1
|
Sun M, Song R, Fang Y, Xu J, Yang Z, Zhang H. DNA-Based Complexes and Composites: A Review of Fabrication Methods, Properties, and Applications. ACS APPLIED MATERIALS & INTERFACES 2024; 16:51899-51915. [PMID: 39314016 DOI: 10.1021/acsami.4c13357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Deoxyribonucleic acid (DNA), a macromolecule that stores genetic information in organisms, has recently been gradually developed into a building block for new materials due to its stable chemical structure and excellent biocompatibility. The efficient preparation and functional integration of various molecular complexes and composite materials based on nucleic acid skeletons have been successfully achieved. These versatile materials possess excellent physical and chemical properties inherent to certain inorganic or organic molecules but are endowed with specific physiological functions by nucleic acids, demonstrating unique advantages and potential applications in materials science, nanotechnology, and biomedical engineering in recent years. However, issues such as the production cost, biological stability, and potential immunogenicity of DNA have presented some unprecedented challenges to the application of these materials in the field. This review summarizes the cutting-edge manufacturing techniques and unique properties of DNA-based complexes and composites and discusses the trends, challenges, and opportunities for the future development of nucleic acid-based materials.
Collapse
Affiliation(s)
- Mengqiu Sun
- School of Physical Sciences, Great Bay University, Dongguan 523000, China
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Rui Song
- School of Physical Sciences, Great Bay University, Dongguan 523000, China
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen 518063, China
| | - Yangwu Fang
- School of Physical Sciences, Great Bay University, Dongguan 523000, China
| | - Jiuzhou Xu
- School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Zhaoqi Yang
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Hao Zhang
- School of Physical Sciences, Great Bay University, Dongguan 523000, China
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen 518063, China
| |
Collapse
|
2
|
Williams-Fegredo T, Davies L, Knevelman C, Mitrophanous K, Miskin J, Rafiq QA. Degradation of specific glycosaminoglycans improves transfection efficiency and vector production in transient lentiviral vector manufacturing processes. Front Bioeng Biotechnol 2024; 12:1409203. [PMID: 38994127 PMCID: PMC11238175 DOI: 10.3389/fbioe.2024.1409203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 06/04/2024] [Indexed: 07/13/2024] Open
Abstract
Both cell surface and soluble extracellular glycosaminoglycans have been shown to interfere with the exogenous nucleic acid delivery efficiency of non-viral gene delivery, including lipoplex and polyplex-mediated transfection. Most gene therapy viral vectors used commercially and in clinical trials are currently manufactured using transient transfection-based bioprocesses. The growing demand for viral vector products, coupled with a global shortage in production capability, requires improved transfection technologies and processes to maximise process efficiency and productivity. Soluble extracellular glycosaminoglycans were found to accumulate in the conditioned cell culture medium of suspension adapted HEK293T cell cultures, compromising transfection performance and lentiviral vector production. The enzymatic degradation of specific, chondroitin sulphate-based, glycosaminoglycans with chondroitinase ABC was found to significantly enhance transfection performance. Additionally, we report significant improvements in functional lentiviral vector titre when cultivating cells at higher cell densities than those utilised in a control lentiviral vector bioprocess; an improvement that was further enhanced when cultures were supplemented with chondroitinase ABC prior to transfection. A 71.2% increase in functional lentiviral vector titre was calculated when doubling the cell density prior to transfection compared to the existing process and treatment of the high-density cell cultures with 0.1 U/mL chondroitinase ABC resulted in a further 18.6% increase in titre, presenting a method that can effectively enhance transfection performance.
Collapse
Affiliation(s)
- Thomas Williams-Fegredo
- Oxford Biomedica (UK) Limited, Oxford, United Kingdom
- Department of Biochemical Engineering, Advanced Centre for Biochemical Engineering, University College London, London, United Kingdom
| | - Lee Davies
- Oxford Biomedica (UK) Limited, Oxford, United Kingdom
| | | | | | - James Miskin
- Oxford Biomedica (UK) Limited, Oxford, United Kingdom
| | - Qasim A. Rafiq
- Department of Biochemical Engineering, Advanced Centre for Biochemical Engineering, University College London, London, United Kingdom
| |
Collapse
|
3
|
Williams-Fegredo T, Davies L, Knevelman C, Mitrophanous K, Miskin J, Rafiq QA. Development of novel lipoplex formulation methodologies to improve large-scale transient transfection for lentiviral vector manufacture. Mol Ther Methods Clin Dev 2024; 32:101260. [PMID: 38745895 PMCID: PMC11092396 DOI: 10.1016/j.omtm.2024.101260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 04/24/2024] [Indexed: 05/16/2024]
Abstract
Large-scale transient transfection has advanced significantly over the last 20 years, enabling the effective production of a diverse range of biopharmaceutical products, including viral vectors. However, a number of challenges specifically related to transfection reagent stability and transfection complex preparation times remain. New developments and improved transfection technologies are required to ensure that transient gene expression-based bioprocesses can meet the growing demand for viral vectors. In this paper, we demonstrate that the growth of cationic lipid-based liposomes, an essential step in many cationic lipid-based transfection processes, can be controlled through adoption of low pH (pH 6.40 to pH 6.75) and in low salt concentration (0.2× PBS) formulations, facilitating improved control over the nanoparticle growth kinetics and enhancing particle stability. Such complexes retain the ability to facilitate efficient transfection for prolonged periods compared with standard preparation methodologies. These findings have significant industrial applications for the large-scale manufacture of lentiviral vectors for two principal reasons. First, the alternative preparation strategy enables longer liposome incubation times to be used, facilitating effective control in a good manufacturing practices setting. Second, the improvement in particle stability facilitates the setting of wider process operating ranges, which will significantly improve process robustness and maximise batch-to-batch control and product consistency.
Collapse
Affiliation(s)
- Thomas Williams-Fegredo
- Oxford Biomedica (UK) Limited, Windrush Court, Transport Way, Oxford OX4 6LT, UK
- Advanced Centre for Biochemical Engineering, Department of Biochemical Engineering, University College London, Bernard Katz Building, Gower Street, London WC1E 6BT, UK
| | - Lee Davies
- Oxford Biomedica (UK) Limited, Windrush Court, Transport Way, Oxford OX4 6LT, UK
| | - Carol Knevelman
- Oxford Biomedica (UK) Limited, Windrush Court, Transport Way, Oxford OX4 6LT, UK
| | | | - James Miskin
- Oxford Biomedica (UK) Limited, Windrush Court, Transport Way, Oxford OX4 6LT, UK
| | - Qasim A. Rafiq
- Advanced Centre for Biochemical Engineering, Department of Biochemical Engineering, University College London, Bernard Katz Building, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
4
|
Bisht D, Salave S, Desai N, Gogoi P, Rana D, Biswal P, Sarma G, Benival D, Kommineni N, Desai D. Genome editing and its role in vaccine, diagnosis, and therapeutic advancement. Int J Biol Macromol 2024; 269:131802. [PMID: 38670178 DOI: 10.1016/j.ijbiomac.2024.131802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 02/25/2024] [Accepted: 03/15/2024] [Indexed: 04/28/2024]
Abstract
Genome editing involves precise modification of specific nucleotides in the genome using nucleases like CRISPR/Cas, ZFN, or TALEN, leading to increased efficiency of homologous recombination (HR) for gene editing, and it can result in gene disruption events via non-homologous end joining (NHEJ) or homology-driven repair (HDR). Genome editing, particularly CRISPR-Cas9, revolutionizes vaccine development by enabling precise modifications of pathogen genomes, leading to enhanced vaccine efficacy and safety. It allows for tailored antigen optimization, improved vector design, and deeper insights into host genes' impact on vaccine responses, ultimately enhancing vaccine development and manufacturing processes. This review highlights different types of genome editing methods, their associated risks, approaches to overcome the shortcomings, and the diverse roles of genome editing.
Collapse
Affiliation(s)
- Deepanker Bisht
- ICAR- Indian Veterinary Research Institute, Izatnagar 243122, Bareilly, India
| | - Sagar Salave
- National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad 382355, Gujarat, India
| | - Nimeet Desai
- Indian Institute of Technology Hyderabad, Kandi 502285, Telangana, India
| | - Purnima Gogoi
- School of Medicine and Public Health, University of Wisconsin and Madison, Madison, WI 53726, USA
| | - Dhwani Rana
- National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad 382355, Gujarat, India
| | - Prachurya Biswal
- College of Veterinary and Animal Sciences, Bihar Animal Sciences University, Kishanganj 855115, Bihar, India
| | - Gautami Sarma
- College of Veterinary & Animal Sciences, G. B. Pant University of Agriculture and Technology, Pantnagar 263145, U.S. Nagar, Uttarakhand, India
| | - Derajram Benival
- National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad 382355, Gujarat, India.
| | | | - Dhruv Desai
- School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
5
|
Chen J, Li F, Zhao B, Gu J, Brejcha NM, Bartoli M, Zhang W, Zhou Y, Fu S, Domena JB, Zafar A, Zhang F, Tagliaferro A, Verde F, Zhang F, Zhang Y, Leblanc RM. Gene Transfection Efficiency Improvement with Lipid Conjugated Cationic Carbon Dots. ACS APPLIED MATERIALS & INTERFACES 2024; 16:27087-27101. [PMID: 38752799 DOI: 10.1021/acsami.4c02614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
An ideal vehicle with a high transfection efficiency is crucial for gene delivery. In this study, a type of cationic carbon dot (CCD) known as APCDs were first prepared with arginine (Arg) and pentaethylenehexamine (PEHA) as precursors and conjugated with oleic acid (OA) for gene delivery. By tuning the mass ratio of APCDs to OA, APCDs-OA conjugates, namely, APCDs-0.5OA, APCDs-1.0OA, and APCDs-1.5OA were synthesized. All three amphiphilic APCDs-OA conjugates show high affinity to DNA through electrostatic interactions. APCDs-0.5OA exhibit strong binding with small interfering RNA (siRNA). After being internalized by Human Embryonic Kidney (HEK 293) and osteosarcoma (U2OS) cells, they could distribute in both the cytoplasm and the nucleus. With APCDs-OA conjugates as gene delivery vehicles, plasmid DNA (pDNA) that encodes the gene for the green fluorescence protein (GFP) can be successfully delivered in both HEK 293 and U2OS cells. The GFP expression levels mediated by APCDs-0.5OA and APCDs-1.0OA are ten times greater than that of PEI in HEK 293 cells. Furthermore, APCDs-0.5OA show prominent siRNA transfection efficiency, which is proven by the significantly downregulated expression of FANCA and FANCD2 proteins upon delivery of FANCA siRNA and FANCD2 siRNA into U2OS cells. In conclusion, our work demonstrates that conjugation of CCDs with a lipid structure such as OA significantly improves the gene transfection efficiency, providing a new idea about the designation of nonviral carriers in gene delivery systems.
Collapse
Affiliation(s)
- Jiuyan Chen
- Department of Chemistry, University of Miami, Coral Gables, Florida 33146, United States
| | - Fang Li
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, Florida 33136, United States
| | - Bowen Zhao
- Department of Chemistry, University of Miami, Coral Gables, Florida 33146, United States
| | - Jun Gu
- Department of Molecular and Cellular Pharmacology, Miller School of Medicine, University of Miami, Miami, Florida 33136, United States
| | - Nicholas Michael Brejcha
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, Florida 33136, United States
| | - Mattia Bartoli
- Department of Applied Science and Technology, Politecnico di Torino, Torino 10129, Italy
| | - Wei Zhang
- Department of Chemistry, University of Miami, Coral Gables, Florida 33146, United States
| | - Yiqun Zhou
- Department of Chemistry, University of Miami, Coral Gables, Florida 33146, United States
| | - Shiwei Fu
- Department of Chemistry, University of Miami, Coral Gables, Florida 33146, United States
| | - Justin B Domena
- Department of Chemistry, University of Miami, Coral Gables, Florida 33146, United States
| | - Alyan Zafar
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, Florida 33136, United States
| | - Fuwu Zhang
- Department of Chemistry, University of Miami, Coral Gables, Florida 33146, United States
| | - Alberto Tagliaferro
- Department of Applied Science and Technology, Politecnico di Torino, Torino 10129, Italy
| | - Fulvia Verde
- Department of Molecular and Cellular Pharmacology, Miller School of Medicine, University of Miami, Miami, Florida 33136, United States
| | - Fangliang Zhang
- Department of Molecular and Cellular Pharmacology, Miller School of Medicine, University of Miami, Miami, Florida 33136, United States
| | - Yanbin Zhang
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, Florida 33136, United States
| | - Roger M Leblanc
- Department of Chemistry, University of Miami, Coral Gables, Florida 33146, United States
| |
Collapse
|
6
|
Mahdieh A, Motasadizadeh H, Maghsoudian S, Sabzevari A, Khalili F, Yeganeh H, Nyström B. Novel polyurethane-based ionene nanoparticles electrostatically stabilized with hyaluronic acid for effective gene therapy. Colloids Surf B Biointerfaces 2024; 236:113802. [PMID: 38382225 DOI: 10.1016/j.colsurfb.2024.113802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/29/2024] [Accepted: 02/13/2024] [Indexed: 02/23/2024]
Abstract
Gene therapy is considered to be a valuable strategy for effective cancer treatment. However, the development of effective delivery systems that can specifically deliver gene materials, such as siRNA to tumor tissues plays a critical role in cancer therapy. In the present study, we have developed a novel complex that is based on an electrostatic interaction between cationic polyurethane ionene (CPUI) nanoparticles and an anti-signal transducer and activator of transcription 3 (STAT3) siRNA. For active targeting, hyaluronic acid (HA) was used to coat the complexes, which significantly reduced the cytotoxicity of the blank nanocarriers while demonstrating high transport efficiency of the siRNA via the CD44-mediated endocytosis pathway in MCF-7 breast cancer cells. The targeted nanocarriers (HA/CPUI/siRNA) showed significantly higher cellular internalization in flow cytometry and confocal microscopy compared with the non-targeted system (CPUI/siRNA). In addition, the incorporation of HA on the surface of the complexes resulted in significantly greater suppression of the STAT3 gene compared to the corresponding non-targeted formulation. Whole-body fluorescence images showed more significant tumor accumulation of the targeted nanocarriers in 4T1 breast tumor-bearing mice. Therefore, HA/CPUI/siRNA nanocarriers are an interesting option for the siRNA-targeted treatment of breast cancer cells.
Collapse
Affiliation(s)
- Athar Mahdieh
- Department of Pharmacy, Section for Pharmaceutics and Social Pharmacy, University of Oslo, Oslo, Norway
| | - Hamidreza Motasadizadeh
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Samane Maghsoudian
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Sabzevari
- Polymer Faculty, Biomedical Engineering Department, Meybod University, Meybod, Yazd, Iran; Polymer Engineering Department, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran
| | - Fereshte Khalili
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamid Yeganeh
- Iran Polymer and Petrochemical Institute, Tehran, Iran
| | - Bo Nyström
- Department of Chemistry, University of Oslo, Oslo, Norway.
| |
Collapse
|
7
|
Escalona-Rodriguez FA, Cruz-Leal Y, La O-Bonet J, Pérez-Erviti JA, Valdés-Tresanco ME, Rivero-Hernández AL, Sifontes-Niebla M, Manso-Vargas A, Sánchez B, Alvarez C, Barbosa LRS, Itri R, Lanio ME. Unveiling Sticholysin II and plasmid DNA interaction: Implications for developing non-viral vectors. Toxicon 2024; 238:107571. [PMID: 38141971 DOI: 10.1016/j.toxicon.2023.107571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 12/14/2023] [Accepted: 12/15/2023] [Indexed: 12/25/2023]
Abstract
Non-viral gene delivery systems offer significant potential for gene therapy due to their versatility, safety, and cost advantages over viral vectors. However, their effectiveness can be hindered by the challenge of efficiently releasing the genetic cargo from endosomes to prevent degradation in lysosomes. To overcome this obstacle, functional components can be incorporated into these systems. Sticholysin II (StII) is one of the pore-forming proteins derived from the sea anemone Stichodactyla helianthus, known for its high ability to permeabilize cellular and model membranes. In this study, we aimed to investigate the interaction between StII, and a model plasmid (pDNA) as an initial step towards designing an improved vector with enhanced endosomal escape capability. The electrophoretic mobility shift assay (EMSA) confirmed the formation of complexes between StII and pDNA. Computational predictions identified specific residues involved in the StII-DNA interaction interface, highlighting the importance of electrostatic interactions and hydrogen bonds in mediating the binding. Atomic force microscopy (AFM) of StII-pDNA complexes revealed the presence of nodular fiber and toroid shapes. These complexes were found to have a predominantly micrometer size, as confirmed by dynamic light scattering (DLS) measurements. Despite increase in the overall charge, the complexes formed at the evaluated nitrogen-to-phosphorus (N/P) ratios still maintained a negative charge. Moreover, StII retained its pore-forming capacity regardless of its binding to the complexes. These findings suggest that the potential ability of StII to permeabilize endosomal membranes could be largely maintained when combined with nucleic acid delivery systems. Additionally, the still remaining negative charge of the complexes would enable the association of another positively charged component to compact pDNA. However, to minimize non-specific cytotoxic effects, it is advisable to explore methods to regulate the protein's activity in response to the microenvironment.
Collapse
Affiliation(s)
- Felipe A Escalona-Rodriguez
- Center for Protein Studies, Faculty of Biology, University of Havana (UH), 25th Street, Corner to J Street, Square of Revolution, Havana, 10400, Cuba; NanoCancer, Molecular Immunology Center (CIM), 216 Street, Corner to 15 Street, Playa, Havana, 11600, Cuba.
| | - Yoelys Cruz-Leal
- Center for Protein Studies, Faculty of Biology, University of Havana (UH), 25th Street, Corner to J Street, Square of Revolution, Havana, 10400, Cuba.
| | - Javier La O-Bonet
- Center for Protein Studies, Faculty of Biology, University of Havana (UH), 25th Street, Corner to J Street, Square of Revolution, Havana, 10400, Cuba; NanoCancer, Molecular Immunology Center (CIM), 216 Street, Corner to 15 Street, Playa, Havana, 11600, Cuba.
| | - Julio A Pérez-Erviti
- Center for Protein Studies, Faculty of Biology, University of Havana (UH), 25th Street, Corner to J Street, Square of Revolution, Havana, 10400, Cuba.
| | - Mario Ernesto Valdés-Tresanco
- Center for Protein Studies, Faculty of Biology, University of Havana (UH), 25th Street, Corner to J Street, Square of Revolution, Havana, 10400, Cuba.
| | - Ada L Rivero-Hernández
- Center for Protein Studies, Faculty of Biology, University of Havana (UH), 25th Street, Corner to J Street, Square of Revolution, Havana, 10400, Cuba; NanoCancer, Molecular Immunology Center (CIM), 216 Street, Corner to 15 Street, Playa, Havana, 11600, Cuba.
| | - Maricary Sifontes-Niebla
- Center for Protein Studies, Faculty of Biology, University of Havana (UH), 25th Street, Corner to J Street, Square of Revolution, Havana, 10400, Cuba; NanoCancer, Molecular Immunology Center (CIM), 216 Street, Corner to 15 Street, Playa, Havana, 11600, Cuba.
| | - Alexis Manso-Vargas
- Immunology and Immunotherapy Direction, Molecular Immunology Center (CIM), 216 Street, Corner to 15 Street, Playa, Havana, 11600, Cuba.
| | - Belinda Sánchez
- Immunology and Immunotherapy Direction, Molecular Immunology Center (CIM), 216 Street, Corner to 15 Street, Playa, Havana, 11600, Cuba.
| | - Carlos Alvarez
- Center for Protein Studies, Faculty of Biology, University of Havana (UH), 25th Street, Corner to J Street, Square of Revolution, Havana, 10400, Cuba; NanoCancer, Molecular Immunology Center (CIM), 216 Street, Corner to 15 Street, Playa, Havana, 11600, Cuba.
| | - Leandro R S Barbosa
- Institute of Physics, University of São Paulo, São Paulo, 05508-090, Brazil; Brazilian Synchrotron Light Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, 13083-100, SP, Brazil.
| | - Rosangela Itri
- Institute of Physics, University of São Paulo, São Paulo, 05508-090, Brazil.
| | - María E Lanio
- Center for Protein Studies, Faculty of Biology, University of Havana (UH), 25th Street, Corner to J Street, Square of Revolution, Havana, 10400, Cuba; NanoCancer, Molecular Immunology Center (CIM), 216 Street, Corner to 15 Street, Playa, Havana, 11600, Cuba.
| |
Collapse
|
8
|
Jiao L, Sun Z, Sun Z, Liu J, Deng G, Wang X. Nanotechnology-based non-viral vectors for gene delivery in cardiovascular diseases. Front Bioeng Biotechnol 2024; 12:1349077. [PMID: 38303912 PMCID: PMC10830866 DOI: 10.3389/fbioe.2024.1349077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 01/08/2024] [Indexed: 02/03/2024] Open
Abstract
Gene therapy is a technique that rectifies defective or abnormal genes by introducing exogenous genes into target cells to cure the disease. Although gene therapy has gained some accomplishment for the diagnosis and therapy of inherited or acquired cardiovascular diseases, how to efficiently and specifically deliver targeted genes to the lesion sites without being cleared by the blood system remains challenging. Based on nanotechnology development, the non-viral vectors provide a promising strategy for overcoming the difficulties in gene therapy. At present, according to the physicochemical properties, nanotechnology-based non-viral vectors include polymers, liposomes, lipid nanoparticles, and inorganic nanoparticles. Non-viral vectors have an advantage in safety, efficiency, and easy production, possessing potential clinical application value when compared with viral vectors. Therefore, we summarized recent research progress of gene therapy for cardiovascular diseases based on commonly used non-viral vectors, hopefully providing guidance and orientation for future relevant research.
Collapse
Affiliation(s)
- Liping Jiao
- The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Zhuokai Sun
- Queen Mary School, Nanchang University, Nanchang, China
| | - Zhihong Sun
- The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Jie Liu
- The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Guanjun Deng
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-Sen University, Shenzhen, China
| | - Xiaozhong Wang
- The Second Affiliated Hospital of Nanchang University, Nanchang, China
- School of Public Health, Nanchang University, Nanchang, China
| |
Collapse
|
9
|
Gangurde P, Mahmoudzadeh M, Gounani Z, Koivuniemi A, Laurén P, Lajunen T, Laaksonen T. Development of Robust Cationic Light-Activated Thermosensitive Liposomes: Choosing the Right Lipids. Mol Pharm 2023; 20:5728-5738. [PMID: 37874965 PMCID: PMC10630945 DOI: 10.1021/acs.molpharmaceut.3c00602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/05/2023] [Accepted: 10/10/2023] [Indexed: 10/26/2023]
Abstract
Extensive research has been conducted on cationic light-activated thermosensitive liposomes (CLTSLs) as a means for site-specific and controlled drug release; however, less attention has been given to the stability of these nanoparticles. Selecting the appropriate lipids is crucial for the development of a stable and responsive system. In this study, we investigated the impact of various lipids on the physical properties of cationic light-activated liposomes. Incorporating poly(ethylene glycol) PEG molecules resulted in uniform liposomes with low polydispersity index, while the addition of unsaturated lipid (DOTAP) resulted in extremely leaky liposomes, with almost 80% release in just 10 min of incubation at body temperature. Conversely, the inclusion of cholesterol in the formulation increased liposome stability too much and decreased their sensitivity to stimuli-responsive release, with only 14% release after 2 min of light exposure. To achieve stable and functional CLTSL, we substituted an equivalent amount of unsaturated lipid with a saturated lipid (DPTAP), resulting in stable liposomes at body temperature that were highly responsive to light, releasing 90% of their content in 10 s of light exposure. We also conducted two atomistic molecular dynamics simulations using lipid compositions with saturated and unsaturated lipids to investigate the effect of lipid composition on the dynamical properties of the liposomal lipid bilayer. Our findings suggest that the nature of lipids used to prepare liposomes significantly affects their properties, especially when the drug loading needs to be stable but triggered drug release properties are required at the same time. Selecting the appropriate lipids in the right amount is therefore essential for the preparation of liposomes with desirable properties.
Collapse
Affiliation(s)
- Puja Gangurde
- Drug
Research Program, Division of Pharmaceutical Biosciences, Faculty
of Pharmacy, University of Helsinki, Viikinkaari 5 E, FI-00790 Helsinki, Finland
| | - Mohammad Mahmoudzadeh
- Drug
Research Program, Division of Pharmaceutical Biosciences, Faculty
of Pharmacy, University of Helsinki, Viikinkaari 5 E, FI-00790 Helsinki, Finland
| | - Zahra Gounani
- Drug
Research Program, Division of Pharmaceutical Biosciences, Faculty
of Pharmacy, University of Helsinki, Viikinkaari 5 E, FI-00790 Helsinki, Finland
| | - Artturi Koivuniemi
- Drug
Research Program, Division of Pharmaceutical Biosciences, Faculty
of Pharmacy, University of Helsinki, Viikinkaari 5 E, FI-00790 Helsinki, Finland
| | - Patrick Laurén
- Drug
Research Program, Division of Pharmaceutical Biosciences, Faculty
of Pharmacy, University of Helsinki, Viikinkaari 5 E, FI-00790 Helsinki, Finland
| | - Tatu Lajunen
- Drug
Research Program, Division of Pharmaceutical Biosciences, Faculty
of Pharmacy, University of Helsinki, Viikinkaari 5 E, FI-00790 Helsinki, Finland
- School
of Pharmacy, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Timo Laaksonen
- Drug
Research Program, Division of Pharmaceutical Biosciences, Faculty
of Pharmacy, University of Helsinki, Viikinkaari 5 E, FI-00790 Helsinki, Finland
- Faculty
of Engineering and Natural Sciences, Tampere
University, FI-33101 Tampere, Finland
| |
Collapse
|
10
|
Sun Y, Wang S, Wang M, Wang M, Liu C, Liu L. Development of a biomimetic DNA delivery system by encapsulating polyethyleneimine functionalized silicon quantum dots with cell membranes. Colloids Surf B Biointerfaces 2023; 230:113507. [PMID: 37562122 DOI: 10.1016/j.colsurfb.2023.113507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/04/2023] [Accepted: 08/05/2023] [Indexed: 08/12/2023]
Abstract
Quantum dots (QDs) are renowned for their remarkable optoelectronic properties, making them suitable for applications such as bioimaging and optoelectronics. However, their use in gene delivery has been restricted due to the low DNA loading capacity. This study aimed to develop a biomimetic DNA delivery system by encapsulating polyethyleneimine (PEI) functionalized silicon QDs (SiQDs) with cell membranes and evaluate its potential as a gene vector in vitro. To achieve this, hydrophilic dispersed silicon QDs (PQDs) were prepared through a one-pot hydrothermal reaction of PEI and 3-Aminopropyltrimethoxysilane (APTMS). Subsequently, red blood cell membrane (RBCM) encapsulated biomimetic QDs (CM-PQDs) was obtained through the extrusion method. The CM-PQDs exhibited higher DNA loading capacity and better stability than naked SiQDs. The CM-PQDs/DNA complex was effectively taken up by cells, as observed through the fluorescence characteristics of QDs themselves. Both CM-P10QDs (prepared with PEI10k) and CM-P25QDs (prepared with PEI25k) could deliver DNA into cells and express the reporter protein successfully. CM-P25QDs showed a higher transfection efficiency of 77.32% in 293 T cells and 47.11% in HeLa cells than SiQDs and CM-P10QDs. The results also indicated that cell membrane encapsulation could effectively reduce the cytotoxicity of SiQDs further. Therefore, the study concludes that CM-PQDs have the potential to serve as a safe and traceable biomimetic gene delivery system.
Collapse
Affiliation(s)
- Yanlin Sun
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Shibei Wang
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Mengying Wang
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Mingjie Wang
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Chaobing Liu
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Liang Liu
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China.
| |
Collapse
|
11
|
Khazaei Monfared Y, Mahmoudian M, Zakeri-Milani P, Cecone C, Hayashi T, Ishii KJ, Conde J, Matencio A, Trotta F. Intratumoural Delivery of mRNA Loaded on a Cationic Hyper-Branched Cyclodextrin-Based Polymer Induced an Anti-Tumour Immunological Response in Melanoma. Cancers (Basel) 2023; 15:3748. [PMID: 37509409 PMCID: PMC10378402 DOI: 10.3390/cancers15143748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
mRNA technology has demonstrated potential for use as an effective cancer immunotherapy. However, inefficient in vivo mRNA delivery and the requirements for immune co-stimulation present major hurdles to achieving anti-tumour therapeutic efficacy. Therefore, we used a cationic hyper-branched cyclodextrin-based polymer to increase mRNA delivery in both in vitro and in vivo melanoma cancer. We found that the transfection efficacy of the mRNA-EGFP-loaded Ppoly system was significantly higher than that of lipofectamine and free mRNA in both 2D and 3D melanoma cancer cells; also, this delivery system did not show cytotoxicity. In addition, the biodistribution results revealed time-dependent and significantly higher mEGFP expression in complexes with Ppoly compared to free mRNA. We then checked the anti-tumour effect of intratumourally injected free mRNA-OVA, a foreign antigen, and loaded Ppoly; the results showed a considerable decrease in both tumour size and weight in the group treated with OVA-mRNA in loaded Ppoly compared to other formulations with an efficient adaptive immune response by dramatically increasing most leukocyte subtypes and OVA-specific CD8+ T cells in both the spleen and tumour tissues. Collectively, our findings suggest that the local delivery of cationic cyclodextrin-based polymer complexes containing foreign mRNA antigens might be a good and reliable concept for cancer immunotherapy.
Collapse
Affiliation(s)
| | - Mohammad Mahmoudian
- Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz 5165665931, Iran
| | - Parvin Zakeri-Milani
- Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz 5165665931, Iran
| | - Claudio Cecone
- Department of Chemistry, University of Turin, 10125 Turin, Italy
| | - Tomoya Hayashi
- Division of Vaccine Science, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo (IMSUT), Tokyo 113-8654, Japan
| | - Ken J Ishii
- Division of Vaccine Science, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo (IMSUT), Tokyo 113-8654, Japan
| | - João Conde
- ToxOmics, NOVA Medical School (NMS), Faculdade de Ciências Médicas (FCM), Universidade Nova de Lisboa, 1099-085 Lisboa, Portugal
| | - Adrián Matencio
- Department of Chemistry, University of Turin, 10125 Turin, Italy
| | - Francesco Trotta
- Department of Chemistry, University of Turin, 10125 Turin, Italy
| |
Collapse
|
12
|
Zhang Q, Mi C, Wang T. Effects and mechanism of small molecule additives on recombinant protein in CHO cells. Appl Microbiol Biotechnol 2023; 107:2771-2781. [PMID: 36971794 DOI: 10.1007/s00253-023-12486-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 03/15/2023] [Accepted: 03/16/2023] [Indexed: 03/29/2023]
Abstract
Chinese hamster ovary (CHO) cells can produce proteins with complex structures and post-translational modifications which are similar to human-derived cells, and they have been the ideal host cells for the production of recombinant therapy proteins (RTPs). Nearly 70% of approved RTPs are produced by CHO cells. In recent years, a series of measures have been developed to increase the expression of RTPs to achieve the lower production cost during the process of large-scale industrial production of recombinant protein in CHO cells. Among of them, the addition of small molecule additives in the culture medium can improve the expression and production efficiency of recombinant proteins, and has become an effective and simple method. In this paper, the characteristics of CHO cells, the effect and mechanism of small molecule additives are reviewed. KEY POINTS: • Small molecular additives on the expression of RTPs in CHO cells are reviewed • Small molecular additives improve the yield of RTPs • Small molecular additives provide methods for the optimization of serum-free medium.
Collapse
Affiliation(s)
- Qiuli Zhang
- School of Pharmacy, Xinxiang Medical University, Xinxiang, 453003, Henan, China
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang, 453003, Henan, China
| | - Chunliu Mi
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang, 453003, Henan, China
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, Henan, China
| | - Tianyun Wang
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang, 453003, Henan, China.
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, Henan, China.
| |
Collapse
|
13
|
A glutathione-sensitive cationic polymer delivery of CRISPR-Cas9 RNA plasmid for targeting nasopharyngeal carcinoma gene therapy. Colloids Surf B Biointerfaces 2023; 223:113146. [PMID: 36696824 DOI: 10.1016/j.colsurfb.2023.113146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 12/31/2022] [Accepted: 01/11/2023] [Indexed: 01/15/2023]
Abstract
CRISPR-Cas9 technology has been proven to be the most straightforward and accurate tool for gene therapy, but some limitations, such as the inefficient transfection or inability to precisely target, prevent the gene therapy from achieving the desired therapeutic effect. To overcome these, a kind of glutathione-sensitive cationic vectors, hyperbranched polyamide amine (HPAA) was designed for Delivery of CRISPR-Cas9 RNA plasmid, and the cyclic RGD (Arg-Gly-Asp) was conjugated for the targeted treatment of nasopharyngeal carcinoma (NPC). Disulfide bonds in HPAA segments can specifically respond to the high glutathione concentration in the tumor microenvironment. Meanwhile, RGD could especially interact to the integrin αvβ3 receptors which are highly expressed on the surface of NPC tumor cells. The results showed that more HPAA-RGD/SGK3-gRNA complexes could be uptaken by NPC HNE-1 cells after RGD was conjugated, and then the plasmid could be accumulated in the NPC tumor as well, which may assure the satisfied NPC therapy effect in vivo. In transfection assays, this complex showed the acceptable gene transfection efficiency in vitro and the obvious tumor inhibition effect in vivo, suggested a potential application in gene therapy to NPC.
Collapse
|
14
|
Lipophilic poly(glycolide) blocks in morpholin-2-one-based CARTs for plasmid DNA delivery: Polymer regioregularity, sequence of lipophilic/polyamine blocks, and nanoparticle stability as factors of transfection efficiency. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
15
|
Hyper-Branched Cationic Cyclodextrin Polymers for Improving Plasmid Transfection in 2D and 3D Spheroid Cells. Pharmaceutics 2022; 14:pharmaceutics14122690. [PMID: 36559184 PMCID: PMC9785855 DOI: 10.3390/pharmaceutics14122690] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/25/2022] [Accepted: 11/29/2022] [Indexed: 12/04/2022] Open
Abstract
In this article, we used monolayer two dimensional (2D) and 3D multicellular spheroid models to improve our understanding of the gene delivery process of a new modified cationic hyper-branched cyclodextrin-based polymer (Ppoly)-loaded plasmid encoding Enhanced Green Fluorescent Protein (EGFP). A comparison between the cytotoxicity effect and transfection efficiency of the plasmid DNA (pDNA)-loaded Ppoly system in 2D and 3D spheroid cells determined that the transfection efficiency and cytotoxicity of Ppoly-pDNA nanocomplexes were lower in 3D spheroids than in 2D monolayer cells. Furthermore, histopathology visualization of Ppoly-pDNA complex cellular uptake in 3D spheroids demonstrated that Ppoly penetrated into the inner layers. This study indicated that the Ppoly, as a non-viral gene delivery system in complex with pDNA, is hemocompatible, non-toxic, high in encapsulation efficiency, and has good transfection efficiency in both 2D and 3D cell cultures compared to free pDNA and lipofectamine (as the control).
Collapse
|
16
|
Sharma AR, Lee YH, Bat-Ulzii A, Bhattacharya M, Chakraborty C, Lee SS. Recent advances of metal-based nanoparticles in nucleic acid delivery for therapeutic applications. J Nanobiotechnology 2022; 20:501. [PMID: 36434667 PMCID: PMC9700905 DOI: 10.1186/s12951-022-01650-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 09/27/2022] [Indexed: 11/26/2022] Open
Abstract
Recent efforts in designing nanomaterials to deliver potential therapeutics to the targeted site are overwhelming and palpable. Engineering nanomaterials to deliver biological molecules to exert desirable physiological changes, with minimized side effects and optimal dose, has revolutionized the next-generation therapy for several diseases. The rapid progress of nucleic acids as biopharmaceutics is going to alter the traditional pharmaceutics practices in modern medicine. However, enzymatic instability, large size, dense negative charge (hydrophilic for cell uptake), and unintentional adverse biological responses-such as prolongation of the blood coagulation and immune system activation-hamper the potential use of nucleic acids for therapeutic purposes. Moreover, the safe delivery of nucleic acids into the clinical setting is an uphill task, and several efforts are being put forward to deliver them to targeted cells. Advances in Metal-based NanoParticles (MNPs) are drawing attention due to the unique properties offered by them for drug delivery, such as large surface-area-to-volume ratio for surface modification, increased therapeutic index of drugs through site-specific delivery, increased stability, enhanced half-life of the drug in circulation, and efficient biodistribution to the desired targeted site. Here, the potential of nanoparticles delivery systems for the delivery of nucleic acids, specially MNPs, and their ability and advantages over other nano delivery systems are reviewed.
Collapse
Affiliation(s)
- Ashish Ranjan Sharma
- grid.464534.40000 0004 0647 1735Institute for Skeletal Aging and Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon-si, 24252 Gangwon-do Republic of Korea
| | - Yeon-Hee Lee
- grid.464534.40000 0004 0647 1735Institute for Skeletal Aging and Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon-si, 24252 Gangwon-do Republic of Korea
| | - Altanzul Bat-Ulzii
- grid.464534.40000 0004 0647 1735Institute for Skeletal Aging and Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon-si, 24252 Gangwon-do Republic of Korea
| | - Manojit Bhattacharya
- grid.444315.30000 0000 9013 5080Department of Zoology, Fakir Mohan University, Vyasa Vihar, Balasore, Odisha 756020 India
| | - Chiranjib Chakraborty
- grid.502979.00000 0004 6087 8632Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Ba-rasat-Barrackpore Rd, Kolkata, West Bengal 700126 India
| | - Sang-Soo Lee
- grid.464534.40000 0004 0647 1735Institute for Skeletal Aging and Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon-si, 24252 Gangwon-do Republic of Korea
| |
Collapse
|
17
|
Chrysostomou V, Foryś A, Trzebicka B, Demetzos C, Pispas S. Amphiphilic Copolymer-Lipid Chimeric Nanosystems as DNA Vectors. Polymers (Basel) 2022; 14:polym14224901. [PMID: 36433029 PMCID: PMC9699196 DOI: 10.3390/polym14224901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/08/2022] [Accepted: 11/11/2022] [Indexed: 11/15/2022] Open
Abstract
Lipid-polymer chimeric (hybrid) nanosystems are promising platforms for the design of effective gene delivery vectors. In this regard, we developed DNA nanocarriers comprised of a novel poly[(stearyl methacrylate-co-oligo(ethylene glycol) methyl ether methacrylate] [P(SMA-co-OEGMA)] amphiphilic random copolymer, the cationic 1,2-dioleoyl-3-(trimethylammonium) propane (DOTAP), and the zwitterionic L-α-phosphatidylcholine, hydrogenated soybean (soy) (HSPC) lipids. Chimeric HSPC:DOTAP:P[(SMA-co-OEGMA)] nanosystems, and pure lipid nanosystems as reference, were prepared in several molar ratios of the components. The colloidal dispersions obtained presented well-defined physicochemical characteristics and were further utilized for the formation of lipoplexes with a model DNA of linear topology containing 113 base pairs. Nanosized complexes were formed through the electrostatic interaction of the cationic lipid and phosphate groups of DNA, as observed by dynamic, static, and electrophoretic light scattering techniques. Ultraviolet-visible (UV-Vis) and fluorescence spectroscopy disclosed the strong binding affinity of the chimeric and also the pure lipid nanosystems to DNA. Colloidally stable chimeric/lipid complexes were formed, whose physicochemical characteristics depend on the N/P ratio and on the molar ratio of the building components. Cryogenic transmission electron microscopy (Cryo-TEM) revealed the formation of nanosystems with vesicular morphology. The results suggest the successful fabrication of these novel chimeric nanosystems with well-defined physicochemical characteristics, which can form stable lipoplexes.
Collapse
Affiliation(s)
- Varvara Chrysostomou
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimioupolis Zografou, 15771 Athens, Greece
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece
| | - Aleksander Foryś
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 ul. M. Curie-Skłodowskiej, 41-819 Zabrze, Poland
| | - Barbara Trzebicka
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 ul. M. Curie-Skłodowskiej, 41-819 Zabrze, Poland
| | - Costas Demetzos
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimioupolis Zografou, 15771 Athens, Greece
| | - Stergios Pispas
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece
- Correspondence: ; Tel.: +30-2107273824
| |
Collapse
|
18
|
Carballo-Pedrares N, Sanjurjo-Rodriguez C, Señarís J, Díaz-Prado S, Rey-Rico A. Chondrogenic Differentiation of Human Mesenchymal Stem Cells via SOX9 Delivery in Cationic Niosomes. Pharmaceutics 2022; 14:2327. [PMID: 36365145 PMCID: PMC9693355 DOI: 10.3390/pharmaceutics14112327] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/21/2022] [Accepted: 10/26/2022] [Indexed: 07/27/2023] Open
Abstract
Gene transfer to mesenchymal stem cells constitutes a powerful approach to promote their differentiation into the appropriate cartilage phenotype. Although viral vectors represent gold standard vehicles, because of their high efficiency, their use is precluded by important concerns including an elevated immunogenicity and the possibility of insertional mutagenesis. Therefore, the development of new and efficient non-viral vectors is under active investigation. In the present study, we developed new non-viral carriers based on niosomes to promote the effective chondrogenesis of human MSCs. Two different niosome formulations were prepared by varying their composition on non-ionic surfactant, polysorbate 80 solely (P80), or combined with poloxamer 407 (P80PX). The best niosome formulation was proven to transfer a plasmid, encoding for the potent chondrogenic transcription factor SOX9 in hMSC aggregate cultures. Transfection of hMSC aggregates via nioplexes resulted in an increased chondrogenic differentiation with reduced hypertrophy. These results highlight the potential of niosome formulations for gene therapy approaches focused on cartilage repair.
Collapse
Affiliation(s)
- Natalia Carballo-Pedrares
- Centro de Investigacións Científicas Avanzadas (CICA), Universidade da Coruña, As Carballeiras, s/n. Campus de Elviña, 15071 A Coruña, Spain
| | - Clara Sanjurjo-Rodriguez
- Centro de Investigacións Científicas Avanzadas (CICA), Universidade da Coruña, As Carballeiras, s/n. Campus de Elviña, 15071 A Coruña, Spain
- Institute of Biomedical Research of A Coruña (INIBIC), University Hospital Complex A Coruña (CHUAC), Galician Health Service (SERGAS), 15006 A Coruña, Spain
| | - Jose Señarís
- Institute of Biomedical Research of A Coruña (INIBIC), University Hospital Complex A Coruña (CHUAC), Galician Health Service (SERGAS), 15006 A Coruña, Spain
| | - Silvia Díaz-Prado
- Centro de Investigacións Científicas Avanzadas (CICA), Universidade da Coruña, As Carballeiras, s/n. Campus de Elviña, 15071 A Coruña, Spain
- Institute of Biomedical Research of A Coruña (INIBIC), University Hospital Complex A Coruña (CHUAC), Galician Health Service (SERGAS), 15006 A Coruña, Spain
| | - Ana Rey-Rico
- Centro de Investigacións Científicas Avanzadas (CICA), Universidade da Coruña, As Carballeiras, s/n. Campus de Elviña, 15071 A Coruña, Spain
| |
Collapse
|
19
|
Mustafa R, Fitian M, Hamilton NB, Li J, Silva WR, Punihaole D. Molecular Insights into the Binding of Linear Polyethylenimines and Single-Stranded DNA Using Raman Spectroscopy: A Quantitative Approach. J Phys Chem B 2022; 126:8404-8414. [PMID: 36222425 PMCID: PMC10413332 DOI: 10.1021/acs.jpcb.2c04939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Establishing how polymeric vectors such as polyethylenimine (PEI) bind and package their nucleic acid cargo is vital toward developing more efficacious and cost-effective gene therapies. To develop a molecular-level picture of DNA binding, we examined how the Raman spectra of PEIs report on their local chemical environment. We find that the intense Raman bands located in the 1400-1500 cm-1 region derive from vibrations with significant CH2 scissoring and NH bending character. The Raman bands that derive from these vibrations show profound intensity changes that depend on both the local dielectric environment and hydrogen bonding interactions with the secondary amine groups on the polymer. We use these bands as spectroscopic markers to assess the binding between low molecular weight PEIs and single-stranded DNA (ssDNA). Analysis of the Raman spectra suggest that PEI primarily binds via electrostatic interactions to the phosphate backbone, which induces the condensation of the ssDNA. We additionally confirm this finding by conducting molecular dynamics simulations. We expect that the spectral correlations determined here will enable future studies to investigate important gene delivery activities, including how PEI interacts with cellular membranes to facilitate cargo internalization into cells.
Collapse
Affiliation(s)
- Rusul Mustafa
- Department of Chemistry, University of Vermont, Burlington, Vermont05405, United States
| | - Maria Fitian
- Department of Chemistry and Biochemistry, Siena College, Loudonville, New York12211, United States
| | - Nicholas B Hamilton
- Department of Chemistry, University of Vermont, Burlington, Vermont05405, United States
| | - Jianing Li
- Department of Chemistry, University of Vermont, Burlington, Vermont05405, United States
| | - W Ruchira Silva
- Department of Chemistry and Biochemistry, Siena College, Loudonville, New York12211, United States
| | - David Punihaole
- Department of Chemistry, University of Vermont, Burlington, Vermont05405, United States
| |
Collapse
|
20
|
Wang Q, Liu X, Tang F, Lu Z. 基于大环多胺[12]aneN<sub>3</sub>多功能非病毒基因载体的合成及性质研究. CHINESE SCIENCE BULLETIN-CHINESE 2022. [DOI: 10.1360/tb-2022-0216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
21
|
Hydrophilic Random Cationic Copolymers as Polyplex-Formation Vectors for DNA. MATERIALS 2022; 15:ma15072650. [PMID: 35407982 PMCID: PMC9000809 DOI: 10.3390/ma15072650] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 03/29/2022] [Accepted: 03/31/2022] [Indexed: 12/19/2022]
Abstract
Research on the improvement and fabrication of polymeric systems as non-viral gene delivery carriers is required for their implementation in gene therapy. Random copolymers have not been extensively utilized for these purposes. In this regard, double hydrophilic poly[(2-(dimethylamino) ethyl methacrylate)-co-(oligo(ethylene glycol) methyl ether methacrylate] [P(DMAEMA-co-OEGMA)] random copolymers were synthesized via reversible addition-fragmentation chain transfer (RAFT) polymerization. The copolymers were further modified by quaternization of DMAEMA tertiary amine, producing the cationic P(QDMAEMA-co-OEGMA) derivatives. Fluorescence and ultraviolet-visible (UV-vis) spectroscopy revealed the efficient interaction of copolymers aggregates with linear DNAs of different lengths, forming polyplexes, with the quaternized copolymer aggregates exhibiting stronger binding affinity. Light scattering techniques evidenced the formation of polyplexes whose size, molar mass, and surface charge strongly depend on the N/P ratio (nitrogen (N) of the amine group of DMAEMA/QDMAEMA over phosphate (P) groups of DNA), DNA length, and length of the OEGMA chain. Polyplexes presented colloidal stability under physiological ionic strength as shown by dynamic light scattering. In vitro cytotoxicity of the empty nanocarriers was evaluated on HEK293 as a control cell line. P(DMAEMA-co-OEGMA) copolymer aggregates were further assessed for their biocompatibility on 4T1, MDA-MB-231, MCF-7, and T47D breast cancer cell lines presenting high cell viability rates.
Collapse
|
22
|
Li WF, Fan ZL, Wang XY, Lin Y, Wang TY. Combination of sodium butyrate and decitabine promotes transgene expression in CHO cells via apoptosis inhibition. N Biotechnol 2022; 69:8-17. [PMID: 35217202 DOI: 10.1016/j.nbt.2022.02.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 02/16/2022] [Accepted: 02/19/2022] [Indexed: 12/18/2022]
Abstract
Chinese hamster ovary (CHO) cells are currently the most widely used host cells for production of recombinant therapeutic proteins (RTPs). Small-molecule additives related to cell cycle apoptosis and autophagy regulation have been used to promote RTP production. By combining two small-molecule additives, positive synergistic effects on transgene expression were observed in CHO cells. In the present study, six small-molecule additives were used, including hydrocinnamic acid (HCA), sodium butyrate (NaB), lithium acetate (LiAc), sodium succinate dibasic hexahydrate (SDH), decitabine (DAC), and sodium propionate (SP). Experiments to test the effects of their pairwise combinations on two different recombinant CHO cell lines (rCHO) were designed using Design-Expert 12.0. Different effects of various pairs of small molecules on apoptosis- and autophagy-related protein expression were observed in the rCHOs. The results showed that compared to the control culture, NaB alone increased the volumetric yield and specific productivity (Qp) by 166% and 143%, respectively. The volumetric yield and Qp of NaB combined with DAC (Cg1)-treated cells increased by 178% and 212%, respectively. Cg1 selectively blocked the cells in the G0/G1 cell cycle stage. The relative expression levels of B-cell lymphoma 2 (Bcl-2), Beclin 1, and microtubule-associated protein light chain 3 (LC3B) in Cg1-treated CHO cells were significantly increased, while relative levels of cleaved caspase-3 expression were significantly decreased. In conclusion, Cg1 had the most obvious effect on RTP production and Qp in CHO cells, suggesting the Cg1 combination of small molecules may be used to improve the expression of recombinant protein in CHO cells.
Collapse
Affiliation(s)
- Wei-Feng Li
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Xinxiang, China
| | - Zhen-Lin Fan
- Henan International Joint Laboratory of Recombinant Pharmaceutical Protein Expression System, Xinxiang Medical University, Xinxiang 453003, Henan, China
| | - Xiao-Yin Wang
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Xinxiang, China
| | - Yan Lin
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Xinxiang, China
| | - Tian-Yun Wang
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Xinxiang, China; Henan International Joint Laboratory of Recombinant Pharmaceutical Protein Expression System, Xinxiang Medical University, Xinxiang 453003, Henan, China.
| |
Collapse
|
23
|
Xiong J, Li G, Mei X, Ding J, Shen H, Zhu D, Wang H. Co-Delivery of p53 Restored and E7 Targeted Nucleic Acids by Poly (Beta-Amino Ester) Complex Nanoparticles for the Treatment of HPV Related Cervical Lesions. Front Pharmacol 2022; 13:826771. [PMID: 35185576 PMCID: PMC8855959 DOI: 10.3389/fphar.2022.826771] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/14/2022] [Indexed: 12/24/2022] Open
Abstract
The p53 gene has the highest mutation frequency in tumors, and its inactivation can lead to malignant transformation, such as cell cycle arrest and apoptotic inhibition. Persistent high-risk human papillomavirus (HR-HPV) infection is the leading cause of cervical cancer. P53 was inactivated by HPV oncoprotein E6, promoting abnormal cell proliferation and carcinogenesis. To study the treatment of cervical intraepithelial neoplasia (CIN) and cervical cancer by restoring p53 expression and inactivating HPV oncoprotein, and to verify the effectiveness of nano drugs based on nucleic acid delivery in cancer treatment, we developed poly (beta-amino ester)537, to form biocompatible and degradable nanoparticles with plasmids (expressing p53 and targeting E7). In vitro and in vivo experiments show that nanoparticles have low toxicity and high transfection efficiency. Nanoparticles inhibited the growth of xenograft tumors and successfully reversed HPV transgenic mice’s cervical intraepithelial neoplasia. Our work suggests that the restoration of p53 expression and the inactivation of HPV16 E7 are essential for blocking the development of cervical cancer. This study provides new insights into the precise treatment of HPV-related cervical lesions.
Collapse
Affiliation(s)
- Jinfeng Xiong
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guannan Li
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xinyu Mei
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiahui Ding
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hui Shen
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Hui Shen, ; Da Zhu, ; Hui Wang,
| | - Da Zhu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Hui Shen, ; Da Zhu, ; Hui Wang,
| | - Hui Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Hui Shen, ; Da Zhu, ; Hui Wang,
| |
Collapse
|
24
|
Chrysostomou V, Forys A, Trzebicka B, Demetzos C, Pispas S. Structure of micelleplexes formed between QPDMAEMA-b-PLMA amphiphilic cationic copolymer micelles and DNA of different lengths. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
25
|
Zhang Y, Yuan Z, Jin Y, Zhang W, Yuan WE. Novel Fluorinated Spermine and Small Molecule PEI to Deliver Anti-PD-L1 and Anti-VEGF siRNA for Highly Efficient Tumor Therapy. Pharmaceutics 2021; 13:2058. [PMID: 34959340 PMCID: PMC8708240 DOI: 10.3390/pharmaceutics13122058] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/20/2021] [Accepted: 11/26/2021] [Indexed: 11/17/2022] Open
Abstract
Small interfering RNA (siRNA) can specifically silence disease gene expression. This project investigated the overexpression of programmed death receptor ligand 1 (PD-L1) and vascular endothelial growth factor (VEGF) on the surface of tumor cells. However, the main obstacle to the development of gene therapy drugs is the lack of an efficient delivery vector, which should be able to overcome multiple delivery barriers and protect siRNA to enter the target cells. Therefore, a novel fluorine-modified endogenous molecular carrier TFSPEI was constructed by linking fluorinated groups with hydrophobic and hydrophilic characteristics on the surface of PEI and spermine. The results showed that lower toxicity, higher endocytosis, and silencing efficiency were achieved. We found that the inhibition of VEGF targets can indirectly activate the immune response to promote the tumor-killing and invasion effects of T cells. The combined delivery of anti-VEGF siRNA and anti-PD-L1 siRNA could inhibit the expression of corresponding proteins, restore the anti-tumor function of T cells and inhibit the growth of neovascularization, and obtained significant anti-tumor effects. Therefore, this safe and efficient fluorinated spermine and small molecule PEI-based anti-PD-L1 and anti-VEGF siRNA delivery system is expected to provide a new strategy for gene therapy of tumors.
Collapse
Affiliation(s)
| | | | | | | | - Wei-En Yuan
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; (Y.Z.); (Z.Y.); (Y.J.); (W.Z.)
| |
Collapse
|
26
|
Xiong J, Tan S, Yu L, Shen H, Qu S, Zhang C, Ren C, Zhu D, Wang H. E7-Targeted Nanotherapeutics for Key HPV Afflicted Cervical Lesions by Employing CRISPR/Cas9 and Poly (Beta-Amino Ester). Int J Nanomedicine 2021; 16:7609-7622. [PMID: 34819726 PMCID: PMC8606985 DOI: 10.2147/ijn.s335277] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/20/2021] [Indexed: 12/26/2022] Open
Abstract
Introduction Persistent HR-HPV (high-risk human papillomavirus) infection is the main cause of cervical cancer. The HPV oncogene E7 plays a key role in HPV tumorigenesis. At present, HPV preventive vaccines are not effective for patients who already have a cervical disease, and implementation of the recommended regular cervical screening is difficult in countries and regions lacking medical resources. Therefore, patients need medications to treat existing HPV infections and thus block the progression of cervical disease. Methods In this study, we developed nanoparticles (NPs) composed of the non-viral vector PBAE546 and a CRISPR/Cas9 recombinant plasmid targeting HPV16 E7 as a vaginal treatment for HPV infection and related cervical malignancies. Results Our NPs showed low toxicity and high biological safety both in vitro (cell line viability) and in vivo (various important organs of mice). Our NPs significantly inhibited the growth of xenograft tumors derived from cervical cancer cell lines in nude mice and significantly reversed the cervical epithelial malignant phenotype of HPV16 transgenic mice. Conclusion Our NPs have great potential to be developed as a drug for the treatment of HPV-related cervical cancer and precancerous lesions.
Collapse
Affiliation(s)
- Jinfeng Xiong
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Songwei Tan
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Long Yu
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Hui Shen
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Shen Qu
- School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Chong Zhang
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Ci Ren
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Da Zhu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Hui Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| |
Collapse
|
27
|
Dai D, Yin Y, Hu Y, Lu Y, Zou H, Lu G, Wang Q, Lian J, Gao J, Shen X. Tumor RNA-loaded nanoliposomes increases the anti-tumor immune response in colorectal cancer. Drug Deliv 2021; 28:1548-1561. [PMID: 34286631 PMCID: PMC8297404 DOI: 10.1080/10717544.2021.1954727] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Purpose Tumor RNA vaccines can activate dendritic cells to generate systemic anti-tumor immune response. However, due to easily degraded of RNA, direct RNA vaccine is less effective. In this study, we optimized the method for preparing PEGylated liposom-polycationic DNA complex (LPD) nanoliposomes, increased encapsulate amount of total RNA derived from CT-26 colorectal cancer cells. Tumor RNA LPD nanoliposomes vaccines improved anti-tumor immune response ability of tumor RNA and can effectively promote anti-tumor therapeutic effect of oxaliplatin. Methods Total tumor-derived RNA was extracted from colorectal cancer cells (CT-26 cells), and loaded to our optimized the LPD complex, resulting in the LPD nanoliposomes. We evaluated the characteristics (size, zeta potential, and stability), cytotoxicity, transfection ability, and tumor-growth inhibitory efficacy of LPD nanoliposomes. Results The improved LPD nanoliposomes exhibited a spherical shape, RNA loading efficiency of 9.07%, the average size of 120.37 ± 2.949 nm and zeta potential was 3.34 ± 0.056 mV. Also, the improved LPD nanoliposomes showed high stability at 4 °C, with a low toxicity and high cell transfection efficacy toward CT-26 colorectal cancer cells. Notably, the improved LPD nanoliposomes showed tumor growth inhibition by activating anti-tumor immune response in CT-26 colorectal cancer bearing mice, with mini side effects toward the normal organs of mice. Furthermore, the effect of the improved LPD nanoliposomes in combination with oxaliplatin can be better than that of oxaliplatin alone. Conclusion The improved LPD nanoliposomes may serve as an effective vaccine to induce antitumor immunity, presenting a new treatment option for colorectal cancer.
Collapse
Affiliation(s)
- Dandong Dai
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, China.,Department of Pharmaceutical Sciences, Naval Medical University, Shanghai, China
| | - You Yin
- Institute of Translational Medicine, Shanghai University, Shanghai, China.,Department of Neurology, Changzheng Hospital of Naval Medical University, Shanghai, China
| | - Yuanbo Hu
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, China
| | - Ying Lu
- Department of Pharmaceutical Sciences, Naval Medical University, Shanghai, China
| | - Hongbo Zou
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, China.,Department of Gastrointestinal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang, China
| | - GuangZhao Lu
- Department of Pharmaceutical Sciences, Naval Medical University, Shanghai, China
| | - Qianqian Wang
- Department of Medical Oncology, Hangzhou First People's Hospital, Zhejiang, China
| | - Jie Lian
- Department of Pathology, Shaoxing Shangyu People's Hospital, Zhejiang, China
| | - Jie Gao
- Institute of Translational Medicine, Shanghai University, Shanghai, China
| | - Xian Shen
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, China
| |
Collapse
|
28
|
Ding G, Wang T, Han Z, Tian L, Cheng Q, Luo L, Zhao B, Wang C, Feng S, Wang L, Meng Z, Meng Q. Substance P containing peptide gene delivery vectors for specifically transfecting glioma cells mediated by a neurokinin-1 receptor. J Mater Chem B 2021; 9:6347-6356. [PMID: 34251002 DOI: 10.1039/d1tb00577d] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Gene therapy provides a promising treatment for glioblastoma multiforme, which mainly depends on two key aspects, crossing the blood brain barrier (BBB) effectively and transfecting target cells selectively. In this work, we reported a series of peptide-based vectors for transfecting glioma cells specifically consisting of several functional segments including a cell-penetrating peptide, targeting segment substance P (SP), an endosomal escape segment, a PEG linker and a stearyl moiety. The conformations and DNA-loading capacities of peptide vectors and the self-assembly behaviors of peptide/pGL3 complexes were characterized. The in vitro gene transfection was evaluated in U87, 293T-NK1R, and normal 293T cell lines. The transfection efficiency ratio of P-02 (SP-PEG4-K(C18)-(LLHH)3-R9) to Lipo2000 in the U87 cell line was about 36% higher than that in the 293T cell line. The neurokinin-1 receptor (NK1R) in U87 cells mediated the transfection process via interactions with the ligand SP in peptide vectors. The mechanism of NK1R mediated transfection was demonstrated by the use of gene-modified 293T cells expressing NK1R, as well as the gene transfection in the presence of free SP. Besides, P-02 could promote the pGL3 plasmids to cross the BBB model in vitro and achieved the EGFP gene transfection in the brain of zebrafish successfully. The designed peptide vectors, owing to their specific transfection capacity in glioma cells, provide a potential approach for glioblastoma multiforme gene therapy.
Collapse
Affiliation(s)
- Guihua Ding
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, P. R. China.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Xu Y, Niu Y, Wu B, Cao X, Gong T, Zhang ZR, Fu Y. Extended-release of therapeutic microRNA via a host-guest supramolecular hydrogel to locally alleviate renal interstitial fibrosis. Biomaterials 2021; 275:120902. [PMID: 34087588 DOI: 10.1016/j.biomaterials.2021.120902] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 05/16/2021] [Accepted: 05/17/2021] [Indexed: 12/12/2022]
Abstract
Activated fibroblasts are critical contributors to renal interstitial fibrosis thus becoming the cellular target for fibrosis treatment. Previously, microRNA 29 b (miR-29 b) is shown to be down-regulated in various animal models of renal fibrosis. Herein, we describe a facile strategy to achieve localized and sustained delivery of therapeutic microRNA to the kidney via a host-guest supramolecular hydrogel. Specifically, cationic bovine serum albumin is used to complex with miR-29 b to afford nanocomplexes (cBSA/miR-29 b), which is proven to specifically inhibit fibroblast activation in a dose-dependent manner in vitro. Following unilateral ureteral obstruction in mice, a single injection of the hydrogel loaded with cBSA/miR-29 b in vivo, significantly down-regulated proteins and genes related to fibrosis for up to 21 days without affecting the normal liver or kidney functions. Overall, the localized delivery of cBSA/miR-29 b via a host-guest supramolecular hydrogel represents a safe and effective intervention strategy to delay and reverse the progression of interstitial renal fibrosis.
Collapse
Affiliation(s)
- Yingying Xu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Yining Niu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Beibei Wu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Xi Cao
- Department of Pharmacy, the First Affiliated Hospital of Anhui Medical University, and the Grade 3 Pharmaceutical Chemistry Laboratory of State Administrate of Traditional Chinese Medicine, Hefei, China
| | - Tao Gong
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Zhi-Rong Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Yao Fu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|