (Basel) 2019; 11:polym11071190. [PMID: 31315250 PMCID: PMC6681005 DOI: 10.3390/polym11071190] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 07/12/2019] [Accepted: 07/13/2019] [Indexed: 11/30/2022] Open
Abstract
In this work, new co- and ter-polymers of methyl methacrylate (MMA), ethyl methacrylate (EMA), and N-butyl methacrylate (nBuMA), containing just 1% mol × mol−1 of a fluorinated co-monomer, 3,3,4,4,5,5,6,6,7,7,8,8,8-tridecafluoro-octyl methacrylate (POMA), were synthesized. After an UV accelerated aging test, the photo-chemical stability of the polymers prepared was determined by 1H NMR and FT-IR spectroscopy, size exclusion chromatography, differential scanning calorimetry and wettability measurements. The polymers were applied to Botticino tiles to achieve better performances in terms of water repellency and consequently deterioration resistance. One-year prolonged exposure to a real environment was conducted and the properties of the coated materials and their performances were studied using different surface techniques such as water contact angle (WCA) and colorimetric measurements (CIELaB), capillary absorption, permeability (RVP) tests and soluble salts determination. The effectiveness of the fluorinated methacrylic coatings was clearly demonstrated; among all the resins, the co-polymer MMA_POMA seems to be the most performing one. Furthermore, both the UV photo-chemical resistance and the easiness of removal was successfully studied.
Collapse
Affiliation(s)
- Valentina Sabatini
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, 20133 Milano, Italy.
- Consorzio Interuniversitario per la Scienza e Tecnologia dei Materiali (INSTM), Via Giusti 9, 50121 Firenze, Italy.
| | - Eleonora Pargoletti
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, 20133 Milano, Italy
- Consorzio Interuniversitario per la Scienza e Tecnologia dei Materiali (INSTM), Via Giusti 9, 50121 Firenze, Italy
| | - Valeria Comite
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, 20133 Milano, Italy
| | - Marco Aldo Ortenzi
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, 20133 Milano, Italy
- Consorzio Interuniversitario per la Scienza e Tecnologia dei Materiali (INSTM), Via Giusti 9, 50121 Firenze, Italy
- CRC Materiali Polimerici "LaMPo", Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, 20133 Milano, Italy
| | - Paola Fermo
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, 20133 Milano, Italy
| | - Davide Gulotta
- The Getty Conservation Institute, 1200 Getty Center Drive, Suite 700, Los Angeles, CA 90049, USA
- Dipartimento di Chimica, Materiali e Ingegneria Chimica "Giulio Natta", Politecnico di Milano, Via Mancinelli 7, 20131 Milano, Italy
| | - Giuseppe Cappelletti
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, 20133 Milano, Italy
- Consorzio Interuniversitario per la Scienza e Tecnologia dei Materiali (INSTM), Via Giusti 9, 50121 Firenze, Italy
- CRC Materiali Polimerici "LaMPo", Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, 20133 Milano, Italy
| |
Collapse
|
21
|
Abstract
The biodeterioration process involves every type of Cultural Heritage item, including monuments, stoneworks, frescoes, and easel paintings. The accurate study of the microbial and fungal communities dwelling on artworks, and involved in their deterioration, is essential for the adoption of optimal prevention and conservation strategies. Conventional restorative methods, that usually involve chemical and physical technologies, present some disadvantages, including short-term and unsatisfactory effects, potential damage to the treated works, human toxicity, and environmental hazards. Research in the field of restoration has paved the way for innovative biological approaches, or ‘biorestoration’, in which microorganisms are not only considered as an eventual danger for artworks, but rather as potential tools for restoration. The present review describes the main aspects of the biodeterioration process and highlights the most relevant biorestoration approaches: bioconsolidation, biocleaning, biological control, and new promising bio-decontaminating compounds.
Collapse
|
22
|
Ponizovskaya VB, Rebrikova NL, Kachalkin AV, Antropova AB, Bilanenko EN, Mokeeva VL. Micromycetes as colonizers of mineral building materials in historic monuments and museums. Fungal Biol 2019; 123:290-306. [PMID: 30928038 DOI: 10.1016/j.funbio.2019.01.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 12/29/2018] [Accepted: 01/14/2019] [Indexed: 10/27/2022]
Abstract
Complex of microfungi colonizing mineral building materials, i.e. limestone and plaster, in interiors of cultural heritage was characterized. Wide-scale investigation was carried out with fourteen objects studied. We have revealed a specific culturable community. We have analyzed role of obtained microfungi in biodeterioraton process on the basis of our tests (pH and water activity preferences, ability to solubilize CaCO3) and literature data (substrate preferences and enzyme activities). The species most actively developing in mineral materials in indoor environments were Acremonium charticola, Acremonium furcatum, Lecanicillium sp., Parengyodontium album, Purpureocillium lilacinum and Sarocladium kiliense. Considering this fact and their ability to develop successfully at extremely wide range of pH values from slightly acidic to alkaline ones and their high enzymatic activities we conclude that the listed species are of high interest in seeking the cause of biodeterioration. These species can actively develop in materials penetrating for years deep into the substrates and causing their deterioration in conditions of considerably heightened moisture content. In this group, A. charticola and Lecanicillium sp. were able to solubilize CaCO3.
Collapse
Affiliation(s)
- Valeria B Ponizovskaya
- Department of Mycology and Algology, Faculty of Biology, Lomonosov Moscow State University, 1-12 Leninskie Gory, 119234 Moscow, Russia.
| | - Natalia L Rebrikova
- State Research Institute for Restauration, 44-1 Gastello, 107014 Moscow, Russia
| | - Aleksey V Kachalkin
- Department of Soil Biology, Faculty of Soil Science, Lomonosov Moscow State University, 1-12 Leninskie Gory, 119234 Moscow, Russia; All-Russian Collection of Microorganisms, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms RAS, 5 Pr. Nauki, 142290 Pushchino, Moscow Region, Russia
| | - Anna B Antropova
- Mechnikov Research Institute for Vaccines and Sera, 5a Malyy Kazennyy Pereulok, 105064 Moscow, Russia
| | - Elena N Bilanenko
- Department of Mycology and Algology, Faculty of Biology, Lomonosov Moscow State University, 1-12 Leninskie Gory, 119234 Moscow, Russia
| | - Vera L Mokeeva
- Department of Mycology and Algology, Faculty of Biology, Lomonosov Moscow State University, 1-12 Leninskie Gory, 119234 Moscow, Russia
| |
Collapse
|
23
|
Monachon M, Albelda-Berenguer M, Joseph E. Biological oxidation of iron sulfides. ADVANCES IN APPLIED MICROBIOLOGY 2019; 107:1-27. [PMID: 31128745 DOI: 10.1016/bs.aambs.2018.12.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The biological oxidation of minerals and ores, called bioleaching, has been studied for the last decades to solubilize metals and recover them. In particular, iron sulfides are the most studied ores for an optimum extraction of different metals, such as copper or zinc. The use of chemolithotrophic bacteria, as Acidothiobacillus ferrooxidans, to oxidize both iron and sulfur species in aerobic conditions and at acidic pH shows promising results. In the field of heritage preservation, the development of "green" treatments is more and more studied. Waterlogged archeological wood presents an accumulation of iron sulfides within its structure, which, after exposition to oxygen, lead to salt precipitation and acidification and so to the degradation of the wooden artifact. A new extraction method, based on the dissolution of iron sulfides by the use of bacteria could be an alternative to the current chemical extraction methods, as being more respectful and ecological. While A. ferrooxidans is very effective in mines and groundwater, in the field of conservation-restoration of wood, Thiobacillus denitrificans is a better candidate as it grows at neutral pH, which is less aggressive for organic substrates (wood here). Preliminary studies show the efficiency of T. denitrificans for the dissolution of iron sulfides, as the concentration of nitrates used as electron donors decreases while the concentration of sulfates produced increases without degrading the wooden matrix. Long-term behavior should be studied to assess the stability of the artifacts after treatment.
Collapse
|
24
|
Application of Microbial Cleaning Technology for Removal of Surface Contamination. DEVELOPMENTS IN SURFACE CONTAMINATION AND CLEANING: APPLICATIONS OF CLEANING TECHNIQUES 2019. [PMCID: PMC7149890 DOI: 10.1016/b978-0-12-815577-6.00015-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Microbial cleaning takes advantage of naturally-occurring microbes to remove a wide variety of contaminants from various surfaces. The method is based on the affinity of microbes for hydrocarbons that are digested, producing harmless carbon dioxide, water, and soluble fatty acids. The microbes are nonpathogenic and are safe to handle and dispose. The process is environmentally-friendly and is less expensive than solvent cleaning, but it is not applicable to high precision cleaning applications. Typical applications include parts washing; oil and grease removal from concrete and other floor surfaces, and from drains and grease traps; cleaning and disinfection in healthcare facilities; cleaning of historical artworks and structures; and household and institutional cleaning applications.
Collapse
|
25
|
Back to the past—forever young: cutting-edge biochemical and microbiological tools for cultural heritage conservation. Appl Microbiol Biotechnol 2018; 102:6815-6825. [DOI: 10.1007/s00253-018-9121-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 05/18/2018] [Accepted: 05/21/2018] [Indexed: 01/27/2023]
|
26
|
Krajewska B. Urease-aided calcium carbonate mineralization for engineering applications: A review. J Adv Res 2017; 13:59-67. [PMID: 30094083 PMCID: PMC6077181 DOI: 10.1016/j.jare.2017.10.009] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Revised: 10/23/2017] [Accepted: 10/26/2017] [Indexed: 12/21/2022] Open
Abstract
Inducing calcium carbonate precipitation is another important function of urease in nature. The process takes advantage of the supply of carbonate ions derived from urea hydrolysis and of an increase in pH generated by the reaction, effects that in the presence of Ca2+ ions lead to the precipitation of CaCO3. Further to its importance in nature, if performed in a biomimetic manner, the urease-aided CaCO3 mineralization offers enormous potential in innovative engineering applications as an eco-friendly technique operative under mild conditions, to be used for remediation and cementation/deposition in field applications in situ. These include among others, the strengthening and consolidation of soil/sand, the protection and restoration of stone and concrete structures, conservation of stone cultural heritage materials, cleaning waste- and groundwater of toxic metals and radionuclides, and plugging geological formations for the enhancement of oil recovery and geologic CO2 sequestration. In view of the potential of this newly emerging interdisciplinary branch of engineering, this article presents the principles of urease-aided calcium carbonate mineralization apposed to other biomineralization processes, and reviews the advantages and limitations of the technique compared to the conventional techniques presently in use. Further, it presents areas of its existing and potential applications, notably in geotechnical, construction and environmental engineering, and its future perspectives.
Collapse
|
27
|
Combining Statistical Tools and Ecological Assessments in the Study of Biodeterioration Patterns of Stone Temples in Angkor (Cambodia). Sci Rep 2016; 6:32601. [PMID: 27597658 PMCID: PMC5011640 DOI: 10.1038/srep32601] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 08/10/2016] [Indexed: 11/30/2022] Open
Abstract
Biodeterioration is a major problem for the conservation of cultural heritage materials. We provide a new and original approach to analyzing changes in patterns of colonization (Biodeterioration patterns, BPs) by biological agents responsible for the deterioration of outdoor stone materials. Here we analyzed BPs of four Khmer temples in Angkor (Cambodia) exposed to variable environmental conditions, using qualitative ecological assessments and statistical approaches. The statistical analyses supported the findings obtained with the qualitative approach. Both approaches provided additional information not otherwise available using one single method. Our results indicate that studies on biodeterioration can benefit from integrating diverse methods so that conservation efforts might become more precise and effective.
Collapse
|
28
|
Microorganisms meet solid minerals: interactions and biotechnological applications. Appl Microbiol Biotechnol 2016; 100:6935-46. [DOI: 10.1007/s00253-016-7678-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 06/08/2016] [Accepted: 06/11/2016] [Indexed: 10/21/2022]
|
29
|
Cardoso R, Pedreira R, Duarte S, Monteiro G, Borges H, Flores-Colen I. Biocementation as Rehabilitation Technique of Porous Materials. NEW APPROACHES TO BUILDING PATHOLOGY AND DURABILITY 2016. [DOI: 10.1007/978-981-10-0648-7_5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|
30
|
Adamiak J, Otlewska A, Gutarowska B. Halophilic microbial communities in deteriorated buildings. World J Microbiol Biotechnol 2015; 31:1489-99. [DOI: 10.1007/s11274-015-1913-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 07/29/2015] [Indexed: 11/29/2022]
|
31
|
Stabnikov V, Ivanov V, Chu J. Construction Biotechnology: a new area of biotechnological research and applications. World J Microbiol Biotechnol 2015; 31:1303-14. [DOI: 10.1007/s11274-015-1881-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 05/31/2015] [Indexed: 02/01/2023]
|
32
|
Troiano F, Vicini S, Gioventù E, Lorenzi PF, Improta CM, Cappitelli F. A methodology to select bacteria able to remove synthetic polymers. Polym Degrad Stab 2014. [DOI: 10.1016/j.polymdegradstab.2013.12.029] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
33
|
Halophilic microorganisms are responsible for the rosy discolouration of saline environments in three historical buildings with mural paintings. PLoS One 2014; 9:e103844. [PMID: 25084531 PMCID: PMC4118916 DOI: 10.1371/journal.pone.0103844] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2014] [Accepted: 07/02/2014] [Indexed: 01/31/2023] Open
Abstract
A number of mural paintings and building materials from monuments located in central and south Europe are characterized by the presence of an intriguing rosy discolouration phenomenon. Although some similarities were observed among the bacterial and archaeal microbiota detected in these monuments, their origin and nature is still unknown. In order to get a complete overview of this biodeterioration process, we investigated the microbial communities in saline environments causing the rosy discolouration of mural paintings in three Austrian historical buildings using a combination of culture-dependent and -independent techniques as well as microscopic techniques. The bacterial communities were dominated by halophilic members of Actinobacteria, mainly of the genus Rubrobacter. Representatives of the Archaea were also detected with the predominating genera Halobacterium, Halococcus and Halalkalicoccus. Furthermore, halophilic bacterial strains, mainly of the phylum Firmicutes, could be retrieved from two monuments using special culture media. Inoculation of building materials (limestone and gypsum plaster) with selected isolates reproduced the unaesthetic rosy effect and biodeterioration in the laboratory.
Collapse
|
34
|
Dhami NK, Reddy MS, Mukherjee A. Application of calcifying bacteria for remediation of stones and cultural heritages. Front Microbiol 2014; 5:304. [PMID: 25018751 PMCID: PMC4071612 DOI: 10.3389/fmicb.2014.00304] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 06/03/2014] [Indexed: 11/13/2022] Open
Abstract
Since ages, architects and artists worldwide have focused on usage of durable stones as marble and limestone for construction of beautiful and magnificent historic monuments as European Cathedrals, Roman, and Greek temples, Taj Mahal etc. But survival of these irreplaceable cultural and historical assets is in question these days due to their degradation and deterioration caused by number of biotic and abiotic factors. These causative agents have affected not only the esthetic appearance of these structures, but also lead to deterioration of their strength and durability. The present review emphasizes about different causative agents leading to deterioration and application of microbially induced calcium carbonate precipitation as a novel and potential technology for dealing with these problems. The study also sheds light on benefits of microbial carbonate binders over the traditional agents and future directions.
Collapse
Affiliation(s)
| | | | - Abhijit Mukherjee
- Department of Civil Engineering, Curtin University Perth, WA, Australia
| |
Collapse
|
35
|
López-Moreno A, Sepúlveda-Sánchez JD, Mercedes Alonso Guzmán EM, Le Borgne S. Calcium carbonate precipitation by heterotrophic bacteria isolated from biofilms formed on deteriorated ignimbrite stones: influence of calcium on EPS production and biofilm formation by these isolates. BIOFOULING 2014; 30:547-560. [PMID: 24689777 DOI: 10.1080/08927014.2014.888715] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Heterotrophic CaCO3-precipitating bacteria were isolated from biofilms on deteriorated ignimbrites, siliceous acidic rocks, from Morelia Cathedral (Mexico) and identified as Enterobacter cancerogenus (22e), Bacillus sp. (32a) and Bacillus subtilis (52g). In solid medium, 22e and 32a precipitated calcite and vaterite while 52g produced calcite. Urease activity was detected in these isolates and CaCO3 precipitation increased in the presence of urea in the liquid medium. In the presence of calcium, EPS production decreased in 22e and 32a and increased in 52g. Under laboratory conditions, ignimbrite colonization by these isolates only occurred in the presence of calcium and no CaCO3 was precipitated. Calcium may therefore be important for biofilm formation on stones. The importance of the type of stone, here a siliceous stone, on biological colonization is emphasized. This calcium effect has not been reported on calcareous materials. The importance of the effect of calcium on EPS production and biofilm formation is discussed in relation to other applications of CaCO3 precipitation by bacteria.
Collapse
Key Words
- BG-11, Blue Green mineral medium
- BLAST, basic local alignment search tool
- CPS, capsular polysaccharides
- CR, Congo Red
- CaCO3 precipitation
- EPS production
- EPS, extracellular polymeric substances
- MEGA, molecular evolutionary genetics analysis
- NCBI, National Center for Biotechnology Information
- OD, optical density
- PBS, phosphate buffered saline
- PGY-BG11, BG-11 medium supplemented with peptone, glucose and yeast extract
- SEM, scanning electron microscopy
- XRD, X-ray diffraction
- biofilm formation
- calcium effect
- heterotrophic bacteria
- ignimbrite stones
- rRNA, ribosomal ribonucleic acid
Collapse
Affiliation(s)
- Angélica López-Moreno
- a Doctorado en Ciencias Biológicas y de la Salud , Universidad Autónoma Metropolitana , México D.F. , Mexico
| | | | | | | |
Collapse
|
36
|
Masaphy S, Lavi I, Sultz S, Zabari L. Laboratory study of fungal bioreceptivity of different fractions of composite flooring tiles showing efflorescence. Appl Microbiol Biotechnol 2014; 98:5251-60. [PMID: 24652060 DOI: 10.1007/s00253-014-5628-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 02/14/2014] [Accepted: 02/17/2014] [Indexed: 11/25/2022]
Abstract
Fungi can grow in extreme habitats, such as natural stone and mineral building materials, sometimes causing deterioration. Efflorescence-concentrated salt deposits-results from water movement through building material; it can damage masonry materials and other bricks. Fungal isolate KUR1, capable of growth on, and dissolution of stone chips composing terrazzo-type floor tiles, was isolated from such tiles showing fiber-like crystalline efflorescence. The isolate's ribosomal DNA sequences were 100 % identical to those of Nigrospora sphaerica. The ability of KUR1 to colonize and degrade the different stone chips composing the tiles was studied in axenic culture experiments. When exposed to each of the different mineral chip types composed of dolomite, calcite, or calcite-apatite mineral in low-nutrition medium, the fungus showed selective nutrient consumption, and different growth and stone mineral dissolution rates. Micromorphological examination of the fungus-colonized chips by electron microscopy showed the production of a fungal biofilm with thin films around the hyphae on the surface of the examined chips and disintegration of the calcite-apatite fraction. More than 70 % dissolution of the introduced powdered (<1 mm particle size) mineral was obtained within 10 days of incubation for the soft calcite-apatite fraction.
Collapse
Affiliation(s)
- Segula Masaphy
- Applied Mycology and Microbiology Lab, MIGAL, P.O. Box 831, Kiryat Shmona, 11016, Israel,
| | | | | | | |
Collapse
|
37
|
Sterflinger K, Piñar G. Microbial deterioration of cultural heritage and works of art--tilting at windmills? Appl Microbiol Biotechnol 2013; 97:9637-46. [PMID: 24100684 PMCID: PMC3825568 DOI: 10.1007/s00253-013-5283-1] [Citation(s) in RCA: 156] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 09/17/2013] [Accepted: 09/18/2013] [Indexed: 11/02/2022]
Abstract
Microorganisms (bacteria, archaea and fungi), in addition to lichens and insect pests, cause problems in the conservation of cultural heritage because of their biodeteriorative potential. This holds true for all types of historic artefacts, and even for art made of modern materials, in public buildings, museums and private art collections. The variety of biodeterioration phenomena observed on materials of cultural heritage is determined by several factors, such as the chemical composition and nature of the material itself, the climate and exposure of the object, in addition to the manner and frequency of surface cleaning and housekeeping in museums. This study offers a review of a variety of well-known biodeterioration phenomena observed on different materials, such as stone and building materials, objects exhibited in museums and libraries, as well as human remains and burial-related materials. The decontamination of infected artefacts, exhibition rooms and depots incurs high expenditure for museums. Nevertheless, the question has to be raised: whether the process of biodeterioration of cultural heritage can or should be stopped under all circumstances, or whether we have to accept it as a natural and an implicit consecution of its creation. This study also highlights critically the pros and cons of biocide treatments and gives some prominent examples of successful and unsuccessful conservation treatments. Furthermore, an outlook on the future research needs and developments in this highly interesting field is given.
Collapse
Affiliation(s)
- Katja Sterflinger
- Department of Biotechnology, University of Natural Resources and Life Sciences Vienna, Muthgasse 18, 1190, Vienna, Austria,
| | | |
Collapse
|
38
|
Halotolerant, alkaliphilic urease-producing bacteria from different climate zones and their application for biocementation of sand. World J Microbiol Biotechnol 2013; 29:1453-60. [DOI: 10.1007/s11274-013-1309-1] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Accepted: 03/07/2013] [Indexed: 10/27/2022]
|
39
|
Miller AZ, Sanmartín P, Pereira-Pardo L, Dionísio A, Saiz-Jimenez C, Macedo MF, Prieto B. Bioreceptivity of building stones: a review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2012; 426:1-12. [PMID: 22534363 DOI: 10.1016/j.scitotenv.2012.03.026] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Revised: 03/09/2012] [Accepted: 03/10/2012] [Indexed: 05/31/2023]
Abstract
In 1995, Guillitte defined bioreceptivity, a new term in ecology, as the ability of a material to be colonized by living organisms. Information about the bioreceptivity of stone is of great importance since it will help us to understand the material properties which influence the development of biological colonization in the built environment, and will also provide useful information as regards selecting stones for the conservation of heritage monuments and construction of new buildings. Studies of the bioreceptivity of stone materials are reviewed here with the aim of providing a clear set of conclusions on the topic. Definitions of bioreceptivity are given, stone bioreceptivity experiments are described, and finally the stone properties related to bioreceptivity are discussed. We suggest that a standardized laboratory protocol for evaluating stone bioreceptivity and definition of a stone bioreceptivity index are required to enable creation of a database on the primary bioreceptivity of stone materials.
Collapse
Affiliation(s)
- A Z Miller
- Centro de Petrologia e Geoquímica, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001, Lisboa, Portugal.
| | | | | | | | | | | | | |
Collapse
|
40
|
Analysis and comparison of the microflora isolated from fresco surface and from surrounding air environment through molecular and biodegradative assays. World J Microbiol Biotechnol 2012; 28:2015-27. [DOI: 10.1007/s11274-012-1004-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Accepted: 01/07/2012] [Indexed: 01/11/2023]
|
41
|
Combining a hydrogel and an electrochemical biosensor to determine the extent of degradation of paper artworks. Anal Bioanal Chem 2012; 403:1485-9. [DOI: 10.1007/s00216-012-5885-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2011] [Revised: 02/13/2012] [Accepted: 02/16/2012] [Indexed: 10/28/2022]
|
42
|
Mapelli F, Marasco R, Balloi A, Rolli E, Cappitelli F, Daffonchio D, Borin S. Mineral-microbe interactions: biotechnological potential of bioweathering. J Biotechnol 2011; 157:473-81. [PMID: 22138043 DOI: 10.1016/j.jbiotec.2011.11.013] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Revised: 11/15/2011] [Accepted: 11/17/2011] [Indexed: 10/15/2022]
Abstract
Mineral-microbe interaction has been a key factor shaping the lithosphere of our planet since the Precambrian. Detailed investigation has been mainly focused on the role of bioweathering in biomining processes, leading to the selection of highly efficient microbial inoculants for the recovery of metals. Here we expand this scenario, presenting additional applications of bacteria and fungi in mineral dissolution, a process with novel biotechnological potential that has been poorly investigated. The ability of microorganisms to trigger soil formation and to sustain plant establishment and growth are suggested as invaluable tools to counteract the expansion of arid lands and to increase crop productivity. Furthermore, interesting exploitations of mineral weathering microbes are represented by biorestoration and bioremediation technologies, innovative and competitive solutions characterized by economical and environmental advantages. Overall, in the future the study and application of the metabolic properties of microbial communities capable of weathering can represent a driving force in the expanding sector of environmental biotechnology.
Collapse
Affiliation(s)
- Francesca Mapelli
- Università degli Studi di Milano, Dipartimento di Scienze e Tecnologie Alimentari e Microbiologiche, Via Celoria 2, 20133 Milano, Italy
| | | | | | | | | | | | | |
Collapse
|
43
|
Fernandes P, Cabral JMS. Applied Biocatalysis: An Overview. Ind Biotechnol (New Rochelle N Y) 2010. [DOI: 10.1002/9783527630233.ch6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
44
|
Pepe O, Sannino L, Palomba S, Anastasio M, Blaiotta G, Villani F, Moschetti G. Heterotrophic microorganisms in deteriorated medieval wall paintings in southern Italian churches. Microbiol Res 2010; 165:21-32. [DOI: 10.1016/j.micres.2008.03.005] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2008] [Revised: 03/18/2008] [Accepted: 03/21/2008] [Indexed: 11/29/2022]
|
45
|
Macedo MF, Miller AZ, Dionísio A, Saiz-Jimenez C. Biodiversity of cyanobacteria and green algae on monuments in the Mediterranean Basin: an overview. Microbiology (Reading) 2009; 155:3476-3490. [DOI: 10.1099/mic.0.032508-0] [Citation(s) in RCA: 169] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The presence and deteriorating action of micro-organisms on monuments and stone works of art have received considerable attention in the last few years. Knowledge of the microbial populations living on stone materials is the starting point for successful conservation treatment and control. This paper reviews the literature on cyanobacteria and chlorophyta that cause deterioration of stone cultural heritage (outdoor monuments and stone works of art) in European countries of the Mediterranean Basin. Some 45 case studies from 32 scientific papers published between 1976 and 2009 were analysed. Six lithotypes were considered: marble, limestone, travertine, dolomite, sandstone and granite. A wide range of stone monuments in the Mediterranean Basin support considerable colonization of cyanobacteria and chlorophyta, showing notable biodiversity. About 172 taxa have been described by different authors, including 37 genera of cyanobacteria and 48 genera of chlorophyta. The most widespread and commonly reported taxa on the stone cultural heritage in the Mediterranean Basin are, among cyanobacteria, Gloeocapsa, Phormidium and Chroococcus and, among chlorophyta, Chlorella, Stichococcus and Chlorococcum. The results suggest that cyanobacteria and chlorophyta colonize a wide variety of substrata and that this is related primarily to the physical characteristics of the stone surface, microclimate and environmental conditions and secondarily to the lithotype.
Collapse
Affiliation(s)
- Maria Filomena Macedo
- VICARTE, Departamento de Conservação e Restauro, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Monte da Caparica, 2829-516 Caparica, Portugal
| | - Ana Zélia Miller
- Departamento de Conservação e Restauro, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Monte da Caparica, 2829-516 Caparica, Portugal
| | - Amélia Dionísio
- Centro de Petrologia e Geoquímica, Departamento de Engenharia de Minas e Georrecursos, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Cesareo Saiz-Jimenez
- Instituto de Recursos Naturales y Agrobiologia, CSIC, Apartado 1052, 41080 Sevilla, Spain
| |
Collapse
|
46
|
de Los Ríos A, Cámara B, García Del Cura MAA, Rico VJ, Galván V, Ascaso C. Deteriorating effects of lichen and microbial colonization of carbonate building rocks in the Romanesque churches of Segovia, Spain. THE SCIENCE OF THE TOTAL ENVIRONMENT 2009; 407:1123-1134. [PMID: 18976800 DOI: 10.1016/j.scitotenv.2008.09.042] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2008] [Revised: 09/24/2008] [Accepted: 09/25/2008] [Indexed: 05/27/2023]
Abstract
In this study, the deterioration effects of lichens and other lithobionts in a temperate mesothermal climate were explored. We examined samples of dolostone and limestone rocks with visible signs of biodeterioration taken from the exterior wall surfaces of four Romanesque churches in Segovia (Spain): San Lorenzo, San Martín, San Millán and La Vera Cruz. Biofilms developing on the lithic substrate were analyzed by scanning electron microscopy. The most common lichen species found in the samples were recorded. Fungal cultures were then obtained from these carbonate rocks and characterized by sequencing Internal Transcribed Spacers (ITS). Through scanning electron microscopy in back-scattered electron mode, fungi (lichenized and non-lichenized) were observed as the most frequent microorganisms occurring at sites showing signs of biodeterioration. The colonization process was especially conditioned by the porosity characteristics of the stone used in these buildings. While in dolostones, microorganisms mainly occupied spaces comprising the rock's intercrystalline porosity, in bioclastic dolomitized limestones, fungal colonization seemed to be more associated with moldic porosity. Microbial biofilms make close contact with the substrate, and thus probably cause significant deterioration of the underlying materials. We describe the different processes of stone alteration induced by fungal colonization and discuss the implications of these processes for the design of treatments to prevent biodeterioration.
Collapse
Affiliation(s)
- Asunción de Los Ríos
- Instituto de Recursos Naturales, Centro de Ciencias Medioambientales (CSIC), Serrano 115 dpdo., 28006 Madrid, Spain.
| | | | | | | | | | | |
Collapse
|