1
|
Hakalehto E, Heitto A, Adusei-Mensah F, Jääskeläinen A, Laatikainen R, Kivelä J, Dahlquist E, den Boer J, den Boer E. Food and Forest Industry Waste Reuse Using Mixed Microflora. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2024. [PMID: 39643824 DOI: 10.1007/10_2024_268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/09/2024]
Abstract
Organic raw materials are the renewable sources of substrates for our industries and for our microbial communities. As industrial, agricultural or forestry side streams, they are usually affordable if the process entities, equipment and protocols are properly designed. The microbial communities that are used as biocatalysts take care of the process development together with us or with the process team. Moreover, they constitute or shape the process to resemble the natural bioprocess as it takes place or occurs in nature and thus make it "Industry Like Nature®" - type of endeavor. As an ultimate result, we could make our industries increasingly 100% sustainable with the help of microbes. In case of food or forest industry side streams, this means fossil-free production of valuable chemicals, food and feed components, energy and gases, and soil improvement or organic fertilizers. The so-called "Finnoflag biorefinery" idea has been tested in many cases together with domestic and international colleagues and industries. In here, we attempt to share the basic thinking.
Collapse
Affiliation(s)
- Elias Hakalehto
- University of Helsinki, Helsinki, Finland
- University of Eastern Finland, Kuopio, Finland
- Finnoflag Oy, Kuopio, Finland
| | | | | | | | | | - Jukka Kivelä
- University of Helsinki, Helsinki, Finland
- Suomen Ekosovellus Oy, Vesilahti, Finland
| | - Erik Dahlquist
- Division of Sustainable Energy Systems, School of Business Society and Engineering, Mälardalen University, Västerås, Sweden
| | | | | |
Collapse
|
2
|
Wang Y, Chen E, Wang Y, Sun X, Dong Q, Chen P, Zhang C, Yang J, Sun Y. Biosynthesis of mannose from glucose via constructing phosphorylation-dephosphorylation reactions in Escherichia coli. Enzyme Microb Technol 2024; 177:110427. [PMID: 38518553 DOI: 10.1016/j.enzmictec.2024.110427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/20/2024] [Accepted: 03/13/2024] [Indexed: 03/24/2024]
Abstract
d-mannose has been widely used in food, medicine, cosmetic, and food-additive industries. To date, chemical synthesis or enzymatic conversion approaches based on iso/epimerization reactions for d-mannose production suffered from low conversion rate due to the reaction equilibrium, necessitating intricate separation processes for obtaining pure products on an industrial scale. To circumvent this challenge, this study showcased a new approach for d-mannose synthesis from glucose through constructing a phosphorylation-dephosphorylation pathway in an engineered strain. Specifically, the gene encoding phosphofructokinase (PfkA) in glycolytic pathway was deleted in Escherichia coli to accumulate fructose-6-phosphate (F6P). Additionally, one endogenous phosphatase, YniC, with high specificity to mannose-6-phosphate, was identified. In ΔpfkA strain, a recombinant synthetic pathway based on mannose-6-phosphate isomerase and YniC was developed to direct F6P to mannose. The resulting strain successfully produced 25.2 g/L mannose from glucose with a high conversion rate of 63% after transformation for 48 h. This performance surpassed the 15% conversion rate observed with 2-epimerases. In conclusion, this study presents an efficient method for achieving high-yield mannose synthesis from cost-effective glucose.
Collapse
Affiliation(s)
- Yuyao Wang
- Tianjin University of Science and Technology, National Engineering Laboratory for Industrial Enzymes, Tianjin 300457, China; National Engineering Laboratory for Industrial Enzymes, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Enhui Chen
- National Engineering Laboratory for Industrial Enzymes, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanfei Wang
- Tianjin University of Science and Technology, National Engineering Laboratory for Industrial Enzymes, Tianjin 300457, China; National Engineering Laboratory for Industrial Enzymes, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Xinming Sun
- Tianjin University of Science and Technology, National Engineering Laboratory for Industrial Enzymes, Tianjin 300457, China; National Engineering Laboratory for Industrial Enzymes, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Qianzhen Dong
- National Engineering Laboratory for Industrial Enzymes, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peng Chen
- Tianjin University of Science and Technology, National Engineering Laboratory for Industrial Enzymes, Tianjin 300457, China; National Engineering Laboratory for Industrial Enzymes, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Chenglin Zhang
- Tianjin University of Science and Technology, National Engineering Laboratory for Industrial Enzymes, Tianjin 300457, China
| | - Jiangang Yang
- National Engineering Laboratory for Industrial Enzymes, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.
| | - Yuanxia Sun
- National Engineering Laboratory for Industrial Enzymes, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
3
|
Wang H, Li H, Lee CK, Mat Nanyan NS, Tay GS. A systematic review on utilization of biodiesel-derived crude glycerol in sustainable polymers preparation. Int J Biol Macromol 2024; 261:129536. [PMID: 38278390 DOI: 10.1016/j.ijbiomac.2024.129536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/08/2024] [Accepted: 01/14/2024] [Indexed: 01/28/2024]
Abstract
With the rapid development of biodiesel, biodiesel-derived glycerol has become a promising renewable bioresource. The key to utilizing this bioresource lies in the value-added conversion of crude glycerol. While purifying crude glycerol into a pure form allows for diverse applications, the intricate nature of this process renders it costly and environmentally stressful. Consequently, technology facilitating the direct utilization of unpurified crude glycerol holds significant importance. It has been reported that crude glycerol can be bio-transformed or chemically converted into high-value polymers. These technologies provide cost-effective alternatives for polymer production while contributing to a more sustainable biodiesel industry. This review article describes the global production and quality characteristics of biodiesel-derived glycerol and investigates the influencing factors and treatment of the composition of crude glycerol including water, methanol, soap, matter organic non-glycerol, and ash. Additionally, this review also focused on the advantages and challenges of various technologies for converting crude glycerol into polymers, considering factors such as the compatibility of crude glycerol and the control of unfavorable factors. Lastly, the application prospect and value of crude glycerol conversion were discussed from the aspects of economy and environmental protection. The development of new technologies for the increased use of crude glycerol as a renewable feedstock for polymer production will be facilitated by the findings of this review, while promoting mass market applications.
Collapse
Affiliation(s)
- Hong Wang
- Bioresource Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang USM 11800, Malaysia
| | - Hongpeng Li
- Tangshan Jinlihai Biodiesel Co. Ltd., 063000 Tangshan, China
| | - Chee Keong Lee
- Bioprocess Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang USM 11800, Malaysia; School of Industrial Technology, Universiti Sains Malaysia, Penang USM 11800, Malaysia
| | - Noreen Suliani Mat Nanyan
- Bioprocess Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang USM 11800, Malaysia; School of Industrial Technology, Universiti Sains Malaysia, Penang USM 11800, Malaysia
| | - Guan Seng Tay
- Bioresource Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang USM 11800, Malaysia; Green Biopolymer, Coatings & Packaging Cluster, School of Industrial Technology, Universiti Sains Malaysia, Penang USM 11800, Malaysia.
| |
Collapse
|
4
|
Juszczyk P, Rywińska A, Kosicka J, Tomaszewska-Hetman L, Rymowicz W. Sugar Alcohol Sweetener Production by Yarrowia lipolytica Grown in Media Containing Glycerol. Molecules 2023; 28:6594. [PMID: 37764370 PMCID: PMC10534813 DOI: 10.3390/molecules28186594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/06/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Most of the world's annual production of mannitol is by chemical means, but, due to increasing demand for natural sweeteners, alternative production methods are being sought. The aim of the study was to screen Yarrowia lipolytica yeast strains and select culture conditions for the efficient and selective biosynthesis of mannitol from glycerol. From 21 strains examined in the shake-flask culture for mannitol biosynthesis from glycerol (100 g/L), three strains were selected-S2, S3, and S4-and further evaluated in batch bioreactor cultures with technical and raw glycerol (150 g/L). The best production parameters were observed for strain S3, which additionally was found to be the most resistant to NaCl concentration. Next, strain S3 was examined in batch culture with regard to the initial glycerol concentration (from 50 to 250 g/L). It was found that the substrate concentrations of 50 and 75 g/L resulted in the highest mannitol selectivity, about 70%. The fed-batch culture system proposed in this paper (performed in two variants in which glycerol was dosed in four portions of about 50 or 75 g/L) resulted in increased mannitol production, up to 78.5 g/L.
Collapse
Affiliation(s)
- Piotr Juszczyk
- Department of Biotechnology and Food Microbiology, Wrocław University of Environmental and Life Sciences, Chełmońskiego St. 37, 51-630 Wrocław, Poland; (A.R.); (J.K.); (L.T.-H.); (W.R.)
| | | | | | | | | |
Collapse
|
5
|
Liang P, Cao M, Li J, Wang Q, Dai Z. Expanding sugar alcohol industry: Microbial production of sugar alcohols and associated chemocatalytic derivatives. Biotechnol Adv 2023; 64:108105. [PMID: 36736865 DOI: 10.1016/j.biotechadv.2023.108105] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 01/28/2023] [Accepted: 01/29/2023] [Indexed: 02/04/2023]
Abstract
Sugar alcohols are polyols that are widely employed in the production of chemicals, pharmaceuticals, and food products. Chemical synthesis of polyols, however, is complex and necessitates the use of hazardous compounds. Therefore, the use of microbes to produce polyols has been proposed as an alternative to traditional synthesis strategies. Many biotechnological approaches have been described to enhancing sugar alcohols production and microbe-mediated sugar alcohol production has the potential to benefit from the availability of inexpensive substrate inputs. Among of them, microbe-mediated erythritol production has been implemented in an industrial scale, but microbial growth and substrate conversion rates are often limited by harsh environmental conditions. In this review, we focused on xylitol, mannitol, sorbitol, and erythritol, the four representative sugar alcohols. The main metabolic engineering strategies, such as regulation of key genes and cofactor balancing, for improving the production of these sugar alcohols were reviewed. The feasible strategies to enhance the stress tolerance of chassis cells, especially thermotolerance, were also summarized. Different low-cost substrates like glycerol, molasses, cellulose hydrolysate, and CO2 employed for producing these sugar alcohols were presented. Given the value of polyols as precursor platform chemicals that can be leveraged to produce a diverse array of chemical products, we not only discuss the challenges encountered in the above parts, but also envisioned the development of their derivatives for broadening the application of sugar alcohols.
Collapse
Affiliation(s)
- Peixin Liang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
| | - Mingfeng Cao
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Jing Li
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Qinhong Wang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China.
| | - Zongjie Dai
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China.
| |
Collapse
|
6
|
Liu W, Li H, Liu L, Ko K, Wang P, Kim I. γ-Aminobutyric acid produced by Levilactobacillus brevis using Chinese cabbage waste. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
7
|
Mohamed F, Ruiz Rodriguez LG, Zorzoli A, Dorfmueller HC, Raya RR, Mozzi F. Genomic diversity in Fructobacillus spp. isolated from fructose-rich niches. PLoS One 2023; 18:e0281839. [PMID: 36795789 PMCID: PMC9934391 DOI: 10.1371/journal.pone.0281839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 01/31/2023] [Indexed: 02/17/2023] Open
Abstract
The Fructobacillus genus is a group of obligately fructophilic lactic acid bacteria (FLAB) that requires the use of fructose or another electron acceptor for their growth. In this work, we performed a comparative genomic analysis within the genus Fructobacillus by using 24 available genomes to evaluate genomic and metabolic differences among these organisms. In the genome of these strains, which varies between 1.15- and 1.75-Mbp, nineteen intact prophage regions, and seven complete CRISPR-Cas type II systems were found. Phylogenetic analyses located the studied genomes in two different clades. A pangenome analysis and a functional classification of their genes revealed that genomes of the first clade presented fewer genes involved in the synthesis of amino acids and other nitrogen compounds. Moreover, the presence of genes strictly related to the use of fructose and electron acceptors was variable within the genus, although these variations were not always related to the phylogeny.
Collapse
Affiliation(s)
- Florencia Mohamed
- Centro de Referencia para Lactobacilos (CERELA)-CONICET, San Miguel de Tucumán, Tucumán, Argentina
| | | | - Azul Zorzoli
- Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Helge C. Dorfmueller
- Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Raúl R. Raya
- Centro de Referencia para Lactobacilos (CERELA)-CONICET, San Miguel de Tucumán, Tucumán, Argentina
| | - Fernanda Mozzi
- Centro de Referencia para Lactobacilos (CERELA)-CONICET, San Miguel de Tucumán, Tucumán, Argentina
| |
Collapse
|
8
|
Li J, Dai Q, Zhu Y, Xu W, Zhang W, Chen Y, Mu W. Low-calorie bulk sweeteners: Recent advances in physical benefits, applications, and bioproduction. Crit Rev Food Sci Nutr 2023; 64:6581-6595. [PMID: 36705477 DOI: 10.1080/10408398.2023.2171362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
At present, with the continuous improvement of living standards, people are paying increasing attention to dietary nutrition and health. Low sugar and low energy consumption have become important dietary trends. In terms of sugar control, more and more countries have implemented sugar taxes in recent years. Hence, as the substitute for sugar, low-calorie sweeteners have been widely used in beverage, bakery, and confectionary industries. In general, low-calorie sweeteners consist of high-intensity and low-calorie bulk sweeteners (some rare sugars and sugar alcohols). In this review, recent advances and challenges in low-calorie bulk sweeteners are explored. Bioproduction of low-calorie bulk sweeteners has become the focus of many researches, because it has the potential to replace the current industrial scale production through chemical synthesis. A comprehensive summary of the physicochemical properties, physiological functions, applications, bioproduction, and regulation of typical low-calorie bulk sweeteners, such as D-allulose, D-tagatose, D-mannitol, sorbitol, and erythritol, is provided.
Collapse
Affiliation(s)
- Jin Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Quanyu Dai
- China Rural Technology Development Center, Beijing, China
| | - Yingying Zhu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Wei Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Wenli Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Yeming Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
9
|
Wang Q, Yang K, Wei X, Qiao W, Chen L. Untargeted metabolomics analysis reveals dynamic changes in co-fermentation with human milk-derived probiotics and Poria cocos. Front Microbiol 2022; 13:1032870. [PMID: 36578582 PMCID: PMC9791117 DOI: 10.3389/fmicb.2022.1032870] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/29/2022] [Indexed: 12/14/2022] Open
Abstract
Introduction To develop functional foods with traditional medicines and homologous food ingredients as well as human milk-derived probiotics, the co-fermentation process of two probiotics, Lactobacillus plantarum R9 and Lactobacillus gasseri B1-27, isolated from the human milk of healthy parturients and the traditional medicine and food homologous ingredient Poria cocos, were separately investigated. Results The Poria cocos fermentation broth at 2.5% significantly enhanced the total number of L. plantarum R9 (p = 0.001) and L. gasseri B1-27 (p = 0.013) after 20 h of fermentation, and Non-targeted metabolomics assays conducted before and after fermentation of the human milk-derived L. plantarum R9 and L. gasseri B1-27 using the 2.5% Poria cocos fermentation broth revealed 35 and 45 differential metabolites, respectively. A variety of active substances with physiological functions, such as L-proline, L-serine, beta-alanine, taurine, retinol, luteolin, and serotonin, were found to be significantly increased. Mannitol, a natural sweetener with a low glycemic index, was also identified. The most significantly altered metabolic pathways were pyrimidine metabolism, pentose phosphate, yeast meiosis, ABC transporter, insulin signaling, and mineral absorption, suggesting that co-fermentation of human milk-derived probiotics and Poria cocos may affect the metabolism of trace minerals, sugars, organic acids, and amino acids. Discussion Overall, we determined that the optimal concentration of Poria cocos to be used in co-fermentation was 2.5% and identified more than 35 differentially expressed metabolites in each probiotic bacteria after co-fermentation. Moreover, several beneficial metabolites were significantly elevated as a result of the co-fermentation process indicating the valuable role of Poria cocos as a functional food.
Collapse
Affiliation(s)
- Qishan Wang
- School of Bioengineering, Dalian Polytechnic University, Dalian, China,National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing, China,Beijing Engineering Research Center of Dairy, Beijing Sanyuan Foods Co. Ltd., Beijing, China
| | - Kai Yang
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing, China,Beijing Engineering Research Center of Dairy, Beijing Sanyuan Foods Co. Ltd., Beijing, China
| | - Xinyue Wei
- School of Bioengineering, Dalian Polytechnic University, Dalian, China,National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing, China,Beijing Engineering Research Center of Dairy, Beijing Sanyuan Foods Co. Ltd., Beijing, China
| | - Weicang Qiao
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing, China,Beijing Engineering Research Center of Dairy, Beijing Sanyuan Foods Co. Ltd., Beijing, China
| | - Lijun Chen
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing, China,Beijing Engineering Research Center of Dairy, Beijing Sanyuan Foods Co. Ltd., Beijing, China,*Correspondence: Lijun Chen,
| |
Collapse
|
10
|
Woo S, Moon JH, Sung J, Baek D, Shon YJ, Jung GY. Recent Advances in the Utilization of Brown Macroalgae as Feedstock for Microbial Biorefinery. BIOTECHNOL BIOPROC E 2022. [DOI: 10.1007/s12257-022-0301-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
11
|
Efficient Utilization of Fruit Peels for the Bioproduction of D-Allulose and D-Mannitol. Foods 2022; 11:foods11223613. [PMID: 36429205 PMCID: PMC9689084 DOI: 10.3390/foods11223613] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/07/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
Currently, the demand for low-calorie sweeteners has grown dramatically because consumers are more mindful of their health than they used to be. Therefore, bioproduction of low-calorie sweeteners from low-cost raw materials becomes a hot spot. In this study, a two-stage strategy was established to efficiently utilize D-fructose from fruit and vegetable wastes. Firstly, ketose 3-epimerase was used to produce D-allulose from D-fructose of pear peels. Secondly, the residual D-fructose was converted to D-mannitol by the engineered strain co-expression of D-mannitol 2-dehydrogenase and formate dehydrogenase. Approximately 29.4% D-fructose of pear peels was converted to D-allulose. Subsequently, under optimal conditions (35 °C, pH 6.5, 1 mM Mn2+, 2 g/L dry cells), almost all the residual D-fructose was transformed into D-mannitol with a 93.5% conversion rate. Eventually, from 1 kg fresh pear peel, it could produce 10.8 g of D-allulose and 24.6 g of D-mannitol. This bioprocess strategy provides a vital method to biosynthesize high-value functional sugars from low-cost biomass.
Collapse
|
12
|
Diamantopoulou P, Papanikolaou S. Biotechnological production of sugar-alcohols: focus on Yarrowia lipolytica and edible/medicinal mushrooms. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
13
|
Kou TS, Wu JH, Chen XW, Peng B. Functional proteomics identify mannitol metabolism in serum resistance and therapeutic implications in Vibrio alginolyticus. Front Immunol 2022; 13:1010526. [PMID: 36389821 PMCID: PMC9660324 DOI: 10.3389/fimmu.2022.1010526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 10/07/2022] [Indexed: 08/18/2023] Open
Abstract
Serum resistance is recognized as one of the most important pathogenic traits of bacterial pathogens, and no control measure is available. Based on our previous discovery that pathogenic Escherichia coli represses glycine, serine, and threonine metabolism to confer serum resistance and that the reactivation of this pathway by exogenous glycine could restore serum sensitivity, we further investigate the mechanism underlying the action of glycine in Vibrio alginolyticus. Thus, V. alginolyticus is treated with glycine, and the proteomic change is profiled with tandem mass tag-based quantitative proteomics. Compared to the control group, glycine treatment influences the expression of a total of 291 proteins. Among them, a trap-type mannitol/chloroaromatic compound transport system with periplasmic component, encoded by N646_0992, is the most significantly increased protein. In combination with the pathway enrichment analysis showing the altered fructose and mannitol metabolism, mannitol has emerged as a possible metabolite in enhancing the serum killing activity. To demonstrate this, exogenous mannitol reduces bacterial viability. This synergistic effect is further confirmed in a V. alginolyticus-Danio rerio infection model. Furthermore, the mechanism underlying mannitol-enabled serum killing is dependent on glycolysis and the pyruvate cycle that increases the deposition of complement components C3b and C5b-9 on the bacterial surface, whereas inhibiting glycolysis or the pyruvate cycle significantly weakened the synergistic effects and complement deposition. These data together suggest that mannitol is a potent metabolite in reversing the serum resistance of V. alginolyticus and has promising use in aquaculture.
Collapse
Affiliation(s)
- Tian-shun Kou
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Higher Education Mega Center, Guangzhou, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Jia-han Wu
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Higher Education Mega Center, Guangzhou, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Xuan-wei Chen
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Higher Education Mega Center, Guangzhou, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Bo Peng
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Higher Education Mega Center, Guangzhou, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
14
|
Mathematical modeling characterization of mannitol production by three heterofermentative lactic acid bacteria. FOOD AND BIOPRODUCTS PROCESSING 2022. [DOI: 10.1016/j.fbp.2022.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
15
|
Kokoreva AS, Isakova EP, Tereshina VM, Klein OI, Gessler NN, Deryabina YI. The Effect of Different Substrates on the Morphological Features and Polyols Production of Endomyces magnusii Yeast during Long-Lasting Cultivation. Microorganisms 2022; 10:microorganisms10091709. [PMID: 36144311 PMCID: PMC9506286 DOI: 10.3390/microorganisms10091709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/12/2022] [Accepted: 08/23/2022] [Indexed: 11/26/2022] Open
Abstract
The study on the influence of different glucose concentrations (2%, 0.5%, and 0.2%) and glycerol (1%) on the morphological and physiological features, as well as the composition of soluble carbohydrates, was performed using Endomyces magnusii yeast. Two-factor analysis of variance with repetitions to process the data of the cell size changes showed that the substrate type affected cell size the most. The cells with 2% glucose were 30–35% larger than those growing on glycerol. The decrease in the initial glucose concentration up to 0.5–0.2% slightly changed the cell length. However, even in the logarithmic growth phase pseudo-mycelium of two to four cells appeared in the cultures when using low glucose, unlike those using glycerol. Throughout the whole experiment, more than 90% of the populations remained viable on all of the substrates tested. The ability for colony formation decreased during aging. Nevertheless, at the three-week stage, upon substrate restriction (0.2% glucose), it was twice higher than those under the other conditions. The respiration rate also decreased and exceeded not more than 10% of that in the logarithmic phase. By the end of the experiment, the cyanide-sensitive respiration share decreased up to 40% for all types of substrates. The study of soluble cytosol carbohydrates showed that the cultures using 2% glucose and 1% glycerol contained mainly arabitol and mannitol, while at low glucose concentrations they were substituted for inositol. The formation of inositol is supposed to be related to pseudo-mycelium formation. The role of calorie restriction in the regulation of carbohydrate synthesis and the composition in the yeast and its biotechnological application is under consideration.
Collapse
Affiliation(s)
- Anastasia S. Kokoreva
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33/2, 119071 Moscow, Russia
| | - Elena P. Isakova
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33/2, 119071 Moscow, Russia
- Correspondence: ; Tel.: +7-(495)-954-4008
| | - Vera M. Tereshina
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, Prospekt 60-Letiya Oktyabrya, 7/2, 117312 Moscow, Russia
| | - Olga I. Klein
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33/2, 119071 Moscow, Russia
| | - Natalya N. Gessler
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33/2, 119071 Moscow, Russia
| | - Yulia I. Deryabina
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33/2, 119071 Moscow, Russia
| |
Collapse
|
16
|
Lei P, Chen H, Ma J, Fang Y, Qu L, Yang Q, Peng B, Zhang X, Jin L, Sun D. Research progress on extraction technology and biomedical function of natural sugar substitutes. Front Nutr 2022; 9:952147. [PMID: 36034890 PMCID: PMC9414081 DOI: 10.3389/fnut.2022.952147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/14/2022] [Indexed: 11/13/2022] Open
Abstract
Improved human material living standards have resulted in a continuous increase in the rate of obesity caused by excessive sugar intake. Consequently, the number of diabetic patients has skyrocketed, not only resulting in a global health problem but also causing huge medical pressure on the government. Limiting sugar intake is a serious problem in many countries worldwide. To this end, the market for sugar substitute products, such as artificial sweeteners and natural sugar substitutes (NSS), has begun to rapidly grow. In contrast to controversial artificial sweeteners, NSS, which are linked to health concepts, have received particular attention. This review focuses on the extraction technology and biomedical function of NSS, with a view of generating insights to improve extraction for its large-scale application. Further, we highlight research progress in the use of NSS as food for special medical purpose (FSMP) for patients.
Collapse
Affiliation(s)
- Pengyu Lei
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, China
| | - Haojie Chen
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, China
| | - Jiahui Ma
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, China
| | - Yimen Fang
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, China
| | - Linkai Qu
- College of Life Sciences, Jilin Agricultural University, Changchun, China
| | - Qinsi Yang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China
| | - Bo Peng
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China
| | - Xingxing Zhang
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Libo Jin
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, China
| | - Da Sun
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, China
| |
Collapse
|
17
|
Li F, Yue TQ, Wang JM, Zhang HB. Externally Supplied Mannitol and Trehalose Boost Phloroglucinol Biosynthesis in Escherichia coli. APPL BIOCHEM MICRO+ 2022. [DOI: 10.1134/s0003683822040093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
18
|
A Critical Review on Engineering of d-Mannitol Crystals: Properties, Applications, and Polymorphic Control. CRYSTALS 2022. [DOI: 10.3390/cryst12081080] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
d-mannitol is a common six-carbon sugar alcohol, which is widely used in food, chemical, pharmaceutical, and other industries. Polymorphism is defined as the ability of materials to crystallize into different crystal structures. It has been reported for a long time that d-mannitol has three polymorphs: β, δ, and α. These different polymorphs have unique physicochemical properties, thus affecting the industrial applications of d-mannitol. In this review, we firstly introduced the characteristics of different d-mannitol polymorphs, e.g., crystal structure, morphology, molecular conformational energy, stability, solubility and the analytical techniques of d-mannitol polymorphisms. Then, we described the different strategies for the preparation of d-mannitol crystals and focused on the polymorphic control of d-mannitol crystals in the products. Furthermore, the factors of the formation of different d-mannitol polymorphisms were summarized. Finally, the application of mannitol polymorphism was summarized. The purpose of this paper is to provide new ideas for a more personalized design of d-mannitol for various applications, especially as a pharmaceutical excipient. Meanwhile, the theoretical overview on polymorphic transformation of d-mannitol may shed some light on the crystal design study of other polycrystalline materials.
Collapse
|
19
|
Peter SB, Qiao Z, Godspower HN, Ajeje SB, Xu M, Zhang X, Yang T, Rao Z. Biotechnological Innovations and Therapeutic Application of Pediococcus and Lactic Acid Bacteria: The Next-Generation Microorganism. Front Bioeng Biotechnol 2022; 9:802031. [PMID: 35237589 PMCID: PMC8883390 DOI: 10.3389/fbioe.2021.802031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 12/08/2021] [Indexed: 01/27/2023] Open
Abstract
Lactic acid bacteria represent a worthwhile organism within the microbial consortium for the food sector, health, and biotechnological applications. They tend to offer high stability to environmental conditions, with an indicated increase in product yield, alongside their moderate antimicrobial activity. Lack of endotoxins and inclusion bodies, extracellular secretion, and surface display with other unique properties, are all winning attributes of these Gram-positive lactic acid bacteria, of which, Pediococcus is progressively becoming an attractive and promising host, as the next-generation probiotic comparable with other well-known model systems. Here, we presented the biotechnological developments in Pediococcal bacteriocin expression system, contemporary variegated models of Pediococcus and lactic acid bacteria strains as microbial cell factory, most recent applications as possible live delivery vector for use as therapeutics, as well as upsurging challenges and future perspective. With the radical introduction of artificial intelligence and neural network in Synthetic Biology, the microbial usage of lactic acid bacteria as an alternative eco-friendly strain, with safe use properties compared with the already known conventional strains is expected to see an increase in various food and biotechnological applications in years to come as it offers better hope of safety, accuracy, and higher efficiency.
Collapse
Affiliation(s)
- Sunday Bulus Peter
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Zhina Qiao
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Hero Nmeri Godspower
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Samaila Boyi Ajeje
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Meijuan Xu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Xian Zhang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Taowei Yang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Zhiming Rao
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| |
Collapse
|
20
|
Martínez-Miranda JG, Chairez I, Durán-Páramo E. Mannitol Production by Heterofermentative Lactic Acid Bacteria: a Review. Appl Biochem Biotechnol 2022; 194:2762-2795. [PMID: 35195836 DOI: 10.1007/s12010-022-03836-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/28/2022] [Indexed: 12/20/2022]
Abstract
Obesity, diabetes, and other cardiovascular diseases are directly related to the high consumption of processed sugars with high caloric content. The current food industry has novel trends related to replacing highly caloric sugars with non-caloric or low-calorie sweeteners. Mannitol, a polyol, represents a suitable substitute because it has a low caloric content and does not induce a glycemic response, which is crucial for diabetic people. Consequently, this polyol has multiple applications in the food, pharmaceutical, and medicine industries. Mannitol can be produced by plant extraction, chemical or enzymatic synthesis, or microbial fermentation. Different in vitro processes have been developed regarding enzymatic synthesis to obtain mannitol from fructose, glucose, or starch-derived substrates. Various microorganisms such as yeast, fungi, and bacteria are applied for microbial fermentation. Among them, heterofermentative lactic acid bacteria (LAB) represent a reliable and feasible alternative due to their metabolic characteristics. In this regard, the yield and productivity of mannitol depend on the culture system, the growing conditions, and the culture medium composition. In situ mannitol production represents a novel approach to decrease the sugar content in food and beverages. Also, genetic engineering offers an interesting option to obtain mannitol-producing strains. This review presents and discusses the most significant advances that have been made in the mannitol production through fermentation by heterofermentative LAB, including the pertinent and critical analysis of culture conditions considering broth composition, reaction systems, and their effects on productivities and yields.
Collapse
Affiliation(s)
- Juan Gilberto Martínez-Miranda
- Laboratorio de Bioconversiones, Unidad Profesional Interdisciplinaria de Biotecnología, Instituto Politécnico Nacional, Av. Acueducto s/n, Barrio La Laguna Ticomán, Alcaldía Gustavo A. Madero, 07340, Mexico City, Mexico
| | - Isaac Chairez
- Laboratorio de Bioconversiones, Unidad Profesional Interdisciplinaria de Biotecnología, Instituto Politécnico Nacional, Av. Acueducto s/n, Barrio La Laguna Ticomán, Alcaldía Gustavo A. Madero, 07340, Mexico City, Mexico
| | - Enrique Durán-Páramo
- Laboratorio de Bioconversiones, Unidad Profesional Interdisciplinaria de Biotecnología, Instituto Politécnico Nacional, Av. Acueducto s/n, Barrio La Laguna Ticomán, Alcaldía Gustavo A. Madero, 07340, Mexico City, Mexico.
| |
Collapse
|
21
|
Hijosa-Valsero M, Garita-Cambronero J, Paniagua-García AI, Díez-Antolínez R. Mannitol bioproduction from surplus grape musts and wine lees. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112083] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
22
|
Some Important Metabolites Produced by Lactic Acid Bacteria Originated from Kimchi. Foods 2021; 10:foods10092148. [PMID: 34574257 PMCID: PMC8465840 DOI: 10.3390/foods10092148] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/03/2021] [Accepted: 09/07/2021] [Indexed: 01/16/2023] Open
Abstract
Lactic acid bacteria (LAB) have been used for various food fermentations for thousands of years. Recently, LAB are receiving increased attention due to their great potential as probiotics for man and animals, and also as cell factories for producing enzymes, antibodies, vitamins, exopolysaccharides, and various feedstocks. LAB are safe organisms with GRAS (generally recognized as safe) status and possess relatively simple metabolic pathways easily subjected to modifications. However, relatively few studies have been carried out on LAB inhabiting plants compared to dairy LAB. Kimchi is a Korean traditional fermented vegetable, and its fermentation is carried out by LAB inhabiting plant raw materials of kimchi. Kimchi represents a model food with low pH and is fermented at low temperatures and in anaerobic environments. LAB have been adjusting to kimchi environments, and produce various metabolites such as bacteriocins, γ-aminobutyric acid, ornithine, exopolysaccharides, mannitol, etc. as products of metabolic efforts to adjust to the environments. The metabolites also contribute to the known health-promoting effects of kimchi. Due to the recent progress in multi-omics technologies, identification of genes and gene products responsible for the synthesis of functional metabolites becomes easier than before. With the aid of tools of metabolic engineering and synthetic biology, it can be envisioned that LAB strains producing valuable metabolites in large quantities will be constructed and used as starters for foods and probiotics for improving human health. Such LAB strains can also be useful as production hosts for value-added products for food, feed, and pharmaceutical industries. In this review, recent findings on the selected metabolites produced by kimchi LAB are discussed, and the potentials of metabolites will be mentioned.
Collapse
|
23
|
Intasian P, Prakinee K, Phintha A, Trisrivirat D, Weeranoppanant N, Wongnate T, Chaiyen P. Enzymes, In Vivo Biocatalysis, and Metabolic Engineering for Enabling a Circular Economy and Sustainability. Chem Rev 2021; 121:10367-10451. [PMID: 34228428 DOI: 10.1021/acs.chemrev.1c00121] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Since the industrial revolution, the rapid growth and development of global industries have depended largely upon the utilization of coal-derived chemicals, and more recently, the utilization of petroleum-based chemicals. These developments have followed a linear economy model (produce, consume, and dispose). As the world is facing a serious threat from the climate change crisis, a more sustainable solution for manufacturing, i.e., circular economy in which waste from the same or different industries can be used as feedstocks or resources for production offers an attractive industrial/business model. In nature, biological systems, i.e., microorganisms routinely use their enzymes and metabolic pathways to convert organic and inorganic wastes to synthesize biochemicals and energy required for their growth. Therefore, an understanding of how selected enzymes convert biobased feedstocks into special (bio)chemicals serves as an important basis from which to build on for applications in biocatalysis, metabolic engineering, and synthetic biology to enable biobased processes that are greener and cleaner for the environment. This review article highlights the current state of knowledge regarding the enzymatic reactions used in converting biobased wastes (lignocellulosic biomass, sugar, phenolic acid, triglyceride, fatty acid, and glycerol) and greenhouse gases (CO2 and CH4) into value-added products and discusses the current progress made in their metabolic engineering. The commercial aspects and life cycle assessment of products from enzymatic and metabolic engineering are also discussed. Continued development in the field of metabolic engineering would offer diversified solutions which are sustainable and renewable for manufacturing valuable chemicals.
Collapse
Affiliation(s)
- Pattarawan Intasian
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong 21210, Thailand
| | - Kridsadakorn Prakinee
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong 21210, Thailand
| | - Aisaraphon Phintha
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong 21210, Thailand.,Department of Biochemistry and Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Duangthip Trisrivirat
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong 21210, Thailand
| | - Nopphon Weeranoppanant
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong 21210, Thailand.,Department of Chemical Engineering, Faculty of Engineering, Burapha University, 169, Long-hard Bangsaen, Saensook, Muang, Chonburi 20131, Thailand
| | - Thanyaporn Wongnate
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong 21210, Thailand
| | - Pimchai Chaiyen
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong 21210, Thailand
| |
Collapse
|
24
|
Elhalis H, Cox J, Frank D, Zhao J. Microbiological and Chemical Characteristics of Wet Coffee Fermentation Inoculated With Hansinaspora uvarum and Pichia kudriavzevii and Their Impact on Coffee Sensory Quality. Front Microbiol 2021; 12:713969. [PMID: 34421873 PMCID: PMC8371688 DOI: 10.3389/fmicb.2021.713969] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 06/28/2021] [Indexed: 11/13/2022] Open
Abstract
Hansinaspora uvarum and Pichia kudriavzevii were used as starter cultures to conduct inoculated wet fermentations of coffee beans, and their growth, metabolic activities and impact on the flavor, aroma and overall sensory quality of coffee were compared with spontaneous fermentation (control). H. uvarum and P. kudriavzevii dominated the fermentations, growing to maximum populations of about 10.0 log CFU/ml compared with 8.0 log CFU/ml in the spontaneous fermentation. The dominance of the inoculated yeasts led to faster and more complete utilization of sugars in the mucilage, with resultant production of 2–3 fold higher concentrations of metabolites such as glycerol, alcohols, aldehydes, esters, and organic acids in the fermented green beans. Cup tests showed coffee produced from the inoculated fermentations, especially with P. kudriavzevii, received higher scores for flavor, aroma and acidity than the control. The findings of this study confirmed the crucial role of yeasts in the wet fermentation of coffee beans and their contribution to high quality coffee, and demonstrated the potential H. uvarum and P. kudriavzevii as starter cultures in the process.
Collapse
Affiliation(s)
- Hosam Elhalis
- Food Science and Technology, School of Chemical Engineering, The University of New South Wales, Sydney, NSW, Australia
| | - Julian Cox
- Food Science and Technology, School of Chemical Engineering, The University of New South Wales, Sydney, NSW, Australia
| | - Damian Frank
- Commonwealth Scientific Industry Research Organisation (CSIRO), North Ryde, NSW, Australia
| | - Jian Zhao
- Food Science and Technology, School of Chemical Engineering, The University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
25
|
Deciphering the Regulation of the Mannitol Operon Paves the Way for Efficient Production of Mannitol in Lactococcus lactis. Appl Environ Microbiol 2021; 87:e0077921. [PMID: 34105983 DOI: 10.1128/aem.00779-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lactococcus lactis has great potential for high-yield production of mannitol, which has not yet been fully realized. In this study, we characterize how the mannitol genes in L. lactis are organized and regulated and use this information to establish efficient mannitol production. Although the organization of the mannitol genes in L. lactis was similar to that in other Gram-positive bacteria, mtlF and mtlD, encoding the enzyme IIA component (EIIAmtl) of the mannitol phosphotransferase system (PTS) and the mannitol-1-phosphate dehydrogenase, respectively, were separated by a transcriptional terminator, and the mannitol genes were found to be organized in two transcriptional units: an operon comprising mtlA, encoding the enzyme IIBC component (EIIBCmtl) of the mannitol PTS, mtlR, encoding a transcriptional activator, and mtlF, as well as a separately expressed mtlD gene. The promoters driving expression of the two transcriptional units were somewhat similar, and both contained predicted catabolite responsive element (cre) genes. The presence of carbon catabolite repression was demonstrated and was shown to be relieved in stationary-phase cells. The transcriptional activator MtlR (mtlR), in some Gram-positive bacteria, is repressed by phosphorylation by EIIAmtl, and when we knocked out mtlF, we indeed observed enhanced expression from the two promoters, which indicated that this mechanism was in place. Finally, by overexpressing the mtlD gene and using stationary-phase cells as biocatalysts, we attained 10.1 g/liter mannitol with a 55% yield, which, to the best of our knowledge, is the highest titer ever reported for L. lactis. Summing up, the results of our study should be useful for improving the mannitol-producing capacity of this important industrial organism. IMPORTANCE Lactococcus lactis is the most studied species of the lactic acid bacteria, and it is widely used in various food fermentations. To date, there have been several attempts to persuade L. lactis to produce mannitol, a sugar alcohol with important therapeutic and food applications. Until now, to achieve mannitol production in L. lactis with significant titer and yield, it has been necessary to introduce and express foreign genes, which precludes the use of such strains in foods, due to their recombinant status. In this study, we systematically characterize how the mannitol genes in L. lactis are regulated and demonstrate how this impacts mannitol production capability. We harnessed this information and managed to establish efficient mannitol production without introducing foreign genes.
Collapse
|
26
|
Functionalisation of wheat and oat bran using single-strain fermentation and its impact on techno-functional and nutritional properties of biscuits. Eur Food Res Technol 2021. [DOI: 10.1007/s00217-021-03755-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
AbstractThe adequate intake of dietary fibre is linked to several health benefits, for example, reducing the risk of non-communicable diseases, such as cardiovascular disease and diabetes. However, the population’s intake of dietary fibre is below the dosage recommended by the World Health Organisation. The incorporation of fibre ingredients, such as bran, in cereal based products affects the techno-functional and sensory properties, resulting in inferior product quality. To compensate quality loss, wheat bran (WB) and oat bran (OB) were fermented using the lactic acid bacterium strain Leuconostoc citreum TR116 prior to the application in a biscuit system. Two types of fermentation, one without any addition of sugars (FB) and one with the supplementation of 5% fructose and 5% sucrose to trigger the production of mannitol (FB +), were conducted and sugar and acid profiles as well as pH and total titratable acids (TTA) were evaluated. Fermented WB showed a higher TTA (+ 58%) compared to fermented OB. Furthermore, FOB + resulted in higher microbial cell count and higher residual sugars after 48 h of fermentation. The application of fermented brans in a biscuit system showed a decrease in dough stickiness (− 41.7%) and an increase in dough hardness (+ 32%). The type of bran (WB and OB) as well as the type of fermentation (FB or FB +) influenced the results of biscuit dough and biscuit quality (p < 0.005). Fermentation increased biscuit spreading, influenced biscuit snap force, enhanced crunchiness and colour formation, and lowered the predicted glycaemic index. Fermented OB (FOB +) resulted in a sensory profile comparable to the control.
Collapse
|
27
|
Gut Microbiota Prevents Sugar Alcohol-Induced Diarrhea. Nutrients 2021; 13:nu13062029. [PMID: 34204751 PMCID: PMC8231616 DOI: 10.3390/nu13062029] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/09/2021] [Accepted: 06/10/2021] [Indexed: 12/24/2022] Open
Abstract
While poorly-absorbed sugar alcohols such as sorbitol are widely used as sweeteners, they may induce diarrhea in some individuals. However, the factors which determine an individual’s susceptibility to sugar alcohol-induced diarrhea remain unknown. Here, we show that specific gut bacteria are involved in the suppression of sorbitol-induced diarrhea. Based on 16S rDNA analysis, the abundance of Enterobacteriaceae bacteria increased in response to sorbitol consumption. We found that Escherichia coli of the family Enterobacteriaceae degraded sorbitol and suppressed sorbitol-induced diarrhea. Finally, we showed that the metabolism of sorbitol by the E. coli sugar phosphotransferase system helped suppress sorbitol-induced diarrhea. Therefore, gut microbiota prevented sugar alcohol-induced diarrhea by degrading sorbitol in the gut. The identification of the gut bacteria which respond to and degrade sugar alcohols in the intestine has implications for microbiome science, processed food science, and public health.
Collapse
|
28
|
Doménech P, Duque A, Higueras I, Fernández JL, Manzanares P. Analytical Characterization of Water-Soluble Constituents in Olive-Derived By-Products. Foods 2021; 10:foods10061299. [PMID: 34198861 PMCID: PMC8229305 DOI: 10.3390/foods10061299] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/02/2021] [Accepted: 06/04/2021] [Indexed: 01/24/2023] Open
Abstract
Olive trees constitute one of the largest agroindustries in the Mediterranean area, and their cultivation generates a diverse pool of biomass by-products such as olive tree pruning (OTP), olive leaves (OL), olive stone (OS), and extracted olive pomace (EOP). These lignocellulosic materials have varying compositions and potential utilization strategies within a biorefinery context. The aim of this work was to carry out an integral analysis of the aqueous extractives fraction of these biomasses. Several analytical methods were applied in order to fully characterize this fraction to varying extents: a mass closure of >80% was reached for EOP, >76% for OTP, >65% for OS, and >52% for OL. Among the compounds detected, xylooligosaccharides, mannitol, 3,4-dihydroxyphenylglycol, and hydroxytyrosol were noted as potential enhancers of the valorization of said by-products. The extraction of these compounds is expected to be more favorable for OTP, OL, and EOP, given their high extractives content, and is compatible with other utilization strategies such as the bioconversion of the lignocellulosic fraction into biofuels and bioproducts.
Collapse
|
29
|
Tietel Z, Ananth DA, Sivasudha T, Klipcan L. Metabolomics of Cassia Auriculata Plant Parts (Leaf, Flower, Bud) and Their Antidiabetic Medicinal Potentials. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2021; 25:294-301. [PMID: 33904794 DOI: 10.1089/omi.2021.0010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Diabetes is a common chronic disease where therapeutics innovation is much needed. The search for novel antidiabetic molecules can be greatly facilitated by high throughput metabolomic characterization of herbal medicines. Cassia auriculata is a shrub used in Ayurvedic medicine and native to India and Sri Lanka. While C. auriculata has been used as a medicinal herb in diabetes, the molecular evidence for its antidiabetic medicinal potentials and components needs to be established. Moreover, the phytocomposition of the various plant parts is not fully known. We report a comprehensive metabolomic gas chromatography mass spectrometry study of the C. auriculata plant parts, including the leaf, flower, and bud. We identified a total of 102 primary and secondary metabolites in seven chemical groups, including amino acids (AA), carboxylic acids, nucleosides, fatty acids, among others. Interestingly, plant parts differed in their metabolomic signatures. While in the flowers and leaves nine and six AA were identified, respectively, no AA was detected in the buds. Some of the identified compounds have been previously noted for their antidiabetic, hypoglycemic, and hypolipidemic bioactivities. These findings offer a concrete metabolomic basis on the phytocomposition of individual C. auriculata plant parts. These omics data call for future research on the function of the identified compounds, and clinical studies to further evaluate their antidiabetic potentials and mechanisms of action in the clinic. Finally, we note that plant omics research offers an important avenue to inform, verify, and strengthen the evidentiary base and clinical testing of herbs with medicinal potentials.
Collapse
Affiliation(s)
- Zipora Tietel
- Department of Food Science, Gilat Research Center, Agricultural Research Organization M.P. Negev, Israel
| | - Devanesan Arul Ananth
- Department of Food Science, Gilat Research Center, Agricultural Research Organization M.P. Negev, Israel
| | - Thilagar Sivasudha
- Department of Environmental Biotechnology, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| | - Liron Klipcan
- Department of Food Science, Gilat Research Center, Agricultural Research Organization M.P. Negev, Israel
| |
Collapse
|
30
|
Towards Sustainable Bioinoculants: A Fermentation Strategy for High Cell Density Cultivation of Paraburkholderia sp. SOS3, a Plant Growth-Promoting Bacterium Isolated in Queensland, Australia. FERMENTATION-BASEL 2021. [DOI: 10.3390/fermentation7020058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Paraburkholderia sp. SOS3 is a plant growth-promoting bacterium (PGPB) that displays pleiotropic effects and has the potential to be applied at a large scale across several agronomically important crops. The use of SOS3 is a suitable option to reduce the use of chemical fertilisers. While the benefits of SOS3 have been demonstrated in vitro, its potential applications at large scale are limited due to low biomass yield in current batch culture systems. Here, we developed a strategy for high-cell density cultivation of SOS3 in instrumented bioreactors, moving from low-biomass yield in a complex medium to high-biomass yield in a semi-defined medium. We achieved a 40-fold increase in biomass production, achieving cell densities of up to 11 g/L (OD600 = 40). This result was achieved when SOS3 was cultivated using a fed-batch strategy. Biomass productivity, initially 0.02 g/L/h in batch cultures, was improved 12-fold, reaching 0.24 g/L/h during fed-batch cultures. The biomass yield was also improved 10-fold from 0.07 to 0.71 gbiomass/gsolids. Analysis of the fermentation profile of SOS3 indicated minimal production of by-products and accumulation of polyhydroxybutyrate (PHB) during the exponential growth phase associated with nitrogen limitation in the medium. By implementing proteomics analysis in fed-batch cultures, we identified the expression of four metabolic pathways associated with growth-promoting effects, which may be used as a qualitative parameter to guarantee the efficacy of SOS3 when used as a bioinoculant. Ultimately, we confirmed that the high-cell density cultures maintained their plant growth-promoting capacity when tested in sorghum and maize under glasshouse conditions.
Collapse
|
31
|
Babbel J, Ramos C, Wangberg H, Luskin K, Simon R. Adverse reactions to food additives. JOURNAL OF FOOD ALLERGY 2021; 3:8-23. [PMID: 39022633 PMCID: PMC11250194 DOI: 10.2500/jfa.2021.3.210004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Food additives are naturally occurring or synthetic substances that are added to food to modify the color, taste, texture, stability, or other characteristics of foods. These additives are ubiquitous in the food that we consume on a daily basis and, therefore, have been the subject of much scrutiny about possible reactions. Despite these concerns, the overall prevalence of food additive reactions is 1-2%, with a minority of the wide variety of symptoms attributed to food-additive exposure being reproduced by double-blind placebo controlled challenges. Reactions can be broadly classified into either immunoglobulin E (IgE)- and non-IgE-mediated reactions, with natural additives accounting for most IgE-mediated reactions, and both natural and synthetic additives being implicated in the non-IgE-mediated reactions. Reactions that include asthma exacerbations, urticaria and/or angioedema, or anaphylaxis with ingestion of a food additive are most deserving of further allergy evaluation. In this article, we discussed the different types of adverse reactions that have been described to various food additives. We also reviewed the specifics of how to evaluate and diagnose a food additive allergy in a clinic setting.
Collapse
Affiliation(s)
- Justin Babbel
- Scripps Clinic Department of Allergy and Immunology, San Diego, California
| | - Courtney Ramos
- Scripps Clinic Department of Allergy and Immunology, San Diego, California
| | - Hannah Wangberg
- Scripps Clinic Department of Allergy and Immunology, San Diego, California
| | - Kate Luskin
- Scripps Clinic Department of Allergy and Immunology, San Diego, California
| | - Ronald Simon
- Scripps Clinic Department of Allergy and Immunology, San Diego, California
| |
Collapse
|
32
|
An ATP-free in vitro synthetic enzymatic biosystem facilitating one-pot stoichiometric conversion of starch to mannitol. Appl Microbiol Biotechnol 2021; 105:1913-1924. [PMID: 33544214 DOI: 10.1007/s00253-021-11154-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 01/16/2021] [Accepted: 01/28/2021] [Indexed: 01/05/2023]
Abstract
D-Mannitol (hereinafter as mannitol) is a six-carbon sugar alcohol with diverse applications in food and pharmaceutical industries. To overcome the drawbacks of the chemical hydrogenation method commonly used for mannitol production at present, there is a need to search for novel prospective mannitol production strategies that are of high yield and low cost. In this study, we present a novel approach for the stoichiometric synthesis of mannitol via an in vitro synthetic enzymatic biosystem using the low-cost starch as substrate. By dividing the overall reaction pathway into three modules which could be executed sequentially in one pot, our design aimed at the stoichiometric conversion of starch-based materials into mannitol in an ATP-independent and cofactor-balanced manner. At optimized conditions, high product yields of around 95-98% were achieved using both 10 g/L and 50 g/L maltodextrin as substrate, indicating the potential of our designed system for industrial applications. This study not only provides a high-efficient strategy for the synthesis of mannitol but also expands the product scope of sugar alcohols by the in vitro synthetic enzymatic biosystems using low-cost starch-based materials as the input. KEY POINTS : • We described a design-build-test-learn pipeline to construct in vitro biosystems. • The designed system comprised six key enzymes and another three enzymes. • The system converted maltodextrin stoichiometrically to mannitol in one pot.
Collapse
|
33
|
Tindall DJ, Mader S, Kindler A, Rominger F, Hashmi ASK, Schaub T. Selektive und skalierbare Synthese von Zuckeralkoholen durch homogene asymmetrische Hydrierung von ungeschützten Ketosen. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202009790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Daniel J. Tindall
- Catalysis Research Laboratory (CaRLa) Universität Heidelberg Im Neuenheimer Feld 584 69120 Heidelberg Deutschland
| | - Steffen Mader
- Synthesis BASF SE Carl-Bosch-Straße 38 67056 Ludwigshafen Deutschland
| | - Alois Kindler
- Synthesis BASF SE Carl-Bosch-Straße 38 67056 Ludwigshafen Deutschland
| | - Frank Rominger
- Organisches Institut Universität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Deutschland
| | - A. Stephen K. Hashmi
- Catalysis Research Laboratory (CaRLa) Universität Heidelberg Im Neuenheimer Feld 584 69120 Heidelberg Deutschland
- Organisches Institut Universität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Deutschland
| | - Thomas Schaub
- Catalysis Research Laboratory (CaRLa) Universität Heidelberg Im Neuenheimer Feld 584 69120 Heidelberg Deutschland
- Synthesis BASF SE Carl-Bosch-Straße 38 67056 Ludwigshafen Deutschland
| |
Collapse
|
34
|
Tindall DJ, Mader S, Kindler A, Rominger F, Hashmi ASK, Schaub T. Selective and Scalable Synthesis of Sugar Alcohols by Homogeneous Asymmetric Hydrogenation of Unprotected Ketoses. Angew Chem Int Ed Engl 2021; 60:721-725. [PMID: 32926512 DOI: 10.1002/anie.202009790] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/22/2020] [Indexed: 11/10/2022]
Abstract
Sugar alcohols are of great importance for the food industry and are promising building blocks for bio-based polymers. Industrially, they are produced by heterogeneous hydrogenation of sugars with H2 , usually with none to low stereoselectivities. Now, we present a homogeneous system based on commercially available components, which not only increases the overall yield, but also allows a wide range of unprotected ketoses to be diastereoselectively hydrogenated. Furthermore, the system is reliable on a multi-gram scale allowing sugar alcohols to be isolated in large quantities at high atom economy.
Collapse
Affiliation(s)
- Daniel J Tindall
- Catalysis Research Laboratory (CaRLa), Heidelberg University, Im Neuenheimer Feld 584, 69120, Heidelberg, Germany
| | - Steffen Mader
- Synthesis, BASF SE, Carl-Bosch-Straße 38, 67056, Ludwigshafen, Germany
| | - Alois Kindler
- Synthesis, BASF SE, Carl-Bosch-Straße 38, 67056, Ludwigshafen, Germany
| | - Frank Rominger
- Organic Institute, Heidelberg University, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - A Stephen K Hashmi
- Catalysis Research Laboratory (CaRLa), Heidelberg University, Im Neuenheimer Feld 584, 69120, Heidelberg, Germany.,Organic Institute, Heidelberg University, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Thomas Schaub
- Catalysis Research Laboratory (CaRLa), Heidelberg University, Im Neuenheimer Feld 584, 69120, Heidelberg, Germany.,Synthesis, BASF SE, Carl-Bosch-Straße 38, 67056, Ludwigshafen, Germany
| |
Collapse
|
35
|
Bilal M, Xu S, Iqbal HMN, Cheng H. Yarrowia lipolytica as an emerging biotechnological chassis for functional sugars biosynthesis. Crit Rev Food Sci Nutr 2021; 61:535-552. [PMID: 32180435 DOI: 10.1080/10408398.2020.1739000] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Functional sugars have unique structural and physiological characteristics with applied perspectives for modern biomedical and biotechnological sectors, such as biomedicine, pharmaceutical, cosmeceuticals, green chemistry, and agro-food. They can also be used as starting matrices to produce biologically active metabolites of interests. Though numerous chemical synthesis routes have been proposed and deployed for the synthesis of rare sugars, however, many of them are limited and economically incompetent because of expensive raw starting feedstocks. Whereas, the biosynthesis by enzymatic means are often associated with high catalyst costs and low space-time yields. Microbial production of rare sugars via green routes using bio-renewable resources offers noteworthy solutions to overcome the aforementioned limitations of synthetic and enzymatic synthesis routes. From the microbial-based synthesis perspective, the lipogenic yeast Yarrowia lipolytica is rapidly evolving as the most prevalent and unique "non-model organism" in the bio-production arena. Due to high flux tendency through the tri-carboxylic acid cycle intermediates and precursors such as acetyl-CoA and malonyl-CoA, this yeast has been widely investigated to meet the increasing demand of industrially relevant fine chemicals, including functional sugars. Incredible interest in Y. lipolytica originates from its robust tolerance to unstable pH, salt levels, and organic compounds, which subsequently enable easy bioprocess optimization. Meaningfully, GRAS (generally recognized as safe) status creates Y. lipolytica as an attractive and environmentally friendly microbial host for the manufacturing of nutraceuticals, fermented food, and dietary supplements. In this review, we highlight the recent and state-of-the-art research progress on Y. lipolytica as a host to synthesize bio-based compounds of interest beyond the realm of well-known fatty acid production. The unique physicochemical properties, biotechnological applications, and biosynthesis of an array of value-added functional sugars including erythritol, threitol, fructooligosaccharides, galactooligosaccharides, isomalto-oligosaccharides, isomaltulose, trehalose, erythrulose, xylitol, and mannitol using sustainable carbon sources are thoroughly vetted. Finally, we conclude with perspectives that would be helpful to engineer Y. lipolytica in greening the twenty-first century biomedical and biotechnological sectors of the modern world.
Collapse
Affiliation(s)
- Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, China
| | - Shuo Xu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, Nuevo León, Mexico
| | - Hairong Cheng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
36
|
Koko MYF, Mu W, Hassanin HAM, Zhang S, Lu H, Mohammed JK, Hussain M, Baokun Q, Yang L. Archaeal hyperthermostable mannitol dehydrogenases: A promising industrial enzymes for d-mannitol synthesis. Food Res Int 2020; 137:109638. [PMID: 33233217 DOI: 10.1016/j.foodres.2020.109638] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/18/2020] [Accepted: 08/21/2020] [Indexed: 12/12/2022]
Abstract
Recently, the term healthy lifestyle connected to low-calorie diets, although it is not possible to get rid of added sugars as a source of energy, despite the close relation of added sugars to some diseases such as obesity, diabetes, etc. As a result, the sweetener market has flourished, which has led to increased demand for natural sweeteners such as polyols, including d-mannitol. Various methods have been developed to produce d-mannitol to achieve high productivity and low cost. In particular, metabolic engineering for d-mannitol considers one of the most promising approaches for d-mannitol production on the industrial scale. To date, the chemical process is not ideal for large-scale production because of its multistep mechanism involving hydrogenation and high cost. In this review, we highlight and present a comparative evaluation of the biochemical parameters that affecting d-mannitol synthesis from Thermotoga neapolitana and Thermotoga maritima mannitol dehydrogenase (MtDH) as a potential contribution for d-mannitol bio-synthesis. These species were selected because purified mannitol dehydrogenases from both strains have been reported to produce d-mannitol with no sorbitol formation under temperatures (90-120 °C).
Collapse
Affiliation(s)
- Marwa Yagoub Farag Koko
- Department of Food, Grease and Vegetable Protein Engineering, School of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | | | - Shuang Zhang
- Department of Food, Grease and Vegetable Protein Engineering, School of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Han Lu
- Department of Food, Grease and Vegetable Protein Engineering, School of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | | | - Muhammad Hussain
- Department of Food, Grease and Vegetable Protein Engineering, School of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Qi Baokun
- Department of Food, Grease and Vegetable Protein Engineering, School of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| | - Li Yang
- Department of Food, Grease and Vegetable Protein Engineering, School of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| |
Collapse
|
37
|
Elhalis H, Cox J, Frank D, Zhao J. The crucial role of yeasts in the wet fermentation of coffee beans and quality. Int J Food Microbiol 2020; 333:108796. [DOI: 10.1016/j.ijfoodmicro.2020.108796] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/04/2020] [Accepted: 07/20/2020] [Indexed: 10/23/2022]
|
38
|
Mannitol and erythritol reduce the ethanol yield during Chinese Baijiu production. Int J Food Microbiol 2020; 337:108933. [PMID: 33181418 DOI: 10.1016/j.ijfoodmicro.2020.108933] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 09/17/2020] [Accepted: 10/22/2020] [Indexed: 12/18/2022]
Abstract
Chinese Baijiu is prepared using multiple microbial strains and complex metabolites by simultaneous saccharification and fermentation (SSF). Yeasts are challenged by various endogenous and exogenous factors, detrimentally affecting the ethanol yield. It is imperative to identify and control inhibitory factors. In the present study, microbial taxa and metabolites during Baijiu fermentation were evaluated to identify inhibitors of ethanol production. We found that filamentous fungi and Bacillus, contributing to saccharification, were negatively related to the ethanol content (Spearman's |ρ| > 0.5, P < 0.05). To explore how they affect ethanol production, ten filamentous fungi and three Bacillus strains were isolated. In addition to glucose and maltose, polyols were simultaneously generated by filamentous fungi and Bacillus via the hydrolysis of starch, among which mannitol and erythritol had the highest contents of up to 41.56 ± 2.01 g/kg and 16.16 ± 1.13 g/kg, respectively. The presence of mannitol and erythritol inhibited ethanol production by the functional yeasts Saccharomyces cerevisiae and Pichia kudriavzevii. The presence of 10.0 g/L mannitol significantly (P < 0.01) decreased the ethanol yield of S. cerevisiae by 12.67% (from 39.34 ± 0.02% to 32.71 ± 0.49%). These results revealed that polyols may inhibit the production of Baijiu and other fermented foods, suggesting that the origin and influence of polyols should be a focus of future research.
Collapse
|
39
|
Mahato DK, Keast R, Liem DG, Russell CG, Cicerale S, Gamlath S. Sugar Reduction in Dairy Food: An Overview with Flavoured Milk as an Example. Foods 2020; 9:E1400. [PMID: 33023125 PMCID: PMC7600122 DOI: 10.3390/foods9101400] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 09/30/2020] [Accepted: 09/30/2020] [Indexed: 12/12/2022] Open
Abstract
Owing to the public health concern associated with the consumption of added sugar, the World Health Organization recommends cutting down sugar in processed foods. Furthermore, due to the growing concern of increased calorie intake from added sugar in sweetened dairy foods, the present review provides an overview of different types and functions of sugar, various sugar reduction strategies, and current trends in the use of sweeteners for sugar reduction in dairy food, taking flavoured milk as a central theme where possible to explore the aforementioned aspects. The strength and uniqueness of this review are that it brings together all the information on the available types of sugar and sugar reduction strategies and explores the current trends that could be applied for reducing sugar in dairy foods without much impact on consumer acceptance. Among different strategies for sugar reduction, the use of natural non-nutritive sweeteners (NNSs), has received much attention due to consumer demand for natural ingredients. Sweetness imparted by sugar can be replaced by natural NNSs, however, sugar provides more than just sweetness to flavoured milk. Sugar reduction involves multiple technical challenges to maintain the sensory properties of the product, as well as to maintain consumer acceptance. Because no single sugar has a sensory profile that matches sucrose, the use of two or more natural NNSs could be an option for food industries to reduce sugar using a holistic approach rather than a single sugar reduction strategy. Therefore, achieving even a small sugar reduction can significantly improve the diet and health of an individual.
Collapse
Affiliation(s)
- Dipendra Kumar Mahato
- CASS Food Research Centre, School of Exercise and Nutrition Sciences, Deakin University, Burwood, VIC 3125, Australia; (R.K.); (D.G.L.); (C.G.R.); (S.C.); (S.G.)
| | | | | | | | | | | |
Collapse
|
40
|
Becker J, Wittmann C. Microbial production of extremolytes — high-value active ingredients for nutrition, health care, and well-being. Curr Opin Biotechnol 2020; 65:118-128. [DOI: 10.1016/j.copbio.2020.02.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 02/14/2020] [Accepted: 02/17/2020] [Indexed: 01/09/2023]
|
41
|
Cascaded valorization of seaweed using microbial cell factories. Curr Opin Biotechnol 2020; 65:102-113. [DOI: 10.1016/j.copbio.2020.02.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 02/14/2020] [Accepted: 02/17/2020] [Indexed: 11/17/2022]
|
42
|
Upare PP, Hwang YK, Kim JC, Lee JH, Kwak SK, Hwang DW. A Robust and Highly Selective Catalytic System of Copper-Silica Nanocomposite and 1-Butanol in Fructose Hydrogenation to Mannitol. CHEMSUSCHEM 2020; 13:5050-5057. [PMID: 32662246 DOI: 10.1002/cssc.202001323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 07/06/2020] [Indexed: 06/11/2023]
Abstract
We report for the first time the selective production of mannitol, a low-calorie sweetener and an important pharmaceutical ingredient, from fructose using Cu-SiO2 nanocomposite as catalyst and 1-butanol as solvent. When compared with water and ethanol, a lower fructose solubility was achieved in 1-butanol, which caused a lower fructose conversion and higher mannitol selectivity by reducing formation of side products. Among various Cu-based catalysts in 1-butanol, Cu(80)-SiO2 nanocomposite gave an unprecedented mannitol (83 %) and sorbitol (15 %) yield at 120 °C, 35 bar H2 , and 10 h reaction time. More importantly, this catalyst did not show any Cu leaching and its physicochemical properties were maintained after liquid-phase fructose hydrogenation whereas other Cu-based catalysts such as Cu(32)-Cr2 O and Cu(66)-ZnO did show significant leaching of Cu and Cr. Thus, Cu(80)-SiO2 nanocomposite and 1-butanol are regarded as a robust and highly efficient catalytic system for the selective hydrogenation of fructose to mannitol. Also, density functional theory calculations supported that in addition to the stable initial structure of adsorbed fructose, the mannitol pathway was more thermodynamically favorable than the sorbitol pathway. Notably, the highly pure mannitol (99 %) could be recovered from the sorbitol-containing 1-butanol solution by simple filtration. Therefore, the present protocol is a novel and effective method to produce pure mannitol from fructose in both an environmental and an industrial context.
Collapse
Affiliation(s)
- Pravin P Upare
- Green Carbon Catalysis Research Group, Korea Research Institute of Chemical Technology (KRICT), 141 Gajeongro, Yuseoung, Daejeon, 34114 (Republic of, Korea
| | - Young Kyu Hwang
- Green Carbon Catalysis Research Group, Korea Research Institute of Chemical Technology (KRICT), 141 Gajeongro, Yuseoung, Daejeon, 34114 (Republic of, Korea
- Department of Advanced Materials and Chemical Engineering, University of Science and Technology (UST), 141 Gwahangno, Yuseong, Daejeon, 34114 (Republic of, Korea
| | - Jin Chul Kim
- Department of Energy Engineering, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST) 50 UNIST-gil, Ulju-gun, Ulsan, 44919 (Republic of, Korea
| | - Jeong Hyeon Lee
- Department of Energy Engineering, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST) 50 UNIST-gil, Ulju-gun, Ulsan, 44919 (Republic of, Korea
| | - Sang Kyu Kwak
- Department of Energy Engineering, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST) 50 UNIST-gil, Ulju-gun, Ulsan, 44919 (Republic of, Korea
| | - Dong Won Hwang
- Green Carbon Catalysis Research Group, Korea Research Institute of Chemical Technology (KRICT), 141 Gajeongro, Yuseoung, Daejeon, 34114 (Republic of, Korea
- Department of Advanced Materials and Chemical Engineering, University of Science and Technology (UST), 141 Gwahangno, Yuseong, Daejeon, 34114 (Republic of, Korea
| |
Collapse
|
43
|
Chi S, Wang G, Liu T, Wang X, Liu C, Jin Y, Yin H, Xu X, Yu J. Transcriptomic and Proteomic Analysis of Mannitol-metabolism-associated Genes in Saccharina japonica. GENOMICS, PROTEOMICS & BIOINFORMATICS 2020; 18:415-429. [PMID: 33248278 PMCID: PMC8242268 DOI: 10.1016/j.gpb.2018.12.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 10/20/2018] [Accepted: 12/14/2018] [Indexed: 11/22/2022]
Abstract
As a carbon-storage compound and osmoprotectant in brown algae, mannitol is synthesized and then accumulated at high levels in Saccharina japonica (Sja); however, the underlying control mechanisms have not been studied. Our analysis of genomic and transcriptomic data from Sja shows that mannitol metabolism is a cyclic pathway composed of four distinct steps. A mannitol-1-phosphate dehydrogenase (M1PDH2) and two mannitol-1-phosphatases (M1Pase1 and MIPase2) work together or in combination to exhibit full enzymatic properties. Based on comprehensive transcriptomic data from different tissues, generations, and sexes as well as under different stress conditions, coupled with droplet digital PCR (ddPCR) and proteomic confirmation, we suggest that SjaM1Pase1 plays a major role in mannitol biosynthesis and that the basic mannitol anabolism and the carbohydrate pool dynamics are responsible for carbon storage and anti-stress mechanism. Our proteomic data indicate that mannitol metabolism remains constant during diurnal cycle in Sja. In addition, we discover that mannitol-metabolism-associated (MMA) genes show differential expression between the multicellular filamentous (gametophyte) and large parenchymal thallus (sporophyte) generations and respond differentially to environmental stresses, such as hyposaline and hyperthermia conditions. Our results indicate that the ecophysiological significance of such differentially expressed genes may be attributable to the evolution of heteromorphic generations (filamentous and thallus) and environmental adaptation of Laminariales.
Collapse
Affiliation(s)
- Shan Chi
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; Qingdao Haida BlueTek Biotechnology Co., Ltd., Qingdao 266003, China
| | - Guoliang Wang
- CAS Key Laboratory of Genome Sciences and Information, Beijing Key Laboratory of Genome and Precision Medicine Technologies, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China
| | - Tao Liu
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| | - Xumin Wang
- CAS Key Laboratory of Genome Sciences and Information, Beijing Key Laboratory of Genome and Precision Medicine Technologies, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, Yantai University, Yantai 264005, China.
| | - Cui Liu
- Qingdao Haida BlueTek Biotechnology Co., Ltd., Qingdao 266003, China
| | - Yuemei Jin
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Hongxin Yin
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Xin Xu
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Jun Yu
- CAS Key Laboratory of Genome Sciences and Information, Beijing Key Laboratory of Genome and Precision Medicine Technologies, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
44
|
Mannitol: physiological functionalities, determination methods, biotechnological production, and applications. Appl Microbiol Biotechnol 2020; 104:6941-6951. [DOI: 10.1007/s00253-020-10757-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 06/13/2020] [Accepted: 06/24/2020] [Indexed: 12/17/2022]
|
45
|
Elhalis H, Cox J, Zhao J. Ecological diversity, evolution and metabolism of microbial communities in the wet fermentation of Australian coffee beans. Int J Food Microbiol 2020; 321:108544. [PMID: 32086129 DOI: 10.1016/j.ijfoodmicro.2020.108544] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 01/27/2020] [Accepted: 01/28/2020] [Indexed: 10/25/2022]
Abstract
The microbial ecology in the fermentation of Australian coffee beans was investigated in this study. Pulped coffee beans were kept underwater for 36 h before air dried. Samples were collected periodically, and the microbial communities were analyzed by culture-dependent and independent methods. Changes in sugars, organic acids and microbial metabolites in the mucilage and endosperm of the coffee beans during fermentation were monitored by HPLC. Culture-dependent methods identified 6 yeast and 17 bacterial species, while the culture-independent methods, multiple-step total direct DNA extraction and high throughput sequencing, identified 212 fungal and 40 bacterial species. Most of the microbial species in the community have been reported for wet fermentation of coffee beans in other parts of the world, but the yeast Pichia kudriavzevii was isolated for the first time in wet coffee bean fermentation. The bacterial community was dominated by aerobic mesophilic bacteria (AMB) with Citrobacter being the predominant genus. Hanseniaspora uvarum and Pichia kudriavzevii were the predominant yeasts while Leuconostoc mesenteroides and Lactococcus lactis were the predominant LAB. The yeasts and bacteria grew significantly during fermentation, utilizing sugars in the mucilage and produced mannitol, glycerol, and lactic acid, leading to a significant decrease in pH. The results of this study provided a preliminary understanding of the microbial ecology of wet coffee fermentation under Australian conditions. Further studies are needed to explore the impact of microbial growth and metabolism on coffee quality, especially flavour.
Collapse
Affiliation(s)
- Hosam Elhalis
- Food Science and Technology, School of Chemical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Julian Cox
- Food Science and Technology, School of Chemical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Jian Zhao
- Food Science and Technology, School of Chemical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
46
|
Verce M, De Vuyst L, Weckx S. Comparative genomics of Lactobacillus fermentum suggests a free-living lifestyle of this lactic acid bacterial species. Food Microbiol 2020; 89:103448. [PMID: 32138996 DOI: 10.1016/j.fm.2020.103448] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 12/12/2019] [Accepted: 01/26/2020] [Indexed: 11/28/2022]
Abstract
Lactobacillus fermentum is a lactic acid bacterium frequently isolated from mammal tissues, milk, and plant material fermentations, such as sourdough. A comparative genomics analysis of 28 L. fermentum strains enabled the investigation of the core and accessory genes of this species. The core protein phylogenomic tree of the strains examined, consisting of five clades, did not exhibit clear clustering of strains based on isolation source, suggesting a free-living lifestyle. Based on the presence/absence of orthogroups, the largest clade, containing most of the human-related strains, was separated from the rest. The extended core genome included genes necessary for the heterolactic fermentation. Many traits were found to be strain-dependent, for instance utilisation of xylose and arabinose. Compared to other strains, the genome of L. fermentum IMDO 130101, a candidate starter culture strain capable of dominating sourdough fermentations, contained unique genes related to the metabolism of starch degradation products, which could be advantageous for growth in sourdough matrices. This study explained the traits that were previously demonstrated for L. fermentum IMDO 130101 at the genetic level and provided future avenues of research regarding L. fermentum strains isolated from sourdough.
Collapse
Affiliation(s)
- Marko Verce
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium.
| | - Luc De Vuyst
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium.
| | - Stefan Weckx
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium.
| |
Collapse
|
47
|
Sarris D, Sampani Z, Rapti A, Papanikolaou S. Valorization of Crude Glycerol, Residue Deriving from Biodiesel- Production Process, with the Use of Wild-type New Isolated Yarrowia lipolytica Strains: Production of Metabolites with Pharmaceutical and Biotechnological Interest. Curr Pharm Biotechnol 2020; 20:881-894. [PMID: 30747061 DOI: 10.2174/1389201020666190211145215] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 08/19/2018] [Accepted: 02/04/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND & OBJECTIVE Crude glycerol (Glol), used as substrate for screening eleven natural Yarrowia lipolytica strains in shake-flask experiments. Aim of this study was to assess the ability of the screened strains to produce biomass (dry cell weight; X), lipid (L), citric acid (Cit), mannitol (Man), arabitol (Ara) and erythritol (Ery), compounds presenting pharmaceutical and biotechnological interest, in glycerol-based nitrogen-limited media, in which initial glycerol concentration had been adjusted to 40 g/L. METHODS Citric acid may find use in biomedical engineering (i.e. drug delivery, tissue engineering, bioimaging, orthopedics, medical device coating, wound dressings). Polyols are considered as compounds with non-cariogenic and less calorigenic properties as also with low insulin-mediated response. Microbial lipids containing polyunsaturated fatty acids (PUFA) are medically and dietetically important (selective pharmaceutical and anticancer properties, aid fetal brain development, the sight function of the eye, hormonal balance and the cardio-vascular system, prevent reasons leading to type-2 diabetes, present healing and anti-inflammatory effects). RESULTS All strains presented satisfactory microbial growth (Xmax=5.34-6.26 g/L) and almost complete substrate uptake. The principal metabolic product was citric acid (Citmax=8.5-31.7 g/L). Production of cellular lipid reached the values of 0.33-0.84 g/L. Polyols were also synthesized as strain dependent compounds (Manmax=2.8-6.1 g/L, Aramax ~2.0 g/L, Erymax= 0.5-3.8 g/L). The selected Y. lipolytica strain ACA-DC 5029 presented satisfactory growth along with synthesis of citric acid and polyols, thus, was further grown on media presenting an increased concentration of Glol~75 g/L. Biomass, lipid and citric acid production presented significant enhancement (Xmax=11.80 g/L, Lmax=1.26 g/L, Citmax=30.8 g/L), but conversion yield of citric acid produced per glycerol consumed was decreased compared to screening trials. Erythritol secretion (Erymax=15.6 g/L) was highly favored, suggesting a shift of yeast metabolism from citric acid accumulation towards erythritol production. Maximum endopolysaccharides (IPS) concentration was 4.04 g/L with yield in dry weight 34.2 % w/w. CONCLUSION Y. lipolytica strain ACA-YC 5029 can be considered as a satisfactory candidate grown in high concentrations of crude glycerol to produce added-value compounds that interest pharmaceutical and biotechnology industries.
Collapse
Affiliation(s)
- Dimitris Sarris
- Department of Food Science & Human Nutrition, Agricultural University of Athens, Athens, Greece.,Department of Food Science & Nutrition, School of Environment, University of the Aegean, Lemnos Greece
| | - Zoe Sampani
- Department of Food Science & Human Nutrition, Agricultural University of Athens, Athens, Greece
| | - Anna Rapti
- Department of Food Science & Nutrition, School of Environment, University of the Aegean, Lemnos, Greece
| | - Seraphim Papanikolaou
- Department of Food Science & Human Nutrition, Agricultural University of Athens, Athens, Greece
| |
Collapse
|
48
|
Barrett M, Fiocca K, Waddell EA, McNair C, O'Donnell S, Marenda DR. Larval mannitol diets increase mortality, prolong development and decrease adult body sizes in fruit flies ( Drosophila melanogaster). Biol Open 2020; 8:bio.047084. [PMID: 31822472 PMCID: PMC6955208 DOI: 10.1242/bio.047084] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The ability of polyols to disrupt holometabolous insect development has not been studied and identifying compounds in food that affect insect development can further our understanding of the pathways that connect growth rate, developmental timing and body size in insects. High-sugar diets prolong development and generate smaller adult body sizes in Drosophila melanogaster We tested for concentration-dependent effects on development when D. melanogaster larvae are fed mannitol, a polyalcohol sweetener. We also tested for amelioration of developmental effects if introduction to mannitol media is delayed past the third instar, as expected if there is a developmental sensitive-period for mannitol effects. Both male and female larvae had prolonged development and smaller adult body sizes when fed increasing concentrations of mannitol. Mannitol-induced increases in mortality were concentration dependent in 0 M to 0.8 M treatments with mortality effects beginning as early as 48 h post-hatching. Larval survival, pupariation and eclosion times were unaffected in 0.4 M mannitol treatments when larvae were first introduced to mannitol 72 h post-hatching (the beginning of the third instar); 72 h delay of 0.8 M mannitol introduction reduced the adverse mannitol effects. The developmental effects of a larval mannitol diet closely resemble those of high-sugar larval diets.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Meghan Barrett
- Department of Biology, Drexel University, Philadelphia, PA, USA 19104
| | - Katherine Fiocca
- Department of Biology, Drexel University, Philadelphia, PA, USA 19104
| | - Edward A Waddell
- Department of Biology, Drexel University, Philadelphia, PA, USA 19104
| | - Cheyenne McNair
- Department of Biodiversity, Earth and Environmental Science, Drexel University, Philadelphia, PA, USA 19104
| | - Sean O'Donnell
- Department of Biology, Drexel University, Philadelphia, PA, USA 19104.,Department of Biodiversity, Earth and Environmental Science, Drexel University, Philadelphia, PA, USA 19104
| | - Daniel R Marenda
- Department of Biology, Drexel University, Philadelphia, PA, USA 19104 .,Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, USA, 19104
| |
Collapse
|
49
|
Wu W, Du W, Gallego RP, Hellingwerf KJ, van der Woude AD, Branco dos Santos F. Using osmotic stress to stabilize mannitol production in Synechocystis sp. PCC6803. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:117. [PMID: 32636923 PMCID: PMC7331161 DOI: 10.1186/s13068-020-01755-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 06/23/2020] [Indexed: 05/03/2023]
Abstract
BACKGROUND Mannitol is a C(6) polyol that is used in the food and medical sector as a sweetener and antioxidant, respectively. The sustainable production of mannitol, especially via the direct conversion of CO2 by photosynthetic cyanobacteria, has become increasingly appealing. However, previous work aiming to achieve mannitol production in the marine Synechococcus sp. PCC7002 via heterologous expression of mannitol-1-phosphate-5-dehydrogenase (mtlD) and mannitol-1-phosphatase (m1p, in short: a 'mannitol cassette'), proved to be genetically unstable. In this study, we aim to overcome this genetic instability by conceiving a strategy to stabilize mannitol production using Synechocystis sp. PCC6803 as a model cyanobacterium. RESULTS Here, we explore the stabilizing effect that mannitol production may have on cells faced with osmotic stress, in the freshwater cyanobacterium Synechocystis sp. PCC6803. We first validated that mannitol can function as a compatible solute in Synechocystis sp. PCC6803, and in derivative strains in which the ability to produce one or both of the native compatible solutes was impaired. Wild-type Synechocystis, complemented with a mannitol cassette, indeed showed increased salt tolerance, which was even more evident in Synechocystis strains in which the ability to synthesize the endogenous compatible solutes was impaired. Next we tested the genetic stability of all these strains with respect to their mannitol productivity, with and without salt stress, during prolonged turbidostat cultivations. The obtained results show that mannitol production under salt stress conditions in the Synechocystis strain that cannot synthesize its endogenous compatible solutes is remarkably stable, while the control strain completely loses this ability in only 6 days. DNA sequencing results of the control groups that lost the ability to synthesize mannitol revealed that multiple types of mutation occurred in the mtlD gene that can explain the disruption of mannitol production. CONCLUSIONS Mannitol production in freshwater Synechocsytis sp. PCC6803 confers it with increased salt tolerance. Under this strategy, genetically instability which was the major challenge for mannitol production in cyanobacteria is tackled. This paper marks the first report of utilization of the response to salt stress as a factor that can increase the stability of mannitol production in a cyanobacterial cell factory.
Collapse
Affiliation(s)
- Wenyang Wu
- Molecular Microbial Physiology Group, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Wei Du
- Molecular Microbial Physiology Group, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Ruth Perez Gallego
- Photanol B.V, Matrix V, Science Park 406, 1098 XH Amsterdam, The Netherlands
- Present Address: NIOZ Royal Netherlands Institute for Sea Research, Department of Marine Microbiology and Biogeochemistry, Utrecht University, P.O. Box 59, Den Burg, Texel, 1790 AB Utrecht, The Netherlands
| | - Klaas J. Hellingwerf
- Molecular Microbial Physiology Group, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
- Photanol B.V, Matrix V, Science Park 406, 1098 XH Amsterdam, The Netherlands
| | | | - Filipe Branco dos Santos
- Molecular Microbial Physiology Group, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| |
Collapse
|
50
|
Recent studies on the biological production of D-mannose. Appl Microbiol Biotechnol 2019; 103:8753-8761. [DOI: 10.1007/s00253-019-10151-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 09/18/2019] [Accepted: 09/22/2019] [Indexed: 02/06/2023]
|