1
|
Chang SH, Lin CW, Cheng YS, Liu SH. Effects of biodegradation, biotoxicity and microbial community on biostimulation of sulfolane. CHEMOSPHERE 2023; 319:138047. [PMID: 36739988 DOI: 10.1016/j.chemosphere.2023.138047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/25/2023] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
To evaluate the effectiveness of biostimulation in remediating soil-free groundwater and groundwater with soil, experiments were conducted using soil and groundwater samples that were contaminated with sulfolane. The main objective was to characterize the differences in sulfolane removal efficiency and biotoxicity between in situ soil-free groundwater and groundwater with soil and different concentrations of dissolved oxygen (1 mg/L and 5 mg/L) and various nutrient salts (in situ and spiked). Optimizing the nutrient salt conditions improved the removal efficiency of sulfolane by 1.8-6.5 that under in situ nutrient salt conditions. Controlling the dissolved oxygen concentration enhanced the efficiency of removal of sulfolane by 1.5-4.5 times over that at the simulated in situ dissolved oxygen concentration, suggesting that the degradation of sulfolane by indigenous microorganisms requires nutrient salts more than it requires dissolved oxygen. Biotoxicity data showed that the luminescence inhibition of Aliivibrio fischeri by sulfolane was lower in the biostimulated samples than in the pre-treated samples. Biostimulation reduced the biotoxicity of the treated samples by 42-51%, revealing that it was effective in removing sulfolane and reducing biotoxicity. Microbial community analysis showed that the biostimulation did not change the dominant species in the original in situ community, and increased the proportion of sulfolane-degraders. The outcome of this study can be used to set parameters for the remediation of groundwater that is contaminated by sulfolane in oil refineries.
Collapse
Affiliation(s)
- Shao-Heng Chang
- Department of Safety, Health and Environmental Engineering, National Yunlin University of Science and Technology, Yunlin, 64002, Taiwan, ROC
| | - Chi-Wen Lin
- Department of Safety, Health and Environmental Engineering, National Yunlin University of Science and Technology, Yunlin, 64002, Taiwan, ROC; Graduate School of Engineering Science and Technology, National Yunlin University of Science and Technology, Yunlin, 64002, Taiwan, ROC
| | - Yu-Shen Cheng
- Department of Chemical and Materials Engineering, National Yunlin University of Science and Technology, Yunlin, 64002, Taiwan, ROC; Bachelor's Program in Industrial Technology, National Yunlin University of Science and Technology, Yunlin, 64002, Taiwan, ROC
| | - Shu-Hui Liu
- Department of Safety, Health and Environmental Engineering, National Yunlin University of Science and Technology, Yunlin, 64002, Taiwan, ROC.
| |
Collapse
|
2
|
Cui H, Chen P, He C, Jiang Z, Lan R, Yang J. Soil microbial community structure dynamics shape the rhizosphere priming effect patterns in the paddy soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159459. [PMID: 36252670 DOI: 10.1016/j.scitotenv.2022.159459] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/20/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
Microbial community structure plays a crucial part in soil organic carbon (SOC) decomposition and variation of rhizosphere priming effects (RPEs) during plant growth. However, it is still uncertain how bacterial community structure regulates RPEs in soil and how RPE patterns respond to plant growth. Therefore, we conducted an experiment to examine the RPE response to plant growth and nitrogen (N) addition (0 (N0), 150 (N150), and 300 (N300) kg N ha-1) using the 13C natural abundance method in a C3 soil (paddy soil) - C4 plant (maize, Zea mays L.) system; we then explored the underlying biotic mechanisms using 16S rRNA sequencing techniques. Networks were constructed to identify keystone taxa and to analyze the correlations between network functional modules of bacterial community and C decomposition. The results indicated that negative and positive RPEs occurred on Day 30 and Day 75 after maize planting, respectively. Bacterial community structure significantly changed and tended to shift from r-strategists toward K-strategists with changing labile C: N stoichiometry and soil pH during plant growth stages. The different network modules of bacterial community were aggregated in response to RPE pattern variation. Caulobacteraceae, Bacillus, and Chitinophagaceae were keystone taxa on Day 30, while Gemmatimonas, Candidatus Koribacter, and Xanthobacteraceae were keystone taxa on Day 75. Moreover, keystone taxa with different C utilization strategies were significantly different between the two growth stages and related closely to different RPE patterns. This study provides deeper insights into the network structure of bacterial communities corresponding to RPE patterns and emphasizes the significance of keystone taxa in RPE variation.
Collapse
Affiliation(s)
- Hao Cui
- Institute of Environment Pollution Control and Treatment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Pengfei Chen
- Institute of Environment Pollution Control and Treatment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Chao He
- Institute of Environment Pollution Control and Treatment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Zhenhui Jiang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Rui Lan
- Environmental Monitoring Station of Manasi, Bureau of Ecology and Environment, Hui Autonomous Prefecture of Changji, the Xinjiang Uygur Autonomous Region 832200, China
| | - Jingping Yang
- Institute of Environment Pollution Control and Treatment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China.
| |
Collapse
|
3
|
Silva AR, Alves MM, Pereira L. Progress and prospects of applying carbon-based materials (and nanomaterials) to accelerate anaerobic bioprocesses for the removal of micropollutants. Microb Biotechnol 2022; 15:1073-1100. [PMID: 34586713 PMCID: PMC8966012 DOI: 10.1111/1751-7915.13822] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 04/15/2021] [Accepted: 04/17/2021] [Indexed: 11/28/2022] Open
Abstract
Carbon-based materials (CBM), including activated carbon (AC), activated fibres (ACF), biochar (BC), nanotubes (CNT), carbon xenogels (CX) and graphene nanosheets (GNS), possess unique properties such as high surface area, sorption and catalytic characteristics, making them very versatile for many applications in environmental remediation. They are powerful redox mediators (RM) in anaerobic processes, accelerating the rates and extending the level of the reduction of pollutants and, consequently, affecting positively the global efficiency of their partial or total removal. The extraordinary conductive properties of CBM, and the possibility of tailoring their surface to address specific pollutants, make them promising as catalysts in the treatment of effluents containing diverse pollutants. CBM can be combined with magnetic nanoparticles (MNM) assembling catalytic and magnetic properties in a single composite (C@MNM), allowing their recovery and reuse after the treatment process. Furthermore, these composites have demonstrated extraordinary catalytic properties. Evaluation of the toxicological and environmental impact of direct and indirect exposure to nanomaterials is an important issue that must be considered when nanomaterials are applied. Though the chemical composition, size and physical characteristics may contribute to toxicological effects, the potential toxic impact of using CBM is not completely clear and is not always assessed. This review gives an overview of the current research on the application of CBM and C@MNM in bioremediation and on the possible environmental impact and toxicity.
Collapse
Affiliation(s)
- Ana Rita Silva
- CEB –Centre of Biological EngineeringUniversity of MinhoCampus de GualtarBraga4710‐057Portugal
| | - Maria Madalena Alves
- CEB –Centre of Biological EngineeringUniversity of MinhoCampus de GualtarBraga4710‐057Portugal
| | - Luciana Pereira
- CEB –Centre of Biological EngineeringUniversity of MinhoCampus de GualtarBraga4710‐057Portugal
| |
Collapse
|
4
|
Bodor A, Bounedjoum N, Feigl G, Duzs Á, Laczi K, Szilágyi Á, Rákhely G, Perei K. Exploitation of extracellular organic matter from Micrococcus luteus to enhance ex situ bioremediation of soils polluted with used lubricants. JOURNAL OF HAZARDOUS MATERIALS 2021; 417:125996. [PMID: 33992922 DOI: 10.1016/j.jhazmat.2021.125996] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 06/12/2023]
Abstract
Chronic pollution by used lubricant oils (ULOs) poses a serious challenge to the environment. Under stress conditions, microorganisms, including potential degraders, can enter a viable but non-culturable (VBNC) state, complicating the bioremediation of ULO-polluted areas. Resuscitation-promoting factors (Rpfs) can reverse this transition and/or enhance the biodegradation performance of both native and augmented strains. Here, Rpf-containing extracellular organic matter (EOM) from Micrococcus luteus was used to enhance the ex situ ULO removal in biostimulated and bioaugmented (with Rhodococcus qingshengii KAG C, R. erythropolis PR4) soils. ULO bioconversion, microbial activity, and CFUs were significantly higher in EOM-treated soils compared to corresponding control soils. After 60 days, the initial ULO concentration (52,500 mg kg-1) was reduced by 37% and 45% with EOM-supplemented biostimulation and bioaugmentation, respectively. Based on high-throughput 16S rRNA analysis, the enhancement was attributable both to the reactivation of EOM-responsive hydrocarbonoclastic bacterial genera (e.g., Pseudomonas, Comamonas, Stenotrophomonas, Gordonia) and to the long-term positive effect of EOM on the degradative efficacy of the introduced rhodococci. Ecotoxicological responses revealed that reduced ULO concentration did not correlate with decreased soil toxicity. Our findings provide an insight into the applicability of EOM in bioremediation and its effects on the soil microbial activity and community composition.
Collapse
Affiliation(s)
- Attila Bodor
- Department of Biotechnology, University of Szeged, Szeged, Hungary; Institute of Biophysics, Biological Research Centre, Eötvös Loránd Research Network, Szeged, Hungary
| | - Naila Bounedjoum
- Department of Biotechnology, University of Szeged, Szeged, Hungary
| | - Gábor Feigl
- Department of Plant Biology, University of Szeged, Szeged, Hungary
| | - Ágnes Duzs
- Department of Biotechnology, University of Szeged, Szeged, Hungary; Institute of Biophysics, Biological Research Centre, Eötvös Loránd Research Network, Szeged, Hungary
| | - Krisztián Laczi
- Department of Biotechnology, University of Szeged, Szeged, Hungary; Institute of Plant Biology, Biological Research Centre, Eötvös Loránd Research Network, Szeged, Hungary
| | - Árpád Szilágyi
- Department of Biotechnology, University of Szeged, Szeged, Hungary
| | - Gábor Rákhely
- Department of Biotechnology, University of Szeged, Szeged, Hungary; Institute of Biophysics, Biological Research Centre, Eötvös Loránd Research Network, Szeged, Hungary.
| | - Katalin Perei
- Department of Biotechnology, University of Szeged, Szeged, Hungary
| |
Collapse
|
5
|
Liu F, Wang Z, Wu B, Bjerg JT, Hu W, Guo X, Guo J, Nielsen LP, Qiu R, Xu M. Cable bacteria extend the impacts of elevated dissolved oxygen into anoxic sediments. THE ISME JOURNAL 2021; 15:1551-1563. [PMID: 33479492 PMCID: PMC8114917 DOI: 10.1038/s41396-020-00869-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 11/26/2020] [Accepted: 12/07/2020] [Indexed: 01/30/2023]
Abstract
Profound biogeochemical responses of anoxic sediments to the fluctuation of dissolved oxygen (DO) concentration in overlaying water are often observed, despite oxygen having a limited permeability in sediments. This contradiction is indicative of previously unrecognized mechanism that bridges the oxic and anoxic sediment layers. Using sediments from an urban river suffering from long-term polycyclic aromatic hydrocarbons (PAHs) contamination, we analyzed the physicochemical and microbial responses to artificially elevated DO (eDO) in the overlying water over 9 weeks of incubation. Significant changes in key environmental parameters and microbial diversity were detected over the 0-6 cm sediment depth, along with accelerated degradation of PAHs, despite that eDO only increased the porewater DO in the millimeter subfacial layer. The dynamics of physicochemical and microbial properties coincided well with significantly increased presence of centimeter-long sulfide-oxidizing cable bacteria filaments under eDO, and were predominantly driven by cable bacteria metabolic activities. Phylogenetic ecological network analyses further revealed that eDO reinforced cable bacteria associated interspecific interactions with functional microorganisms such as sulfate reducers, PAHs degraders, and electroactive microbes, suggesting enhanced microbial syntrophy taking advantage of cable bacteria metabolism for the regeneration of SO42- and long-distance electron transfer. Together, our results suggest cable bacteria may mediate the impacts of eDO in anaerobic sediments by altering sediment physiochemical properties and by reinforcing community interactions. Our findings highlight the ecological importance of cable bacteria in sediments.
Collapse
Affiliation(s)
- Feifei Liu
- grid.464309.c0000 0004 6431 5677Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070 China
| | - Zhenyu Wang
- grid.464309.c0000 0004 6431 5677Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070 China ,grid.12981.330000 0001 2360 039XSchool of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510006 China
| | - Bo Wu
- grid.12981.330000 0001 2360 039XSchool of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510006 China
| | - Jesper T. Bjerg
- grid.7048.b0000 0001 1956 2722Center for Electromicrobiology, Department of Biology, Aarhus University, DK-8000 Aarhus, Denmark
| | - Wenzhe Hu
- grid.464309.c0000 0004 6431 5677Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070 China
| | - Xue Guo
- grid.216417.70000 0001 0379 7164Key Laboratory of Biometallurgy of Ministry of Education, School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083 China ,grid.12527.330000 0001 0662 3178State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084 China
| | - Jun Guo
- grid.464309.c0000 0004 6431 5677Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070 China
| | - Lars Peter Nielsen
- grid.7048.b0000 0001 1956 2722Center for Electromicrobiology, Department of Biology, Aarhus University, DK-8000 Aarhus, Denmark
| | - Rongliang Qiu
- grid.12981.330000 0001 2360 039XSchool of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510006 China ,grid.12981.330000 0001 2360 039XGuangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-Sen University, Guangzhou, 510006 China
| | - Meiying Xu
- grid.464309.c0000 0004 6431 5677Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070 China
| |
Collapse
|
6
|
Bonaglia S, Broman E, Brindefalk B, Hedlund E, Hjorth T, Rolff C, Nascimento FJA, Udekwu K, Gunnarsson JS. Activated carbon stimulates microbial diversity and PAH biodegradation under anaerobic conditions in oil-polluted sediments. CHEMOSPHERE 2020; 248:126023. [PMID: 32007777 DOI: 10.1016/j.chemosphere.2020.126023] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 01/20/2020] [Accepted: 01/23/2020] [Indexed: 06/10/2023]
Abstract
Biodegradation by microorganisms is a useful tool that helps alleviating hydrocarbon pollution in nature. Microbes are more efficient in degradation under aerobic than anaerobic conditions, but the majority of sediment by volume is generally anoxic. Incubation experiments were conducted to study the biodegradation potential of naphthalene-a common polycyclic aromatic hydrocarbon (PAH)-and the diversity of microbial communities in presence/absence of activated carbon (AC) under aerobic/anaerobic conditions. Radio-respirometry experiments with endogenous microorganisms indicated that degradation of naphthalene was strongly stimulated (96%) by the AC addition under anaerobic conditions. In aerobic conditions, however, AC had no effects on naphthalene biodegradation. Bioaugmentation tests with cultured microbial populations grown on naphthalene showed that AC further stimulated (92%) naphthalene degradation in anoxia. Analysis of the 16S rRNA gene sequences implied that sediment amendment with AC increased microbial community diversity and changed community structure. Moreover, the relative abundance of Geobacter, Thiobacillus, Sulfuricurvum, and methanogenic archaea increased sharply after amendment with AC under anaerobic conditions. These results may be explained by the fact that AC particles promoted direct interspecies electron transfer (DIET) between microorganisms involved in PAH degradation pathways. We suggest that important ecosystem functions mediated by microbes-such as hydrocarbon degradation-can be induced and that AC enrichment strategies can be exploited for facilitating bioremediation of anoxic oil-contaminated sediments and soils.
Collapse
Affiliation(s)
- Stefano Bonaglia
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden; Department of Biology, University of Southern Denmark, Odense, Denmark.
| | - Elias Broman
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden; Baltic Sea Centre, Stockholm University, Stockholm, Sweden
| | - Björn Brindefalk
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Sweden
| | - Erika Hedlund
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
| | | | - Carl Rolff
- Baltic Sea Centre, Stockholm University, Stockholm, Sweden
| | - Francisco J A Nascimento
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden; Baltic Sea Centre, Stockholm University, Stockholm, Sweden
| | - Klas Udekwu
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Sweden.
| | - Jonas S Gunnarsson
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
| |
Collapse
|
7
|
Rodgers K, McLellan I, Peshkur T, Williams R, Tonner R, Knapp CW, Henriquez FL, Hursthouse AS. The legacy of industrial pollution in estuarine sediments: spatial and temporal variability implications for ecosystem stress. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2020; 42:1057-1068. [PMID: 31119572 DOI: 10.1007/s10311-018-0791-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 04/30/2019] [Indexed: 05/28/2023]
Abstract
The direct impacts of anthropogenic pollution are widely known public and environmental health concerns, and details on the indirect impact of these are starting to emerge, for example affecting the environmental microbiome. Anthropogenic activities throughout history with associated pollution burdens are notable contributors. Focusing on the historically heavily industrialised River Clyde, Scotland, we investigate spatial and temporal contributions to stressful/hostile environments using a geochemical framework, e.g. pH, EC, total organic carbon and potentially toxic elements: As, Co, Cr, Cu, Ni, Pb and Zn and enrichment indicators. With regular breaches of the sediment quality standards in the estuarine system we focused on PTE correlations instead. Multivariate statistical analysis (principle component analysis) identifies two dominant components, PC1: As, Cr, Cu, Pb and Zn, as well as PC2: Ni, Co and total organic carbon. Our assessment confirms hot spots in the Clyde Estuary indicative of localised inputs. In addition, there are sites with high variability indicative of excessive mixing. We demonstrate that industrialised areas are dynamic environmental sites dependant on historical anthropogenic activity with short-scale variation. This work supports the development of 'contamination' mapping to enable an assessment of the impact of historical anthropogenic pollution, identifying specific 'stressors' that can impact the microbiome, neglecting in estuarine recovery dynamics and potentially supporting the emergence of antimicrobial resistance in the environment.
Collapse
Affiliation(s)
- Kiri Rodgers
- School of Health and Life Sciences, University of the West of Scotland, Paisley, PA1 2BE, UK.
- School of Computing, Engineering and Physical Sciences, University of the West of Scotland, Paisley, PA1 2BE, UK.
| | - Iain McLellan
- School of Computing, Engineering and Physical Sciences, University of the West of Scotland, Paisley, PA1 2BE, UK
| | - Tatyana Peshkur
- Department of Civil and Environmental Engineering, Centre for Water, Environmental, Sustainability and Public Health, University of Strathclyde, Glasgow, G1 1XQ, UK
| | - Roderick Williams
- School of Health and Life Sciences, University of the West of Scotland, Paisley, PA1 2BE, UK
| | - Rebecca Tonner
- Department of Civil and Environmental Engineering, Centre for Water, Environmental, Sustainability and Public Health, University of Strathclyde, Glasgow, G1 1XQ, UK
| | - Charles W Knapp
- Department of Civil and Environmental Engineering, Centre for Water, Environmental, Sustainability and Public Health, University of Strathclyde, Glasgow, G1 1XQ, UK
| | - Fiona L Henriquez
- School of Health and Life Sciences, University of the West of Scotland, Paisley, PA1 2BE, UK
| | - Andrew S Hursthouse
- School of Computing, Engineering and Physical Sciences, University of the West of Scotland, Paisley, PA1 2BE, UK
| |
Collapse
|
8
|
Xu W, Zhao H, Cao H, Zhang Y, Sheng Y, Li T, Zhou S, Li H. New insights of enhanced anaerobic degradation of refractory pollutants in coking wastewater: Role of zero-valent iron in metagenomic functions. BIORESOURCE TECHNOLOGY 2020; 300:122667. [PMID: 31901513 DOI: 10.1016/j.biortech.2019.122667] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 12/20/2019] [Accepted: 12/22/2019] [Indexed: 06/10/2023]
Abstract
Coking wastewater (CWW) has long been a serious challenge for anaerobic treatment due to its high concentrations of phenolics and nitrogen-containing heterocyclic compounds (NHCs). Herein, we proposed and validated a new strategy of using zero-valent iron (ZVI) to strengthen the anaerobic treatment of CWW. Results showed that COD removal efficiencies was increased by 9.5-13.7% with the assistance of ZVI. GC-MS analysis indicated that the removal of phenolics and NHCs was improved, and the intermediate 2(1H)-Quinolinone of quinoline degradation was further removed by ZVI addition. High-throughput sequencing showed that phenolics and NHCs degraders, such as Levilinea and Sedimentibacter were significantly enriched, and the predicted gene abundance of xenobiotic degradation and its downstream metabolic pathways was also increased by ZVI. Network and redundancy analysis indicated that the decreased oxidation-reduction potential (ORP) by ZVI was the main driver for microbial community succession. This study provided an alternative strategy for strengthening CWW anaerobic treatment.
Collapse
Affiliation(s)
- Weichao Xu
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing 100083, PR China; Beijing Engineering Research Center of Process Pollution Control, Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190, PR China
| | - He Zhao
- Beijing Engineering Research Center of Process Pollution Control, Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Hongbin Cao
- Beijing Engineering Research Center of Process Pollution Control, Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Yuxiu Zhang
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing 100083, PR China.
| | - Yuxing Sheng
- Beijing Engineering Research Center of Process Pollution Control, Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Tinggang Li
- Beijing Engineering Research Center of Process Pollution Control, Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Siyuan Zhou
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing 100083, PR China
| | - Haibo Li
- Beijing Engineering Research Center of Process Pollution Control, Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190, PR China
| |
Collapse
|
9
|
Lopez-Echartea E, Strejcek M, Mukherjee S, Uhlik O, Yrjälä K. Bacterial succession in oil-contaminated soil under phytoremediation with poplars. CHEMOSPHERE 2020; 243:125242. [PMID: 31995861 DOI: 10.1016/j.chemosphere.2019.125242] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 10/13/2019] [Accepted: 10/26/2019] [Indexed: 05/18/2023]
Abstract
Petroleum hydrocarbons (PHCs) continue to be among the most common pollutants in soil worldwide. Phytoremediation has become a sustainable way of dealing with PHC contamination. We conducted the off-site phytoremediation of PHC-polluted soil from an oil tanker truck accident, where poplars were used for the phytoremediation of the oil-polluted soil in a boreal climate during a seven-year treatment. The succession of bacterial communities over the entire phytoremediation process was monitored using microbial ecological tools relying on high-throughput 16S rRNA gene sequencing. Upon the successful depletion of PHCs from soil, endophytic communities were analyzed in order to assess the complete plant-associated microbiome after the ecological recovery. The rhizosphere-associated soil exhibited different bacterial dynamics than unplanted soil, but both soils experienced succession of bacteria over time, with diversity being negatively correlated with PHC concentration. In the relatively short growing season in North Europe, seasonal variations in environmental conditions were identified that contributed to the dynamics of bacterial communities. Overall, our study proved that phytoremediation using poplar trees can be used to assist in the removal of PHCs from soils in boreal climate conditions and provides new insight into the succession patterns of bacterial communities associated with these plants.
Collapse
Affiliation(s)
- Eglantina Lopez-Echartea
- University of Chemistry and Technology, Prague, Faculty of Food and Biochemical Technology, Department of Biochemistry and Microbiology, Prague, Czech Republic
| | - Michal Strejcek
- University of Chemistry and Technology, Prague, Faculty of Food and Biochemical Technology, Department of Biochemistry and Microbiology, Prague, Czech Republic
| | - Shinjini Mukherjee
- KU Leuven, Laboratory of Aquatic Ecology, Evolution and Conservation, Leuven, Belgium
| | - Ondrej Uhlik
- University of Chemistry and Technology, Prague, Faculty of Food and Biochemical Technology, Department of Biochemistry and Microbiology, Prague, Czech Republic
| | - Kim Yrjälä
- University of Helsinki, Department of Forest Sciences, Helsinki, Finland; Zhejiang A&F University, State Key Laboratory of Subtropical Silviculture, Zhejiang, China.
| |
Collapse
|
10
|
pahE, a Functional Marker Gene for Polycyclic Aromatic Hydrocarbon-Degrading Bacteria. Appl Environ Microbiol 2019; 85:AEM.02399-18. [PMID: 30478232 DOI: 10.1128/aem.02399-18] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 11/09/2018] [Indexed: 11/20/2022] Open
Abstract
The characterization of native polycyclic aromatic hydrocarbon (PAH)-degrading bacteria is significant for understanding the PAH degradation process in the natural environment and developing effective remediation technologies. Most previous investigations of PAH-degrading bacteria in environmental samples employ pahAc, which encodes the α-subunit of PAH ring-hydroxylating dioxygenase, as a functional marker gene. However, the poor phylogenetic resolution and nonspecificity of pahAc result in a misestimation of PAH-degrading bacteria. Here, we propose a PAH hydratase-aldolase-encoding gene, pahE, as a superior biomarker for PAH-degrading bacteria. Comparative phylogenetic analysis of the key enzymes involved in the upper pathway of PAH degradation indicated that pahE evolved dependently from a common ancestor. A phylogenetic tree constructed based on PahE is largely congruent with PahAc-based phylogenies, except for the dispersion of several clades of other non-PAH-degrading aromatic hydrocarbon dioxygenases present in the PahAc tree. Analysis of pure strains by PCR confirmed that pahE can specifically distinguish PAH-degrading bacteria, while pahAc cannot. Illumina sequencing of pahE and pahAc amplicons showed more genotypes and higher specificity and resolution for pahE Novel reads were also discovered among the pahE amplicons, suggesting the presence of novel PAH-degrading populations. These results suggest that pahE is a more powerful biomarker for exploring the ecological role and degradation potential of PAH-degrading bacteria in ecosystems, which is significant to the bioremediation of PAH pollution and environmental microbial ecology.IMPORTANCE PAH contamination has become a worldwide environmental issue because of the potential toxic effects on natural ecosystems and human health. Biotransformation and biodegradation are considered the main natural elimination forms of PAHs from contaminated sites. Therefore, the knowledge of the degradation potential of the microbial community in contaminated sites is crucial for PAH pollution bioremediation. However, the nonspecificity of pahAc as a functional marker of PAH-degrading bacteria has resulted neither in a reliable prediction of PAH degradation potential nor an accurate assessment of degradation. Here, we introduced pahE encoding the PAH hydratase-aldolase as a new and better functional marker gene of PAH-degrading bacteria. This study provides a powerful molecular tool to more effectively explore the ecological role and degradation potential of PAH-degrading bacteria in ecosystems, which is significant to the bioremediation of PAH pollution.
Collapse
|
11
|
Siles JA, Margesin R. Insights into microbial communities mediating the bioremediation of hydrocarbon-contaminated soil from an Alpine former military site. Appl Microbiol Biotechnol 2018; 102:4409-4421. [PMID: 29594357 PMCID: PMC5932094 DOI: 10.1007/s00253-018-8932-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 03/09/2018] [Accepted: 03/10/2018] [Indexed: 11/26/2022]
Abstract
The study of microbial communities involved in soil bioremediation is important to identify the specific microbial characteristics that determine improved decontamination rates. Here, we characterized bacterial, archaeal, and fungal communities in terms of (i) abundance (using quantitative PCR) and (ii) taxonomic diversity and structure (using Illumina amplicon sequencing) during the bioremediation of long-term hydrocarbon-contaminated soil from an Alpine former military site during 15 weeks comparing biostimulation (inorganic NPK fertilization) vs. natural attenuation and considering the effect of temperature (10 vs. 20 °C). Although a considerable amount of total petroleum hydrocarbon (TPH) loss could be attributed to natural attenuation, significantly higher TPH removal rates were obtained with NPK fertilization and at increased temperature, which were related to the stimulation of the activities of indigenous soil microorganisms. Changing structures of bacterial and fungal communities significantly explained shifts in TPH contents in both natural attenuation and biostimulation treatments at 10 and 20 °C. However, archaeal communities, in general, and changing abundances and diversities in bacterial and fungal communities did not play a decisive role on the effectiveness of soil bioremediation. Gammaproteobacteria and Bacteroidia classes, within bacterial community, and undescribed/novel groups, within fungal community, proved to be actively involved in TPH removal in natural attenuation and biostimulation at both temperatures.
Collapse
Affiliation(s)
- José A Siles
- Institute of Microbiology, University of Innsbruck, Technikerstrasse 25, A-6020, Innsbruck, Austria
| | - Rosa Margesin
- Institute of Microbiology, University of Innsbruck, Technikerstrasse 25, A-6020, Innsbruck, Austria.
| |
Collapse
|
12
|
Microbial diversity and activity of an aged soil contaminated by polycyclic aromatic hydrocarbons. Bioprocess Biosyst Eng 2018; 41:871-883. [PMID: 29546466 DOI: 10.1007/s00449-018-1921-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Accepted: 03/08/2018] [Indexed: 01/27/2023]
Abstract
In-depth understanding of indigenous microbial assemblages resulted from aged contamination by polycyclic aromatic hydrocarbons (PAHs) is of vital importance in successful in situ bioremediation treatments. Soil samples of three boreholes were collected at 12 different vertical depths. Overall, the dominating three-ring PAHs (76.2%) were closely related to distribution patterns of soil dehydrogenase activity, microbial cell numbers, and Shannon biodiversity index (H') of indigenous microorganisms. High-molecular-weight PAHs tend to yield more diverse communities. Results from 16S rRNA analysis indicated that possible functional groups of PAH degradation include three species in Bacillus cereus group, Bacillus sp. SA Ant14, Nocardioides sp., and Ralstonia pickettii. Principal component analysis indicates significant positive correlations between the content of high-molecular-weight PAHs and the distribution of Bacillus weihenstephanensis KBAB4 and Nocardioides sp. The species B. cereus 03BB102, Bacillus thuringiensis, B. weihenstephanensis KBAB4, and Nocardioides sp. were recognized as main PAH degraders and thus recommended to be utilized in further bioremediation applications. The vertical distribution characteristics of PAHs in soil profiles (1-12 m) and the internal relationship between the transport mechanisms of PAHs and the response of soil biological properties help further understand the microbial diversity and activity in an aged site.
Collapse
|
13
|
Quan Y, Wu H, Yin Z, Fang Y, Yin C. Effect of static magnetic field on trichloroethylene removal in a biotrickling filter. BIORESOURCE TECHNOLOGY 2017; 239:7-16. [PMID: 28500890 DOI: 10.1016/j.biortech.2017.04.121] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 04/25/2017] [Accepted: 04/28/2017] [Indexed: 06/07/2023]
Abstract
A laboratory-scale biotrickling filter combined with a magnetic field (MF-BTF) and a single BTF (S-BTF) were set up to treat trichloroethylene (TCE) gas. The influences of phenol alone and NaAc-phenol as co-substrates and different MF intensities were investigated. At low MF intensity, MF-BTF displayed better performance with 0.20g/L of phenol, 53.6-337.1mg/m3 of TCE, and empty bed residence times of 202.5s. The performances followed the order MF-BTF (60.0mT)>MF-BTF (30.0mT)>S-BTF (0mT)>MF-BTF (130.0mT), and the removal efficiencies (REs) and maximum elimination capacities (ECs) corresponded to: 92.2%-45.5%, 2656.8mg/m3h; 89.8%-37.2%, 2169.1mg/m3h; 89.8%-29.8%, 1967.7mg/m3h; 76.0%-20.8%, 1697.1mg/m3h, respectively. High-throughput sequencing indicated that the bacterial diversity was lower, whereas the relative abundances of Acinetobacter, Chryseobacterium, and Acidovorax were higher in MF-BTF. Results confirmed that a proper MF could improve TCE removal performance in BTF.
Collapse
Affiliation(s)
- Yue Quan
- Key Laboratory of Natural Resources of Changbai Mountain and Functional Molecules, Ministry of Education, Yanbian University, Yanji 133002, China; Department of Environmental Science, Agricultural College, Yanbian University, Yanji 133002, China
| | - Hao Wu
- Key Laboratory of Natural Resources of Changbai Mountain and Functional Molecules, Ministry of Education, Yanbian University, Yanji 133002, China
| | - Zhenhao Yin
- Analytical and Testing Center, Yanbian University, Yanji 133002, China
| | - Yingyu Fang
- Analytical and Testing Center, Yanbian University, Yanji 133002, China
| | - Chengri Yin
- Key Laboratory of Natural Resources of Changbai Mountain and Functional Molecules, Ministry of Education, Yanbian University, Yanji 133002, China.
| |
Collapse
|
14
|
Spatial Variability of PAHs and Microbial Community Structure in Surrounding Surficial Soil of Coal-Fired Power Plants in Xuzhou, China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2016; 13:ijerph13090878. [PMID: 27598188 PMCID: PMC5036711 DOI: 10.3390/ijerph13090878] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 08/24/2016] [Accepted: 08/25/2016] [Indexed: 11/25/2022]
Abstract
This work investigated the spatial profile and source analysis of polycyclic aromatic hydrocarbons (PAHs) in soil that surrounds coal-fired power plants in Xuzhou, China. High-throughput sequencing was employed to investigate the composition and structure of soil bacterial communities. The total concentration of 15 PAHs in the surface soils ranged from 164.87 to 3494.81 μg/kg dry weight. The spatial profile of PAHs was site-specific with a concentration of 1400.09–3494.81 μg/kg in Yaozhuang. Based on the qualitative and principal component analysis results, coal burning and vehicle emission were found to be the main sources of PAHs in the surface soils. The phylogenetic analysis revealed differences in bacterial community compositions among different sampling sites. Proteobacteria was the most abundant phylum, while Acidobacteria was the second most abundant. The orders of Campylobacterales, Desulfobacterales and Hydrogenophilales had the most significant differences in relative abundance among the sampling sites. The redundancy analysis revealed that the differences in bacterial communities could be explained by the organic matter content. They could also be explicated by the acenaphthene concentration with longer arrows. Furthermore, OTUs of Proteobacteria phylum plotted around particular samples were confirmed to have a different composition of Proteobacteria phylum among the sample sites. Evaluating the relationship between soil PAHs concentration and bacterial community composition may provide useful information for the remediation of PAH contaminated sites.
Collapse
|
15
|
Chen WY, Wu JH, Lin SC, Chang JE. Bioremediation of polychlorinated-p-dioxins/dibenzofurans contaminated soil using simulated compost-amended landfill reactors under hypoxic conditions. JOURNAL OF HAZARDOUS MATERIALS 2016; 312:159-168. [PMID: 27037469 DOI: 10.1016/j.jhazmat.2016.03.060] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Revised: 03/08/2016] [Accepted: 03/22/2016] [Indexed: 06/05/2023]
Abstract
Compost-amended landfill reactors were developed to reduce polychlorinated-p-dioxins and dibenzofurans (PCDD/Fs) in contaminated soils. By periodically recirculating leachate and suppling oxygen, the online monitoring of the oxidation reduction potential confirmed that the reactors were maintained under hypoxic conditions, with redox levels constantly fluctuating between -400 and +80mV. The subsequent reactor operation demonstrated that PCDD/F degradation in soil could be facilitated by amending compost originating from the cow manure and waste sludge and that the degradation might be affected by the availability of easily degradable substrates in the soil and compost. The pyrosequencing analysis of V4/V5 regions of bacterial 16S rRNA genes suggested that species richness of the soil microbial community was increased by a factor of 1.37-1.61. Although the bacterial community varied with the compost origin and changed markedly during reactor operation, it was dominated by Alphaproteobacteria, Gammaproteobacteria, Actinobacteria, and Firmicutes. The aerotolerant anaerobic Sedimentibacter and Propionibacterium spp., and the uncultured Chloroflexi group could be temporarily induced to a high abundance by amending the cow manure compost; the bacterial growths were associated with the rapid degradation of PCDD/Fs. Overall, the novel bioremediation method for PCDD/F-contaminated soils using hypoxic conditions was effective, simple, energy saving, and thus easily practicable.
Collapse
Affiliation(s)
- Wei-Yu Chen
- Department of Environmental Engineering, National Cheng Kung University, No.1, University Road, East District, Tainan City 701, Taiwan, ROC
| | - Jer-Horng Wu
- Department of Environmental Engineering, National Cheng Kung University, No.1, University Road, East District, Tainan City 701, Taiwan, ROC.
| | - Shih-Chiang Lin
- Department of Environmental Engineering, National Cheng Kung University, No.1, University Road, East District, Tainan City 701, Taiwan, ROC
| | - Juu-En Chang
- Department of Environmental Engineering, National Cheng Kung University, No.1, University Road, East District, Tainan City 701, Taiwan, ROC
| |
Collapse
|
16
|
Wang L, Li F, Zhan Y, Zhu L. Shifts in microbial community structure during in situ surfactant-enhanced bioremediation of polycyclic aromatic hydrocarbon-contaminated soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:14451-61. [PMID: 27068902 DOI: 10.1007/s11356-016-6630-4] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 04/04/2016] [Indexed: 05/22/2023]
Abstract
This study aims to reveal the microbial mechanism of in situ surfactant-enhanced bioremediation (SEBR). Various concentrations of rhamnolipids, Tween 80, and sodium dodecyl benzenesulfonate (SDBS) were separately sprayed onto soils contaminated with polycyclic aromatic hydrocarbons (PAHs) for years. Within 90 days, the highest level of degradation (95 %) was observed in the soil treated with rhamnolipids (10 mg/kg), followed by 92 % degradation with Tween 80 (50 mg/kg) and 90 % degradation with SDBS (50 mg/kg). The results of the microbial phospholipid fatty acids (PLFAs) suggest that bacteria dominated the enhanced PAH biodegradation (94 % of the maximum contribution). The shift of bacterial community structure during the surfactant treatment was analyzed by using the 16S rRNA gene high-throughput sequencing. In the presence of surfactants, the number of the operational taxonomic units (OTUs) associated with Bacillus, Pseudomonas, and Sphingomonas increased from 2-3 to 15-30 % at the end of the experiment (two to three times of control). Gene prediction with phylogenetic investigation of communities by reconstruction of unobserved states (PICRUSt) shows that the PAH-degrading genes, such as 1-hydroxy-2-naphthoate dioxygenase and PAH dioxygenase large subunit, significantly increased after the surfactant applications (p < 0.05). The findings of this study provide insights into the surfactant-induced shifts of microbial community, as well as critical factors for efficient bioremediation.
Collapse
Affiliation(s)
- Lingwen Wang
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang, 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process Control, Hangzhou, 310058, China
| | - Feng Li
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang, 310058, China
- Department of Environmental Science and Engineering, Xiangtan University, Xiangtan, 411105, China
| | - Yu Zhan
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang, 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process Control, Hangzhou, 310058, China
| | - Lizhong Zhu
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
- Zhejiang Provincial Key Laboratory of Organic Pollution Process Control, Hangzhou, 310058, China.
| |
Collapse
|
17
|
Bourceret A, Cébron A, Tisserant E, Poupin P, Bauda P, Beguiristain T, Leyval C. The Bacterial and Fungal Diversity of an Aged PAH- and Heavy Metal-Contaminated Soil is Affected by Plant Cover and Edaphic Parameters. MICROBIAL ECOLOGY 2016; 71:711-724. [PMID: 26440298 DOI: 10.1007/s00248-015-0682-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 09/22/2015] [Indexed: 06/05/2023]
Abstract
Industrial wasteland soils with aged PAH and heavy metal contaminations are environments where pollutant toxicity has been maintained for decades. Although the communities may be well adapted to the presence of stressors, knowledge about microbial diversity in such soils is scarce. Soil microbial community dynamics can be driven by the presence of plants, but the impact of plant development on selection or diversification of microorganisms in these soils has not been established yet. To test these hypotheses, aged-contaminated soil samples from a field trial were collected. Plots planted with alfalfa were compared to bare soil plots, and bacterial and fungal diversity and abundance were assessed after 2 and 6 years. Using pyrosequencing of 16S rRNA gene and ITS amplicons, we showed that the bacterial community was dominated by Proteobacteria, Actinobacteria, and Bacteroidetes and was characterized by low Acidobacteria abundance, while the fungal community was mainly represented by members of the Ascomycota. The short-term toxic impact of pollutants usually reduces the microbial diversity, yet in our samples bacterial and fungal species richness and diversity was high suggesting that the community structure and diversity adapted to the contaminated soil over decades. The presence of plants induced higher bacterial and fungal diversity than in bare soil. It also increased the relative abundance of bacterial members of the Actinomycetales, Rhizobiales, and Xanthomonadales orders and of most fungal orders. Multivariate analysis showed correlations between microbial community structure and heavy metal and PAH concentrations over time, but also with edaphic parameters (C/N, pH, phosphorus, and nitrogen concentrations).
Collapse
Affiliation(s)
- Amélia Bourceret
- CNRS, LIEC UMR7360, Faculté des Sciences et Technologies, BP70239, 54506, Vandoeuvre-lès-Nancy, France
- Université de Lorraine, LIEC UMR7360, Faculté des Sciences et Technologies, BP 70239, 54506, Vandoeuvre-lès-Nancy, France
| | - Aurélie Cébron
- CNRS, LIEC UMR7360, Faculté des Sciences et Technologies, BP70239, 54506, Vandoeuvre-lès-Nancy, France.
- Université de Lorraine, LIEC UMR7360, Faculté des Sciences et Technologies, BP 70239, 54506, Vandoeuvre-lès-Nancy, France.
| | - Emilie Tisserant
- INRA, IAM UMR1136, Centre INRA de Nancy, 54280, Champenoux, France
| | - Pascal Poupin
- Université de Lorraine, LIEC UMR7360, Campus Bridoux-Rue du Général Delestraint, 57070, Metz Borny, France
- CNRS, LIEC UMR7360, Campus Bridoux-Rue du Général Delestraint, 57070, Metz Borny, France
| | - Pascale Bauda
- Université de Lorraine, LIEC UMR7360, Campus Bridoux-Rue du Général Delestraint, 57070, Metz Borny, France
- CNRS, LIEC UMR7360, Campus Bridoux-Rue du Général Delestraint, 57070, Metz Borny, France
| | - Thierry Beguiristain
- CNRS, LIEC UMR7360, Faculté des Sciences et Technologies, BP70239, 54506, Vandoeuvre-lès-Nancy, France
- Université de Lorraine, LIEC UMR7360, Faculté des Sciences et Technologies, BP 70239, 54506, Vandoeuvre-lès-Nancy, France
| | - Corinne Leyval
- CNRS, LIEC UMR7360, Faculté des Sciences et Technologies, BP70239, 54506, Vandoeuvre-lès-Nancy, France
- Université de Lorraine, LIEC UMR7360, Faculté des Sciences et Technologies, BP 70239, 54506, Vandoeuvre-lès-Nancy, France
| |
Collapse
|
18
|
Vogt C, Lueders T, Richnow HH, Krüger M, von Bergen M, Seifert J. Stable Isotope Probing Approaches to Study Anaerobic Hydrocarbon Degradation and Degraders. J Mol Microbiol Biotechnol 2016; 26:195-210. [DOI: 10.1159/000440806] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Stable isotope probing (SIP) techniques have become state-of-the-art in microbial ecology over the last 10 years, allowing for the targeted detection and identification of organisms, metabolic pathways and elemental fluxes active in specific processes within complex microbial communities. For studying anaerobic hydrocarbon-degrading microbial communities, four stable isotope techniques have been used so far: DNA/RNA-SIP, PLFA (phospholipid-derived fatty acids)-SIP, protein-SIP, and single-cell-SIP by nanoSIMS (nanoscale secondary ion mass spectrometry) or confocal Raman microscopy. DNA/RNA-SIP techniques are most frequently applied due to their most meaningful phylogenetic resolution. Especially using <sup>13</sup>C-labeled benzene and toluene as model substrates, many new hydrocarbon degraders have been identified by SIP under various electron acceptor conditions. This has extended the current perspective of the true diversity of anaerobic hydrocarbon degraders relevant in the environment. Syntrophic hydrocarbon degradation was found to be a common mechanism for various electron acceptors. Fundamental concepts and recent advances in SIP are reflected here. A discussion is presented concerning how these techniques generate direct insights into intrinsic hydrocarbon degrader populations in environmental systems and how useful they are for more integrated approaches in the monitoring of contaminated sites and for bioremediation.
Collapse
|
19
|
Al-Kindi S, Abed RMM. Effect of Biostimulation Using Sewage Sludge, Soybean Meal, and Wheat Straw on Oil Degradation and Bacterial Community Composition in a Contaminated Desert Soil. Front Microbiol 2016; 7:240. [PMID: 26973618 PMCID: PMC4777724 DOI: 10.3389/fmicb.2016.00240] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2015] [Accepted: 02/15/2016] [Indexed: 02/01/2023] Open
Abstract
Waste materials have a strong potential in the bioremediation of oil-contaminated sites, because of their richness in nutrients and their economical feasibility. We used sewage sludge, soybean meal, and wheat straw to biostimulate oil degradation in a heavily contaminated desert soil. While oil degradation was assessed by following the produced CO2 and by using gas chromatography–mass spectrometry (GC–MS), shifts in bacterial community composition were monitored using illumina MiSeq. The addition of sewage sludge and wheat straw to the desert soil stimulated the respiration activities to reach 3.2–3.4 times higher than in the untreated soil, whereas the addition of soybean meal resulted in an insignificant change in the produced CO2, given the high respiration activities of the soybean meal alone. GC–MS analysis revealed that the addition of sewage sludge and wheat straw resulted in 1.7–1.8 fold increase in the degraded C14 to C30 alkanes, compared to only 1.3 fold increase in the case of soybean meal addition. The degradation of ≥90% of the C14 to C30 alkanes was measured in the soils treated with sewage sludge and wheat straw. MiSeq sequencing revealed that the majority (76.5–86.4% of total sequences) of acquired sequences from the untreated soil belonged to Alphaproteobacteria, Gammaproteobacteria, and Firmicutes. Multivariate analysis of operational taxonomic units placed the bacterial communities of the soils after the treatments in separate clusters (ANOSIM R = 0.66, P = 0.0001). The most remarkable shift in bacterial communities was in the wheat straw treatment, where 95–98% of the total sequences were affiliated to Bacilli. We conclude that sewage sludge and wheat straw are useful biostimulating agents for the cleanup of oil-contaminated desert soils.
Collapse
Affiliation(s)
- Sumaiya Al-Kindi
- Biology Department, College of Science, Sultan Qaboos University Muscat, Oman
| | - Raeid M M Abed
- Biology Department, College of Science, Sultan Qaboos University Muscat, Oman
| |
Collapse
|
20
|
Covino S, Fabianová T, Křesinová Z, Čvančarová M, Burianová E, Filipová A, Vořísková J, Baldrian P, Cajthaml T. Polycyclic aromatic hydrocarbons degradation and microbial community shifts during co-composting of creosote-treated wood. JOURNAL OF HAZARDOUS MATERIALS 2016; 301:17-26. [PMID: 26342147 DOI: 10.1016/j.jhazmat.2015.08.023] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 08/13/2015] [Accepted: 08/13/2015] [Indexed: 06/05/2023]
Abstract
The feasibility of decontaminating creosote-treated wood (CTW) by co-composting with agricultural wastes was investigated using two bulking agents, grass cuttings (GC) and broiler litter (BL), each employed at a 1:1 ratio with the matrix. The initial concentration of total polycyclic aromatic hydrocarbons (PAHs) in CTW (26,500 mg kg(-1)) was reduced to 3 and 19% after 240 d in GC and BL compost, respectively. PAH degradation exceeded the predicted bioaccesible threshold, estimated through sequential supercritical CO2 extraction, together with significant detoxification, assessed by contact tests using Vibrio fisheri and Hordeum vulgare. GC composting was characterized by high microbial biomass growth in the early phases, as suggested by phospholipid fatty acid analyses. Based on the 454-pyrosequencing results, fungi (mostly Saccharomycetales) constituted an important portion of the microbial community, and bacteria were characterized by rapid shifts (from Firmicutes (Bacilli) and Actinobacteria to Proteobacteria). However, during BL composting, larger amounts of prokaryotic and eukaryotic PLFA markers were observed during the cooling and maturation phases, which were dominated by Proteobacteria and fungi belonging to the Ascomycota and those putatively related to the Glomeromycota. This work reports the first in-depth analysis of the chemical and microbiological processes that occur during the co-composting of a PAH-contaminated matrix.
Collapse
Affiliation(s)
- Stefano Covino
- Institute of Microbiology, Academy of Sciences of the Czech Republic, v.v.i., Vídeňská 1083, CZ-142 20 Prague 4, Czech Republic; Institute of Environmental Studies, Faculty of Science, Charles University, Benátská 2, CZ-128 01 Prague 2, Czech Republic
| | - Tereza Fabianová
- Institute of Microbiology, Academy of Sciences of the Czech Republic, v.v.i., Vídeňská 1083, CZ-142 20 Prague 4, Czech Republic
| | - Zdena Křesinová
- Institute of Microbiology, Academy of Sciences of the Czech Republic, v.v.i., Vídeňská 1083, CZ-142 20 Prague 4, Czech Republic
| | - Monika Čvančarová
- Institute of Microbiology, Academy of Sciences of the Czech Republic, v.v.i., Vídeňská 1083, CZ-142 20 Prague 4, Czech Republic
| | - Eva Burianová
- Institute of Microbiology, Academy of Sciences of the Czech Republic, v.v.i., Vídeňská 1083, CZ-142 20 Prague 4, Czech Republic
| | - Alena Filipová
- Institute of Microbiology, Academy of Sciences of the Czech Republic, v.v.i., Vídeňská 1083, CZ-142 20 Prague 4, Czech Republic; Institute of Environmental Studies, Faculty of Science, Charles University, Benátská 2, CZ-128 01 Prague 2, Czech Republic
| | - Jana Vořísková
- Institute of Microbiology, Academy of Sciences of the Czech Republic, v.v.i., Vídeňská 1083, CZ-142 20 Prague 4, Czech Republic
| | - Petr Baldrian
- Institute of Microbiology, Academy of Sciences of the Czech Republic, v.v.i., Vídeňská 1083, CZ-142 20 Prague 4, Czech Republic
| | - Tomáš Cajthaml
- Institute of Microbiology, Academy of Sciences of the Czech Republic, v.v.i., Vídeňská 1083, CZ-142 20 Prague 4, Czech Republic; Institute of Environmental Studies, Faculty of Science, Charles University, Benátská 2, CZ-128 01 Prague 2, Czech Republic.
| |
Collapse
|
21
|
Shifts of microbial community structure in soils of a photovoltaic plant observed using tag-encoded pyrosequencing of 16S rRNA. Appl Microbiol Biotechnol 2015; 100:3735-45. [DOI: 10.1007/s00253-015-7219-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 11/27/2015] [Accepted: 12/02/2015] [Indexed: 11/26/2022]
|
22
|
Daghio M, Tatangelo V, Franzetti A, Gandolfi I, Papacchini M, Careghini A, Sezenna E, Saponaro S, Bestetti G. Hydrocarbon degrading microbial communities in bench scale aerobic biobarriers for gasoline contaminated groundwater treatment. CHEMOSPHERE 2015; 130:34-39. [PMID: 25747304 DOI: 10.1016/j.chemosphere.2015.02.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 01/13/2015] [Accepted: 02/07/2015] [Indexed: 06/04/2023]
Abstract
BTEX compounds (benzene, toluene, ethylbenzene and xylenes) and methyl tert-butyl ether (MTBE) are some of the main constituents of gasoline and can be accidentally released in the environment. In this work the effect of bioaugmentation on the microbial communities in a bench scale aerobic biobarrier for gasoline contaminated water treatment was studied by 16S rRNA gene sequencing. Catabolic genes (tmoA and xylM) were quantified by qPCR, in order to estimate the biodegradation potential, and the abundance of total bacteria was estimated by the quantification of the number of copies of the 16S rRNA gene. Hydrocarbon concentration was monitored over time and no difference in the removal efficiency for the tested conditions was observed, either with or without the microbial inoculum. In the column without the inoculum the most abundant genera were Acidovorax, Bdellovibrio, Hydrogenophaga, Pseudoxanthomonas and Serpens at the beginning of the column, while at the end of the column Thauera became dominant. In the inoculated test the microbial inoculum, composed by Rhodococcus sp. CE461, Rhodococcus sp. CT451 and Methylibium petroleiphilum LMG 22953, was outcompeted. Quantitative PCR results showed an increasing in xylM copy number, indicating that hydrocarbon degrading bacteria were selected during the treatment, although only a low increase of the total biomass was observed. However, the bioaugmentation did not lead to an increase in the degradative potential of the microbial communities.
Collapse
Affiliation(s)
- Matteo Daghio
- Dept. of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milan, Italy
| | - Valeria Tatangelo
- Dept. of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milan, Italy
| | - Andrea Franzetti
- Dept. of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milan, Italy.
| | - Isabella Gandolfi
- Dept. of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milan, Italy
| | | | - Alessandro Careghini
- Politecnico di Milano, DICA Sez. Ambientale, Piazza Leonardo da Vinci 32, 20133 Milan, Italy
| | - Elena Sezenna
- Politecnico di Milano, DICA Sez. Ambientale, Piazza Leonardo da Vinci 32, 20133 Milan, Italy
| | - Sabrina Saponaro
- Politecnico di Milano, DICA Sez. Ambientale, Piazza Leonardo da Vinci 32, 20133 Milan, Italy
| | - Giuseppina Bestetti
- Dept. of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milan, Italy
| |
Collapse
|
23
|
Bacterial PAH degradation in marine and terrestrial habitats. Curr Opin Biotechnol 2015; 33:95-102. [DOI: 10.1016/j.copbio.2015.01.006] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 12/15/2014] [Accepted: 01/14/2015] [Indexed: 11/22/2022]
|
24
|
Ren G, Ren W, Teng Y, Li Z. Evident bacterial community changes but only slight degradation when polluted with pyrene in a red soil. Front Microbiol 2015; 6:22. [PMID: 25688237 PMCID: PMC4311681 DOI: 10.3389/fmicb.2015.00022] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 01/08/2015] [Indexed: 11/13/2022] Open
Abstract
Understanding the potential for Polycyclic aromatic hydrocarbons (PAH) degradation by indigenous microbiota and the influence of PAHs on native microbial communities is of great importance for bioremediation and ecological evaluation. Various studies have focused on the bacterial communities in the environment where obvious PAH degradation was observed, little is known about the microbiota in the soil where poor degradation was observed. Soil microcosms were constructed with a red soil by supplementation with a high-molecular-weight PAH (pyrene) at three dosages (5, 30, and 70 mg ⋅ kg(-1)). Real-time PCR was used to evaluate the changes in bacterial abundance and pyrene dioxygenase gene (nidA) quantity. Illumina sequencing was used to investigate changes in diversity, structure, and composition of bacterial communities. After 42 days of incubation, no evident degradation was observed. The poor degradation ability was associated with the stability or significant decrease of abundance of the nidA gene. Although the abundance of the bacterial 16S rRNA gene was not affected by pyrene, the bacterial richness and diversity were decreased with increasing dosage of pyrene and the community structure was changed. Phylotypes affected by pyrene were comprehensively surveyed: (1) at the high taxonomic level, seven of the abundant phyla/classes (relative abundance >1.0%) including Chloroflexi, AD3, WPS-2, GAL5, Alphaproteobacteria, Actinobacteria, and Deltaproteobacteria and one rare phylum Crenarchaeota were significantly decreased by at least one dosage of pyrene, while three phyla/classes (Acidobacteria, Betaproteobacteria, and Gammaproteobacteria) were significantly increased; and (2) at the lower taxonomic level, the relative abundances of twelve orders were significantly depressed, whereas those of nine orders were significantly increased. This work enhanced our understanding of the biodegradation potential of pyrene in red soil and the effect of pyrene on soil ecosystems at the microbial community level.
Collapse
Affiliation(s)
- Gaidi Ren
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science - Chinese Academy of Sciences Nanjing, China
| | - Wenjie Ren
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science - Chinese Academy of Sciences Nanjing, China
| | - Ying Teng
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science - Chinese Academy of Sciences Nanjing, China
| | - Zhengao Li
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science - Chinese Academy of Sciences Nanjing, China
| |
Collapse
|
25
|
Yang Y, Wang J, Liao J, Xie S, Huang Y. Abundance and diversity of soil petroleum hydrocarbon-degrading microbial communities in oil exploring areas. Appl Microbiol Biotechnol 2014; 99:1935-46. [PMID: 25236802 DOI: 10.1007/s00253-014-6074-z] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 09/02/2014] [Accepted: 09/03/2014] [Indexed: 01/23/2023]
Abstract
Alkanes and polycyclic aromatic hydrocarbons (PAHs) are the commonly detected petroleum hydrocarbon contaminants in soils in oil exploring areas. Hydrocarbon-degrading genes are useful biomarks for estimation of the bioremediation potential of contaminated sites. However, the links between environmental factors and the distribution of alkane and PAH metabolic genes still remain largely unclear. The present study investigated the abundances and diversities of soil n-alkane and PAH-degrading bacterial communities targeting both alkB and nah genes in two oil exploring areas at different geographic regions. A large variation in the abundances and diversities of alkB and nah genes occurred in the studied soil samples. Various environmental variables regulated the spatial distribution of soil alkane and PAH metabolic genes, dependent on geographic location. The soil alkane-degrading bacterial communities in oil exploring areas mainly consisted of Pedobacter, Mycobacterium, and unknown alkB-harboring microorganisms. Moreover, the novel PAH-degraders predominated in nah gene clone libraries from soils of the two oil exploring areas. This work could provide some new insights towards the distribution of hydrocarbon-degrading microorganisms and their biodegradation potential in soil ecosystems.
Collapse
Affiliation(s)
- Yuyin Yang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control (Peking University), College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | | | | | | | | |
Collapse
|
26
|
Lladó S, Covino S, Solanas AM, Petruccioli M, D'annibale A, Viñas M. Pyrosequencing reveals the effect of mobilizing agents and lignocellulosic substrate amendment on microbial community composition in a real industrial PAH-polluted soil. JOURNAL OF HAZARDOUS MATERIALS 2014; 283:35-43. [PMID: 25261758 DOI: 10.1016/j.jhazmat.2014.08.065] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 08/19/2014] [Accepted: 08/21/2014] [Indexed: 06/03/2023]
Abstract
Bacterial and fungal biodiversity throughout different biostimulation and bioaugmentation treatments applied to an industrial creosote-polluted soil were analyzed by means of polyphasic approach in order to gain insight into the microbial community structure and dynamics. Pyrosequencing data obtained from initial creosote polluted soil (after a biopiling step) revealed that Alpha and Gammaproteobacteria were the most abundant bacterial groups, whereas Fusarium and Scedosporium were the main fungal genera in the contaminated soil. At the end of 60-days laboratory scale bioremediation assays, pyrosequencing and DGGE data showed that (i) major bacterial community shifts were caused by the type of mobilizing agent added to the soil and, to a lesser extent, by the addition of lignocellulosic substrate; and (ii) the presence of the non-ionic surfactant (Brij 30) hampered the proliferation of Actinobacteria (Mycobacteriaceae) and Bacteroidetes (Chitinophagaceae) and, in the absence of lignocellulosic substrate, also impeded polycyclic aromatic hydrocarbons (PAHs) degradation. The results show the importance of implementing bioremediation experiments combined with microbiome assessment to gain insight on the effect of crucial parameters (e.g. use of additives) over the potential functions of complex microbial communities harbored in polluted soils, essential for bioremediation success.
Collapse
Affiliation(s)
- S Lladó
- Department of Microbiology, University of Barcelona, Diagonal 645, E-08028 Barcelona, Spain; Institute of Microbiology, Academy of Sciences of the Czech Republic, Vídenská 1083, 142 20 Prague 4, Czech Republic.
| | - S Covino
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Vídenská 1083, 142 20 Prague 4, Czech Republic.
| | - A M Solanas
- Department of Microbiology, University of Barcelona, Diagonal 645, E-08028 Barcelona, Spain.
| | - M Petruccioli
- Department for Innovation in Biological, Agro-Food and Forest Systems [DIBAF], University of Tuscia, Via S. Camillo de Lellis snc, 01100 Viterbo, Italy.
| | - A D'annibale
- Department for Innovation in Biological, Agro-Food and Forest Systems [DIBAF], University of Tuscia, Via S. Camillo de Lellis snc, 01100 Viterbo, Italy.
| | - M Viñas
- GIRO Joint Research Unit IRTA-UPC, Institute of Research and Technology Food and Agriculture [IRTA], Torre Marimon, E-08140 Caldes de Montbui, Spain.
| |
Collapse
|
27
|
Dunlevy SR, Singleton DR, Aitken MD. Biostimulation Reveals Functional Redundancy of Anthracene-Degrading Bacteria in Polycyclic Aromatic Hydrocarbon-Contaminated Soil. ENVIRONMENTAL ENGINEERING SCIENCE 2013; 30:697-705. [PMID: 24302851 PMCID: PMC3833303 DOI: 10.1089/ees.2013.0067] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 05/28/2013] [Indexed: 05/25/2023]
Abstract
Stable-isotope probing was previously used to identify bacterial anthracene-degraders in untreated soil from a former manufactured gas plant site. However, subsequent pyrosequence analyses of total bacterial communities and quantification of 16S rRNA genes indicated that relative abundances of the predominant anthracene-degrading bacteria (designated Anthracene Group 1) diminished as a result of biological treatment conditions in lab-scale, aerobic bioreactors. This study identified Alphaproteobacterial anthracene-degrading bacteria in bioreactor-treated soil which were dissimilar to those previously identified. The largest group of sequences was from the Alterythrobacter genus while other groups of sequences were associated with bacteria within the order Rhizobiales and the genus Bradyrhizobium. Conditions in the bioreactor enriched for organisms capable of degrading anthracene which were not the same as those identified as dominant degraders in the untreated soil. Further, these data suggest that identification of polycyclic aromatic hydrocarbon-degrading bacteria in contaminated but untreated soil may be a poor indicator of the most active degraders during biological treatment.
Collapse
Affiliation(s)
| | - David R. Singleton
- Corresponding author: David R. Singleton, Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Room 0030 Michael Hooker Research Center, Chapel Hill, NC 27599-7431. Phone: 1-919-966-5452; Fax: 1-919-966-7911; E-mail:
| | | |
Collapse
|