1
|
Huang D, Chen Y, Bai X, Zhang R, Chen Q, Wang N, Xu Q. Methane removal efficiencies of biochar-mediated landfill soil cover with reduced depth. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 355:120487. [PMID: 38422848 DOI: 10.1016/j.jenvman.2024.120487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/15/2024] [Accepted: 02/21/2024] [Indexed: 03/02/2024]
Abstract
Biochar amendment for landfill soil cover has the potential to enhance methane removal efficiency while minimizing the soil depth. However, there is a lack of information on the response of biochar-mediated soil cover to the changes in configuration and operational parameters during the methane transport and transformation processes. This study constructed three biochar-amended landfill soil covers, with reduced soil depths from 75 cm (C2) to 55 cm (C3) and 45 cm (C4), and the control group (C1) with 75 cm and no biochar. Two operation phases were conducted under two soil moisture contents and three inlet methane fluxes in each phase. The methane removal efficiency increased for all columns along with the increase in methane flux. However, increasing moisture content from 10% to 20% negatively influenced the methane removal efficiency due to mass transfer limitation when at a low inlet methane flux, especially for C1; while this adverse effect could be alleviated by a high flux. Except for the condition with low moisture content and flux combination, C3 showed comparable methane removal efficiency to C2, both dominating over C1. As for C4 with only 45 cm, a high moisture content combined with a high methane flux enabled its methane removal efficiency to be competitive with other soil depths. In addition to the geotechnical reasons for gas transport processes, the evolution in methanotroph community structure (mainly type I methanotrophs) induced by biochar amendment and variations in soil properties supplemented the biological reasons for the varying methane removal efficiencies.
Collapse
Affiliation(s)
- Dandan Huang
- Shenzhen Engineering Laboratory for Eco-efficient Recycled Materials, School of Environment and Energy, Peking University Shenzhen Graduate School, University Town, Xili, Nanshan District, Shenzhen, 518055, China; School of Ecology, Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, 0020518107, China
| | - Yuke Chen
- Shenzhen Engineering Laboratory for Eco-efficient Recycled Materials, School of Environment and Energy, Peking University Shenzhen Graduate School, University Town, Xili, Nanshan District, Shenzhen, 518055, China
| | - Xinyue Bai
- Shenzhen Engineering Laboratory for Eco-efficient Recycled Materials, School of Environment and Energy, Peking University Shenzhen Graduate School, University Town, Xili, Nanshan District, Shenzhen, 518055, China
| | - Rujie Zhang
- Shenzhen Engineering Laboratory for Eco-efficient Recycled Materials, School of Environment and Energy, Peking University Shenzhen Graduate School, University Town, Xili, Nanshan District, Shenzhen, 518055, China
| | - Qindong Chen
- Shenzhen Engineering Laboratory for Eco-efficient Recycled Materials, School of Environment and Energy, Peking University Shenzhen Graduate School, University Town, Xili, Nanshan District, Shenzhen, 518055, China
| | - Ning Wang
- Shenzhen Engineering Laboratory for Eco-efficient Recycled Materials, School of Environment and Energy, Peking University Shenzhen Graduate School, University Town, Xili, Nanshan District, Shenzhen, 518055, China
| | - Qiyong Xu
- Shenzhen Engineering Laboratory for Eco-efficient Recycled Materials, School of Environment and Energy, Peking University Shenzhen Graduate School, University Town, Xili, Nanshan District, Shenzhen, 518055, China.
| |
Collapse
|
2
|
Wang J, Wang C, Chu YX, Tian G, He R. Characterization of methanotrophic community and activity in landfill cover soils under dimethyl sulfide stress. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 161:263-274. [PMID: 36917925 DOI: 10.1016/j.wasman.2023.02.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/13/2023] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
Landfill cover soil is the environmental interface between landfills and the atmosphere and plays an important role in mitigating CH4 emission from landfills. Here, stable isotope probing microcosms with CH4 or CH4 and dimethyl sulfide (DMS) were carried out to characterize activity and community structure of methanotrophs in landfill cover soils under DMS stress. The CH4 oxidation activity in the landfill cover soils was not obviously influenced at the DMS concentration of 0.05%, while it was inhibited at the DMS concentrations of 0.1% and 0.2%. DMS-S was mainly oxidized to sulfate (SO42-) in the landfill cover soils. In the landfill cover soils, DMS could inhibit the expression of bacteria and decrease the abundances of pmoA and mmoX genes, while it could prompt the expression of pmoA and mmoX genes. γ-Proteobacteria methanotrophs including Methylocaldum, Methylobacter, Crenothrix and unclassified Methylococcaceae and α-Proteobacteria methanotrophs Methylocystis dominated in assimilating CH4 in the landfill cover soils. Of them, Methylobacter and Crenothrix had strong tolerance to DMS or DMS could promote the growth and activity of Methylobacter and Crenothrix, while Methylocaldum had weak tolerance to DMS and showed an inhibitory effect. Metagenomic analyses showed that methanotrophs had the genes of methanethiol oxidation and could metabolize CH4 and methanethiol simultaneously in the landfill cover soils. These findings suggested that methanotrophs might metabolize sulfur compounds in the landfill cover soils, which may provide the potential application in engineering for co-removal of CH4 and sulfur compounds.
Collapse
Affiliation(s)
- Jing Wang
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China; Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, China
| | - Chen Wang
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, China
| | - Yi-Xuan Chu
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, China; School of Civil Engineering and Architecture, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Guangming Tian
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, China
| | - Ruo He
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China; Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
3
|
Lee SY, Lee YY, Cho KS. Effect of Novosphingobium sp. CuT1 inoculation on the rhizoremediation of heavy metal- and diesel-contaminated soil planted with tall fescue. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:16612-16625. [PMID: 36184709 DOI: 10.1007/s11356-022-23339-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 09/25/2022] [Indexed: 06/16/2023]
Abstract
Rhizoremediation is a promising method based on the synergism between plant and rhizobacteria to remediate soil co-contaminated with heavy metals and total petroleum hydrocarbons (TPHs). A plant growth-promoting (PGP) rhizobacterium with diesel-degrading capacity and heavy metal tolerance was isolated from the rhizosphere of tall fescue (Festuca arundinacea L.), after which the effects of its inoculation on rhizoremediation performance were evaluated in heavy metal- and diesel-contaminated soil planted with tall fescue. The bacterial isolate (Novosphingobium sp. CuT1) was characterized by its indole-3-acetic acid (IAA) production, 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase activity, and siderophore productivity as PGP traits. CuT1 was able to grow on 1/10 LB-agar plates containing 5 mM of Cu or 5 mM of Pb. To evaluate the remediation effect of heavy metal- and diesel-contaminated soil by CuT1 inoculation, the experimental conditions were prepared as follows. The soil was artificially contaminated with heavy metals (Cu and Pb) at a final concentration of 500 ppm. The soil was then further contaminated with diesel at final concentrations of 0, 10,000, and 30,000 ppm. Finally, all plots were planted with tall fescue, a representative hyperaccumulating plant. Compared to the rhizoremediation performance of the co-contaminated soil (Cu + Pb + diesel) without inoculation, the bioavailable Cu concentrations in the soil and the tall fescue biomass were significantly increased in CuT1 inoculation. Additionally, the root growth of tall fescue was also promoted in CuT1 inoculation. Correlation analysis showed that Cu bioavailability and bioconcentration factor were positively correlated with CuT1 inoculation. The diesel removal efficiency showed a positive correlation with CuT1 inoculation, although the diesel removal was below 30%. CuT1 inoculation was positively correlated with IAA and dehydrogenase activity in the soil. Moreover, the dry biomass of the tall fescue's roots was highly associated with CuT1 inoculation. Collectively, our findings suggest that Novosphingobium sp. CuT1 can be utilized as an applicable bioresource to enhance rhizoremediation performance in heavy metal- and TPH-contaminated soils.
Collapse
Affiliation(s)
- Soo Yeon Lee
- Department of Environmental Science and Engineering, Ewha Womans University, 52, Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Republic of Korea
| | - Yun-Yeong Lee
- Department of Environmental Science and Engineering, Ewha Womans University, 52, Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Republic of Korea
| | - Kyung-Suk Cho
- Department of Environmental Science and Engineering, Ewha Womans University, 52, Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Republic of Korea.
| |
Collapse
|
4
|
Wang J, Gou QY, Luo GY, Hou X, Liang G, Shi M. Total RNA sequencing of Phlebotomus chinensis, a neglected vector in China, simultaneously revealed viral, bacterial, and eukaryotic microbes that are potentially pathogenic to humans. Emerg Microbes Infect 2022; 11:2080-2092. [PMID: 35916448 PMCID: PMC9448391 DOI: 10.1080/22221751.2022.2109516] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Phlebotomus chinensis sandfly is a neglected insect vector in China that is well-known for carrying Leishmania. Recent studies have expanded its pathogen repertoire with two novel arthropod-borne phleboviruses capable of infecting humans and animals. Despite these discoveries, our knowledge of the general pathogen diversity and overall microbiome composition of this vector species is still very limited. Here we carried out a meta-transcriptomics analysis that revealed the actively replicating/transcribing RNA viruses, DNA viruses, bacteria, and eukaryotic microbes, namely, the “total microbiome”, of several sandfly populations in China. Strikingly, “microbiome” made up 1.8% of total non-ribosomal RNA and comprised more than 87 species, among which 70 were novel, including divergent members of the genera Flavivirus and of the family Trypanosomatidae. Importantly, among these microbes we were able to reveal four distinguished types of human and/or mammalian pathogens, including two phleboviruses (hedi and wuxiang viruses), one novel Spotted fever group rickettsia, as well as a member of Leishmania donovani complex, among which hedi virus and Leishmania each had > 50% pool prevalence rate and relatively high abundance levels. Our study also showed the ubiquitous presence of an endosymbiont, namely Wolbachia, although no anti-viral or anti-pathogen effects were detected based on our data. In summary, our results uncovered the much un-explored diversity of microbes harboured by sandflies in China and demonstrated that high pathogen diversity and abundance are currently present in multiple populations, implying disease potential for exposed local human population or domestic animals.
Collapse
Affiliation(s)
- Jing Wang
- The Center for Infection & Immunity Study, School of Medicine, Shenzhen campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Qin-Yu Gou
- The Center for Infection & Immunity Study, School of Medicine, Shenzhen campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Geng-Yan Luo
- The Center for Infection & Immunity Study, School of Medicine, Shenzhen campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Xin Hou
- The Center for Infection & Immunity Study, School of Medicine, Shenzhen campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Guodong Liang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Mang Shi
- The Center for Infection & Immunity Study, School of Medicine, Shenzhen campus of Sun Yat-sen University, Shenzhen 518107, China
| |
Collapse
|
5
|
Abramov SM, Straub D, Tejada J, Grimm L, Schädler F, Bulaev A, Thorwarth H, Amils R, Kappler A, Kleindienst S. Biogeochemical Niches of Fe-Cycling Communities Influencing Heavy Metal Transport along the Rio Tinto, Spain. Appl Environ Microbiol 2022; 88:e0229021. [PMID: 34910570 PMCID: PMC8863065 DOI: 10.1128/aem.02290-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 12/07/2021] [Indexed: 11/20/2022] Open
Abstract
In the mining-impacted Rio Tinto, Spain, Fe-cycling microorganisms influence the transport of heavy metals (HMs) into the Atlantic Ocean. However, it remains largely unknown how spatial and temporal hydrogeochemical gradients along the Rio Tinto shape the composition of Fe-cycling microbial communities and how this in turn affects HM mobility. Using a combination of DNA- and RNA-based 16S rRNA (gene) amplicon sequencing and hydrogeochemical analyses, we explored the impact of pH, Fe(III), Fe(II), and Cl- on Fe-cycling microorganisms. We showed that the water column at the acidic (pH 2.2) middle course of the river was colonized by Fe(II) oxidizers affiliated with Acidithiobacillus and Leptospirillum. At the upper estuary, daily fluctuations of pH (2.7 to 3.7) and Cl- (6.9 to 16.6 g/L) contributed to the establishment of a unique microbial community, including Fe(II) oxidizers belonging to Acidihalobacter, Marinobacter, and Mariprofundus, identified at this site. Furthermore, DNA- and RNA-based profiles of the benthic community suggested that acidophilic and neutrophilic Fe(II) oxidizers (e.g., Acidihalobacter, Marinobacter, and Mariprofundus), Fe(III) reducers (e.g., Thermoanaerobaculum), and sulfate-reducing bacteria drive the Fe cycle in the estuarine sediments. RNA-based relative abundances of Leptospirillum at the middle course as well as abundances of Acidihalobacter and Mariprofundus at the upper estuary were higher than DNA-based results, suggesting a potentially higher level of activity of these taxa. Based on our findings, we propose a model of how tidal water affects the composition and activity of the Fe-cycling taxa, playing an important role in the transport of HMs (e.g., As, Cd, Cr, and Pb) along the Rio Tinto. IMPORTANCE The estuary of the Rio Tinto is a unique environment in which extremely acidic, heavy metal-rich, and especially iron-rich river water is mixed with seawater. Due to the mixing events, the estuarine water is characterized by a low pH, almost seawater salinity, and high concentrations of bioavailable iron. The unusual hydrogeochemistry maintains unique microbial communities in the estuarine water and in the sediment. These communities include halotolerant iron-oxidizing microorganisms which typically inhabit acidic saline environments and marine iron-oxidizing microorganisms which, in contrast, are not typically found in acidic environments. Furthermore, highly saline estuarine water favored the prosperity of acidophilic heterotrophs, typically inhabiting brackish and saline environments. The Rio Tinto estuarine sediment harbors a diverse microbial community with both acidophilic and neutrophilic members that can mediate the iron cycle and, in turn, can directly impact the mobility and transport of heavy metals in the Rio Tinto estuary.
Collapse
Affiliation(s)
- Sergey M. Abramov
- Microbial Ecology, Center for Applied Geosciences, University of Tuebingen, Tuebingen, Baden-Württemberg, Germany
- Geomicrobiology, Center for Applied Geosciences, University of Tuebingen, Tuebingen, Baden-Württemberg, Germany
| | - Daniel Straub
- Microbial Ecology, Center for Applied Geosciences, University of Tuebingen, Tuebingen, Baden-Württemberg, Germany
- Quantitative Biology Center, University of Tuebingen, Tuebingen, Baden-Württemberg, Germany
| | - Julian Tejada
- University of Applied Forest Sciences Rottenburg, Rottenburg am Neckar, Baden-Württemberg, Germany
| | - Lars Grimm
- Geomicrobiology, Center for Applied Geosciences, University of Tuebingen, Tuebingen, Baden-Württemberg, Germany
| | - Franziska Schädler
- Microbial Ecology, Center for Applied Geosciences, University of Tuebingen, Tuebingen, Baden-Württemberg, Germany
- Geomicrobiology, Center for Applied Geosciences, University of Tuebingen, Tuebingen, Baden-Württemberg, Germany
| | - Aleksandr Bulaev
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| | - Harald Thorwarth
- University of Applied Forest Sciences Rottenburg, Rottenburg am Neckar, Baden-Württemberg, Germany
| | - Ricardo Amils
- Centre for Molecular Biology Severo Ochoa, Autonomous University of Madrid, Madrid, Spain
| | - Andreas Kappler
- Geomicrobiology, Center for Applied Geosciences, University of Tuebingen, Tuebingen, Baden-Württemberg, Germany
- Cluster of Excellence EXC 2124, Controlling Microbes to Fight Infection, Tuebingen, Baden-Württemberg, Germany
| | - Sara Kleindienst
- Microbial Ecology, Center for Applied Geosciences, University of Tuebingen, Tuebingen, Baden-Württemberg, Germany
| |
Collapse
|
6
|
Leichty SI, Kasanke CP, Bell SL, Hofmockel KS. Site and Bioenergy Cropping System Similarly Affect Distinct Live and Total Soil Microbial Communities. Front Microbiol 2021; 12:725756. [PMID: 34721322 PMCID: PMC8551758 DOI: 10.3389/fmicb.2021.725756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 09/22/2021] [Indexed: 11/21/2022] Open
Abstract
Bioenergy crops are a promising energy alternative to fossil fuels. During bioenergy feedstock production, crop inputs shape the composition of soil microbial communities, which in turn influences nutrient cycling and plant productivity. In addition to cropping inputs, site characteristics (e.g., soil texture, climate) influence bacterial and fungal communities. We explored the response of soil microorganisms to bioenergy cropping system (switchgrass vs. maize) and site (sandy loam vs. silty loam) within two long-term experimental research stations. The live and total microbial community membership was investigated using 16S and ITS amplicon sequencing of soil RNA and DNA. For both nucleic acid types, we expected fungi and prokaryotes to be differentially impacted by crop and site due their dissimilar life strategies. We also expected live communities to be more strongly affected by site and crop than the total communities due to a sensitivity to recent stimuli. Instead, we found that prokaryotic and fungal community composition was primarily driven by site with a secondary crop effect, highlighting the importance of soil texture and fertility in shaping both communities. Specific highly abundant prokaryotic and fungal taxa within live communities were indicative of site and cropping systems, providing insight into treatment-specific, agriculturally relevant microbial taxa that were obscured within total community profiles. Within live prokaryote communities, predatory Myxobacteria spp. were largely indicative of silty and switchgrass communities. Within live fungal communities, Glomeromycota spp. were solely indicative of switchgrass soils, while a few very abundant Mortierellomycota spp. were indicative of silty soils. Site and cropping system had distinct effects on the live and total communities reflecting selection forces of plant inputs and environmental conditions over time. Comparisons between RNA and DNA communities uncovered live members obscured within the total community as well as members of the relic DNA pool. The associations between live communities and relic DNA are a product of the intimate relationship between the ephemeral responses of the live community and the accumulation of DNA within necromass that contributes to soil organic matter, and in turn shapes soil microbial dynamics.
Collapse
Affiliation(s)
- Sarah I Leichty
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, United States
| | - Christopher P Kasanke
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, United States
| | - Sheryl L Bell
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, United States
| | - Kirsten S Hofmockel
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, United States.,Department of Agronomy, Iowa State University, Ames, IA, United States
| |
Collapse
|
7
|
Jeong SY, Kim TG. Effects of Plants on Metacommunities and Correlation Networks of Soil Microbial Groups in an Ecologically Restored Wetland. MICROBIAL ECOLOGY 2021; 81:657-672. [PMID: 33094372 DOI: 10.1007/s00248-020-01625-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 10/15/2020] [Indexed: 06/11/2023]
Abstract
Plants may influence different aspects of the belowground microorganisms, including abundance, distribution, and interaction, in wetlands. Microbial communities were scrutinized in a 4-year-old restored wetland ecosystem with 5 distinct sites: a bare-soil site (10 local patches) and sites dominated by Miscanthus, Phragmites, Typha, and Zizania (20 patches per site). Ordination analysis revealed that plant-induced attributes (e.g., organic matter and total carbon and nitrogen) could explain the total environmental variance. Community comparisons showed that all groups (Bacteria, Fungi, Protista, and Metazoa) differed in community structure among the 5 sites (P < 0.05). Comparisons between the community and environmental ordination plots revealed that community structural variation among the sites correlated with the environmental change across all groups (R2 ≥ 0.61). This indicates that all groups were primarily influenced by plant detritus. In addition, correlation networks markedly varied in topology and composition among the sites across all groups. There was a strong coupling between the metacommunity and correlation network for both Bacteria and Fungi (R2 ≥ 0.58), indicating that the plants determined the spatial covariation patterns of microbial populations. Multi-group networks and group synchrony results revealed that Bacteria, Fungi, and Protista were synchronized with each other (R2 ≥ 0.52) as the key founders of the microbial systems, while Metazoa participated in the system only under Miscanthus. Our findings concluded that the plants shaped the communities by controlling the abundance and interaction of their populations.
Collapse
Affiliation(s)
- So-Yeon Jeong
- Department of Microbiology, Pusan National University, Pusan, 46241, South Korea
| | - Tae Gwan Kim
- Department of Microbiology, Pusan National University, Pusan, 46241, South Korea.
| |
Collapse
|
8
|
Jeong SY, Kim TG. Spatial Variance of Species Distribution Predicts the Interspecies Interactions within a Microbial Metacommunity. MICROBIAL ECOLOGY 2021; 81:549-552. [PMID: 32948906 DOI: 10.1007/s00248-020-01603-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 09/15/2020] [Indexed: 06/11/2023]
Abstract
Interspecies interactions have a profound influence on spatial distribution of coexisting microbial species. We explored whether spatial variance of species distribution (SVSD) predicts the degree of interspecies interactions within a microbial metacommunity. Simulations were used to determine the relationships from random, lake, soil, and biofilm metacommunity datasets (1,000 times). All of the bacterial datasets showed a negative correlation between the habitat breadth (inverse to SVSD) and the numbers of total, positive, and negative interspecies interactions (P < 0.05); the only exception was the relationship between habitat breadth and negative interactions in the biofilm dataset. The random dataset had no significant relationships (P > 0.05). We repeated the simulations to determine the degree of correlation and reproducibility (100 times). Habitat breadth was negatively correlated with the total and positive interactions in all of the real datasets (P < 0.05), and the negative relationships persisted across repetitions. Despite variability in the slope of total interactions, the slope values of positive interactions were similar for the real datasets (- 19.9, - 19.2, and - 25.8 for lake, soil, and biofilm, respectively). In conclusion, our results demonstrate the patterns of species interaction-distribution and show that interspecies interactions are positively correlated with the SVSD.
Collapse
Affiliation(s)
- So-Yeon Jeong
- Department of Microbiology, Pusan National University, Pusan, 46241, South Korea
| | - Tae Gwan Kim
- Department of Microbiology, Pusan National University, Pusan, 46241, South Korea.
| |
Collapse
|
9
|
Jeong SY, Kim TG. Comparison of five membrane filters to collect bioaerosols for airborne microbiome analysis. J Appl Microbiol 2020; 131:780-790. [PMID: 33331057 DOI: 10.1111/jam.14972] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 11/29/2020] [Accepted: 12/11/2020] [Indexed: 11/27/2022]
Abstract
AIMS Recovering DNA of airborne micro-organisms (AM) from air is a challenging task. We compared five membrane filters for bioaerosol sampling-mixed cellulose ester (MCE), polyethersulfone (PES), polyamide (PA), polytetrafluorethylene (PTFE) and polyvinylidene fluoride (PVDF)-based on their bacterial, fungal and eukaryotic DNA recoveries. METHODS AND RESULTS Bacterial, fungal and eukaryotic populations were quantified using quantitative PCR. With a bacterial consortium, PTFE exhibited the best recovery efficiency (113%), followed by PA (92%), PES (86%), MCE (48%) and PVDF (1%). When filters were compared with air, PA was used as a control to normalize results from the others. The bacterial, fungal and eukaryotic DNA recovery ratios were markedly greater in PES (9·3, 11·5 and 10·3 respectively) than in the remaining. Eukaryotic MiSeq sequencing revealed that PES recovered a more diverse and considerably richer assemblage (richness ratios, 4·97 vs ≤ 1·16 for PES vs the others). Rank abundance distribution analysis showed that distribution tails were longer (>4 times) in PES, but these did not differ between the remaining and PA. Community comparison showed that PES exhibited a lower variation across trials than the PA, while the remaining did not. CONCLUSIONS PES filter markedly outperformed the other filters in quantitative and qualitative recovery of AM. SIGNIFICANCE AND IMPACT OF THE STUDY Our findings demonstrated the importance of filter selection for sampling AM.
Collapse
Affiliation(s)
- S-Y Jeong
- Department of Microbiology, Pusan National University, Pusan, Korea
| | - T G Kim
- Department of Microbiology, Pusan National University, Pusan, Korea
| |
Collapse
|
10
|
Jeong SY, Choi JY, Kim TG. Coordinated Metacommunity Assembly and Spatial Distribution of Multiple Microbial Kingdoms within a Lake. MICROBIAL ECOLOGY 2020; 79:801-814. [PMID: 31705158 DOI: 10.1007/s00248-019-01453-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 10/16/2019] [Indexed: 06/10/2023]
Abstract
Freshwater planktonic communities comprise a tremendous diversity of microorganisms. This study investigated the distribution patterns of microbial kingdoms (bacteria, fungi, protists, and microbial metazoans) within a lake ecosystem. Water samples were collected from 50 sites along the shoreline in a lake during an early eutrophication period, and MiSeq sequencing was performed with different marker genes. Metacommunity analyses revealed a bimodal occupancy-frequency distribution and a Clementsian gradient persisting throughout all microbial kingdoms, suggesting similar regional processes in all kingdoms. Variation partitioning revealed that environmental characteristics, macrophyte/macroinvertebrate composition, space coordinates, and distance-based Moran's eigenvector maps (dbMEM) together could explain up to 29% of the community variances in microbial kingdoms. Kingdom synchrony results showed strong couplings between kingdoms (R2 ≥ 0.31), except between Fungi and Metazoa (R2 = 0.09). Another variation partitioning revealed that microbial kingdoms could well explain their community variances up to 73%. Interestingly, the kingdom Protista was best synchronized with the other kingdoms. A correlation network showed that positive associations between kingdoms outnumbered the negative ones and that the kingdom Protista acted as a hub among kingdoms. Module analysis showed that network modules included multi-kingdom associations that were prevalent. Our findings suggest that protists coordinate community assembly and distribution of other kingdoms, and inter-kingdom interactions are a key determinant in shaping their community structures in a freshwater lake.
Collapse
Affiliation(s)
- So-Yeon Jeong
- Department of Microbiology, Pusan National University, Pusan, 46241, South Korea
| | - Jong-Yun Choi
- Division of Ecological Assessment, National Institute of Ecology, Seocheon, Choongnam, 33657, South Korea
| | - Tae Gwan Kim
- Department of Microbiology, Pusan National University, Pusan, 46241, South Korea.
| |
Collapse
|
11
|
Bioinoculants play a significant role in shaping the rhizospheric microbial community: a field study with Cajanus cajan. World J Microbiol Biotechnol 2020; 36:44. [PMID: 32130544 DOI: 10.1007/s11274-020-02818-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 02/22/2020] [Indexed: 12/11/2022]
Abstract
The present study is an attempt to understand the impact of bioinoculants, Azotobacter chroococcum (A), Bacillus megaterium (B), Pseudomonas fluorescens (P), on (a) soil and plant nutrient status, (b) total resident and active bacterial communities, and (c) genes and transcripts involved in nitrogen cycle, during cultivation of Cajanus cajan. In terms of available macro- and micro-nutrients, triple inoculation of the bioinoculants (ABP) competed well with chemical fertilizer (CF). Their 'non-target' effects were assessed in terms of the abundance and activity of the resident bacterial community by employing denaturing gradient gel electrophoresis (DGGE). The resident bacterial community (16S rRNA gene) was stable, while the active fraction (16S rRNA transcripts) was influenced (in terms of abundance) by the treatments. Quantification of the genes and transcripts involved in N cycle by qPCR revealed an increase in the transcripts of nifH in the soil treated with ABP over CF, with an enhancement of 3.36- and 1.57- fold at flowering and maturity stages of plant growth, respectively. The bioinoculants shaped the resident microflora towards a more beneficial community, which helped in increasing soil N turnover and hence, soil fertility as a whole.
Collapse
|
12
|
Jung H, Oh KC, Ryu HW, Jeon JM, Cho KS. Simultaneous mitigation of methane and odors in a biowindow using a pipe network. WASTE MANAGEMENT (NEW YORK, N.Y.) 2019; 100:45-56. [PMID: 31520912 DOI: 10.1016/j.wasman.2019.09.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 08/25/2019] [Accepted: 09/03/2019] [Indexed: 06/10/2023]
Abstract
In this study, a biowindow with a piped gas collection network is proposed as an area-efficient landfill gas treatment system. A 9-m2 biowindow was constructed for treating landfill gas collected from an area of 450 m2 in a sanitary landfill, and its performance was evaluated for 224 days. The methane removal efficiency was 59-100% at 146.3-675.1 g-CH4 m-2 d-1. Odorous compounds were also removed by the biowindow, with a complex odor intensity removal rate of 93-100%. In particular, the removal efficiency for hydrogen sulfide and methanethiol, major contributors to the complex odor intensity, was 97% and 91%, respectively. Metagenomic analysis showed that the dominant bacterial genera shifted from Acinetobacter and Pseudomonas to Methylobacter and Methylocaldum due to the high concentration of methane. A high bacterial diversity was maintained, which may have contributed to the robust performance of the biowindow against environmental fluctuations. At 1/50th of the size of conventional biocovers, the proposed biowindow can greatly reduce the required installation area and represents a competitive method for the simultaneous treatment of methane and odor in landfills.
Collapse
Affiliation(s)
- Hyekyeng Jung
- Department of Environmental Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Kyung-Cheol Oh
- Green Environmental Complex Center, Suncheon 57992, Republic of Korea
| | - Hee-Wook Ryu
- Department of Chemical Engineering, Soongsil University, Seoul 06978, Republic of Korea
| | - Jun-Min Jeon
- Green Environmental Complex Center, Suncheon 57992, Republic of Korea
| | - Kyung-Suk Cho
- Department of Environmental Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea.
| |
Collapse
|
13
|
Salgar-Chaparro SJ, Machuca LL. Complementary DNA/RNA-Based Profiling: Characterization of Corrosive Microbial Communities and Their Functional Profiles in an Oil Production Facility. Front Microbiol 2019; 10:2587. [PMID: 31787960 PMCID: PMC6853844 DOI: 10.3389/fmicb.2019.02587] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 10/25/2019] [Indexed: 12/21/2022] Open
Abstract
DNA and RNA-based sequencing of the 16S rRNA gene and transcripts were used to assess the phylogenetic diversity of microbial communities at assets experiencing corrosion in an oil production facility. The complementary methodological approach, coupled with extensive bioinformatics analysis, allowed to visualize differences between the total and potentially active communities present in several locations of the production facility. According to the results, taxa indicative for thermophiles and oil-degrading microorganisms decreased their relative abundances in the active communities, whereas sulfate reducing bacteria and methanogens had the opposite pattern. The differences in the diversity profile between total and active communities had an effect on the microbial functional capability predicted from the 16S rRNA sequences. Primarily, genes involved in methane metabolism were enriched in the RNA-based sequencing approach. Comparative analysis of microbial communities in the produced water, injection water and deposits in the pipelines showed that deposits host more individual species than other sample sources in the facility. Similarities in the number of cells and microbial profiles of active communities in biocide treated and untreated sampling locations suggested that the treatment was ineffective at controlling the growth of microbial populations with a known corrosive metabolism. Differences in the results between DNA and RNA-based profiling demonstrated that DNA results alone can lead to the underestimation of active members in the community, highlighting the importance of using a complementary approach to obtain a broad general overview not only of total and active members but also in the predicted functionality.
Collapse
Affiliation(s)
- Silvia J Salgar-Chaparro
- Curtin Corrosion Centre, WA School of Mines: Minerals, Energy and Chemical Engineering, Curtin University, Perth, WA, Australia
| | - Laura L Machuca
- Curtin Corrosion Centre, WA School of Mines: Minerals, Energy and Chemical Engineering, Curtin University, Perth, WA, Australia
| |
Collapse
|
14
|
Ding Y, Xiong J, Zhou B, Wei J, Qian A, Zhang H, Zhu W, Zhu J. Odor removal by and microbial community in the enhanced landfill cover materials containing biochar-added sludge compost under different operating parameters. WASTE MANAGEMENT (NEW YORK, N.Y.) 2019; 87:679-690. [PMID: 31109570 DOI: 10.1016/j.wasman.2019.03.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 01/29/2019] [Accepted: 03/05/2019] [Indexed: 06/09/2023]
Abstract
Odor problem has become a growing concern for municipal solid waste (MSW) operators and communities located close to landfill sites. In this study, nine laboratory-scale landfill reactors were used to simulate in-situ odor control by a novel landfill cover material consisting of biochar-added sludge compost under various operating parameters. Characterization of odor removal and microbial community in the cover layer under various operating parameters was conducted using gas chromatograph-mass spectrometry and 454 high-throughput pyrosequencing, respectively. Results showed that H2S (76.9-86.0%) and volatile organic sulfur compounds (VOSCs) (12.3-21.7%) were dominant according to their theoretical generated odor concentrations. The total odor REs calculated using the theoretical odor concentrations in the landfill reactors were different than using the measured odor values, which were ranked from high to low as: R6 > R5 > R7 > R4 > R8 > R9 > R3 > R2 > R1, showing the largest discrepancy of 25.3%. The optimum combination of operating parameters based on the theoretical odor concentration was different with that based on the measured odor concentrations. Moreover, although Firmicutes (12.21-91.48%), Proteobacteria (3.55-51.03%), and Actinobacteria (4.01-47.39%) were in general the three major bacterial phyla found in the landfill covers, the detailed bacterial communities in the cover materials of the simulated reactors varied with various operating parameters. Alicyclobacillus and Tuberibacillus showed positive correlations with the removal efficiencies (REs) of chlorinated compounds, H2S, aromatic compounds, volatile organic sulfur compounds (VOSCs), and organic acids. The correlations of Rhodanobacter, Gemmatimonas, Flavisolibacter and Sphingomonas were strongly positive with ammonia RE and relatively positive with REs of organic acids, VOSCs, and aromatic compounds. These findings are instrumental in understanding the relationship between the structure of microbial communities and odor removal performances, and in developing techniques for in-situ odor control at landfills.
Collapse
Affiliation(s)
- Ying Ding
- Department of Environmental Engineering, Hangzhou Normal University, Hangzhou 310016, PR China; Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou 310016, PR China.
| | - Junsheng Xiong
- Department of Environmental Engineering, Hangzhou Normal University, Hangzhou 310016, PR China; Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou 310016, PR China; Hubei Academy of Environmental Sciences, Wuhan 430070, PR China
| | - Bowei Zhou
- Department of Environmental Engineering, Hangzhou Normal University, Hangzhou 310016, PR China; Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou 310016, PR China
| | - Jiaojiao Wei
- Department of Environmental Engineering, Hangzhou Normal University, Hangzhou 310016, PR China; Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou 310016, PR China
| | - Aiai Qian
- Department of Environmental Engineering, Hangzhou Normal University, Hangzhou 310016, PR China; Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou 310016, PR China
| | - Hangjun Zhang
- Department of Environmental Engineering, Hangzhou Normal University, Hangzhou 310016, PR China; Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou 310016, PR China
| | - Weiqin Zhu
- Department of Environmental Engineering, Hangzhou Normal University, Hangzhou 310016, PR China; Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou 310016, PR China
| | - Jun Zhu
- Department of Biological & Agricultural Engineering, University of Arkansas, AR 72701, USA.
| |
Collapse
|
15
|
Li H, Su JQ, Yang XR, Zhu YG. Distinct rhizosphere effect on active and total bacterial communities in paddy soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 649:422-430. [PMID: 30176455 DOI: 10.1016/j.scitotenv.2018.08.373] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 08/24/2018] [Accepted: 08/26/2018] [Indexed: 05/11/2023]
Abstract
Rhizosphere microbes are critical for plant health and biogeochemical cycles. Understanding the diversity of active microorganisms in the rhizosphere is key to enhancing plant growth and productivity. We examined rhizosphere bacterial communities of rice by comparison of the 16S ribosomal subunit amplicons generated from both the total (DNA-based, 16S rRNA gene) and the active (RNA-based, 16S rRNA) soil microbiota. Analysis based on the 16S rRNA gene showed a higher microbial diversity, but with little change in bacterial populations across the growth stages of the plant. Analysis of 16S rRNA recovered much less diversity, demonstrating that much of the 16S signal was derived from free DNA, dead or inactive cells. The rRNA analysis showed a stable microbial population present in the rhizosphere, and this was distinct from that in the bulk soil, which was also stable across the growth period. Root exudates (e.g., acetate, lactate, oxalate and succinate), which are major components contributing to the rhizosphere effect, appeared to shape the bacterial community, with some taxa (e.g., Oxobacter, Lachnospiraceae, Coprococcus and α-Proteobacteria) being enhanced in the rhizosphere. Soil compartments (rhizosphere vs. bulk) had a greater effect on the bacterial communities than did the plant phenological stages, especially at the rRNA level. These results suggest that the rhizosphere effect plays a key role in structuring the bacterial communities in rhizosphere soils with a distinct effect on active and total bacterial communities.
Collapse
Affiliation(s)
- Hu Li
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Jian-Qiang Su
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| | - Xiao-Ru Yang
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Yong-Guan Zhu
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
16
|
Li S, Luo Z, Ji G. Seasonal function succession and biogeographic zonation of assimilatory and dissimilatory nitrate-reducing bacterioplankton. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 637-638:1518-1525. [PMID: 29801245 DOI: 10.1016/j.scitotenv.2018.05.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 05/01/2018] [Accepted: 05/02/2018] [Indexed: 06/08/2023]
Abstract
The dominance of different nitrate-reducing pathways determines nitrogen cycling patterns. Denitrification (DNF) has been widely studied, but assimilatory nitrate reduction (ANR) and dissimilatory nitrate reduction to ammonium (DNRA) have received much less attention. Their ecological patterns and responsible microbes are poorly understood. Here, we studied the structure and function succession of the three functional groups in the middle route of the South-to-North Water Diversion Project, which is a 1230 km canal spanning 8 degrees of latitude. The results reflected a nitrogen-removing pattern dominated by DNF in the summer and a nitrogen-retaining pattern dominated by ANR and DNRA in the winter. Stenotrophomonas, a typical denitrifier, was the keystone species in the summer and contributed to N2O production. Clostridium, a genus able to conduct ANR and DNRA, was the keystone species in the winter. Notably, a significant zonation pattern was discovered. According to the community structure, the system could be separated into two biogeographic zones, and the Yellow River (about latitude 35°N) is an important cut-off line. This bacterial biogeography followed different water characteristics and ecological processes. ANR was found to be an important process and seasonally transformed its habitat from the northern zone to the southern zone. DNRA bacteria were acclimated to the northern zone and favored at this region in both seasons. The generation of N2O, a strong greenhouse gas, also exhibited this zonation pattern. This is the first study to consider assimilatory and dissimilatory nitrate reducers together at a molecular level, and provides new insights into the underlying patterns of a nitrate-reducing bacterioplankton community.
Collapse
Affiliation(s)
- Shengjie Li
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing 100871, China
| | - Zhongxin Luo
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing 100871, China
| | - Guodong Ji
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|
17
|
Yun J, Jung H, Ryu HW, Oh KC, Jeon JM, Cho KS. Odor mitigation and bacterial community dynamics in on-site biocovers at a sanitary landfill in South Korea. ENVIRONMENTAL RESEARCH 2018; 166:516-528. [PMID: 29957505 DOI: 10.1016/j.envres.2018.06.039] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 06/04/2018] [Accepted: 06/19/2018] [Indexed: 06/08/2023]
Abstract
Unpleasant odors emitted from landfills have been caused environmental and societal problems. For odor abatement, two pilot-scale biocovers were installed at a sanitary landfill site in South Korea. Biocovers PBC1 and PBC2 comprised a soil mixture with different ratios of earthworm casts as an inoculum source and were operated for 240 days. Their odor removal efficiencies were evaluated, and their bacterial community structures were characterized using pyrosequencing. In addition, the correlation between odor removability and bacterial community dynamics was assessed using network analysis. The removal efficiency of complex odor intensity in the two biocovers ranged from 81.1% to 97.8%. Removal efficiencies of sulfur-containing odors (hydrogen sulfide, methanethiol, dimethyl sulfide, and dimethyl disulfide), which contributed most to complex odor intensity, were greater than 91% in both biocovers. Despite the fluctuations in ambient temperature (-8.2 to 31.3 °C) and inlet complex odor intensity (10,000-42,748 of odor dilution ratio), biocovers PBC1 and PBC2 displayed stable deodorizing performance. A high ratio of earthworm casts as an inoculum source led to high odor removability during the first 25 days of operation, but different mixing ratios of earthworm casts did not significantly affect overall odor removability. A bacterial community analysis showed that Methylobacter, Arthrobacter, Acinetobacter, Rhodanobacter, and Pedobacter were the dominant genera in both biocovers. Network analysis results indicated that Steroidobacter, Cystobacter, Methylosarcina, Solirubrobacter, and Pseudoxanthomonas increased in relative abundance with time and were major contributors to odor removal, although these bacteria had a relatively low abundance compared to the overall bacterial community. These data contribute to a more comprehensive understanding of the relationship between bacterial community dynamics and deodorizing performance in biocovers.
Collapse
Affiliation(s)
- Jeonghee Yun
- Department of Environmental Science and Engineering, Ewha Womans University, 52, Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea
| | - Hyekyeng Jung
- Department of Environmental Science and Engineering, Ewha Womans University, 52, Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea
| | - Hee-Wook Ryu
- Department of Chemical Engineering, Soongsil University, Seoul 06978, Republic of Korea
| | - Kyung-Cheol Oh
- Green Environmental Complex Center, Suncheon 57992, Republic of Korea
| | - Jun-Min Jeon
- Green Environmental Complex Center, Suncheon 57992, Republic of Korea
| | - Kyung-Suk Cho
- Department of Environmental Science and Engineering, Ewha Womans University, 52, Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea.
| |
Collapse
|
18
|
Ki BM, Ryu HW, Cho KS. Extended local similarity analysis (eLSA) reveals unique associations between bacterial community structure and odor emission during pig carcasses decomposition. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2018; 53:718-727. [PMID: 29469603 DOI: 10.1080/10934529.2018.1439856] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Soil burial and composting methods have been widely used for the disposal of pig carcasses. The relationship between bacterial community structure and odor emission was examined using extended local similarity analysis (eLSA) during the degradation of pig carcasses in soil and compost. In soil, Hyphomicrobium, Niastella, Rhodanobacter, Polaromonas, Dokdonella and Mesorhizobium were associated with the emission of sulfur-containing odors such as hydrogen sulfide, methyl mercaptan and dimethyl disulfide. Sphingomonas, Rhodanobacter, Mesorhizobium, Dokdonella, Leucobacter and Truepera were associated with the emission of nitrogen-containing odors including ammonia and trimetylamine. In compost, however, Carnobacteriaceae, Lachnospiaceae and Clostridiales were highly correlated with the emission of sulfur-containing odors, while Rumincoccaceae was associated with the emission of nitrogen-containing odors. The emission of organic acids was closely related to Massilia, Sphaerobacter and Bradyrhizobiaceae in soil, but to Actinobacteria, Sporacetigenium, Micromonosporaceae and Solirubrobacteriales in compost. This study suggests that network analysis using eLSA is a useful strategy for exploring the mechanisms of odor emission during biodegradation of pig carcasses.
Collapse
Affiliation(s)
- Bo-Min Ki
- a Department of Environmental Science and Engineering , Ewha Womans University , Seoul , Republic of Korea
| | - Hee Wook Ryu
- b Department of Chemical Engineering , Soongsil University , Seoul , Republic of Korea
| | - Kyung-Suk Cho
- a Department of Environmental Science and Engineering , Ewha Womans University , Seoul , Republic of Korea
| |
Collapse
|
19
|
Ki BM, Huh IA, Choi JH, Cho KS. Relationship of nutrient dynamics and bacterial community structure at the water-sediment interface using a benthic chamber experiment. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2018; 53:482-491. [PMID: 29303410 DOI: 10.1080/10934529.2017.1412191] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The relationships between nutrient dynamics and the bacterial community at the water-sediment interface were investigated using the results of nutrient release fluxes, bacterial communities examined by 16S rRNA pyrosequencing and canonical correlation analysis (CCA) accompanied by lab-scale benthic chamber experiment. The nutrient release fluxes from the sediments into the water were as follows: -3.832 to 12.157 mg m-2 d-1 for total phosphorus, 0.049 to 9.993 mg m-2 d-1 for PO4-P, -2.011 to 41.699 mg m-2 d-1 for total nitrogen, -7.915 to -0.074 mg m-2 d-1 for NH3-N, and -17.940 to 1.209 mg m-2 d-1 for NO3-N. To evaluate the relationship between the bacterial communities and environmental variables, CCA was conducted in three representative conditions: in the overlying water, in the sediment at a depth of 0-5 cm, and in the sediment at a depth of 5-15 cm. CCA results showed that environmental variables such as nutrient release fluxes (TN, NH4, NO3, TP, and PO4) and water chemical parameters (pH, DO, COD, and temperature) were highly correlated with the bacterial communities. From the results of the nutrient release fluxes and the bacterial community, this study proposed the hypothesis for bacteria involved in the nutrient dynamics at the interface between water and sediment. In the sediment, sulfate-reducing bacteria (SRB) such as Desulfatibacillum, Desulfobacterium, Desulfomicrobium, and Desulfosalsimonas are expected to contribute to the decomposition of organic matter, and release of ammonia (NH4+) and phosphate (PO43-). The PO43- released into the water layer was observed by the positive fluxes of PO43-. The NH4+ released from the sediment was rapidly oxidized by the methane-oxidizing bacteria (MOB). This study observed in the water layer dominantly abundant MOB of Methylobacillus, Methylobacter, Methylocaldum, and Methylophilus. The nitrate (NO3-) accumulation caused by the oxidation environment of the water layer moved back to the sediment, which led to the relatively large negative fluxes of NO3-, compared to the small negative fluxes of NH4+.
Collapse
Affiliation(s)
- Bo-Min Ki
- a Department of Environmental Science and Engineering , Ewha Womans University , Seoul , South Korea
| | - In Ae Huh
- b National Institute of Environmental Research , Incheon , South Korea
| | - Jung-Hyun Choi
- a Department of Environmental Science and Engineering , Ewha Womans University , Seoul , South Korea
| | - Kyung-Suk Cho
- a Department of Environmental Science and Engineering , Ewha Womans University , Seoul , South Korea
| |
Collapse
|
20
|
Lee YY, Jung H, Ryu HW, Oh KC, Jeon JM, Cho KS. Seasonal characteristics of odor and methane mitigation and the bacterial community dynamics in an on-site biocover at a sanitary landfill. WASTE MANAGEMENT (NEW YORK, N.Y.) 2018; 71:277-286. [PMID: 29089227 DOI: 10.1016/j.wasman.2017.10.037] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 10/12/2017] [Accepted: 10/24/2017] [Indexed: 06/07/2023]
Abstract
Landfills are key anthropogenic emission sources for odors and methane. For simultaneous mitigation of odors and methane emitted from landfills, a pilot-scale biocover (soil:perlite:earthworm cast:compost, 6:2:1:1, v/v) was constructed at a sanitary landfill in South Korea, and the biocover performance and its bacterial community dynamics were monitored for 240 days. The removal efficiencies of odor and methane were evaluated to compare the odor dilution ratios or methane concentrations at the biocover surface and landfill soil cover surface where the biocover was not installed. The odor removal efficiency was maintained above 85% in all seasons. The odor dilution ratios ranged from 300 to 3000 at the biocover surface, but they were 6694-20,801 at the landfill soil cover surface. Additionally, the methane removal efficiency was influenced by the ambient temperature; the methane removal efficiency in winter was 35-43%, while the methane removability was enhanced to 85%, 86%, and 96% in spring, early summer, and late summer, respectively. The ratio of methanotrophs to total bacterial community increased with increasing ambient temperature from 5.4% (in winter) to 12.8-14.8% (in summer). In winter, non-methanotrophs, such as Acinetobacter (8.8%), Rhodanobacter (7.5%), Pedobacter (7.5%), and Arthrobacter (5.7%), were abundant. However, in late summer, Methylobacter (8.8%), Methylocaldum (3.4%), Mycobacterium (1.1%), and Desulviicoccus (0.9%) were the dominant bacteria. Methylobacter was the dominant methanotroph in all seasons. These seasonal characteristics of the on-site biocover performance and its bacterial community are useful for designing a full-scale biocover for the simultaneous mitigation of odors and methane at landfills.
Collapse
Affiliation(s)
- Yun-Yeong Lee
- Department of Environmental Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Hyekyeng Jung
- Department of Environmental Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Hee-Wook Ryu
- Department of Chemical Engineering, Soongsil University, Seoul 06978, Republic of Korea
| | - Kyung-Cheol Oh
- Green Environmental Complex Center, Suncheon 57992, Republic of Korea
| | - Jun-Min Jeon
- Green Environmental Complex Center, Suncheon 57992, Republic of Korea
| | - Kyung-Suk Cho
- Department of Environmental Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea.
| |
Collapse
|
21
|
Yun J, Cho KS. Effects of organic loading rate on hydrogen and volatile fatty acid production and microbial community during acidogenic hydrogenesis in a continuous stirred tank reactor using molasses wastewater. J Appl Microbiol 2017; 121:1627-1636. [PMID: 27709740 DOI: 10.1111/jam.13316] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 04/15/2016] [Accepted: 04/22/2016] [Indexed: 11/29/2022]
Abstract
AIMS Microbial community associated with hydrogen production and volatile fatty acids (VFAs) accumulation was characterized in acidogenic hydrogenesis using molasses wastewater as a feedstock. METHODS AND RESULTS Hydrogen and VFAs production were measured under an organic loading rate (OLR) from 19 to 35 g-COD l-1 day-1 . The active microbial community was analysed using RNA-based massively parallel sequencing technique, and their correlation patterns were analysed using networking analysis. The continuous stirred tank reactor achieved stable hydrogen production at different OLR conditions, and the maximum hydrogen production rate (HPR) was 1·02 L-H2 l-1 day-1 at 31·0 g-COD l-1 day-1 . Butyrate (50%) and acetate (38%) positively increased with increase in OLR. Total VFA production stayed around 7135 mg l-1 during the operation period. Although Clostridiales and Lactobacillales were relatively abundant, the HPR was positively associated with Pseudomonadaceae and Micrococcineae. Total VFA and acetate, butyrate and propionate concentrations were positively correlated with lactic acid bacteria (LAB) such as Bacillales, Sporolactobacillus and Lactobacillus. CONCLUSIONS The close relationship between Pseudomonadaceae and Micrococcineae, and LAB play important roles for stable hydrogen and VFA production from molasses wastewater. SIGNIFICANCE AND IMPACT OF THE STUDY Microbial information on hydrogen and VFA production can be useful to design and operate for acidogenic hydrogenesis using high strength molasses wastewater.
Collapse
Affiliation(s)
- J Yun
- Department of Environmental Science and Engineering, Ewha Womans University, Seoul, Korea
| | - K-S Cho
- Department of Environmental Science and Engineering, Ewha Womans University, Seoul, Korea
| |
Collapse
|
22
|
Chidambarampadmavathy K, Karthikeyan OP, Huerlimann R, Maes GE, Heimann K. Response of mixed methanotrophic consortia to different methane to oxygen ratios. WASTE MANAGEMENT (NEW YORK, N.Y.) 2017; 61:220-228. [PMID: 27876290 DOI: 10.1016/j.wasman.2016.11.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 08/31/2016] [Accepted: 11/04/2016] [Indexed: 05/22/2023]
Abstract
Methane (CH4) and oxygen (air) concentrations affect the CH4 oxidation capacity (MOC) and mixed methanotrophic community structures in compost (fresh) and landfill (age old) top cover soils. A change in the mixed methanotrophic community structure in response has implications for landfill CH4 bio-filter remediation and possible bio-product outcomes (i.e., fatty acid methyl esters (FAME) content and profiles and polyhydroxybutyrate (PHB) contents). Therefore the study aimed to evaluate the effect of variable CH4 to oxygen ratios (10-50% CH4 in air) on mixed methanotrophic community structures enriched from landfill top cover (LB) and compost soils (CB) and to quantify flow on impacts on MOC, total FAME contents and profiles, and PHB accumulation. A stable consortium developed achieving average MOCs of 3.0±0.12, 4.1±0.26, 6.9±0.7, 7.6±1.3 and 9.2±1.2mgCH4g-1DWbiomassh-1 in LB and 2.9±0.04, 5.05±0.32, 6.7±0.31, 7.9±0.61 and 8.6±0.48mgCH4g-1DWbiomassh-1 in CB for a 20day cultivation period at 10, 20, 30, 40 and 50% CH4, respectively. CB at 10% CH4 had a maximal FAME content of 40.5±0.8mgFAMEg-1DWbiomass, while maximal PHB contents (25mgg-1DWbiomass) was observed at 40% CH4 in LB. Despite variable CH4/O2 ratios, the mixed methanotrophic community structures in both LB and CB were relatively stable, dominated by Methylosarcina sp., and Chryseobacterium, suggesting that a resilient consortium had formed which can now be tested in bio-filter operations for CH4 mitigations in landfills.
Collapse
Affiliation(s)
- K Chidambarampadmavathy
- College of Science and Engineering, James Cook University, Townsville 4811, Queensland, Australia; Centre for Sustainable Tropical Fisheries and Aquaculture, James Cook University, Townsville 4811, Queensland, Australia
| | - O P Karthikeyan
- College of Science and Engineering, James Cook University, Townsville 4811, Queensland, Australia; Comparative Genomics Centre, James Cook University, Townsville 4811, Queensland, Australia; Centre for Sustainable Tropical Fisheries and Aquaculture, James Cook University, Townsville 4811, Queensland, Australia; Sino-Forest Applied Research Centre for Pearl River Delta Environment (ARCPE), Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong Special Administrative Region
| | - R Huerlimann
- College of Science and Engineering, James Cook University, Townsville 4811, Queensland, Australia; Comparative Genomics Centre, James Cook University, Townsville 4811, Queensland, Australia; Centre for Sustainable Tropical Fisheries and Aquaculture, James Cook University, Townsville 4811, Queensland, Australia
| | - G E Maes
- College of Science and Engineering, James Cook University, Townsville 4811, Queensland, Australia; Comparative Genomics Centre, James Cook University, Townsville 4811, Queensland, Australia; Centre for Sustainable Tropical Fisheries and Aquaculture, James Cook University, Townsville 4811, Queensland, Australia; Center for Human Genetics, Genomics Core, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - K Heimann
- College of Science and Engineering, James Cook University, Townsville 4811, Queensland, Australia; Comparative Genomics Centre, James Cook University, Townsville 4811, Queensland, Australia; Centre for Sustainable Tropical Fisheries and Aquaculture, James Cook University, Townsville 4811, Queensland, Australia; Centre for Bio-discovery and Molecular Development of Therapeutics, James Cook University, Townsville 4811, Queensland, Australia.
| |
Collapse
|
23
|
Lee EH, Moon KE, Cho KS. Long-term performance and bacterial community dynamics in biocovers for mitigating methane and malodorous gases. J Biotechnol 2017; 242:1-10. [DOI: 10.1016/j.jbiotec.2016.12.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 12/05/2016] [Accepted: 12/06/2016] [Indexed: 10/20/2022]
|
24
|
Jeong SY, Yi T, Lee CH, Kim TG. Spatiotemporal dynamics and correlation networks of bacterial and fungal communities in a membrane bioreactor. WATER RESEARCH 2016; 105:218-230. [PMID: 27619498 DOI: 10.1016/j.watres.2016.09.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 08/29/2016] [Accepted: 09/03/2016] [Indexed: 06/06/2023]
Abstract
To systematically study biofilm communities responsible for biofouling in membrane bioreactors (MBRs), we characterized the spatiotemporal dynamics of bacterial and fungal biofilm communities, and their networks, in a pilot-scale flat-sheet MBR treating actual municipal wastewater. Activated sludge (AS) and membrane samples were collected on days 4 and 8. The membranes were cut into 18 tiles, and bacterial and fungal communities were analyzed using next generation sequencing. Nonmetric multidimensional scaling (NMDS) plots revealed significant temporal variations in bacterial and fungal biofilm communities due to changes in the abundances of a few dominant members. Although the experimental conditions and inoculum species pools remained constant, variogram plots of bacterial and fungal communities revealed decay in local community similarity with geographic distance at each sampling time. Variogram modeling (exponential rise to maximum, R2 ≥ 0.79) revealed that decay patterns of both communities were different between days 4 and 8. In addition, networks of bacteria or fungi alone were distinct in network composition between days 4 and 8. The day-8 networks were more compact and clustered than those of the earlier time point. Bacteria-fungi networks show that the number of inter-domain associations decreased from 113 to 40 with time, confirming that membrane biofilm is a complex consortium of bacteria and fungi. Spatiotemporal succession in biofilm communities may be common on MBR membranes, resulting from different geographic distributions of initial microbial populations and their priority effects.
Collapse
Affiliation(s)
- So-Yeon Jeong
- Department of Microbiology, Pusan National University, Pusan 46241, South Korea
| | - Taewoo Yi
- National Institute of Ecology, Choongnam 33657, South Korea
| | - Chung-Hak Lee
- School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, South Korea
| | - Tae Gwan Kim
- Department of Microbiology, Pusan National University, Pusan 46241, South Korea.
| |
Collapse
|
25
|
Lee YY, Kim TG, Cho KS. Characterization of the COD removal, electricity generation, and bacterial communities in microbial fuel cells treating molasses wastewater. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2016; 51:1131-8. [PMID: 27428492 DOI: 10.1080/10934529.2016.1199926] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The chemical oxygen demand (COD) removal, electricity generation, and microbial communities were compared in 3 types of microbial fuel cells (MFCs) treating molasses wastewater. Single-chamber MFCs without and with a proton exchange membrane (PEM), and double-chamber MFC were constructed. A total of 10,000 mg L(-1) COD of molasses wastewater was continuously fed. The COD removal, electricity generation, and microbial communities in the two types of single-chamber MFCs were similar, indicating that the PEM did not enhance the reactor performance. The COD removal in the single-chamber MFCs (89-90%) was higher than that in the double-chamber MFC (50%). However, electricity generation in the double-chamber MFC was higher than that in the single-chamber MFCs. The current density (80 mA m(-2)) and power density (17 mW m(-2)) in the double-chamber MFC were 1.4- and 2.2-times higher than those in the single-chamber MFCs, respectively. The bacterial community structures in single- and double-chamber MFCs were also distinguishable. The amount of Proteobacteria in the double-chamber MFC was 2-3 times higher than those in the single-chamber MFCs. For the archaeal community, Methanothrix (96.4%) was remarkably dominant in the single-chamber MFCs, but Methanobacterium (35.1%), Methanosarcina (28.3%), and Methanothrix (16.2%) were abundant in the double-chamber MFC.
Collapse
Affiliation(s)
- Yun-Yeong Lee
- a Department of Environmental Science and Engineering , Ewha Womans University , 52 Ewhayeodae-gil, Seodaemun-gu, Seoul , 03760 , Republic of Korea
| | - Tae G Kim
- a Department of Environmental Science and Engineering , Ewha Womans University , 52 Ewhayeodae-gil, Seodaemun-gu, Seoul , 03760 , Republic of Korea
| | - Kyung-Suk Cho
- a Department of Environmental Science and Engineering , Ewha Womans University , 52 Ewhayeodae-gil, Seodaemun-gu, Seoul , 03760 , Republic of Korea
| |
Collapse
|
26
|
Enhancement of electricity production in a mediatorless air–cathode microbial fuel cell using Klebsiella sp. IR21. Bioprocess Biosyst Eng 2016; 39:1005-14. [DOI: 10.1007/s00449-016-1579-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 02/20/2016] [Indexed: 10/22/2022]
|
27
|
Biomethane production and microbial community response according to influent concentration of molasses wastewater in a UASB reactor. Appl Microbiol Biotechnol 2016; 100:4675-83. [DOI: 10.1007/s00253-016-7314-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 01/07/2016] [Accepted: 01/10/2016] [Indexed: 11/26/2022]
|
28
|
Lee YY, Kim TG, Cho KS. Performances of microbial fuel cells fed with rejected wastewater from BioCH4 and BioH2 processes treating molasses wastewater. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2016; 51:318-324. [PMID: 26756976 DOI: 10.1080/10934529.2015.1109394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
An integrated process involving conventional anaerobic digestion and microbial fuel cells (MFCs) has attracted attention recently to produce sustainable energy and to treat wastewater efficiently. To evaluate the possibility of CH4-producing process (BioCH4)-MFC or H2-producing process (BioH2)-MFC integrating systems, the MFC performances were investigated using rejected wastewater from a BioCH4 reactor (RWCH4) or BioH2 reactor (RWH2) treating molasses wastewater. When RWCH4 or RWH2 was fed into a single-chamber MFC reactor (designated as AC-MFCCH4 and AC-MFCH2, respectively) at different hydraulic retention times (HRT) of 1-7 d, both MFC systems showed maximum electricity production efficiencies at a HRT of 3 d. In the AC-MFCCH4 reactor, the average current density and average power density were 60.5 mA·m(-2) and 8.8 mW·m(-2), respectively. The AC-MFCH2 reactor generated an average current density of 71.4 mA·m(-2) and an average power density of 12.0 mW·m(-2). The COD removal rates were 45.7% in the AC-MFCCH4 reactor and 90.3% in the AC-MFCH2 reactor. There were no significant differences of the eubacterial community structures between the MFC systems, where Proteobacteria was remarkably dominant in both MFC systems. However, the archaeal community structures were significantly different where Methanothrix (89.3%) was remarkably dominant in the AC-MFCCH4 system, while Methanothrix (52.5%) and Methanosarcina (33.5%) were abundant in the AC-MFCH2 system. These findings demonstrate that the utilization of MFCs after the BioCH4 or BioH2 process is advantageous for energy recovery as well as COD removal from molasses wastewater.
Collapse
Affiliation(s)
- Yun-Yeong Lee
- a Department of Environmental Science and Engineering , Ewha Womans University , Seoul , Republic of Korea
| | - Tae G Kim
- a Department of Environmental Science and Engineering , Ewha Womans University , Seoul , Republic of Korea
- b Present address for Tae G. Kim, Ecological Information Management Team , National Institute of Ecology , Choongnam, 325-813, 33657 , Republic of Korea
| | - Kyung-Suk Cho
- a Department of Environmental Science and Engineering , Ewha Womans University , Seoul , Republic of Korea
| |
Collapse
|
29
|
Lee EH, Moon KE, Kim TG, Lee SD, Cho KS. Inhibitory effects of sulfur compounds on methane oxidation by a methane-oxidizing consortium. J Biosci Bioeng 2015; 120:670-6. [DOI: 10.1016/j.jbiosc.2015.04.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Revised: 04/07/2015] [Accepted: 04/08/2015] [Indexed: 01/10/2023]
|
30
|
Lee YY, Kim TG, Cho KS. Isolation and characterization of a novel electricity-producing yeast, Candida sp. IR11. BIORESOURCE TECHNOLOGY 2015; 192:556-563. [PMID: 26092068 DOI: 10.1016/j.biortech.2015.06.038] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 06/04/2015] [Accepted: 06/05/2015] [Indexed: 06/04/2023]
Abstract
A novel iron-reducing yeast, Candida sp. IR11, was isolated from an anodic biofilm in a MFC reactor fed glucose as a feedstock. 200-250 mV of voltage was produced in the air-cathode MFC inoculated with a pure culture of the strain IR11 where glucose was supplied as a feedstock. When the strain IR11 was inoculated into a conventional MFC treating rejected wastewater from an upflow anaerobic sludge blanket, maximum power density and coulombic efficiency were enhanced from 15.2 ± 0.36 to 20.6 ± 1.52 mW m(-2) and from 14.4 ± 0.45% to 21.9 ± 0.71%, respectively. In addition, the inoculation with IR11 improved COD removal from 79.1 ± 1.53% to 91.3 ± 5.29%. The quantitative PCR results showed that the strain IR11 successfully attached the anodic biofilm of the MFC reactors. These results indicate that Candida sp. IR11 is a promising biocatalyst for the enhancement of MFC performance.
Collapse
Affiliation(s)
- Yun-Yeong Lee
- Department of Environmental Science and Engineering, Ewha Womans University, Seoul 120-750, Republic of Korea
| | - Tae Gwan Kim
- Department of Environmental Science and Engineering, Ewha Womans University, Seoul 120-750, Republic of Korea
| | - Kyung-Suk Cho
- Department of Environmental Science and Engineering, Ewha Womans University, Seoul 120-750, Republic of Korea.
| |
Collapse
|
31
|
Yun J, Kim TG, Cho KS. Suppression of methanogenesis in hydrogen fermentation by intermittent feeding. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2015; 50:1458-1467. [PMID: 26325509 DOI: 10.1080/10934529.2015.1074480] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
This study investigated whether intermittent feeding by using a concentrated carbon source is an appropriate method for selective enrichment of hydrogenesis by means of methanogen suppression. In a conventional reactor fed continuously for 10 d, methanogens increased from 2.8 × 10(7) to 1.1 × 10(9) gene copy number (GCN)/mg-cell dry weight, and methane concentration in the resulting biogas was 5.8%. However, when a carbon source was intermittently supplied for 10 d to the reactor, the number of methanogens was reduced 98.9% from 2.77 × 10(7) to 1.2 × 10(3) GCN/mg-cell dry weight, and methane was not detected during this period of intermittent feeding. Intermittent feeding shifted the dominants in the reactor from Clostridiaceae (70.5%) and Lactobacillaceae (11.0%) to Acetobacteraceae (62.0%) and Clostridiaceae (38.0%). In the reactor operated in continuous feeding mode after intermittent feeding, methane concentration was below 0.3% and the portion of methanogens in the bacterial community was maintained below 0.2%. These results suggest that the intermittent feeding of a carbon source during hydrogen production processes is a suitable method to suppress the activity of methanogens.
Collapse
Affiliation(s)
- Jeonghee Yun
- a Department of Environmental Science and Engineering , Ewha Womans University , Seoul , South Korea
| | - Tae Gwan Kim
- a Department of Environmental Science and Engineering , Ewha Womans University , Seoul , South Korea
| | - Kyung-Suk Cho
- a Department of Environmental Science and Engineering , Ewha Womans University , Seoul , South Korea
| |
Collapse
|
32
|
The close relation between Lactococcus and Methanosaeta is a keystone for stable methane production from molasses wastewater in a UASB reactor. Appl Microbiol Biotechnol 2015; 99:8271-83. [DOI: 10.1007/s00253-015-6725-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 05/21/2015] [Accepted: 05/25/2015] [Indexed: 10/23/2022]
|
33
|
Portune KJ, Pérez MC, Álvarez-Hornos FJ, Gabaldón C. Investigating bacterial populations in styrene-degrading biofilters by 16S rDNA tag pyrosequencing. Appl Microbiol Biotechnol 2015; 99:3-18. [PMID: 24950754 PMCID: PMC4286631 DOI: 10.1007/s00253-014-5868-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 05/29/2014] [Accepted: 05/31/2014] [Indexed: 11/29/2022]
Abstract
Microbial biofilms are essential components in the elimination of pollutants within biofilters, yet still little is known regarding the complex relationships between microbial community structure and biodegradation function within these engineered ecosystems. To further explore this relationship, 16S rDNA tag pyrosequencing was applied to samples taken at four time points from a styrene-degrading biofilter undergoing variable operating conditions. Changes in microbial structure were observed between different stages of biofilter operation, and the level of styrene concentration was revealed to be a critical factor affecting these changes. Bacterial genera Azoarcus and Pseudomonas were among the dominant classified genera in the biofilter. Canonical correspondence analysis (CCA) and correlation analysis revealed that the genera Brevundimonas, Hydrogenophaga, and Achromobacter may play important roles in styrene degradation under increasing styrene concentrations. No significant correlations (P > 0.05) could be detected between biofilter operational/functional parameters and biodiversity measurements, although biological heterogeneity within biofilms and/or technical variability within pyrosequencing may have considerably affected these results. Percentages of selected bacterial taxonomic groups detected by fluorescence in situ hybridization (FISH) were compared to results from pyrosequencing in order to assess the effectiveness and limitations of each method for identifying each microbial taxon. Comparison of results revealed discrepancies between the two methods in the detected percentages of numerous taxonomic groups. Biases and technical limitations of both FISH and pyrosequencing, such as the binding of FISH probes to non-target microbial groups and lack of classification of sequences for defined taxonomic groups from pyrosequencing, may partially explain some differences between the two methods.
Collapse
Affiliation(s)
- Kevin J Portune
- Research Group GI2AM, Department of Chemical Engineering, Universitat de València, Av. de la Universidad s/n, 46100, Burjassot, Spain,
| | | | | | | |
Collapse
|
34
|
Depth profiles of methane oxidation potentials and methanotrophic community in a lab-scale biocover. J Biotechnol 2014; 184:56-62. [DOI: 10.1016/j.jbiotec.2014.05.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 05/08/2014] [Accepted: 05/13/2014] [Indexed: 11/24/2022]
|
35
|
Tobermolite effects on methane removal activity and microbial community of a lab-scale soil biocover. ACTA ACUST UNITED AC 2014; 41:1119-29. [DOI: 10.1007/s10295-014-1448-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 04/17/2014] [Indexed: 10/25/2022]
Abstract
Abstract
Three identical lab-scale biocovers were packed with an engineered soil (BC 1), tobermolite only (BC 2), and a mixture of the soil and tobermolite (BC 3), and were operated at an inlet load of 338–400 g-CH4 m−2 d−1 and a space velocity of 0.12 h−1. The methane removal capacity was 293 ± 47 g-CH4 m−2 d−1 in steady state in the BC 3, which was significantly higher than those in the BC 1 and BC 2 (106 ± 24 and 114 ± 48 g-CH4 m−2 d−1, respectively). Quantitative PCR indicated that bacterial and methanotrophic densities (6.62–6.78 × 107 16S rDNA gene copy number g-dry sample−1 and 1.37–2.23 × 107 pmoA gene copy number g-dry sample−1 in the BC 1 and BC 3, respectively) were significantly higher than those in the BC 2. Ribosomal tag pyrosequencing showed that methanotrophs comprised approximately 60 % of the bacterial community in the BC 2 and BC 3, while they only comprised 43 % in the BC 1. The engineered soil favored the growth of total bacteria including methanotrophs, while the presence of tobermolite enhanced the relative abundance of methanotrophs, resulting in an improved habitat for methanotrophs as well as greater methane mitigation performance in the mixture. Moreover, a batch experiment indicated that the soil and tobermolite mixture could display a stable methane oxidation level over wide temperature (20–40 °C, at least 38 μmol g-dry sample−1 h−1) and pH (5–8, at least 61 μmol g-dry sample−1 h−1) ranges. In conclusion, the soil and tobermolite mixture is promising for methane mitigation.
Collapse
|
36
|
Two-stage biogas production by co-digesting molasses wastewater and sewage sludge. Bioprocess Biosyst Eng 2014; 37:2401-13. [DOI: 10.1007/s00449-014-1217-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 05/09/2014] [Indexed: 10/25/2022]
|
37
|
Kim TG, Kim SH, Cho KS. Effects of ultrasonic pretreatment on quantity and composition of bacterial DNA recovered from granular activated carbon used for drinking water treatment. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2014; 49:609-616. [PMID: 24410692 DOI: 10.1080/10934529.2014.859469] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Effects of ultrasonic pretreatment on bacterial DNA recovery from granular activated carbon (GAC) were investigated. GAC (Calgon F400), biologically activated, was sampled from an actual drinking water plant. Different ultrasonic energy densities (0-400 J·cm(-3)) were applied with agitation (250 rpm for 30 min), and recovered bacterial DNA was quantified using quantitative PCR. Energy density was linearly correlated with the concentration of carbon fines produced from GAC during ultrasonication. Ultrasonication alone had no effect on DNA recovery at ≤60 J·cm(-3), but a strongly adverse effect at >67 J·cm(-3) due to the produced carbon fines. Agitation along with ultrasonication strongly enhanced the bacterial DNA recovery when ≤40 J·cm(-3) was applied, although it did not affect the production of carbon fines. Ribosomal tag pyrosequencing was used to compare recovered bacterial communities (0, 20 and 30 J·cm(-3) with or without agitation). Ultrasonication allowed for obtaining a more diverse and richer bacterial community from GAC, compared with the control. Agitation did not show a positive effect on community organization (richness and diversity). Consistently, canonical correspondence analysis indicated that the energy density was associated with the relative abundances of particular bacterial members (P < 0.05), while agitation did not. Correspondence analysis revealed that the recovered bacterial communities were grouped according to the applied energy densities. In conclusion, ultrasonication and agitation influence the recovered DNA in quality and quantity, respectively, and carbon fines as a by-product by ultrasonication interfere with the DNA recovery.
Collapse
Affiliation(s)
- Tae Gwan Kim
- a Global Top5 Research Program, Department of Environmental Science and Engineering , Ewha Womans University , Daehyun-dong , Seodaemun-gu , Seoul , Republic of Korea
| | | | | |
Collapse
|
38
|
Kim TG, Jeong SY, Cho KS. Functional rigidity of a methane biofilter during the temporal microbial succession. Appl Microbiol Biotechnol 2013; 98:3275-86. [DOI: 10.1007/s00253-013-5371-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 10/28/2013] [Accepted: 10/30/2013] [Indexed: 11/29/2022]
|
39
|
Kim TG, Yun J, Hong SH, Cho KS. Effects of water temperature and backwashing on bacterial population and community in a biological activated carbon process at a water treatment plant. Appl Microbiol Biotechnol 2013; 98:1417-27. [DOI: 10.1007/s00253-013-5057-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 06/12/2013] [Accepted: 06/13/2013] [Indexed: 12/17/2022]
|
40
|
Effects of nonmethane volatile organic compounds on microbial community of methanotrophic biofilter. Appl Microbiol Biotechnol 2012; 97:6549-59. [DOI: 10.1007/s00253-012-4443-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Revised: 09/12/2012] [Accepted: 09/13/2012] [Indexed: 10/27/2022]
|