1
|
Muhammad M, Wahab A, Waheed A, Mohamed HI, Hakeem KR, Li L, Li WJ. Harnessing bacterial endophytes for environmental resilience and agricultural sustainability. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 368:122201. [PMID: 39142107 DOI: 10.1016/j.jenvman.2024.122201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 08/01/2024] [Accepted: 08/10/2024] [Indexed: 08/16/2024]
Abstract
In the current era of environmental disasters and the necessity of sustainable development, bacterial endophytes have gotten attention for their role in improving agricultural productivity and ecological sustainability. This review explores the multifaceted contributions of bacterial endophytes to plant health and ecosystem sustainability. Bacterial endophytes are invaluable sources of bioactive compounds, promising breakthroughs in medicine and biotechnology. They also serve as natural biocontrol agents, reducing the need for synthetic fertilizers and fostering environmentally friendly agricultural practices. It provides eco-friendly solutions that align with the necessity of sustainability since they can improve pest management, increase crop resilience, and facilitate agricultural production. This review also underscores bacterial endophytes' contribution to promoting sustainable and green industrial productions. It also presented how incorporating these microorganisms into diverse industrial sectors can harmonize humankind with ecological stability. The potential of bacterial endophytes has been largely untapped, presenting an opportunity for pioneering advancements in sustainable industrial applications. Their importance caught attention as they provided innovative solutions to the challenging problems of the new era. This review sheds light on the remarkable potential of bacterial endophytes in various industrial sectors. Further research is imperative to discover their multifaceted potential. It will be essential to delve deeper into their mechanisms, broaden their uses, and examine their long-term impacts.
Collapse
Affiliation(s)
- Murad Muhammad
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Xinjiang Key Laboratory of Biodiversity Conservation and Application in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, China.
| | - Abdul Wahab
- University of Chinese Academy of Sciences, Beijing, 100049, China; Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Abdul Waheed
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China; National Key Laboratory of Ecological Security and Resource Utilization in Arid Areas, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China; Xinjiang Key Laboratory of Biodiversity Conservation and Application in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, China
| | - Heba Ibrahim Mohamed
- Biological and Geological Sciences Department, Faculty of Education, Ain Shams University, Cairo, 11341, Egypt
| | - Khalid Rehman Hakeem
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia; Princess Dr. Najla Bint Saud Al-Saud Center for Excellence Research in Biotechnology, King Abdulaziz University, Jeddah, 21589, Saudi Arabia; Department of Public Health, Daffodil International University, Dhaka, 1341, Bangladesh; University Centre for Research & Development, Chandigarh University, Mohali, Punjab, 140413, India
| | - Li Li
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China; Xinjiang Key Laboratory of Biodiversity Conservation and Application in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, China
| | - Wen-Jun Li
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China; State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China.
| |
Collapse
|
2
|
Ghareeb A, Fouda A, Kishk RM, El Kazzaz WM. Unlocking the therapeutic potential of bioactive exopolysaccharide produced by marine actinobacterium Streptomyces vinaceusdrappus AMG31: A novel approach to drug development. Int J Biol Macromol 2024; 276:133861. [PMID: 39029838 DOI: 10.1016/j.ijbiomac.2024.133861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 06/27/2024] [Accepted: 07/11/2024] [Indexed: 07/21/2024]
Abstract
Acidic exopolysaccharide (EPS) was produced by a marine actinobacterium Streptomyces vinaceusdrappus strain AMG31 with the highest yield of 10.6 g/l. The synthesized EPS has an average molecular weight of 5.1 × 104 g/mol and contains arabinose, glucose, galacturonic acid (0.5:2:2 M ratio), with 39.77 % uronic acid residues and 18.8 % sulfate detected. EPS exhibited antioxidant activities with 93.8 % DPPH radical scavenging and 344.7 μg/mg total antioxidant capacity. It displayed anti-inflammatory effects by inhibiting 5-LOX and COX-2. Regarding the cytotoxic activity, the IC50 values are 301.6 ± 11.8, 260.8 ± 12.2, 29.4 ± 13.5, 351.3 ± 11.2, 254.1 ± 9.8, and 266.5 ± 10.4 μg/ml for PC-3, HEP-2, MCF-7, HCT-116, A-549, HepG-2 respectively, which indicate that the produced EPS does not have strong cytotoxic activities. Moreover, the EPS showed anti-Alzheimer activity via inhibition of the Butyrylcholinesterase enzyme, with the highest percentage of 84.5 % at 100 μg/ml. Interestingly, the EPS showed superior anti-obesity activity by inhibiting lipase enzyme with a rate of 95.3 % compared to orlistat as a positive control (96.8 %) at a concentration of 1000 μg/ml. Additionally, the produced EPS displayed the highest anti-diabetic properties by inhibiting α-amylase (IC50 31.49 μg/ml) and α-glucosidase (IC50 6.48 μg/ml), suggesting antidiabetic potential analogous to acarbose. EPS exhibited promising antibacterial and antibiofilm activity against a wide range of Gram-positive and Gram-negative pathogenic bacteria.
Collapse
Affiliation(s)
- Ahmed Ghareeb
- Botany and Microbiology Department, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt
| | - Amr Fouda
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt; School of Nuclear Science and Technology, University of South China, Heng Yang, China.
| | - Rania M Kishk
- Microbiology and Immunology Department, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Waleed M El Kazzaz
- Botany and Microbiology Department, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt
| |
Collapse
|
3
|
Krysenko S, Wohlleben W. Role of Carbon, Nitrogen, Phosphate and Sulfur Metabolism in Secondary Metabolism Precursor Supply in Streptomyces spp. Microorganisms 2024; 12:1571. [PMID: 39203413 PMCID: PMC11356490 DOI: 10.3390/microorganisms12081571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/24/2024] [Accepted: 07/29/2024] [Indexed: 09/03/2024] Open
Abstract
The natural soil environment of Streptomyces is characterized by variations in the availability of nitrogen, carbon, phosphate and sulfur, leading to complex primary and secondary metabolisms. Their remarkable ability to adapt to fluctuating nutrient conditions is possible through the utilization of a large amount of substrates by diverse intracellular and extracellular enzymes. Thus, Streptomyces fulfill an important ecological role in soil environments, metabolizing the remains of other organisms. In order to survive under changing conditions in their natural habitats, they have the possibility to fall back on specialized enzymes to utilize diverse nutrients and supply compounds from primary metabolism as precursors for secondary metabolite production. We aimed to summarize the knowledge on the C-, N-, P- and S-metabolisms in the genus Streptomyces as a source of building blocks for the production of antibiotics and other relevant compounds.
Collapse
Affiliation(s)
- Sergii Krysenko
- Department of Microbiology/Biotechnology, Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany;
- Cluster of Excellence ‘Controlling Microbes to Fight Infections’, University of Tübingen, 72076 Tübingen, Germany
| | - Wolfgang Wohlleben
- Department of Microbiology/Biotechnology, Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany;
- Cluster of Excellence ‘Controlling Microbes to Fight Infections’, University of Tübingen, 72076 Tübingen, Germany
- German Center for Infection Research (DZIF), Partner Site Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
4
|
García-Domínguez M, Gutiérrez-Del-Río I, Villar CJ, Perez-Gomez A, Sancho-Martinez I, Lombó F. Structural diversification of vitamin D using microbial biotransformations. Appl Microbiol Biotechnol 2024; 108:409. [PMID: 38970663 PMCID: PMC11227467 DOI: 10.1007/s00253-024-13244-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/20/2024] [Accepted: 06/24/2024] [Indexed: 07/08/2024]
Abstract
Vitamin D deficiencies are linked to multiple human diseases. Optimizing its synthesis, physicochemical properties, and delivery systems while minimizing side effects is of clinical relevance and is of great medical and industrial interest. Biotechnological techniques may render new modified forms of vitamin D that may exhibit improved absorption, stability, or targeted physiological effects. Novel modified vitamin D derivatives hold promise for developing future therapeutic approaches and addressing specific health concerns related to vitamin D deficiency or impaired metabolism, such as avoiding hypercalcemic effects. Identifying and engineering key enzymes and biosynthetic pathways involved, as well as developing efficient cultures, are therefore of outmost importance and subject of intense research. Moreover, we elaborate on the critical role that microbial bioconversions might play in the a la carte design, synthesis, and production of novel, more efficient, and safer forms of vitamin D and its analogs. In summary, the novelty of this work resides in the detailed description of the physiological, medical, biochemical, and epidemiological aspects of vitamin D supplementation and the steps towards the enhanced and simplified industrial production of this family of bioactives relying on microbial enzymes. KEY POINTS: • Liver or kidney pathologies may hamper vitamin D biosynthesis • Actinomycetes are able to carry out 1α- or 25-hydroxylation on vitamin D precursors.
Collapse
Affiliation(s)
- Mario García-Domínguez
- Research Group BIONUC (Biotechnology of Nutraceuticals and Bioactive Compounds), Departamento de Biología Funcional, Principality of Asturias, Área de Microbiología, Universidad de Oviedo, Oviedo, Spain
- IUOPA (Instituto Universitario de Oncología del Principado de Asturias), Oviedo, Spain
- ISPA (Instituto de Investigación Sanitaria del Principado de Asturias), Oviedo, Spain
| | - Ignacio Gutiérrez-Del-Río
- Research Group BIONUC (Biotechnology of Nutraceuticals and Bioactive Compounds), Departamento de Biología Funcional, Principality of Asturias, Área de Microbiología, Universidad de Oviedo, Oviedo, Spain
- IUOPA (Instituto Universitario de Oncología del Principado de Asturias), Oviedo, Spain
- ISPA (Instituto de Investigación Sanitaria del Principado de Asturias), Oviedo, Spain
| | - Claudio J Villar
- Research Group BIONUC (Biotechnology of Nutraceuticals and Bioactive Compounds), Departamento de Biología Funcional, Principality of Asturias, Área de Microbiología, Universidad de Oviedo, Oviedo, Spain
- IUOPA (Instituto Universitario de Oncología del Principado de Asturias), Oviedo, Spain
- ISPA (Instituto de Investigación Sanitaria del Principado de Asturias), Oviedo, Spain
| | | | | | - Felipe Lombó
- Research Group BIONUC (Biotechnology of Nutraceuticals and Bioactive Compounds), Departamento de Biología Funcional, Principality of Asturias, Área de Microbiología, Universidad de Oviedo, Oviedo, Spain.
- IUOPA (Instituto Universitario de Oncología del Principado de Asturias), Oviedo, Spain.
- ISPA (Instituto de Investigación Sanitaria del Principado de Asturias), Oviedo, Spain.
| |
Collapse
|
5
|
Dayma P, Choudhary N, Ali D, Alarifi S, Dudhagara P, Luhana K, Yadav VK, Patel A, Patel R. Exploring the Potential of Halotolerant Actinomycetes from Rann of Kutch, India: A Study on the Synthesis, Characterization, and Biomedical Applications of Silver Nanoparticles. Pharmaceuticals (Basel) 2024; 17:743. [PMID: 38931410 PMCID: PMC11206697 DOI: 10.3390/ph17060743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/01/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024] Open
Abstract
A tremendous increase in the green synthesis of metallic nanoparticles has been noticed in the last decades, which is due to their unique properties at the nano dimension. The present research work deals with synthesis mediated by the actinomycete Streptomyces tendae of silver nanoparticles (AgNPs), isolated from Little and Greater Rann of Kutch, India. The confirmation of the formation of AgNPs by the actinomycetes was carried out by using a UV-Vis spectrophotometer where an absorbance peak was obtained at 420 nm. The X-ray diffraction pattern demonstrated five characteristic diffraction peaks indexed at the lattice plane (111), (200), (231), (222), and (220). Fourier transform infrared showed typical bands at 531 to 1635, 2111, and 3328 cm-1. Scanning electron microscopy shows that the spherical-shaped AgNPs particles have diameters in the range of 40 to 90 nm. The particle size analysis displayed the mean particle size of AgNPs in aqueous medium, which was about 55 nm (±27 nm), bearing a negative charge on their surfaces. The potential of the S. tendae-mediated synthesized AgNPs was evaluated for their antimicrobial, anti-methicillin-resistant Staphylococcus aureus (MRSA), anti-biofilm, and anti-oxidant activity. The maximum inhibitory effect was observed against Pseudomonas aeruginosa at (8 µg/mL), followed by Escherichia coli and Aspergillus niger at (32 µg/mL), and against Candida albicans (64 µg/mL), whereas Bacillus subtilis (128 µg/mL) and Staphylococcus aureus (256 µg/mL) were much less sensitive to AgNPs. The biosynthesized AgNPs displayed activity against MRSA, and the free radical scavenging activity was observed with an increase in the dosage of AgNPs from 25 to 200 µg/mL. AgNPs in combination with ampicillin displayed inhibition of the development of biofilm in Pseudomonas aeruginosa and Streptococcus pneumoniae at 98% and 83%, respectively. AgNPs were also successfully coated on the surface of cotton to prepare antimicrobial surgical cotton, which demonstrated inhibitory action against Bacillus subtilis (15 mm) and Escherichia coli (12 mm). The present research integrates microbiology, nanotechnology, and biomedical science to formulate environmentally friendly antimicrobial materials using halotolerant actinomycetes, evolving green nanotechnology in the biomedical field. Moreover, this study broadens the understanding of halotolerant actinomycetes and their potential and opens possibilities for formulating new antimicrobial products and therapies.
Collapse
Affiliation(s)
- Paras Dayma
- Department of Biosciences, Veer Narmad South Gujarat University, Surat 395007, Gujarat, India; (P.D.); (P.D.)
| | - Nisha Choudhary
- Department of Life Sciences, Hemchandracharya North Gujarat University, Patan 384265, Gujarat, India;
| | - Daoud Ali
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Saud Alarifi
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Pravin Dudhagara
- Department of Biosciences, Veer Narmad South Gujarat University, Surat 395007, Gujarat, India; (P.D.); (P.D.)
| | - Kuldeep Luhana
- Department of Biotechnology, Hemchandracharya North Gujarat University, Patan 384265, Gujarat, India;
| | - Virendra Kumar Yadav
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Ashish Patel
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Rajesh Patel
- Department of Biosciences, Veer Narmad South Gujarat University, Surat 395007, Gujarat, India; (P.D.); (P.D.)
| |
Collapse
|
6
|
Yang L, Shakeel Q, Xu X, Ali L, Chen Z, Mubeen M, Sohail MA, IfItikhar Y, Kumar A, Solanki MK, Zhou Y, Zhao D, Alharbi NK, Wang J. Optimized submerged batch fermentation for metabolic switching in Streptomyces yanglinensis 3-10 providing platform for reveromycin A and B biosynthesis, engineering, and production. Front Microbiol 2024; 15:1378834. [PMID: 38784807 PMCID: PMC11112568 DOI: 10.3389/fmicb.2024.1378834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/09/2024] [Indexed: 05/25/2024] Open
Abstract
The cultivation system requires that the approach providing biomass for all types of metabolic analysis is of excellent quality and reliability. This study was conducted to enhance the efficiency and yield of antifungal substance (AFS) production in Streptomyces yanglinensis 3-10 by optimizing operation conditions of aeration, agitation, carbon source, and incubation time in a fermenter. Dissolved oxygen (DO) and pH were found to play significant roles in AFS production. The optimum pH for the production of AFS in S. yanglinensis 3-10 was found to be 6.5. As the AFS synthesis is generally thought to be an aerobic process, DO plays a significant role. The synthesis of bioactive compounds can vary depending on how DO affects growth rate. This study validates that the high growth rate and antifungal activity required a minimum DO concentration of approximately 20% saturation. The DO supply in a fermenter can be raised once agitation and aeration have been adjusted. Consequently, DO can stimulate the development of bacteria and enzyme production. A large shearing effect could result from the extreme agitation, harming the cell and deactivating its products. The highest inhibition zone diameter (IZD) was obtained with 3% starch, making starch a more efficient carbon source than glucose. Temperature is another important factor affecting AFS production. The needed fermentation time would increase and AFS production would be reduced by the too-low operating temperature. Furthermore, large-scale fermenters are challenging to manage at temperatures that are far below from room temperature. According to this research, 28°C is the ideal temperature for the fermentation of S. yanglinensis 3-10. The current study deals with the optimization of submerged batch fermentation involving the modification of operation conditions to effectively enhance the efficiency and yield of AFS production in S. yanglinensis 3-10.
Collapse
Affiliation(s)
- Longyan Yang
- China Tobacco Guangxi Industrial Co., Ltd., Nanning, China
| | - Qaiser Shakeel
- Cholistan Institute of Desert Studies, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Xueqin Xu
- China Tobacco Guangxi Industrial Co., Ltd., Nanning, China
| | - Liaqat Ali
- Cholistan Institute of Desert Studies, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Zhiyan Chen
- China Tobacco Guangxi Industrial Co., Ltd., Nanning, China
| | - Mustansar Mubeen
- Department of Plant Pathology, College of Agriculture, University of Sargodha, Sargodha, Pakistan
| | - Muhammad Aamir Sohail
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Yasir IfItikhar
- Department of Plant Pathology, College of Agriculture, University of Sargodha, Sargodha, Pakistan
| | - Ajay Kumar
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
| | - Manoj Kumar Solanki
- Department of Life Sciences and Biological Sciences, IES University, Bhopal, Madhya Pradesh, India
- Plant Cytogenetics and Molecular Biology Group, Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland
| | - Yun Zhou
- China Tobacco Guangxi Industrial Co., Ltd., Nanning, China
| | - Dongling Zhao
- China Tobacco Guangxi Industrial Co., Ltd., Nanning, China
| | - Nada K. Alharbi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Jie Wang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| |
Collapse
|
7
|
Kordjazi T, Mariniello L, Giosafatto CVL, Porta R, Restaino OF. Streptomycetes as Microbial Cell Factories for the Biotechnological Production of Melanin. Int J Mol Sci 2024; 25:3013. [PMID: 38474259 DOI: 10.3390/ijms25053013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/01/2024] [Accepted: 03/02/2024] [Indexed: 03/14/2024] Open
Abstract
Melanins are complex, polymeric pigments with interesting properties like UV-light absorbance ability, metal ion chelation capacity, antimicrobial action, redox behaviors, and scavenging properties. Based on these characteristics, melanins might be applied in different industrial fields like food packaging, environmental bioremediation, and bioelectronic fields. The actual melanin manufacturing process is not environmentally friendly as it is based on extraction and purification from cuttlefish. Synthetic melanin is available on the market, but it is more expensive than animal-sourced pigment and it requires long chemical procedures. The biotechnological production of microbial melanin, instead, might be a valid alternative. Streptomycetes synthesize melanins as pigments and as extracellular products. In this review, the melanin biotechnological production processes by different Streptomyces strains have been revised according to papers in the literature. The different fermentation strategies to increase melanin production such as the optimization of growth conditions and medium composition or the use of raw sources as growth substrates are here described. Diverse downstream purification processes are also reported as well as all the different analytical methods used to characterize the melanin produced by Streptomyces strains before its application in different fields.
Collapse
Affiliation(s)
- Talayeh Kordjazi
- Department of Chemical Sciences, University of Naples Federico II, via Cintia 4, 80126 Naples, Italy
| | - Loredana Mariniello
- Department of Chemical Sciences, University of Naples Federico II, via Cintia 4, 80126 Naples, Italy
| | | | - Raffaele Porta
- Department of Chemical Sciences, University of Naples Federico II, via Cintia 4, 80126 Naples, Italy
| | - Odile Francesca Restaino
- Department of Chemical Sciences, University of Naples Federico II, via Cintia 4, 80126 Naples, Italy
| |
Collapse
|
8
|
Cai X, Xu W, Zheng Y, Wu S, Zhao R, Wang N, Tang Y, Ke M, Kang Q, Bai L, Zhang B, Wu H. Coupled strategy based on regulator manipulation and medium optimization empowers the biosynthetic overproduction of lincomycin. Synth Syst Biotechnol 2024; 9:134-143. [PMID: 38318491 PMCID: PMC10840354 DOI: 10.1016/j.synbio.2024.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/20/2023] [Accepted: 01/08/2024] [Indexed: 02/07/2024] Open
Abstract
The biosynthesis of bioactive secondary metabolites, specifically antibiotics, is of great scientific and economic importance. The control of antibiotic production typically involves different processes and molecular mechanism. Despite numerous efforts to improve antibiotic yields, joint engineering strategies for combining genetic manipulation with fermentation optimization remain finite. Lincomycin A (Lin-A), a lincosamide antibiotic, is industrially fermented by Streptomyces lincolnensis. Herein, the leucine-responsive regulatory protein (Lrp)-type regulator SLCG_4846 was confirmed to directly inhibit the lincomycin biosynthesis, whereas indirectly controlled the transcription of SLCG_2919, the first reported repressor in S. lincolnensis. Inactivation of SLCG_4846 in the high-yield S. lincolnensis LA219X (LA219XΔ4846) increases the Lin-A production and deletion of SLCG_2919 in LA219XΔ4846 exhibits superimposed yield increment. Given the effect of the double deletion on cellular primary metabolism of S. lincolnensis, Plackett-Burman design, steepest ascent and response surface methodologies were utilized and employed to optimize the seed medium of this double mutant in shake flask, and Lin-A yield using optimal seed medium was significantly increased over the control. Above strategies were performed in a 15-L fermenter. The maximal yield of Lin-A in LA219XΔ4846-2919 reached 6.56 g/L at 216 h, 55.1 % higher than that in LA219X at the parental cultivation (4.23 g/L). This study not only showcases the potential of this strategy to boost lincomycin production, but also could empower the development of high-performance actinomycetes for other antibiotics.
Collapse
Affiliation(s)
- Xinlu Cai
- School of Life Sciences, Institute of Physical Science and Information Technology, Anhui University, Hefei, 230601, China
| | - Wanlian Xu
- School of Life Sciences, Institute of Physical Science and Information Technology, Anhui University, Hefei, 230601, China
| | - Yang Zheng
- School of Life Sciences, Institute of Physical Science and Information Technology, Anhui University, Hefei, 230601, China
| | - Sendi Wu
- School of Life Sciences, Institute of Physical Science and Information Technology, Anhui University, Hefei, 230601, China
| | - Rundong Zhao
- School of Life Sciences, Institute of Physical Science and Information Technology, Anhui University, Hefei, 230601, China
| | - Nian Wang
- School of Life Sciences, Institute of Physical Science and Information Technology, Anhui University, Hefei, 230601, China
| | - Yaqian Tang
- School of Life Sciences, Institute of Physical Science and Information Technology, Anhui University, Hefei, 230601, China
| | - Meilan Ke
- School of Life Sciences, Institute of Physical Science and Information Technology, Anhui University, Hefei, 230601, China
| | - Qianjin Kang
- State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Linquan Bai
- State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Buchang Zhang
- School of Life Sciences, Institute of Physical Science and Information Technology, Anhui University, Hefei, 230601, China
| | - Hang Wu
- School of Life Sciences, Institute of Physical Science and Information Technology, Anhui University, Hefei, 230601, China
| |
Collapse
|
9
|
Salama S, Mostafa HS, Husseiny S, Sebak M. Actinobacteria as Microbial Cell Factories and Biocatalysts in The Synthesis of Chiral Intermediates and Bioactive Molecules; Insights and Applications. Chem Biodivers 2024; 21:e202301205. [PMID: 38155095 DOI: 10.1002/cbdv.202301205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 12/25/2023] [Accepted: 12/28/2023] [Indexed: 12/30/2023]
Abstract
Actinobacteria are one of the most intriguing bacterial phyla in terms of chemical diversity and bioactivities of their reported biomolecules and natural products, including various types of chiral molecules. Actinobacterial genera such as Detzia, Mycobacterium, and Streptomyces are among the microbial sources targeted for selective reactions such as asymmetric biocatalysis catalyzed by whole cells or enzymes induced in their cell niche. Remarkably, stereoselective reactions catalyzed by actinobacterial whole cells or their enzymes include stereoselective oxidation, stereoselective reduction, kinetic resolution, asymmetric hydrolysis, and selective transamination, among others. Species of actinobacteria function with high chemo-, regio-, and enantio-selectivity under benign conditions, which could help current industrial processing. Numerous selective enzymes were either isolated from actinobacteria or expressed from actinobacteria in other microbes and hence exploited in the production of pure organic compounds difficult to obtain chemically. In addition, different species of actinobacteria, especially Streptomyces species, function as natural producers of chiral molecules of therapeutic importance. Herein, we discuss some of the most outstanding contributions of actinobacteria to asymmetric biocatalysis, which are important in the organic and/or pharmaceutical industries. In addition, we highlight the role of actinobacteria as microbial cell factories for chiral natural products with insights into their various biological potentialities.
Collapse
Affiliation(s)
- Sara Salama
- Department of Pharmaceutical Microbiology and Immunology, Faculty of Pharmacy, Beni-Suef University, 62514, Beni-Suef, Egypt
| | - Heba Sayed Mostafa
- Food Science Department, Faculty of Agriculture, Cairo University, 12613, Giza, Egypt
| | - Samah Husseiny
- Biotechnology and Life Sciences Department, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, 62517, Beni-Suef, Egypt
| | - Mohamed Sebak
- Department of Pharmaceutical Microbiology and Immunology, Faculty of Pharmacy, Beni-Suef University, 62514, Beni-Suef, Egypt
| |
Collapse
|
10
|
Vojnovic S, Aleksic I, Ilic-Tomic T, Stevanovic M, Nikodinovic-Runic J. Bacillus and Streptomyces spp. as hosts for production of industrially relevant enzymes. Appl Microbiol Biotechnol 2024; 108:185. [PMID: 38289383 PMCID: PMC10827964 DOI: 10.1007/s00253-023-12900-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 11/28/2023] [Accepted: 12/05/2023] [Indexed: 02/01/2024]
Abstract
The application of enzymes is expanding across diverse industries due to their nontoxic and biodegradable characteristics. Another advantage is their cost-effectiveness, reflected in reduced processing time, water, and energy consumption. Although Gram-positive bacteria, Bacillus, and Streptomyces spp. are successfully used for production of industrially relevant enzymes, they still lag far behind Escherichia coli as hosts for recombinant protein production. Generally, proteins secreted by Bacillus and Streptomyces hosts are released into the culture medium; their native conformation is preserved and easier recovery process enabled. Given the resilience of both hosts in harsh environmental conditions and their spore-forming capability, a deeper understanding and broader use of Bacillus and Streptomyces as expression hosts could significantly enhance the robustness of industrial bioprocesses. This mini-review aims to compare two expression hosts, emphasizing their specific advantages in industrial surroundings such are chemical, detergent, textile, food, animal feed, leather, and paper industries. The homologous sources, heterologous hosts, and molecular tools used for the production of recombinant proteins in these hosts are discussed. The potential to use both hosts as biocatalysts is also evaluated. Undoubtedly, Bacillus and Streptomyces spp. as production hosts possess the potential to take on a more substantial role, providing superior (bio-based) process robustness and flexibility. KEY POINTS: • Bacillus and Streptomyces spp. as robust hosts for enzyme production. • Industrially relevant enzyme groups for production in alternative hosts highlighted. • Molecular biology techniques are enabling easier utilization of both hosts.
Collapse
Affiliation(s)
- Sandra Vojnovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042, Belgrade 152, Serbia.
| | - Ivana Aleksic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042, Belgrade 152, Serbia
| | - Tatjana Ilic-Tomic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042, Belgrade 152, Serbia
| | - Milena Stevanovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042, Belgrade 152, Serbia
| | - Jasmina Nikodinovic-Runic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042, Belgrade 152, Serbia.
| |
Collapse
|
11
|
Restaino OF, Manini P, Kordjazi T, Alfieri ML, Rippa M, Mariniello L, Porta R. Biotechnological Production and Characterization of Extracellular Melanin by Streptomyces nashvillensis. Microorganisms 2024; 12:297. [PMID: 38399701 PMCID: PMC10892051 DOI: 10.3390/microorganisms12020297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/20/2024] [Accepted: 01/24/2024] [Indexed: 02/25/2024] Open
Abstract
Melanins are pigments employed in food, cosmetic, and textile industries, manufactured by extraction from cuttlefishes. Their biotechnological production by Streptomycetes, instead, has been poorly investigated so far. In this paper, for the first time, the strain Streptomyces nashvillensis DSM 40314 was tested as an extracellular melanin producer by investigating the influence of diverse temperatures (26, 28, and 30 °C) and pH values (6.0 and 7.0) on bacterial growth, melanin production, and on the activity of the secreted tyrosinase, the first enzyme of the pigment biosynthetic pathway. In physiological 96-h shake flask experiments, the optimal growth parameters resulted to be 28 °C and pH 7.0, at which a maximum biomass of 8.4 ± 0.5 gcdw/L, a melanin concentration of 0.74 ± 0.01 g/L (yield on biomass of 0.09 ± 0.01 g/gcdw and productivity of 0.008 ± 0.001 g/L/h), and a final tyrosinase activity of 10.1 ± 0.1 U/mL were reached. The produced pigment was purified from the broth supernatant with a two-step purification process (75.0 ± 2.0% of purity with 65.0 ± 5.0% of recovery) and tested for its chemical, antioxidant, and photoprotective properties. Finally, characterization by UV-visible and FT-IR spectroscopy, elemental analyses, and mono- and bi-dimensional NMR suggested the eumelanin-like nature of the pigment.
Collapse
Affiliation(s)
- Odile Francesca Restaino
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 4, 80126 Naples, Italy; (O.F.R.); (P.M.); (T.K.); (M.L.A.); (R.P.)
| | - Paola Manini
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 4, 80126 Naples, Italy; (O.F.R.); (P.M.); (T.K.); (M.L.A.); (R.P.)
| | - Talayeh Kordjazi
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 4, 80126 Naples, Italy; (O.F.R.); (P.M.); (T.K.); (M.L.A.); (R.P.)
| | - Maria Laura Alfieri
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 4, 80126 Naples, Italy; (O.F.R.); (P.M.); (T.K.); (M.L.A.); (R.P.)
| | - Massimo Rippa
- Institute of Applied Sciences and Intelligent Systems “E. Caianiello” of CNR, Via Campi Flegrei 34, 80078 Pozzuoli, Italy;
| | - Loredana Mariniello
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 4, 80126 Naples, Italy; (O.F.R.); (P.M.); (T.K.); (M.L.A.); (R.P.)
| | - Raffaele Porta
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 4, 80126 Naples, Italy; (O.F.R.); (P.M.); (T.K.); (M.L.A.); (R.P.)
| |
Collapse
|
12
|
Stegmüller J, Rodríguez Estévez M, Shu W, Gläser L, Myronovskyi M, Rückert-Reed C, Kalinowski J, Luzhetskyy A, Wittmann C. Systems metabolic engineering of the primary and secondary metabolism of Streptomyces albidoflavus enhances production of the reverse antibiotic nybomycin against multi-resistant Staphylococcus aureus. Metab Eng 2024; 81:123-143. [PMID: 38072358 DOI: 10.1016/j.ymben.2023.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 11/17/2023] [Accepted: 12/01/2023] [Indexed: 01/23/2024]
Abstract
Nybomycin is an antibiotic compound with proven activity against multi-resistant Staphylococcus aureus, making it an interesting candidate for combating these globally threatening pathogens. For exploring its potential, sufficient amounts of nybomycin and its derivatives must be synthetized to fully study its effectiveness, safety profile, and clinical applications. As native isolates only accumulate low amounts of the compound, superior producers are needed. The heterologous cell factory S. albidoflavus 4N24, previously derived from the cluster-free chassis S. albidoflavus Del14, produced 860 μg L-1 of nybomycin, mainly in the stationary phase. A first round of strain development modulated expression of genes involved in supply of nybomycin precursors under control of the common Perm* promoter in 4N24, but without any effect. Subsequent studies with mCherry reporter strains revealed that Perm* failed to drive expression during the product synthesis phase but that use of two synthetic promoters (PkasOP* and P41) enabled strong constitutive expression during the entire process. Using PkasOP*, several rounds of metabolic engineering successively streamlined expression of genes involved in the pentose phosphate pathway, the shikimic acid pathway, supply of CoA esters, and nybomycin biosynthesis and export, which more than doubled the nybomycin titer to 1.7 mg L-1 in the sixth-generation strain NYB-6B. In addition, we identified the minimal set of nyb genes needed to synthetize the molecule using single-gene-deletion strains. Subsequently, deletion of the regulator nybW enabled nybomycin production to begin during the growth phase, further boosting the titer and productivity. Based on RNA sequencing along the created strain genealogy, we discovered that the nyb gene cluster was unfavorably downregulated in all advanced producers. This inspired removal of a part and the entire set of the four regulatory genes at the 3'-end nyb of the cluster. The corresponding mutants NYB-8 and NYB-9 exhibited marked further improvement in production, and the deregulated cluster was combined with all beneficial targets from primary metabolism. The best strain, S. albidoflavus NYB-11, accumulated up to 12 mg L-1 nybomycin, fifteenfold more than the basic strain. The absence of native gene clusters in the host and use of a lean minimal medium contributed to a selective production process, providing an important next step toward further development of nybomycin.
Collapse
Affiliation(s)
- Julian Stegmüller
- Institute of Systems Biotechnology, Saarland University, Saarbrücken, Germany
| | | | - Wei Shu
- Institute of Systems Biotechnology, Saarland University, Saarbrücken, Germany
| | - Lars Gläser
- Institute of Systems Biotechnology, Saarland University, Saarbrücken, Germany
| | - Maksym Myronovskyi
- Department of Pharmaceutical Biotechnology, Saarland University, Saarbrücken, Germany
| | | | - Jörn Kalinowski
- Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Andriy Luzhetskyy
- Department of Pharmaceutical Biotechnology, Saarland University, Saarbrücken, Germany
| | - Christoph Wittmann
- Institute of Systems Biotechnology, Saarland University, Saarbrücken, Germany.
| |
Collapse
|
13
|
Chhettri S, Sevigny J, Pesce C, Sarkar I, Thomas W, Nouioui I, Sen G, Tisa LS, Sen A. Whole genome sequencing of Streptomyces antnestii sp. nov. with a potency to become an industrial strain. J Genomics 2024; 12:6-13. [PMID: 38164509 PMCID: PMC10751750 DOI: 10.7150/jgen.87156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 10/12/2023] [Indexed: 01/03/2024] Open
Abstract
Streptomyces Strain San01 is isolated from the soil of ant-nest found in the tea estate of Darjeeling, India. The morphology, biochemical, as well as the molecular characteristics, proved that San01 belonged to the genus Streptomyces. The average nucleotide identity (ANI) value between the genome sequence of the studied strain and its closest phylogenetic neighbors were very low and also could be distinguished from its closest neighbour with broad range of phenotypic data. The draft genome sequence of isolate San01 (NZ_RZYA00000000.1) was estimated to be 9.12 Mbp in size with 71.2% of GC content and it encompasses 39 biosynthetic gene clusters that emphasize the biotechnological potential of this isolate.Based on the phenotypic, genetic and genomic data, isolate San01 (=JCM 34633 = NCTC 14543) merits to be recognized as a type strain of a novel species and hereby propose the name Streptomyces antnestii sp. nov. Incidentally, this is the first report on Streptomyces genomes from Darjeeling, India.
Collapse
Affiliation(s)
- Saroja Chhettri
- Department of Botany, University of North Bengal, Raja Rammohanpur, Siliguri-734013, India
- Midnapore College, Midnapore, West Bengal 721101, India
| | - Joseph Sevigny
- Dept. of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH 03824, USA
- Hubbard Center for Genomic Studies, University of New Hampshire, Durham, NH 03824 USA
| | - Céline Pesce
- Dept. of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH 03824, USA
- Present address: HM Clause, Davis, California, USA
| | - Indrani Sarkar
- Bioinformatics Facility, University of North Bengal, Raja Rammohanpur, Siliguri-734013, India
| | - W.Kelley Thomas
- Dept. of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH 03824, USA
- Hubbard Center for Genomic Studies, University of New Hampshire, Durham, NH 03824 USA
| | - Imen Nouioui
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures: Braunschweig, Germany
| | - Gargi Sen
- Bioinformatics Facility, University of North Bengal, Raja Rammohanpur, Siliguri-734013, India
| | - Louis S. Tisa
- Dept. of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH 03824, USA
| | - Arnab Sen
- Department of Botany, University of North Bengal, Raja Rammohanpur, Siliguri-734013, India
- Bioinformatics Facility, University of North Bengal, Raja Rammohanpur, Siliguri-734013, India
- Biswa Bangla Genome Center, University of North Bengal, Raja Rammohanpur, Siliguri-734013, India
| |
Collapse
|
14
|
Cuebas‐Irizarry MF, Grunden AM. Streptomyces spp. as biocatalyst sources in pulp and paper and textile industries: Biodegradation, bioconversion and valorization of waste. Microb Biotechnol 2024; 17:e14258. [PMID: 37017414 PMCID: PMC10832569 DOI: 10.1111/1751-7915.14258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 03/14/2023] [Accepted: 03/21/2023] [Indexed: 04/06/2023] Open
Abstract
Complex polymers represent a challenge for remediating environmental pollution and an opportunity for microbial-catalysed conversion to generate valorized chemicals. Members of the genus Streptomyces are of interest because of their potential use in biotechnological applications. Their versatility makes them excellent sources of biocatalysts for environmentally responsible bioconversion, as they have a broad substrate range and are active over a wide range of pH and temperature. Most Streptomyces studies have focused on the isolation of strains, recombinant work and enzyme characterization for evaluating their potential for biotechnological application. This review discusses reports of Streptomyces-based technologies for use in the textile and pulp-milling industry and describes the challenges and recent advances aimed at achieving better biodegradation methods featuring these microbial catalysts. The principal points to be discussed are (1) Streptomyces' enzymes for use in dye decolorization and lignocellulosic biodegradation, (2) biotechnological processes for textile and pulp and paper waste treatment and (3) challenges and advances for textile and pulp and paper effluent treatment.
Collapse
Affiliation(s)
- Mara F. Cuebas‐Irizarry
- Department of Plant and Microbial BiologyNorth Carolina State UniversityPlant Sciences Building Rm 2323, 840 Oval DrRaleighNorth Carolina27606USA
| | - Amy M. Grunden
- Department of Plant and Microbial BiologyNorth Carolina State UniversityPlant Sciences Building Rm 2323, 840 Oval DrRaleighNorth Carolina27606USA
| |
Collapse
|
15
|
Embarez DH, Razek ASA, Basalious EB, Mahmoud M, Hamdy NM. Acetaminophen-traces bioremediation with novel phenotypically and genotypically characterized 2 Streptomyces strains using chemo-informatics, in vivo, and in vitro experiments for cytotoxicity and biological activity. J Genet Eng Biotechnol 2023; 21:171. [PMID: 38112983 PMCID: PMC10730784 DOI: 10.1186/s43141-023-00602-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 11/14/2023] [Indexed: 12/21/2023]
Abstract
We isolated two novel bacterial strains, active against the environmental pollutant acetaminophen/Paracetamol®. Streptomyces chrestomyceticus (symbol RS2) and Flavofuscus (symbol M33) collected from El-Natrun Valley, Egypt-water, sediment, and sand samples, taxonomically characterized using a transmission electron microscope (TEM). Genotypic identification, based on 16S rRNA gene sequence analysis followed by BLAST alignment, were deposited on the NCBI as 2 novel strains https://www.ncbi.nlm.nih.gov/nuccore/OM665324 and https://www.ncbi.nlm.nih.gov/nuccore/OM665325 . The phylogenetic tree was constructed. Acetaminophen secondary or intermediate product's chemical structure was identified by GC/LC MS. Some selected acetaminophen secondary-product extracts and derived compounds were examined against a panel of test micro-organisms and fortunately showed a good anti-microbial effect. In silico chemo-informatics Swiss ADMET evaluation was used in the selected bio-degradation extracts for absorption (gastric), distribution (to CNS), metabolism (hepatic), excretion (renal), and finally not toxic, being non-mutagenic/teratogenic or genotoxic, virtually. Moreover, in vitro cytotoxic activity of these selected bio-degradation secondary products was examined against HepG2 and MCF7 cancer cell lines, where M33 and RS2 extract effects on acetaminophen/paracetamol bio-degradation products were safe, with higher IC50 on HepG2 and MCF7 than the acetaminophen/paracetamol IC50 of 108.5 μg/ml. Moreover, an in vivo oral acute single-dose toxicity experiment was conducted, to confirm these in vitro and in silico lower toxicity (better safety) than acetaminophen/paracetamol.
Collapse
Affiliation(s)
- Donia H Embarez
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, 11566, Abassia, Egypt
| | - Ahmed S Abdel Razek
- Microbial Chemistry Department, Genetic Engineering and Biotechnology Research Division, National Research Centre, Giza, 12622, Dokki, Egypt
| | - Emad B Basalious
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, 11562, Al Kasr El-Aini, Egypt
| | - Magdi Mahmoud
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, 11566, Abassia, Egypt
| | - Nadia M Hamdy
- Department of Biochemistry, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Abassia, Egypt.
| |
Collapse
|
16
|
Ashok GC, Prakash Pradhan S, Kumar Karki K, Khadka A, Bhandari A, Prasad Pandey B. Antioxidant and Enzyme Inhibitory Potential of Streptomyces sp. G-18 Grown in Various Media. Int J Microbiol 2023; 2023:6439466. [PMID: 37583475 PMCID: PMC10425256 DOI: 10.1155/2023/6439466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 04/14/2023] [Accepted: 07/19/2023] [Indexed: 08/17/2023] Open
Abstract
Streptomyces are bacteria well known for producing bioactive secondary metabolites which are commonly found in diverse habitats. The biosynthesis of metabolites from Streptomyces is influenced by various factors such as the growth medium, environmental conditions, and gene regulation. This study aimed to investigate the influence of different growth media on biomass production and the antioxidant and enzyme inhibitory potential of a crude extract obtained from Streptomyces sp. G-18 isolated from high altitudinal soil of Nepal. The highest dry weight growth was observed in R2YE medium (184 mg/L), followed by R5 (144 mg/L), YEME (38 mg/L), and R5M media (30 mg/L). The crude extract showed notable antioxidant activities against free radicals. The highest alpha-amylase inhibition was observed in the R2YE medium, and worthy lipase and tyrosinase inhibition was observed in the YEME medium. However, only the R2YE medium exhibited inhibitory potential against elastase and acetylcholinesterase, while crude extracts from R5, YEME, and R5 modified did not show any such activity. Overall, our findings suggest that the production of bioactive secondary metabolites in Streptomyces sp. G-18 was significantly influenced by the growth medium. This strain may be a promising source of enzyme inhibitors with potential applications in the pharmaceutical and cosmetic industries.
Collapse
Affiliation(s)
- G. C. Ashok
- Department of Chemical Science and Engineering, Kathmandu University, Dhulikhel, Nepal
| | | | - Krishna Kumar Karki
- Department of Chemical Science and Engineering, Kathmandu University, Dhulikhel, Nepal
| | - Aakriti Khadka
- Department of Chemical Science and Engineering, Kathmandu University, Dhulikhel, Nepal
| | - Aishwarya Bhandari
- Department of Chemical Science and Engineering, Kathmandu University, Dhulikhel, Nepal
| | - Bishnu Prasad Pandey
- Department of Chemical Science and Engineering, Kathmandu University, Dhulikhel, Nepal
| |
Collapse
|
17
|
Guo W, Xiao Z, Huang T, Zhang K, Pan HX, Tang GL, Deng Z, Liang R, Lin S. Identification and characterization of a strong constitutive promoter stnYp for activating biosynthetic genes and producing natural products in streptomyces. Microb Cell Fact 2023; 22:127. [PMID: 37443029 DOI: 10.1186/s12934-023-02136-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
BACKGROUND Streptomyces are well known for their potential to produce various pharmaceutically active compounds, the commercial development of which is often limited by the low productivity and purity of the desired compounds expressed by natural producers. Well-characterized promoters are crucial for driving the expression of target genes and improving the production of metabolites of interest. RESULTS A strong constitutive promoter, stnYp, was identified in Streptomyces flocculus CGMCC4.1223 and was characterized by its effective activation of silent biosynthetic genes and high efficiency of heterologous gene expression. The promoter stnYp showed the highest activity in model strains of four Streptomyces species compared with the three frequently used constitutive promoters ermEp*, kasOp*, and SP44. The promoter stnYp could efficiently activate the indigoidine biosynthetic gene cluster in S. albus J1074, which is thought to be silent under routine laboratory conditions. Moreover, stnYp was found suitable for heterologous gene expression in different Streptomyces hosts. Compared with the promoters ermEp*, kasOp*, and SP44, stnYp conferred the highest production level of diverse metabolites in various heterologous hosts, including the agricultural-bactericide aureonuclemycin and the antitumor compound YM-216391, with an approximately 1.4 - 11.6-fold enhancement of the yields. Furthermore, the purity of tylosin A was greatly improved by overexpressing rate-limiting genes through stnYp in the industrial strain. Further, the yield of tylosin A was significantly elevated to 10.30 ± 0.12 g/L, approximately 1.7-fold higher than that of the original strain. CONCLUSIONS The promoter stnYp is a reliable, well-defined promoter with strong activity and broad suitability. The findings of this study can expand promoter diversity, facilitate genetic manipulation, and promote metabolic engineering in multiple Streptomyces species.
Collapse
Affiliation(s)
- Wenli Guo
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Zhihong Xiao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Tingting Huang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
- Haihe Laboratory of Synthetic Biology, Tianjin, 300308, China
| | - Kai Zhang
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Hai-Xue Pan
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Gong-Li Tang
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
- Haihe Laboratory of Synthetic Biology, Tianjin, 300308, China
| | - Rubing Liang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
- Haihe Laboratory of Synthetic Biology, Tianjin, 300308, China.
| | - Shuangjun Lin
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
- Haihe Laboratory of Synthetic Biology, Tianjin, 300308, China.
- Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| |
Collapse
|
18
|
Abd-Elhalim BT, Hemdan BA, El-Sayed SM, Ahmed MA, Maan SA, Abu-Hussien SH. Enhancing durability and sustainable preservation of Egyptian stone monuments using metabolites produced by Streptomyces exfoliatus. Sci Rep 2023; 13:9458. [PMID: 37301893 PMCID: PMC10257707 DOI: 10.1038/s41598-023-36542-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 06/06/2023] [Indexed: 06/12/2023] Open
Abstract
Despite their threatens for Egyptian stone monuments, A few studies focused on using biocontrol agents against deteriorative fungi and bacteria instead of using chemical assays that leave residuals leading to human toxicity and environmental pollution. This work aims to isolate and identify fungal and bacterial isolates that showed deteriorative activities from stone monuments in Temple of Hathor, Luxor, Egypt, as well as determine the inhibitory activity of metabolites produced by Streptomyces exfoliatus SAMAH 2021 against the identified deteriorative fungal and bacterial strains. Moreover, studying the spectral analysis, toxicological assessment of metabolites produced by S. exfoliatus SAMAH 2021 against health human cell fibroblast, and colorimetric measurements on the selected stone monuments. Ten samples were collected from Temple of Hathor, Luxor, Egypt. Three fungal isolates and one bacterial isolate were obtained and identified as A. niger isolate Hathor 2, C. fioriniae strain Hathor 3, P. chrysogenum strain HATHOR 1, and L. sphaericus strain Hathor 4, respectively. Inhibitory potential of the metabolites in all concentrations used (100-25%) against the recommended antibiotics (Tetracycline 10 µg/ml and Doxycycline (30 µg/ml) showed an inhibitory effect toward all tested deteriorative pathogens with a minimum inhibition concentration (MIC) of 25%. Cytotoxicity test confirmed that microbial filtrate as the antimicrobial agent was safe for healthy human skin fibroblast with IC50 of < 100% and cell viability of 97%. Gas chromatography analysis recorded the existence of thirteen antimicrobial agents, Cis-vaccenic acid; 1,2-Benzenedicarboxylic acid; ç-Butyl-ç-butyrolactone and other compounds. Colorimetric measurements confirmed no color or surface change for the limestone-treated pieces. The use of the metabolite of microbial species antimicrobial as a biocontrol agent raises contemporary issues concerning the bio-protection of the Egyptian monuments to reduce chemical formulas that are toxic to humans and pollute the environment. Such serious problems need further investigation for all kinds of monuments.
Collapse
Affiliation(s)
- Basma T Abd-Elhalim
- Department of Microbiology, Faculty of Agriculture, Ain Shams University, Cairo, 11566, Egypt
| | - Bahaa A Hemdan
- Water Pollution Research Department, Environmental Research and Climate Change Institute, National Research Centre, 33 El-Bohouth St., Dokki, 12622, Giza, Egypt.
| | - Salwa M El-Sayed
- Department of Biochemistry, Faculty of Agriculture, Ain Shams University, Cairo, 11566, Egypt
| | - Mahgoub A Ahmed
- Department of Conservation, Faculty of Archaeology, South Valley University, Qena, Egypt
| | - Sodaf A Maan
- Department of Microbiology, Faculty of Agriculture, Ain Shams University, Cairo, 11566, Egypt
| | - Samah H Abu-Hussien
- Department of Microbiology, Faculty of Agriculture, Ain Shams University, Cairo, 11566, Egypt.
| |
Collapse
|
19
|
Martins GL, Jose de Souza A, Osti JF, Gontijo JB, Cherubin MR, Viana DG, Rodrigues MM, Tornisielo VL, Regitano JB. The role of land use, management, and microbial diversity depletion on glyphosate biodegradation in tropical soils. ENVIRONMENTAL RESEARCH 2023; 231:116178. [PMID: 37201699 DOI: 10.1016/j.envres.2023.116178] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/14/2023] [Accepted: 05/15/2023] [Indexed: 05/20/2023]
Abstract
Land use and management changes affect the composition and diversity of soil bacteria and fungi, which in turn may alter soil health and the provision of key ecological functions, such as pesticide degradation and soil detoxification. However, the extent to which these changes affect such services is still poorly understood in tropical agroecosystems. Our main goal was to evaluate how land-use (tilled versus no-tilled soil), soil management (N-fertilization), and microbial diversity depletion [tenfold (D1 = 10-1) and thousandfold (D3 = 10-3) dilutions] impacted soil enzyme activities (β-glycosidase and acid phosphatase) involved in nutrient cycles and glyphosate mineralization. Soils were collected from a long-term experimental area (35 years) and compared to its native forest soil (NF). Glyphosate was selected due to its intensive use in agriculture worldwide and in the study area, as well as its recalcitrance in the environment by forming inner sphere complexes. Bacterial communities played a more important role than the fungi in glyphosate degradation. For this function, the role of microbial diversity was more critical than land use and soil management. Our study also revealed that conservation tillage systems, such as no-tillage, regardless of nitrogen fertilizer use, mitigates the negative effects of microbial diversity depletion, being more efficient and resilient regarding glyphosate degradation than conventional tillage systems. No-tilled soils also presented much higher β-glycosidase and acid phosphatase activities as well as higher bacterial diversity indexes than those under conventional tillage. Consequently, conservation tillage is a key component for sustaining soil health and its functionality, providing critical ecosystem functions, such as soil detoxification in tropical agroecosystems.
Collapse
Affiliation(s)
- Guilherme Lucio Martins
- "Luiz de Queiroz College of Agriculture" (ESALQ), University of São Paulo, Piracicaba, São Paulo, Brazil; Centre for Nuclear Energy in Agriculture (CENA), University of São Paulo, Piracicaba, São Paulo, Brazil
| | - Adijailton Jose de Souza
- "Luiz de Queiroz College of Agriculture" (ESALQ), University of São Paulo, Piracicaba, São Paulo, Brazil
| | - Júlio Flavio Osti
- "Luiz de Queiroz College of Agriculture" (ESALQ), University of São Paulo, Piracicaba, São Paulo, Brazil
| | - Júlia Brandão Gontijo
- Centre for Nuclear Energy in Agriculture (CENA), University of São Paulo, Piracicaba, São Paulo, Brazil
| | - Maurício Roberto Cherubin
- "Luiz de Queiroz College of Agriculture" (ESALQ), University of São Paulo, Piracicaba, São Paulo, Brazil
| | - Douglas Gomes Viana
- "Luiz de Queiroz College of Agriculture" (ESALQ), University of São Paulo, Piracicaba, São Paulo, Brazil
| | - Mayra Maniero Rodrigues
- "Luiz de Queiroz College of Agriculture" (ESALQ), University of São Paulo, Piracicaba, São Paulo, Brazil
| | - Valdemar Luiz Tornisielo
- Centre for Nuclear Energy in Agriculture (CENA), University of São Paulo, Piracicaba, São Paulo, Brazil
| | - Jussara Borges Regitano
- "Luiz de Queiroz College of Agriculture" (ESALQ), University of São Paulo, Piracicaba, São Paulo, Brazil.
| |
Collapse
|
20
|
Kraseasintra O, Sensupa S, Mahanil K, Yoosathaporn S, Pekkoh J, Srinuanpan S, Pathom-Aree W, Pumas C. Optimization of Melanin Production by Streptomyces antibioticus NRRL B-1701 Using Arthrospira (Spirulina) platensis Residues Hydrolysates as Low-Cost L-tyrosine Supplement. BIOTECH 2023; 12:biotech12010024. [PMID: 36975314 PMCID: PMC10046677 DOI: 10.3390/biotech12010024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/14/2023] [Accepted: 03/17/2023] [Indexed: 03/29/2023] Open
Abstract
Melanin is a functional pigment that is used in various products. It can be produced by Streptomyces antibioticus NRRL B-1701 when supplemented with L-tyrosine. Arthrospira (Spirulina) platensis is a cyanobacterium with high protein content, including the protein phycocyanin (PC). During PC's extraction, biomass residues are generated, and these residues still contain various amino acids, especially L-tyrosine, which can be used as a low-cost supplement for melanin production. Thus, this study employed a hydrolysate of A. platensis biomass residue for L-tyrosine substitution. The effects of two drying methods, namely, lyophilization and dying via a hot air oven, on the proximate composition and content of L-tyrosine in the biomass residue were evaluated. The highest L-tyrosine (0.268 g L-tyrosine/100 g dried biomass) concentration was obtained from a hot-air-oven-dried biomass residue hydrolysate (HAO-DBRH). The HAO-DBRH was then used as a low-cost L-tyrosine supplement for maximizing melanin production, which was optimized by the response surface methodology (RSM) through central composite design (CCD). Using the RSM-CCD, the maximum level of melanin production achieved was 0.24 g/L, which is approximately four times higher than it was before optimization. This result suggests that A. platensis residue hydrolysate could be an economically feasible and low-cost alternative source of L-tyrosine for the production of melanin.
Collapse
Affiliation(s)
- Oranit Kraseasintra
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Doctor of Philosophy Program in Applied Microbiology (International Program) in Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Sritip Sensupa
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Kanjana Mahanil
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Sada Yoosathaporn
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Jeeraporn Pekkoh
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Environmental Science Research Centre, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Research Center of Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Sirasit Srinuanpan
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Research Center of Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Wasu Pathom-Aree
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Research Center of Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Chayakorn Pumas
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Environmental Science Research Centre, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Research Center in Bioresources for Agriculture, Industry and Medicine, Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
21
|
Abd-elhalim BT, Hemdan BA, El-sayed SM, Ahmed MA, Maan SA, Abu-hussien SH. Enhancing durability and Sustainable Preservation of Egyptian Stone Monuments Using metabolites produced by Streptomyces exfoliatus.. [DOI: 10.21203/rs.3.rs-2576715/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Abstract
Despite their threatens for Egyptian stone monuments, A few studies focused on using biocontrol agents against deteriorative fungi and bacteria instead of using chemical assays that leave residuals leading to human toxicity and environmental pollution. This work aims to isolate and identify fungal and bacterial isolates that showed deteriorative activities from stone monuments in Temple of Hathor, Luxor, Egypt, as well as determine the inhibitory activity of metabolites produced by Streptomyces exfoliatus against the identified deteriorative fungal and bacterial strains. Moreover, studying the spectral analysis, toxicological assessment of metabolites produced by S. exfoliatus against health human cell fibroblast (HCF), and colorimetric measurements on the selected stone monuments. Ten samples were collected from Temple of Hathor, Loxor, Egypt. Four fungal isolates and one bacterial isolate were obtained and identified as A. niger isolate Hathor 2, C. fioriniae strain Hathor 3, P. chrysogenum strain Hathor 1, and L. sphaericus strain Hathor 4, respectively. Inhibitory potential of the metabolites in all concentrations used (100–25%) against the recommended antibiotics (Tetracycline 10 µg/ml and Doxycycline 30 µg/ml) showed an inhibitory effect toward all tested deteriorative pathogens with a minimum inhibition concentration (MIC) of 25%. Cytotoxicity test confirmed that S. exfoliatus filtrate as the antimicrobial agent was safe for healthy human skin fibroblast with IC50 of < 100% and cell viability of 97%. Gas chromatography (GC) analysis recorded the existence of thirteen antimicrobial agents, Cis-vaccenic acid; 1,2-Benzenedicarboxylic acid; ç-Butyl-ç-butyrolactone and other compounds. Colorimetric measurements confirmed no color or surface change for the limestone-treated pieces. The use of S. exfoliatus antimicrobial as a biocontrol agent raises contemporary issues concerning the bio-protection of the Egyptian monuments to reduce chemical formulas that are toxic to humans and pollute the environment. Such serious problems need further investigation for all kinds of monuments.
Collapse
|
22
|
Horizontal Transfer of Bacteriocin Biosynthesis Genes Requires Metabolic Adaptation To Improve Compound Production and Cellular Fitness. Microbiol Spectr 2023; 11:e0317622. [PMID: 36472430 PMCID: PMC9927498 DOI: 10.1128/spectrum.03176-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Biosynthetic gene clusters (BGCs) encoding the production of bacteriocins are widespread among bacterial isolates and are important genetic determinants of competitive fitness within a given habitat. Staphylococci produce a tremendous diversity of compounds, and the corresponding BGCs are frequently associated with mobile genetic elements, suggesting gain and loss of biosynthetic capacity. Pharmaceutical biology has shown that compound production in heterologous hosts is often challenging, and many BGC recipients initially produce small amounts of compound or show reduced growth rates. To assess whether transfer of BGCs between closely related Staphylococcus aureus strains can be instantly effective or requires elaborate metabolic adaptation, we investigated the intraspecies transfer of a BGC encoding the ribosomally synthesized and posttranslationally modified peptide (RiPP) micrococcin P1 (MP1). We found that acquisition of the BGC by S. aureus RN4220 enabled immediate MP1 production but also imposed a metabolic burden, which was relieved after prolonged cultivation by adaptive mutation. We used a multiomics approach to study this phenomenon and found adaptive evolution to select for strains with increased activity of the tricarboxylic acid cycle (TCA), which enhanced metabolic fitness and levels of compound production. Metabolome analysis revealed increases of central metabolites, including citrate and α-ketoglutarate in the adapted strain, suggesting metabolic adaptation to overcome the BGC-associated growth defects. Our results indicate that BGC acquisition requires genetic and metabolic predispositions, allowing the integration of bacteriocin production into the cellular metabolism. Inappropriate metabolic characteristics of recipients can entail physiological burdens, negatively impacting the competitive fitness of recipients within natural bacterial communities. IMPORTANCE Human microbiomes are critically associated with human health and disease. Importantly, pathogenic bacteria can hide in human-associated communities and can cause disease when the composition of the community becomes unbalanced. Bacteriocin-producing commensals are able to displace pathogens from microbial communities, suggesting that their targeted introduction into human microbiomes might prevent pathogen colonization and infection. However, to develop probiotic approaches, strains are needed that produce high levels of bioactive compounds and retain cellular fitness within mixed bacterial communities. Our work offers insights into the metabolic burdens associated with the production of the bacteriocin micrococcin P1 and highlights evolutionary strategies that increase cellular fitness in the context of production. Metabolic adaptations are most likely broadly relevant for bacteriocin producers and need to be considered for the future development of effective microbiome editing strategies.
Collapse
|
23
|
Liu Z, Yashiroda Y, Sun P, Ma H, Wang Y, Li L, Yan F, Sun Y. Argenteolides A and B, Glycosylated Polyketide-Peptide Hybrid Macrolides from an Actinomycete Streptomyces argenteolus. Org Lett 2023; 25:571-575. [PMID: 36469481 DOI: 10.1021/acs.orglett.2c03290] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Two novel glycosylated polyketide-peptide hybrid macrolides, argenteolides A (1) and B (2), were isolated from an actinomycete Streptomyces argenteolus. Argenteolide A (1) contains a unique 5/5/5 tricyclic system in a 20-membered macrocycle. Their structures were elucidated by extensive spectroscopic analysis, and their stereochemical configurations were established through the application of chemical derivatization, J-based configuration analysis, DP4+ calculation, and electronic circular dichroism calculation. The analysis of the genome sequence revealed a plausible biosynthesis mechanism, and isotope-labeled feeding studies suggested their biogenetic origins. Argenteolides A and B exhibited moderate cytotoxicities against A549, p388, and Hela human carcinoma cell lines as well as antibacterial activities against Staphylococcus aureus and Escherichia coli ATCC25922.
Collapse
Affiliation(s)
- Zhiguo Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing100700, China
| | - Yoko Yashiroda
- RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama351-0198, Japan
| | - Peng Sun
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing100700, China
| | - Hai Ma
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing100700, China
| | - Yanan Wang
- Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing100050, China
| | - Li Li
- Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing100050, China
| | - Fu Yan
- Helmholtz International Lab for Antiinfectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong266237, China
| | - Yi Sun
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing100700, China
| |
Collapse
|
24
|
Restaino OF, Scognamiglio M, Mirpoor SF, Cammarota M, Ventriglia R, Giosafatto CVL, Fiorentino A, Porta R, Schiraldi C. Enhanced Streptomyces roseochromogenes melanin production by using the marine renewable source Posidonia oceanica egagropili. Appl Microbiol Biotechnol 2022; 106:7265-7283. [PMID: 36198867 DOI: 10.1007/s00253-022-12191-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 09/11/2022] [Accepted: 09/18/2022] [Indexed: 11/24/2022]
Abstract
Since the possibility to biotechnologically produce melanin by Streptomycetes using plant biomass has been so far poorly investigated, Posidonia oceanica egagropili, a marine waste accumulating along the Mediterranean Sea coasts, was explored as a renewable source to enhance extracellular melanin production by Streptomyces roseochromogenes ATCC 13400. Therefore, different amounts of egagropili powder were added to a culture medium containing glucose, malt extract, and yeast extract, and their effect on the melanin biosynthesis was evaluated. A 2.5 g·L-1 supplementation in 120-h shake flask growths at 26 °C, at pH 6.0 and 250 rpm, was found to enhance the melanin production up to 3.94 ± 0.12 g·L-1, a value 7.4-fold higher than the control. Moreover, 2-L batches allowed to reach a concentration of 9.20 ± 0.12 g·L-1 in 96 h with a productivity of 0.098 g·L-1·h-1. Further studies also demonstrated that the melanin production enhancement was due to the synergistic effect of both the lignin carbohydrate complex and the holocellulose components of the egagropili. Finally, the pigment was purified from the broth supernatant by acidic precipitation and reversed-phase chromatography, characterized by UV absorbance and one- and two-dimensional NMR, and also tested for its chemical, antioxidant, and photo-protective properties. KEY POINTS: • S. roseochromogenes ATCC 13400 produces extracellular soluble melanin. • Egagropili added to the growth medium enhances melanin production and productivity. • Both the lignin carbohydrate complex and the holocellulose egagropili components influence the melanin biosynthesis.
Collapse
Affiliation(s)
- Odile Francesca Restaino
- Department of Experimental Medicine, Section of Biotechnology and Molecular Biology, Università Degli Studi Della Campania "Luigi Vanvitelli", Via De Crecchio 7, 80138, Naples, Italy. .,Department of Chemical Sciences, Università Degli Studi Di Napoli "Federico II", Montesantangelo Campus, via Cintia 4, 80126, Naples, Italy.
| | - Monica Scognamiglio
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies, Università Degli Studi Della Campania "Luigi Vanvitelli", Via Vivaldi 43, 81100, Caserta, Italy
| | - S Fatemeh Mirpoor
- Department of Chemical Sciences, Università Degli Studi Di Napoli "Federico II", Montesantangelo Campus, via Cintia 4, 80126, Naples, Italy
| | - Marcella Cammarota
- Department of Experimental Medicine, Section of Biotechnology and Molecular Biology, Università Degli Studi Della Campania "Luigi Vanvitelli", Via De Crecchio 7, 80138, Naples, Italy
| | - Riccardo Ventriglia
- Department of Experimental Medicine, Section of Biotechnology and Molecular Biology, Università Degli Studi Della Campania "Luigi Vanvitelli", Via De Crecchio 7, 80138, Naples, Italy
| | - C Valeria L Giosafatto
- Department of Chemical Sciences, Università Degli Studi Di Napoli "Federico II", Montesantangelo Campus, via Cintia 4, 80126, Naples, Italy
| | - Antonio Fiorentino
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies, Università Degli Studi Della Campania "Luigi Vanvitelli", Via Vivaldi 43, 81100, Caserta, Italy
| | - Raffaele Porta
- Department of Chemical Sciences, Università Degli Studi Di Napoli "Federico II", Montesantangelo Campus, via Cintia 4, 80126, Naples, Italy
| | - Chiara Schiraldi
- Department of Experimental Medicine, Section of Biotechnology and Molecular Biology, Università Degli Studi Della Campania "Luigi Vanvitelli", Via De Crecchio 7, 80138, Naples, Italy
| |
Collapse
|
25
|
Wadler CS, Wolters JF, Fortney NW, Throckmorton KO, Zhang Y, Miller CR, Schneider RM, Wendt-Pienkowski E, Currie CR, Donohue TJ, Noguera DR, Hittinger CT, Thomas MG. Utilization of lignocellulosic biofuel conversion residue by diverse microorganisms. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:70. [PMID: 35751080 PMCID: PMC9233362 DOI: 10.1186/s13068-022-02168-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 06/14/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Lignocellulosic conversion residue (LCR) is the material remaining after deconstructed lignocellulosic biomass is subjected to microbial fermentation and treated to remove the biofuel. Technoeconomic analyses of biofuel refineries have shown that further microbial processing of this LCR into other bioproducts may help offset the costs of biofuel generation. Identifying organisms able to metabolize LCR is an important first step for harnessing the full chemical and economic potential of this material. In this study, we investigated the aerobic LCR utilization capabilities of 71 Streptomyces and 163 yeast species that could be engineered to produce valuable bioproducts. The LCR utilization by these individual microbes was compared to that of an aerobic mixed microbial consortium derived from a wastewater treatment plant as representative of a consortium with the highest potential for degrading the LCR components and a source of genetic material for future engineering efforts. RESULTS We analyzed several batches of a model LCR by chemical oxygen demand (COD) and chromatography-based assays and determined that the major components of LCR were oligomeric and monomeric sugars and other organic compounds. Many of the Streptomyces and yeast species tested were able to grow in LCR, with some individual microbes capable of utilizing over 40% of the soluble COD. For comparison, the maximum total soluble COD utilized by the mixed microbial consortium was about 70%. This represents an upper limit on how much of the LCR could be valorized by engineered Streptomyces or yeasts into bioproducts. To investigate the utilization of specific components in LCR and have a defined media for future experiments, we developed a synthetic conversion residue (SynCR) to mimic our model LCR and used it to show lignocellulose-derived inhibitors (LDIs) had little effect on the ability of the Streptomyces species to metabolize SynCR. CONCLUSIONS We found that LCR is rich in carbon sources for microbial utilization and has vitamins, minerals, amino acids and other trace metabolites necessary to support growth. Testing diverse collections of Streptomyces and yeast species confirmed that these microorganisms were capable of growth on LCR and revealed a phylogenetic correlation between those able to best utilize LCR. Identification and quantification of the components of LCR enabled us to develop a synthetic LCR (SynCR) that will be a useful tool for examining how individual components of LCR contribute to microbial growth and as a substrate for future engineering efforts to use these microorganisms to generate valuable bioproducts.
Collapse
Affiliation(s)
- Caryn S Wadler
- Department of Bacteriology, University of Wisconsin-Madison, 1550 Linden Dr, Madison, WI, 53706, USA
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, 1552 University Ave, Madison, WI, 53726, USA
| | - John F Wolters
- Wisconsin Energy Institute, University of Wisconsin-Madison, 1552 University Ave, Madison, WI, 53726, USA
- Laboratory of Genetics, Center for Genomic Science Innovation, J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, 425-g Henry Mall, Madison, WI, 53706, USA
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, 1552 University Ave, Madison, WI, 53726, USA
| | - Nathaniel W Fortney
- Wisconsin Energy Institute, University of Wisconsin-Madison, 1552 University Ave, Madison, WI, 53726, USA
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, 1552 University Ave, Madison, WI, 53726, USA
| | - Kurt O Throckmorton
- Department of Bacteriology, University of Wisconsin-Madison, 1550 Linden Dr, Madison, WI, 53706, USA
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, 1552 University Ave, Madison, WI, 53726, USA
| | - Yaoping Zhang
- Wisconsin Energy Institute, University of Wisconsin-Madison, 1552 University Ave, Madison, WI, 53726, USA
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, 1552 University Ave, Madison, WI, 53726, USA
| | - Caroline R Miller
- Wisconsin Energy Institute, University of Wisconsin-Madison, 1552 University Ave, Madison, WI, 53726, USA
- Laboratory of Genetics, Center for Genomic Science Innovation, J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, 425-g Henry Mall, Madison, WI, 53706, USA
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, 1552 University Ave, Madison, WI, 53726, USA
| | - Rachel M Schneider
- Wisconsin Energy Institute, University of Wisconsin-Madison, 1552 University Ave, Madison, WI, 53726, USA
- Laboratory of Genetics, Center for Genomic Science Innovation, J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, 425-g Henry Mall, Madison, WI, 53706, USA
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, 1552 University Ave, Madison, WI, 53726, USA
| | - Evelyn Wendt-Pienkowski
- Department of Bacteriology, University of Wisconsin-Madison, 1550 Linden Dr, Madison, WI, 53706, USA
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, 1552 University Ave, Madison, WI, 53726, USA
| | - Cameron R Currie
- Department of Bacteriology, University of Wisconsin-Madison, 1550 Linden Dr, Madison, WI, 53706, USA
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, 1552 University Ave, Madison, WI, 53726, USA
| | - Timothy J Donohue
- Department of Bacteriology, University of Wisconsin-Madison, 1550 Linden Dr, Madison, WI, 53706, USA
- Wisconsin Energy Institute, University of Wisconsin-Madison, 1552 University Ave, Madison, WI, 53726, USA
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, 1552 University Ave, Madison, WI, 53726, USA
| | - Daniel R Noguera
- Wisconsin Energy Institute, University of Wisconsin-Madison, 1552 University Ave, Madison, WI, 53726, USA
- Department of Civil and Environmental Engineering, University of Wisconsin-Madison, 1415 Engineering Dr, Madison, WI, 53706, USA
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, 1552 University Ave, Madison, WI, 53726, USA
| | - Chris Todd Hittinger
- Wisconsin Energy Institute, University of Wisconsin-Madison, 1552 University Ave, Madison, WI, 53726, USA
- Laboratory of Genetics, Center for Genomic Science Innovation, J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, 425-g Henry Mall, Madison, WI, 53706, USA
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, 1552 University Ave, Madison, WI, 53726, USA
| | - Michael G Thomas
- Department of Bacteriology, University of Wisconsin-Madison, 1550 Linden Dr, Madison, WI, 53706, USA.
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, 1552 University Ave, Madison, WI, 53726, USA.
| |
Collapse
|
26
|
Abstract
Actinomycetes are natural architects of numerous secondary metabolites including antibiotics. With increased multidrug-resistant (MDR) pathogens, antibiotics that can combat such pathogens are urgently required to improve the health care system globally. The characterization of actinomycetes available in Nepal is still very much untouched which is the reason why this paper showcases the characterization of actinomycetes from Nepal based on their morphology, 16S rRNA gene sequencing, and metabolic profiling. Additionally, antimicrobial assays and liquid chromatography-high resolution mass spectrometry (LC-HRMS) of ethyl acetate extracts were performed. In this study, we employed a computational-based dereplication strategy for annotating molecules which is also time-efficient. Molecular annotation was performed through the GNPS server, the SIRIUS platform, and the available databases to predict the secondary metabolites. The sequencing of the 16S rRNA gene revealed that the isolates BN6 and BN14 are closely related to Streptomyces species. BN14 showed broad-spectrum antibacterial activity with the zone of inhibition up to 30 mm against Staphylococcus aureus (MIC: 0.3051 µg/mL and MBC: 9.7656 µg/mL) and Shigella sonnei (MIC: 0.3051 µg/mL and MBC: 4.882 µg/mL). Likewise, BN14 also displayed significant inhibition to Acinetobacter baumannii, Klebsiella pneumoniae, and Salmonella typhi. GNPS approach suggested that the extracts of BN6 and BN14 consisted of diketopiperazines ((cyclo(D-Trp-L-Pro), cyclo(L-Leu-L-4-hydroxy-Pro), cyclo(L-Phe-D-Pro), cyclo(L-Trp-L-Pro), cyclo(L-Val-L-Pro)), and polypeptide antibiotics (actinomycin D and X2). Additional chemical scaffolds such as bacterial alkaloids (bohemamine, venezueline B, and G), anthramycin-type antibiotics (abbeymycin), lipase inhibitor (ebelactone B), cytocidal (oxopropaline D), antifungal and antitumor antibiotics (reductiomycin, streptimidone, deoxynybomycin), alaremycin, fumaramidmycin, anisomycin, and others were also annotated, which were further confirmed by using the SIRIUS platform, and literature survey. Thus, the bioprospecting of natural products from Streptomyces species from Nepal could be a potential source for the discovery of clinically significant and new antimicrobial agents in the future.
Collapse
|
27
|
Kaari M, Manikkam R, Baskaran A. Exploring Newer Biosynthetic Gene Clusters in Marine Microbial Prospecting. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2022; 24:448-467. [PMID: 35394575 DOI: 10.1007/s10126-022-10118-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 03/17/2022] [Indexed: 06/14/2023]
Abstract
Marine microbes genetically evolved to survive varying salinity, temperature, pH, and other stress factors by producing different bioactive metabolites. These microbial secondary metabolites (SMs) are novel, have high potential, and could be used as lead molecule. Genome sequencing of microbes revealed that they have the capability to produce numerous novel bioactive metabolites than observed under standard in vitro culture conditions. Microbial genome has specific regions responsible for SM assembly, termed biosynthetic gene clusters (BGCs), possessing all the necessary genes to encode different enzymes required to generate SM. In order to augment the microbial chemo diversity and to activate these gene clusters, various tools and techniques are developed. Metagenomics with functional gene expression studies aids in classifying novel peptides and enzymes and also in understanding the biosynthetic pathways. Genome shuffling is a high-throughput screening approach to improve the development of SMs by incorporating genomic recombination. Transcriptionally silent or lower level BGCs can be triggered by artificially knocking promoter of target BGC. Additionally, bioinformatic tools like antiSMASH, ClustScan, NAPDOS, and ClusterFinder are effective in identifying BGCs of existing class for annotation in genomes. This review summarizes the significance of BGCs and the different approaches for detecting and elucidating BGCs from marine microbes.
Collapse
Affiliation(s)
- Manigundan Kaari
- Centre for Drug Discovery and Development, Sathyabama Institute of Science and Technology, Chennai, 600 119, Tamil Nadu, India
| | - Radhakrishnan Manikkam
- Centre for Drug Discovery and Development, Sathyabama Institute of Science and Technology, Chennai, 600 119, Tamil Nadu, India.
| | - Abirami Baskaran
- Centre for Drug Discovery and Development, Sathyabama Institute of Science and Technology, Chennai, 600 119, Tamil Nadu, India
| |
Collapse
|
28
|
Lajtai-Szabó P, Hülber-Beyer É, Nemestóthy N, Bélafi-Bakó K. The role of physical support in secondary metabolite production by Streptomyces species. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
29
|
Lyu ZY, Bu QT, Fang JL, Zhu CY, Xu WF, Ma L, Gao WL, Chen XA, Li YQ. Improving the Yield and Quality of Daptomycin in Streptomyces roseosporus by Multilevel Metabolic Engineering. Front Microbiol 2022; 13:872397. [PMID: 35509317 PMCID: PMC9058172 DOI: 10.3389/fmicb.2022.872397] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 03/11/2022] [Indexed: 11/13/2022] Open
Abstract
Daptomycin is a cyclic lipopeptide antibiotic with a significant antibacterial action against antibiotic-resistant Gram-positive bacteria. Despite numerous attempts to enhance daptomycin yield throughout the years, the production remains unsatisfactory. This study reports the application of multilevel metabolic engineering strategies in Streptomyces roseosporus to reconstruct high-quality daptomycin overproducing strain L2797-VHb, including precursor engineering (i.e., refactoring kynurenine pathway), regulatory pathway reconstruction (i.e., knocking out negative regulatory genes arpA and phaR), byproduct engineering (i.e., removing pigment), multicopy biosynthetic gene cluster (BGC), and fermentation process engineering (i.e., enhancing O2 supply). The daptomycin titer of L2797-VHb arrived at 113 mg/l with 565% higher comparing the starting strain L2790 (17 mg/l) in shake flasks and was further increased to 786 mg/l in 15 L fermenter. This multilevel metabolic engineering method not only effectively increases daptomycin production, but can also be applied to enhance antibiotic production in other industrial strains.
Collapse
Affiliation(s)
- Zhong-Yuan Lyu
- First Affiliated Hospital and Institute of Pharmaceutical Biotechnology, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou, China
| | - Qing-Ting Bu
- First Affiliated Hospital and Institute of Pharmaceutical Biotechnology, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou, China
| | - Jiao-Le Fang
- First Affiliated Hospital and Institute of Pharmaceutical Biotechnology, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou, China
| | - Chen-Yang Zhu
- First Affiliated Hospital and Institute of Pharmaceutical Biotechnology, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou, China
| | - Wei-Feng Xu
- First Affiliated Hospital and Institute of Pharmaceutical Biotechnology, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou, China
| | - Lie Ma
- First Affiliated Hospital and Institute of Pharmaceutical Biotechnology, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou, China
| | - Wen-Li Gao
- First Affiliated Hospital and Institute of Pharmaceutical Biotechnology, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou, China
| | - Xin-Ai Chen
- First Affiliated Hospital and Institute of Pharmaceutical Biotechnology, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou, China
| | - Yong-Quan Li
- First Affiliated Hospital and Institute of Pharmaceutical Biotechnology, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou, China
- *Correspondence: Yong-Quan Li,
| |
Collapse
|
30
|
Salama S, Habib MH, Hatti-Kaul R, Gaber Y. Reviewing a plethora of oxidative-type reactions catalyzed by whole cells of Streptomyces species. RSC Adv 2022; 12:6974-7001. [PMID: 35424663 PMCID: PMC8982256 DOI: 10.1039/d1ra08816e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 02/17/2022] [Indexed: 11/21/2022] Open
Abstract
Selective oxidation reactions represent a challenging task for conventional organic chemistry. Whole-cell biocatalysis provides a very convenient, easy to apply method to carry out different selective oxidation reactions including chemo-, regio-, and enantio-selective reactions. Streptomyces species are important biocatalysts as they can catalyze these selective reactions very efficiently owing to the wide diversity of enzymes and enzymatic cascades in their cell niche. In this review, we present and analyze most of the examples reported to date of oxidative reactions catalyzed by Streptomyces species as whole-cell biocatalysts. We discuss 33 different Streptomyces species and strains and the role they play in different oxidative reactions over the past five decades. The oxidative reactions have been classified into seven categories that include: hydroxylation of steroids/non-steroids, asymmetric sulfoxidations, oxidation of aldehydes, multi-step oxidations, oxidative cleavage, and N-oxidations. The role played by Streptomyces species as recombinant hosts catalyzing bio-oxidations has also been highlighted.
Collapse
Affiliation(s)
- Sara Salama
- Biotechnology and Life Sciences Department, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University Beni-Suef 62517 Egypt
| | - Mohamed H Habib
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University Cairo 11562 Egypt
| | - Rajni Hatti-Kaul
- Division of Biotechnology, Department of Chemistry, Center for Chemistry and Chemical Engineering, Lund University Sweden
| | - Yasser Gaber
- Department of Pharmaceutical Microbiology and Immunology, Faculty of Pharmacy, Beni-Suef University Beni-Suef 62511 Egypt
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Mutah University Al-Karak 61710 Jordan
| |
Collapse
|
31
|
Gutierrez J, Bakke A, Vatta M, Merrill AR. Plant Natural Products as Antimicrobials for Control of Streptomyces scabies: A Causative Agent of the Common Scab Disease. Front Microbiol 2022; 12:833233. [PMID: 35154047 PMCID: PMC8828645 DOI: 10.3389/fmicb.2021.833233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 12/24/2021] [Indexed: 11/13/2022] Open
Abstract
The common scab disease caused by Streptomyces scabies, a soil-dwelling Gram-positive bacterium, is an economically important disease of potatoes and other tuber crops. The lack of effective treatments against this disease accounts for large economic losses globally. Plant extracts were screened to find several that effectively inhibited Streptomyces scabies growth in culture. Seven tinctures showed the greatest inhibition of S. scabies growth by reducing pathogen growth in culture by 75% or more. These extracts were myrrh, garlic, cayenne, barberry, frankincense, wild indigo root, and lavender. Myrrh extract from Commiphora myrrha, a resin made from tree sap, showed strong antibacterial activity by reducing the growth of S. scabies to 13% of the control. Additionally, a flavonoid library was screened to identify several compounds that were effective to control the pathogen growth. The flavonoids that showed the greatest inhibition of Streptomyces scabies growth were sophoraflavanone G, jaceosidin, baicalein, and quercetin. Minimum inhibitory concentrations for the effective flavonoids were calculated to be 6.8 ± 0.4 μM, 100.0 ± 2.1 μM, 202.9 ± 5.3 μM, and 285.2 ± 6.8 μM, respectively. The mean lethal doses for these flavonoids against Streptomyces scabies were 2.0 ± 0.1 μM, 22.6 ± 0.5 μM, 52.9 ± 1.3 μM, and 37.8 ± 1.0 μM, respectively. A live/dead assay showed complete cell death in the presence of sophoraflavanone G indicative of a bactericidal mechanism for flavonoid action on Streptomyces scabies. Scanning electron and transmission electron microscopy imaging showed damaged cell membrane morphologies when Streptomyces scabies was exposed to these flavonoids. Mycelia appeared as flat and deflated structures with contents seen as spewing from branching hyphae with numerous holes and tears in the membrane structure indicative of cell death. Sophoraflavanone G showed the greatest potency and potential as a natural antibiotic from the library of tested flavonoids. These results suggest that these plant compounds act on the pathogen through a bactericidal mechanism involving cell membrane destabilization and disruption leading to cell death.
Collapse
|
32
|
Hwang S, Lee Y, Kim JH, Kim G, Kim H, Kim W, Cho S, Palsson BO, Cho BK. Streptomyces as Microbial Chassis for Heterologous Protein Expression. Front Bioeng Biotechnol 2022; 9:804295. [PMID: 34993191 PMCID: PMC8724576 DOI: 10.3389/fbioe.2021.804295] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 11/30/2021] [Indexed: 12/29/2022] Open
Abstract
Heterologous production of recombinant proteins is gaining increasing interest in biotechnology with respect to productivity, scalability, and wide applicability. The members of genus Streptomyces have been proposed as remarkable hosts for heterologous production due to their versatile nature of expressing various secondary metabolite biosynthetic gene clusters and secretory enzymes. However, there are several issues that limit their use, including low yield, difficulty in genetic manipulation, and their complex cellular features. In this review, we summarize rational engineering approaches to optimizing the heterologous production of secondary metabolites and recombinant proteins in Streptomyces species in terms of genetic tool development and chassis construction. Further perspectives on the development of optimal Streptomyces chassis by the design-build-test-learn cycle in systems are suggested, which may increase the availability of secondary metabolites and recombinant proteins.
Collapse
Affiliation(s)
- Soonkyu Hwang
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea.,KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Yongjae Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea.,KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Ji Hun Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea.,KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Gahyeon Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea.,KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Hyeseong Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea.,KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Woori Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea.,KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Suhyung Cho
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea.,KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Bernhard O Palsson
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, United States.,Department of Pediatrics, University of California, San Diego, La Jolla, CA, United States.,Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Byung-Kwan Cho
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea.,KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, South Korea.,Innovative Biomaterials Research Center, KAIST Institutes, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| |
Collapse
|
33
|
Zhang L, Liu Z, Wang Y, Zhang J, Wan S, Huang Y, Yun T, Xie J, Wang W. Biocontrol Potential of Endophytic Streptomyces malaysiensis 8ZJF-21 From Medicinal Plant Against Banana Fusarium Wilt Caused by Fusarium oxysporum f. sp. cubense Tropical Race 4. FRONTIERS IN PLANT SCIENCE 2022; 13:874819. [PMID: 35646017 PMCID: PMC9131080 DOI: 10.3389/fpls.2022.874819] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 04/11/2022] [Indexed: 05/15/2023]
Abstract
Banana (Musa spp.) is an important fruit crop cultivated in most tropical countries. Banana Fusarium wilt caused by Fusarium oxysporum f. sp. cubense tropical race 4 (Foc TR4) is the most destructive fungal disease. Biocontrol using endophytic microorganisms is considered as a safety and sustainable strategy. Actinomycetes have a potential for the production of diverse metabolites. Isolation of endophytic actinomycetes with high efficiency and broad-spectrum antagonism is key for exploring biocontrol agents. Our previous study showed that a total of 144 endophytic actinomycetes were isolated from different tissues of medicinal plants in Hainan, China. Especially, strain 8ZJF-21 exhibited a broad-spectrum antifungal activity. Its morphological, physiological, and biochemical characteristics were consistent with the genus Streptomyces. The phylogenetic tree demonstrated that strain 8ZJF-21 formed a distinct clade with Streptomyces malaysiensis. Average nucleotide identity (ANI) was 98.49% above the threshold of novel species. The pot experiment revealed that endophytic Streptomyces malaysiensis 8ZJF-21 could improve the plant resistance to Foc TR4 by enhancing the expression levels of defense-related and antioxidant enzyme genes. It also promoted the plant growth by producing several extracellular enzymes and metabolites. Antifungal mechanism assays showed that S. malaysiensis 8ZJF-21 extract inhibited mycelial growth and spore germination of Foc TR4 in vitro. Pathogenic cells occurred cytoplasmic heterogeneity, disappeared organelles, and ruptured ultrastructure. Sequencing and annotation of genome suggested that S. malaysiensis 8ZJF-21 had a potential of producing novel metabolites. Nineteen volatile organic compounds were obtained from the extract by Gas Chromatography-Mass Spectrometry (GC-MS). Hence, endophytic Streptomyces strains will become essential biocontrol agents of modern agricultural practice.
Collapse
Affiliation(s)
- Lu Zhang
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, China
| | - Ziyu Liu
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, China
| | - Yong Wang
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, China
| | - Jiaqi Zhang
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, China
| | - Shujie Wan
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, China
| | - Yating Huang
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, China
| | - Tianyan Yun
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Ministry of Agriculture, Haikou, China
- Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Jianghui Xie
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Ministry of Agriculture, Haikou, China
| | - Wei Wang
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Ministry of Agriculture, Haikou, China
- *Correspondence: Wei Wang,
| |
Collapse
|
34
|
Lin Y, Huang L, Zhang X, Yang J, Chen X, Li F, Liu J, Huang R. Multi-Omics Analysis Reveals Anti- Staphylococcus aureus Activity of Actinomycin D Originating from Streptomyces parvulus. Int J Mol Sci 2021; 22:ijms222212231. [PMID: 34830114 PMCID: PMC8621895 DOI: 10.3390/ijms222212231] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 12/12/2022] Open
Abstract
Staphylococcus aureus (S. aureus) is a common pathogen that causes various serious diseases, including chronic infections. Discovering new antibacterial agents is an important aspect of the pharmaceutical field because of the lack of effective antibacterial drugs. In our research, we found that one anti-S. aureus substance is actinomycin D, originating from Streptomyces parvulus (S. parvulus); then, we further focused on the anti-S. aureus ability and the omics profile of S. aureus in response to actinomycin D. The results revealed that actinomycin D had a significant inhibitory activity on S. aureus with a minimum inhibitory concentration (MIC) of 2 μg/mL and a minimum bactericidal concentration (MBC) of 64 μg/mL. Bacterial reactive oxygen species (ROS) increased 3.5-fold upon treatment with actinomycin D, as was measured with the oxidation-sensitive fluorescent probe DCFH-DA, and H2O2 increased 3.5 times with treatment by actinomycin D. Proteomics and metabolomics, respectively, identified differentially expressed proteins in control and treatment groups, and the co-mapped correlation network of proteomics and metabolomics annotated five major pathways that were potentially related to disrupting the energy metabolism and oxidative stress of S. aureus. All findings contributed to providing new insight into the mechanisms of the anti-S. aureus effects of actinomycin D originating from S. parvulus.
Collapse
Affiliation(s)
- Yuqi Lin
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China; (Y.L.); (L.H.); (J.Y.); (X.C.); (F.L.)
| | - Li Huang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China; (Y.L.); (L.H.); (J.Y.); (X.C.); (F.L.)
| | - Xiaoyong Zhang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China;
| | - Jiajia Yang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China; (Y.L.); (L.H.); (J.Y.); (X.C.); (F.L.)
| | - Xiaodan Chen
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China; (Y.L.); (L.H.); (J.Y.); (X.C.); (F.L.)
| | - Fengming Li
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China; (Y.L.); (L.H.); (J.Y.); (X.C.); (F.L.)
| | - Jun Liu
- Laboratory of Pathogenic Biology, The Marine Biomedical Research Institute, Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Medical University, Zhanjiang 524023, China
- Correspondence: (J.L.); (R.H.)
| | - Riming Huang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China; (Y.L.); (L.H.); (J.Y.); (X.C.); (F.L.)
- Correspondence: (J.L.); (R.H.)
| |
Collapse
|
35
|
Optimization of Pre-Inoculum, Fermentation Process Parameters and Precursor Supplementation Conditions to Enhance Apigenin Production by a Recombinant Streptomyces albus Strain. FERMENTATION 2021. [DOI: 10.3390/fermentation7030161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Streptomyces albus J1074-pAPI (Streptomyces albus-pAPI) is a recombinant strain constructed to biotechnologically produce apigenin, a flavonoid with interesting bioactive features that up to now has been manufactured by extraction from plants with long and not environmentally friendly procedures. So far, in literature, only a maximum apigenin concentration of 80.0 µg·L−1 has been obtained in shake flasks. In this paper, three integrated fermentation strategies were exploited to enhance the apigenin production by Streptomyces albus J1074-pAPI, combining specific approaches for pre-inoculum conditions, optimization of fermentation process parameters and supplementation of precursors. Using a pre-inoculum of mycelium, the apigenin concentration increased of 1.8-fold in shake flask physiological studies. In 2L batch fermentation, the aeration and stirring conditions were optimized and integrated with the new inoculum approach and the apigenin production reached 184.8 ± 4.0 µg·L−1, with a productivity of 2.6 ± 0.1 μg·L−1·h−1. The supplementation of 1.5 mM L-tyrosine in batch fermentations allowed to obtain an apigenin production of 343.3 ± 3.0 µg·L−1 in only 48 h, with an increased productivity of 7.1 ± 0.1 μg·L−1·h−1. This work demonstrates that the optimization of fermentation process conditions is a crucial requirement to increase the apigenin concentration and productivity by up to 4.3- and 10.7-fold.
Collapse
|
36
|
Wang P, Yin Y, Wang X, Wen J. Enhanced ascomycin production in Streptomyces hygroscopicus var. ascomyceticus by employing polyhydroxybutyrate as an intracellular carbon reservoir and optimizing carbon addition. Microb Cell Fact 2021; 20:70. [PMID: 33731113 PMCID: PMC7968196 DOI: 10.1186/s12934-021-01561-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 03/08/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Ascomycin is a multifunctional antibiotic produced by Streptomyces hygroscopicus var. ascomyceticus. As a secondary metabolite, the production of ascomycin is often limited by the shortage of precursors during the late fermentation phase. Polyhydroxybutyrate is an intracellular polymer accumulated by prokaryotic microorganisms. Developing polyhydroxybutyrate as an intracellular carbon reservoir for precursor synthesis is of great significance to improve the yield of ascomycin. RESULTS The fermentation characteristics of the parent strain S. hygroscopicus var. ascomyceticus FS35 showed that the accumulation and decomposition of polyhydroxybutyrate was respectively correlated with cell growth and ascomycin production. The co-overexpression of the exogenous polyhydroxybutyrate synthesis gene phaC and native polyhydroxybutyrate decomposition gene fkbU increased both the biomass and ascomycin yield. Comparative transcriptional analysis showed that the storage of polyhydroxybutyrate during the exponential phase accelerated biosynthesis processes by stimulating the utilization of carbon sources, while the decomposition of polyhydroxybutyrate during the stationary phase increased the biosynthesis of ascomycin precursors by enhancing the metabolic flux through primary pathways. The comparative analysis of cofactor concentrations confirmed that the biosynthesis of polyhydroxybutyrate depended on the supply of NADH. At low sugar concentrations found in the late exponential phase, the optimization of carbon source addition further strengthened the polyhydroxybutyrate metabolism by increasing the total concentration of cofactors. Finally, in the fermentation medium with 22 g/L starch and 52 g/L dextrin, the ascomycin yield of the co-overexpression strain was increased to 626.30 mg/L, which was 2.11-fold higher than that of the parent strain in the initial medium (296.29 mg/L). CONCLUSIONS Here we report for the first time that polyhydroxybutyrate metabolism is beneficial for cell growth and ascomycin production by acting as an intracellular carbon reservoir, stored as polymers when carbon sources are abundant and depolymerized into monomers for the biosynthesis of precursors when carbon sources are insufficient. The successful application of polyhydroxybutyrate in increasing the output of ascomycin provides a new strategy for improving the yields of other secondary metabolites.
Collapse
Affiliation(s)
- Pan Wang
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Ying Yin
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Xin Wang
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Jianping Wen
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China. .,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.
| |
Collapse
|