1
|
Siziya IN, Jung JH, Seo MJ, Lim MC, Seo DH. Whole-cell bioconversion using non-Leloir transglycosylation reactions: a review. Food Sci Biotechnol 2023; 32:749-768. [PMID: 37041815 PMCID: PMC10082888 DOI: 10.1007/s10068-023-01283-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/06/2023] [Accepted: 02/10/2023] [Indexed: 03/06/2023] Open
Abstract
Microbial biocatalysts are evolving technological tools for glycosylation research in food, feed and pharmaceuticals. Advances in bioengineered Leloir and non-Leloir carbohydrate-active enzymes allow for whole-cell biocatalysts to curtail production costs of purified enzymes while enhancing glucan synthesis through continued enzyme expression. Unlike sugar nucleotide-dependent Leloir glycosyltransferases, non-Leloir enzymes require inexpensive sugar donors and can be designed to match the high value, yield and selectivity of the former. This review addresses the current state of bacterial cell-based production of glucans and glycoconjugates via transglycosylation, and describes how alterations made to microbial hosts to surpass purified enzymes as the preferred mode of catalysis are steadily being acquired through genetic engineering, rational design and process optimization. A comprehensive exploration of relevant literature has been summarized to describe whole-cell biocatalysis in non-Leloir glycosylation reactions with various donors and acceptors, and the characterization, application and latest developments in the optimization of their use.
Collapse
Affiliation(s)
- Inonge Noni Siziya
- Department of Food Science and Technology, College of Agriculture and Life Sciences, Jeonbuk National University, Jeonju, 54896 Republic of Korea
- Division of Bioengineering, Incheon National University, Incheon, 22012 Republic of Korea
| | - Jong-Hyun Jung
- Research Division for Biotechnology, Korea Atomic Energy Research Institute, Jeongeup, 56212 Republic of Korea
| | - Myung-Ji Seo
- Division of Bioengineering, Incheon National University, Incheon, 22012 Republic of Korea
| | - Min-Cheol Lim
- Research Group of Consumer Safety, Korea Food Research Institute (KFRI), Jeollabuk-do, 55365 Korea
| | - Dong-Ho Seo
- Department of Food Science and Technology, College of Agriculture and Life Sciences, Jeonbuk National University, Jeonju, 54896 Republic of Korea
- Department of Food Science and Biotechnology, Graduate School of Biotechnology and Institute of Life Science and Resources, Kyung Hee University, Yongin, 17104 Republic of Korea
| |
Collapse
|
2
|
Efficient acetoin production from pyruvate by engineered Halomonas bluephagenesis whole-cell biocatalysis. Front Chem Sci Eng 2023. [DOI: 10.1007/s11705-022-2229-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
3
|
Schwaiger KN, Nidetzky B. Continuous process technology for bottom-up synthesis of soluble cello-oligosaccharides by immobilized cells co-expressing three saccharide phosphorylases. Microb Cell Fact 2022; 21:265. [PMID: 36536394 PMCID: PMC9764710 DOI: 10.1186/s12934-022-01984-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Continuous processing with enzyme reuse is a well-known engineering strategy to enhance the efficiency of biocatalytic transformations for chemical synthesis. In one-pot multistep reactions, continuous processing offers the additional benefit of ensuring constant product quality via control of the product composition. Bottom-up production of cello-oligosaccharides (COS) involves multistep iterative β-1,4-glycosylation of glucose from sucrose catalyzed by sucrose phosphorylase from Bifidobacterium adeloscentis (BaScP), cellobiose phosphorylase from Cellulomonas uda (CuCbP) and cellodextrin phosphorylase from Clostridium cellulosi (CcCdP). Degree of polymerization (DP) control in the COS product is essential for soluble production and is implemented through balance of the oligosaccharide priming and elongation rates. A whole-cell E. coli catalyst co-expressing the phosphorylases in high yield and in the desired activity ratio, with CdP as the rate-limiting enzyme, was reported previously. RESULTS Freeze-thaw permeabilized E. coli cells were immobilized in polyacrylamide (PAM) at 37-111 mg dry cells/g material. PAM particles (0.25-2.00 mm size) were characterized for COS production (~ 70 g/L) in mixed vessel with catalyst recycle and packed-bed reactor set-ups. The catalyst exhibited a dry mass-based overall activity (270 U/g; 37 mg cells/g material) lowered by ~ 40% compared to the corresponding free cells due to individual enzyme activity loss, CbP in particular, caused by the immobilization. Temperature studies revealed an operational optimum at 30 °C for stable continuous reaction (~ 1 month) in the packed bed (volume: 40 mL; height: 7.5 cm). The optimum reflects the limits of PAM catalyst structural and biological stability in combination with the requirement to control COS product solubility in order to prevent clogging of the packed bed. Using an axial flow rate of 0.75 cm- 1, the COS were produced at ~ 5.7 g/day and ≥ 95% substrate conversion (sucrose 300 mM). The product stream showed a stable composition of individual oligosaccharides up to cellohexaose, with cellobiose (48 mol%) and cellotriose (31 mol%) as the major components. CONCLUSIONS Continuous process technology for bottom-up biocatalytic production of soluble COS is demonstrated based on PAM immobilized E. coli cells that co-express BaScP, CuCbP and CcCdP in suitable absolute and relative activities.
Collapse
Affiliation(s)
- Katharina N. Schwaiger
- grid.432147.70000 0004 0591 4434acib - Austrian Centre of Industrial Biotechnology, Krenngasse 37, 8010 Graz, Austria
| | - Bernd Nidetzky
- grid.432147.70000 0004 0591 4434acib - Austrian Centre of Industrial Biotechnology, Krenngasse 37, 8010 Graz, Austria ,grid.410413.30000 0001 2294 748XInstitute of Biotechnology and Biochemical Engineering, NAWI Graz, Graz University of Technology, Petersgasse 12, 8010, Graz, Austria
| |
Collapse
|
4
|
Optimization and characterization of immobilized E. coli for engineered thermostable xylanase excretion and cell viability. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.103803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
5
|
Preparation of cross-linked cell aggregates (CLCAs) of recombinant E. coli harboring glutamate dehydrogenase and glucose dehydrogenase for efficient asymmetric synthesis of L-phosphinothricin. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
6
|
Homburg SV, Patel AV. Silica Hydrogels as Entrapment Material for Microalgae. Polymers (Basel) 2022; 14:polym14071391. [PMID: 35406264 PMCID: PMC9002651 DOI: 10.3390/polym14071391] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 03/15/2022] [Accepted: 03/18/2022] [Indexed: 11/30/2022] Open
Abstract
Despite being a promising feedstock for food, feed, chemicals, and biofuels, microalgal production processes are still uneconomical due to slow growth rates, costly media, problematic downstreaming processes, and rather low cell densities. Immobilization via entrapment constitutes a promising tool to overcome these drawbacks of microalgal production and enables continuous processes with protection against shear forces and contaminations. In contrast to biopolymer gels, inorganic silica hydrogels are highly transparent and chemically, mechanically, thermally, and biologically stable. Since the first report on entrapment of living cells in silica hydrogels in 1989, efforts were made to increase the biocompatibility by omitting organic solvents during hydrolysis, removing toxic by-products, and replacing detrimental mineral acids or bases for pH adjustment. Furthermore, methods were developed to decrease the stiffness in order to enable proliferation of entrapped cells. This review aims to provide an overview of studied entrapment methods in silica hydrogels, specifically for rather sensitive microalgae.
Collapse
Affiliation(s)
- Sarah Vanessa Homburg
- WG Fermentation and Formulation of Biologicals and Chemicals, Faculty of Engineering and Mathematics, Bielefeld University of Applied Sciences, Interaktion 1, 33619 Bielefeld, Germany
| | - Anant V Patel
- WG Fermentation and Formulation of Biologicals and Chemicals, Faculty of Engineering and Mathematics, Bielefeld University of Applied Sciences, Interaktion 1, 33619 Bielefeld, Germany
| |
Collapse
|
7
|
Ripoll M, Jackson E, Trelles JA, Betancor L. Dihydroxyacetone production via heterogeneous biotransformations of crude glycerol. J Biotechnol 2021; 340:102-109. [PMID: 34454960 DOI: 10.1016/j.jbiotec.2021.08.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 08/18/2021] [Accepted: 08/20/2021] [Indexed: 10/20/2022]
Abstract
In this work, several immobilization strategies for Gluconobacter oxydans NBRC 14819 (Gox) were tested in the bioconversion of crude glycerol to dihydroxyacetone (DHA). Agar, agarose and polyacrylamide were evaluated as immobilization matrixes. Glutaraldehyde crosslinked versions of the agar and agarose preparations were also tested. Agar immobilized Gox proved to be the best heterogeneous biocatalyst in the bioconversion of crude glycerol reaching a quantitative production of 50 g/L glycerol into DHA solely in water. Immobilization allowed reutilization for at least eight cycles, reaching four times more DHA than the amount obtained by a single batch of free cells which cannot be reutilized. An increase in scale of 34 times had no impact on DHA productivity. The results obtained herein constitute a contribution to the microbiological production of DHA as they not only attain unprecedented productivities for the reaction with immobilized biocatalysts but also proved that it is feasible to do it in a clean background of solely water that alleviates the cost of downstream processing.
Collapse
Affiliation(s)
- Magdalena Ripoll
- Laboratorio de Biotecnología, Universidad ORT Uruguay, Mercedes 1237, 11100 Montevideo, Uruguay; Graduate Program in Chemistry, Facultad de Química, Universidad de la República, Uruguay
| | - Erienne Jackson
- Laboratorio de Biotecnología, Universidad ORT Uruguay, Mercedes 1237, 11100 Montevideo, Uruguay
| | - Jorge A Trelles
- Laboratory of Sustainable Biotechnology (LIBioS), National University of Quilmes, Roque Sáenz Peña 352, B1876BXD Bernal, Argentina; National Scientific and Technical Research Council (CONICET), Godoy Cruz 2290, C1425FQB CABA, Argentina
| | - Lorena Betancor
- Laboratorio de Biotecnología, Universidad ORT Uruguay, Mercedes 1237, 11100 Montevideo, Uruguay.
| |
Collapse
|
8
|
Immobilization of Escherichia coli cells harboring a nitrilase with improved catalytic properties though polyethylenemine-induced silicification on zeolite. Int J Biol Macromol 2021; 193:1362-1370. [PMID: 34740683 DOI: 10.1016/j.ijbiomac.2021.10.196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/18/2021] [Accepted: 10/26/2021] [Indexed: 11/23/2022]
Abstract
In the chemical-biological synthesis route of gabapentin, immobilized Escherichia coli cells harboring nitrilase are used to catalyze the biotransformation of intermediate 1-cyanocyclohexaneacetonitile to 1-cyanocyclohexaneacetic acid. Herein, we present a novel cell immobilization method, which is based on cell adsorption using 75 g/L Escherichia coli cells and 6 g/L zeolite, cell crosslinking using 3 g/L polyethylenemine and biomimetic silicification using 18 g/L hydrolyzed tetramethylorthosilicate. The constructed "hybrid biomimetic silica particles (HBSPs)" with core-shell structure showed a specific activity of 147.2 ± 2.3 U/g, 82.6 ± 2.8% recovery of nitrilase activity and a half-life of 19.1 ± 1.9 h at 55 °C. 1-Cyanocyclohexaneacetonitrile (1.0 M) could be completely hydrolyzed by 50 g/L of HBSPs at pH 7.5, 35 °C in 4 h, providing 92.1 ± 3.2% yield of 1-cyanocyclohexaneacetic acid. In batch reactions, the HBSPs could be reused for 13 cycles and maintained 79.9 ± 4.1% residual activity after the 10th batch, providing an average product yield of 92.6% in the first 10 batches with a productivity of 619.3 g/L/day. In addition, multi-layer structures consisting of silica coating and polyethylenemine/glutaraldehyde crosslinking were constructed to enhance the mechanical strength of immobilized cells, and the effects of coating layers on the catalytic properties of immobilized cells was discussed.
Collapse
|
9
|
Abdul Manaf SA, Mohamad Fuzi SFZ, Low KO, Hegde G, Abdul Manas NH, Md Illias R, Chia KS. Carbon nanomaterial properties help to enhance xylanase production from recombinant Kluyveromyces lactis through a cell immobilization method. Appl Microbiol Biotechnol 2021; 105:8531-8544. [PMID: 34611725 DOI: 10.1007/s00253-021-11616-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 09/13/2021] [Accepted: 09/20/2021] [Indexed: 12/25/2022]
Abstract
Carbon nanomaterials, due to their catalytic activity and high surface area, have potential as cell immobilization supports to increase the production of xylanase. Recombinant Kluyveromyces lactis used for xylanase production was integrated into a polymeric gel network with carbon nanomaterials. Carbon nanomaterials were pretreated before cell immobilization with hydrochloric acid (HCl) treatment and glutaraldehyde (GA) crosslinking, which contributes to cell immobilization performance. Carbon nanotubes (CNTs) and graphene oxide (GO) were further screened using a Plackett-Burman experimental design. Cell loading and agar concentration were the most important factors in xylanase production with low cell leakage. Under optimized conditions, xylanase production was increased by more than 400% compared to free cells. Immobilized cell material containing such high cell densities may exhibit new and unexplored beneficial properties because the cells comprise a large fraction of the component. The use of carbon nanomaterials as a cell immobilization support along with the entrapment method successfully enhances the production of xylanase, providing a new route to improved bioprocessing, particularly for the production of enzymes. KEY POINTS: • Carbon nanomaterials (CNTs, GO) have potential as cell immobilization supports. • Entrapment in a polymeric gel network provides space for xylanase production. • Plackett-Burman design screen for the most important factor for cell immobilization.
Collapse
Affiliation(s)
- Shoriya Aruni Abdul Manaf
- Faculty of Applied Sciences and Technology, Universiti Tun Hussein Onn Malaysia, 84600, Pagoh, Muar, Johor, Malaysia
| | - Siti Fatimah Zaharah Mohamad Fuzi
- Faculty of Applied Sciences and Technology, Universiti Tun Hussein Onn Malaysia, 84600, Pagoh, Muar, Johor, Malaysia. .,Oasis Integrated Group, Institute for Integrated Engineering, Universiti Tun Hussein Onn Malaysia, 86400, Parit Raja, Johor, Malaysia.
| | - Kheng Oon Low
- Malaysia Genome Institute, National Institute of Biotechnology Malaysia, Jalan Bangi, 43000, Kajang, Selangor, Malaysia
| | - Gurumurthy Hegde
- Centre for Nano-Materials and Displays, B.M.S. College of Engineering, Bull Temple Road, Basavanagudi, 560019, Bangalore, India
| | - Nor Hasmaliana Abdul Manas
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - Rosli Md Illias
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - Kim Seng Chia
- Faculty of Electrical and Electronic Engineering, Universiti Tun Hussein Onn Malaysia, 86400, Batu Pahat, Johor, Malaysia
| |
Collapse
|
10
|
Imam HT, Krasňan V, Rebroš M, Marr AC. Applications of Ionic Liquids in Whole-Cell and Isolated Enzyme Biocatalysis. Molecules 2021; 26:4791. [PMID: 34443378 PMCID: PMC8399596 DOI: 10.3390/molecules26164791] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/04/2021] [Accepted: 08/05/2021] [Indexed: 11/16/2022] Open
Abstract
Ionic liquids have unique chemical properties that have fascinated scientists in many fields. The effects of adding ionic liquids to biocatalysts are many and varied. The uses of ionic liquids in biocatalysis include improved separations and phase behaviour, reduction in toxicity, and stabilization of protein structures. As the ionic liquid state of the art has progressed, concepts of what can be achieved in biocatalysis using ionic liquids have evolved and more beneficial effects have been discovered. In this review ionic liquids for whole-cell and isolated enzyme biocatalysis will be discussed with an emphasis on the latest developments, and a look to the future.
Collapse
Affiliation(s)
- Hasan Tanvir Imam
- School of Chemistry and Chemical Engineering, Queen’s University Belfast, David Keir Building, Stranmillis Road, Belfast BT9 5AG, UK;
| | - Vladimír Krasňan
- Institute of Biotechnology, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, 812 37 Bratislava, Slovakia;
| | - Martin Rebroš
- Institute of Biotechnology, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, 812 37 Bratislava, Slovakia;
| | - Andrew Craig Marr
- School of Chemistry and Chemical Engineering, Queen’s University Belfast, David Keir Building, Stranmillis Road, Belfast BT9 5AG, UK;
| |
Collapse
|
11
|
Kruschitz A, Peinsipp L, Pfeiffer M, Nidetzky B. Continuous process technology for glucoside production from sucrose using a whole cell-derived solid catalyst of sucrose phosphorylase. Appl Microbiol Biotechnol 2021; 105:5383-5394. [PMID: 34189615 PMCID: PMC8285329 DOI: 10.1007/s00253-021-11411-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/04/2021] [Accepted: 06/10/2021] [Indexed: 01/30/2023]
Abstract
Advanced biotransformation processes typically involve the upstream processing part performed continuously and interlinked tightly with the product isolation. Key in their development is a catalyst that is highly active, operationally robust, conveniently produced, and recyclable. A promising strategy to obtain such catalyst is to encapsulate enzymes as permeabilized whole cells in porous polymer materials. Here, we show immobilization of the sucrose phosphorylase from Bifidobacterium adolescentis (P134Q-variant) by encapsulating the corresponding E. coli cells into polyacrylamide. Applying the solid catalyst, we demonstrate continuous production of the commercial extremolyte 2-α-D-glucosyl-glycerol (2-GG) from sucrose and glycerol. The solid catalyst exhibited similar activity (≥70%) as the cell-free extract (~800 U g-1 cell wet weight) and showed excellent in-operando stability (40 °C) over 6 weeks in a packed-bed reactor. Systematic study of immobilization parameters related to catalyst activity led to the identification of cell loading and catalyst particle size as important factors of process optimization. Using glycerol in excess (1.8 M), we analyzed sucrose conversion dependent on space velocity (0.075-0.750 h-1) and revealed conditions for full conversion of up to 900 mM sucrose. The maximum 2-GG space-time yield reached was 45 g L-1 h-1 for a product concentration of 120 g L-1. Collectively, our study establishes a step-economic route towards a practical whole cell-derived solid catalyst of sucrose phosphorylase, enabling continuous production of glucosides from sucrose. This strengthens the current biomanufacturing of 2-GG, but also has significant replication potential for other sucrose-derived glucosides, promoting their industrial scale production using sucrose phosphorylase. KEY POINTS: • Cells of sucrose phosphorylase fixed in polyacrylamide were highly active and stable. • Solid catalyst was integrated with continuous flow to reach high process efficiency. • Generic process technology to efficiently produce glucosides from sucrose is shown.
Collapse
Affiliation(s)
- Andreas Kruschitz
- Austrian Centre of Industrial Biotechnology (acib), Krenngasse 37, 8010, Graz, Austria
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Petersgasse 12, 8010, Graz, Austria
| | - Linda Peinsipp
- Austrian Centre of Industrial Biotechnology (acib), Krenngasse 37, 8010, Graz, Austria
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Petersgasse 12, 8010, Graz, Austria
| | - Martin Pfeiffer
- Austrian Centre of Industrial Biotechnology (acib), Krenngasse 37, 8010, Graz, Austria
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Petersgasse 12, 8010, Graz, Austria
| | - Bernd Nidetzky
- Austrian Centre of Industrial Biotechnology (acib), Krenngasse 37, 8010, Graz, Austria.
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Petersgasse 12, 8010, Graz, Austria.
| |
Collapse
|
12
|
Wang S, Wang D, Yu Z, Dong X, Liu S, Cui H, Sun B. Advances in research on petroleum biodegradability in soil. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2021; 23:9-27. [PMID: 33393551 DOI: 10.1039/d0em00370k] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
With the increased demand for petroleum and petroleum products from all parts of the society, environmental pollution caused by petroleum development and production processes is becoming increasingly serious. Soil pollution caused by petroleum seriously affects environmental quality in addition to human lives and productivity. At present, petroleum in soil is mainly degraded by biological methods. In their natural state, native bacteria in the soil spontaneously degrade petroleum pollutants that enter the soil; however, when the pollution levels increase, the degradation rates decrease, and it is necessary to add nutrients, dissolved oxygen, biosurfactants and other additives to improve the degradation ability of the native bacteria in the soil. The degradation process can also be enhanced by adding exogenous petroleum-degrading bacteria, microbial immobilization technologies, and microbial fuel cell technologies.
Collapse
Affiliation(s)
- Song Wang
- School of Earth Science, Northeast Petroleum University, Daqing, China
| | - Dan Wang
- School of Earth Science, Northeast Petroleum University, Daqing, China
| | - Zhongchen Yu
- School of Civil Architecture Engineering, Northeast Petroleum University, Daqing, China.
| | - Xigui Dong
- 2nd Oil Production Plant Daqing Oilfield Co. Ltd, Daqing, China
| | - Shumeng Liu
- 2nd Oil Production Plant Daqing Oilfield Co. Ltd, Daqing, China
| | - Hongmei Cui
- School of Civil Architecture Engineering, Northeast Petroleum University, Daqing, China.
| | - Bing Sun
- 2nd Oil Production Plant Daqing Oilfield Co. Ltd, Daqing, China
| |
Collapse
|
13
|
Chapman J, Orrell-Trigg R, Kwoon KY, Truong VK, Cozzolino D. A high-throughput and machine learning resistance monitoring system to determine the point of resistance for Escherichia coli with tetracycline: Combining UV-visible spectrophotometry with principal component analysis. Biotechnol Bioeng 2021; 118:1511-1519. [PMID: 33399220 DOI: 10.1002/bit.27664] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 12/13/2020] [Accepted: 12/29/2020] [Indexed: 12/11/2022]
Abstract
UV-visible spectroscopy (UV-Vis) is routinely used in microbiology as a tool to check the optical density (OD) pertaining to the growth stages of microbial cultures at the single wavelength of 600 nm, better known as the OD600 . Typically, modern UV-Vis spectrophotometers can scan in the region of approximately 200-1000 nm in the electromagnetic spectrum, where users do not extend the use of the instrument's full capability in a laboratory. In this study, the full potential of UV-Vis spectrophotometry (multiwavelength collection) was used to examine bacterial growth phases when treated with antibiotics showcasing the ability to understand the point of resistance when an antibiotic is introduced into the media and therefore understand the biochemical changes of the infectious pathogens. A multiplate reader demonstrated a high throughput experiment (96 samples) to understand the growth of Escherichia coli when varied concentrations of the antibiotic tetracycline was added into the well plates. Principal component analysis (PCA) and partial least squares discriminant analysis were then used as the data mining techniques to interpret the UV-Vis spectral data and generate machine learning "proof of principle" for the UV-Vis spectrophotometer plate reader. Results from this study showed that the PCA analysis provides an accurate yet simple visual classification and the recognition of E. coli samples belonging to each treatment. These data show significant advantages when compared to the traditional OD600 method where we can now understand biochemical changes in the system rather than a mere optical density measurement. Due to the unique experimental setup and procedure that involves indirect use of antibiotics, the same test could be used for obtaining practical information on the type, resistance, and dose of antibiotic necessary to establish the optimum diagnosis, treatment, and decontamination strategies for pathogenic and antibiotic resistant species.
Collapse
Affiliation(s)
- James Chapman
- Department of Applied Chemistry and Environmental Science, School of Science, RMIT University, Melbourne, Victoria, Australia
| | - Rebecca Orrell-Trigg
- Department of Applied Chemistry and Environmental Science, School of Science, RMIT University, Melbourne, Victoria, Australia
| | - Ki Y Kwoon
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - Vi K Truong
- Department of Applied Chemistry and Environmental Science, School of Science, RMIT University, Melbourne, Victoria, Australia.,Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - Daniel Cozzolino
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
14
|
Silva ALP, da Silva Caridade TN, Magalhães RR, de Sousa KT, de Sousa CC, Vale JA. Biocatalytic production of Ɛ-caprolactone using Geotrichum candidum cells immobilized on functionalized silica. Appl Microbiol Biotechnol 2020; 104:8887-8895. [PMID: 32902680 DOI: 10.1007/s00253-020-10875-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/18/2020] [Accepted: 08/31/2020] [Indexed: 11/30/2022]
Abstract
Immobilization of the Geotrichum candidum (CCT 1205) cell with functionalized silica creates promising biocatalysts for production of ɛ-caprolactone. The results obtained by immobilization of the whole cell on SiO2-NH2 and SiO2-SH supports indicate that the presence of reactive functional groups on the support may promote effective chemical bonds with the cell walls resulting the decreased dehydrogenases enzyme activity (5% yield in less than 2h) and consequently, increased Baeyer-Villiger monooxygenases enzyme activity with redacting of 25% of time reaction when is used SiO2-NH2 as support and 50% through use of SiO2-SH as support relative to free cells when cyclohexanone is used as a substrate. The catalysts SiO2-NH2-Geotrichum candidum and SiO2-SH-Geotrichum candidum were recycling and reused in the ɛ-caprolactone synthesis from cyclohexanone, and the biocatalysts promoted a quantitative conversion up to the eighth reaction cycle. KEY POINTS: • Immobilized microorganism is more efficient than free cell in the caprolactone synthesis. • The reaction times for amino and thiol groups in support were 3 h and 2 h, respectively. • These catalysts showed higher ɛ-caprolactone conversion at higher concentrations.
Collapse
Affiliation(s)
| | | | | | | | | | - Juliana Alves Vale
- Department of Chemistry, Federal University of Paraíba, João Pessoa, PB, 58051-970, Brazil.
| |
Collapse
|
15
|
Rivero CW, De Benedetti EC, Sambeth J, Trelles JA. Biotransformation of cladribine by a nanostabilized extremophilic biocatalyst. J Biotechnol 2020; 323:166-173. [PMID: 32841608 DOI: 10.1016/j.jbiotec.2020.08.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 08/01/2020] [Accepted: 08/19/2020] [Indexed: 12/19/2022]
Abstract
Cladribine (2-chloro-2'-deoxy-β-d-adenosine) is a 2'-deoxyadenosine analogue, approved by the FDA for the treatment of hairy cell leukemia and more recently has been proved for therapeutic against many autoimmune diseases as multiple sclerosis. The biosynthesis of this compound using Thermomonospora alba CECT 3324 as biocatalyst is herein reported. This thermophilic microorganism was successfully entrapped in polyacrylamide gel supplemented with nanoclays such as bentonite. The immobilized biocatalyst (T. alba-Ac-Bent 1.00 %), was able to biosynthesize cladribine with a conversion of 89 % in 1 h of reaction and retains its activity for more than 270 reuses without significantly activity loss, showing better operational stability and mechanical properties than the natural matrix. A microscale assay using the developed system, could allow the production of at least 181 mg of cladribine in successive bioprocesses.
Collapse
Affiliation(s)
- Cintia W Rivero
- Laboratory of Sustainable Biotechnology (LIBioS), National University of Quilmes, Roque Sáenz Peña 352, Bernal, B1876BXD, Argentina; National Scientific and Technical Research Council (CONICET), Godoy Cruz 2290, CABA, C1425FQB, Argentina
| | - Eliana C De Benedetti
- Laboratory of Sustainable Biotechnology (LIBioS), National University of Quilmes, Roque Sáenz Peña 352, Bernal, B1876BXD, Argentina; National Scientific and Technical Research Council (CONICET), Godoy Cruz 2290, CABA, C1425FQB, Argentina
| | - Jorge Sambeth
- National Scientific and Technical Research Council (CONICET), Godoy Cruz 2290, CABA, C1425FQB, Argentina; Center for Research and Development in Applied Sciences "Dr. Jorge J. Ronco", National University of La Plata, La Plata, Argentina
| | - Jorge A Trelles
- Laboratory of Sustainable Biotechnology (LIBioS), National University of Quilmes, Roque Sáenz Peña 352, Bernal, B1876BXD, Argentina; National Scientific and Technical Research Council (CONICET), Godoy Cruz 2290, CABA, C1425FQB, Argentina.
| |
Collapse
|
16
|
Pei X, Li Y, Du C, Yuan T, Fan C, Hong H, Yuan W. Production of L-alanyl-L-glutamine by immobilized Escherichia coli expressing amino acid ester acyltransferase. Appl Microbiol Biotechnol 2020; 104:6967-6976. [PMID: 32594215 DOI: 10.1007/s00253-020-10752-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 06/05/2020] [Accepted: 06/16/2020] [Indexed: 11/25/2022]
Abstract
Production of Ala-Gln by the E. coli expressing α-amino acid ester acyltransferase was a promising technical route due to its high enzyme activity, but the continuous production ability still needs to improve. Therefore, the immobilized E. coli expressing α-amino acid ester acyltransferase was applied for the continuous production of Ala-Gln. Four materials were selected as embedding medium for the whole cell entrapment of recombinant bacteria. Calcium alginate beads were found to be the most proper entrapment carrier for production of Ala-Gln. The temperature, pH, and repeatability of the immobilized cell were compared with free cells. Results showed that immobilization cell could maintain a wider range of temperature/pH and better stability than free cell (20-35 °C/pH 8.0-9.0, and 25 °C/pH 8.5, respectively). On this basis, continuous production strategy was put forward by filling the immobilized cell in the tubular reactor with multiple control conditions. The Ala-Gln by immobilization cell achieved the productivity of 2.79 mg/(min*mL-CV) without intermittent time. Consequently, these findings suggest that the immobilization technique has potential applications in the production of Ala-Gln by biotechnological method. KEY POINTS: • Immobilization helps to achieve high efficiency production of Ala-Gln. • Immobilized cells have better stability than free cells. • Sodium alginate is the most suitable immobilized material.
Collapse
Affiliation(s)
- Xuze Pei
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, China
| | - Yimin Li
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, China
| | - Cong Du
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, China
| | - Tangguo Yuan
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, China
| | - Chao Fan
- Innobio Corporation Limited, Dalian, 116600, China
| | - Hao Hong
- Innobio Corporation Limited, Dalian, 116600, China
| | - Wenjie Yuan
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, China.
| |
Collapse
|
17
|
Sánta-Bell E, Molnár Z, Varga A, Nagy F, Hornyánszky G, Paizs C, Balogh-Weiser D, Poppe L. "Fishing and Hunting"-Selective Immobilization of a Recombinant Phenylalanine Ammonia-Lyase from Fermentation Media. Molecules 2019; 24:E4146. [PMID: 31731791 PMCID: PMC6891789 DOI: 10.3390/molecules24224146] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 11/12/2019] [Accepted: 11/13/2019] [Indexed: 02/07/2023] Open
Abstract
This article overviews the numerous immobilization methods available for various biocatalysts such as whole-cells, cell fragments, lysates or enzymes which do not require preliminary enzyme purification and introduces an advanced approach avoiding the costly and time consuming downstream processes required by immobilization of purified enzyme-based biocatalysts (such as enzyme purification by chromatographic methods and dialysis). Our approach is based on silica shell coated magnetic nanoparticles as solid carriers decorated with mixed functions having either coordinative binding ability (a metal ion complexed by a chelator anchored to the surface) or covalent bond-forming ability (an epoxide attached to the surface via a proper linker) enabling a single operation enrichment and immobilization of a recombinant phenylalanine ammonia-lyase from parsley fused to a polyhistidine affinity tag.
Collapse
Affiliation(s)
- Evelin Sánta-Bell
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, 1111 Budapest, Hungary; (E.S.-B.); (Z.M.); (F.N.); (G.H.)
| | - Zsófia Molnár
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, 1111 Budapest, Hungary; (E.S.-B.); (Z.M.); (F.N.); (G.H.)
- Fermentia Microbiological Ltd., 1405 Budapest, Hungary
- Institute of Enzymology, Research Center for Natural Sciences, Hungarian Academy of Science, 1117 Budapest, Hungary
| | - Andrea Varga
- Biocatalysis and Biotransformation Research Centre, Faculty of Chemistry and Chemical Engineering, Babeş-Bolyai University of Cluj-Napoca, 400028 Cluj-Napoca, Romania; (A.V.); (C.P.)
| | - Flóra Nagy
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, 1111 Budapest, Hungary; (E.S.-B.); (Z.M.); (F.N.); (G.H.)
| | - Gábor Hornyánszky
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, 1111 Budapest, Hungary; (E.S.-B.); (Z.M.); (F.N.); (G.H.)
- SynBiocat Ltd., 1172 Budapest, Hungary
| | - Csaba Paizs
- Biocatalysis and Biotransformation Research Centre, Faculty of Chemistry and Chemical Engineering, Babeş-Bolyai University of Cluj-Napoca, 400028 Cluj-Napoca, Romania; (A.V.); (C.P.)
| | - Diána Balogh-Weiser
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, 1111 Budapest, Hungary; (E.S.-B.); (Z.M.); (F.N.); (G.H.)
- SynBiocat Ltd., 1172 Budapest, Hungary
- Department of Physical Chemistry and Materials Science, Budapest University of Technology and Economics, 1111 Budapest, Hungary
| | - László Poppe
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, 1111 Budapest, Hungary; (E.S.-B.); (Z.M.); (F.N.); (G.H.)
- Biocatalysis and Biotransformation Research Centre, Faculty of Chemistry and Chemical Engineering, Babeş-Bolyai University of Cluj-Napoca, 400028 Cluj-Napoca, Romania; (A.V.); (C.P.)
- SynBiocat Ltd., 1172 Budapest, Hungary
| |
Collapse
|
18
|
Balusamy B, Sarioglu OF, Senthamizhan A, Uyar T. Rational Design and Development of Electrospun Nanofibrous Biohybrid Composites. ACS APPLIED BIO MATERIALS 2019; 2:3128-3143. [DOI: 10.1021/acsabm.9b00308] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Brabu Balusamy
- Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Omer Faruk Sarioglu
- E-Kalite Software, METU Technopolis Twin Blocks, Middle East Technical University, 06800 Ankara, Turkey
| | | | - Tamer Uyar
- Department of Fiber Science & Apparel Design, College of Human Ecology, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
19
|
Maslova O, Senko O, Stepanov N, Efremenko E. Perspective approaches with the use of biocatalysts for improving the processes of polyaspartic acid production from oil benzene fraction after oxidative desulfurization. ACTA ACUST UNITED AC 2019. [DOI: 10.1088/1757-899x/525/1/012037] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
20
|
Carmona-Orozco ML, Panay AJ. Immobilization of E. coli expressing Bacillus pumilus CynD in three organic polymer matrices. Appl Microbiol Biotechnol 2019; 103:5401-5410. [PMID: 31065754 DOI: 10.1007/s00253-019-09859-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 04/12/2019] [Accepted: 04/15/2019] [Indexed: 11/24/2022]
Abstract
Cyanide is toxic to most living organisms. The toxicity of cyanide derives from its ability to inhibit the enzyme cytochrome C oxidase of the electronic transport chain. Despite its high toxicity, several industrial processes rely on the use of cyanide, and considerable amounts of industrial waste must be adequately treated before discharge. Biological treatments for the decontamination of cyanide waste include the use of microorganisms and enzymes. Regarding the use of enzymes, cyanide dihydratase (CynD), which catalyzes the conversion of cyanide into ammonia and formate, is an attractive candidate. Nevertheless, the main impediment to the effective use of this enzyme for the biodegradation of cyanide is the marked intolerance to the alkaline pH at which cyanide waste is kept. In this work, we explore the operational capabilities of whole E. coli cells overexpressing Bacillus pumilus CynD immobilized in three organic polymer matrices: chitosan, polyacrylamide, and agar. Remarkably, the immobilized cells on agar and polyacrylamide retained more than 80% activity even at pH 10 and displayed high reusability. Conversely, the cells immobilized on chitosan were not active. Finally, the suitability of the active complexes for the degradation of free cyanide from a solution derived from the gold processing industry was demonstrated.
Collapse
Affiliation(s)
| | - Aram J Panay
- Faculty of Natural Sciences, Universidad Icesi, Calle 18 No 122-135, Cali, Colombia.
| |
Collapse
|
21
|
Sakkos JK, Wackett LP, Aksan A. Enhancement of biocatalyst activity and protection against stressors using a microbial exoskeleton. Sci Rep 2019; 9:3158. [PMID: 30816335 PMCID: PMC6395662 DOI: 10.1038/s41598-019-40113-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Accepted: 02/08/2019] [Indexed: 12/18/2022] Open
Abstract
Whole cell biocatalysts can perform numerous industrially-relevant chemical reactions. While they are less expensive than purified enzymes, whole cells suffer from inherent reaction rate limitations due to transport resistance imposed by the cell membrane. Furthermore, it is desirable to immobilize the biocatalysts to enable ease of separation from the reaction mixture. In this study, we used a layer-by-layer (LbL) self-assembly process to create a microbial exoskeleton which, simultaneously immobilized, protected, and enhanced the reactivity of a whole cell biocatalyst. As a proof of concept, we used Escherichia coli expressing homoprotocatechuate 2,3-dioxygenase (HPCD) as a model biocatalyst and coated it with up to ten alternating layers of poly(diallyldimethylammonium chloride) (PDADMAC) and silica. The microbial exoskeleton also protected the biocatalyst against a variety of external stressors including: desiccation, freeze/thaw, exposure to high temperatures, osmotic shock, as well as against enzymatic attack by lysozyme, and predation by protozoa. While we observed increased permeability of the outer membrane after exoskeleton deposition, this had a moderate effect on the reaction rate (up to two-fold enhancement). When the exoskeleton construction was followed by detergent treatment to permeabilize the cytoplasmic membrane, up to 15-fold enhancement in the reaction rate was reached. With the exoskeleton, we increased in the reaction rate constants as much as 21-fold by running the biocatalyst at elevated temperatures ranging from 40 °C to 60 °C, a supraphysiologic temperature range not accessible by unprotected bacteria.
Collapse
Affiliation(s)
- Jonathan K Sakkos
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Lawrence P Wackett
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, 55455, USA
- The BioTechnology Institute, University of Minnesota, St. Paul, MN, 55108, USA
| | - Alptekin Aksan
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN, 55455, USA.
- The BioTechnology Institute, University of Minnesota, St. Paul, MN, 55108, USA.
| |
Collapse
|
22
|
Sankaran S, Becker J, Wittmann C, Del Campo A. Optoregulated Drug Release from an Engineered Living Material: Self-Replenishing Drug Depots for Long-Term, Light-Regulated Delivery. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1804717. [PMID: 30589209 DOI: 10.1002/smll.201804717] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 11/30/2018] [Indexed: 06/09/2023]
Abstract
On-demand and long-term delivery of drugs are common requirements in many therapeutic applications, not easy to be solved with available smart polymers for drug encapsulation. This work presents a fundamentally different concept to address such scenarios using a self-replenishing and optogenetically controlled living material. It consists of a hydrogel containing an active endotoxin-free Escherichia coli strain. The bacteria are metabolically and optogenetically engineered to secrete the antimicrobial and antitumoral drug deoxyviolacein in a light-regulated manner. The permeable hydrogel matrix sustains a viable and functional bacterial population and permits diffusion and delivery of the synthesized drug to the surrounding medium at quantities regulated by light dose. Using a focused light beam, the site for synthesis and delivery of the drug can be freely defined. The living material is shown to maintain considerable levels of drug production and release for at least 42 days. These results prove the potential and flexibility that living materials containing engineered bacteria can offer for advanced therapeutic applications.
Collapse
Affiliation(s)
| | - Judith Becker
- Institute of Systems Biotechnology, Saarland University, 66123, Saarbrücken, Germany
| | - Christoph Wittmann
- Institute of Systems Biotechnology, Saarland University, 66123, Saarbrücken, Germany
| | - Aránzazu Del Campo
- INM - Leibniz Institute for New Materials, Campus D2 2, 66123, Saarbrücken, Germany
- Chemistry Department, Saarland University, 66123, Saarbrücken, Germany
| |
Collapse
|
23
|
Sankaran S, Del Campo A. Optoregulated Protein Release from an Engineered Living Material. ACTA ACUST UNITED AC 2018; 3:e1800312. [PMID: 32627372 DOI: 10.1002/adbi.201800312] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 12/04/2018] [Indexed: 12/20/2022]
Abstract
Developing materials to encapsulate and deliver functional proteins inside the body is a challenging yet rewarding task for therapeutic purposes. High production costs, mostly associated with the purification process, short-term stability in vivo, and controlled and prolonged release are major hurdles for the clinical application of protein-based biopharmaceuticals. In an attempt to overcome these hurdles, herein, the possibility of incorporating bacteria as protein factories into a material and externally controlling protein release using optogenetics is demonstrated. By engineering bacteria to express and secrete a red fluorescent protein in response to low doses of blue light irradiation and embedding them in agarose hydrogels, living materials are fabricated capable of releasing proteins into the surrounding medium when exposed to light. These bacterial hydrogels allow spatially confined protein expression and dosed protein release over several weeks, regulated by the area and extent of light exposure. The possibility of incorporating such complex functions in a material using relatively simple material and genetic engineering strategies highlights the immense potential and versatility offered by living materials for protein-based biopharmaceutical delivery.
Collapse
Affiliation(s)
| | - Aránzazu Del Campo
- INM - Leibniz Institute for New Materials, Campus D2 2, 66123, Saarbrücken, Germany.,Chemistry Department, Saarland University, 66123, Saarbrücken, Germany
| |
Collapse
|
24
|
Immobilized Cells of Bacillus circulans ATCC 21783 on Palm Curtain for Fermentation in 5 L Fermentation Tanks. Molecules 2018; 23:molecules23112888. [PMID: 30404135 PMCID: PMC6278285 DOI: 10.3390/molecules23112888] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 10/30/2018] [Accepted: 10/31/2018] [Indexed: 12/17/2022] Open
Abstract
Palm curtain was selected as carrier to immobilize Bacillus circulans ATCC 21783 to produce β-cyclodextrin (β-CD). The influence for immobilization to CGTase activity was analyzed to determine the operation stability. 83.5% cyclodextrin glycosyltransferases (CGTase) of the 1st cycle could be produced in the 7th cycle for immobilized cells, while only 28.90% CGTase was produced with free cells. When palm curtain immobilized cells were reused at the 2th cycle, enzyme activities were increased from 5003 to 5132 U/mL, which was mainly due to physical adsorption of cells on palm curtain with special concave surface structure. Furthermore, conditions for expanded culture of immobilized cells in a 5 L fermentation tank were optimized through specific rotation speed procedure (from 350 r/min to 450 r/min with step size of 50 r/min) and fixed ventilation capacity (4.5 L/min), relations between biomass, enzyme activity, pH, and oxygen dissolution was investigated, and the fermentation periods under the two conditions were both 4 h shorter. Compared with free cell, immobilized cell was more stable, effective, and had better application potential in industries.
Collapse
|
25
|
Zeng Z, Tang B, Xiao R, Huang J, Gu Y, Shi Y, Hu Y, Zhou J, Li H, Shi L, Zeng G. Quorum quenching bacteria encapsulated in PAC-PVA beads for enhanced membrane antifouling properties. Enzyme Microb Technol 2018; 117:72-78. [DOI: 10.1016/j.enzmictec.2018.06.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 05/26/2018] [Accepted: 06/15/2018] [Indexed: 02/04/2023]
|
26
|
Facile recycling of Escherichia coli and Saccharomyces cerevisiae cells from suspensions using magnetic modification method and mechanism analysis. Colloids Surf B Biointerfaces 2018; 169:1-9. [DOI: 10.1016/j.colsurfb.2018.05.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 04/04/2018] [Accepted: 05/02/2018] [Indexed: 01/31/2023]
|
27
|
Al-Jwaid AK, Berillo D, Savina IN, Cundy AB, Caplin JL. One-step formation of three-dimensional macroporous bacterial sponges as a novel approach for the preparation of bioreactors for bioremediation and green treatment of water. RSC Adv 2018; 8:30813-30824. [PMID: 35548719 PMCID: PMC9085471 DOI: 10.1039/c8ra04219e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 08/14/2018] [Indexed: 11/21/2022] Open
Abstract
Immobilisation of bacteria on or into a polymer support is a common method for the utilisation of bacteria as biocatalysts for many biotechnological, medical and environmental applications. The main challenge in this approach is the time taken for the formation of stable biofilms, and the typically low percentage of bacterial cells present on or in the polymer matrix. In this work we propose a novel method for producing a porous bacteria based structure with the properties of a sponge (bacterial sponge) that we then use as a bioreactor for water treatment. Cryogelation has been used as a tool to create macroporous (i.e. with pores in the range 10-100 μm), highly permeable systems with low diffusion constraints and high bacterial content (more than 98% to total material content). A novel crosslinking system was used to form stable bacterial sponges with a high percentage of live bacteria organized in a 3D porous structure. The bacterial sponge was produced in a one step process and can be made from one or several bacterial strains (in this case, two bacterial strains Pseudomonas mendocina and Rhodoccocus koreensis (and a mixture of both) were used). Reduction of the total polymer content to 2% makes the system more sustainable and environmentally friendly under disposal as it can be simply composted. The bacterial sponges have good mechanical stability and cell viability, which enables repeated use of the materials for phenol degradation for up to five weeks. The material can be stored and transported in cryogenic conditions (-80 °C) for prolonged periods of time, retaining its bioremediation activity following 4-6 weeks of frozen storage. The proposed method of producing bioreactors with a high number of live immobilised bacteria, low polymer content and controlled 3D structure is a promising tool for developing novel materials based on active bacterial cells for various environmental, biotechnological, biological and medical applications.
Collapse
Affiliation(s)
- Areej K Al-Jwaid
- School of Environment and Technology, University of Brighton Brighton UK
- Engineering Technical College/Basrah, Southern Technical University Basrah Iraq
| | - Dmitriy Berillo
- School of Pharmacy and Biomolecular Sciences, University of Brighton Brighton UK
| | - Irina N Savina
- School of Pharmacy and Biomolecular Sciences, University of Brighton Brighton UK
| | - Andrew B Cundy
- School of Ocean and Earth Science, University of Southampton Southampton UK
| | - Jonathan L Caplin
- School of Environment and Technology, University of Brighton Brighton UK
| |
Collapse
|
28
|
Duque R, Shan Y, Joya M, Ravichandran N, Asi B, Mobed-Miremadi M, Mulrooney S, McNeil M, Prakash S. Effect of artificial cell miniaturization on urea degradation by immobilized E. coli DH5α (pKAU17). ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018; 46:766-775. [PMID: 29961338 DOI: 10.1080/21691401.2018.1469026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Second generation E. coli DH5α (pKAU17) was successfully encapsulated by means of atomization (MA), inkjet printing (MI) and double-encapsulation (DDMI) for the purpose of urea degradation in a simulated uremic medium at 37 °C. Experimentally determined values of the effectiveness factor are 0.83, 0.28 and 0.34 for the MI, MA and DDMI capsules, respectively, suggesting that the catalytic activity of the E. coli DH5α (pKAU17) immobilized in MI capsule (d = 52 μm ± 2.7 μm) is significantly less diffusion-limited than in the case of the MA (d = 1558 μm ± 125 μm) and DDMI (d = 1370 μm ± 60 μm) bio-encapsulation schemes at the 98.3% CI. The proposed novel double encapsulation biofabrication method for alginate-based microspheres, characterized by lower membrane degradation rates due to secondary containment is recommended compared to the standard atomization scheme currently adopted across immobilization-based therapeutic scenarios. A Fickian-based mechanism is proposed with simulations mimicking urea degradation for a single capsule for the atomization and the inkjet schemes.
Collapse
Affiliation(s)
| | | | | | | | - Berok Asi
- e Genentech , South San Francisco , CA , USA
| | | | - Scott Mulrooney
- g Microbiology and Molecular Genetics , Michigan State University , East Lansing , MI , USA
| | - Melanie McNeil
- h Department of Biomedical, Chemical and Materials Engineering , San Jose State University , San Jose , CA , USA
| | - Satya Prakash
- i Department of Biomedical Engineering , McGill University , Montreal , Quebec , Canada
| |
Collapse
|
29
|
Krasňan V, Plž M, Marr AC, Markošová K, Rosenberg M, Rebroš M. Intensified crude glycerol conversion to butanol by immobilized Clostridium pasteurianum. Biochem Eng J 2018. [DOI: 10.1016/j.bej.2018.03.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
30
|
Moore D, Saraf RF. Simultaneous Printing of Two Inks by Contact Lithography. ACS APPLIED MATERIALS & INTERFACES 2018; 10:14193-14199. [PMID: 29617566 DOI: 10.1021/acsami.8b03038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Microcontact printing (μCP) is a valuable technique used to fabricate complex patterns on surfaces for applications such as sensors, cell seeding, self-assembled monolayers of proteins and nanoparticles, and micromachining. The process is very precise but is typically confined to depositing a single type of ink per print, which limits the complexity of using multifunctionality patterns. Here we describe a process by which two inks are printed concomitantly in a single operation to create an alternating pattern of hydrophobic and hydrophilic characteristics. The hydrophobic ink, PDMS, is deposited by evaporation on the noncontact region, while the hydrophilic polyelectrolyte is transferred on contact. We demonstrate that there is no gap between the two patterns using an optical-electrochemical method. We describe some potential applications of this method, including layer-by-layer deposition of polyelectrolytes for sensors and creation of a scaffold for cell culture.
Collapse
Affiliation(s)
- David Moore
- Department of Chemical and Biomolecular Engineering , University of Nebraska-Lincoln , Lincoln , Nebraska 68588 , United States
| | - Ravi F Saraf
- Department of Chemical and Biomolecular Engineering , University of Nebraska-Lincoln , Lincoln , Nebraska 68588 , United States
| |
Collapse
|
31
|
Li H, Lu X, Chen K, Yang J, Zhang A, Wang X, Ouyang P. β-alanine production using whole-cell biocatalysts in recombinant Escherichia coli. MOLECULAR CATALYSIS 2018. [DOI: 10.1016/j.mcat.2018.02.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
32
|
Zou SP, Huang JW, Xue YP, Zheng YG. Highly efficient production of 1-cyanocyclohexaneacetic acid by cross-linked cell aggregates (CLCAs) of recombinant E. coli harboring nitrilase gene. Process Biochem 2018. [DOI: 10.1016/j.procbio.2017.10.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
33
|
Chao C, Guan H, Zhang J, Liu Y, Zhao Y, Zhang B. Immobilization of laccase onto porous polyvinyl alcohol/halloysite hybrid beads for dye removal. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2018; 77:809-818. [PMID: 29431726 DOI: 10.2166/wst.2017.594] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Laccase was immobilized in polyvinyl alcohol beads containing halloysite nanotubes (PVA/HNTs) to improve the stability and reusability of enzyme. The porous structure of PVA/HNTs beads facilitates the entrapment of enzyme and prevents the leaching of immobilized laccase as well. Halloysite nanotubes act as bridge to connect the adjacent pores, facilitating the electron transfer and enhancing the mechanical properties. PVA/HNTs beads have high laccase immobilization capacity (237.02 mg/g) and activity recovery yield (79.15%), indicating it can be used as potential support for laccase immobilization. Compared with free laccase, the immobilized laccase on hybrid beads exhibits enhanced pH tolerance (even at pH 8.0), good thermal stability (57.5% of the initial activity can be maintained at 75 °C), and excellent storage stability (81.17% of enzyme activity could be retained after storage at 4 °C for 5 weeks compared with that for free enzyme of 60%). Also, the removal efficiency for reactive blue can reach as high as 93.41% in the presence of redox mediator 2,2-azinobis(3-ethylbenzthiazoline-6-sulfonate), in which adsorption and degradation exist simultaneously. The remarkable pH tolerance, thermal and storage stability, and reuse ability imply potential application of porous PVA/HNTs immobilized enzyme in environmental fields.
Collapse
Affiliation(s)
- Cong Chao
- School of Chemical Engineering and Energy, Zhengzhou University, Zhengzhou 450001, China E-mail: ; School of Energy and Environment Engineering, Zhongyuan University of Technology, Zhengzhou 450007, China
| | - Huijuan Guan
- School of Chemical Engineering and Energy, Zhengzhou University, Zhengzhou 450001, China E-mail:
| | - Jun Zhang
- School of Chemical Engineering and Energy, Zhengzhou University, Zhengzhou 450001, China E-mail:
| | - Yang Liu
- School of Chemical Engineering and Energy, Zhengzhou University, Zhengzhou 450001, China E-mail:
| | - Yafei Zhao
- School of Chemical Engineering and Energy, Zhengzhou University, Zhengzhou 450001, China E-mail: ; Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, Beijing University of Chemical Technology, Beijing 100029, China
| | - Bing Zhang
- School of Chemical Engineering and Energy, Zhengzhou University, Zhengzhou 450001, China E-mail:
| |
Collapse
|
34
|
Lechner H, Soriano P, Poschner R, Hailes HC, Ward JM, Kroutil W. Library of Norcoclaurine Synthases and Their Immobilization for Biocatalytic Transformations. Biotechnol J 2017; 13:e1700542. [DOI: 10.1002/biot.201700542] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 10/17/2017] [Indexed: 11/09/2022]
Affiliation(s)
- Horst Lechner
- Institute of Chemistry; University of Graz, NAWI Graz, BioTechMed Graz; Heinrichstraße 28 8010 Graz Austria
| | - Pablo Soriano
- Institute of Chemistry; University of Graz, NAWI Graz, BioTechMed Graz; Heinrichstraße 28 8010 Graz Austria
| | - Roman Poschner
- Institute of Chemistry; University of Graz, NAWI Graz, BioTechMed Graz; Heinrichstraße 28 8010 Graz Austria
| | - Helen C. Hailes
- Department of Chemistry; University College London; 20 Gordon Street, WC1H 0AJ London UK
| | - John M. Ward
- Department of Biochemical Engineering; University College London; Gower Street, WC1E 6BT London UK
| | - Wolfgang Kroutil
- Institute of Chemistry; University of Graz, NAWI Graz, BioTechMed Graz; Heinrichstraße 28 8010 Graz Austria
| |
Collapse
|
35
|
Liu J, Li J, Shin HD, Liu L, Du G, Chen J. Protein and metabolic engineering for the production of organic acids. BIORESOURCE TECHNOLOGY 2017; 239:412-421. [PMID: 28538198 DOI: 10.1016/j.biortech.2017.04.052] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 04/10/2017] [Accepted: 04/12/2017] [Indexed: 06/07/2023]
Abstract
Organic acids are natural metabolites of living organisms. They have been widely applied in the food, pharmaceutical, and bio-based materials industries. In recent years, biotechnological routes to organic acids production from renewable raw materials have been regarded as very promising approaches. In this review, we provide an overview of current developments in the production of organic acids using protein and metabolic engineering strategies. The organic acids include propionic acid, pyruvate, itaconic acid, succinic acid, fumaric acid, malic acid and citric acid. We also expect that rapid developments in the fields of systems biology and synthetic biology will accelerate protein and metabolic engineering for microbial organic acid production in the future.
Collapse
Affiliation(s)
- Jingjing Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Jianghua Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China.
| | - Hyun-Dong Shin
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta 30332, USA
| | - Long Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Guocheng Du
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Jian Chen
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
36
|
Liu S, Liu J, Hou J, Chao N, Gai Y, Jiang X. Three steps in one pot: biosynthesis of 4-hydroxycinnamyl alcohols using immobilized whole cells of two genetically engineered Escherichia coli strains. Microb Cell Fact 2017; 16:104. [PMID: 28606145 PMCID: PMC5468945 DOI: 10.1186/s12934-017-0722-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Accepted: 06/07/2017] [Indexed: 11/13/2022] Open
Abstract
Background 4-Hydroxycinnamyl alcohols are a class of natural plant secondary metabolites that include p-coumaryl alcohol, caffeyl alcohol, coniferyl alcohol and sinapyl alcohol, and have physiological, ecological and biomedical significance. While it is necessary to investigate the biological pathways and economic value of these alcohols, research is hindered because of their limited availability and high cost. Traditionally, these alcohols are obtained by chemical synthesis and plant extraction. However, synthesis by biotransformation with immobilized microorganisms is of great interest because it is environmentally friendly and offers high stability and regenerable cofactors. Therefore, we produced 4-hydroxycinnamyl alcohols using immobilized whole cells of engineered Escherichia coli as the biocatalyst. Results In this study, we used the recombinant E. coli strain, M15–4CL1–CCR, expressing the fusion protein 4-coumaric acid: coenzyme A ligase and the cinnamoyl coenzyme A reductase and a recombinant E. coli strain, M15–CAD, expressing cinnamyl alcohol dehydrogenase from Populus tomentosa (P. tomentosa). High performance liquid chromatography and mass spectrometry showed that the immobilized whole cells of the two recombinant E. coli strains could effectively convert the phenylpropanoic acids to their corresponding 4-hydroxycinnamyl alcohols. Further, the optimum buffer pH and the reaction temperature were pH 7.0 and 30 °C. Under these conditions, the molar yield of the p-coumaryl alcohol, the caffeyl alcohol and the coniferyl alcohol was around 58, 24 and 60%, respectively. Moreover, the highly sensitive and selective HPLC–PDA–ESI–MSn method used in this study could be applied to the identification and quantification of these aromatic polymers. Conclusions We have developed a dual-cell immobilization system for the production of 4-hydroxycinnamyl alcohols from inexpensive phenylpropanoic acids. This biotransformation method is both simple and environmental-friendly, which is promising for the practical and cost effective synthesis of natural products.Biotransformation process of phenylpropanoic acids by immobilized whole-cells ![]()
Collapse
Affiliation(s)
- Shuxin Liu
- College of Biological Science and Technology, Beijing Forestry University, Beijing, 100083, People's Republic of China
| | - Jiabin Liu
- College of Biological Science and Technology, Beijing Forestry University, Beijing, 100083, People's Republic of China
| | - Jiayin Hou
- College of Biological Science and Technology, Beijing Forestry University, Beijing, 100083, People's Republic of China
| | - Nan Chao
- College of Biological Science and Technology, Beijing Forestry University, Beijing, 100083, People's Republic of China
| | - Ying Gai
- College of Biological Science and Technology, Beijing Forestry University, Beijing, 100083, People's Republic of China.,The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of Chinese Forestry Administration, National Engineering Laboratory for Tree Breeding, Beijing, 100083, People's Republic of China
| | - Xiangning Jiang
- College of Biological Science and Technology, Beijing Forestry University, Beijing, 100083, People's Republic of China. .,The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of Chinese Forestry Administration, National Engineering Laboratory for Tree Breeding, Beijing, 100083, People's Republic of China.
| |
Collapse
|
37
|
De Geyter J, Tsirigotaki A, Orfanoudaki G, Zorzini V, Economou A, Karamanou S. Protein folding in the cell envelope of Escherichia coli. Nat Microbiol 2016; 1:16107. [PMID: 27573113 DOI: 10.1038/nmicrobiol.2016.107] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 06/02/2016] [Indexed: 11/09/2022]
Abstract
While the entire proteome is synthesized on cytoplasmic ribosomes, almost half associates with, localizes in or crosses the bacterial cell envelope. In Escherichia coli a variety of mechanisms are important for taking these polypeptides into or across the plasma membrane, maintaining them in soluble form, trafficking them to their correct cell envelope locations and then folding them into the right structures. The fidelity of these processes must be maintained under various environmental conditions including during stress; if this fails, proteases are called in to degrade mislocalized or aggregated proteins. Various soluble, diffusible chaperones (acting as holdases, foldases or pilotins) and folding catalysts are also utilized to restore proteostasis. These responses can be general, dealing with multiple polypeptides, with functional overlaps and operating within redundant networks. Other chaperones are specialized factors, dealing only with a few exported proteins. Several complex machineries have evolved to deal with binding to, integration in and crossing of the outer membrane. This complex protein network is responsible for fundamental cellular processes such as cell wall biogenesis; cell division; the export, uptake and degradation of molecules; and resistance against exogenous toxic factors. The underlying processes, contributing to our fundamental understanding of proteostasis, are a treasure trove for the development of novel antibiotics, biopharmaceuticals and vaccines.
Collapse
Affiliation(s)
- Jozefien De Geyter
- KU Leuven-University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular Bacteriology, B-3000 Leuven, Belgium
| | - Alexandra Tsirigotaki
- KU Leuven-University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular Bacteriology, B-3000 Leuven, Belgium
| | - Georgia Orfanoudaki
- Institute of Molecular Biology and Biotechnology, FORTH and Department of Biology, University of Crete, PO Box 1385, GR-711 10 Iraklio, Crete, Greece
| | - Valentina Zorzini
- KU Leuven-University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular Bacteriology, B-3000 Leuven, Belgium
| | - Anastassios Economou
- KU Leuven-University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular Bacteriology, B-3000 Leuven, Belgium.,Institute of Molecular Biology and Biotechnology, FORTH and Department of Biology, University of Crete, PO Box 1385, GR-711 10 Iraklio, Crete, Greece
| | - Spyridoula Karamanou
- KU Leuven-University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular Bacteriology, B-3000 Leuven, Belgium
| |
Collapse
|
38
|
Wachtmeister J, Rother D. Recent advances in whole cell biocatalysis techniques bridging from investigative to industrial scale. Curr Opin Biotechnol 2016; 42:169-177. [PMID: 27318259 DOI: 10.1016/j.copbio.2016.05.005] [Citation(s) in RCA: 190] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 05/20/2016] [Accepted: 05/21/2016] [Indexed: 11/25/2022]
Abstract
Recent advances in biocatalysis have strongly boosted its recognition as a valuable addition to traditional chemical synthesis routes. As for any catalytic process, catalyst's costs and stabilities are of highest relevance for the economic application in chemical manufacturing. Employing biocatalysts as whole cells circumvents the need of cell lysis and enzyme purification and hence strongly cuts on cost. At the same time, residual cell wall components can shield the entrapped enzyme from potentially harmful surroundings and aid to enable applications far from natural enzymatic environments. Further advantages are the close proximity of reactants and catalysts as well as the inherent presence of expensive cofactors. Here, we review and comment on benefits and recent advances in whole cell biocatalysis.
Collapse
Affiliation(s)
| | - Dörte Rother
- IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52428 Jülich, Germany.
| |
Collapse
|
39
|
Krasňan V, Stloukal R, Rosenberg M, Rebroš M. Immobilization of cells and enzymes to LentiKats®. Appl Microbiol Biotechnol 2016; 100:2535-53. [PMID: 26795964 DOI: 10.1007/s00253-016-7283-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 12/22/2015] [Accepted: 12/28/2015] [Indexed: 12/16/2022]
Abstract
Biocatalyst immobilization is one of the techniques, which can improve whole cells or enzyme applications. This method, based on the fixation of the biocatalyst into or onto various materials, may increase robustness of the biocatalyst, allows its reuse, or improves the product yield. In recent decades, a number of immobilization techniques have been developed. They can be divided according to the used natural or synthetic material and principle of biocatalyst fixation in the particle. One option, based on the entrapment of cells or enzymes into a synthetic polyvinyl alcohol lens with original shape, is LentiKats® immobilization. This review describes the preparation principle of these particles and summarizes existing successful LentiKats® immobilizations. In addition, examples are compared with other immobilization techniques or free biocatalysts, pointing to the advantages and disadvantages of LentiKats®.
Collapse
Affiliation(s)
- Vladimír Krasňan
- Slovak University of Technology, Radlinského 9, 812 37, Bratislava, Slovakia
| | - Radek Stloukal
- LentiKat's a.s., Pod Vinicí 83, 471 27, Stráž pod Ralskem, Czech Republic
| | - Michal Rosenberg
- Slovak University of Technology, Radlinského 9, 812 37, Bratislava, Slovakia
| | - Martin Rebroš
- Slovak University of Technology, Radlinského 9, 812 37, Bratislava, Slovakia.
| |
Collapse
|
40
|
Wachtmeister J, Mennicken P, Hunold A, Rother D. Modularized Biocatalysis: Immobilization of Whole Cells for Preparative Applications in Microaqueous Organic Solvents. ChemCatChem 2015. [DOI: 10.1002/cctc.201501099] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jochen Wachtmeister
- Institute of Bio- and Geosciences, IBG-1: Biotechnology; Forschungszentrum Jülich GmbH; 52425 Jülich Germany
| | - Philip Mennicken
- Institute of Bio- and Geosciences, IBG-1: Biotechnology; Forschungszentrum Jülich GmbH; 52425 Jülich Germany
| | - Andreas Hunold
- Institute of Bio- and Geosciences, IBG-1: Biotechnology; Forschungszentrum Jülich GmbH; 52425 Jülich Germany
| | - Dörte Rother
- Institute of Bio- and Geosciences, IBG-1: Biotechnology; Forschungszentrum Jülich GmbH; 52425 Jülich Germany
| |
Collapse
|
41
|
Silica Gel for Enhanced Activity and Hypochlorite Protection of Cyanuric Acid Hydrolase in Recombinant Escherichia coli. mBio 2015; 6:e01477-15. [PMID: 26530383 PMCID: PMC4631802 DOI: 10.1128/mbio.01477-15] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Chlorinated isocyanuric acids are widely used water disinfectants that generate hypochlorite, but with repeated application, they build up cyanuric acid (CYA) that must be removed to maintain disinfection. 3-Aminopropyltriethoxysilane (APTES)-treated Escherichia coli cells expressing cyanuric acid hydrolase (CAH) from Moorella thermoacetica exhibited significantly high CYA degradation rates and provided protection against enzyme inactivation by hypochlorite (chlorine). APTES coating or encapsulation of cells had two benefits: (i) overcoming diffusion limitations imposed by the cell wall and (ii) protecting against hypochlorite inactivation of CAH activity. Cells encapsulated in APTES gels degraded CYA three times faster than nonfunctionalized tetraethoxysilane (TEOS) gels, and cells coated with APTES degraded CYA at a rate of 29 µmol/min per mg of CAH protein, similar to the rate with purified enzyme. UV spectroscopy, fluorescence spectroscopy, and scanning electron microscopy showed that the higher rates were due to APTES increasing membrane permeability and enhancing cyanuric acid diffusion into the cytoplasm to reach the CAH enzyme. Purified CAH enzyme was shown to be rapidly inactivated by hypochlorite. APTES aggregates surrounding cells protected via the amine groups reacting with hypochlorite as shown by pH changes, zeta potential measurements, and infrared spectroscopy. APTES-encapsulated E. coli cells expressing CAH degraded cyanuric acid at high rates in the presence of 1 to 10 ppm hypochlorite, showing effectiveness under swimming pool conditions. In contrast, CAH activity in TEOS gels or free cells was completely inactivated by hypochlorite. These studies show that commercially available silica materials can selectively enhance, protect, and immobilize whole-cell biocatalysts for specialized applications. Hypochlorite is used in vast quantities for water disinfection, killing bacteria on surfaces, and washing and whitening. In pools, spas, and other waters, hypochlorite is frequently delivered as chlorinated isocyanuric acids that release hypochlorite and cyanuric acid. Over time, cyanuric acid accumulates and impairs disinfection and must be removed. The microbial enzyme cyanuric acid hydrolase can potentially remove cyanuric acid to restore disinfection and protect swimmers. Whole bacterial cells expressing cyanuric acid hydrolase were encapsulated in an inert silica matrix containing an amine group. The amine group serves to permeabilize the cell membrane and accelerate cyanuric acid degradation, and it also reacts with hypochlorite to protect against inactivation of cyanuric acid hydrolase. Methods for promoting whole-cell biocatalysis are important in biotechnology, and the present work illustrates approaches to enhance rates and protect against an inhibitory substance.
Collapse
|
42
|
Gotovtsev PM, Yuzbasheva EY, Gorin KV, Butylin VV, Badranova GU, Perkovskaya NI, Mostova EB, Namsaraev ZB, Rudneva NI, Komova AV, Vasilov RG, Sineokii SP. Immobilization of microbial cells for biotechnological production: Modern solutions and promising technologies. APPL BIOCHEM MICRO+ 2015. [DOI: 10.1134/s0003683815080025] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
43
|
Biocatalysis and biotransformation in Brazil: An overview. Biotechnol Adv 2015; 33:481-510. [PMID: 25687277 DOI: 10.1016/j.biotechadv.2015.02.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 02/05/2015] [Accepted: 02/05/2015] [Indexed: 12/12/2022]
Abstract
This review presents the recent research in biocatalysis and biotransformation in Brazil. Several substrates were biotransformed by fungi, bacteria and plants. Biocatalytic deracemization of secondary alcohols, oxidation of sulfides, sp(3) CH hydroxylation and epoxidation of alkenes were described. Chemo-enzymatic resolution of racemic alcohols and amines were carried out with lipases using several substrates containing heteroatoms such as silicon, boron, selenium and tellurium. Biotransformation of nitriles by marine fungi, hydrolysis of epoxides by microorganisms of Brazilian origin and biooxidation of natural products were described. Enzymatic reactions under microwave irradiation, continuous flow, and enzymatic assays using fluorescent probes were reported.
Collapse
|
44
|
Zajkoska P, Rosenberg M, Heath R, Malone KJ, Stloukal R, Turner NJ, Rebroš M. Immobilised whole-cell recombinant monoamine oxidase biocatalysis. Appl Microbiol Biotechnol 2014; 99:1229-36. [DOI: 10.1007/s00253-014-5983-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 07/21/2014] [Accepted: 07/23/2014] [Indexed: 11/24/2022]
|
45
|
Jovanovic P, Jeremic S, Djokic L, Savic V, Radivojevic J, Maslak V, Ivkovic B, Vasiljevic B, Nikodinovic-Runic J. Chemoselective biocatalytic reduction of conjugated nitroalkenes: new application for an Escherichia coli BL21(DE3) expression strain. Enzyme Microb Technol 2014; 60:16-23. [PMID: 24835095 DOI: 10.1016/j.enzmictec.2014.03.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2013] [Revised: 02/26/2014] [Accepted: 03/20/2014] [Indexed: 11/29/2022]
Abstract
Chemoselective reduction of activated carbon-carbon double bond in conjugated nitroalkenes was achieved using Escherichia coli BL21(DE3) whole cells. Nine different substrates have been used furnishing the reduced products in moderate to good yields. 1-Nitro-4-phenyl-1,3-butadiene and (2-nitro-1-propenyl)benzene were successfully biotransformed with corresponding product yields of 54% and 45% respectively. Using this simple and environmentally friendly system 2-(2-nitropropyl)pyridine and 2-(2-nitropropyl)naphthalene were synthesized and characterized for the first time. High substrate conversion efficiency was coupled with low enantioselectivity, however 29% enantiomeric excess was detected in the case of 2-(2-nitropropyl)pyridine. It was shown that electronic properties of the aromatic ring, which affected polarity of the double bond, were not highly influential factors in the reduction process, but the presence of the nitro functionality was essential for the reaction to proceed. 1-Phenyl-4-nitro-1,3-butadiene could not be biotransformed by whole cells of Pseudomonas putida KT2440 or Bacillus subtilis 168 while it was successfully reduced by E. coli DH5α but with lower efficiency in comparison to E. coli BL21(DE3). Knockout mutant affected in nemA gene coding for N-ethylmaleimide reductase (BL21ΔnemA) could still catalyze bioreductions suggesting multiple active reductases within E. coli BL21(DE3) biocatalyst. The described biocatalytic reduction of substituted nitroalkenes provides an efficient route for the preparation of the corresponding nitroalkanes and introduces the new application of the strain traditionally utilized for recombinant protein expression.
Collapse
Affiliation(s)
- Predrag Jovanovic
- Department of Organic Chemistry, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia
| | - Sanja Jeremic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, P.O. Box 23, 11010 Belgrade, Serbia
| | - Lidija Djokic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, P.O. Box 23, 11010 Belgrade, Serbia
| | - Vladimir Savic
- Department of Organic Chemistry, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia
| | - Jelena Radivojevic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, P.O. Box 23, 11010 Belgrade, Serbia; Faculty of Chemistry, University of Belgrade, Studentski Trg 12-16, 11000 Belgrade, Serbia
| | - Veselin Maslak
- Faculty of Chemistry, University of Belgrade, Studentski Trg 12-16, 11000 Belgrade, Serbia
| | - Branka Ivkovic
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia
| | - Branka Vasiljevic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, P.O. Box 23, 11010 Belgrade, Serbia
| | - Jasmina Nikodinovic-Runic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, P.O. Box 23, 11010 Belgrade, Serbia.
| |
Collapse
|
46
|
Cao H, Ye H, Li C, Zheng LL, Li Y, Ouyang QF. Effect of microencapsulated cell preparation technology and conditions on the catalytic performance of Penicillium purpurogenum Li-3 strain cells. Process Biochem 2014. [DOI: 10.1016/j.procbio.2014.01.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
47
|
Biosynthesis of CGTase by immobilized alkalophilic bacilli and crystallization of beta-cyclodextrin: Effective techniques to investigate cell immobilization and the production of cyclodextrins. Biochem Eng J 2014. [DOI: 10.1016/j.bej.2013.12.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
48
|
Rebroš M, Pilniková A, ŠImčíková D, Weignerová L, Stloukal R, Křen V, Rosenberg M. Recombinant α-L-rhamnosidase ofAspergillus terreusimmobilization in polyvinylalcohol hydrogel and its application in rutin derhamnosylation. BIOCATAL BIOTRANSFOR 2013. [DOI: 10.3109/10242422.2013.858711] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
49
|
Denard CA, Hartwig JF, Zhao H. Multistep One-Pot Reactions Combining Biocatalysts and Chemical Catalysts for Asymmetric Synthesis. ACS Catal 2013. [DOI: 10.1021/cs400633a] [Citation(s) in RCA: 188] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
| | - John F. Hartwig
- Department
of Chemistry, University of California−Berkeley, Berkeley, California, United States
| | | |
Collapse
|