1
|
Sangeeta, Sharma D, Ramniwas S, Mugabi R, Uddin J, Nayik GA. Revolutionizing Mushroom processing: Innovative techniques and technologies. Food Chem X 2024; 23:101774. [PMID: 39280230 PMCID: PMC11402429 DOI: 10.1016/j.fochx.2024.101774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/11/2024] [Accepted: 08/24/2024] [Indexed: 09/18/2024] Open
Abstract
In recent years, the global mushroom industry has seen remarkable growth due to its nutritional benefits, increasing market value, and rising consumer demand. Mushrooms are valued for their unique flavor, low sugar and salt, and rich Vitamin D content. In India as well as across the globe, mushroom cultivation is becoming increasingly popular among new entrepreneurs, leveraging the diverse agro-climatic conditions and substantial agricultural waste. Various government policies are also fostering research and development in this sector. To extend shelf life and preserve quality, various preservation techniques are employed, including drying, freezing, canning, high-pressure processing and modified atmosphere packaging. Furthermore, cutting-edge technologies such as nuclear magnetic resonance and spectroscopy are improving post-harvest processing, helping to maintain sensory properties and nutritional content. Automation is also transforming mushroom processing by enhancing efficiency and scalability. This review examines the innovative methods and technologies driving advancements in mushroom production and quality worldwide.
Collapse
Affiliation(s)
- Sangeeta
- Department of Agriculture & Food Processing, Guru Nanak College, Budhlada, Mansa, Punjab, India
| | - Dhriti Sharma
- Department of Agriculture & Food Processing, Guru Nanak College, Budhlada, Mansa, Punjab, India
| | - Seema Ramniwas
- University Centre for Research and Development, Chandigarh University, Gharuan, Mohali 140413, Punjab, India
| | - Robert Mugabi
- Department of Food Technology and Nutrition, Makerere University, Kampala, Uganda
| | - Jalal Uddin
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia
| | - Gulzar Ahmad Nayik
- Marwadi University Research Centre, Department of Microbiology, Marwadi University, Rajkot, Gujarat 360003, India
| |
Collapse
|
2
|
Luo J, Chen L. Status and development of spent mushroom substrate recycling: A review. JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION (1995) 2024:1-18. [PMID: 39348219 DOI: 10.1080/10962247.2024.2410447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 09/20/2024] [Accepted: 09/23/2024] [Indexed: 10/02/2024]
Abstract
The edible mushroom industry is the sixth largest after grain, cotton, oil, vegetables and fruits, and the annual production of edible mushrooms in China exceeds 40 million tons. Edible mushroom cultivation produces a class of by-products consisting mainly of mycelium remnants and lignocellulosic waste, known as Spent Mushroom Substrate (SMS) or Spent Mushroom Compost (SMC). SMS/SMC is rich in nutrients and active ingredients and has an extremely high recycling potential. This review paper summarizes SMS recycling strategies from the perspectives of "environmental remediation" and "circular economy", and briefly discusses the legitimacy, possible challenges and future research of SMS recycling. It is hoped that this will assist researchers in related fields and promote the development of the SMS recycling industry, thereby contributing to sustainable environmental and economic development.Implications: The efficient management of SMS is important for many countries around the world, particularly major mushroom producing countries. Traditional disposal methods (incineration, burial, piling) can cause serious damage to the environment and waste resources. The correct disposal method can protect the natural environment and provide certain economic benefits. This study presents the main methods of SMS processing from both an "environmental remediation" and "circular economy" perspective. In general, this paper emphasizes the importance of SMS processing, introduces the current mainstream processing methods and briefly discusses the legality of their processing methods.
Collapse
Affiliation(s)
- Jiahao Luo
- Shandong Provincial Key Laboratory of Gelatine Medicines Research and Development, Dong'e Ejiao Co., Ltd., Liaocheng, Shandong, P.R. China
| | - Lijing Chen
- Department of Pharmacy, The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, P.R. China
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, P.R. China
| |
Collapse
|
3
|
Drewinski MP, Zied DC, Gomes EPC, Menolli N. Cultivation of a Wild Strain of Wood Ear Auricularia cornea from Brazil. Curr Microbiol 2024; 81:390. [PMID: 39367930 DOI: 10.1007/s00284-024-03920-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 09/24/2024] [Indexed: 10/07/2024]
Abstract
Auricularia cornea has become one of the most important cultivated mushrooms worldwide. Although not remarkably flavorful, Auricularia species are very versatile and rehydrate easily after drying, adding a unique and pleasing texture to the dishes. In this study, we collected, identified, and domesticated a wild strain of A. cornea from the Brazilian Atlantic Rainforest. The wild strain was evaluated for mycelial growth at different temperatures and substrates, biological efficiency, and nutritional composition. The temperature that best favored the A. cornea mycelium growth was 30 °C, and the substrate was sterile Eucalyptus sawdust. The highest biological efficiency value obtained was 106.90 ± 13.28%. Nutritional analysis showed that the produced wood ears contained 71.02% carbohydrates, 19.63% crude fiber, 11.59% crude protein, 10.19% crude fat, and 4.24% ash on dry matter basis. For the mineral content profile, the elements K and P were the most abundant. This is the first report on cultivation of a wild strain of A. cornea from Brazil.
Collapse
Affiliation(s)
- Mariana P Drewinski
- Núcleo de Pós-Graduação Stricto Sensu, Pós-Graduação em Biodiversidade Vegetal e Meio Ambiente, Instituto de Pesquisas Ambientais, Av. Miguel Stefano 3687, Água Funda, São Paulo, SP, 04301-012, Brazil.
- IFungiLab, Subárea de Biologia, Departamento de Ciências da Natureza e Matemática, Instituto Federal de Educação, Ciência e Tecnologia de São Paulo, Câmpus São Paulo, Rua Pedro Vicente 625, São Paulo, SP, 01109-010, Brazil.
| | - Diego C Zied
- Faculdade de Ciências Agrárias e Tecnológicas, Universidade Estadual Paulista Júlio de Mesquita Filho, Câmpus Dracena, Rod. Comandante João Ribeiro de Barros, Km 651, Dracena, SP, 17900-000, Brazil
| | - Eduardo P C Gomes
- Núcleo de Pós-Graduação Stricto Sensu, Pós-Graduação em Biodiversidade Vegetal e Meio Ambiente, Instituto de Pesquisas Ambientais, Av. Miguel Stefano 3687, Água Funda, São Paulo, SP, 04301-012, Brazil
| | - Nelson Menolli
- Núcleo de Pós-Graduação Stricto Sensu, Pós-Graduação em Biodiversidade Vegetal e Meio Ambiente, Instituto de Pesquisas Ambientais, Av. Miguel Stefano 3687, Água Funda, São Paulo, SP, 04301-012, Brazil
- IFungiLab, Subárea de Biologia, Departamento de Ciências da Natureza e Matemática, Instituto Federal de Educação, Ciência e Tecnologia de São Paulo, Câmpus São Paulo, Rua Pedro Vicente 625, São Paulo, SP, 01109-010, Brazil
| |
Collapse
|
4
|
Zhao S, Li X, Yao X, Wan W, Xu L, Guo L, Bai J, Hu C, Yu H. Transformation of antibiotics to non-toxic and non-bactericidal products by laccases ensure the safety of Stropharia rugosoannulata. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135099. [PMID: 38981236 DOI: 10.1016/j.jhazmat.2024.135099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/18/2024] [Accepted: 07/02/2024] [Indexed: 07/11/2024]
Abstract
The substantial use of antibiotics contributes to the spread and evolution of antibiotic resistance, posing potential risks to food production systems, including mushroom production. In this study, the potential risk of antibiotics to Stropharia rugosoannulata, the third most productive straw-rotting mushroom in China, was assessed, and the underlying mechanisms were investigated. Tetracycline exposure at environmentally relevant concentrations (<500 μg/L) did not influence the growth of S. rugosoannulata mycelia, while high concentrations of tetracycline (>500 mg/L) slightly inhibited its growth. Biodegradation was identified as the main antibiotic removal mechanism in S. rugosoannulata, with a degradation rate reaching 98.31 % at 200 mg/L tetracycline. High antibiotic removal efficiency was observed with secreted proteins of S. rugosoannulata, showing removal efficiency in the order of tetracyclines > sulfadiazines > quinolones. Antibiotic degradation products lost the ability to inhibit the growth of Escherichia coli, and tetracycline degradation products could not confer a growth advantage to antibiotic-resistant strains. Two laccases, SrLAC1 and SrLAC9, responsible for antibiotic degradation were identified based on proteomic analysis. Eleven antibiotics from tetracyclines, sulfonamides, and quinolones families could be transformed by these two laccases with degradation rates of 95.54-99.95 %, 54.43-100 %, and 5.68-57.12 %, respectively. The biosafety of the antibiotic degradation products was evaluated using the Toxicity Estimation Software Tool (TEST), revealing a decreased toxicity or no toxic effect. None of the S. rugosoannulata fruiting bodies from seven provinces in China contained detectable antibiotic-resistance genes (ARGs). This study demonstrated that S. rugosoannulata can degrade antibiotics into non-toxic and non-bactericidal products that do not accelerate the spread of antibiotic resistance, ensuring the safety of S. rugosoannulata production.
Collapse
Affiliation(s)
- Shuxue Zhao
- Shandong Provincial Key Laboratory of Applied Mycology, School of Life Sciences, Qingdao Agricultural University, Qingdao 266109, Shandong Province, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, Shandong Province, China
| | - Xiaohang Li
- Shandong Provincial Key Laboratory of Applied Mycology, School of Life Sciences, Qingdao Agricultural University, Qingdao 266109, Shandong Province, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, Shandong Province, China
| | - Xingdong Yao
- Shandong Provincial Key Laboratory of Applied Mycology, School of Life Sciences, Qingdao Agricultural University, Qingdao 266109, Shandong Province, China
| | - Wei Wan
- Shandong Provincial Key Laboratory of Applied Mycology, School of Life Sciences, Qingdao Agricultural University, Qingdao 266109, Shandong Province, China
| | - Lili Xu
- Shandong Provincial Key Laboratory of Applied Mycology, School of Life Sciences, Qingdao Agricultural University, Qingdao 266109, Shandong Province, China
| | - Lizhong Guo
- Shandong Provincial Key Laboratory of Applied Mycology, School of Life Sciences, Qingdao Agricultural University, Qingdao 266109, Shandong Province, China
| | - Jie Bai
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, Shandong Province, China
| | - Chunhui Hu
- Instrumental analysis center of Qingdao Agricultural University, Qingdao 266109, Shandong Province, China.
| | - Hao Yu
- Shandong Provincial Key Laboratory of Applied Mycology, School of Life Sciences, Qingdao Agricultural University, Qingdao 266109, Shandong Province, China.
| |
Collapse
|
5
|
Lan Y, Cong Q, Yu Q, Liu L, Cui X, Li X, Wang Q, Yang S, Yu H, Kong Y. Genome Sequencing of Three Pathogenic Fungi Provides Insights into the Evolution and Pathogenic Mechanisms of the Cobweb Disease on Cultivated Mushrooms. Foods 2024; 13:2779. [PMID: 39272544 PMCID: PMC11394773 DOI: 10.3390/foods13172779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/23/2024] [Accepted: 08/27/2024] [Indexed: 09/15/2024] Open
Abstract
Fungal diseases not only reduce the yield of edible mushrooms but also pose potential threats to the preservation and quality of harvested mushrooms. Cobweb disease, caused primarily by fungal pathogens from the Hypocreaceae family, is one of the most significant diseases affecting edible mushrooms. Deciphering the genomes of these pathogens will help unravel the molecular basis of their evolution and identify genes responsible for pathogenicity. Here, we present high-quality genome sequences of three cobweb disease fungi: Hypomyces aurantius Cb-Fv, Cladobotryum mycophilum CB-Ab, and Cladobotryum protrusum CB-Mi, isolated from Flammulina velutipes, Agaricus bisporus, and Morchella importuna, respectively. The assembled genomes of H. aurantius, C. mycophilum, and C. protrusum are 33.19 Mb, 39.83 Mb, and 38.10 Mb, respectively. This is the first report of the genome of H. aurantius. Phylogenetic analysis revealed that cobweb disease pathogens are closely related and diverged approximately 17.51 million years ago. CAZymes (mainly chitinases, glucan endo-1,3-beta-glucosidases, and secondary metabolite synthases), proteases, KP3 killer proteins, lipases, and hydrophobins were found to be conserved and strongly associated with pathogenicity, virulence, and adaptation in the three cobweb pathogens. This study provides insights into the genome structure, genome organization, and pathogenicity of these three cobweb disease fungi, which will be a valuable resource for comparative genomics studies of cobweb pathogens and will help control this disease, thereby enhancing mushroom quality.
Collapse
Affiliation(s)
- Yufei Lan
- Institute of Edible Fungi, Tai'an Academy of Agricultural Sciences, Tai'an 271000, China
| | - Qianqian Cong
- Institute of Edible Fungi, Tai'an Academy of Agricultural Sciences, Tai'an 271000, China
| | - Qingwei Yu
- Institute of Edible Fungi, Tai'an Academy of Agricultural Sciences, Tai'an 271000, China
| | - Lin Liu
- Shandong Provincial Key Laboratory of Applied Mycology, School of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Xiao Cui
- Institute of Edible Fungi, Tai'an Academy of Agricultural Sciences, Tai'an 271000, China
| | - Xiumei Li
- Institute of Edible Fungi, Tai'an Academy of Agricultural Sciences, Tai'an 271000, China
| | - Qiao Wang
- Institute of Edible Fungi, Tai'an Academy of Agricultural Sciences, Tai'an 271000, China
| | - Shuting Yang
- Shandong Provincial Key Laboratory of Applied Mycology, School of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Hao Yu
- Shandong Provincial Key Laboratory of Applied Mycology, School of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Yi Kong
- Institute of Edible Fungi, Tai'an Academy of Agricultural Sciences, Tai'an 271000, China
| |
Collapse
|
6
|
Luan X, Yasmeen R, Hassan Shah WU. Assessing energy efficiency, regional disparities in production technology, and factors influencing total factor energy productivity change in the agricultural sector of China. Heliyon 2024; 10:e35043. [PMID: 39157320 PMCID: PMC11328041 DOI: 10.1016/j.heliyon.2024.e35043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 07/11/2024] [Accepted: 07/22/2024] [Indexed: 08/20/2024] Open
Abstract
Efficiently utilizing the energy resources in the agriculture sector to produce more agricultural output with minimum environmental degradation is a shared global challenge. The Chinese government has introduced various policies aimed at enhancing energy efficiency (EE) and total factor energy productivity (TFEP) while addressing regional technological disparities in the agricultural sector. This study utilized DEA Super-SBM, Meta frontier Analysis, and the Malmquist-Luenberger index to assess energy efficiency, changes in total factor energy productivity, and the regional technology gap ratio (TGR) across 30 provinces in mainland China and three distinct regions during the period from 2000 to 2020. The findings reveal that the average EE in China's agricultural sector is 0.8492, indicating that, on average, there is a 15.08 % potential for improvement in EE growth within the sector. Qinghai (1.5828), Shanghai (1.3716), and Hainan (1.3582) are found to be the top 3 performers with the highest EE levels. The Eastern region demonstrates high excellence in EE, with a value of 1.0532. The TGR value of Zhejiang indicates the superior production technology utilized in the agriculture sector to utilize energy resources efficiently. Except for Zhejiang, the TGR of Liaoning, Jiangsu, Shanghai, Guangdong, Ningxia, and Hainan is above 0.96 and near 1, indicating superior production technology in the agriculture sector of China. The Technology Gap Ratio (TGR) of China's eastern region is superior to that of the central and western regions, consistently approaching 1. This suggests that the eastern provinces possess more advanced agricultural technologies, allowing them to optimize resource utilization for maximum output. The Malmquist-Luenberger index (MLI) score of 1.103 indicates a 10.3 % growth in the total factor energy productivity of China's agricultural sector. Further analysis reveals that this growth is primarily driven by technological change (TC), with a TC value of 1.080 surpassing the efficiency change (EC) value of 1.028. Among the three agricultural regions, the eastern region exhibits the highest total factor energy productivity. Specifically, Zhejiang (1.23), Shanghai (1.197), Liaoning (1.184), and Hebei (1.147) are identified as the top performers in total factor energy productivity growth in China's agricultural sector. Additionally, the Kruskal-Wallis test confirmed statistically significant differences in EE and TGR among the three regions.
Collapse
Affiliation(s)
- Xiaomei Luan
- Hubei University of Education, Rural Revitalization Research Center, Wuhan, Hubei, China
| | - Rizwana Yasmeen
- School of Economics and Management, Panzhihua University, Panzhihua, 617000, Sichuan, China
| | | |
Collapse
|
7
|
Diao B, Xu Z, Liu M, Zhang G, Wang G, Zhang Y, Tian X. Establishment and application of a SNP molecular identification system in Grifola frondosa. Front Microbiol 2024; 15:1417014. [PMID: 39176275 PMCID: PMC11340509 DOI: 10.3389/fmicb.2024.1417014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 07/22/2024] [Indexed: 08/24/2024] Open
Abstract
Germplasm resources of edible mushrooms are essential for the breeding of varieties with improved traits. Analysis of the genetic diversity of Grifola frondosa germplasm resources and clarification of the genetic relationships among strains can provide valuable information for the selection of breeding parents. A total of 829,488 high-quality SNP loci were screened from 2,125,382 SNPs obtained by sequencing 60 G. frondose. Phylogenetic analysis, PCA, and population structure analysis based on the high-quality SNPs showed that the 60 strains could be divided into five subgroups, and the clustering results were consistent with the geographical distributions of these strains. Based on high-quality SNP loci, a core collection containing 18 representative germplasm resources was constructed, and 1,473 Kompetitive Allele-Specific PCR markers were obtained. A total of 722 SNP markers in the exonic regions were screened using KASP-genotyping experiments, and 50 candidate SNP markers and 12 core SNP markers were obtained. Genetic fingerprints of G. frondosa germplasm resources were constructed based on the selected SNP markers; these fingerprints provide an accurate, rapid, convenient, and efficient method for the identification of G. frondosa germplasm resources. The results of this study have important implications for the preservation and utilization of G. frondosa germplasm resources and the identification of varieties.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xuemei Tian
- Shandong Province Key Laboratory of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
8
|
Tao M, Zhu Y, Chen F, Fang Y, Han Y, Yin G, Li N. Metabolomic and Transcriptomic Analyses Revealed Lipid Differentiation Mechanisms in Agaricus bisporus at Ambient Conditions. J Fungi (Basel) 2024; 10:533. [PMID: 39194859 DOI: 10.3390/jof10080533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 08/29/2024] Open
Abstract
Agaricus bisporus is one of the most popular mushroom species in the world; however, mushrooms are highly susceptible to browning due to the absence of a protective cuticle layer and high respiration rate. The molecular mechanism underlying the process of mushroom browning needs to be explored. Here, we analyzed the transcriptomic and metabolomic data from A. bisporus at ambient temperature. Specifically, a total of 263 significantly changed metabolites and 4492 differentially expressed genes were identified. Lipid metabolites associated with cell membrane degradation were predominantly up-regulated during ambient storage. Transcriptomic data further revealed the alterations of the expression of membrane lipid metabolism-related enzymes. Additionally, energy metabolic processes and products such as glycolysis and linoleic acid changed significantly during ambient storage, indicating their potential roles in the quality deterioration of A. bisporus. These findings provide new insights into the underlying lipid metabolic mechanisms of A. bisporus during postharvest ambient storage and will provide values for mushroom preservation techniques.
Collapse
Affiliation(s)
- Mengjiao Tao
- College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China
| | - Yiting Zhu
- College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China
| | - Faxi Chen
- College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China
| | - Yilu Fang
- College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China
| | - Yanqi Han
- College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China
| | - Guohua Yin
- College of Biological and Chemical Engineering, Qilu Institute of Technology, Jinan 250200, China
| | - Nanyi Li
- College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China
| |
Collapse
|
9
|
Yu H, Wang C, Xue M. Improved XLNet modeling for Chinese named entity recognition of edible fungus. FRONTIERS IN PLANT SCIENCE 2024; 15:1368847. [PMID: 38984153 PMCID: PMC11232502 DOI: 10.3389/fpls.2024.1368847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 06/10/2024] [Indexed: 07/11/2024]
Abstract
Introduction The diversity of edible fungus species and the extent of mycological knowledge pose significant challenges to the research, cultivation, and popularization of edible fungus. To tackle this challenge, there is an urgent need for a rapid and accurate method of acquiring relevant information. The emergence of question and answer (Q&A) systems has the potential to solve this problem. Named entity recognition (NER) provides the basis for building an intelligent Q&A system for edible fungus. In the field of edible fungus, there is a lack of a publicly available Chinese corpus suitable for use in NER, and conventional methods struggle to capture long-distance dependencies in the NER process. Methods This paper describes the establishment of a Chinese corpus in the field of edible fungus and introduces an NER method for edible fungus information based on XLNet and conditional random fields (CRFs). Our approach combines an iterated dilated convolutional neural network (IDCNN) with a CRF. First, leveraging the XLNet model as the foundation, an IDCNN layer is introduced. This layer addresses the limited capacity to capture features across utterances by extending the receptive field of the convolutional kernel. The output of the IDCNN layer is input to the CRF layer, which mitigates any labeling logic errors, resulting in the globally optimal labels for the NER task relating to edible fungus. Results Experimental results show that the precision achieved by the proposed model reaches 0.971, with a recall of 0.986 and an F1-score of 0.979. Discussion The proposed model outperforms existing approaches in terms of these evaluation metrics, effectively recognizing entities related to edible fungus information and offering methodological support for the construction of knowledge graphs.
Collapse
Affiliation(s)
- Helong Yu
- College of Information Technology, Jilin Agricultural University, Changchun, China
| | - Chenxi Wang
- College of Information Technology, Jilin Agricultural University, Changchun, China
| | - Mingxuan Xue
- College of Information Technology, Jilin Agricultural University, Changchun, China
| |
Collapse
|
10
|
Li H, Zhu J, Li Z, Xu P, Ma L, Zou Y, Qu S, Wu X. Contrasting effects of NADPH oxidases on the fungal hyphae growth and immune responses in Pleurotus ostreatus. Front Microbiol 2024; 15:1387643. [PMID: 38962136 PMCID: PMC11220167 DOI: 10.3389/fmicb.2024.1387643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 06/03/2024] [Indexed: 07/05/2024] Open
Abstract
Pleurotus ostreatus is one of the most consumed mushroom species, as it serves as a high-quality food, favors a rich secondary metabolism, and has remarkable adaptability to the environment and predators. In this study, we investigated the function of two key reactive oxygen species producing enzyme NADPH oxidase (PoNoxA and PoNoxB) in P. ostreatus hyphae growth, metabolite production, signaling pathway activation, and immune responses to different stresses. Characterization of the Nox mutants showed that PoNoxB played an important role in the hyphal formation of the multicellular structure, while PoNoxA regulated apical dominance. The ability of P. ostreatus to tolerate a series of abiotic stress conditions (e.g., osmotic, oxidative, membrane, and cell-wall stresses) and mechanical damage repair was enhanced with PoNoxA over-expression. PoNoxB had a greater responsibility in regulating the polysaccharide composition of the cell wall and methyl jasmonate and gibberellin GA1 biosynthesis, and improved mushroom resistance against Tyrophagus putrescentiae. Moreover, mutants were involved in the jasmonate and GA signaling pathway, and toxic protein defense metabolite production. Our findings shed light on how the oyster mushroom senses stress signals and responds to adverse environments by the complex regulators of Noxs.
Collapse
Affiliation(s)
- Huiping Li
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, Jiangsu, China
- Institute of Vegetable Crops, Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China
| | - Jiachun Zhu
- Institute of Vegetable Crops, Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China
- Institute of Life Science, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Zihao Li
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ping Xu
- Institute of Vegetable Crops, Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China
| | - Lin Ma
- Institute of Vegetable Crops, Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China
| | - Yajie Zou
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shaoxuan Qu
- Institute of Vegetable Crops, Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China
- Institute of Life Science, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Xiaoqin Wu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, Jiangsu, China
| |
Collapse
|
11
|
Hou S, Zhang D, Yu D, Li H, Xu Y, Wang W, Li R, Feng C, Meng J, Xu L, Cheng Y, Chang M, Geng X. Effect of Different Drying Methods on the Quality of Oudemansiella raphanipes. Foods 2024; 13:1087. [PMID: 38611391 PMCID: PMC11011357 DOI: 10.3390/foods13071087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/23/2024] [Accepted: 03/29/2024] [Indexed: 04/14/2024] Open
Abstract
In this study, we used fresh Oudemansiella raphanipes as raw materials and pre-treated through hot air drying (HD), infrared radiation drying (ID), and vacuum freeze drying (VD) to investigate the effects of different drying methods on the rehydration rate, appearance quality, microstructure, and volatile flavor components of the dried products, as well as to determine the physicochemical properties and bioactivities of the polysaccharides in the dried O. raphanipes. The results showed that the VD O. raphanipes had the highest rehydration rate and the least shrinkage in appearance, and it better maintained the original color of the gills, but their aroma was not as strong as that of the HD samples. The scanning electron microscopy results indicate that VD maintains a good porous structure in the tissue, while HD and ID exhibit varying degrees of shrinkage and collapse. Seventy-five common volatile substances were detected in the three dried samples, mainly alkanes, alcohols, and esters. The polysaccharides (PS-H, PS-I, and PS-V) extracted from the dried samples of these three species of O. raphanipes had similar infrared spectral features, indicating that their structures are basically consistent. The highest yield was obtained for PS-V, and the polysaccharide content and glucuronic acid content of PS-I were higher than those of the remaining two polysaccharides. In addition, PS-V also showed better antioxidant activity and inhibitory activity against α-glucosidase as well as α-amylase. In conclusion, among the above three drying methods, the quality of O. raphanipes obtained by vacuum freeze drying is the best, and this experiment provides a theoretical basis for the selection of drying methods for O. raphanipes.
Collapse
Affiliation(s)
- Shuting Hou
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong 030801, China; (S.H.); (D.Z.); (D.Y.); (H.L.); (Y.X.); (W.W.); (R.L.); (C.F.); (J.M.); (L.X.); (Y.C.); (X.G.)
| | - Defang Zhang
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong 030801, China; (S.H.); (D.Z.); (D.Y.); (H.L.); (Y.X.); (W.W.); (R.L.); (C.F.); (J.M.); (L.X.); (Y.C.); (X.G.)
| | - Dongmei Yu
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong 030801, China; (S.H.); (D.Z.); (D.Y.); (H.L.); (Y.X.); (W.W.); (R.L.); (C.F.); (J.M.); (L.X.); (Y.C.); (X.G.)
| | - Hao Li
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong 030801, China; (S.H.); (D.Z.); (D.Y.); (H.L.); (Y.X.); (W.W.); (R.L.); (C.F.); (J.M.); (L.X.); (Y.C.); (X.G.)
| | - Yaping Xu
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong 030801, China; (S.H.); (D.Z.); (D.Y.); (H.L.); (Y.X.); (W.W.); (R.L.); (C.F.); (J.M.); (L.X.); (Y.C.); (X.G.)
| | - Wuxia Wang
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong 030801, China; (S.H.); (D.Z.); (D.Y.); (H.L.); (Y.X.); (W.W.); (R.L.); (C.F.); (J.M.); (L.X.); (Y.C.); (X.G.)
| | - Ruiting Li
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong 030801, China; (S.H.); (D.Z.); (D.Y.); (H.L.); (Y.X.); (W.W.); (R.L.); (C.F.); (J.M.); (L.X.); (Y.C.); (X.G.)
| | - Cuiping Feng
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong 030801, China; (S.H.); (D.Z.); (D.Y.); (H.L.); (Y.X.); (W.W.); (R.L.); (C.F.); (J.M.); (L.X.); (Y.C.); (X.G.)
- Shanxi Key Laboratory of Edible Fungi for Loess Plateau, Jinzhong 030801, China
| | - Junlong Meng
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong 030801, China; (S.H.); (D.Z.); (D.Y.); (H.L.); (Y.X.); (W.W.); (R.L.); (C.F.); (J.M.); (L.X.); (Y.C.); (X.G.)
- Shanxi Edible Fungi Engineering Technology Research Center, Jinzhong 030801, China
| | - Lijing Xu
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong 030801, China; (S.H.); (D.Z.); (D.Y.); (H.L.); (Y.X.); (W.W.); (R.L.); (C.F.); (J.M.); (L.X.); (Y.C.); (X.G.)
- Shanxi Key Laboratory of Edible Fungi for Loess Plateau, Jinzhong 030801, China
| | - Yanfen Cheng
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong 030801, China; (S.H.); (D.Z.); (D.Y.); (H.L.); (Y.X.); (W.W.); (R.L.); (C.F.); (J.M.); (L.X.); (Y.C.); (X.G.)
- Shanxi Key Laboratory of Edible Fungi for Loess Plateau, Jinzhong 030801, China
| | - Mingchang Chang
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong 030801, China; (S.H.); (D.Z.); (D.Y.); (H.L.); (Y.X.); (W.W.); (R.L.); (C.F.); (J.M.); (L.X.); (Y.C.); (X.G.)
- Shanxi Edible Fungi Engineering Technology Research Center, Jinzhong 030801, China
| | - Xueran Geng
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong 030801, China; (S.H.); (D.Z.); (D.Y.); (H.L.); (Y.X.); (W.W.); (R.L.); (C.F.); (J.M.); (L.X.); (Y.C.); (X.G.)
- Shanxi Key Laboratory of Edible Fungi for Loess Plateau, Jinzhong 030801, China
| |
Collapse
|
12
|
Zou G, Li T, Mijakovic I, Wei Y. Synthetic biology enables mushrooms to meet emerging sustainable challenges. Front Microbiol 2024; 15:1337398. [PMID: 38414763 PMCID: PMC10897037 DOI: 10.3389/fmicb.2024.1337398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 02/02/2024] [Indexed: 02/29/2024] Open
Abstract
With the increasing sustainability challenges, synthetic biology is offering new possibilities for addressing the emerging problems through the cultivation and fermentation of mushrooms. In this perspective, we aim to provide an overview on the research and applications mushroom synthetic biology, emphasizing the need for increased attention and inclusion of this rapidly advancing field in future mushroom technology over China and other countries. By leveraging synthetic biology, mushrooms are expected to play a more versatile role in various area, including traditional fields like circular economy, human wellness and pharmaceutics, as well as emerging fields like vegan meat, mushroom-based materials and pollution abatement. We are confident that these efforts using synthetic biology strategies have the potential to strengthen our capacity to effectively address sustainable challenges, leading to the development of a more sustainable social economy and ecology.
Collapse
Affiliation(s)
- Gen Zou
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Southern Key Laboratory of Edible Fungus Resource Utilization, Ministry of Agriculture, National Engineering Research Center of Edible Fungi, Shanghai, China
| | - Tian Li
- School of Pharmaceutical Sciences, Laboratory of Synthetic Biology, Food Laboratory of Zhongyuan, Zhengzhou University, Zhengzhou, China
| | - Ivan Mijakovic
- Division of Systems and Synthetic Biology, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Yongjun Wei
- School of Pharmaceutical Sciences, Laboratory of Synthetic Biology, Food Laboratory of Zhongyuan, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
13
|
Cao Z, Chen H, Zhou C, Gong M, Li Y, Shao Y, Wu Y, Bao D. Exogenous γ-Aminobutyric Acid (GABA) Enhanced Response to Abiotic Stress in Hypsizygus marmoreus by Improving Mycelial Growth and Antioxidant Capacity. Metabolites 2024; 14:94. [PMID: 38392986 PMCID: PMC10890280 DOI: 10.3390/metabo14020094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/19/2024] [Accepted: 01/21/2024] [Indexed: 02/25/2024] Open
Abstract
γ-Aminobutyric (GABA) acid is a nutrient and signaling molecule existing in many plants, participating in the regulation of metabolism and various physiological activities. Two strains of Hypsizygus marmoreus (a white variety and a brown variety) were investigated to study the impact of exogenous GABA on mycelial growth and the response to stress. Mycelial growth, microscopic morphology, antioxidant profile, and gad2 expression in H. marmoreu were investigated under salt, dehydration, or cold stress. The results indicated that 5 mM GABA stimulated mycelial growth under standard cultivation conditions, whereas GABA addition over 10 mM hindered the growth. Under salt, dehydration, or cold stress, treatment with 5 mM GABA significantly enhanced the mycelial growth rate and density of both H. marmoreus strains by promoting front hyphae branching. Meanwhile, the activities of key antioxidant enzymes such as peroxidase (POD), catalase (CAT), and ascorbate peroxidase (APX) were enhanced by GABA, thereby augmenting the defensive network against abiotic stress. Additionally, gad2 expression and GABA concentration were increased under abiotic stresses as a resistance regulation response. The exogenous addition of GABA strengthened the upregulation of gad2 expression and GABA production. These findings indicated that exogenously adding low concentrations of GABA effectively enhanced the mycelial growth and antioxidant profile of H. marmoreus, thereby improving its resistance against stresses.
Collapse
Affiliation(s)
- Zhi Cao
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
- National Engineering Research Center of Edible Fungi, Key Laboratory of Applied Mycological Resources and Utilization of Ministry of Agriculture, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Hongyu Chen
- National Engineering Research Center of Edible Fungi, Key Laboratory of Applied Mycological Resources and Utilization of Ministry of Agriculture, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Chenli Zhou
- National Engineering Research Center of Edible Fungi, Key Laboratory of Applied Mycological Resources and Utilization of Ministry of Agriculture, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Ming Gong
- National Engineering Research Center of Edible Fungi, Key Laboratory of Applied Mycological Resources and Utilization of Ministry of Agriculture, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Yan Li
- National Engineering Research Center of Edible Fungi, Key Laboratory of Applied Mycological Resources and Utilization of Ministry of Agriculture, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Youran Shao
- National Engineering Research Center of Edible Fungi, Key Laboratory of Applied Mycological Resources and Utilization of Ministry of Agriculture, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Yingying Wu
- National Engineering Research Center of Edible Fungi, Key Laboratory of Applied Mycological Resources and Utilization of Ministry of Agriculture, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Dapeng Bao
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
- National Engineering Research Center of Edible Fungi, Key Laboratory of Applied Mycological Resources and Utilization of Ministry of Agriculture, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| |
Collapse
|
14
|
Cheng H, Zhou X, Yang Y, Xu L, Ding Y, Yan T, Li Q. Environmental damages, cumulative exergy demand, and economic assessment of Panus giganteus farming with the application of solar technology. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:168020. [PMID: 37898217 DOI: 10.1016/j.scitotenv.2023.168020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/06/2023] [Accepted: 10/20/2023] [Indexed: 10/30/2023]
Abstract
The use of photovoltaic (PV) technology in agricultural production can mitigate the environmental impacts of mushroom farming. However, changes in the environmental impacts and economic benefits of the application of PV technology are still unclear. Thus, we evaluated the environmental impacts, energy flow, and economic aspects of mushroom (Panus giganteus) farming systems without solar PV (WS) technology and with PV technology from the generation of substrate materials through harvesting. In addition to a 27 % increase in terrestrial ecotoxicity, P. giganteus farming with PV technology reduced all impact categories by 4-60 %, with a 60 % reduction in CO2 emissions and a 25 % reduction in land resources. These findings highlight the importance of combining PV technology with mushroom farming in agricultural carbon reduction and the efficient use of land resources. In terms of the climate change impact, the PV system reduced CO2 emissions by 2.94 kg CO2 eq./kg of mushrooms compared with the WS system, wherein the aspects of substrate transformation, spawn running, and cultivation were reduced by 78.27-89.91 %. The cumulative exergy demand (CExD) analysis showed that P. giganteus farming combined with PV technology reduced the total CExD by 48 %. With the application of PV technology, the top contributor to the total CExD of mushroom farming shifted from electricity to transportation throughout the supply chain. The PV system reduced costs by 22.09 % and increased the total revenue by 22 % and the cost-benefit ratio by 50 %. Halving the transportation distances of substrate materials and performing localized substitution of wood chips resulted in a 3-34 % reduction in the environmental impacts category and a 23-30 % reduction in nonrenewable fossil energy consumption. These results showed that improvements helped optimize the environmental performance in terms of carbon reduction and energy mixing. Thus, combining PV technology with greenhouse mushroom farming can improve trends in energy and environmental damage.
Collapse
Affiliation(s)
- Hanting Cheng
- Environmental and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China; Hainan Danzhou Tropical Agro-ecosystem National Observation and Research Station, Danzhou 57173, China
| | - Xiaohui Zhou
- Environmental and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China; Key Laboratory of Low-carbon Green Agriculture in Tropical Region of China, Ministry of Agriculture and Rural Affairs, 571101, China
| | - Yang Yang
- Environmental and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China; Hainan Provincial Key Laboratory of Tropical Eco-cycle Agriculture, Haikou, Hainan 571101, China
| | - Lin Xu
- Environmental and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China; National Agricultural Experimental Station for Agricultural Environment, Danzhou 571737, Hainan, China
| | - Ye Ding
- Environmental and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China; National Agricultural Experimental Station for Agricultural Environment, Danzhou 571737, Hainan, China
| | - Tingliang Yan
- Environmental and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China; National Long-term Experimental Station for Agriculture Green Development, Danzhou 571737, Hainan, China
| | - Qinfen Li
- Environmental and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China; Hainan Provincial Key Laboratory of Tropical Eco-cycle Agriculture, Haikou, Hainan 571101, China; National Agricultural Experimental Station for Agricultural Environment, Danzhou 571737, Hainan, China; National Long-term Experimental Station for Agriculture Green Development, Danzhou 571737, Hainan, China.
| |
Collapse
|
15
|
Ma Y, Liu L, Zhou X, Tian T, Xu S, Li D, Li C, Li Y. Optimizing Straw-Rotting Cultivation for Sustainable Edible Mushroom Production: Composting Spent Mushroom Substrate with Straw Additions. J Fungi (Basel) 2023; 9:925. [PMID: 37755033 PMCID: PMC10532571 DOI: 10.3390/jof9090925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 09/03/2023] [Accepted: 09/09/2023] [Indexed: 09/28/2023] Open
Abstract
In recent years, the optimization of straw-rotting formulations for cultivating edible mushrooms and the management of the resulting spent mushroom substrate have emerged as new challenges. This study aimed to investigate the composting of spent mushroom substrate produced from mushroom cultivation with various straw additions, under conditions where chicken manure was also used. Parameters measured during the composting process included temperature, pH, electrical conductivity (EC), germination index (GI), moisture, and total nitrogen content. Additionally, changes in nutrient content within the compost piles before and after composting were determined, and the variations in bacterial and fungal communities across different treatments before and after composting were analyzed using 16S rRNA and ITS sequencing. The results indicated that the spent mushroom substrate produced by adding 20% straw during mushroom cultivation was more suitable for composting treatment. The findings suggest that incorporating an appropriate amount of straw in mushroom cultivation can facilitate subsequent composting of spent mushroom substrate, providing an effective strategy for both environmental protection and cost reduction.
Collapse
Affiliation(s)
- Yongsheng Ma
- Engineering Research Center of Edible and Medicinal Fungi, Ministry of Education, Jilin Agricultural University, Changchun 130118, China; (Y.M.); (L.L.); (X.Z.); (T.T.); (S.X.); (D.L.); (Y.L.)
| | - Lingyun Liu
- Engineering Research Center of Edible and Medicinal Fungi, Ministry of Education, Jilin Agricultural University, Changchun 130118, China; (Y.M.); (L.L.); (X.Z.); (T.T.); (S.X.); (D.L.); (Y.L.)
| | - Xiaoyan Zhou
- Engineering Research Center of Edible and Medicinal Fungi, Ministry of Education, Jilin Agricultural University, Changchun 130118, China; (Y.M.); (L.L.); (X.Z.); (T.T.); (S.X.); (D.L.); (Y.L.)
| | - Tian Tian
- Engineering Research Center of Edible and Medicinal Fungi, Ministry of Education, Jilin Agricultural University, Changchun 130118, China; (Y.M.); (L.L.); (X.Z.); (T.T.); (S.X.); (D.L.); (Y.L.)
| | - Shuai Xu
- Engineering Research Center of Edible and Medicinal Fungi, Ministry of Education, Jilin Agricultural University, Changchun 130118, China; (Y.M.); (L.L.); (X.Z.); (T.T.); (S.X.); (D.L.); (Y.L.)
| | - Dan Li
- Engineering Research Center of Edible and Medicinal Fungi, Ministry of Education, Jilin Agricultural University, Changchun 130118, China; (Y.M.); (L.L.); (X.Z.); (T.T.); (S.X.); (D.L.); (Y.L.)
| | - Changtian Li
- Engineering Research Center of Edible and Medicinal Fungi, Ministry of Education, Jilin Agricultural University, Changchun 130118, China; (Y.M.); (L.L.); (X.Z.); (T.T.); (S.X.); (D.L.); (Y.L.)
- International Joint Research Center for the Creation of New Edible Mushroom Germplasm Resources, Ministry of Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Yu Li
- Engineering Research Center of Edible and Medicinal Fungi, Ministry of Education, Jilin Agricultural University, Changchun 130118, China; (Y.M.); (L.L.); (X.Z.); (T.T.); (S.X.); (D.L.); (Y.L.)
- International Joint Research Center for the Creation of New Edible Mushroom Germplasm Resources, Ministry of Science and Technology, Jilin Agricultural University, Changchun 130118, China
| |
Collapse
|
16
|
Li Z, Wen J, Jing Z, Li H, Huang J, Yuan C, Xian L, Gao L, Zhu J, Xie B, Tao Y. Low temperature, mechanical wound, and exogenous salicylic acid (SA) can stimulate the SA signaling molecule as well as its downstream pathway and the formation of fruiting bodies in Flammulina filiformis. Front Microbiol 2023; 14:1197498. [PMID: 37675426 PMCID: PMC10477995 DOI: 10.3389/fmicb.2023.1197498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 07/28/2023] [Indexed: 09/08/2023] Open
Abstract
Low temperature (LT) and mechanical wound (MW), as two common physics methods, have been empirically used in production to stimulate the primordia formation of Flammulina filiformis, which is typically produced using the industrial production mode. However, the detailed effect on the fruiting body formation and important endogenous hormones and signaling pathways in this process is poorly understood. In this study, LT, MW, their combination, i.e., MW + LT, and low concentration of SA (0.1 mM SA) treatments were applied to the physiologically mature mycelia of F. filiformis. The results showed that the primordia under the four treatments began to appear on the 5th-6th days compared with the 12th day in the control (no treatment). The MW + LT treatment produced the largest number of primordia (1,859 per bottle), followed by MW (757), SA (141), and LT (22), compared with 47 per bottle in the control. The HPLC results showed that the average contents of endogenous SA were significantly increased by 1.3 to 2.6 times under four treatments. A total of 11 SA signaling genes were identified in the F. filiformis genome, including 4 NPR genes (FfNpr1-4), 5 TGA genes (FfTga1-5), and 2 PR genes (FfPr1-2). FfNpr3 with complete conserved domains (ANK and BTB/POZ) showed significantly upregulated expression under all four above treatments, while FfNpr1/2/4 with one domain showed significantly upregulated response expression under the partial treatment of all four treatments. FfTga1-5 and FfPr1-2 showed 1.6-fold to 8.5-fold significant upregulation with varying degrees in response to four treatments. The results suggested that there was a correlation between "low temperature/mechanical wound-SA signal-fruiting body formation", and it will help researchers to understand the role of SA hormone and SA signaling pathway genes in the formation of fruiting bodies in fungi.
Collapse
Affiliation(s)
- Ziyan Li
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Mycological Research Center, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Jin Wen
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Mycological Research Center, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Zhuohan Jing
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Mycological Research Center, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Hui Li
- Institute of Cash Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, China
| | - Jiahua Huang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Mycological Research Center, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Chengjin Yuan
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Mycological Research Center, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Lijun Xian
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Mycological Research Center, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Lingling Gao
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Mycological Research Center, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Jian Zhu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Mycological Research Center, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Baogui Xie
- Mycological Research Center, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Yongxin Tao
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Mycological Research Center, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| |
Collapse
|
17
|
Zhu J, Zhou L, Yao J, Hu Y, Li Z, Liu J, Marchioni E. Untargeted Metabolomic Analysis Combined with Chemometrics Revealed the Effects of Different Cooking Methods on Lentinus edodes. Molecules 2023; 28:6009. [PMID: 37630261 PMCID: PMC10458448 DOI: 10.3390/molecules28166009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 08/05/2023] [Accepted: 08/06/2023] [Indexed: 08/27/2023] Open
Abstract
Cooking methods affect the compositions of Lentinus edodes metabolites. Nevertheless, little information is available on the specific impact of different cooking methods on Lentinus edodes via metabolomic analysis. This study determined the influence of boiling, steaming, air-frying, and roasting on the metabolomic profiles of Lentinus edodes based on UHPLC-Q-Exactive Orbitrap MS/MS in combination with chemometrics. A total of 990 metabolites were detected and classified into 11 super-classes. Subsequently, the metabolites of the four cooking methods were distinguished using multivariate statistical analysis. The results showed that boiling caused a massive loss of metabolites while roasting and air-frying led to an evident upregulation. The upregulation of metabolites in the steaming groups was not as significant as in roasting and air-frying. This study provided reference data for a comprehensive understanding of the metabolites associated with domestic cooking methods and valuable guidance for the development of Lentinus edodes and its products in the future.
Collapse
Affiliation(s)
- Jinrui Zhu
- National Demonstration Center for Experimental Ethnopharmacology Education, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China; (J.Z.); (J.Y.); (Y.H.)
| | - Li Zhou
- National Demonstration Center for Experimental Ethnopharmacology Education, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China; (J.Z.); (J.Y.); (Y.H.)
| | - Jiaxu Yao
- National Demonstration Center for Experimental Ethnopharmacology Education, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China; (J.Z.); (J.Y.); (Y.H.)
| | - Yueqi Hu
- National Demonstration Center for Experimental Ethnopharmacology Education, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China; (J.Z.); (J.Y.); (Y.H.)
| | - Zhenghui Li
- National Demonstration Center for Experimental Ethnopharmacology Education, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China; (J.Z.); (J.Y.); (Y.H.)
| | - Jikai Liu
- National Demonstration Center for Experimental Ethnopharmacology Education, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China; (J.Z.); (J.Y.); (Y.H.)
| | - Eric Marchioni
- Equipe de Chimie Analytique des Molécules Bioactives et Pharmacognoise, Institut Pluridisciplinaire Hubert Curien (UMR 7178, CNRS/UDS), 74 Route du Rhin, 67400 Illkirch, France;
| |
Collapse
|
18
|
Lu H, Song W, Shang XD, Liu JY, Zhang D, Li L, Wang RJ, Zhai XT, Feng T. Expression of terpene synthase-related genes in parents and offspring of Flammulina filiformis based on differences in volatile aroma components. FOOD CHEMISTRY. MOLECULAR SCIENCES 2023; 6:100156. [PMID: 36588602 PMCID: PMC9794882 DOI: 10.1016/j.fochms.2022.100156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 11/25/2022] [Accepted: 12/11/2022] [Indexed: 06/17/2023]
Abstract
Flammulina filiformis (F. filiformis) is one of the four major edible types of fungus in the world and has been cultivated in China since 800 CE (Anno Domini). Some of the most essential criteria for evaluating the quality of F. filiformis are the types and contents of volatile components present. A focused study on screened the terpene synthase genes involved in the aroma of offspring and compared key terpenoids between parents and offspring, which is helpful for the development and application of F. filiformis. Firstly, the volatile aroma components of parent and offspring F. filiformis were extracted using two pretreatment procedures, and then were semi-quantified by an internal standard. Forty-eight, fifty-eight, and forty-eight volatile compounds were identified in parents and offspring of three different strains, and 15, 22, and 12 aroma compounds (OAVs ≥ 1) were further screened out via calculating their odor activity values (OAVs). Terpenoids, in particular linalool and eucalyptol, which contribute more to the aroma, result in the unique green and grassy aroma of the offspring. At last, the F. filiformis genome was resequenced and the coordinates of genes related to terpenoid synthase were determined. The results showed that Scaffolds, including scaffold3.t874 and scaffold9.t157 were connected to terpenoid synthesis of offspring (No. 61523). The variant genes g269 and g61 were related to terpenoid synthase sequences. This study provides a theoretical foundation for the cultivation of more diverse and unique varieties of F. filiformis.
Collapse
Affiliation(s)
- Huan Lu
- National Research Center for Edible Fungi Biotechnology and Engineering, Key Laboratory of Applied Mycological Resources and Utilization, Ministry of Agriculture, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, No. 1000, Jinqi Road, Shanghai, China
| | - Wei Song
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - Xiao-Dong Shang
- National Research Center for Edible Fungi Biotechnology and Engineering, Key Laboratory of Applied Mycological Resources and Utilization, Ministry of Agriculture, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, No. 1000, Jinqi Road, Shanghai, China
| | - Jian-Yu Liu
- National Research Center for Edible Fungi Biotechnology and Engineering, Key Laboratory of Applied Mycological Resources and Utilization, Ministry of Agriculture, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, No. 1000, Jinqi Road, Shanghai, China
| | - Dan Zhang
- National Research Center for Edible Fungi Biotechnology and Engineering, Key Laboratory of Applied Mycological Resources and Utilization, Ministry of Agriculture, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, No. 1000, Jinqi Road, Shanghai, China
| | - Liang Li
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - Rui-Juan Wang
- National Research Center for Edible Fungi Biotechnology and Engineering, Key Laboratory of Applied Mycological Resources and Utilization, Ministry of Agriculture, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, No. 1000, Jinqi Road, Shanghai, China
| | - Xiao-Ting Zhai
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Tao Feng
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
| |
Collapse
|
19
|
Qu SX, Li HP, Zhu JC, Liu JJ, Luo X, Ma L, Wang Q, Chen KP. Growth, development, and host preference of Histiostoma feroniarum (Acaridida: Histiostomatidae): effects of temperature and types of mushroom cultivar. BULLETIN OF ENTOMOLOGICAL RESEARCH 2023; 113:412-418. [PMID: 36866720 DOI: 10.1017/s000748532300007x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
One of the most common harmful mites in edible fungi is Histiostoma feroniarum Dufour (Acaridida: Histiostomatidae), a fungivorous astigmatid mite that feeds on hyphae and fruiting bodies, thereby transmitting pathogens. This study examined the effects of seven constant temperatures and 10 types of mushrooms on the growth and development of H. feroniarum, as well as its host preference. Developmental time for the total immature stages was significantly affected by the type of mushroom species, ranging from 4.3 ± 0.4 days (reared on Pleurotus eryngii var. tuoliensis Mou at 28°C) to 17.1 ± 2.3 days (reared on Auricularia polytricha Sacc. at 19°C). The temperature was a major factor in the formation of facultative heteromorphic deutonymphs (hypopi). The mite entered the hypopus stage when the temperature dropped to 16°C or rose above 31°C. The growth and development of this mite were significantly influenced by the type of species and variety of mushrooms. Moreover, the fungivorous astigmatid mite preferred to feed on the 'Wuxiang No. 1' strain of Lentinula edodes (Berk.) Pegler and the 'Gaowenxiu' strain of P. pulmonarius (Fr.) Quél., with a shorter development period compared with that of feeding on other strains. These results therefore quantify the effect of host type and temperature on fungivorous astigmatid mite growth and development rates, and provide a reference for applying mushroom cultivar resistance to biological pest control.
Collapse
Affiliation(s)
- Shao Xuan Qu
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Vegetable Crops, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing, 210014, China
- Institute of Life Science, Jiangsu University, Zhenjiang, 210023, China
- College of Life Sciences, Southwest Forestry University, Kunming, Yunnan 650224, China
| | - Hui Ping Li
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Vegetable Crops, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing, 210014, China
| | - Jia Chun Zhu
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Vegetable Crops, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing, 210014, China
- Institute of Life Science, Jiangsu University, Zhenjiang, 210023, China
| | - Jun Jie Liu
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Vegetable Crops, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing, 210014, China
- College of Life Sciences, Southwest Forestry University, Kunming, Yunnan 650224, China
| | - Xin Luo
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Vegetable Crops, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing, 210014, China
| | - Lin Ma
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Vegetable Crops, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing, 210014, China
| | - Qiang Wang
- Institute of Life Science, Jiangsu University, Zhenjiang, 210023, China
| | - Ke Ping Chen
- Institute of Life Science, Jiangsu University, Zhenjiang, 210023, China
| |
Collapse
|
20
|
Xia Z, Wang R, Ma C, Li J, Lei J, Ji N, Pan X, Chen T. Effect of Controlled Atmosphere Packaging on the Physiology and Quality of Fresh-Cut Dictyophora rubrovolvata. Foods 2023; 12:foods12081665. [PMID: 37107460 PMCID: PMC10138049 DOI: 10.3390/foods12081665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/13/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Dictyophora rubrovolvata is a typical edible fungus of Guizhou Province and is very popular due to its unique taste and texture. In this study, the effect of a controlled atmosphere (CA) on fresh-cut D. rubrovolvata shelf life was investigated. Firstly, this study addresses the influence of different O2 concentrations (5%, 20%, 35%, 50%, 65%, 80%, or 95%) with N2 balance on fresh-cut D. rubrovolvata quality while stored at 4 ± 1 °C for 7 d. Then, on the basis of the determined O2 concentration (5%), CO2 (0%, 5%, 10%, 15%, or 20%) was involved and stored for 8 d at 4 ± 1 °C. Evaluations of physiology parameters, texture, browning degree, nutritional, umami, volatile components, and total colony numbers were determined in fresh-cut D. rubrovolvata. From the results of water migration, the sample of 5% O2/5% CO2/90% N2 was closer to 0 d than other groups at 8 days. Meanwhile, the polyphenol oxidase (2.26 ± 0.07 U/(g·min)), and catalase activity (4.66 ± 0.08 U/(g·min·FW)) were superior to the samples of other treatment groups on the eighth day (3.04 ± 0.06 to 3.84 ± 0.10 U/(g·min), 4.02 ± 0.07 to 4.07 ± 0.07 U/(g·min·FW)). Therefore, we found that a gas environment with 5% O2/5% CO2/90% N2 could ensure the membrane integrity, oxidation, and prevent the browning of fresh-cut D. rubrovolvata, thus better maintaining the physiological parameters. Meanwhile, it also maintained the samples' texture, color, nutritional value, and umami taste. Furthermore, it inhibited the increase in total colony numbers. The volatile components were closer to the initial level compared with other groups. The results indicate that fresh-cut D. rubrovolvata could maintain its shelf life and quality when stored in 5% O2/5% CO2/90% N2 at 4 ± 1 °C.
Collapse
Affiliation(s)
- Ziqian Xia
- College of Food and Pharmaceutical Engineering, Guiyang University, Guiyang 550000, China
| | - Rui Wang
- College of Food and Pharmaceutical Engineering, Guiyang University, Guiyang 550000, China
| | - Chao Ma
- College of Food and Pharmaceutical Engineering, Guiyang University, Guiyang 550000, China
| | - Jiangkuo Li
- Tianjin Key Laboratory of Postharvest Physiology and Storage of Agricultural Products, National Engineering and Technology Research Center for Preservation of Agricultural Produce, Tianjin 301699, China
| | - Jiqing Lei
- College of Food and Pharmaceutical Engineering, Guiyang University, Guiyang 550000, China
| | - Ning Ji
- College of Food and Pharmaceutical Engineering, Guiyang University, Guiyang 550000, China
| | - Xianxing Pan
- College of Food and Pharmaceutical Engineering, Guiyang University, Guiyang 550000, China
| | - Tongjie Chen
- Gui Zhou Mei Wei Xian Dictyophora Industry Company Limited, Zhijin 552100, China
| |
Collapse
|
21
|
Ghose A, Gupta D, Nuzelu V, Rangan L, Mitra S. Optimization of laccase enzyme extraction from spent mushroom waste of Pleurotus florida through ANN-PSO modeling: An ecofriendly and economical approach. ENVIRONMENTAL RESEARCH 2023; 222:115345. [PMID: 36706899 DOI: 10.1016/j.envres.2023.115345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 12/18/2022] [Accepted: 01/19/2023] [Indexed: 06/18/2023]
Abstract
The cardinal focus of this study is to optimize the best reaction conditions for maximizing laccase activity from spent mushroom waste (SMW) of Pleurotus florida. Optimization process parameters were studied by the modeling techniques, artificial neural networking (ANN) embedded in particle swarm optimization (PSO), and response surface model (RSM). The best topology of ANN-PSO architecture was obtained on 4-10-1. The R2, IOA, MSE, and MAE values of the ANN model were obtained as 0.98785, 0.9939, 0.0023, and 0.0251 while, that of the RSM model were obtained as 0.74290, 0.9210, 0.0244, and 0.1110 respectively. The higher values of R2, IOA, and lower values of MSE and MAE of the ANN-PSO model depict that ANN-PSO outperformed compared to RSM and also verified the effectiveness of the ANN-PSO model. The ANN-PSO model performance demonstrates the robustness of the technique in optimizing laccase activity in SMW of P. florida. The optimization results revealed that pH 4.5, time 3 h, solid: solution ratio 1:5, and ABTS concentration of 1 mM was optimal for achieving maximum laccase activity at temperature 30 °C. The enzymatic activity of crude laccase enzyme was obtained as 1.185 U ml-1 without loss of enzyme activity. Additionally, crude laccase enzyme was 1.74 fold partially purified, and 83.54% of the enzyme was yielded. Out of all the independent process variables, ABTS and pH had an influence on laccase activity. Therefore, we anticipate that the findings of this investigation will reduce the ambiguity in maximizing laccase activity and ease the screening process. This study also highlights the comparative cost evaluation of crude laccase enzyme extracted from P. florida and commercial enzymes. There is a great potential for the utilization of the laccase enzyme extracted from SMW and using it for the degradation of recalcitrant micropollutants. Thus, SMW promises a cost-effective and sustainable approach leading towards circular economy.
Collapse
Affiliation(s)
- Anamika Ghose
- Agro-ecotechnology Laboratory, School of Agro and Rural Technology (SART), Indian Institute of Technology Guwahati (IITG), Assam, 781039, India
| | - Debaditya Gupta
- Agro-ecotechnology Laboratory, School of Agro and Rural Technology (SART), Indian Institute of Technology Guwahati (IITG), Assam, 781039, India
| | - V Nuzelu
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Assam, 781039, India
| | - Latha Rangan
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Assam, 781039, India
| | - Sudip Mitra
- Agro-ecotechnology Laboratory, School of Agro and Rural Technology (SART), Indian Institute of Technology Guwahati (IITG), Assam, 781039, India.
| |
Collapse
|
22
|
Liu F, Wang SH, Jia DH, Tan H, Wang B, Zhao RL. Development of Multiple Nucleotide Polymorphism Molecular Markers for Enoki Mushroom ( Flammulina filiformis) Cultivars Identification. J Fungi (Basel) 2023; 9:jof9030330. [PMID: 36983498 PMCID: PMC10056640 DOI: 10.3390/jof9030330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/17/2023] [Accepted: 03/06/2023] [Indexed: 03/30/2023] Open
Abstract
The enoki mushroom (Flammulina filiformis) is one of the most important and popular edible mushrooms commercially in China. However, traditional mushroom cultivar identification is challenging due to poor accuracy, heavy workloads, and low reproducibility. To overcome this challenge, we developed a method for identifying F. filiformis strains using multiple nucleotide polymorphism sequencing (MNP-seq). This involved screening 179 universal MNP markers based on whole-genome sequencing data, constructing an MNP sequence library, and performing multiplex PCR amplification and high-sequencing. We further screened 69 core MNP markers and used them to build a neighbor-joining (NJ) phylogenetic tree of 232 cultivated and wild strains. Our analysis showed that all cultivars could be accurately separated by computing genetic similarity values and that the cultivars could be separated into 22 distinct evolutionary pedigrees. The specific value of genetic similarity can be used as the standard to distinguish F. filiformis cultivars, however, it needs to be comprehensively defined by the additional phenotype and biological characteristics of those strains in the future work.
Collapse
Affiliation(s)
- Fei Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Shi-Hui Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- School of Plant Protection, Jilin Agricultural University, Changchun 130118, China
| | - Ding-Hong Jia
- National-Local Joint Engineering Laboratory of Breeding and Cultivation of Edible and Medicinal Fungi, Sichuan Institute of Edible Fungi, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
| | - Hao Tan
- National-Local Joint Engineering Laboratory of Breeding and Cultivation of Edible and Medicinal Fungi, Sichuan Institute of Edible Fungi, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
| | - Bo Wang
- National-Local Joint Engineering Laboratory of Breeding and Cultivation of Edible and Medicinal Fungi, Sichuan Institute of Edible Fungi, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
| | - Rui-Lin Zhao
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
23
|
Advances in the Role and Mechanisms of Essential Oils and Plant Extracts as Natural Preservatives to Extend the Postharvest Shelf Life of Edible Mushrooms. Foods 2023; 12:foods12040801. [PMID: 36832876 PMCID: PMC9956186 DOI: 10.3390/foods12040801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/06/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
China has a large variety of edible mushrooms and ranks first in the world in terms of production and variety. Nevertheless, due to their high moisture content and rapid respiration rate, they experience constant quality deterioration, browning of color, loss of moisture, changes in texture, increases in microbial populations, and loss of nutrition and flavor during postharvest storage. Therefore, this paper reviews the effects of essential oils and plant extracts on the preservation of edible mushrooms and summarizes their mechanisms of action to better understand their effects during the storage of mushrooms. The quality degradation process of edible mushrooms is complex and influenced by internal and external factors. Essential oils and plant extracts are considered environmentally friendly preservation methods for better postharvest quality. This review aims to provide a reference for the development of new green and safe preservation and provides research directions for the postharvest processing and product development of edible mushrooms.
Collapse
|
24
|
Hamza A, Ghanekar S, Santhosh Kumar D. Current trends in health-promoting potential and biomaterial applications of edible mushrooms for human wellness. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2022.102290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
25
|
Hobbs C. The Health and Clinical Benefits of Medicinal Fungi. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2023; 184:285-356. [PMID: 37468715 DOI: 10.1007/10_2023_230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
The human uses of mushrooms and cultured mycelium products for nutrition and medicine are detailed and supported by available human studies, which in many cases are clinical trials published in peer-reviewed journals. The major medically active immunomodulating compounds in the cell walls-chitin, beta-glucans, and glycoproteins, as well as lower weight molecules-nitrogen-containing compounds, phenolics, and terpenes-are discussed in relation to their current clinical uses. The nutritional content and foods derived from mushrooms, particularly related to their medical benefits, are discussed. High-quality major nutrients such as the high amounts of complete protein and prebiotic fibers found in edible and medicinal fungi and their products are presented. Mushrooms contain the highest amount of valuable medicinal fiber, while dried fruiting bodies of some fungi have up to 80% prebiotic fiber. These fibers are particularly complex and are not broken down in the upper gut, so they can diversify the microbiome and increase the most beneficial species, leading to better immune regulation and increasing normalizing levels of crucial neurotransmitters like serotonin and dopamine. Since the growth of medicinal mushroom products is expanding rapidly worldwide, attention is placed on reviewing important aspects of mushroom and mycelium cultivation and quality issues relating to adulteration, substitution, and purity and for maximizing medicinal potency. Common questions surrounding medicinal mushroom products in the marketplace, particularly the healing potential of fungal mycelium compared with fruiting bodies, extraction methods, and the use of fillers in products, are all explored, and many points are supported by the literature.
Collapse
Affiliation(s)
- Christopher Hobbs
- Institute for Natural Products Research, University of Massachusetts, Amherst, MA, USA.
| |
Collapse
|
26
|
Wang Y, Zeng L, Wu J, Jiang H, Mei L. Diversity and effects of competitive Trichoderma species in Ganoderma lucidum-cultivated soils. Front Microbiol 2022; 13:1067822. [PMID: 36569077 PMCID: PMC9772278 DOI: 10.3389/fmicb.2022.1067822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 11/25/2022] [Indexed: 12/12/2022] Open
Abstract
Ganoderma lucidum (GL) is a well-known medicinal mushroom that has been extensively cultivated. Our previous study has shown that abundant Trichoderma colonies grow on the casing soil surface, posing cultivation obstacles for GL. However, an understanding of species-level characteristics of Trichoderma strains and their adverse effects on GL growth is limited. This study aimed to investigate the diversity and potential effects of Trichoderma from GL-cultivated soils. Over 700 Trichoderma isolates were collected from two trails in Longquan Country, southeast China. Eight Trichoderma species, including T. atrioviride, T. guizhouense, T. hamatum, T. harzianum, T. koningiopsis, T. pleuroticola, T. sp. irale, and T. virens, were identified based on the combination alignment of tef-1α and rpb2 sequences. The number of Trichoderma colonies increased dramatically during GL cultivation, with an increase of 9.2-fold in the Lanju trail. T. virens accounted for the most colonies (33.33 and 32.50% in Lanju and Chengbei, respectively) at the end of GL cultivation. The Trichoderma species growth varied but was satisfactory under different temperature or pH conditions. Moreover, Trichoderma species showed different adverse effects on GL growth. The non-volatile metabolites from T. virens and volatile metabolites from T. atroviride displayed the strongest antagonistic activity. Furthermore, the volatile 6-pentyl-2H-pyran-2-one (6-PP) showed a significant inhibitory effect on GL growth with an 8.79 μl mL-1 headspace of 50% effective concentration. The different Trichoderma spp. produced different amounts of 6-PP. The most efficient 6-PP producer was T. atroviride. To the best of our knowledge, this study is the first to demonstrate the abundance of competitive Trichoderma species associated with GL cultivation. Our results would contribute to.
Collapse
Affiliation(s)
- Yongjun Wang
- Department of Forest Protection, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| | - Linzhou Zeng
- Department of Forest Protection, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| | - Jiayi Wu
- Department of Forest Protection, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| | - Hong Jiang
- Department of Forest Protection, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| | - Li Mei
- Department of Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| |
Collapse
|
27
|
Tan H, Yu Y, Fu Y, Liu T, Wang Y, Peng W, Wang B, Chen J. Comparative analyses of Flammulina filiformis mitochondrial genomes reveal high length polymorphism in intergenic regions and multiple intron gain/loss in cox1. Int J Biol Macromol 2022; 221:1593-1605. [PMID: 36116598 DOI: 10.1016/j.ijbiomac.2022.09.110] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/23/2022] [Accepted: 09/10/2022] [Indexed: 11/30/2022]
Abstract
The golden-needle mushroom Flammulina filiformis is one of the bulk mushroom products in the world. This study obtained complete mitogenomes of 44 wild isolates collected from nine provinces and two artificially bred cultivars of F. filiformis, together with three Flammulina rossica isolates and one Flammulina fennae isolate for comparison. The mitogenome of F. filiformis ranged from 83,540 bp to 90,938 bp, consisting of 14 conserved protein-coding genes (PCGs), two rRNA genes, and 25 tRNA genes. To the best of our knowledge, it contained the highest proportion of intergenic regions compared to the other known Basidiomycota mitogenomes. Introns and intergenic regions were two major contributing factors to the total size of the F. filiformis mitogenome. The conserved PCG cox3 is located in an intron of another conserved PCG, nad5. This is a unique phenomenon in all known fungal mitogenomes. Gain/loss of introns was observed in cox1, nad5, and rnl. Length polymorphism was widely observed in intergenic regions. Accordingly, primers were designed as useful markers for rapid identification of F. filiformis isolates with differentiated mitogenomes. Our findings provide a basis for further studies related to variety identification and population genetics of this economically important mushroom.
Collapse
Affiliation(s)
- Hao Tan
- School of Bioengineering, Jiangnan University, Wuxi, China; Sichuan Institute of Edible Fungi, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Yang Yu
- Sichuan Institute of Edible Fungi, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Yu Fu
- Sichuan Institute of Edible Fungi, Sichuan Academy of Agricultural Sciences, Chengdu, China; College of Life Sciences, Sichuan University, Chengdu, China
| | - Tianhai Liu
- Sichuan Institute of Edible Fungi, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Yong Wang
- Sichuan Institute of Edible Fungi, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Weihong Peng
- Sichuan Institute of Edible Fungi, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Bo Wang
- Sichuan Institute of Edible Fungi, Sichuan Academy of Agricultural Sciences, Chengdu, China.
| | - Jian Chen
- School of Bioengineering, Jiangnan University, Wuxi, China.
| |
Collapse
|