1
|
Halema AA, El-Beltagi HS, Al-Dossary O, Alsubaie B, Henawy AR, Rezk AA, Almutairi HH, Mohamed AA, Elarabi NI, Abdelhadi AA. Omics technology draws a comprehensive heavy metal resistance strategy in bacteria. World J Microbiol Biotechnol 2024; 40:193. [PMID: 38709343 DOI: 10.1007/s11274-024-04005-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 04/24/2024] [Indexed: 05/07/2024]
Abstract
The rapid industrial revolution significantly increased heavy metal pollution, becoming a major global environmental concern. This pollution is considered as one of the most harmful and toxic threats to all environmental components (air, soil, water, animals, and plants until reaching to human). Therefore, scientists try to find a promising and eco-friendly technique to solve this problem i.e., bacterial bioremediation. Various heavy metal resistance mechanisms were reported. Omics technologies can significantly improve our understanding of heavy metal resistant bacteria and their communities. They are a potent tool for investigating the adaptation processes of microbes in severe conditions. These omics methods provide unique benefits for investigating metabolic alterations, microbial diversity, and mechanisms of resistance of individual strains or communities to harsh conditions. Starting with genome sequencing which provides us with complete and comprehensive insight into the resistance mechanism of heavy metal resistant bacteria. Moreover, genome sequencing facilitates the opportunities to identify specific metal resistance genes, operons, and regulatory elements in the genomes of individual bacteria, understand the genetic mechanisms and variations responsible for heavy metal resistance within and between bacterial species in addition to the transcriptome, proteome that obtain the real expressed genes. Moreover, at the community level, metagenome, meta transcriptome and meta proteome participate in understanding the microbial interactive network potentially novel metabolic pathways, enzymes and gene species can all be found using these methods. This review presents the state of the art and anticipated developments in the use of omics technologies in the investigation of microbes used for heavy metal bioremediation.
Collapse
Affiliation(s)
- Asmaa A Halema
- Genetics Department, Faculty of Agriculture, Cairo University, Giza, 12613, Egypt
| | - Hossam S El-Beltagi
- Agricultural Biotechnology Department, College of Agriculture and Food Sciences, King Faisal University, Al-Ahsa, 31982, Saudi Arabia.
- Biochemistry Department, Faculty of Agriculture, Cairo University, Giza, 12613, Egypt.
| | - Othman Al-Dossary
- Agricultural Biotechnology Department, College of Agriculture and Food Sciences, King Faisal University, Al-Ahsa, 31982, Saudi Arabia
| | - Bader Alsubaie
- Agricultural Biotechnology Department, College of Agriculture and Food Sciences, King Faisal University, Al-Ahsa, 31982, Saudi Arabia
| | - Ahmed R Henawy
- Microbiology Department, Faculty of Agriculture, Cairo University, Giza, 12613, Egypt
| | - Adel A Rezk
- Agricultural Biotechnology Department, College of Agriculture and Food Sciences, King Faisal University, Al-Ahsa, 31982, Saudi Arabia
- Plant Virology Department, Plant Pathology Research Institute, Agriculture Research Center, Giza, 12619, Egypt
| | - Hayfa Habes Almutairi
- Chemistry Department, College of Science, King Faisal University, Al-Ahsa, 31982, Saudi Arabia
| | - Amal A Mohamed
- Chemistry Dept, Al-Leith University College, Umm Al-Qura University, P.O. Box 6725- 21955, Makkah, Saudi Arabia
| | - Nagwa I Elarabi
- Genetics Department, Faculty of Agriculture, Cairo University, Giza, 12613, Egypt
| | | |
Collapse
|
2
|
Ullrich SR, Fuchs H, Ashworth-Güth C. Electrochemical and structural characterization of recombinant respiratory proteins of the acidophilic iron oxidizer Ferrovum sp. PN-J47-F6 suggests adaptations to the acidic pH at protein level. Front Microbiol 2024; 15:1357152. [PMID: 38384274 PMCID: PMC10879576 DOI: 10.3389/fmicb.2024.1357152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 01/23/2024] [Indexed: 02/23/2024] Open
Abstract
The tendency of the periplasmic redox proteins in acidophiles to have more positive redox potentials (Em) than their homologous counterparts in neutrophiles suggests an adaptation to acidic pH at protein level, since thermodynamics of electron transfer processes are also affected by acidic pH. Since this conclusion is mainly based on the electrochemical characterization of redox proteins from extreme acidophiles of the genus Acidithiobacillus, we aimed to characterize three recombinant redox proteins of the more moderate acidophile Ferrovum sp. PN-J47-F6. We applied protein film voltammetry and linear sweep voltammetry coupled to UV/Vis spectroscopy to characterize the redox behavior of HiPIP-41, CytC-18, and CytC-78, respectively. The Em-values of HiPIP-41 (571 ± 16 mV), CytC-18 (276 ± 8 mV, 416 ± 2 mV), and CytC-78 (308 ± 7 mV, 399 ± 7 mV) were indeed more positive than those of homologous redox proteins in neutrophiles. Moreover, our findings suggest that the adaptation of redox proteins with respect to their Em occurs more gradually in response to the pH, since there are also differences between moderate and more extreme acidophiles. In order to address structure function correlations in these redox proteins with respect to structural features affecting the Em, we conducted a comparative structural analysis of the Ferrovum-derived redox proteins and homologs of Acidithiobacillus spp. and neutrophilic proteobacteria. Hydrophobic contacts in the redox cofactor binding pockets resulting in a low solvent accessibility appear to be the major factor contributing to the more positive Em-values in acidophile-derived redox proteins. While additional cysteines in HiPIPs of acidophiles might increase the effective shielding of the [4Fe-4S]-cofactor, the tight shielding of the heme centers in acidophile-derived cytochromes is achieved by a drastic increase in hydrophobic contacts (A.f. Cyc41), and by a larger fraction of aromatic residues in the binding pockets (CytC-18, CytC-78).
Collapse
Affiliation(s)
- Sophie R. Ullrich
- Environmental Microbiology Group, Institute for Biological Sciences, TU Bergakademie Freiberg, Freiberg, Germany
- Biohydrometallurgy Group, Institute for Biological Sciences, TU Bergakademie Freiberg, Freiberg, Germany
| | - Helena Fuchs
- Biohydrometallurgy Group, Institute for Biological Sciences, TU Bergakademie Freiberg, Freiberg, Germany
| | - Charlotte Ashworth-Güth
- Salt and Mineral Chemistry Group, Institute for Inorganic Chemistry, TU Bergakademie Freiberg, Freiberg, Germany
| |
Collapse
|
3
|
Mishra S, Ghosh S, van Hullebusch ED, Singh S, Das AP. A Critical Review on the Recovery of Base and Critical Elements from Electronic Waste-Contaminated Streams Using Microbial Biotechnology. Appl Biochem Biotechnol 2023; 195:7859-7888. [PMID: 36988841 DOI: 10.1007/s12010-023-04440-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2023] [Indexed: 03/30/2023]
Abstract
Pollution by end-of-life electronics is a rapid ever-increasing threat and is a universal concern with production of million metric tons of these wastes per annum. Electronic wastes (E-waste) are rejected electric or electronic equipment which have no other applications. The aggrandized unproper land filling of E-waste may generate hazardous effects on living organisms and ecosystem. At present, millions of tons of E-waste await the advancement of more efficient and worthwhile recycling techniques. Recovery of base and critical elements from electronic scraps will not only reduce the mining of these elements from natural resources but also reduces the contamination caused by the hazardous chemicals (mostly organic micropollutants) released from these wastes when unproperly disposed of. Bioleaching is reported to be the most eco-friendly process for metal recycling from spent electronic goods. A detailed investigation of microbial biodiversity and a molecular understanding of the metabolic pathways of bioleaching microorganisms will play a vital function in extraction of valuable minerals from the end-of-life scraps. Bioleaching technique as an economic and green technology costs around 7 USD per kg for effective reusing of E-waste as compared to other physical and chemical techniques. This review provides a summary of worldwide scenario of electronic pollutants; generation, composition and hazardous components of electronic waste; recycling of valuable elements through bioleaching; mechanism of bioleaching; microorganisms involved in base and critical element recovery from E-waste; commercial bioleaching operations; and upcoming aspects of this eco-friendly technique.
Collapse
Affiliation(s)
- Sunanda Mishra
- Department of Botany, College of Basic Science and Humanities, Odisha University of Agriculture and Technology, Bhubaneswar, 751003, Odisha, India
| | | | - Eric D van Hullebusch
- Université Paris Cité, Institut de Physique du Globe de Paris, CNRS, 75005, Paris, France
| | - Shikha Singh
- Department of Life Sciences, Rama Devi Women's University, 751022, Bhubaneswar, Odisha, India
| | - Alok Prasad Das
- Department of Life Sciences, Rama Devi Women's University, 751022, Bhubaneswar, Odisha, India.
| |
Collapse
|
4
|
Leng F, Wu Y, Hu S, Jing Y, Ding M, Wei Q, Zhang Q, Wang Y. Cloning, expression, and bioinformatics analysis of heavy metal resistance-related genes fd-I and fd-II from Acidithiobacillus ferrooxidans. Lett Appl Microbiol 2023; 76:7143110. [PMID: 37115024 DOI: 10.1093/lambio/ovad046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 04/02/2023] [Accepted: 04/24/2023] [Indexed: 04/29/2023]
Abstract
Five heavy metals were introduced into the bacterial heavy metal resistance tests. The results showed that apparent inhibition effects of Cd2+ and Cu2+ on the growth of Acidithiobacillus ferrooxidans BYSW1 occurred at high concentrations (>0.04 mol l-1). Significant differences (P < 0.001) were both noticed in the expression of two ferredoxin-encoding genes (fd-I and fd-II) related to heavy metal resistance in the presence of Cd2+ and Cu2+ . When exposed to 0.06 mol l-1 Cd2+, the relative expression levels of fd-I and fd-II were about 11 and 13 times as much as those of the control, respectively. Similarly, exposure to 0.04 mol l-1 Cu2+ caused approximate 8 and 4 times higher than those of the control, respectively. These two genes were cloned and expressed in Escherichia coli, and the structures, functions of two corresponding target proteins, i.e. Ferredoxin-I (Fd-I) and Ferredoxin-II (Fd-II), were predicted. The recombinant cells inserted by fd-I or fd-II were more resistant to Cd2+ and Cu2+ compared with wild-type cells. This study was the first investigation regarding the contribution of fd-I and fd-II to enhancing heavy metal resistance of this bioleaching bacterium, and laid a foundation for further elucidation of heavy metal resistance mechanisms caused by Fd.
Collapse
Affiliation(s)
- Feifan Leng
- School of Life Science and Engineering, Lanzhou University of Technology, 730050 Lanzhou, PR China
| | - Yamiao Wu
- School of Life Science and Engineering, Lanzhou University of Technology, 730050 Lanzhou, PR China
| | - Shu Hu
- School of Life Science and Engineering, Lanzhou University of Technology, 730050 Lanzhou, PR China
| | - Yanjun Jing
- School of Life Science and Engineering, Lanzhou University of Technology, 730050 Lanzhou, PR China
| | - Miao Ding
- School of Life Science and Engineering, Lanzhou University of Technology, 730050 Lanzhou, PR China
| | - Qingwei Wei
- School of Life Science and Engineering, Lanzhou University of Technology, 730050 Lanzhou, PR China
| | - Qingchun Zhang
- Agricultural Technology Extension Center of Kangxian County, 746500 Kangxian, PR China
| | - Yonggang Wang
- School of Life Science and Engineering, Lanzhou University of Technology, 730050 Lanzhou, PR China
| |
Collapse
|
5
|
Atasoy M, Scott WT, van Gijn K, Koehorst JJ, Smidt H, Langenhoff AAM. Microbial dynamics and bioreactor performance are interlinked with organic matter removal from wastewater treatment plant effluent. BIORESOURCE TECHNOLOGY 2023; 372:128659. [PMID: 36690219 DOI: 10.1016/j.biortech.2023.128659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 06/17/2023]
Abstract
Optimizing bioreactor performance for organic matter removal can achieve sustainable and energy-efficient micropollutant removal in subsequent tertiary treatment. Bioreactor performance heavily depends on its resident microbial community; hence, a deeper understanding of community dynamics is essential. The microbial communities of three different bioreactors (biological activated carbon, moving bed biofilm reactor, sand filter), used for organic matter removal from wastewater treatment effluent, were characterized by 16S rRNA gene amplicon sequence analysis. An interdependency between bioreactor performance and microbial community profile was observed. Overall, Proteobacteria was the most predominant phylum, and Comamonadaceae was the most predominant family in all bioreactors. The relative abundance of the genus Roseococcus was positively correlated with organic matter removal. A generalized Lotka-Volterra (gLV) model was established to understand the interactions in the microbial community. By identifying microbial dynamics and their role in bioreactors, a strategy can be developed to improve bioreactor performance.
Collapse
Affiliation(s)
- M Atasoy
- UNLOCK, Wageningen University & Research and Technical University Delft, Wageningen and Delft, The Netherlands; Department of Environmental Technology, Wageningen University & Research, PO box 8129, 6700 EV, Wageningen, The Netherlands; Laboratory of Microbiology, Wageningen University & Research, The Netherlands.
| | - W T Scott
- UNLOCK, Wageningen University & Research and Technical University Delft, Wageningen and Delft, The Netherlands; Laboratory of Systems and Synthetic Biology, Wageningen University & Research, The Netherlands
| | - K van Gijn
- Department of Environmental Technology, Wageningen University & Research, PO box 8129, 6700 EV, Wageningen, The Netherlands
| | - J J Koehorst
- UNLOCK, Wageningen University & Research and Technical University Delft, Wageningen and Delft, The Netherlands; Laboratory of Systems and Synthetic Biology, Wageningen University & Research, The Netherlands
| | - H Smidt
- UNLOCK, Wageningen University & Research and Technical University Delft, Wageningen and Delft, The Netherlands; Laboratory of Microbiology, Wageningen University & Research, The Netherlands
| | - A A M Langenhoff
- UNLOCK, Wageningen University & Research and Technical University Delft, Wageningen and Delft, The Netherlands; Department of Environmental Technology, Wageningen University & Research, PO box 8129, 6700 EV, Wageningen, The Netherlands
| |
Collapse
|
6
|
Razia S, Hadibarata T, Lau SY. Acidophilic microorganisms in remediation of contaminants present in extremely acidic conditions. Bioprocess Biosyst Eng 2023; 46:341-358. [PMID: 36602611 DOI: 10.1007/s00449-022-02844-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 12/21/2022] [Indexed: 01/06/2023]
Abstract
Acidophiles are a group of microorganisms that thrive in acidic environments where pH level is far below the neutral value 7.0. They belong to a larger family called extremophiles, which is a group that thrives in various extreme environmental conditions which are normally inhospitable to other organisms. Several human activities such as mining, construction and other industrial processes release highly acidic effluents and wastes into the environment. Those acidic wastes and wastewaters contain different types of pollutants such as heavy metals, radioactive, and organic, whose have adverse effects on human being as well as on other living organisms. To protect the whole ecosystem, those pollutants containing effluents or wastes must be clean properly before releasing into environment. Physicochemical cleanup processes under extremely acidic conditions are not always successful due to high cost and release of toxic byproducts. While in case of biological methods, except acidophiles, no other microorganisms cannot survive in highly acidic conditions. Therefore, acidophiles can be a good choice for remediation of different types of contaminants present in acidic conditions. In this review article, various roles of acidophilic microorganisms responsible for removing heavy metals and radioactive pollutants from acidic environments were discussed. Bioremediation of various acidic organic pollutants by using acidophiles was also studied. Overall, this review could be helpful to extend our knowledge as well as to do further relevant novel studies in the field of acidic pollutants remediation by applying acidophilic microorganisms.
Collapse
Affiliation(s)
- Sultana Razia
- Environmental Engineering Program, Faculty of Engineering and Science, Curtin University, Miri, Malaysia
| | - Tony Hadibarata
- Environmental Engineering Program, Faculty of Engineering and Science, Curtin University, Miri, Malaysia.
| | - Sie Yon Lau
- Department of Chemical and Energy Engineering, Faculty of Engineering and Science, Curtin University, Miri, Malaysia
| |
Collapse
|
7
|
Current Trends in Metal Biomining with a Focus on Genomics Aspects and Attention to Arsenopyrite Leaching-A Review. Microorganisms 2023; 11:microorganisms11010186. [PMID: 36677478 PMCID: PMC9864737 DOI: 10.3390/microorganisms11010186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/06/2023] [Accepted: 01/09/2023] [Indexed: 01/15/2023] Open
Abstract
The presented review is based on scientific microbiological articles and patents in the field of biomining valuable metals. The main attention is paid to publications of the last two decades, which illustrate some shifts in objects of interest and modern trends both in general and applied microbiology. The review demonstrates that microbial bioleaching continues to develop actively, despite various problems in its industrial application. The previous classic trends in the microbial bioleaching persist and remain unchanged, including (i) the search for and selection of new effective species and strains and (ii) technical optimization of the bioleaching process. Moreover, new trends were formed during the last decades with an emphasis on the phylogeny of leaching microbiota and on genomes of the leaching microorganisms. This area of genomics provides new, interesting information and forms a basis for the subsequent construction of new leaching strains. For example, this review mentions some changed strains with increased resistance to toxic compounds. Additionally, the review considers some problems of bioleaching valuable metals from toxic arsenopyrite.
Collapse
|
8
|
Accessing Metals from Low-Grade Ores and the Environmental Impact Considerations: A Review of the Perspectives of Conventional versus Bioleaching Strategies. MINERALS 2022. [DOI: 10.3390/min12050506] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Mining has advanced primarily through the use of two strategies: pyrometallurgy and hydrometallurgy. Both have been used successfully to extract valuable metals from ore deposits. These strategies, without a doubt, harm the environment. Furthermore, due to decades of excessive mining, there has been a global decline in high-grade ores. This has resulted in a decrease in valuable metal supply, which has prompted a reconsideration of these traditional strategies, as the industry faces the current challenge of accessing the highly sought-after valuable metals from low-grade ores. This review outlines these challenges in detail, provides insights into metal recovery issues, and describes technological advances being made to address the issues associated with dealing with low-grade metals. It also discusses the pragmatic paradigm shift that necessitates the use of biotechnological solutions provided by bioleaching, particularly its environmental friendliness. However, it goes on to criticize the shortcomings of bioleaching while highlighting the potential solutions provided by a bespoke approach that integrates research applications from omics technologies and their applications in the adaptation of bioleaching microorganisms and their interaction with the harsh environments associated with metal ore degradation.
Collapse
|
9
|
Ayala-Muñoz D, Burgos WD, Sánchez-España J, Couradeau E, Falagán C, Macalady JL. Metagenomic and Metatranscriptomic Study of Microbial Metal Resistance in an Acidic Pit Lake. Microorganisms 2020; 8:microorganisms8091350. [PMID: 32899650 PMCID: PMC7563247 DOI: 10.3390/microorganisms8091350] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 08/18/2020] [Accepted: 09/02/2020] [Indexed: 11/16/2022] Open
Abstract
Cueva de la Mora (CM) is an acidic, meromictic pit lake in the Iberian Pyrite Belt characterized by extremely high metal(loid) concentrations and strong gradients in oxygen, metal, and nutrient concentrations. We hypothesized that geochemical variations with depth would result in differences in community composition and in metal resistance strategies among active microbial populations. We also hypothesized that metal resistance gene (MRG) expression would correlate with toxicity levels for dissolved metal species in the lake. Water samples were collected in the upper oxic layer, chemocline, and deep anoxic layer of the lake for shotgun metagenomic and metatranscriptomic sequencing. Metagenomic analyses revealed dramatic differences in the composition of the microbial communities with depth, consistent with changing geochemistry. Based on relative abundance of taxa identified in each metagenome, Eukaryotes (predominantly Coccomyxa) dominated the upper layer, while Archaea (predominantly Thermoplasmatales) dominated the deep layer, and a combination of Bacteria and Eukaryotes were abundant at the chemocline. We compared metal resistance across communities using a curated list of protein-coding MRGs with KEGG Orthology identifiers (KOs) and found that there were broad differences in the metal resistance strategies (e.g., intracellular metal accumulation) expressed by Eukaryotes, Bacteria, and Archaea. Although normalized abundances of MRG and MRG expression were generally higher in the deep layer, expression of metal-specific genes was not strongly related to variations in specific metal concentrations, especially for Cu and As. We also compared MRG potential and expression in metagenome assembled genomes (MAGs) from the deep layer, where metal concentrations are highest. Consistent with previous work showing differences in metal resistance mechanisms even at the strain level, MRG expression patterns varied strongly among MAG populations from the same depth. Some MAG populations expressed very few MRG known to date, suggesting that novel metal resistance strategies remain to be discovered in uncultivated acidophiles.
Collapse
Affiliation(s)
- Diana Ayala-Muñoz
- Department of Civil and Environmental Engineering, The Pennsylvania State University, 212 Sackett Building, University Park, PA 16802, USA;
- Correspondence:
| | - William D. Burgos
- Department of Civil and Environmental Engineering, The Pennsylvania State University, 212 Sackett Building, University Park, PA 16802, USA;
| | - Javier Sánchez-España
- Geochemistry and Sustainable Mining Unit, Instituto Geológico y Minero de España (IGME), Calera 1, Tres Cantos, 28760 Madrid, Spain;
| | - Estelle Couradeau
- Department of Ecosystem Science and Management, The Pennsylvania State University, 450 ASI, University Park, PA 16802, USA;
| | - Carmen Falagán
- Environment & Sustainability Institute and Camborne School of Mines, University of Exeter, Penryn Campus, Penryn TR10 9FE, UK;
| | - Jennifer L. Macalady
- Department of Geosciences, The Pennsylvania State University, 211 Deike Building, University Park, PA 16802, USA;
| |
Collapse
|
10
|
Varrella S, Tangherlini M, Corinaldesi C. Deep Hypersaline Anoxic Basins as Untapped Reservoir of Polyextremophilic Prokaryotes of Biotechnological Interest. Mar Drugs 2020; 18:md18020091. [PMID: 32019162 PMCID: PMC7074082 DOI: 10.3390/md18020091] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 01/27/2020] [Accepted: 01/28/2020] [Indexed: 12/18/2022] Open
Abstract
Deep-sea hypersaline anoxic basins (DHABs) are considered to be among the most extreme ecosystems on our planet, allowing only the life of polyextremophilic organisms. DHABs’ prokaryotes exhibit extraordinary metabolic capabilities, representing a hot topic for microbiologists and biotechnologists. These are a source of enzymes and new secondary metabolites with valuable applications in different biotechnological fields. Here, we review the current knowledge on prokaryotic diversity in DHABs, highlighting the biotechnological applications of identified taxa and isolated species. The discovery of new species and molecules from these ecosystems is expanding our understanding of life limits and is expected to have a strong impact on biotechnological applications.
Collapse
Affiliation(s)
- Stefano Varrella
- Department of Materials, Environmental Sciences and Urban Planning, Polytechnic University of Marche, 60131 Ancona, Italy;
| | | | - Cinzia Corinaldesi
- Department of Materials, Environmental Sciences and Urban Planning, Polytechnic University of Marche, 60131 Ancona, Italy;
- Correspondence:
| |
Collapse
|
11
|
Bastian FO, Lynch J, Wang WH. Novel Spiroplasma sp. Isolated From CWD Is an Extreme Bacterial Thermoacidophile That Survives Autoclaving, Boiling, Formalin Treatment, and Significant Gamma Irradiation. J Neuropathol Exp Neurol 2019; 78:993-1001. [PMID: 31512718 DOI: 10.1093/jnen/nlz081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Revised: 07/12/2019] [Accepted: 08/05/2019] [Indexed: 11/14/2022] Open
Abstract
Rapid spreading of chronic wasting disease (CWD) in wildlife and captive cervid populations has exposed lack of progress in dealing with the transmissible spongiform encephalopathies (TSE) of man and animals. Since the TSE transmissible agent was resistant to extremes in environmental and chemical treatments, focus was on an unconventional agent including the prion theory. Recent breakthrough research has revealed consistent isolation of a novel Spiroplasma sp. from TSE-affected tissues that propagates in cell-free media and on agar. Here, we developed a live culture assay to test whether the CWD spiroplasma isolate possessed unconventional biologic properties akin to those of the transmissible agent of TSE. The CWD spiroplasma isolate survived boiling for 1 hour, standard liquid autoclaving, 10% formalin treatment overnight, and gamma irradiation of 20 kGy. The CWD spiroplasma isolate is an acidophile, growing best at pH 2. The biologic resistance of the CWD spiroplasma isolate may be due to unusual phage-like viruses found in the bacterial pellet or to DNA-protein binding. Because the CWD spiroplasma isolate has biologic properties consistent with the causal agent of the TSEs, TSE research focus should be redirected to development of diagnostic tests and preventive vaccines for control of CWD based upon the bacterium.
Collapse
Affiliation(s)
- Frank O Bastian
- Bastian Laboratory for Neurological Disease Research, New Orleans, Louisiana.,Texas Tech University, Department of Environmental Toxicology, Lubbock, Texas.,Tulane Medical School Department of Pathology, New Orleans, Louisiana
| | - James Lynch
- Bastian Laboratory for Neurological Disease Research, New Orleans, Louisiana
| | - Wei-Hsung Wang
- Radiation Safety Office/Center for Energy Studies, Louisiana State University, Louisiana
| |
Collapse
|
12
|
Esparza M, Jedlicki E, González C, Dopson M, Holmes DS. Effect of CO 2 Concentration on Uptake and Assimilation of Inorganic Carbon in the Extreme Acidophile Acidithiobacillus ferrooxidans. Front Microbiol 2019; 10:603. [PMID: 31019493 PMCID: PMC6458275 DOI: 10.3389/fmicb.2019.00603] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 03/11/2019] [Indexed: 02/01/2023] Open
Abstract
This study was motivated by surprising gaps in the current knowledge of microbial inorganic carbon (Ci) uptake and assimilation at acidic pH values (pH < 3). Particularly striking is the limited understanding of the differences between Ci uptake mechanisms in acidic versus circumneutral environments where the Ci predominantly occurs either as a dissolved gas (CO2) or as bicarbonate (HCO3 -), respectively. In order to gain initial traction on the problem, the relative abundance of transcripts encoding proteins involved in Ci uptake and assimilation was studied in the autotrophic, polyextreme acidophile Acidithiobacillus ferrooxidans whose optimum pH for growth is 2.5 using ferrous iron as an energy source, although they are able to grow at pH 5 when using sulfur as an energy source. The relative abundance of transcripts of five operons (cbb1-5) and one gene cluster (can-sulP) was monitored by RT-qPCR and, in selected cases, at the protein level by Western blotting, when cells were grown under different regimens of CO2 concentration in elemental sulfur. Of particular note was the absence of a classical bicarbonate uptake system in A. ferrooxidans. However, bioinformatic approaches predict that sulP, previously annotated as a sulfate transporter, is a novel type of bicarbonate transporter. A conceptual model of CO2 fixation was constructed from combined bioinformatic and experimental approaches that suggests strategies for providing ecological flexibility under changing concentrations of CO2 and provides a portal to elucidating Ci uptake and regulation in acidic conditions. The results could advance the understanding of industrial bioleaching processes to recover metals such as copper at acidic pH. In addition, they may also shed light on how chemolithoautotrophic acidophiles influence the nutrient and energy balance in naturally occurring low pH environments.
Collapse
Affiliation(s)
- Mario Esparza
- Laboratorio de Biominería, Departamento de Biotecnología, Facultad de Ciencias del Mar y Recursos Biológicos, Universidad de Antofagasta, Antofagasta, Chile
| | - Eugenia Jedlicki
- Center for Bioinformatics and Genome Biology, Fundación Ciencia & Vida, Santiago, Chile
| | - Carolina González
- Center for Bioinformatics and Genome Biology, Fundación Ciencia & Vida, Santiago, Chile
| | - Mark Dopson
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, Kalmar, Sweden
| | - David S. Holmes
- Center for Bioinformatics and Genome Biology, Fundación Ciencia & Vida, Santiago, Chile
- Centro de Genómica y Bioinformática, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
| |
Collapse
|
13
|
Ramos-Zúñiga J, Gallardo S, Martínez-Bussenius C, Norambuena R, Navarro CA, Paradela A, Jerez CA. Response of the biomining Acidithiobacillus ferrooxidans to high cadmium concentrations. J Proteomics 2019; 198:132-144. [DOI: 10.1016/j.jprot.2018.12.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 12/11/2018] [Accepted: 12/12/2018] [Indexed: 11/28/2022]
|
14
|
Khaleque HN, González C, Shafique R, Kaksonen AH, Holmes DS, Watkin ELJ. Uncovering the Mechanisms of Halotolerance in the Extremely Acidophilic Members of the Acidihalobacter Genus Through Comparative Genome Analysis. Front Microbiol 2019; 10:155. [PMID: 30853944 PMCID: PMC6396713 DOI: 10.3389/fmicb.2019.00155] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 01/22/2019] [Indexed: 12/21/2022] Open
Abstract
There are few naturally occurring environments where both acid and salinity stress exist together, consequently, there has been little evolutionary pressure for microorganisms to develop systems that enable them to deal with both stresses simultaneously. Members of the genus Acidihalobacter are iron- and sulfur-oxidizing, halotolerant acidophiles that have developed the ability to tolerate acid and saline stress and, therefore, have the potential to bioleach ores with brackish or saline process waters under acidic conditions. The genus consists of four members, A. prosperus DSM 5130T, A. prosperus DSM 14174, A. prosperus F5 and "A. ferrooxidans" DSM 14175. An in depth genome comparison was undertaken in order to provide a more comprehensive description of the mechanisms of halotolerance used by the different members of this genus. Pangenome analysis identified 29, 3 and 9 protein families related to halotolerance in the core, dispensable and unique genomes, respectively. The genes for halotolerance showed Ka/Ks ratios between 0 and 0.2, confirming that they are conserved and stabilized. All the Acidihalobacter genomes contained similar genes for the synthesis and transport of ectoine, which was recently found to be the dominant osmoprotectant in A. prosperus DSM 14174 and A. prosperus DSM 5130T. Similarities also existed in genes encoding low affinity potassium pumps, however, A. prosperus DSM 14174 was also found to contain genes encoding high affinity potassium pumps. Furthermore, only A. prosperus DSM 5130T and "A. ferrooxidans" DSM 14175 contained genes allowing the uptake of taurine as an osmoprotectant. Variations were also seen in genes encoding proteins involved in the synthesis and/or transport of periplasmic glucans, sucrose, proline, and glycine betaine. This suggests that versatility exists in the Acidihalobacter genus in terms of the mechanisms they can use for halotolerance. This information is useful for developing hypotheses for the search for life on exoplanets and moons.
Collapse
Affiliation(s)
- Himel N. Khaleque
- School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia
- CSIRO Land and Water, Floreat, WA, Australia
| | - Carolina González
- Center for Bioinformatics and Genome Biology, Science for Life Foundation, Santiago, Chile
| | | | | | - David S. Holmes
- Center for Bioinformatics and Genome Biology, Science for Life Foundation, Santiago, Chile
- Centro de Genómica y Bioinformática, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
| | - Elizabeth L. J. Watkin
- School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia
| |
Collapse
|
15
|
Assessment of Bioleaching Microbial Community Structure and Function Based on Next-Generation Sequencing Technologies. MINERALS 2018. [DOI: 10.3390/min8120596] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
It is widely known that bioleaching microorganisms have to cope with the complex extreme environment in which microbial ecology relating to community structure and function varies across environmental types. However, analyses of microbial ecology of bioleaching bacteria is still a challenge. To address this challenge, numerous technologies have been developed. In recent years, high-throughput sequencing technologies enabling comprehensive sequencing analysis of cellular RNA and DNA within the reach of most laboratories have been added to the toolbox of microbial ecology. The next-generation sequencing technology allowing processing DNA sequences can produce available draft genomic sequences of more bioleaching bacteria, which provides the opportunity to predict models of genetic and metabolic potential of bioleaching bacteria and ultimately deepens our understanding of bioleaching microorganism. High-throughput sequencing that focuses on targeted phylogenetic marker 16S rRNA has been effectively applied to characterize the community diversity in an ore leaching environment. RNA-seq, another application of high-throughput sequencing to profile RNA, can be for both mapping and quantifying transcriptome and has demonstrated a high efficiency in quantifying the changing expression level of each transcript under different conditions. It has been demonstrated as a powerful tool for dissecting the relationship between genotype and phenotype, leading to interpreting functional elements of the genome and revealing molecular mechanisms of adaption. This review aims to describe the high-throughput sequencing approach for bioleaching environmental microorganisms, particularly focusing on its application associated with challenges.
Collapse
|
16
|
Marques CR. Extremophilic Microfactories: Applications in Metal and Radionuclide Bioremediation. Front Microbiol 2018; 9:1191. [PMID: 29910794 PMCID: PMC5992296 DOI: 10.3389/fmicb.2018.01191] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Accepted: 05/16/2018] [Indexed: 12/21/2022] Open
Abstract
Metals and radionuclides (M&Rs) are a worldwide concern claiming for resilient, efficient, and sustainable clean-up measures aligned with environmental protection goals and global change constraints. The unique defense mechanisms of extremophilic bacteria and archaea have been proving usefulness towards M&Rs bioremediation. Hence, extremophiles can be viewed as microfactories capable of providing specific and controlled services (i.e., genetic/metabolic mechanisms) and/or products (e.g., biomolecules) for that purpose. However, the natural physiological plasticity of such extremophilic microfactories can be further explored to nourish different hallmarks of M&R bioremediation, which are scantly approached in the literature and were never integrated. Therefore, this review not only briefly describes major valuable extremophilic pathways for M&R bioremediation, as it highlights the advances, challenges and gaps from the interplay of ‘omics’ and biological engineering to improve extremophilic microfactories performance for M&R clean-up. Microfactories’ potentialities are also envisaged to close the M&R bioremediation processes and shift the classical idea of never ‘getting rid’ of M&Rs into making them ‘the belle of the ball’ through bio-recycling and bio-recovering techniques.
Collapse
Affiliation(s)
- Catarina R Marques
- Departamento de Biologia and Centro de Estudos do Ambiente e do Mar, Universidade de Aveiro, Aveiro, Portugal
| |
Collapse
|
17
|
Ccorahua-Santo R, Eca A, Abanto M, Guerra G, Ramírez P. Physiological and comparative genomic analysis of Acidithiobacillus ferrivorans PQ33 provides psychrotolerant fitness evidence for oxidation at low temperature. Res Microbiol 2017; 168:482-492. [DOI: 10.1016/j.resmic.2017.01.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 01/31/2017] [Accepted: 01/31/2017] [Indexed: 11/24/2022]
|
18
|
Di Lorenzo F, Billod JM, Martín-Santamaría S, Silipo A, Molinaro A. Gram-Negative Extremophile Lipopolysaccharides: Promising Source of Inspiration for a New Generation of Endotoxin Antagonists. European J Org Chem 2017. [DOI: 10.1002/ejoc.201700113] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Flaviana Di Lorenzo
- Department of Chemical Sciences; University of Naples Federico II; via Cinthia 480126 80126 Naples Italy
| | - Jean-Marc Billod
- Department of Chemical and Physical Biology; CIB Centro de Investigaciones Biológicas; Ramiro de Maeztu 9 28040 Madrid Spain
| | - Sonsoles Martín-Santamaría
- Department of Chemical and Physical Biology; CIB Centro de Investigaciones Biológicas; Ramiro de Maeztu 9 28040 Madrid Spain
| | - Alba Silipo
- Department of Chemical Sciences; University of Naples Federico II; via Cinthia 480126 80126 Naples Italy
| | - Antonio Molinaro
- Department of Chemical Sciences; University of Naples Federico II; via Cinthia 480126 80126 Naples Italy
| |
Collapse
|
19
|
Adaptive Evolution of Extreme Acidophile Sulfobacillus thermosulfidooxidans Potentially Driven by Horizontal Gene Transfer and Gene Loss. Appl Environ Microbiol 2017; 83:AEM.03098-16. [PMID: 28115381 DOI: 10.1128/aem.03098-16] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 01/13/2017] [Indexed: 12/27/2022] Open
Abstract
Recent phylogenomic analysis has suggested that three strains isolated from different copper mine tailings around the world were taxonomically affiliated with Sulfobacillusthermosulfidooxidans Here, we present a detailed investigation of their genomic features, particularly with respect to metabolic potentials and stress tolerance mechanisms. Comprehensive analysis of the Sulfobacillus genomes identified a core set of essential genes with specialized biological functions in the survival of acidophiles in their habitats, despite differences in their metabolic pathways. The Sulfobacillus strains also showed evidence for stress management, thereby enabling them to efficiently respond to harsh environments. Further analysis of metabolic profiles provided novel insights into the presence of genomic streamlining, highlighting the importance of gene loss as a main mechanism that potentially contributes to cellular economization. Another important evolutionary force, especially in larger genomes, is gene acquisition via horizontal gene transfer (HGT), which might play a crucial role in the recruitment of novel functionalities. Also, a successful integration of genes acquired from archaeal donors appears to be an effective way of enhancing the adaptive capacity to cope with environmental changes. Taken together, the findings of this study significantly expand the spectrum of HGT and genome reduction in shaping the evolutionary history of Sulfobacillus strains.IMPORTANCE Horizontal gene transfer (HGT) and gene loss are recognized as major driving forces that contribute to the adaptive evolution of microbial genomes, although their relative importance remains elusive. The findings of this study suggest that highly frequent gene turnovers within microorganisms via HGT were necessary to incur additional novel functionalities to increase the capacity of acidophiles to adapt to changing environments. Evidence also reveals a fascinating phenomenon of potential cross-kingdom HGT. Furthermore, genome streamlining may be a critical force in driving the evolution of microbial genomes. Taken together, this study provides insights into the importance of both HGT and gene loss in the evolution and diversification of bacterial genomes.
Collapse
|
20
|
Experiences and Future Challenges of Bioleaching Research in South Korea. MINERALS 2016. [DOI: 10.3390/min6040128] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
21
|
Martínez-Bussenius C, Navarro CA, Jerez CA. Microbial copper resistance: importance in biohydrometallurgy. Microb Biotechnol 2016; 10:279-295. [PMID: 27790868 PMCID: PMC5328820 DOI: 10.1111/1751-7915.12450] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 09/30/2016] [Accepted: 10/03/2016] [Indexed: 11/29/2022] Open
Abstract
Industrial biomining has been extensively used for many years to recover valuable metals such as copper, gold, uranium and others. Furthermore, microorganisms involved in these processes can also be used to bioremediate places contaminated with acid and metals. These uses are possible due to the great metal resistance that these extreme acidophilic microorganisms possess. In this review, the most recent findings related to copper resistance mechanisms of bacteria and archaea related to biohydrometallurgy are described. The recent search for novel metal resistance determinants is not only of scientific interest but also of industrial importance, as reflected by the genomic sequencing of microorganisms present in mining operations and the search of those bacteria with extreme metal resistance to improve the extraction processes used by the biomining companies.
Collapse
Affiliation(s)
- Cristóbal Martínez-Bussenius
- Laboratory of Molecular Microbiology and Biotechnology, Department of Biology, Faculty of Sciences, University of Chile, Santiago, Chile
| | - Claudio A Navarro
- Laboratory of Molecular Microbiology and Biotechnology, Department of Biology, Faculty of Sciences, University of Chile, Santiago, Chile
| | - Carlos A Jerez
- Laboratory of Molecular Microbiology and Biotechnology, Department of Biology, Faculty of Sciences, University of Chile, Santiago, Chile
| |
Collapse
|
22
|
Ullrich SR, González C, Poehlein A, Tischler JS, Daniel R, Schlömann M, Holmes DS, Mühling M. Gene Loss and Horizontal Gene Transfer Contributed to the Genome Evolution of the Extreme Acidophile "Ferrovum". Front Microbiol 2016; 7:797. [PMID: 27303384 PMCID: PMC4886054 DOI: 10.3389/fmicb.2016.00797] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 05/11/2016] [Indexed: 01/07/2023] Open
Abstract
Acid mine drainage (AMD), associated with active and abandoned mining sites, is a habitat for acidophilic microorganisms that gain energy from the oxidation of reduced sulfur compounds and ferrous iron and that thrive at pH below 4. Members of the recently proposed genus “Ferrovum” are the first acidophilic iron oxidizers to be described within the Betaproteobacteria. Although they have been detected as typical community members in AMD habitats worldwide, knowledge of their phylogenetic and metabolic diversity is scarce. Genomics approaches appear to be most promising in addressing this lacuna since isolation and cultivation of “Ferrovum” has proven to be extremely difficult and has so far only been successful for the designated type strain “Ferrovum myxofaciens” P3G. In this study, the genomes of two novel strains of “Ferrovum” (PN-J185 and Z-31) derived from water samples of a mine water treatment plant were sequenced. These genomes were compared with those of “Ferrovum” sp. JA12 that also originated from the mine water treatment plant, and of the type strain (P3G). Phylogenomic scrutiny suggests that the four strains represent three “Ferrovum” species that cluster in two groups (1 and 2). Comprehensive analysis of their predicted metabolic pathways revealed that these groups harbor characteristic metabolic profiles, notably with respect to motility, chemotaxis, nitrogen metabolism, biofilm formation and their potential strategies to cope with the acidic environment. For example, while the “F. myxofaciens” strains (group 1) appear to be motile and diazotrophic, the non-motile group 2 strains have the predicted potential to use a greater variety of fixed nitrogen sources. Furthermore, analysis of their genome synteny provides first insights into their genome evolution, suggesting that horizontal gene transfer and genome reduction in the group 2 strains by loss of genes encoding complete metabolic pathways or physiological features contributed to the observed diversification.
Collapse
Affiliation(s)
- Sophie R Ullrich
- Institute of Biological Sciences, TU Bergakademie Freiberg Freiberg, Germany
| | - Carolina González
- Center for Bioinformatics and Genome Biology, Fundación Ciencia & Vida and Depto. de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andres BelloSantiago, Chile; Bio-Computing and Applied Genetics Division, Fraunhofer Chile Research Foundation, Center for Systems BiotechnologySantiago, Chile
| | - Anja Poehlein
- Göttingen Genomics Laboratory, Georg-August Universität Göttingen Göttingen, Germany
| | - Judith S Tischler
- Institute of Biological Sciences, TU Bergakademie Freiberg Freiberg, Germany
| | - Rolf Daniel
- Göttingen Genomics Laboratory, Georg-August Universität Göttingen Göttingen, Germany
| | - Michael Schlömann
- Institute of Biological Sciences, TU Bergakademie Freiberg Freiberg, Germany
| | - David S Holmes
- Center for Bioinformatics and Genome Biology, Fundación Ciencia & Vida and Depto. de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andres Bello Santiago, Chile
| | - Martin Mühling
- Institute of Biological Sciences, TU Bergakademie Freiberg Freiberg, Germany
| |
Collapse
|
23
|
|
24
|
Genomic Analysis Unravels Reduced Inorganic Sulfur Compound Oxidation of Heterotrophic Acidophilic Acidicaldus sp. Strain DX-1. BIOMED RESEARCH INTERNATIONAL 2016; 2016:8137012. [PMID: 27239474 PMCID: PMC4864549 DOI: 10.1155/2016/8137012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 03/28/2016] [Accepted: 04/11/2016] [Indexed: 12/14/2022]
Abstract
Although reduced inorganic sulfur compound (RISC) oxidation in many chemolithoautotrophic sulfur oxidizers has been investigated in recent years, there is little information about RISC oxidation in heterotrophic acidophiles. In this study, Acidicaldus sp. strain DX-1, a heterotrophic sulfur-oxidizing acidophile, was isolated. Its genome was sequenced and then used for comparative genomics. Furthermore, real-time quantitative PCR was performed to identify the expression of genes involved in the RISC oxidation. Gene encoding thiosulfate: quinone oxidoreductase was present in Acidicaldus sp. strain DX-1, while no candidate genes with significant similarity to tetrathionate hydrolase were found. Additionally, there were genes encoding heterodisulfide reductase complex, which was proposed to play a crucial role in oxidizing cytoplasmic sulfur. Like many heterotrophic sulfur oxidizers, Acidicaldus sp. strain DX-1 had no genes encoding enzymes essential for the direct oxidation of sulfite. An indirect oxidation of sulfite via adenosine-5′-phosphosulfate was proposed in Acidicaldus strain DX-1. However, compared to other closely related bacteria Acidiphilium cryptum and Acidiphilium multivorum, which harbored the genes encoding Sox system, almost all of these genes were not detected in Acidicaldus sp. strain DX-1. This study might provide some references for the future study of RISC oxidation in heterotrophic sulfur-oxidizing acidophiles.
Collapse
|
25
|
Ullrich SR, Poehlein A, Tischler JS, González C, Ossandon FJ, Daniel R, Holmes DS, Schlömann M, Mühling M. Genome Analysis of the Biotechnologically Relevant Acidophilic Iron Oxidising Strain JA12 Indicates Phylogenetic and Metabolic Diversity within the Novel Genus "Ferrovum". PLoS One 2016; 11:e0146832. [PMID: 26808278 PMCID: PMC4725956 DOI: 10.1371/journal.pone.0146832] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 12/22/2015] [Indexed: 02/07/2023] Open
Abstract
Background Members of the genus “Ferrovum” are ubiquitously distributed in acid mine drainage (AMD) waters which are characterised by their high metal and sulfate loads. So far isolation and microbiological characterisation have only been successful for the designated type strain “Ferrovum myxofaciens” P3G. Thus, knowledge about physiological characteristics and the phylogeny of the genus “Ferrovum” is extremely scarce. Objective In order to access the wider genetic pool of the genus “Ferrovum” we sequenced the genome of a “Ferrovum”-containing mixed culture and successfully assembled the almost complete genome sequence of the novel “Ferrovum” strain JA12. Phylogeny and Lifestyle The genome-based phylogenetic analysis indicates that strain JA12 and the type strain represent two distinct “Ferrovum” species. “Ferrovum” strain JA12 is characterised by an unusually small genome in comparison to the type strain and other iron oxidising bacteria. The prediction of nutrient assimilation pathways suggests that “Ferrovum” strain JA12 maintains a chemolithoautotrophic lifestyle utilising carbon dioxide and bicarbonate, ammonium and urea, sulfate, phosphate and ferrous iron as carbon, nitrogen, sulfur, phosphorous and energy sources, respectively. Unique Metabolic Features The potential utilisation of urea by “Ferrovum” strain JA12 is moreover remarkable since it may furthermore represent a strategy among extreme acidophiles to cope with the acidic environment. Unlike other acidophilic chemolithoautotrophs “Ferrovum” strain JA12 exhibits a complete tricarboxylic acid cycle, a metabolic feature shared with the closer related neutrophilic iron oxidisers among the Betaproteobacteria including Sideroxydans lithotrophicus and Thiobacillus denitrificans. Furthermore, the absence of characteristic redox proteins involved in iron oxidation in the well-studied acidophiles Acidithiobacillus ferrooxidans (rusticyanin) and Acidithiobacillus ferrivorans (iron oxidase) indicates the existence of a modified pathway in “Ferrovum” strain JA12. Therefore, the results of the present study extend our understanding of the genus “Ferrovum” and provide a comprehensive framework for future comparative genome and metagenome studies.
Collapse
Affiliation(s)
- Sophie R. Ullrich
- Institute of Biological Sciences, TU Bergakademie Freiberg, Leipziger Straße 29, Freiberg, Germany
- * E-mail: (SRU); (MM)
| | - Anja Poehlein
- Georg-August-University Göttingen, Genomic and Applied Microbiology & Göttingen Genomics Laboratory, Grisebachstraße 8, Göttingen, Germany
| | - Judith S. Tischler
- Institute of Biological Sciences, TU Bergakademie Freiberg, Leipziger Straße 29, Freiberg, Germany
| | - Carolina González
- Center for System Biotechnology, Bio-Computing Division and Applied Genetics Division, Fraunhofer Chile Research Foundation, Avenida Mariano Sánchez Fontecilla 310, Santiago, Chile, and Center for Bioinformatics and Genome Biology, Fundación Ciencia y Vida, Zañartu 1482, and Facultad de Ciencias Biologicas, Universidad Andres Bello, Avenida Los Leones 745, Santiago, Chile
| | - Francisco J. Ossandon
- Center for Bioinformatics and Genome Biology, Fundación Ciencia y Vida, Zañartu 1482 and Facultad de Ciencias Biologicas, Universidad Andres Bello, Avenida Los Leones 745, Santiago, Chile
| | - Rolf Daniel
- Georg-August-University Göttingen, Genomic and Applied Microbiology & Göttingen Genomics Laboratory, Grisebachstraße 8, Göttingen, Germany
| | - David S. Holmes
- Center for Bioinformatics and Genome Biology, Fundación Ciencia y Vida, Zañartu 1482 and Facultad de Ciencias Biologicas, Universidad Andres Bello, Avenida Los Leones 745, Santiago, Chile
| | - Michael Schlömann
- Institute of Biological Sciences, TU Bergakademie Freiberg, Leipziger Straße 29, Freiberg, Germany
| | - Martin Mühling
- Institute of Biological Sciences, TU Bergakademie Freiberg, Leipziger Straße 29, Freiberg, Germany
- * E-mail: (SRU); (MM)
| |
Collapse
|
26
|
Panda S, Akcil A, Pradhan N, Deveci H. Current scenario of chalcopyrite bioleaching: a review on the recent advances to its heap-leach technology. BIORESOURCE TECHNOLOGY 2015; 196:694-706. [PMID: 26318845 DOI: 10.1016/j.biortech.2015.08.064] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 08/10/2015] [Accepted: 08/11/2015] [Indexed: 06/04/2023]
Abstract
Chalcopyrite is the primary copper mineral used for production of copper metal. Today, as a result of rapid industrialization, there has been enormous demand to profitably process the low grade chalcopyrite and "dirty" concentrates through bioleaching. In the current scenario, heap bioleaching is the most advanced and preferred eco-friendly technology for processing of low grade, uneconomic/difficult-to-enrich ores for copper extraction. This paper reviews the current status of chalcopyrite bioleaching. Advanced information with the attempts made for understanding the diversity of bioleaching microorganisms; role of OMICs based research for future applications to industrial sectors and chemical/microbial aspects of chalcopyrite bioleaching is discussed. Additionally, the current progress made to overcome the problems of passivation as seen in chalcopyrite bioleaching systems have been conversed. Furthermore, advances in the designing of heap bioleaching plant along with microbial and environmental factors of importance have been reviewed with conclusions into the future prospects of chalcopyrite bioleaching.
Collapse
Affiliation(s)
- Sandeep Panda
- Department of Bioresources Engineering, CSIR-Institute of Minerals and Materials Technology (IMMT), Bhubaneswar 751013, Odisha, India
| | - Ata Akcil
- Mineral-Metal Recovery and Recycling Research Group, Mineral Processing Division, Department of Mining Engineering, Suleyman Demirel University, TR32260 Isparta, Turkey.
| | - Nilotpala Pradhan
- Department of Bioresources Engineering, CSIR-Institute of Minerals and Materials Technology (IMMT), Bhubaneswar 751013, Odisha, India
| | - Haci Deveci
- Hydromet B&PM Group, Mineral & Coal Process. Div., Dept. of Mining Eng., Karadeniz Technical University, TR61080 Trabzon, Turkey
| |
Collapse
|
27
|
Martinez P, Vera M, Bobadilla-Fazzini RA. Omics on bioleaching: current and future impacts. Appl Microbiol Biotechnol 2015; 99:8337-50. [PMID: 26278538 PMCID: PMC4768214 DOI: 10.1007/s00253-015-6903-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 07/27/2015] [Accepted: 07/30/2015] [Indexed: 11/28/2022]
Abstract
Bioleaching corresponds to the microbial-catalyzed process of conversion of insoluble metals into soluble forms. As an applied biotechnology globally used, it represents an extremely interesting field of research where omics techniques can be applied in terms of knowledge development, but moreover in terms of process design, control, and optimization. In this mini-review, the current state of genomics, proteomics, and metabolomics of bioleaching and the major impacts of these analytical methods at industrial scale are highlighted. In summary, genomics has been essential in the determination of the biodiversity of leaching processes and for development of conceptual and functional metabolic models. Proteomic impacts are mostly related to microbe-mineral interaction analysis, including copper resistance and biofilm formation. Early steps of metabolomics in the field of bioleaching have shown a significant potential for the use of metabolites as industrial biomarkers. Development directions are given in order to enhance the future impacts of the omics in biohydrometallurgy.
Collapse
Affiliation(s)
- Patricio Martinez
- BioSigma 'S.A.', Parque Industrial Los Libertadores, Lote 106, Colina, Chile
| | - Mario Vera
- Biofilm Centre, Aquatische Biotechnologie, Universität Duisburg-Essen, Universitätstraße 5, 45141, Essen, Germany
| | | |
Collapse
|
28
|
Raddadi N, Cherif A, Daffonchio D, Neifar M, Fava F. Biotechnological applications of extremophiles, extremozymes and extremolytes. Appl Microbiol Biotechnol 2015; 99:7907-13. [PMID: 26272092 DOI: 10.1007/s00253-015-6874-9] [Citation(s) in RCA: 122] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 07/20/2015] [Accepted: 07/22/2015] [Indexed: 11/24/2022]
Abstract
In the last decade, attention to extreme environments has increased because of interests to isolate previously unknown extremophilic microorganisms in pure culture and to profile their metabolites. Microorganisms that live in extreme environments produce extremozymes and extremolytes that have the potential to be valuable resources for the development of a bio-based economy through their application to white, red, and grey biotechnologies. Here, we provide an overview of extremophile ecology, and we review the most recent applications of microbial extremophiles and the extremozymes and extremolytes they produce to biotechnology.
Collapse
Affiliation(s)
- Noura Raddadi
- Department of Civil, Chemical, Environmental and Materials Engineering (DICAM), University of Bologna, via Terracini 28, 40131, Bologna, Italy,
| | | | | | | | | |
Collapse
|
29
|
Liljeqvist M, Ossandon FJ, González C, Rajan S, Stell A, Valdes J, Holmes DS, Dopson M. Metagenomic analysis reveals adaptations to a cold-adapted lifestyle in a low-temperature acid mine drainage stream. FEMS Microbiol Ecol 2015; 91:fiv011. [PMID: 25764459 DOI: 10.1093/femsec/fiv011] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/26/2015] [Indexed: 11/13/2022] Open
Abstract
An acid mine drainage (pH 2.5-2.7) stream biofilm situated 250 m below ground in the low-temperature (6-10°C) Kristineberg mine, northern Sweden, contained a microbial community equipped for growth at low temperature and acidic pH. Metagenomic sequencing of the biofilm and planktonic fractions identified the most abundant microorganism to be similar to the psychrotolerant acidophile, Acidithiobacillus ferrivorans. In addition, metagenome contigs were most similar to other Acidithiobacillus species, an Acidobacteria-like species, and a Gallionellaceae-like species. Analyses of the metagenomes indicated functional characteristics previously characterized as related to growth at low temperature including cold-shock proteins, several pathways for the production of compatible solutes and an anti-freeze protein. In addition, genes were predicted to encode functions related to pH homeostasis and metal resistance related to growth in the acidic metal-containing mine water. Metagenome analyses identified microorganisms capable of nitrogen fixation and exhibiting a primarily autotrophic lifestyle driven by the oxidation of the ferrous iron and inorganic sulfur compounds contained in the sulfidic mine waters. The study identified a low diversity of abundant microorganisms adapted to a low-temperature acidic environment as well as identifying some of the strategies the microorganisms employ to grow in this extreme environment.
Collapse
Affiliation(s)
- Maria Liljeqvist
- Department of Molecular Biology, Umeå University, S-901 87 Umeå, Sweden
| | - Francisco J Ossandon
- Center for Bioinformatics and Genome Biology, Fundación Ciencia & Vida and Depto. de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Santiago 7780272, Chile
| | - Carolina González
- Center for Bioinformatics and Genome Biology, Fundación Ciencia & Vida and Depto. de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Santiago 7780272, Chile Bio-Computing and Applied Genetics Division, Fraunhofer Chile Research Foundation, Center for Systems Biotechnology, Santiago, Piso 14, 7550296, Chile
| | - Sukithar Rajan
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, 392 31 Kalmar, Sweden
| | - Adam Stell
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, 392 31 Kalmar, Sweden
| | - Jorge Valdes
- Bio-Computing and Applied Genetics Division, Fraunhofer Chile Research Foundation, Center for Systems Biotechnology, Santiago, Piso 14, 7550296, Chile
| | - David S Holmes
- Center for Bioinformatics and Genome Biology, Fundación Ciencia & Vida and Depto. de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Santiago 7780272, Chile
| | - Mark Dopson
- Department of Molecular Biology, Umeå University, S-901 87 Umeå, Sweden Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, 392 31 Kalmar, Sweden
| |
Collapse
|
30
|
Electroactive bacteria—molecular mechanisms and genetic tools. Appl Microbiol Biotechnol 2014; 98:8481-95. [DOI: 10.1007/s00253-014-6005-z] [Citation(s) in RCA: 153] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 07/28/2014] [Accepted: 07/30/2014] [Indexed: 12/15/2022]
|
31
|
Altermann E. Invited commentary: lubricating the rusty wheel, new insights into iron oxidizing bacteria through comparative genomics. Front Microbiol 2014; 5:386. [PMID: 25126088 PMCID: PMC4115626 DOI: 10.3389/fmicb.2014.00386] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 07/10/2014] [Indexed: 11/13/2022] Open
Affiliation(s)
- Eric Altermann
- Animal Nutrition and Health Group, AgResearch Ltd. Palmerston North, New Zealand ; Centre of Research Excellence, Riddet Institute, Massey University Palmerston North, New Zealand
| |
Collapse
|
32
|
Guo X, Yin H, Liang Y, Hu Q, Zhou X, Xiao Y, Ma L, Zhang X, Qiu G, Liu X. Comparative genome analysis reveals metabolic versatility and environmental adaptations of Sulfobacillus thermosulfidooxidans strain ST. PLoS One 2014; 9:e99417. [PMID: 24940621 PMCID: PMC4062416 DOI: 10.1371/journal.pone.0099417] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Accepted: 05/14/2014] [Indexed: 12/21/2022] Open
Abstract
The genus Sulfobacillus is a cohort of mildly thermophilic or thermotolerant acidophiles within the phylum Firmicutes and requires extremely acidic environments and hypersalinity for optimal growth. However, our understanding of them is still preliminary partly because few genome sequences are available. Here, the draft genome of Sulfobacillus thermosulfidooxidans strain ST was deciphered to obtain a comprehensive insight into the genetic content and to understand the cellular mechanisms necessary for its survival. Furthermore, the expressions of key genes related with iron and sulfur oxidation were verified by semi-quantitative RT-PCR analysis. The draft genome sequence of Sulfobacillus thermosulfidooxidans strain ST, which encodes 3225 predicted coding genes on a total length of 3,333,554 bp and a 48.35% G+C, revealed the high degree of heterogeneity with other Sulfobacillus species. The presence of numerous transposases, genomic islands and complete CRISPR/Cas defence systems testifies to its dynamic evolution consistent with the genome heterogeneity. As expected, S. thermosulfidooxidans encodes a suit of conserved enzymes required for the oxidation of inorganic sulfur compounds (ISCs). The model of sulfur oxidation in S. thermosulfidooxidans was proposed, which showed some different characteristics from the sulfur oxidation of Gram-negative A. ferrooxidans. Sulfur oxygenase reductase and heterodisulfide reductase were suggested to play important roles in the sulfur oxidation. Although the iron oxidation ability was observed, some key proteins cannot be identified in S. thermosulfidooxidans. Unexpectedly, a predicted sulfocyanin is proposed to transfer electrons in the iron oxidation. Furthermore, its carbon metabolism is rather flexible, can perform the transformation of pentose through the oxidative and non-oxidative pentose phosphate pathways and has the ability to take up small organic compounds. It encodes a multitude of heavy metal resistance systems to adapt the heavy metal-containing environments.
Collapse
Affiliation(s)
- Xue Guo
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| | - Huaqun Yin
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| | - Yili Liang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| | - Qi Hu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| | - Xishu Zhou
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| | - Yunhua Xiao
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
| | - Liyuan Ma
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
| | - Xian Zhang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
| | - Guanzhou Qiu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| | - Xueduan Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| |
Collapse
|
33
|
Dubinina GA, Sorokina AY. Neutrophilic lithotrophic iron-oxidizing prokaryotes and their role in the biogeochemical processes of the iron cycle. Microbiology (Reading) 2014. [DOI: 10.1134/s0026261714020052] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
34
|
Pereira LB, Vicentini R, Ottoboni LMM. Changes in the bacterial community of soil from a neutral mine drainage channel. PLoS One 2014; 9:e96605. [PMID: 24796430 PMCID: PMC4010462 DOI: 10.1371/journal.pone.0096605] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Accepted: 04/09/2014] [Indexed: 02/02/2023] Open
Abstract
Mine drainage is an important environmental disturbance that affects the chemical and biological components in natural resources. However, little is known about the effects of neutral mine drainage on the soil bacteria community. Here, a high-throughput 16S rDNA pyrosequencing approach was used to evaluate differences in composition, structure, and diversity of bacteria communities in samples from a neutral drainage channel, and soil next to the channel, at the Sossego copper mine in Brazil. Advanced statistical analyses were used to explore the relationships between the biological and chemical data. The results showed that the neutral mine drainage caused changes in the composition and structure of the microbial community, but not in its diversity. The Deinococcus/Thermus phylum, especially the Meiothermus genus, was in large part responsible for the differences between the communities, and was positively associated with the presence of copper and other heavy metals in the environmental samples. Other important parameters that influenced the bacterial diversity and composition were the elements potassium, sodium, nickel, and zinc, as well as pH. The findings contribute to the understanding of bacterial diversity in soils impacted by neutral mine drainage, and demonstrate that heavy metals play an important role in shaping the microbial population in mine environments.
Collapse
Affiliation(s)
- Letícia Bianca Pereira
- Center for Molecular Biology and Genetic Engineering (CBMEG), State University of Campinas – UNICAMP, Campinas, SP, Brazil
| | - Renato Vicentini
- Center for Molecular Biology and Genetic Engineering (CBMEG), State University of Campinas – UNICAMP, Campinas, SP, Brazil
| | - Laura M. M. Ottoboni
- Center for Molecular Biology and Genetic Engineering (CBMEG), State University of Campinas – UNICAMP, Campinas, SP, Brazil
- * E-mail:
| |
Collapse
|
35
|
Dai Z, Guo X, Yin H, Liang Y, Cong J, Liu X. Identification of nitrogen-fixing genes and gene clusters from metagenomic library of acid mine drainage. PLoS One 2014; 9:e87976. [PMID: 24498417 PMCID: PMC3912193 DOI: 10.1371/journal.pone.0087976] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Accepted: 01/02/2014] [Indexed: 11/19/2022] Open
Abstract
Biological nitrogen fixation is an essential function of acid mine drainage (AMD) microbial communities. However, most acidophiles in AMD environments are uncultured microorganisms and little is known about the diversity of nitrogen-fixing genes and structure of nif gene cluster in AMD microbial communities. In this study, we used metagenomic sequencing to isolate nif genes in the AMD microbial community from Dexing Copper Mine, China. Meanwhile, a metagenome microarray containing 7,776 large-insertion fosmids was constructed to screen novel nif gene clusters. Metagenomic analyses revealed that 742 sequences were identified as nif genes including structural subunit genes nifH, nifD, nifK and various additional genes. The AMD community is massively dominated by the genus Acidithiobacillus. However, the phylogenetic diversity of nitrogen-fixing microorganisms is much higher than previously thought in the AMD community. Furthermore, a 32.5-kb genomic sequence harboring nif, fix and associated genes was screened by metagenome microarray. Comparative genome analysis indicated that most nif genes in this cluster are most similar to those of Herbaspirillum seropedicae, but the organization of the nif gene cluster had significant differences from H. seropedicae. Sequence analysis and reverse transcription PCR also suggested that distinct transcription units of nif genes exist in this gene cluster. nifQ gene falls into the same transcription unit with fixABCX genes, which have not been reported in other diazotrophs before. All of these results indicated that more novel diazotrophs survive in the AMD community.
Collapse
Affiliation(s)
- Zhimin Dai
- School of Minerals Processing and Bioengineering, Central South University, Changsha, P. R. China
| | - Xue Guo
- School of Minerals Processing and Bioengineering, Central South University, Changsha, P. R. China
| | - Huaqun Yin
- School of Minerals Processing and Bioengineering, Central South University, Changsha, P. R. China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, P. R. China
| | - Yili Liang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, P. R. China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, P. R. China
| | - Jing Cong
- School of Minerals Processing and Bioengineering, Central South University, Changsha, P. R. China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, P. R. China
| | - Xueduan Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, P. R. China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, P. R. China
- * E-mail:
| |
Collapse
|
36
|
Almárcegui RJ, Navarro CA, Paradela A, Albar JP, von Bernath D, Jerez CA. New copper resistance determinants in the extremophile acidithiobacillus ferrooxidans: a quantitative proteomic analysis. J Proteome Res 2014; 13:946-60. [PMID: 24380576 DOI: 10.1021/pr4009833] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Acidithiobacillus ferrooxidans is an extremophilic bacterium used in biomining processes to recover metals. The presence in A. ferrooxidans ATCC 23270 of canonical copper resistance determinants does not entirely explain the extremely high copper concentrations this microorganism is able to stand, suggesting the existence of other efficient copper resistance mechanisms. New possible copper resistance determinants were searched by using 2D-PAGE, real time PCR (qRT-PCR) and quantitative proteomics with isotope-coded protein labeling (ICPL). A total of 594 proteins were identified of which 120 had altered levels in cells grown in the presence of copper. Of this group of proteins, 76 were up-regulated and 44 down-regulated. The up-regulation of RND-type Cus systems and different RND-type efflux pumps was observed in response to copper, suggesting that these proteins may be involved in copper resistance. An overexpression of most of the genes involved in histidine synthesis and several of those annotated as encoding for cysteine production was observed in the presence of copper, suggesting a possible direct role for these metal-binding amino acids in detoxification. Furthermore, the up-regulation of putative periplasmic disulfide isomerases was also seen in the presence of copper, suggesting that they restore copper-damaged disulfide bonds to allow cell survival. Finally, the down-regulation of the major outer membrane porin and some ionic transporters was seen in A. ferrooxidans grown in the presence of copper, indicating a general decrease in the influx of the metal and other cations into the cell. Thus, A. ferrooxidans most likely uses additional copper resistance strategies in which cell envelope proteins are key components. This knowledge will not only help to understand the mechanism of copper resistance in this extreme acidophile but may help also to select the best fit members of the biomining community to attain more efficient industrial metal leaching processes.
Collapse
Affiliation(s)
- Rodrigo J Almárcegui
- Laboratory of Molecular Microbiology and Biotechnology, Department of Biology, Faculty of Sciences, University of Chile , Santiago Casilla 653 Chile
| | | | | | | | | | | |
Collapse
|
37
|
Goltsman DSA, Dasari M, Thomas BC, Shah MB, VerBerkmoes NC, Hettich RL, Banfield JF. New group in the Leptospirillum clade: cultivation-independent community genomics, proteomics, and transcriptomics of the new species "Leptospirillum group IV UBA BS". Appl Environ Microbiol 2013; 79:5384-93. [PMID: 23645189 PMCID: PMC3753937 DOI: 10.1128/aem.00202-13] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Accepted: 04/09/2013] [Indexed: 11/20/2022] Open
Abstract
Leptospirillum spp. are widespread members of acidophilic microbial communities that catalyze ferrous iron oxidation, thereby increasing sulfide mineral dissolution rates. These bacteria play important roles in environmental acidification and are harnessed for bioleaching-based metal recovery. Known members of the Leptospirillum clade of the Nitrospira phylum are Leptospirillum ferrooxidans (group I), Leptospirillum ferriphilum and "Leptospirillum rubarum" (group II), and Leptospirillum ferrodiazotrophum (group III). In the Richmond Mine acid mine drainage (AMD) system, biofilm formation is initiated by L. rubarum; L. ferrodiazotrophum appears in later developmental stages. Here we used community metagenomic data from unusual, thick floating biofilms to identify distinguishing metabolic traits in a rare and uncultivated community member, the new species "Leptospirillum group IV UBA BS." These biofilms typically also contain a variety of Archaea, Actinobacteria, and a few other Leptospirillum spp. The Leptospirillum group IV UBA BS species shares 98% 16S rRNA sequence identity and 70% average amino acid identity between orthologs with its closest relative, L. ferrodiazotrophum. The presence of nitrogen fixation and reverse tricarboxylic acid (TCA) cycle proteins suggest an autotrophic metabolism similar to that of L. ferrodiazotrophum, while hydrogenase proteins suggest anaerobic metabolism. Community transcriptomic and proteomic analyses demonstrate expression of a multicopper oxidase unique to this species, as well as hydrogenases and core metabolic genes. Results suggest that the Leptospirillum group IV UBA BS species might play important roles in carbon fixation, nitrogen fixation, hydrogen metabolism, and iron oxidation in some acidic environments.
Collapse
|
38
|
Insights into the structure and metabolic function of microbes that shape pelagic iron-rich aggregates ("iron snow"). Appl Environ Microbiol 2013; 79:4272-81. [PMID: 23645202 DOI: 10.1128/aem.00467-13] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Microbial ferrous iron [Fe(II)] oxidation leads to the formation of iron-rich macroscopic aggregates ("iron snow") at the redoxcline in a stratified lignite mine lake in east-central Germany. We aimed to identify the abundant Fe-oxidizing and Fe-reducing microorganisms likely to be involved in the formation and transformation of iron snow present in the redoxcline in two basins of the lake that differ in their pH values. Nucleic acid- and lipid-stained microbial cells of various morphologies detected by confocal laser scanning microscopy were homogeneously distributed in all iron snow samples. The dominant iron mineral appeared to be schwertmannite, with shorter needles in the northern than in the central basin samples. Total bacterial 16S rRNA gene copies ranged from 5.0 × 10(8) copies g (dry weight)(-1) in the acidic central lake basin (pH 3.3) to 4.0 × 10(10) copies g (dry weight)(-1) in the less acidic (pH 5.9) northern basin. Total RNA-based quantitative PCR assigned up to 61% of metabolically active microbial communities to Fe-oxidizing- and Fe-reducing-related bacteria, indicating that iron metabolism was an important metabolic strategy. Molecular identification of abundant groups suggested that iron snow surfaces were formed by chemoautotrophic iron oxidizers, such as Acidimicrobium, Ferrovum, Acidithiobacillus, Thiobacillus, and Chlorobium, in the redoxcline and were rapidly colonized by heterotrophic iron reducers, such as Acidiphilium, Albidiferax-like, and Geobacter-like groups. Metaproteomics yielded 283 different proteins from northern basin iron snow samples, and protein identification provided a glimpse into some of their in situ metabolic processes, such as primary production (CO2 fixation), respiration, motility, and survival strategies.
Collapse
|
39
|
Martínez P, Gálvez S, Ohtsuka N, Budinich M, Cortés MP, Serpell C, Nakahigashi K, Hirayama A, Tomita M, Soga T, Martínez S, Maass A, Parada P. Metabolomic study of Chilean biomining bacteria Acidithiobacillus ferrooxidans strain Wenelen and Acidithiobacillus thiooxidans strain Licanantay. Metabolomics 2013; 9:247-257. [PMID: 23335869 PMCID: PMC3548112 DOI: 10.1007/s11306-012-0443-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Accepted: 06/29/2012] [Indexed: 12/20/2022]
Abstract
In this study, we present the first metabolic profiles for two bioleaching bacteria using capillary electrophoresis coupled with mass spectrometry. The bacteria, Acidithiobacillus ferrooxidans strain Wenelen (DSM 16786) and Acidithiobacillus thiooxidans strain Licanantay (DSM 17318), were sampled at different growth phases and on different substrates: the former was grown with iron and sulfur, and the latter with sulfur and chalcopyrite. Metabolic profiles were scored from planktonic and sessile states. Spermidine was detected in intra- and extracellular samples for both strains, suggesting it has an important role in biofilm formation in the presence of solid substrate. The canonical pathway for spermidine synthesis seems absent as its upstream precursor, putrescine, was not present in samples. Glutathione, a catalytic activator of elemental sulfur, was identified as one of the most abundant metabolites in the intracellular space in A. thiooxidans strain Licanantay, confirming its participation in the sulfur oxidation pathway. Amino acid profiles varied according to the growth conditions and bioleaching species. Glutamic and aspartic acid were highly abundant in intra- and extracellular extracts. Both are constituents of the extracellular matrix, and have a probable role in cell detoxification. This novel metabolomic information validates previous knowledge from in silico metabolic reconstructions based on genomic sequences, and reveals important biomining functions such as biofilm formation, energy management and stress responses. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s11306-012-0443-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | - Marko Budinich
- Laboratory of Bioinformatics and Mathematics of the Genome, Center for Mathematical Modeling (UMI 2807, CNRS) and Center for Genome Regulation, University of Chile, Avda. Blanco Encalada 2120, 7th Floor, Santiago, Chile
| | - María Paz Cortés
- Laboratory of Bioinformatics and Mathematics of the Genome, Center for Mathematical Modeling (UMI 2807, CNRS) and Center for Genome Regulation, University of Chile, Avda. Blanco Encalada 2120, 7th Floor, Santiago, Chile
| | - Cristián Serpell
- Laboratory of Bioinformatics and Mathematics of the Genome, Center for Mathematical Modeling (UMI 2807, CNRS) and Center for Genome Regulation, University of Chile, Avda. Blanco Encalada 2120, 7th Floor, Santiago, Chile
| | - Kenji Nakahigashi
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata Japan
| | - Akiyoshi Hirayama
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata Japan
| | - Masaru Tomita
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata Japan
| | - Tomoyoshi Soga
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata Japan
| | - Servet Martínez
- Laboratory of Bioinformatics and Mathematics of the Genome, Center for Mathematical Modeling (UMI 2807, CNRS) and Center for Genome Regulation, University of Chile, Avda. Blanco Encalada 2120, 7th Floor, Santiago, Chile
- Department of Mathematical Engineering and Center for Mathematical Modeling (UMI 2807, CNRS), Faculty of Mathematical and Physical Sciences, University of Chile, Avda. Blanco Encalada 2120, 7th Floor, Santiago, Chile
| | - Alejandro Maass
- Laboratory of Bioinformatics and Mathematics of the Genome, Center for Mathematical Modeling (UMI 2807, CNRS) and Center for Genome Regulation, University of Chile, Avda. Blanco Encalada 2120, 7th Floor, Santiago, Chile
- Department of Mathematical Engineering and Center for Mathematical Modeling (UMI 2807, CNRS), Faculty of Mathematical and Physical Sciences, University of Chile, Avda. Blanco Encalada 2120, 7th Floor, Santiago, Chile
| | - Pilar Parada
- BioSigma S.A., Loteo Los Libertadores, Lote 106, Colina, Chile
| |
Collapse
|
40
|
Nikolic N, Smole Z, Krisko A. Proteomic properties reveal phyloecological clusters of Archaea. PLoS One 2012; 7:e48231. [PMID: 23133575 PMCID: PMC3485053 DOI: 10.1371/journal.pone.0048231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Accepted: 09/28/2012] [Indexed: 11/18/2022] Open
Abstract
In this study, we propose a novel way to describe the variety of environmental adaptations of Archaea. We have clustered 57 Archaea by using a non-redundant set of proteomic features, and verified that the clusters correspond to environmental adaptations to the archaeal habitats. The first cluster consists dominantly of hyperthermophiles and hyperthermoacidophilic aerobes. The second cluster joins together halophilic and extremely halophilic Archaea, while the third cluster contains mesophilic (mostly methanogenic) Archaea together with thermoacidophiles. The non-redundant subset of proteomic features was found to consist of five features: the ratio of charged residues to uncharged, average protein size, normalized frequency of beta-sheet, normalized frequency of extended structure and number of hydrogen bond donors. We propose this clustering to be termed phyloecological clustering. This approach could give additional insights into relationships among archaeal species that may be hidden by sole phylogenetic analysis.
Collapse
Affiliation(s)
- Nela Nikolic
- Mediterranean Institute for Life Sciences, Split, Croatia
- Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich, Zurich, Switzerland
- Department of Environmental Microbiology, Eawag, Duebendorf, Switzerland
| | - Zlatko Smole
- Mediterranean Institute for Life Sciences, Split, Croatia
- Institute of Cell Biology, ETH Zurich, Zurich, Switzerland
| | - Anita Krisko
- Mediterranean Institute for Life Sciences, Split, Croatia
- * E-mail:
| |
Collapse
|
41
|
Montoya L, Celis LB, Razo-Flores E, Alpuche-Solís ÁG. Distribution of CO2 fixation and acetate mineralization pathways in microorganisms from extremophilic anaerobic biotopes. Extremophiles 2012; 16:805-17. [DOI: 10.1007/s00792-012-0487-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Accepted: 09/27/2012] [Indexed: 11/28/2022]
|
42
|
Mapelli F, Marasco R, Balloi A, Rolli E, Cappitelli F, Daffonchio D, Borin S. Mineral-microbe interactions: biotechnological potential of bioweathering. J Biotechnol 2011; 157:473-81. [PMID: 22138043 DOI: 10.1016/j.jbiotec.2011.11.013] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Revised: 11/15/2011] [Accepted: 11/17/2011] [Indexed: 10/15/2022]
Abstract
Mineral-microbe interaction has been a key factor shaping the lithosphere of our planet since the Precambrian. Detailed investigation has been mainly focused on the role of bioweathering in biomining processes, leading to the selection of highly efficient microbial inoculants for the recovery of metals. Here we expand this scenario, presenting additional applications of bacteria and fungi in mineral dissolution, a process with novel biotechnological potential that has been poorly investigated. The ability of microorganisms to trigger soil formation and to sustain plant establishment and growth are suggested as invaluable tools to counteract the expansion of arid lands and to increase crop productivity. Furthermore, interesting exploitations of mineral weathering microbes are represented by biorestoration and bioremediation technologies, innovative and competitive solutions characterized by economical and environmental advantages. Overall, in the future the study and application of the metabolic properties of microbial communities capable of weathering can represent a driving force in the expanding sector of environmental biotechnology.
Collapse
Affiliation(s)
- Francesca Mapelli
- Università degli Studi di Milano, Dipartimento di Scienze e Tecnologie Alimentari e Microbiologiche, Via Celoria 2, 20133 Milano, Italy
| | | | | | | | | | | | | |
Collapse
|
43
|
Bonnefoy V, Holmes DS. Genomic insights into microbial iron oxidation and iron uptake strategies in extremely acidic environments. Environ Microbiol 2011; 14:1597-611. [DOI: 10.1111/j.1462-2920.2011.02626.x] [Citation(s) in RCA: 144] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
44
|
Orellana LH, Jerez CA. A genomic island provides Acidithiobacillus ferrooxidans ATCC 53993 additional copper resistance: a possible competitive advantage. Appl Microbiol Biotechnol 2011; 92:761-7. [PMID: 21789491 DOI: 10.1007/s00253-011-3494-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Revised: 07/05/2011] [Accepted: 07/15/2011] [Indexed: 12/23/2022]
Abstract
There is great interest in understanding how extremophilic biomining bacteria adapt to exceptionally high copper concentrations in their environment. Acidithiobacillus ferrooxidans ATCC 53993 genome possesses the same copper resistance determinants as strain ATCC 23270. However, the former strain contains in its genome a 160-kb genomic island (GI), which is absent in ATCC 23270. This GI contains, amongst other genes, several genes coding for an additional putative copper ATPase and a Cus system. A. ferrooxidans ATCC 53993 showed a much higher resistance to CuSO(4) (>100 mM) than that of strain ATCC 23270 (<25 mM). When a similar number of bacteria from each strain were mixed and allowed to grow in the absence of copper, their respective final numbers remained approximately equal. However, in the presence of copper, there was a clear overgrowth of strain ATCC 53993 compared to ATCC 23270. This behavior is most likely explained by the presence of the additional copper-resistance genes in the GI of strain ATCC 53993. As determined by qRT-PCR, it was demonstrated that these genes are upregulated when A. ferrooxidans ATCC 53993 is grown in the presence of copper and were shown to be functional when expressed in copper-sensitive Escherichia coli mutants. Thus, the reason for resistance to copper of two strains of the same acidophilic microorganism could be determined by slight differences in their genomes, which may not only lead to changes in their capacities to adapt to their environment, but may also help to select the more fit microorganisms for industrial biomining operations.
Collapse
Affiliation(s)
- Luis H Orellana
- Laboratory of Molecular Microbiology and Biotechnology, Department of Biology, and Millennium Institute for Cell Dynamics and Biotechnology, Faculty of Sciences, University of Chile, Santiago, Chile
| | | |
Collapse
|
45
|
Hedrich S, Schlömann M, Johnson DB. The iron-oxidizing proteobacteria. Microbiology (Reading) 2011; 157:1551-1564. [DOI: 10.1099/mic.0.045344-0] [Citation(s) in RCA: 400] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The ‘iron bacteria’ are a collection of morphologically and phylogenetically heterogeneous prokaryotes. They include some of the first micro-organisms to be observed and described, and continue to be the subject of a considerable body of fundamental and applied microbiological research. While species of iron-oxidizing bacteria can be found in many different phyla, most are affiliated with the Proteobacteria. The latter can be subdivided into four main physiological groups: (i) acidophilic, aerobic iron oxidizers; (ii) neutrophilic, aerobic iron oxidizers; (iii) neutrophilic, anaerobic (nitrate-dependent) iron oxidizers; and (iv) anaerobic photosynthetic iron oxidizers. Some species (mostly acidophiles) can reduce ferric iron as well as oxidize ferrous iron, depending on prevailing environmental conditions. This review describes what is currently known about the phylogenetic and physiological diversity of the iron-oxidizing proteobacteria, their significance in the environment (on the global and micro scales), and their increasing importance in biotechnology.
Collapse
Affiliation(s)
- Sabrina Hedrich
- Interdisciplinary Ecological Center, TU Bergakademie Freiberg, Leipziger Strasse 29, 09599 Freiberg, Germany
- School of Biological Sciences, College of Natural Sciences, Bangor University, Deiniol Road, Bangor LL57 2UW, UK
| | - Michael Schlömann
- Interdisciplinary Ecological Center, TU Bergakademie Freiberg, Leipziger Strasse 29, 09599 Freiberg, Germany
| | - D. Barrie Johnson
- School of Biological Sciences, College of Natural Sciences, Bangor University, Deiniol Road, Bangor LL57 2UW, UK
| |
Collapse
|
46
|
Liu H, Han J, Liu X, Zhou J, Xiang H. Development of pyrF-based gene knockout systems for genome-wide manipulation of the archaea Haloferax mediterranei and Haloarcula hispanica. J Genet Genomics 2011; 38:261-9. [PMID: 21703550 DOI: 10.1016/j.jgg.2011.05.003] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2011] [Revised: 05/03/2011] [Accepted: 05/03/2011] [Indexed: 11/29/2022]
Abstract
The haloarchaea Haloferax mediterranei and Haloarcula hispanica are both polyhydroxyalkanoate producers in the domain Archaea, and they are becoming increasingly attractive for research and biotechnology due to their unique genetic and metabolic features. To accelerate their genome-level genetic and metabolic analyses, we have developed specific and highly efficient gene knockout systems for these two haloarchaea. These gene knockout systems consist of a suicide plasmid vector with the pyrF gene as the selection marker and a uracil auxotrophic haloarchaeon (ΔpyrF) as the host. For in-frame deletion of a target gene, the suicide plasmid carrying the flanking region of the target gene was transferred into the corresponding ΔpyrF host. After positive selection of the single-crossover integration recombinants (pop-in) on AS-168SY medium without uracil and counterselection of the double-crossover pyrF-excised recombinants (pop-out) with 5-fluoroorotic acid (5-FOA), the target gene knockout mutants were confirmed by PCR and Southern blot analysis. We have demonstrated the effectiveness of these systems by knocking out the crtB gene which encodes a phytoene synthase in these haloarchaea. In conclusion, these well-developed knockout systems would greatly accelerate the functional genomic research of these halophilic archaea.
Collapse
Affiliation(s)
- Hailong Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | | | |
Collapse
|
47
|
Mangold S, Valdés J, Holmes DS, Dopson M. Sulfur metabolism in the extreme acidophile acidithiobacillus caldus. Front Microbiol 2011; 2:17. [PMID: 21687411 PMCID: PMC3109338 DOI: 10.3389/fmicb.2011.00017] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Accepted: 01/25/2011] [Indexed: 12/20/2022] Open
Abstract
Given the challenges to life at low pH, an analysis of inorganic sulfur compound (ISC) oxidation was initiated in the chemolithoautotrophic extremophile Acidithiobacillus caldus. A. caldus is able to metabolize elemental sulfur and a broad range of ISCs. It has been implicated in the production of environmentally damaging acidic solutions as well as participating in industrial bioleaching operations where it forms part of microbial consortia used for the recovery of metal ions. Based upon the recently published A. caldus type strain genome sequence, a bioinformatic reconstruction of elemental sulfur and ISC metabolism predicted genes included: sulfide-quinone reductase (sqr), tetrathionate hydrolase (tth), two sox gene clusters potentially involved in thiosulfate oxidation (soxABXYZ), sulfur oxygenase reductase (sor), and various electron transport components. RNA transcript profiles by semi quantitative reverse transcription PCR suggested up-regulation of sox genes in the presence of tetrathionate. Extensive gel based proteomic comparisons of total soluble and membrane enriched protein fractions during growth on elemental sulfur and tetrathionate identified differential protein levels from the two Sox clusters as well as several chaperone and stress proteins up-regulated in the presence of elemental sulfur. Proteomics results also suggested the involvement of heterodisulfide reductase (HdrABC) in A. caldus ISC metabolism. A putative new function of Hdr in acidophiles is discussed. Additional proteomic analysis evaluated protein expression differences between cells grown attached to solid, elemental sulfur versus planktonic cells. This study has provided insights into sulfur metabolism of this acidophilic chemolithotroph and gene expression during attachment to solid elemental sulfur.
Collapse
Affiliation(s)
| | - Jorge Valdés
- Center for Bioinformatics and Genome Biology, Fundación Ciencia para VidaSantiago, Chile
| | - David S. Holmes
- Center for Bioinformatics and Genome Biology, Fundación Ciencia para VidaSantiago, Chile
- Departamento de Ciencias Biologicas, Andrés Bello UniversitySantiago, Chile
| | - Mark Dopson
- Center for Bioinformatics and Genome Biology, Fundación Ciencia para VidaSantiago, Chile
| |
Collapse
|