1
|
Crabbé M, Opsomer T, Vermeulen K, Ooms M, Segers C. Targeted radiopharmaceuticals: an underexplored strategy for ovarian cancer. Theranostics 2024; 14:6281-6300. [PMID: 39431018 PMCID: PMC11488094 DOI: 10.7150/thno.99782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 08/19/2024] [Indexed: 10/22/2024] Open
Abstract
Ovarian cancer is the most common gynecological malignancy worldwide with the highest mortality. This low survival rate can be attributed to the fact that symptoms arise only at an advanced disease stage, characterized by a (micro)metastatic spread across the peritoneal cavity. Radiopharmaceuticals, composed of a targeting moiety coupled with either a diagnostic or therapeutic radionuclide, constitute a relatively underexplored theranostic approach that may improve the current standard of care. Efficient patient stratification, follow-up and treatment are several caveats that could be addressed with theranostics to improve patient outcomes. So far, the bulk of research is situated and often halted at the preclinical level, employing murine models of primary and metastatic peritoneal disease that do not necessarily provide an accurate representation of the disease heterogeneity, (intrinsic) drug resistance or the complex physiological interactions with the tumor microenvironment. Radioimmunoconjugates with therapeutic α- and electron-emitting radionuclides have been the prevailing standard, targeting a myriad of cell-membrane markers that are expressed in the various heterogeneous histological subtypes of ovarian cancer. Evidently, several hurdles exist within preclinical research that are potentially withholding these agents from advancing into clinical practice. On the other hand, the field of nuclear medicine has also seen significant innovation to address shortcomings related to target/ligand identification, preclinical research models, radiochemistry, radiopharmacy and dosimetry, as outlined in this review. Altogether, theranostics hold great promise to answer an unmet medical need for ovarian cancer.
Collapse
Affiliation(s)
| | | | | | | | - Charlotte Segers
- Nuclear Medical Applications, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
| |
Collapse
|
2
|
Stangl S, Nguyen NT, Brosch-Lenz J, Šimeček J, Weber WA, Kossatz S, Notni J. Efficiency of succinylated gelatin and amino acid infusions for kidney uptake reduction of radiolabeled αvβ6-integrin targeting peptides: considerations on clinical safety profiles. Eur J Nucl Med Mol Imaging 2024; 51:3191-3201. [PMID: 38717591 PMCID: PMC11369040 DOI: 10.1007/s00259-024-06738-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 04/26/2024] [Indexed: 09/03/2024]
Abstract
PURPOSE 68Ga-Trivehexin is an investigational PET radiopharmaceutical (NCT05799274) targeting αvβ6-integrin for PET imaging of carcinomas. 177Lu-D0301 is a structurally related therapeutic peptide tetramer. However, it showed considerable kidney uptake in rodents, impeding clinical applicability. We therefore evaluated the impact of different kidney protection strategies on the biodistribution of both agents in normal and tumor-bearing mice. METHODS Ex-vivo biodistribution of 68Ga-Trivehexin (90 min p.i.) and 177Lu-D0301 (90 min and 24 h p.i.) was determined in healthy C57BL/6N and H2009 (human lung adenocarcinoma) xenografted CB17-SCID mice without and with co-infusion of 100 µL of solutions containing 2.5% arginine + 2.5% lysine (Arg/Lys), 4% succinylated gelatin (gelofusine, gelo), or combinations thereof. Arg/Lys was injected either i.p. 30 min before and after the radiopharmaceutical, or i.v. 2 min before the radiopharmaceutical. Gelo was administered either i.v. 2 min prior activity, or pre-mixed and injected together with the radiopharmaceutical (n = 5 per group). C57BL/6N mice were furthermore imaged by PET (90 min p.i.) and SPECT (24 h p.i.). RESULTS Kidney uptake of 68Ga-Trivehexin in C57BL/6N mice was reduced by 15% (Arg/Lys i.p.), 25% (Arg/Lys i.v.), and 70% (gelo i.v.), 90 min p.i., relative to control. 177Lu-D0301 kidney uptake was reduced by 2% (Arg/Lys i.p.), 41% (Arg/Lys i.v.), 61% (gelo i.v.) and 66% (gelo + Arg/Lys i.v.) 24 h p.i., compared to control. Combination of Arg/Lys and gelo provided no substantial benefit. Gelo furthermore reduced kidney uptake of 177Lu-D0301 by 76% (90 min p.i.) and 85% (24 h p.i.) in H2009 bearing SCID mice. Since tumor uptake was not (90 min p.i.) or only slightly reduced (15%, 24 h p.i.), the tumor/kidney ratio was improved by factors of 3.3 (90 min p.i.) and 2.6 (24 h p.i.). Reduction of kidney uptake was demonstrated by SPECT, which also showed that the remaining activity was located in the cortex. CONCLUSIONS The kidney uptake of both investigated radiopharmaceuticals was more efficiently reduced by gelofusine (61-85%) than Arg/Lys (25-41%). Gelofusine appears particularly suitable for reducing renal uptake of αvβ6-integrin targeted 177Lu-labeled peptide multimers because its application led to approximately three times higher tumor-to-kidney ratios. Since the incidence of severe adverse events (anaphylaxis) with succinylated gelatin products (reportedly 0.0062-0.038%) is comparable to that of gadolinium-based MRI or iodinated CT contrast agents (0.008% and 0.04%, respectively), clinical use of gelofusine during radioligand therapy appears feasible if similar risk management strategies as for contrast agents are applied.
Collapse
Affiliation(s)
- Stefan Stangl
- Department of Nuclear Medicine, University Hospital Klinikum Rechts Der Isar, School of Medicine and Health, Technical University of Munich, Munich, Germany
- Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Nghia Trong Nguyen
- Department of Nuclear Medicine, University Hospital Klinikum Rechts Der Isar, School of Medicine and Health, Technical University of Munich, Munich, Germany
- Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Julia Brosch-Lenz
- Department of Nuclear Medicine, University Hospital Klinikum Rechts Der Isar, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | | | - Wolfgang A Weber
- Department of Nuclear Medicine, University Hospital Klinikum Rechts Der Isar, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Susanne Kossatz
- Department of Nuclear Medicine, University Hospital Klinikum Rechts Der Isar, School of Medicine and Health, Technical University of Munich, Munich, Germany.
- Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine and Health, Technical University of Munich, Munich, Germany.
- Department of Chemistry, School of Natural Sciences, Technical University of Munich, Munich, Germany.
| | - Johannes Notni
- TRIMT GmbH, Radeberg, Germany.
- Institute of Pathology, School of Medicine and Health, Technische Universität München, München, Germany.
| |
Collapse
|
3
|
Badenhorst M, Windhorst AD, Beaino W. Navigating the landscape of PD-1/PD-L1 imaging tracers: from challenges to opportunities. Front Med (Lausanne) 2024; 11:1401515. [PMID: 38915766 PMCID: PMC11195831 DOI: 10.3389/fmed.2024.1401515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 05/20/2024] [Indexed: 06/26/2024] Open
Abstract
Immunotherapy targeted to immune checkpoint inhibitors, such as the program cell death receptor (PD-1) and its ligand (PD-L1), has revolutionized cancer treatment. However, it is now well-known that PD-1/PD-L1 immunotherapy response is inconsistent among patients. The current challenge is to customize treatment regimens per patient, which could be possible if the PD-1/PD-L1 expression and dynamic landscape are known. With positron emission tomography (PET) imaging, it is possible to image these immune targets non-invasively and system-wide during therapy. A successful PET imaging tracer should meet specific criteria concerning target affinity, specificity, clearance rate and target-specific uptake, to name a few. The structural profile of such a tracer will define its properties and can be used to optimize tracers in development and design new ones. Currently, a range of PD-1/PD-L1-targeting PET tracers are available from different molecular categories that have shown impressive preclinical and clinical results, each with its own advantages and disadvantages. This review will provide an overview of current PET tracers targeting the PD-1/PD-L1 axis. Antibody, peptide, and antibody fragment tracers will be discussed with respect to their molecular characteristics and binding properties and ways to optimize them.
Collapse
Affiliation(s)
- Melinda Badenhorst
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Radiology and Nuclear Medicine, De Boelelaan, Amsterdam, Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, Netherlands
| | - Albert D. Windhorst
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Radiology and Nuclear Medicine, De Boelelaan, Amsterdam, Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, Netherlands
| | - Wissam Beaino
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Radiology and Nuclear Medicine, De Boelelaan, Amsterdam, Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, Netherlands
| |
Collapse
|
4
|
Durinova A, Smutna L, Barta P, Kamaraj R, Smutny T, Schmierer B, Pavek P, Trejtnar F. Radiolabeled 15-mer peptide internalization is mediated by megalin (LRP2 receptor) in a CRISPR/Cas9-based LRP2 knockout human kidney cell model. EJNMMI Radiopharm Chem 2024; 9:32. [PMID: 38637347 PMCID: PMC11026318 DOI: 10.1186/s41181-024-00262-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 04/08/2024] [Indexed: 04/20/2024] Open
Abstract
BACKGROUND Megalin (LRP2 receptor) mediates the endocytosis of radiolabeled peptides into proximal tubular kidney cells, which may cause nephrotoxicity due to the accumulation of a radioactive tracer. The study aimed to develop a cellular model of human kidney HK2 cells with LRP2 knockout (KO) using CRISPR/Cas9 technique. This model was employed for the determination of the megalin-mediated accumulation of 68Ga- and 99mTc-labeled 15-mer peptide developed to target the vascular endothelial growth factor (VEGF) receptor in oncology radiodiagnostics. RESULTS The gene editing in the LRP2 KO model was verified by testing two well-known megalin ligands when higher viability of KO cells was observed after gentamicin treatment at cytotoxic concentrations and lower FITC-albumin internalization by the KO cells was detected in accumulation studies. Fluorescent-activated cell sorting was used to separate genetically modified LRP2 KO cell subpopulations. Moreover, flow cytometry with a specific antibody against megalin confirmed LRP2 knockout. The verified KO model identified both 68Ga- and 99mTc-radiolabeled 15-mer peptides as megalin ligands in accumulation studies. We found that both radiolabeled 15-mers enter LRP2 KO HK2 cells to a lesser extent compared to parent cells. Differences in megalin-mediated cellular uptake depending on the radiolabeling were not observed. Using biomolecular docking, the interaction site of the 15-mer with megalin was also described. CONCLUSION The CRISPR/Cas9 knockout of LRP2 in human kidney HK2 cells is an effective approach for the determination of radiopeptide internalization mediated by megalin. This in vitro method provided direct molecular evidence for the cellular uptake of radiolabeled anti-VEGFR 15-mer peptides via megalin.
Collapse
Affiliation(s)
- Anna Durinova
- Division of Radiopharmacy, Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Hradec Kralove, Czech Republic
| | - Lucie Smutna
- Division of Radiopharmacy, Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Hradec Kralove, Czech Republic.
| | - Pavel Barta
- Department of Biophysics and Physical Chemistry, Faculty of Pharmacy in Hradec Kralove, Charles University, Hradec Kralove, Czech Republic
| | - Rajamanikkam Kamaraj
- Division of Radiopharmacy, Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Hradec Kralove, Czech Republic
| | - Tomas Smutny
- Division of Radiopharmacy, Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Hradec Kralove, Czech Republic
| | - Bernhard Schmierer
- SciLifeLab and Department of Medical Biochemistry and Biophysics, CRISPR Functional Genomics, Karolinska Institutet, Solna, Sweden
| | - Petr Pavek
- Division of Radiopharmacy, Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Hradec Kralove, Czech Republic
| | - Frantisek Trejtnar
- Division of Radiopharmacy, Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Hradec Kralove, Czech Republic
| |
Collapse
|
5
|
Rottenburger C, Hentschel M, Fürstner M, McDougall L, Kottoros D, Kaul F, Mansi R, Fani M, Vija AH, Schibli R, Geistlich S, Behe M, Christ ER, Wild D. In-vivo inhibition of neutral endopeptidase 1 results in higher absorbed tumor doses of [ 177Lu]Lu-PP-F11N in humans: the lumed phase 0b study. EJNMMI Res 2024; 14:37. [PMID: 38581480 PMCID: PMC10998826 DOI: 10.1186/s13550-024-01101-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 03/27/2024] [Indexed: 04/08/2024] Open
Abstract
BACKGROUND A new generation of radiolabeled minigastrin analogs delivers low radiation doses to kidneys and are considered relatively stable due to less enzymatic degradation. Nevertheless, relatively low tumor radiation doses in patients indicate limited stability in humans. We aimed at evaluating the effect of sacubitril, an inhibitor of the neutral endopeptidase 1, on the stability and absorbed doses to tumors and organs by the cholecystokinin-2 receptor agonist [177Lu]Lu-PP-F11N in patients. In this prospective phase 0 study eight consecutive patients with advanced medullary thyroid carcinoma and a current somatostatin receptor subtype 2 PET/CT scan were included. Patients received two short infusions of ~ 1 GBq [177Lu]Lu-PP-F11N in an interval of ~ 4 weeks with and without Entresto® pretreatment in an open-label, randomized cross-over order. Entresto® was given at a single oral dose, containing 48.6 mg sacubitril. Adverse events were graded and quantitative SPECT/CT and blood sampling were performed. Absorbed doses to tumors and relevant organs were calculated. RESULTS Pretreatment with Entresto® showed no additional toxicity and increased the stability of [177Lu]Lu-PP-FF11N in blood significantly (p < 0.001). Median tumor-absorbed doses were 2.6-fold higher after Entresto® pretreatment (0.74 vs. 0.28 Gy/GBq, P = 0.03). At the same time, an increase of absorbed doses to stomach, kidneys and bone marrow was observed, resulting in a tumor-to-organ absorbed dose ratio not significantly different with and without Entresto®. CONCLUSIONS Premedication with Entresto® results in a relevant stabilization of [177Lu]Lu-PP-FF11N and consecutively increases radiation doses in tumors and organs. Trial registration clinicaltrails.gov, NCT03647657. Registered 20 August 2018.
Collapse
Affiliation(s)
- Christof Rottenburger
- Division of Nuclear Medicine, University Hospital Basel, Petersgraben 4, 4031, Basel, Switzerland
| | - Michael Hentschel
- Division of Nuclear Medicine, University Hospital Basel, Petersgraben 4, 4031, Basel, Switzerland
| | - Markus Fürstner
- Division of Medical Radiation Physics, Department of Radiation Oncology, Bern University Hospital, Bern, Switzerland
| | - Lisa McDougall
- Division of Nuclear Medicine, University Hospital Basel, Petersgraben 4, 4031, Basel, Switzerland
| | - Danijela Kottoros
- Division of Nuclear Medicine, University Hospital Basel, Petersgraben 4, 4031, Basel, Switzerland
| | - Felix Kaul
- Division of Nuclear Medicine, University Hospital Basel, Petersgraben 4, 4031, Basel, Switzerland
- Center for Neuroendocrine and Endocrine Tumors, University Hospital Basel, Basel, Switzerland
| | - Rosalba Mansi
- Division of Radiopharmaceutical Chemistry, University Hospital Basel, Basel, Switzerland
| | - Melpomeni Fani
- Division of Radiopharmaceutical Chemistry, University Hospital Basel, Basel, Switzerland
| | - A Hans Vija
- Molecular Imaging, Siemens Medical Solutions USA, Inc., Hoffman Estates, IL, USA
| | - Roger Schibli
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH, Zurich, Switzerland
- Center for Radiopharmaceutical Sciences, Paul Scherrer Institute, Villigen, Switzerland
| | - Susanne Geistlich
- Center for Radiopharmaceutical Sciences, Paul Scherrer Institute, Villigen, Switzerland
| | - Martin Behe
- Center for Radiopharmaceutical Sciences, Paul Scherrer Institute, Villigen, Switzerland
| | - Emanuel R Christ
- Center for Neuroendocrine and Endocrine Tumors, University Hospital Basel, Basel, Switzerland
- Division of Endocrinology, Diabetology and Metabolism, University Hospital Basel, Basel, Switzerland
| | - Damian Wild
- Division of Nuclear Medicine, University Hospital Basel, Petersgraben 4, 4031, Basel, Switzerland.
- Center for Neuroendocrine and Endocrine Tumors, University Hospital Basel, Basel, Switzerland.
| |
Collapse
|
6
|
Li M, Robles-Planells C, Liu D, Graves SA, Vasquez-Martinez G, Mayoral-Andrade G, Lee D, Rastogi P, Marks BM, Sagastume EA, Weiss RM, Linn-Peirano SC, Johnson FL, Schultz MK, Zepeda-Orozco D. Pre-clinical evaluation of biomarkers for the early detection of nephrotoxicity following alpha-particle radioligand therapy. Eur J Nucl Med Mol Imaging 2024; 51:1395-1408. [PMID: 38095674 PMCID: PMC10957612 DOI: 10.1007/s00259-023-06559-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 12/01/2023] [Indexed: 12/26/2023]
Abstract
PURPOSE Cancer treatment with alpha-emitter-based radioligand therapies (α-RLTs) demonstrates promising tumor responses. Radiolabeled peptides are filtered through glomeruli, followed by potential reabsorption of a fraction by proximal tubules, which may cause acute kidney injury (AKI) and chronic kidney disease (CKD). Because tubular cells are considered the primary site of radiopeptides' renal reabsorption and potential injury, the current use of kidney biomarkers of glomerular functional loss limits the evaluation of possible nephrotoxicity and its early detection. This study aimed to investigate whether urinary secretion of tubular injury biomarkers could be used as an additional non-invasive sensitive diagnostic tool to identify unrecognizable tubular damage and risk of long-term α-RLT nephrotoxicity. METHODS A bifunctional cyclic peptide, melanocortin 1 ligand (MC1L), labeled with [203Pb]Pb-MC1L, was used for [212Pb]Pb-MC1L biodistribution and absorbed dose measurements in CD-1 Elite mice. Mice were treated with [212Pb]Pb-MC1L in a dose-escalation study up to levels of radioactivity intended to induce kidney injury. The approach enabled prospective kidney functional and injury biomarker evaluation and late kidney histological analysis to validate these biomarkers. RESULTS Biodistribution analysis identified [212Pb]Pb-MC1L reabsorption in kidneys with a dose deposition of 2.8, 8.9, and 20 Gy for 0.9, 3.0, and 6.7 MBq injected [212Pb]Pb-MC1L doses, respectively. As expected, mice receiving 6.7 MBq had significant weight loss and CKD evidence based on serum creatinine, cystatin C, and kidney histological alterations 28 weeks after treatment. A dose-dependent urinary neutrophil gelatinase-associated lipocalin (NGAL, tubular injury biomarker) urinary excretion the day after [212Pb]Pb-MC1L treatment highly correlated with the severity of late tubulointerstitial injury and histological findings. CONCLUSION Urine NGAL secretion could be a potential early diagnostic tool to identify unrecognized tubular damage and predict long-term α-RLT-related nephrotoxicity.
Collapse
Affiliation(s)
- Mengshi Li
- Viewpoint Molecular Targeting, Inc. Dba Perspective Therapeutics, Coralville, IA, USA
| | - Claudia Robles-Planells
- Kidney and Urinary Tract Center, Abigail Wexner Research Institute at Nationwide Children's, Columbus, OH, USA
| | - Dijie Liu
- Viewpoint Molecular Targeting, Inc. Dba Perspective Therapeutics, Coralville, IA, USA
| | - Stephen A Graves
- Department of Radiology, The University of Iowa, Iowa City, IA, USA
| | - Gabriela Vasquez-Martinez
- Kidney and Urinary Tract Center, Abigail Wexner Research Institute at Nationwide Children's, Columbus, OH, USA
| | - Gabriel Mayoral-Andrade
- Kidney and Urinary Tract Center, Abigail Wexner Research Institute at Nationwide Children's, Columbus, OH, USA
| | - Dongyoul Lee
- Department of Physics and Chemistry, Korea Military Academy, Seoul, Republic of Korea
| | - Prerna Rastogi
- Department of Pathology, The University of Iowa, Iowa City, IA, USA
| | - Brenna M Marks
- Viewpoint Molecular Targeting, Inc. Dba Perspective Therapeutics, Coralville, IA, USA
| | - Edwin A Sagastume
- Viewpoint Molecular Targeting, Inc. Dba Perspective Therapeutics, Coralville, IA, USA
| | - Robert M Weiss
- Department of Internal Medicine, The University of Iowa, Iowa City, IA, USA
| | - Sarah C Linn-Peirano
- Kidney and Urinary Tract Center, Abigail Wexner Research Institute at Nationwide Children's, Columbus, OH, USA
- Department of Veterinary Biosciences, The Ohio State University College of Veterinary Medicine Columbus, Columbus, OH, USA
| | - Frances L Johnson
- Viewpoint Molecular Targeting, Inc. Dba Perspective Therapeutics, Coralville, IA, USA
| | - Michael K Schultz
- Viewpoint Molecular Targeting, Inc. Dba Perspective Therapeutics, Coralville, IA, USA.
- Department of Radiology, The University of Iowa, Iowa City, IA, USA.
- Department of Radiation Oncology, Free Radical, and Radiation Biology Program, The University of Iowa, Iowa City, IA, USA.
| | - Diana Zepeda-Orozco
- Kidney and Urinary Tract Center, Abigail Wexner Research Institute at Nationwide Children's, Columbus, OH, USA.
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA.
- Division of Nephrology and Hypertension, Nationwide Children's Hospital, Columbus, OH, USA.
| |
Collapse
|
7
|
AghaAmiri S, Ghosh SC, Hernandez Vargas S, Halperin DM, Azhdarinia A. Somatostatin Receptor Subtype-2 Targeting System for Specific Delivery of Temozolomide. J Med Chem 2024; 67:2425-2437. [PMID: 38346097 PMCID: PMC10896214 DOI: 10.1021/acs.jmedchem.3c00223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 12/04/2023] [Accepted: 12/12/2023] [Indexed: 02/23/2024]
Abstract
Temozolomide (TMZ) is a DNA alkylating agent that produces objective responses in patients with neuroendocrine tumors (NETs) when the DNA repair enzyme O6-methylguanine-DNA methyltransferase (MGMT) is inactivated. At high doses, TMZ therapy exhausts MGMT activity but also produces dose-limiting toxicities. To reduce off-target effects, we converted the clinically approved radiotracer 68Ga-DOTA-TOC into a peptide-drug conjugate (PDC) for targeted delivery of TMZ to somatostatin receptor subtype-2 (SSTR2)-positive tumor cells. We used an integrated radiolabeling strategy for direct quantitative assessment of receptor binding, pharmacokinetics, and tissue biodistribution. In vitro studies revealed selective binding to SSTR2-positive cells with high affinity (5.98 ± 0.96 nmol/L), internalization, receptor-dependent DNA damage, cytotoxicity, and MGMT depletion. Imaging and biodistribution analysis showed preferential accumulation of the PDC in receptor-positive tumors and high renal clearance. This study identified a trackable SSTR2-targeting system for TMZ delivery and utilizes a modular design that could be broadly applied in PDC development.
Collapse
Affiliation(s)
- Solmaz AghaAmiri
- The
Brown Foundation Institute of Molecular Medicine, McGovern Medical
School, The University of Texas Health Science
Center at Houston, 1881 East Road, 3SCR6.4680, Houston, Texas 77054, United States
| | - Sukhen C. Ghosh
- The
Brown Foundation Institute of Molecular Medicine, McGovern Medical
School, The University of Texas Health Science
Center at Houston, 1881 East Road, 3SCR6.4680, Houston, Texas 77054, United States
| | - Servando Hernandez Vargas
- The
Brown Foundation Institute of Molecular Medicine, McGovern Medical
School, The University of Texas Health Science
Center at Houston, 1881 East Road, 3SCR6.4680, Houston, Texas 77054, United States
| | - Daniel M. Halperin
- Department
of Gastrointestinal Medical Oncology, The
University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Ali Azhdarinia
- The
Brown Foundation Institute of Molecular Medicine, McGovern Medical
School, The University of Texas Health Science
Center at Houston, 1881 East Road, 3SCR6.4680, Houston, Texas 77054, United States
| |
Collapse
|
8
|
de Roode KE, Joosten L, Behe M. Towards the Magic Radioactive Bullet: Improving Targeted Radionuclide Therapy by Reducing the Renal Retention of Radioligands. Pharmaceuticals (Basel) 2024; 17:256. [PMID: 38399470 PMCID: PMC10892921 DOI: 10.3390/ph17020256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 02/07/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
Targeted radionuclide therapy (TRT) is an emerging field and has the potential to become a major pillar in effective cancer treatment. Several pharmaceuticals are already in routine use for treating cancer, and there is still a high potential for new compounds for this application. But, a major issue for many radiolabeled low-to-moderate-molecular-weight molecules is their clearance via the kidneys and their subsequent reuptake. High renal accumulation of radioactive compounds may lead to nephrotoxicity, and therefore, the kidneys are often the dose-limiting organs in TRT with these radioligands. Over the years, different strategies have been developed aiming for reduced kidney retention and enhanced therapeutic efficacy of radioligands. In this review, we will give an overview of the efforts and achievements of the used strategies, with focus on the therapeutic potential of low-to-moderate-molecular-weight molecules. Among the strategies discussed here is coadministration of compounds that compete for binding to the endocytic receptors in the proximal tubuli. In addition, the influence of altering the molecular design of radiolabeled ligands on pharmacokinetics is discussed, which includes changes in their physicochemical properties and implementation of cleavable linkers or albumin-binding moieties. Furthermore, we discuss the influence of chelator and radionuclide choice on reabsorption of radioligands by the kidneys.
Collapse
Affiliation(s)
- Kim E. de Roode
- Department of Medical Imaging, Nuclear Medicine, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, The Netherlands;
- Tagworks Pharmaceuticals, Toernooiveld 1, 6525 ED Nijmegen, The Netherlands
| | - Lieke Joosten
- Department of Medical Imaging, Nuclear Medicine, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, The Netherlands;
| | - Martin Behe
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Paul Scherrer Institut, 5232 Villigen, Switzerland
| |
Collapse
|
9
|
Huang W, Pang Y, Liu Q, Liang C, An S, Wu Q, Zhang Y, Huang G, Chen H, Liu J, Wei W. Development and Characterization of Novel FAP-Targeted Theranostic Pairs: A Bench-to-Bedside Study. RESEARCH (WASHINGTON, D.C.) 2023; 6:0282. [PMID: 38706713 PMCID: PMC11066877 DOI: 10.34133/research.0282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 11/13/2023] [Indexed: 05/07/2024]
Abstract
Fibroblast activation protein (FAP) is among the most popular targets in nuclear medicine imaging and cancer theranostics. Several small-molecule moieties (FAPI-04, FAPI-46, etc.) are used for developing FAP-targeted theranostic agents. Nonetheless, the circulation time of FAP inhibitors is relatively short, resulting in rapid clearance via kidneys, low tumor uptake, and associated unsatisfactory treatment efficacy. To address the existing drawbacks, we engineered 3 peptides named FD1, FD2, and FD3 with different circulation times through solid-phase peptide synthesis. All the 3 reported peptides bind to human and murine FAP with single-digit nanomolar affinity measured by surface plasmon resonance. The diagnostic and therapeutic potential of the agents labeled with 68Ga and 177Lu was assessed in several tumor models exhibiting different levels of FAP expression. While radiolabeled FD1 was rapidly excreted from kidneys, radiolabeled FD2/FD3 have significantly prolonged circulation, increased tumor uptake, and decreased kidney accumulation. Our findings indicated that [68Ga]Ga-DOTA-FD1 positron emission tomography (PET) effectively detected FAP dynamics, whereas [177Lu]Lu-DOTA-FD2 and [177Lu]Lu-DOTA-FD3 exhibited remarkable therapeutic efficacy in FAP-overexpressing tumor models, including pancreatic cancer cell models characterized by abundant stroma. Moreover, a pilot translational investigation demonstrated that [68Ga]Ga-DOTA-FD1 had the capability to identify both primary and metastatic tumors with precision and distinction. In summary, we developed [68Ga]Ga-DOTA-FD1 for same-day PET imaging of FAP dynamics and [177Lu]Lu-DOTA-FD2 and [177Lu]Lu-DOTA-FD3 for effective radioligand therapy of FAP-overexpressing tumors.
Collapse
Affiliation(s)
- Wei Huang
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine,
Shanghai Jiao Tong University, Shanghai 200127, China
| | - Yizhen Pang
- Department of Nuclear Medicine and Minnan PET Center, Xiamen Cancer Center, Xiamen Key Laboratory of Radiation Oncology, The First Affiliated Hospital of Xiamen University, School of Medicine,
Xiamen University, Xiamen 361003, China
| | - Qiufang Liu
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center,
Fudan University, Shanghai 200032, China
| | - Chenyi Liang
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine,
Shanghai Jiao Tong University, Shanghai 200127, China
| | - Shuxian An
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine,
Shanghai Jiao Tong University, Shanghai 200127, China
| | - Qianyun Wu
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine,
Shanghai Jiao Tong University, Shanghai 200127, China
| | - You Zhang
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine,
Shanghai Jiao Tong University, Shanghai 200127, China
| | - Gang Huang
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine,
Shanghai Jiao Tong University, Shanghai 200127, China
| | - Haojun Chen
- Department of Nuclear Medicine and Minnan PET Center, Xiamen Cancer Center, Xiamen Key Laboratory of Radiation Oncology, The First Affiliated Hospital of Xiamen University, School of Medicine,
Xiamen University, Xiamen 361003, China
| | - Jianjun Liu
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine,
Shanghai Jiao Tong University, Shanghai 200127, China
| | - Weijun Wei
- Address correspondence to: (H.C.); (J.L.); (W.W.)
| |
Collapse
|
10
|
Li M, Robles-Planells C, Liu D, Graves SA, Vasquez-Martinez G, Mayoral-Andrade G, Lee D, Rastogi P, Marks BM, Sagastume EA, Weiss RM, Linn-Peirano SC, Johnson FL, Schultz MK, Zepeda-Orozco D. Pre-clinical Evaluation of Biomarkers for Early Detection of Nephrotoxicity Following Alpha-particle Radioligand Therapy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.27.559789. [PMID: 37808634 PMCID: PMC10557737 DOI: 10.1101/2023.09.27.559789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Purpose Cancer treatment with alpha-emitter-based radioligand therapies (α-RLTs) demonstrates promising tumor responses. Radiolabeled peptides are filtered through glomeruli, followed by potential reabsorption of a fraction by proximal tubules, which may cause acute kidney injury (AKI) and chronic kidney disease (CKD). Because tubular cells are considered the primary site of radiopeptides' renal reabsorption and potential injury, the current use of kidney biomarkers of glomerular functional loss limits the evaluation of possible nephrotoxicity and its early detection. This study aimed to investigate whether urinary secretion of tubular injury biomarkers could be used as additional non-invasive sensitive diagnostic tool to identify unrecognizable tubular damage and risk of long-term α-RLTs nephrotoxicity. Methods A bifunctional cyclic peptide, melanocortin ligand-1(MC1L), labeled with [ 203 Pb]Pb-MC1L, was used for [ 212 Pb]Pb-MC1L biodistribution and absorbed dose measurements in CD-1 Elite mice. Mice were treated with [ 212 Pb]Pb-MC1L in a dose escalation study up to levels of radioactivity intended to induce kidney injury. The approach enabled prospective kidney functional and injury biomarker evaluation and late kidney histological analysis to validate these biomarkers. Results Biodistribution analysis identified [ 212 Pb]Pb-MC1L reabsorption in kidneys with a dose deposition of 2.8, 8.9, and 20 Gy for 0.9, 3.0, and 6.7 MBq injected [ 212 Pb]Pb-MC1L doses, respectively. As expected, mice receiving 6.7 MBq had significant weight loss and CKD evidence based on serum creatinine, cystatin C, and kidney histological alterations 28 weeks after treatment. A dose-dependent urinary Neutrophil gelatinase-associated lipocalin (NGAL, tubular injury biomarker) urinary excretion the day after [ 212 Pb]Pb-MC1L treatment highly correlated with the severity of late tubulointerstitial injury and histological findings. Conclusion urine NGAL secretion could be a potential early diagnostic tool to identify unrecognized tubular damage and predict long-term α-RLT-related nephrotoxicity.
Collapse
|
11
|
Trachsel B, Valpreda G, Lutz A, Schibli R, Mu L, Béhé M. Reducing kidney uptake of radiolabelled exendin-4 using variants of the renally cleavable linker MVK. EJNMMI Radiopharm Chem 2023; 8:21. [PMID: 37665477 PMCID: PMC10477158 DOI: 10.1186/s41181-023-00206-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 08/21/2023] [Indexed: 09/05/2023] Open
Abstract
BACKGROUND Peptidic radiotracers are preferentially excreted through the kidneys, which often results in high persistent renal retention of radioactivity, limiting or even preventing therapeutic clinical translation of these radiotracers. Exendin-4, which targets the glucagon-like-peptide 1 receptor (GLP-1R) overexpressed in insulinomas and in congenital hyperinsulinism, is an example thereof. The use of the tripeptide MVK, which is readily cleaved between methionine and valine by neprilysin at the renal brush border membrane, already showed promising results in reducing kidney uptake as reported in the literature. Based on our previous findings we were interested how linker variants with multiple copies of the MV-motive influence renal washout of radiolabelled exendin-4. RESULTS Three exendin-4 derivatives, carrying either one MVK, a MV-MVK or a MVK-MVK linker were synthesized and compared to a reference compound lacking a cleavable linker. In vivo results of a biodistribution in GLP-1R overexpressing tumour bearing mice at 24 h post-injection demonstrated a significant reduction (at least 57%) of renal retention of all 111In-labeled exendin-4 compounds equipped with a cleavable linker compared to the reference compound. While the insertion of the single linker MVK led to a reduction in kidney uptake of 70%, the dual approach with the linker MV-MVK slightly, but not significantly enhanced this effect, with 77% reduction in kidney uptake compared to the reference. In vitro IC50 and cell uptake studies were conducted and demonstrated that though the cleavable linkers negatively influenced the affinity towards the GLP-1R, cell uptake remained largely unaffected, except for the MV-MVK cleavable linker conjugate, which displayed lower cell uptake than the other compounds. Importantly, the tumour uptake in the biodistribution study was not significantly affected with 2.9, 2.5, 3.2 and 1.5% iA/g for radiolabelled Ex4, MVK-Ex4, MV-MVK-Ex4 and MVK-MVK-Ex4, respectively. CONCLUSION Cleavable linkers are highly efficient in reducing the radioactivity burden in the kidney. Though the dual linker approach using the instillation of MV-MVK or MVK-MVK between exendin-4 and the radiometal chelator did not significantly outperform the single cleavable linker MVK, further structural optimization or the combination of different cleavable linkers could be a stepping stone in reducing radiation-induced nephrotoxicity.
Collapse
Affiliation(s)
- Belinda Trachsel
- Center for Radiopharmaceutical Sciences, ETH-PSI-USZ, Paul Scherrer Institute (PSI), 5232, Villigen, Switzerland
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zurich, 8093, Zurich, Switzerland
| | - Giulia Valpreda
- Center for Radiopharmaceutical Sciences, ETH-PSI-USZ, Paul Scherrer Institute (PSI), 5232, Villigen, Switzerland
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zurich, 8093, Zurich, Switzerland
| | - Alexandra Lutz
- Center for Radiopharmaceutical Sciences, ETH-PSI-USZ, Paul Scherrer Institute (PSI), 5232, Villigen, Switzerland
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zurich, 8093, Zurich, Switzerland
| | - Roger Schibli
- Center for Radiopharmaceutical Sciences, ETH-PSI-USZ, Paul Scherrer Institute (PSI), 5232, Villigen, Switzerland
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zurich, 8093, Zurich, Switzerland
| | - Linjing Mu
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zurich, 8093, Zurich, Switzerland
| | - Martin Béhé
- Center for Radiopharmaceutical Sciences, ETH-PSI-USZ, Paul Scherrer Institute (PSI), 5232, Villigen, Switzerland.
| |
Collapse
|
12
|
Chapeau D, Koustoulidou S, Handula M, Beekman S, de Ridder C, Stuurman D, de Blois E, Buchatskaya Y, van der Schilden K, de Jong M, Konijnenberg MW, Seimbille Y. [ 212Pb]Pb-eSOMA-01: A Promising Radioligand for Targeted Alpha Therapy of Neuroendocrine Tumors. Pharmaceuticals (Basel) 2023; 16:985. [PMID: 37513897 PMCID: PMC10384862 DOI: 10.3390/ph16070985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/03/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
Peptide receptor radionuclide therapy (PRRT) has been applied to the treatment of neuroendocrine tumors (NETs) for over two decades. However, improvement is still needed, and targeted alpha therapy (TAT) with alpha emitters such as lead-212 (212Pb) represents a promising avenue. A series of ligands based on octreotate was developed. Lead-203 was used as an imaging surrogate for the selection of the best candidate for the studies with lead-212. 203/212Pb radiolabeling and in vitro assays were carried out, followed by SPECT/CT imaging and ex vivo biodistribution in NCI-H69 tumor-bearing mice. High radiochemical yields (≥99%) and purity (≥96%) were obtained for all ligands. [203Pb]Pb-eSOMA-01 and [203Pb]Pb-eSOMA-02 showed high stability in PBS and mouse serum up to 24 h, whereas [203Pb]Pb-eSOMA-03 was unstable in those conditions. All compounds exhibited a nanomolar affinity (2.5-3.1 nM) for SSTR2. SPECT/CT images revealed high tumor uptake at 1, 4, and 24 h post-injection of [203Pb]Pb-eSOMA-01/02. Ex vivo biodistribution studies confirmed that the highest uptake in tumors was observed with [212Pb]Pb-eSOMA-01. [212Pb]Pb-eESOMA-01 displayed the highest absorbed dose in the tumor (35.49 Gy/MBq) and the lowest absorbed dose in the kidneys (121.73 Gy/MBq) among the three tested radioligands. [212Pb]Pb-eSOMA-01 is a promising candidate for targeted alpha therapy of NETs. Further investigations are required to confirm its potential.
Collapse
Affiliation(s)
- Dylan Chapeau
- Erasmus MC, Department of Radiology and Nuclear Medicine, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands
- Erasmus MC Cancer Institute, 3015 GD Rotterdam, The Netherlands
| | - Sofia Koustoulidou
- Erasmus MC, Department of Radiology and Nuclear Medicine, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands
- Erasmus MC Cancer Institute, 3015 GD Rotterdam, The Netherlands
| | - Maryana Handula
- Erasmus MC, Department of Radiology and Nuclear Medicine, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands
- Erasmus MC Cancer Institute, 3015 GD Rotterdam, The Netherlands
| | - Savanne Beekman
- Erasmus MC, Department of Radiology and Nuclear Medicine, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands
- Erasmus MC Cancer Institute, 3015 GD Rotterdam, The Netherlands
| | - Corrina de Ridder
- Erasmus MC, Department of Radiology and Nuclear Medicine, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands
- Erasmus MC Cancer Institute, 3015 GD Rotterdam, The Netherlands
| | - Debra Stuurman
- Erasmus MC, Department of Radiology and Nuclear Medicine, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands
- Erasmus MC Cancer Institute, 3015 GD Rotterdam, The Netherlands
| | - Erik de Blois
- Erasmus MC, Department of Radiology and Nuclear Medicine, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands
- Erasmus MC Cancer Institute, 3015 GD Rotterdam, The Netherlands
| | - Yulia Buchatskaya
- Nuclear Research & Consultancy Group, 1755 LE Petten, The Netherlands
| | | | - Marion de Jong
- Erasmus MC, Department of Radiology and Nuclear Medicine, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands
- Erasmus MC Cancer Institute, 3015 GD Rotterdam, The Netherlands
| | - Mark W Konijnenberg
- Erasmus MC, Department of Radiology and Nuclear Medicine, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands
- Erasmus MC Cancer Institute, 3015 GD Rotterdam, The Netherlands
| | - Yann Seimbille
- Erasmus MC, Department of Radiology and Nuclear Medicine, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands
- Erasmus MC Cancer Institute, 3015 GD Rotterdam, The Netherlands
- TRIUMF, Life Sciences Division, Vancouver, BC V6T 2A3, Canada
| |
Collapse
|
13
|
Wilbs J, Raavé R, Boswinkel M, Glendorf T, Rodríguez D, Fernandes EF, Heskamp S, Bjørnsdottir I, Gustafsson MBF. New Long-Acting [ 89Zr]Zr-DFO GLP-1 PET Tracers with Increased Molar Activity and Reduced Kidney Accumulation. J Med Chem 2023; 66:7772-7784. [PMID: 36995126 PMCID: PMC10292199 DOI: 10.1021/acs.jmedchem.2c02073] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Indexed: 03/31/2023]
Abstract
Positron emission tomography (PET) imaging is used in drug development to noninvasively measure biodistribution and receptor occupancy. Ideally, PET tracers retain target binding and biodistribution properties of the investigated drug. Previously, we developed a zirconium-89 PET tracer based on a long-circulating glucagon-like peptide 1 receptor agonist (GLP-1RA) using desferrioxamine (DFO) as a chelator. Here, we aimed to develop an improved zirconium-89-labeled GLP-1RA with increased molar activity to increase the uptake in low receptor density tissues, such as brain. Furthermore, we aimed at reducing tracer accumulation in the kidneys. Introducing up to four additional Zr-DFOs resulted in higher molar activity and stability, while retaining potency. Branched placement of DFOs was especially beneficial. Tracers with either two or four DFOs had similar biodistribution as the tracer with one DFO in vivo, albeit increased kidney and liver uptake. Reduced kidney accumulation was achieved by introducing an enzymatically cleavable Met-Val-Lys (MVK) linker motif between the chelator and the peptide.
Collapse
Affiliation(s)
- Jonas Wilbs
- Global
Research Technologies, Novo Nordisk A/S, 2760 Måløv, Denmark
| | - René Raavé
- Department
of Medical Imaging−Nuclear Medicine, Radboudumc, Radboud Institute for Molecular Life Sciences, 6500 HB Nijmegen, The Netherlands
| | - Milou Boswinkel
- Department
of Medical Imaging−Nuclear Medicine, Radboudumc, Radboud Institute for Molecular Life Sciences, 6500 HB Nijmegen, The Netherlands
| | - Tine Glendorf
- Global
Drug Discovery, Novo Nordisk A/S, 2760 Måløv, Denmark
| | - David Rodríguez
- Digital
Science and Innovation, Novo Nordisk A/S, 2760 Måløv, Denmark
| | | | - Sandra Heskamp
- Department
of Medical Imaging−Nuclear Medicine, Radboudumc, Radboud Institute for Molecular Life Sciences, 6500 HB Nijmegen, The Netherlands
| | | | | |
Collapse
|
14
|
Raheem SJ, Salih AK, Garcia MD, Sharpe JC, Toosi BM, Price EW. A Systematic Investigation into the Influence of Net Charge on the Biological Distribution of Radiometalated Peptides Using [ 68Ga]Ga-DOTA-TATE Derivatives. Bioconjug Chem 2023; 34:549-561. [PMID: 36800496 DOI: 10.1021/acs.bioconjchem.3c00007] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
Recently, several radiometalated peptides have been approved for clinical imaging and/or therapy (theranostics) of several types of cancer; nonetheless, the primary challenge that most of these peptides confront is significant renal uptake and retention, which is often dose limiting and can cause nephrotoxicity. In response to this, numerous methods have been employed to reduce the uptake of radiometalated peptides in the kidneys, and among these is adding a linker to modulate polarity and/or charge. To better understand the influence of net charge on the biodistribution of radiometalated peptides, we selected the clinically popular construct DOTA-TATE (NETSPOT/LUTATHERA) as a model system. We synthesized derivatives using manual solid-phase peptide synthesis methods including mechanical and ultrasonic agitation to effectively yield the gold standard DOTA-TATE and a series of derivatives with different net charges (+2, +1, 0, -1, -2). Dynamic PET imaging from 0 to 90 min in healthy female mice (CD1) revealed high accumulation and retention of activity in the kidneys for the net-neutral (0) charged [68Ga]Ga-DOTA-TATE and even higher for positively charged derivatives, whereas negatively charged derivatives exhibited low accumulation and fast renal excretion. Ex vivo biodistribution at 2 h post injection demonstrated a significant retention of [68Ga]Ga-DOTA-TATE (∼74 %ID/g) in the kidneys, which increased as the net positive charge per molecule increased to +1 and +2 (∼272 %ID/g and ∼333 %ID/g, respectively), but the -1 and -2 net charged molecules exhibited lower renal uptake (∼15 %ID/g and 16 %ID/g, respectively). Interestingly, the net -2 charged [68Ga]Ga-DOTA-(Glu)2-PEG4-TATE was stable in blood serum but had much higher healthy organ uptake (lungs, liver, spleen) than the net -1 compound, suggesting instability in vivo. Although the [68Ga]Ga-DOTA-PEG4-TATE derivative with a net charge of 0 also showed a decrease in kidney uptake, it also showed instability in blood serum and in vivo. Despite the superior pharmacokinetics of the net -1 charged [68Ga]Ga-DOTA-Glu-PEG4-TATE in healthy mice with respect to kidney uptake and overall profile, dynamic PET images and ex vivo biodistribution in male mice (NSG) bearing AR42J (SSTR2 overexpressing) subcutaneous tumor xenografts showed significantly diminished tumor uptake when compared to the gold standard [68Ga]Ga-DOTA-TATE. Taken together, these findings indicate unambiguously that kidney uptake and retention are significantly influenced by the net charge of peptide-based radiotracers. In addition, it was illustrated that the negatively charged peptides had substantially decreased kidney uptake, but in this instantiation the tumor uptake was also impaired.
Collapse
Affiliation(s)
- Shvan J Raheem
- Department of Chemistry, College of Arts and Science, University of Saskatchewan, 110 Science Place, S7N-5C9, Saskatoon, Saskatchewan, Canada
| | - Akam K Salih
- Department of Chemistry, College of Arts and Science, University of Saskatchewan, 110 Science Place, S7N-5C9, Saskatoon, Saskatchewan, Canada
| | - Moralba Dominguez Garcia
- Department of Chemistry, College of Arts and Science, University of Saskatchewan, 110 Science Place, S7N-5C9, Saskatoon, Saskatchewan, Canada
| | - Jessica C Sharpe
- Department of Small Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, S7N-5B4, Saskatoon, Saskatchewan, Canada
| | - Behzad M Toosi
- Department of Small Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, S7N-5B4, Saskatoon, Saskatchewan, Canada
| | - Eric W Price
- Department of Chemistry, College of Arts and Science, University of Saskatchewan, 110 Science Place, S7N-5C9, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
15
|
Warashina S, Sato H, Zouda M, Takahashi M, Wada Y, Passioura T, Suga H, Watanabe Y, Matsumoto K, Mukai H. Two-Chain Mature Hepatocyte Growth Factor-Specific Positron Emission Tomography Imaging in Tumors Using 64Cu-Labeled HiP-8, a Nonstandard Macrocyclic Peptide Probe. Mol Pharm 2023; 20:2029-2038. [PMID: 36862642 DOI: 10.1021/acs.molpharmaceut.2c01020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
Two-chain hepatocyte growth factor (tcHGF), the mature form of HGF, is associated with malignancy and anticancer drug resistance; therefore, its quantification is an important indicator for cancer diagnosis. In tumors, activated tcHGF hardly discharges into the systemic circulation, indicating that tcHGF is an excellent target for molecular imaging using positron emission tomography (PET). We recently discovered HGF-inhibitory peptide-8 (HiP-8) that binds specifically to human tcHGF with nanomolar affinity. The purpose of this study was to investigate the usefulness of HiP-8-based PET probes in human HGF knock-in humanized mice. 64Cu-labeled HiP-8 molecules were synthesized using a cross-bridged cyclam chelator, CB-TE1K1P. Radio-high-performance liquid chromatography-based metabolic stability analyses showed that more than 90% of the probes existed in intact form in blood at least for 15 min. In PET studies, significantly selective visualization of hHGF-overexpressing tumors versus hHGF-negative tumors was observed in double-tumor-bearing mice. The accumulation of labeled HiP-8 into the hHGF-overexpressing tumors was significantly reduced by competitive inhibition. In addition, the radioactivity and distribution of phosphorylated MET/HGF receptor were colocalized in tissues. These results demonstrate that the 64Cu-labeled HiP-8 probes are suitable for tcHGF imaging in vivo, and secretory proteins like tcHGF can be a target for PET imaging.
Collapse
Affiliation(s)
- Shota Warashina
- Laboratory for Molecular Delivery and Imaging Technology, RIKEN Center for Biosystems Dynamics Research, 6-7-3 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Hiroki Sato
- Division of Tumor Dynamics and Regulation, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Maki Zouda
- Laboratory for Molecular Delivery and Imaging Technology, RIKEN Center for Biosystems Dynamics Research, 6-7-3 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Maiko Takahashi
- Laboratory for Molecular Delivery and Imaging Technology, RIKEN Center for Biosystems Dynamics Research, 6-7-3 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Yasuhiro Wada
- Laboratory for Pathophysiological and Health Science, RIKEN Center for Biosystems Dynamics Research, 6-7-3 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Toby Passioura
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1, Hongo, Bunkyo, Tokyo 113-0033, Japan
| | - Hiroaki Suga
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1, Hongo, Bunkyo, Tokyo 113-0033, Japan
| | - Yasuyoshi Watanabe
- Laboratory for Pathophysiological and Health Science, RIKEN Center for Biosystems Dynamics Research, 6-7-3 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Kunio Matsumoto
- Division of Tumor Dynamics and Regulation, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan.,WPI-Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma, Kanazawa, Ishikawa 920-1192, Japan
| | - Hidefumi Mukai
- Laboratory for Molecular Delivery and Imaging Technology, RIKEN Center for Biosystems Dynamics Research, 6-7-3 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan.,Department of Pharmaceutical Informatics, Graduate School of Biomedical Science, Nagasaki University, 1-7-1 Sakamoto, Nagasaki 852-8588, Japan
| |
Collapse
|
16
|
Bryniarski MA, Sandoval RM, Ruszaj DM, Fraser-McArthur J, Yee BM, Yacoub R, Chaves LD, Campos-Bilderback SB, Molitoris BA, Morris ME. Defining the Intravital Renal Disposition of Fluorescence-Quenched Exenatide. Mol Pharm 2023; 20:987-996. [PMID: 36626167 PMCID: PMC9907348 DOI: 10.1021/acs.molpharmaceut.2c00671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 01/11/2023]
Abstract
Despite the understanding that renal clearance is pivotal for driving the pharmacokinetics of numerous therapeutic proteins and peptides, the specific processes that occur following glomerular filtration remain poorly defined. For instance, sites of catabolism within the proximal tubule can occur at the brush border, within lysosomes following endocytosis, or even within the tubule lumen itself. The objective of the current study was to address these limitations and develop methodology to study the kidney disposition of a model therapeutic protein. Exenatide is a peptide used to treat type 2 diabetes mellitus. Glomerular filtration and ensuing renal catabolism have been shown to be its principal clearance pathway. Here, we designed and validated a Förster resonance energy transfer-quenched exenatide derivative to provide critical information on the renal handling of exenatide. A combination of in vitro techniques was used to confirm substantial fluorescence quenching of intact peptide that was released upon proteolytic cleavage. This evaluation was then followed by an assessment of the in vivo disposition of quenched exenatide directly within kidneys of living rats via intravital two-photon microscopy. Live imaging demonstrated rapid glomerular filtration and identified exenatide metabolism occurred within the subapical regions of the proximal tubule epithelia, with subsequent intracellular trafficking of cleaved fragments. These results provide a novel examination into the real-time, intravital disposition of a protein therapeutic within the kidney and offer a platform to build upon for future work.
Collapse
Affiliation(s)
- Mark A. Bryniarski
- Department
of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical
Sciences, University at Buffalo, 304 Pharmacy Building, Buffalo, New York 14215, United States
| | - Ruben M. Sandoval
- Department
of Medicine, Indiana University, Indianapolis, Indiana 46202, United States
| | - Donna M. Ruszaj
- Department
of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical
Sciences, University at Buffalo, 304 Pharmacy Building, Buffalo, New York 14215, United States
| | - John Fraser-McArthur
- Department
of Pharmacy, University of Rochester Medical
Center, Rochester, New York 14642, United States
| | - Benjamin M. Yee
- Department
of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical
Sciences, University at Buffalo, 304 Pharmacy Building, Buffalo, New York 14215, United States
| | - Rabi Yacoub
- Department
of Internal Medicine, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York 14203, United States
| | - Lee D. Chaves
- Department
of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical
Sciences, University at Buffalo, 304 Pharmacy Building, Buffalo, New York 14215, United States
- Department
of Neurosurgery, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York 14203, United States
| | | | - Bruce A. Molitoris
- Department
of Medicine, Indiana University, Indianapolis, Indiana 46202, United States
| | - Marilyn E. Morris
- Department
of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical
Sciences, University at Buffalo, 304 Pharmacy Building, Buffalo, New York 14215, United States
| |
Collapse
|
17
|
Brandt F, Ullrich M, Wodtke J, Kopka K, Bachmann M, Löser R, Pietzsch J, Pietzsch HJ, Wodtke R. Enzymological Characterization of 64Cu-Labeled Neprilysin Substrates and Their Application for Modulating the Renal Clearance of Targeted Radiopharmaceuticals. J Med Chem 2023; 66:516-537. [PMID: 36595224 DOI: 10.1021/acs.jmedchem.2c01472] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The applicability of radioligands for targeted endoradionuclide therapy is limited due to radiation-induced toxicity to healthy tissues, in particular to the kidneys as primary organs of elimination. The targeting of enzymes of the renal brush border membrane by cleavable linkers that permit the formation of fast eliminating radionuclide-carrying cleavage fragments gains increasing interest. Herein, we synthesized a small library of 64Cu-labeled cleavable linkers and quantified their substrate potentials toward neprilysin (NEP), a highly abundant peptidase at the renal brush border membrane. This allowed for the derivation of structure-activity relationships, and selected cleavable linkers were attached to the somatostatin receptor subtype 2 ligand [Tyr3]octreotate. Radiopharmacological characterization revealed that a substrate-based targeting of NEP in the kidneys with small peptides entails their premature cleavage in the blood circulation by soluble and endothelium-derived NEP. However, for a kidney-specific targeting of NEP, the additional targeting of albumin in the blood is highlighted.
Collapse
Affiliation(s)
- Florian Brandt
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, 01328Dresden, Germany.,Faculty of Chemistry and Food Chemistry, School of Science, Technische Universität Dresden, Mommsenstraße 4, 01069Dresden, Germany
| | - Martin Ullrich
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, 01328Dresden, Germany
| | - Johanna Wodtke
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, 01328Dresden, Germany
| | - Klaus Kopka
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, 01328Dresden, Germany.,Faculty of Chemistry and Food Chemistry, School of Science, Technische Universität Dresden, Mommsenstraße 4, 01069Dresden, Germany.,National Center for Tumor Diseases (NCT) Dresden, University Hospital Carl Gustav Carus, Fetscherstraße 74, 01307Dresden, Germany.,German Cancer Consortium (DKTK), Partner Site Dresden, Fetscherstraße 74, 01307Dresden, Germany
| | - Michael Bachmann
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, 01328Dresden, Germany.,National Center for Tumor Diseases (NCT) Dresden, University Hospital Carl Gustav Carus, Fetscherstraße 74, 01307Dresden, Germany
| | - Reik Löser
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, 01328Dresden, Germany.,Faculty of Chemistry and Food Chemistry, School of Science, Technische Universität Dresden, Mommsenstraße 4, 01069Dresden, Germany
| | - Jens Pietzsch
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, 01328Dresden, Germany.,Faculty of Chemistry and Food Chemistry, School of Science, Technische Universität Dresden, Mommsenstraße 4, 01069Dresden, Germany
| | - Hans-Jürgen Pietzsch
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, 01328Dresden, Germany.,Faculty of Chemistry and Food Chemistry, School of Science, Technische Universität Dresden, Mommsenstraße 4, 01069Dresden, Germany
| | - Robert Wodtke
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, 01328Dresden, Germany
| |
Collapse
|
18
|
Hernandez Vargas S, AghaAmiri S, Ghosh SC, Luciano MP, Borbon LC, Ear PH, Howe JR, Bailey-Lundberg JM, Simonek GD, Halperin DM, Tran Cao HS, Ikoma N, Schnermann MJ, Azhdarinia A. High-Contrast Detection of Somatostatin Receptor Subtype-2 for Fluorescence-Guided Surgery. Mol Pharm 2022; 19:4241-4253. [PMID: 36174110 PMCID: PMC9830638 DOI: 10.1021/acs.molpharmaceut.2c00583] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Dye design can influence the ability of fluorescently labeled imaging agents to generate tumor contrast and has become an area of significant interest in the field of fluorescence-guided surgery (FGS). Here, we show that the charge-balanced near-infrared fluorescent (NIRF) dye FNIR-Tag enhances the imaging properties of a fluorescently labeled somatostatin analogue. In vitro studies showed that the optimized fluorescent conjugate MMC(FNIR-Tag)-TOC bound primarily via somatostatin receptor subtype-2 (SSTR2), whereas its negatively charged counterpart with IRDye 800CW had higher off-target binding. NIRF imaging in cell line- and patient-derived xenograft models revealed markedly higher tumor contrast with MMC(FNIR-Tag)-TOC, which was attributed to increased tumor specificity. Ex vivo staining of surgical biospecimens from primary and metastatic tumors, as well as involved lymph nodes, demonstrated binding to human tumors. Finally, in an orthotopic tumor model, a simulated clinical workflow highlighted our unique ability to use standard preoperative nuclear imaging for selecting patients likely to benefit from SSTR2-targeted FGS. Our findings demonstrate the translational potential of MMC(FNIR-Tag)-TOC for intraoperative imaging and suggest broad utility for using FNIR-Tag in fluorescent probe development.
Collapse
Affiliation(s)
- Servando Hernandez Vargas
- The
Brown Foundation Institute of Molecular Medicine, McGovern Medical
School, The University of Texas Health Science
Center at Houston, Houston, Texas77054, United States
| | - Solmaz AghaAmiri
- The
Brown Foundation Institute of Molecular Medicine, McGovern Medical
School, The University of Texas Health Science
Center at Houston, Houston, Texas77054, United States
| | - Sukhen C. Ghosh
- The
Brown Foundation Institute of Molecular Medicine, McGovern Medical
School, The University of Texas Health Science
Center at Houston, Houston, Texas77054, United States
| | - Michael P. Luciano
- Chemical
Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland21702, United States
| | - Luis C. Borbon
- Department
of Surgery, University of Iowa Carver College
of Medicine, Iowa City, Iowa52242, United States
| | - Po Hien Ear
- Department
of Surgery, University of Iowa Carver College
of Medicine, Iowa City, Iowa52242, United States
| | - James R. Howe
- Department
of Surgery, University of Iowa Carver College
of Medicine, Iowa City, Iowa52242, United States
| | - Jennifer M. Bailey-Lundberg
- Department
of Anesthesiology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas77030, United States
| | - Gregory D. Simonek
- Center
for Laboratory Animal Medicine and Care, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas77030, United States
| | - Daniel M. Halperin
- Department
of Gastrointestinal Medical Oncology, The
University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, Texas77030, United States
| | - Hop S. Tran Cao
- Department
of Surgical Oncology, The University of
Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, Texas77030, United
States
| | - Naruhiko Ikoma
- Department
of Surgical Oncology, The University of
Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, Texas77030, United
States
| | - Martin J. Schnermann
- Chemical
Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland21702, United States
| | - Ali Azhdarinia
- The
Brown Foundation Institute of Molecular Medicine, McGovern Medical
School, The University of Texas Health Science
Center at Houston, Houston, Texas77054, United States,
| |
Collapse
|
19
|
Dual MVK cleavable linkers effectively reduce renal retention of 111In-fibronectin-binding peptides. Bioorg Med Chem 2022; 73:117040. [DOI: 10.1016/j.bmc.2022.117040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/21/2022] [Accepted: 09/23/2022] [Indexed: 11/21/2022]
|
20
|
Lau J, Lee H, Rousseau J, Bénard F, Lin KS. Application of Cleavable Linkers to Improve Therapeutic Index of Radioligand Therapies. Molecules 2022; 27:molecules27154959. [PMID: 35956909 PMCID: PMC9370263 DOI: 10.3390/molecules27154959] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/28/2022] [Accepted: 08/01/2022] [Indexed: 01/11/2023] Open
Abstract
Radioligand therapy (RLT) is an emergent drug class for cancer treatment. The dose administered to cancer patients is constrained by the radiation exposure to normal tissues to maintain an appropriate therapeutic index. When a radiopharmaceutical or its radiometabolite is retained in the kidneys, radiation dose deposition in the kidneys can become a dose-limiting factor. A good exemplar is [177Lu]Lu-DOTATATE, where patients receive a co-infusion of basic amino acids for nephroprotection. Besides peptides, there are other classes of targeting vectors like antibody fragments, antibody mimetics, peptidomimetics, and small molecules that clear through the renal pathway. In this review, we will review established and emerging strategies that can be used to mitigate radiation-induced nephrotoxicity, with a focus on the development and incorporation of cleavable linkers for radiopharmaceutical designs. Finally, we offer our perspectives on cleavable linkers for RLT, highlighting future areas of research that will help advance the technology.
Collapse
Affiliation(s)
- Joseph Lau
- Department of Molecular Oncology, BC Cancer, Vancouver, BC V5Z 1L3, Canada
| | - Hwan Lee
- Department of Radiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Julie Rousseau
- Department of Molecular Oncology, BC Cancer, Vancouver, BC V5Z 1L3, Canada
| | - François Bénard
- Department of Molecular Oncology, BC Cancer, Vancouver, BC V5Z 1L3, Canada
- Department of Radiology, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| | - Kuo-Shyan Lin
- Department of Molecular Oncology, BC Cancer, Vancouver, BC V5Z 1L3, Canada
- Department of Radiology, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
- Correspondence: ; Tel.: +1-604-675-8208
| |
Collapse
|
21
|
Fernandes EFA, Wilbs J, Raavé R, Jacobsen CB, Toftelund H, Helleberg H, Boswinkel M, Heskamp S, Gustafsson MBF, Bjørnsdottir I. Comparison of the Tissue Distribution of a Long-Circulating Glucagon-like Peptide-1 Agonist Determined by Positron Emission Tomography and Quantitative Whole-Body Autoradiography. ACS Pharmacol Transl Sci 2022; 5:616-624. [DOI: 10.1021/acsptsci.2c00075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
| | - Jonas Wilbs
- Global Research Technologies, Novo Nordisk A/S, Novo Nordisk Park 1, DK-2760 Måløv, Denmark
| | - Rene Raavé
- Radboudumc, Department of Medical Imaging − Nuclear Medicine, Radboud Institute for Molecular Life Sciences, 6500 HB Nijmegen, The Netherlands
| | - Christian Borch Jacobsen
- Isotope Chemistry, CMC Development, Novo Nordisk A/S, Novo Nordisk Park 1, DK-2760 Måløv, Denmark
| | - Hanne Toftelund
- Global Drug Discovery, Novo Nordisk A/S, Novo Nordisk Park 1, DK-2760 Måløv, Denmark
| | - Hans Helleberg
- Global Drug Discovery, Novo Nordisk A/S, Novo Nordisk Park 1, DK-2760 Måløv, Denmark
| | - Milou Boswinkel
- Radboudumc, Department of Medical Imaging − Nuclear Medicine, Radboud Institute for Molecular Life Sciences, 6500 HB Nijmegen, The Netherlands
| | - Sandra Heskamp
- Radboudumc, Department of Medical Imaging − Nuclear Medicine, Radboud Institute for Molecular Life Sciences, 6500 HB Nijmegen, The Netherlands
| | | | - Inga Bjørnsdottir
- Global Drug Discovery, Novo Nordisk A/S, Novo Nordisk Park 1, DK-2760 Måløv, Denmark
| |
Collapse
|
22
|
Fan W, Zhang W, Alshehri S, Garrison JC. Examination of the impact molecular charge has on NTSR1-targeted agents incorporated with cysteine protease inhibitors. Eur J Med Chem 2022; 234:114241. [PMID: 35306289 PMCID: PMC9007894 DOI: 10.1016/j.ejmech.2022.114241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 02/21/2022] [Accepted: 02/25/2022] [Indexed: 02/05/2023]
Abstract
Our laboratory has previously reported a strategy of employing cysteine cathepsin (CC) inhibitors as adduct forming, trapping agents to extend the tumor residence time of neurotensin receptor subtype 1 (NTSR1)-targeted radiopharmaceuticals. As a follow-up, we herein report a small library of CC trapping agent (CCTA)-incorporated, NTSR1-targeted conjugates with structural modifications that reduce the number of charged functional groups for both the CCTA and the peptide targeting sequence. These modifications were pursued to reduce the renal uptake and increase the translational potential of the CCTA-incorporated, NTSR1-targeted agents as radiotherapeutics. The biological performance of these constructs was examined using a battery of in vitro and in vivo studies employing the NTSR1-positive HT-29 human colon cancer cell line as our model. In vitro studies confirmed the ability of these constructs to target the NTSR1 and efficiently form intracellular adducts with cysteine proteases. Biodistribution studies using an HT-29 xenograft mouse model revealed that truncation (removal of Lys6-Pro7) of the NTSR1-targeted peptide (177Lu-NE2a) had the greatest (3.7-fold) effect at lowering renal recognition/uptake relative to our previously reported construct. Other charge-reducing modifications to the CCTA resulted in unexpected increases in renal uptake. All of the constructs demonstrated similar levels of in vivo NTSR1-positive tumor targeting with the highest tumor residualization resulting from the construct containing the zwitterionic CCTA (177Lu-NE2a). In vivo adduct formation of the conjugates was confirmed using autoradiographic SDS-PAGE analysis.
Collapse
Affiliation(s)
- Wei Fan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, 985830 Nebraska Medical Center, Omaha, NE 68198, United States,Center for Drug Delivery and Nanomedicine, University of Nebraska Medical Center, 985830 Nebraska Medical Center, Omaha, NE 68198, United States
| | - Wenting Zhang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, 985830 Nebraska Medical Center, Omaha, NE 68198, United States,Center for Drug Delivery and Nanomedicine, University of Nebraska Medical Center, 985830 Nebraska Medical Center, Omaha, NE 68198, United States
| | - Sameer Alshehri
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, 985830 Nebraska Medical Center, Omaha, NE 68198, United States,Center for Drug Delivery and Nanomedicine, University of Nebraska Medical Center, 985830 Nebraska Medical Center, Omaha, NE 68198, United States
| | - Jered C. Garrison
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, 985830 Nebraska Medical Center, Omaha, NE 68198, United States,Center for Drug Delivery and Nanomedicine, University of Nebraska Medical Center, 985830 Nebraska Medical Center, Omaha, NE 68198, United States,Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, 985870 Nebraska Medical Center, Omaha, NE 68198, United States,Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, NE 68105, United States,Corresponding author: Tel: +01 4025593453,
| |
Collapse
|
23
|
Taylor CA, Shankar A, Gaze MN, Peet C, Gains JE, Wan S, Voo S, Priftakis D, Bomanji JB. Renal protection during 177lutetium DOTATATE molecular radiotherapy in children: a proposal for safe amino acid infusional volume during peptide receptor radionuclide therapy. Nucl Med Commun 2022; 43:242-246. [PMID: 34678829 DOI: 10.1097/mnm.0000000000001497] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Peptide receptor radionuclide therapy (PRRT) using radiolabelled somatostatin analogues such as 177-lutetium DOTATATE is an effective treatment modality for neuroendocrine tumours, paragangliomas, and neuroblastomas. However, renal and haematopoietic toxicities are the major limitations of this therapeutic approach. The renal toxicity of PRRT is mediated by renal proximal tubular reabsorption and interstitial retention of the radiolabelled peptides resulting in excessive renal irradiation that can be dose-limiting. To protect the kidneys from PRRT-induced radiation nephropathy, basic amino acids are infused during PRRT as they competitively bind to the proximal tubular cells and prevent uptake of the radionuclide. In adults, 1 L of a basic amino acid solution consisting of arginine and lysine is infused over 4 h commencing 30 min prior to PRRT. However, this volume of amino acids infused over 4 h is excessive in small children and can result in hemodynamic overload. This is all the more relevant in paediatric oncology, as many of the children may have been heavily pretreated and so may have treatment-related renal and or cardiac impairment. We have therefore developed the following guidelines for safe paediatric dosing of renal protective amino acid infusions during PRRT. Our recommendations have been made taking into consideration the renal physiology in small children and the principles of safe fluid management in children.
Collapse
Affiliation(s)
| | | | | | | | | | - Simon Wan
- Department of Nuclear Medicine, University College London Hospitals NHS Foundation Trust, London, UK
| | - Stefan Voo
- Department of Nuclear Medicine, University College London Hospitals NHS Foundation Trust, London, UK
| | - Dimitrios Priftakis
- Department of Nuclear Medicine, University College London Hospitals NHS Foundation Trust, London, UK
| | - Jamshed B Bomanji
- Department of Nuclear Medicine, University College London Hospitals NHS Foundation Trust, London, UK
| |
Collapse
|
24
|
Rizvi SFA, Ahmad M, Munib F, Zhang H. Preclinical assessment of Alzheimer's disease using novel designed
99m
Tc‐labeled RGD‐based pro‐apoptotic cyclic peptide as a promising SPECT agent. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Syed Faheem Askari Rizvi
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering Lanzhou University Lanzhou China
| | - Munir Ahmad
- Department of Nuclear Medicine Institute of Nuclear Medicine and Oncology (INMOL) Lahore Pakistan
| | - Farzana Munib
- Department of Nuclear Medicine Institute of Nuclear Medicine and Oncology (INMOL) Lahore Pakistan
| | - Haixia Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering Lanzhou University Lanzhou China
| |
Collapse
|
25
|
Zaid NRR, Kletting P, Winter G, Prasad V, Beer AJ, Glatting G. A Physiologically Based Pharmacokinetic Model for In Vivo Alpha Particle Generators Targeting Neuroendocrine Tumors in Mice. Pharmaceutics 2021; 13:2132. [PMID: 34959413 PMCID: PMC8703774 DOI: 10.3390/pharmaceutics13122132] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/04/2021] [Accepted: 12/07/2021] [Indexed: 12/13/2022] Open
Abstract
In vivo alpha particle generators have great potential for the treatment of neuroendocrine tumors in alpha-emitter-based peptide receptor radionuclide therapy (α-PRRT). Quantitative pharmacokinetic analyses of the in vivo alpha particle generator and its radioactive decay products are required to address concerns about the efficacy and safety of α-PRRT. A murine whole-body physiologically based pharmacokinetic (PBPK) model was developed for 212Pb-labeled somatostatin analogs (212Pb-SSTA). The model describes pharmacokinetics of 212Pb-SSTA and its decay products, including specific and non-specific glomerular and tubular uptake. Absorbed dose coefficients (ADC) were calculated for bound and unbound radiolabeled SSTA and its decay products. Kidneys received the highest ADC (134 Gy/MBq) among non-target tissues. The alpha-emitting 212Po contributes more than 50% to absorbed doses in most tissues. Using this model, it is demonstrated that α-PRRT based on 212Pb-SSTA results in lower absorbed doses in non-target tissue than α-PRRT based on 212Bi-SSTA for a given kidneys absorbed dose. In both approaches, the energies released in the glomeruli and proximal tubules account for 54% and 46%, respectively, of the total energy absorbed in kidneys. The 212Pb-SSTA-PBPK model accelerates the translation from bench to bedside by enabling better experimental design and by improving the understanding of the underlying mechanisms.
Collapse
Affiliation(s)
- Nouran R. R. Zaid
- Medical Radiation Physics, Department of Nuclear Medicine, Ulm University, 89081 Ulm, Germany; (P.K.); (G.G.)
- Biophysics and Medical Imaging Program, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus 44839, Palestine
| | - Peter Kletting
- Medical Radiation Physics, Department of Nuclear Medicine, Ulm University, 89081 Ulm, Germany; (P.K.); (G.G.)
- Department of Nuclear Medicine, Ulm University, 89081 Ulm, Germany; (G.W.); (V.P.); (A.J.B.)
| | - Gordon Winter
- Department of Nuclear Medicine, Ulm University, 89081 Ulm, Germany; (G.W.); (V.P.); (A.J.B.)
| | - Vikas Prasad
- Department of Nuclear Medicine, Ulm University, 89081 Ulm, Germany; (G.W.); (V.P.); (A.J.B.)
| | - Ambros J. Beer
- Department of Nuclear Medicine, Ulm University, 89081 Ulm, Germany; (G.W.); (V.P.); (A.J.B.)
| | - Gerhard Glatting
- Medical Radiation Physics, Department of Nuclear Medicine, Ulm University, 89081 Ulm, Germany; (P.K.); (G.G.)
- Department of Nuclear Medicine, Ulm University, 89081 Ulm, Germany; (G.W.); (V.P.); (A.J.B.)
| |
Collapse
|
26
|
Hanaoka H, Ohshima Y, Suzuki H, Sasaki I, Watabe T, Ooe K, Watanabe S, Ishioka NS. Enhancing the Therapeutic Effect of 2- 211At-astato-α-methyl-L-phenylalanine with Probenecid Loading. Cancers (Basel) 2021; 13:cancers13215514. [PMID: 34771676 PMCID: PMC8583516 DOI: 10.3390/cancers13215514] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 10/28/2021] [Indexed: 11/24/2022] Open
Abstract
Simple Summary To enhance the therapeutic effect of 2-211At-astato-α-methyl-L-phenylalanine (2-211At-AAMP), a radiopharmaceutical for targeted alpha therapy, we evaluated the effect of probenecid loading on its biodistribution and therapeutic effect in mice. Probenecid preloading significantly delayed the clearance of 2-211At-AAMP from the blood, increasing its accumulation in tumors. Consequently, the therapeutic effect of 2-211At-AAMP markedly improved. These results indicate that 2-211At-AAMP with probenecid loading is useful for the treatment of various types of cancers. Abstract L-type amino acid transporter 1 (LAT1) might be a useful target for tumor therapy since it is highly expressed in various types of cancers. We previously developed an astatine-211 (211At)-labeled amino acid derivative, 2-211At-astato-α-methyl-L-phenylalanine (2-211At-AAMP), and demonstrated its therapeutic potential for LAT1-positive cancers. However, the therapeutic effect of 2-211At-AAMP was insufficient, probably due to its low tumor retention. The preloading of probenecid, an organic anion transporter inhibitor, can delay the clearance of some amino acid tracers from the blood and consequently increase their accumulation in tumors. In this study, we evaluated the effect of probenecid preloading on the biodistribution and therapeutic effect of 2-211At-AAMP in mice. In biodistribution studies, the blood radioactivity of 2-211At-AAMP significantly increased with probenecid preloading. Consequently, the accumulation of 2-211At-AAMP in tumors was significantly higher with probenecid than without probenecid loading. In a therapeutic study, tumor growth was suppressed by 2-211At-AAMP with probenecid, and the tumor volume was significantly lower in the treatment group than in the untreated control group from day 2 to day 30 (end of the follow-up period) after treatment. These results indicate that probenecid loading could improve the therapeutic effect of 2-211At-AAMP by increasing its accumulation in tumors.
Collapse
Affiliation(s)
- Hirofumi Hanaoka
- Faculty of Medicine, Kansai Medical University, 2-5-1 Shin-machi, Hirakata 573-1010, Osaka, Japan
- Department of Radiotheranostics, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi 371-8511, Gunma, Japan
- Correspondence: ; Tel.: +81-72-804-2452
| | - Yasuhiro Ohshima
- Department of Radiation-Applied Biology Research, Quantum Beam Science Research Directorate, National Institute for Quantum Science and Technology, 1233 Watanuki-machi, Takasaki 370-1292, Gunma, Japan; (Y.O.); (I.S.); (S.W.); (N.S.I.)
| | - Hiroyuki Suzuki
- Department of Molecular Imaging and Radiotherapy, Graduate School of Pharmaceutical Science, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Chiba, Japan;
| | - Ichiro Sasaki
- Department of Radiation-Applied Biology Research, Quantum Beam Science Research Directorate, National Institute for Quantum Science and Technology, 1233 Watanuki-machi, Takasaki 370-1292, Gunma, Japan; (Y.O.); (I.S.); (S.W.); (N.S.I.)
| | - Tadashi Watabe
- Department of Nuclear Medicine and Tracer Kinetics, Graduate School of Medicine, Osaka University, 1-1 Yamadaoka, Suita 565-0871, Osaka, Japan; (T.W.); (K.O.)
| | - Kazuhiro Ooe
- Department of Nuclear Medicine and Tracer Kinetics, Graduate School of Medicine, Osaka University, 1-1 Yamadaoka, Suita 565-0871, Osaka, Japan; (T.W.); (K.O.)
| | - Shigeki Watanabe
- Department of Radiation-Applied Biology Research, Quantum Beam Science Research Directorate, National Institute for Quantum Science and Technology, 1233 Watanuki-machi, Takasaki 370-1292, Gunma, Japan; (Y.O.); (I.S.); (S.W.); (N.S.I.)
| | - Noriko S. Ishioka
- Department of Radiation-Applied Biology Research, Quantum Beam Science Research Directorate, National Institute for Quantum Science and Technology, 1233 Watanuki-machi, Takasaki 370-1292, Gunma, Japan; (Y.O.); (I.S.); (S.W.); (N.S.I.)
| |
Collapse
|
27
|
Li L, Zhao R, Hong H, Li G, Zhang Y, Luo Y, Zha Z, Zhu J, Qiao J, Zhu L, Kung HF. 68Ga-labelled-exendin-4: New GLP1R targeting agents for imaging pancreatic β-cell and insulinoma. Nucl Med Biol 2021; 102-103:87-96. [PMID: 34695640 DOI: 10.1016/j.nucmedbio.2021.10.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/13/2021] [Accepted: 10/05/2021] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Glucagon-like peptide-1 receptor (GLP1R) specifically expressed on the surface of pancreatic β-cells and insulinoma, is a potential biomarker for imaging β-cell mass (BCM). In this study, two new 68Ga-labelled GLP1R targeting agents were prepared and their biological properties for imaging BCM and insulinoma were evaluated. METHODS [68Ga]Ga-HBED-CC-MAL-Cys39-exendin-4 ([68Ga]Ga-4) and its dimer ([68Ga]Ga-5) were synthesized from corresponding precursors. Cell uptake studies were evaluated in INS-1 cells. Biodistribution and microPET studies were performed in male normal Sprague-Dawley rats, diabetic rats and insulinoma xenograft NOD/SCID mice. RESULTS [68Ga]Ga-4 and [68Ga]Ga-5 were efficiently radiolabelled by a simple one-step reaction without purification leading to high radiochemical yields and radiochemical purities (both >95%, decay corrected, n = 6, molar activity 15 GBq/μmol). They both showed excellent stability (~95%) in phosphate-buffered saline, pH 7.4, and in rat serum (~90%) for 2 h. Biodistribution studies and small animal PET/CT imaging showed that [68Ga]Ga-4 displayed specific uptake in rat pancreas and mouse insulinoma, and a reduced uptake in the pancreas of diabetic rat was observed (~62% reduction). Notably, it exhibited a rapid time-to-peak pancreatic uptake (0.96 ± 0.19%ID/g in 15 min) and fast clearance from the kidney (42% clearance in 30 min). Results suggested a favorable in vivo kinetics for human imaging studies. CONCLUSIONS [68Ga]Ga-4 targeting GLP1R of pancreatic β-cells may be a potentially useful PET agent and a suitable candidate for further structural modification studies. This agent has demonstrated several advantages, rapid time-to-peak pancreatic uptake and faster clearance from the kidney, factors may enhance diagnosis of diabetes and insulinoma.
Collapse
Affiliation(s)
- Linlin Li
- College of Chemistry, Beijing Normal University, Beijing, China
| | - Ruiyue Zhao
- College of Chemistry, Beijing Normal University, Beijing, China
| | - Haiyan Hong
- College of Chemistry, Beijing Normal University, Beijing, China
| | - Guangwen Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Yan Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Yang Luo
- College of Chemistry, Beijing Normal University, Beijing, China
| | - Zhihao Zha
- Department of Radiology, University of Pennsylvania, USA
| | - Jinxia Zhu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Jinping Qiao
- College of Chemistry, Beijing Normal University, Beijing, China
| | - Lin Zhu
- College of Chemistry, Beijing Normal University, Beijing, China.
| | - Hank F Kung
- Department of Radiology, University of Pennsylvania, USA.
| |
Collapse
|
28
|
Geenen L, Nonnekens J, Konijnenberg M, Baatout S, De Jong M, Aerts A. Overcoming nephrotoxicity in peptide receptor radionuclide therapy using [ 177Lu]Lu-DOTA-TATE for the treatment of neuroendocrine tumours. Nucl Med Biol 2021; 102-103:1-11. [PMID: 34242948 DOI: 10.1016/j.nucmedbio.2021.06.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 06/21/2021] [Accepted: 06/21/2021] [Indexed: 12/29/2022]
Abstract
Peptide receptor radionuclide therapy (PRRT) is used for the treatment of patients with unresectable or metastasized somatostatin receptor type 2 (SSTR2)-expressing gastroenteropancreatic neuroendocrine tumours (GEP-NETs). The radiolabelled somatostatin analogue [177Lu]Lu-DOTA-TATE delivers its radiation dose to SSTR2-overexpressing tumour cells, resulting in selective cell killing during radioactive decay. While tumour control can be achieved in many patients, complete remissions remain rare, causing the majority of patients to relapse after a certain period of time. This raises the question whether the currently fixed treatment regime (4 × 7.4 GBq) leaves room for dose escalation as a means of improving therapy efficacy. The kidneys have shown to play an important role in defining a patient's tolerability to PRRT. As a consequence of the proximal tubular reabsorption of [177Lu]Lu-DOTA-TATE, via the endocytic megalin/cubilin receptor complex, the radionuclides are retained in the renal interstitium. This results in extended retention of radioactivity in the kidneys, generating a risk for the development of radiation nephropathy. In addition, a decreased kidney function has shown to be associated with a prolonged circulation of [177Lu]Lu-DOTA-TATE, causing increased irradiation to the bone marrow. This can on its turn lead to myelosuppression and haematological toxicity, owing to the marked radio sensitivity of the rapidly proliferating cells in the bone marrow. In contrast to external beam radiotherapy (EBRT), the exact absorbed dose limits for these critical organs (kidneys and bone marrow) in PRRT with [177Lu]Lu-DOTA-TATE are still unclear. Better insights into these uncertainties, can help in optimizing PRRT to reach its maximum therapeutic potential, while avoiding severe adverse events, like nephropathy and hematologic toxicities. In this review we focus on the nephrotoxic effects of PRRT with [177Lu]Lu-DOTA-TATE for the treatment of GEP-NETs. If the absorbed dose to the kidneys can be lowered, higher activities can be administered, enlarging the therapeutic window for PRRT. Therefore, we evaluated the renal protective potential of current and promising future strategies and discuss the importance of (renal) dosimetry in PRRT.
Collapse
Affiliation(s)
- Lorain Geenen
- Radiobiology Unit, Interdisciplinary Biosciences, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium; Department of Radiology & Nuclear Medicine, Erasmus MC, Rotterdam, the Netherlands
| | - Julie Nonnekens
- Department of Radiology & Nuclear Medicine, Erasmus MC, Rotterdam, the Netherlands; Department of Molecular Genetics, Erasmus MC, Rotterdam, the Netherlands; Oncode Institute, Erasmus MC, Rotterdam, the Netherlands
| | - Mark Konijnenberg
- Department of Radiology & Nuclear Medicine, Erasmus MC, Rotterdam, the Netherlands; Department of Medical Imaging, Radboud UMC, Nijmegen, the Netherlands
| | - Sarah Baatout
- Radiobiology Unit, Interdisciplinary Biosciences, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium; Department of Molecular Biotechnology, Faculty of Bioengineering Sciences, Ghent University, Belgium.
| | - Marion De Jong
- Department of Radiology & Nuclear Medicine, Erasmus MC, Rotterdam, the Netherlands
| | - An Aerts
- Radiobiology Unit, Interdisciplinary Biosciences, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
| |
Collapse
|
29
|
Felber VB, Wester HJ. Small peptide-based GLP-1R ligands: an approach to reduce the kidney uptake of radiolabeled GLP-1R-targeting agents? EJNMMI Radiopharm Chem 2021; 6:29. [PMID: 34432147 PMCID: PMC8387526 DOI: 10.1186/s41181-021-00136-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 06/04/2021] [Indexed: 11/23/2022] Open
Abstract
Aim Elevated kidney uptake in insulinoma patients remains a major limitation of radiometallated exendin-derived ligands of the glucagon-like peptide 1 receptor (GLP-1R). Based on the previously published potent GLP-1R-activating undecapeptide 1, short-chained GLP-1R ligands were developed to investigate whether kidney uptake can be reduced by means of direct 18F-labeling (nuclide-based accelerated renal excretion) or the reduction of the overall ligand charge (ligand-based reduced kidney uptake). Materials & methods GLP-1R ligands were prepared according to optimized standard protocols via solid-phase peptide synthesis (SPPS) or, when not practicable, via fragment coupling in solution. Synthesis of (2‘-Et, 4‘-OMe)4, 4’-L-biphenylalanine ((2′-Et, 4′-OMe)BIP), required for the preparation of 1, was accomplished by Suzuki-Miyaura cross-coupling. In vitro experiments were performed using stably transfected GLP-1R+ HEK293-hGLP-1R cells. Results In contrast to the three reference ligands glucagon-like peptide 1 (GLP-1, IC50 = 23.2 ± 12.2 nM), [Nle14, Tyr(3-I)40]exendin-4 (IC50 = 7.63 ± 2.78 nM) and [Nle14, Tyr40]exendin-4 (IC50 = 9.87 ± 1.82 nM), the investigated GLP-1R-targeting small peptides (9–15 amino acids), including lead peptide 1, exhibited only medium to low affinities (IC50 > 189 nM). Only SiFA-tagged undecapeptide 5 (IC50 = 189 ± 35 nM) revealed a higher affinity than 1 (IC50 = 669 ± 242 nM). Conclusion The investigated small peptides, including lead peptide 1, could not compete with favorable in vitro characteristics of glucagon-like peptide 1 (GLP-1), [Nle14, Tyr(3-I)40]exendin-4 and [Nle14, Tyr40]exendin-4. The auspicious EC50 values of 1 provided by the literature could not be transferred to competitive binding experiments. Therefore, the use of 1 as a basic scaffold for the design of further GLP-1R-targeting radioligands cannot be recommended. Further investigations might include the scaffold of 5, although substantial optimizations concerning affinity and lipophilicity would be required. In sum, GLP-1R-targeting radioligands with reduced kidney uptake could not be obtained in this work, which emphasizes the need for further ligands addressing this particular issue. Supplementary Information The online version contains supplementary material available at 10.1186/s41181-021-00136-x.
Collapse
Affiliation(s)
- Veronika Barbara Felber
- Chair of Pharmaceutical Radiochemistry, Technical University of Munich, Walther-Meißner-Str. 3, 85748, Garching, Germany.
| | - Hans-Jürgen Wester
- Chair of Pharmaceutical Radiochemistry, Technical University of Munich, Walther-Meißner-Str. 3, 85748, Garching, Germany
| |
Collapse
|
30
|
Chigoho DM, Bridoux J, Hernot S. Reducing the renal retention of low- to moderate-molecular-weight radiopharmaceuticals. Curr Opin Chem Biol 2021; 63:219-228. [PMID: 34325089 DOI: 10.1016/j.cbpa.2021.06.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 06/18/2021] [Accepted: 06/23/2021] [Indexed: 02/06/2023]
Abstract
The field of nuclear imaging and therapy is rapidly progressing with the development of targeted radiopharmaceuticals that show rapid targeting and rapid clearance with minimal background. Unfortunately, they are often reabsorbed in the kidneys, leading to possible nephrotoxicity, limiting the therapeutic dose, and/or reducing imaging quality. The blocking of endocytic receptors has been extensively used as a strategy to reduce kidney radiation. Alternatively, the physicochemical properties of radiotracers can be modulated to either prevent their reuptake or promote the excretion of radiometabolites. Other interesting strategies focus on the insertion of a cleavable linker between the radiolabel and the targeting moiety or pretargeting approaches in which the targeting moiety and radiolabel are administered separately. In the context of this review, we will discuss the latest advances and insights on strategies used to reduce renal retention of low- to moderate-molecular-weight radiopharmaceuticals.
Collapse
Affiliation(s)
- Dora Mugoli Chigoho
- Laboratory for in Vivo Cellular and Molecular Imaging, ICMI-BEFY/MIMA, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Jessica Bridoux
- Laboratory for in Vivo Cellular and Molecular Imaging, ICMI-BEFY/MIMA, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Sophie Hernot
- Laboratory for in Vivo Cellular and Molecular Imaging, ICMI-BEFY/MIMA, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium.
| |
Collapse
|
31
|
Simultaneous Visualization of 161Tb- and 177Lu-Labeled Somatostatin Analogues Using Dual-Isotope SPECT Imaging. Pharmaceutics 2021; 13:pharmaceutics13040536. [PMID: 33921467 PMCID: PMC8070648 DOI: 10.3390/pharmaceutics13040536] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/29/2021] [Accepted: 04/07/2021] [Indexed: 11/17/2022] Open
Abstract
The decay of terbium-161 results in the emission of β¯-particles as well as conversion and Auger electrons, which makes terbium-161 interesting for therapeutic purposes. The aim of this study was to use dual-isotope SPECT imaging in order to demonstrate visually that terbium-161 and lutetium-177 are interchangeable without compromising the pharmacokinetic profile of the radiopharmaceutical. The 161Tb- and 177Lu-labeled somatostatin (SST) analogues DOTATOC (agonist) and DOTA-LM3 (antagonist) were tested in vitro to demonstrate equal properties regarding distribution coefficients and cell uptake into SST receptor-positive AR42J tumor cells. The radiopeptides were further investigated in AR42J tumor-bearing nude mice using the method of dual-isotope (terbium-161/lutetium-177) SPECT/CT imaging to enable the visualization of their distribution profiles in the same animal. Equal pharmacokinetic profiles were demonstrated for either of the two peptides, irrespective of whether it was labeled with terbium-161 or lutetium-177. Moreover, the visualization of the sub-organ distribution confirmed similar behavior of 161Tb- and 177Lu-labeled SST analogues. The data were verified in quantitative biodistribution studies using either type of peptide labeled with terbium-161 or lutetium-177. While the radionuclide did not have an impact on the organ distribution, this study confirmed previous data of a considerably higher tumor uptake of radiolabeled DOTA-LM3 as compared to the radiolabeled DOTATOC.
Collapse
|
32
|
GLP-1 peptide analogs for targeting pancreatic beta cells. Drug Discov Today 2021; 26:1936-1943. [PMID: 33839290 DOI: 10.1016/j.drudis.2021.03.032] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 03/01/2021] [Accepted: 03/30/2021] [Indexed: 02/06/2023]
Abstract
Loss or dysfunction of the pancreatic beta cells or insulin receptors leads to diabetes mellitus (DM). This usually occurs over many years; therefore, the development of methods for the timely detection and clinical intervention are vital to prevent the development of this disease. Glucagon-like peptide-1 receptor (GLP-1R) is the receptor of GLP-1, an incretin hormone that causes insulin secretion in a glucose-dependent manner. GLP-1R is highly expressed on the surface of pancreatic beta cells, providing a potential target for bioimaging. In this review, we provide an overview of various strategies, such as the development of GLP-1R agonists (e.g., exendin-4), and GLP-1 sequence modifications for GLP-1R targeting for the diagnosis and treatment of pancreatic beta cell disorders. We also discuss the challenges of targeting pancreatic beta cells and strategies to address such challenges.
Collapse
|
33
|
Bryniarski MA, Zhao B, Chaves LD, Mikkelsen JH, Yee BM, Yacoub R, Shen S, Madsen M, Morris ME. Immunoglobulin G Is a Novel Substrate for the Endocytic Protein Megalin. AAPS JOURNAL 2021; 23:40. [PMID: 33677748 DOI: 10.1208/s12248-021-00557-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 01/07/2021] [Indexed: 11/30/2022]
Abstract
Therapeutic immunoglobulin G (IgG) antibodies comprise the largest class of protein therapeutics. Several factors that influence their overall disposition have been well-characterized, including target-mediated mechanics and convective flow. What remains poorly defined is the potential for non-targeted entry into various tissues or cell types by means of uptake via cell surface receptors at those sites. Megalin and cubilin are large endocytic receptors whose cooperative function plays important physiological roles at the tissues in which they are expressed. One such example is the kidney, where loss of either results in significant declines in proximal tubule protein reabsorption. Due to their diverse ligand profile and broad tissue expression, megalin and cubilin represent potential candidates for receptor-mediated uptake of IgG into various epithelia. Therefore, the objective of the current work was to determine if IgG was a novel ligand of megalin and/or cubilin. Direct binding was measured for human IgG with both megalin and the cubilin/amnionless complex. Additional work focusing on the megalin-IgG interaction was then conducted to build upon these findings. Cell uptake studies using megalin ligands for competitive inhibition or proximal tubule cells stably transduced with megalin-targeted shRNA constructs supported a role for megalin in the endocytosis of human IgG. Furthermore, a pharmacokinetic study using transgenic mice with a kidney-specific mosaic knockout of megalin demonstrated increased urinary excretion of human IgG in megalin knockout mice when compared to wild-type controls. These findings indicate that megalin is capable of binding and internalizing IgG via a high affinity interaction.
Collapse
Affiliation(s)
- Mark A Bryniarski
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, 445 Pharmacy Building, Buffalo, New York, 14214-8033, USA
| | - Bei Zhao
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, 445 Pharmacy Building, Buffalo, New York, 14214-8033, USA
| | - Lee D Chaves
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, 445 Pharmacy Building, Buffalo, New York, 14214-8033, USA.,Department of Internal Medicine, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, USA
| | | | - Benjamin M Yee
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, 445 Pharmacy Building, Buffalo, New York, 14214-8033, USA
| | - Rabi Yacoub
- Department of Internal Medicine, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, USA
| | - Shichen Shen
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, 445 Pharmacy Building, Buffalo, New York, 14214-8033, USA
| | - Mette Madsen
- Department of Biomedicine, Aarhus University, 8000, Aarhus C., Denmark
| | - Marilyn E Morris
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, 445 Pharmacy Building, Buffalo, New York, 14214-8033, USA.
| |
Collapse
|
34
|
Luo Y, Chen X. Imaging of Insulinoma by Targeting Glucagonlike Peptide-1 Receptor. PET Clin 2021; 16:205-217. [PMID: 33589387 DOI: 10.1016/j.cpet.2020.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
"Glucagonlike peptide-1 (GLP-1) receptor imaging, using radiolabeled exendin-4, was recently established for detecting insulinoma in patients with hyperinsulinemic hypoglycemia. It has proven to be a sensitive and specific method for preoperative localization of insulinoma. This review introduces the development, clinical research, and perspective of GLP-1 receptor imaging mainly in insulinoma.
Collapse
Affiliation(s)
- Yaping Luo
- Department of Nuclear Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College Hospital, #1 Shuaifuyuan Wangfujing, Dongcheng District, Beijing 100730, P. R. China; Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine
| | - Xiaoyuan Chen
- Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore 117597, Singapore.
| |
Collapse
|
35
|
Gu W, Yudistiro R, Hanaoka H, Katsumata N, Tsushima Y. Potential of three-step pretargeting radioimmunotherapy using biotinylated bevacizumab and succinylated streptavidin in triple-negative breast cancer xenograft. Ann Nucl Med 2021; 35:514-522. [PMID: 33582981 DOI: 10.1007/s12149-021-01597-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 01/28/2021] [Indexed: 01/15/2023]
Abstract
OBJECTIVE Pretargeting radioimmunotherapy (PRIT) is a promising approach that can reduce long-time retention of blood radioactivity and consequently reduce hematotoxicity. Among the PRIT strategies, the combination of biotin-conjugated mAb and radiolabeled streptavidin (StAv) is a simple and convenient method because of its ease of preparation. This study performed three-step (3-step) PRIT using the sequential injection of (1) biotinylated bevacizumab (Bt-BV), (2) avidin, and (3) radiolabeled StAv for the treatment of triple-negative breast cancer (TNBC). METHODS Four biodistribution studies were performed using 111In in tumor-bearing mice to optimize each step of our PRIT methods. Further, a therapeutic study was performed with optimized 3-step PRIT using 90Y-labeled StAv. RESULTS Based on the biodistribution studies, the protein dose of Bt-BV and avidin was optimized to 100 μg and 10 molar equivalent of BV, respectively. Succinylation of StAv significantly decreased the kidney accumulation level (with succinylation (6.96 ± 0.91) vs without succinylation (20.60 ± 1.47) at 1 h after injection, p < 0.0001) with little effect on the tumor accumulation level. In the therapeutic study, tumor growth was significantly suppressed in treatment groups with optimized 3-step PRIT using 90Y-labeled succinylated StAv compared to that of the no-treatment group (p < 0.05). CONCLUSIONS The 3-step PRIT strategy of this study achieved fast blood clearance and low kidney uptake with little effect on the tumor accumulation level, and a certain degree of therapeutic effect was consequently observed. These results indicated that the pretargeting treatment of the current study may be effective for human TNBC treatment.
Collapse
Affiliation(s)
- Wenchao Gu
- Department of Diagnostic Radiology and Nuclear Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Ryan Yudistiro
- Department of Diagnostic Radiology and Nuclear Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Hirofumi Hanaoka
- Department of Bioimaging Information Analysis, Gunma University Graduate School of Medicine, 3-39-22 Showa, Maebashi, 371-8511, Japan.
| | - Natsumi Katsumata
- Department of Diagnostic Radiology and Nuclear Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Yoshito Tsushima
- Department of Diagnostic Radiology and Nuclear Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| |
Collapse
|
36
|
Abstract
Yttrium-86 is a non-standard positron emitter that can provide dosimetry information prior to therapy with yttrium-90 radiopharmaceuticals and be used to follow biochemical processes. In this chapter, we discuss the production, purification and applications of 86Y for PET imaging. More specifically, 86Y radiolabeling is highlighted and protocols to determine the radiochemical purity of 86Y-DOTA and 86Y-DTPA are presented.
Collapse
Affiliation(s)
- Mariane Le Fur
- The Athinoula A. Martinos Center for Biomedical Imaging, The Institute for Innovation in Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, United States.
| | - Peter Caravan
- The Athinoula A. Martinos Center for Biomedical Imaging, The Institute for Innovation in Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, United States
| |
Collapse
|
37
|
Qin Y, Imobersteg S, Blanc A, Frank S, Schibli R, Béhé MP, Grzmil M. Evaluation of Actinium-225 Labeled Minigastrin Analogue [ 225Ac]Ac-DOTA-PP-F11N for Targeted Alpha Particle Therapy. Pharmaceutics 2020; 12:pharmaceutics12111088. [PMID: 33198403 PMCID: PMC7696055 DOI: 10.3390/pharmaceutics12111088] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/06/2020] [Accepted: 11/09/2020] [Indexed: 12/24/2022] Open
Abstract
The overexpression of cholecystokinin B receptor (CCKBR) in human cancers led to the development of radiolabeled minigastrin analogues for targeted radionuclide therapy, which aims to deliver cytotoxic radiation specifically to cancer cells. Alpha emitters (e.g., actinium-225) possess high potency in cancer cell-killing and hold promise for the treatment of malignant tumors. In these preclinical studies, we developed and evaluated CCKBR-targeted alpha particle therapy. The cellular uptake and cytotoxic effect of actinium-225 labeled and HPLC-purified minigastrin analogue [225Ac]Ac-PP-F11N were characterized in the human squamous cancer A431 cells transfected with CCKBR. Nude mice bearing A431/CCKBR tumors were used for biodistribution and therapy studies followed by histological analysis and SPECT/CT imaging. In vitro, [225Ac]Ac-PP-F11N showed CCKBR-specific and efficient internalization rate and potent cytotoxicity. The biodistribution studies of [225Ac]Ac-PP-F11N revealed CCKBR-specific uptake in tumors, whereas the therapeutic studies demonstrated dose-dependent inhibition of tumor growth and extended mean survival time, without apparent toxicity. The histological analysis of kidney and stomach indicated no severe adverse effects after [225Ac]Ac-PP-F11N administration. The post-therapy SPECT-CT images with [111In]In-PP-F11N confirmed no CCKBR-positive tumor left in the mice with complete remission. In conclusion, our study demonstrates therapeutic efficacy of [225Ac]Ac-PP-F11N without acute radiotoxicity in CCKBR-positive cancer model.
Collapse
Affiliation(s)
- Yun Qin
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Paul Scherrer Institute, 5232 Villigen, Switzerland; (Y.Q.); (S.I.); (A.B.); (R.S.)
- Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Stefan Imobersteg
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Paul Scherrer Institute, 5232 Villigen, Switzerland; (Y.Q.); (S.I.); (A.B.); (R.S.)
| | - Alain Blanc
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Paul Scherrer Institute, 5232 Villigen, Switzerland; (Y.Q.); (S.I.); (A.B.); (R.S.)
| | - Stephan Frank
- Division of Neuropathology, Institute of Pathology, University of Basel, 4031 Basel, Switzerland;
| | - Roger Schibli
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Paul Scherrer Institute, 5232 Villigen, Switzerland; (Y.Q.); (S.I.); (A.B.); (R.S.)
- Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Martin P. Béhé
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Paul Scherrer Institute, 5232 Villigen, Switzerland; (Y.Q.); (S.I.); (A.B.); (R.S.)
- Correspondence: (M.P.B.); (M.G.); Tel.: +41-56-310-28-57 (M.P.B.); +41-56-310-28-57 (M.G.)
| | - Michal Grzmil
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Paul Scherrer Institute, 5232 Villigen, Switzerland; (Y.Q.); (S.I.); (A.B.); (R.S.)
- Correspondence: (M.P.B.); (M.G.); Tel.: +41-56-310-28-57 (M.P.B.); +41-56-310-28-57 (M.G.)
| |
Collapse
|
38
|
Investigation of a Pharmacological Approach for Reduction of Renal Uptake of Radiolabeled ADAPT Scaffold Protein. Molecules 2020; 25:molecules25194448. [PMID: 32998229 PMCID: PMC7583817 DOI: 10.3390/molecules25194448] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/25/2020] [Accepted: 09/25/2020] [Indexed: 12/12/2022] Open
Abstract
Albumin binding domain-Derived Affinity ProTeins (ADAPTs) are small (5 kDa) engineered scaffold proteins that are promising targeting agents for radionuclide-based imaging. A recent clinical study has demonstrated that radiolabeled ADAPTs can efficiently visualize human epidermal growth factor receptor 2 (HER2) expression in breast cancer using SPECT imaging. However, the use of ADAPTs directly labeled with radiometals for targeted radionuclide therapy is limited by their high reabsorption and prolonged retention of activity in kidneys. In this study, we investigated whether a co-injection of lysine or gelofusin, commonly used for reduction of renal uptake of radiolabeled peptides in clinics, would reduce the renal uptake of [99mTc]Tc(CO)3-ADAPT6 in NMRI mice. In order to better understand the mechanism behind the reabsorption of [99mTc]Tc(CO)3-ADAPT6, we included several compounds that act on various parts of the reabsorption system in kidneys. Administration of gelofusine, lysine, probenecid, furosemide, mannitol, or colchicine did not change the uptake of [99mTc]Tc(CO)3-ADAPT6 in kidneys. Sodium maleate reduced the uptake of [99mTc]Tc(CO)3-ADAPT6 to ca. 25% of the uptake in the control, a high dose of fructose (50 mmol/kg) reduced the uptake by ca. two-fold. However, a lower dose (20 mmol/kg) had no effect. These results indicate that common clinical strategies are not effective for reduction of kidney uptake of [99mTc]Tc(CO)3-ADAPT6 and that other strategies for reduction of activity uptake or retention in kidneys should be investigated for ADAPT6.
Collapse
|
39
|
Mohan AM, Lukas M, Albrecht J, Dorau-Rutke V, Koziolek EJ, Huang K, Prasad S, Brenner W, Beindorff N. Relationship of Renal Function in Mice to Strain, Sex and 177Lutetium-Somatostatin Receptor Ligand Treatment. Nuklearmedizin 2020; 59:381-386. [PMID: 32074660 DOI: 10.1055/a-1103-1661] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
AIM Aim of the study was to establish parameters for 99mTc-MAG3 SPECT renal uptake kinetics in healthy SCID mice as a function of mouse strain and sex and to evaluate the feasibility of this method for detecting 177Lu-somatostatin receptor ligand (177Lu-SRL) treatment effects on kidney function. MATERIALS AND METHODS Dynamic semi-stationary SPECT acquisitions (68 frames, total duration 35 min) was started prior to i. v. injection of 99mTc-MAG3 in 12 female and 12 male SCID mice. Additionally, 6 female SCID mice with neuroendocrine tumors were imaged 1-5 months after 177Lu-SRL (5 DOTATOC, 1 DOTA-JR11) treatment. Kidney function is expressed as maximum time to peak (Tmax), T50 and T25 in minutes (median [interquartile range]). Differences between groups were tested using the Mann-Whitney-U test, and SCID mouse parameters were compared with data for C57BL/6N mice from a recent publication. RESULTS Significant sex-based differences in Tmax between strains were observed (females: C57BL/6N 1.6 [1.4-1.7], SCID 1.4 [1.3-1.5], p = 0.05; males: C57BL/6N 1.4 [1.3-1.4], SCID 1.6 [1.4-1.7], p = 0.04). In C57BL/6N mice, females showed a later Tmax (p < 0.01) than males. SCID mice showed no difference (p = 0.14). Treated SCID mice showed no significant delay in Tmax (2.0 [1.4-2.7], p = 0.15) but a significant delay in T50 (p = 0.02) and T25 (p = 0.01) compared to healthy untreated mice. CONCLUSION This study demonstrated significant sex-related differences between SCID and C57BL/6N mouse strains in kidney function. Establishment of normal values for different strains and sexes therefore is important for experimental therapy studies. Renal SPECT imaging with 99mTc-MAG3 was sufficiently sensitive to detect 177Lu-SRL treatment toxic effects on kidney function in SCID mice.
Collapse
Affiliation(s)
- Ajay-Mohan Mohan
- Department of Nuclear Medicine, Charité-Universitätsmedizin Berlin, Germany
| | - Mathias Lukas
- Department of Nuclear Medicine, Charité-Universitätsmedizin Berlin, Germany
| | - Jakob Albrecht
- Department of Nuclear Medicine, Charité-Universitätsmedizin Berlin, Germany
- German Cancer Consortium (DKTK), partner site Berlin, Germany
| | - Viktoria Dorau-Rutke
- Department of Nuclear Medicine, Charité-Universitätsmedizin Berlin, Germany
- Department of Internal Medicine, Military Hospital Hamburg, Germany
| | - Eva J Koziolek
- Department of Nuclear Medicine, Charité-Universitätsmedizin Berlin, Germany
- German Cancer Consortium (DKTK), partner site Berlin, Germany
- German Cancer Research Center (DKFZ) Heidelberg, Germany
| | - Kai Huang
- Department of Nuclear Medicine, Charité-Universitätsmedizin Berlin, Germany
| | - Sonal Prasad
- Department of Nuclear Medicine, Charité-Universitätsmedizin Berlin, Germany
- Berlin Experimental Radionuclide Imaging Center (BERIC), Charité-Universitätsmedizin Berlin, Germany
| | - Winfried Brenner
- Department of Nuclear Medicine, Charité-Universitätsmedizin Berlin, Germany
- German Cancer Consortium (DKTK), partner site Berlin, Germany
| | - Nicola Beindorff
- Berlin Experimental Radionuclide Imaging Center (BERIC), Charité-Universitätsmedizin Berlin, Germany
| |
Collapse
|
40
|
Huang Y, Jiang K, Zhang X, Chung EJ. The effect of size, charge, and peptide ligand length on kidney targeting by small, organic nanoparticles. Bioeng Transl Med 2020; 5:e10173. [PMID: 33005739 PMCID: PMC7510478 DOI: 10.1002/btm2.10173] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/19/2020] [Accepted: 07/19/2020] [Indexed: 12/13/2022] Open
Abstract
Chronic kidney disease (CKD) affects 15% of the US adult population. However, most clinically available drugs for CKD show low bioavailability to the kidneys and non-specific uptake by other organs which results in adverse side effects. Hence, a targeted, drug delivery strategy to enhance kidney drug delivery is highly desired. Recently, our group developed small, organic nanoparticles called peptide amphiphile micelles (PAM) functionalized with the zwitterionic peptide ligand, (KKEEE)3K, that passage through the glomerular filtration barrier for kidney accumulation. Despite high bioavailability to the kidneys, these micelles also accumulated in the liver to a similar extent. To further optimize the physicochemical properties and develop design rules for kidney-targeting micelles, we synthesized a library of PAMs of varying size, charge, and peptide repeats. Specifically, variations of the original (KKEEE)3K peptide including (KKEEE)2K, (KKEEE)K, (EEKKK)3E, (EEKKK)2E, (EEKKK)E, KKKKK, and EEEEE were functionalized onto nanoparticles, and peptide surface density and PEG linker molecular weight were altered. After characterization with transmission electron microscopy (TEM) and dynamic light scattering (DLS), nanoparticles were intravenously administered into wildtype mice, and biodistribution was assessed through ex vivo imaging. All micelles localized to the kidneys, but nanoparticles that are positively-charged, close to the renal filtration size cut-off, and consisted of additional zwitterionic peptide sequences generally showed higher renal accumulation. Upon immunohistochemistry, micelles were confirmed to bind to the multiligand receptor, megalin, and histological analyses showed no tissue damage. Our study provides insight into the design of micelle carriers for kidney targeting and their potential for future therapeutic application.
Collapse
Affiliation(s)
- Yi Huang
- Department of Biomedical EngineeringUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Kairui Jiang
- Department of Biomedical EngineeringUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Xuting Zhang
- Department of Biomedical EngineeringUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Eun Ji Chung
- Department of Biomedical EngineeringUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
- Department of Chemical Engineering and Materials ScienceUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
- Department of Medicine, Division of Nephrology and HypertensionUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
- Department of Surgery, Division of Vascular Surgery and Endovascular TherapyUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| |
Collapse
|
41
|
Decreased 68Ga-NOTA-exendin-4 renal uptake in patients pretreated with Gelofusine infusion: a randomized controlled study. JOURNAL OF PANCREATOLOGY 2020. [DOI: 10.1097/jp9.0000000000000053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
42
|
Bendre S, Zhang Z, Kuo HT, Rousseau J, Zhang C, Merkens H, Roxin Á, Bénard F, Lin KS. Evaluation of Met-Val-Lys as a Renal Brush Border Enzyme-Cleavable Linker to Reduce Kidney Uptake of 68Ga-Labeled DOTA-Conjugated Peptides and Peptidomimetics. Molecules 2020; 25:molecules25173854. [PMID: 32854201 PMCID: PMC7503470 DOI: 10.3390/molecules25173854] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/17/2020] [Accepted: 08/21/2020] [Indexed: 12/24/2022] Open
Abstract
High kidney uptake is a common feature of peptide-based radiopharmaceuticals, leading to reduced detection sensitivity for lesions adjacent to kidneys and lower maximum tolerated therapeutic dose. In this study, we evaluated if the Met-Val-Lys (MVK) linker could be used to lower kidney uptake of 68Ga-labeled DOTA-conjugated peptides and peptidomimetics. A model compound, [68Ga]Ga-DOTA-AmBz-MVK(Ac)-OH (AmBz: aminomethylbenzoyl), and its derivative, [68Ga]Ga-DOTA-AmBz-MVK(HTK01166)-OH, coupled with the PSMA (prostate-specific membrane antigen)-targeting motif of the previously reported HTK01166 were synthesized and evaluated to determine if they could be recognized and cleaved by the renal brush border enzymes. Additionally, positron emission tomography (PET) imaging, ex vivo biodistribution and in vivo stability studies were conducted in mice to evaluate their pharmacokinetics. [68Ga]Ga-DOTA-AmBz-MVK(Ac)-OH was effectively cleaved specifically by neutral endopeptidase (NEP) of renal brush border enzymes at the Met-Val amide bond, and the radio-metabolite [68Ga]Ga-DOTA-AmBz-Met-OH was rapidly excreted via the renal pathway with minimal kidney retention. [68Ga]Ga-DOTA-AmBz-MVK(HTK01166)-OH retained its PSMA-targeting capability and was also cleaved by NEP, although less effectively when compared to [68Ga]Ga-DOTA-AmBz-MVK(Ac)-OH. The kidney uptake of [68Ga]Ga-DOTA-AmBz-MVK(HTK01166)-OH was 30% less compared to that of [68Ga]Ga-HTK01166. Our data demonstrated that derivatives of [68Ga]Ga-DOTA-AmBz-MVK-OH can be cleaved specifically by NEP, and therefore, MVK can be a promising cleavable linker for use to reduce kidney uptake of radiolabeled DOTA-conjugated peptides and peptidomimetics.
Collapse
Affiliation(s)
- Shreya Bendre
- Department of Molecular Oncology, BC Cancer, Vancouver, BC V5Z 1L3, Canada; (S.B.); (Z.Z.); (H.-T.K.); (J.R.); (C.Z.); (H.M.); (Á.R.); (F.B.)
| | - Zhengxing Zhang
- Department of Molecular Oncology, BC Cancer, Vancouver, BC V5Z 1L3, Canada; (S.B.); (Z.Z.); (H.-T.K.); (J.R.); (C.Z.); (H.M.); (Á.R.); (F.B.)
| | - Hsiou-Ting Kuo
- Department of Molecular Oncology, BC Cancer, Vancouver, BC V5Z 1L3, Canada; (S.B.); (Z.Z.); (H.-T.K.); (J.R.); (C.Z.); (H.M.); (Á.R.); (F.B.)
| | - Julie Rousseau
- Department of Molecular Oncology, BC Cancer, Vancouver, BC V5Z 1L3, Canada; (S.B.); (Z.Z.); (H.-T.K.); (J.R.); (C.Z.); (H.M.); (Á.R.); (F.B.)
| | - Chengcheng Zhang
- Department of Molecular Oncology, BC Cancer, Vancouver, BC V5Z 1L3, Canada; (S.B.); (Z.Z.); (H.-T.K.); (J.R.); (C.Z.); (H.M.); (Á.R.); (F.B.)
| | - Helen Merkens
- Department of Molecular Oncology, BC Cancer, Vancouver, BC V5Z 1L3, Canada; (S.B.); (Z.Z.); (H.-T.K.); (J.R.); (C.Z.); (H.M.); (Á.R.); (F.B.)
| | - Áron Roxin
- Department of Molecular Oncology, BC Cancer, Vancouver, BC V5Z 1L3, Canada; (S.B.); (Z.Z.); (H.-T.K.); (J.R.); (C.Z.); (H.M.); (Á.R.); (F.B.)
| | - François Bénard
- Department of Molecular Oncology, BC Cancer, Vancouver, BC V5Z 1L3, Canada; (S.B.); (Z.Z.); (H.-T.K.); (J.R.); (C.Z.); (H.M.); (Á.R.); (F.B.)
- Department of Functional Imaging, BC Cancer, Vancouver, BC V5Z 4E6, Canada
- Department of Radiology, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| | - Kuo-Shyan Lin
- Department of Molecular Oncology, BC Cancer, Vancouver, BC V5Z 1L3, Canada; (S.B.); (Z.Z.); (H.-T.K.); (J.R.); (C.Z.); (H.M.); (Á.R.); (F.B.)
- Department of Functional Imaging, BC Cancer, Vancouver, BC V5Z 4E6, Canada
- Department of Radiology, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
- Correspondence:
| |
Collapse
|
43
|
Osl T, Schmidt A, Schwaiger M, Schottelius M, Wester HJ. A new class of PentixaFor- and PentixaTher-based theranostic agents with enhanced CXCR4-targeting efficiency. Am J Cancer Res 2020; 10:8264-8280. [PMID: 32724470 PMCID: PMC7381729 DOI: 10.7150/thno.45537] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 06/05/2020] [Indexed: 02/07/2023] Open
Abstract
Non-invasive PET imaging of CXCR4 expression in cancer and inflammation as well as CXCR4-targeted radioligand therapy (RLT) have recently found their way into clinical research by the development of the theranostic agents [68Ga]PentixaFor (cyclo(D-Tyr1-D-[NMe]Orn2(AMBS-[68Ga]DOTA)-Arg3-Nal4-Gly5) = [68Ga]DOTA-AMBS-CPCR4) and [177Lu/90Y]PentixaTher (cyclo(D-3-iodo-Tyr1-D-[NMe]Orn2(AMBS-[177Lu/90Y]DOTA)-Arg3-Nal4-Gly5) = [177Lu/90Y]DOTA-AMBS-iodoCPCR4). Although convincing clinical results have already been obtained with both agents, this study was designed to further investigate the required structural elements for improved ligand-receptor interaction for both peptide cores (CPCR4 and iodoCPCR4). To this aim, a series of DOTA-conjugated CPCR4- and iodoCPCR4-based ligands with new linker structures, replacing the AMBA-linker in PentixaFor and PentixaTher, were synthesized and evaluated. Methods: The in vitro investigation of the novel compounds alongside with the reference peptides PentixaFor and PentixaTher encompassed the determination of hCXCR4 and mCXCR4 affinity (IC50) of the respective natGa-, natLu-, natY- and natBi-complexes in Jurkat and Eμ-myc 1080 cells using [125I]FC-131 and [125I]CPCR4.3 as radioligands, respectively, as well as the evaluation of the internalization and externalization kinetics of selected 68Ga- and 177Lu-labeled compounds in hCXCR4-transfected Chem-1 cells. Comparative small animal PET imaging studies (1h p.i.) as well as in vivo biodistribution studies (1, 6 and 48h p.i.) were performed in Daudi (human B cell lymphoma) xenograft bearing CB17 SCID mice. Results: Based on the affinity data and cellular uptake studies, [68Ga/177Lu]DOTA-r-a-ABA-CPCR4 and [68Ga/177Lu]DOTA-r-a-ABA-iodoCPCR4 (with r-a-ABA = D-Arg-D-Ala-4-aminobenzoyl-) were selected for further evaluation. Both analogs show app. 10-fold enhanced hCXCR4 affinity compared to the respective references [68Ga]PentixaFor and [177Lu]PentixaTher, four times higher cellular uptake in hCXCR4 expressing cells and improved cellular retention. Unfortunately, the improved in vitro binding and uptake characteristics of [68Ga]DOTA-r-a-ABA-CPCR4 and -iodoCPCR4 could not be recapitulated in initial PET imaging studies; both compounds showed similar uptake in the Daudi xenografts as [68Ga]PentixaFor, alongside with higher background accumulation, especially in the kidneys. However, the subsequent biodistribution studies performed for the corresponding 177Lu-labeled analogs revealed a clear superiority of [177Lu]DOTA-r-a-ABA-CPCR4 and [177Lu]DOTA-r-a-ABA-iodoCPCR4 over [177Lu]PentixaTher with respect to tumor uptake (18.3±3.7 and 17.2±2.0 %iD/g, respectively, at 1h p.i. vs 12.4±3.7%iD/g for [177Lu]PentixaTher) as well as activity retention in tumor up to 48h. Especially for [177Lu]DOTA-r-a-ABA-CPCR4 with its low background accumulation, tumor/organ ratios at 48h were 2- to 4-fold higher than those obtained for [177Lu]PentixaTher (except for kidney). Conclusions: The in-depth evaluation of a series of novel CPCR4- and iodoCPCR4 analogs with modified linker structure has yielded reliable structure-activity relationships. It was generally observed that a) AMBA-by-ABA-substitution leads to enhanced ligand internalization, b) the extension of the ABA-linker by two additional amino acids (DOTA-Xaa2-Xaa1-ABA-) provides sufficient linker length to minimize the interaction of the [M3+]DOTA-chelate with the receptor, and that c) introduction of a cationic side chain (Xaa2) greatly enhances receptor affinity of the constructs, obliterating the necessity for Tyr1-iodination of the pentapeptide core to maintain high receptor affinity (such as in [177Lu]PentixaTher). As a result, [177Lu]DOTA-r-a-ABA-CPCR4 has emerged from this study as a powerful second-generation therapeutic CXCR4 ligand with greatly improved targeting efficiency and tumor retention and will be further evaluated in preclinical and clinical CXCR4-targeted dosimetry and RLT studies.
Collapse
|
44
|
Grob NM, Schmid S, Schibli R, Behe M, Mindt TL. Design of Radiolabeled Analogs of Minigastrin by Multiple Amide-to-Triazole Substitutions. J Med Chem 2020; 63:4496-4505. [PMID: 32302130 DOI: 10.1021/acs.jmedchem.9b01937] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The insertion of single 1,4-disubstituted 1,2,3-triazoles as metabolically stable bioisosteres of trans-amide bonds (triazole scan) was recently applied to the 177Lu-labeled tumor-targeting analog of minigastrin, [Nle15]MG11. The reported novel mono-triazolo-peptidomimetics of [Nle15]MG11 showed either improved resistance against enzymatic degradation or a significantly increased affinity toward the target receptor but never both. To enhance further the tumor-targeting properties of the minigastrin analogs, we studied conjugates with multiple amide-to-triazole substitutions for additive or synergistic effects. Promising candidates were identified by modification of two or three amide bonds, which yielded both improved stability and increased receptor affinity of the peptidomimetics in vitro. Biodistribution studies of radiolabeled multi-triazolo-peptidomimetics in mice bearing receptor-positive tumor xenografts revealed up to 4-fold increased tumor uptake in comparison to the all-amide reference compound [Nle15]MG11. In addition, we report here for the first time a linear peptidomimetic with three triazole insertions in its backbone and maintained biological activity.
Collapse
Affiliation(s)
- Nathalie M Grob
- Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zürich, Switzerland
| | - Sarah Schmid
- Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zürich, Switzerland
| | - Roger Schibli
- Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zürich, Switzerland.,Center for Radiopharmaceutical Sciences, Division of Biology and Chemistry, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - Martin Behe
- Center for Radiopharmaceutical Sciences, Division of Biology and Chemistry, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - Thomas L Mindt
- Ludwig Boltzmann Institute Applied Diagnostics, General Hospital of Vienna, 1090 Vienna, Austria.,Department of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria.,Department of Biomedical Imaging and Image Guided Therapy, Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
45
|
Grob NM, Häussinger D, Deupi X, Schibli R, Behe M, Mindt TL. Triazolo-Peptidomimetics: Novel Radiolabeled Minigastrin Analogs for Improved Tumor Targeting. J Med Chem 2020; 63:4484-4495. [PMID: 32302139 DOI: 10.1021/acs.jmedchem.9b01936] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
MG11 is a truncated analog of minigastrin, a peptide with high affinity and specificity toward the cholecystokinin-2 receptor (CCK2R), which is overexpressed by different tumors. Thus, radiolabeled MG11 derivatives have great potential for use in cancer diagnosis and therapy. A drawback of MG11 is its fast degradation by proteases, leading to moderate tumor uptake in vivo. We introduced 1,4-disubstituted 1,2,3-triazoles as metabolically stable bioisosteres to replace labile amide bonds of the peptide. The "triazole scan" yielded peptidomimetics with improved resistance to enzymatic degradation and/or enhanced affinity toward the CCK2R. Remarkably, our lead compound achieved a 10-fold increase in receptor affinity, resulting in a 2.6-fold improved tumor uptake in vivo. Modeling of the ligand-CCK2R complex suggests that an additional cation-π interaction of the aromatic triazole moiety with the Arg356 residue of the receptor is accountable for these observations. We show for the first time that the amide-to-triazole substitution strategy offers new opportunities in drug development that go beyond the metabolic stabilization of bioactive peptides.
Collapse
Affiliation(s)
- Nathalie M Grob
- Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zürich, Switzerland
| | - Daniel Häussinger
- Department of Chemistry, University of Basel, 4056 Basel, Switzerland
| | - Xavier Deupi
- Condensed Matter Theory Group, Laboratory for Scientific Computing and Modelling, Paul Scherrer Institute, 5232 Villigen, Switzerland.,Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - Roger Schibli
- Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zürich, Switzerland.,Center for Radiopharmaceutical Sciences, Division of Biology and Chemistry, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - Martin Behe
- Center for Radiopharmaceutical Sciences, Division of Biology and Chemistry, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - Thomas L Mindt
- Ludwig Boltzmann Institute Applied Diagnostics, General Hospital of Vienna, 1090 Vienna, Austria.,Department of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria.,Department of Biomedical Imaging and Image Guided Therapy, Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
46
|
Owen J, Thomas E, Menon J, Gray M, Skaripa-Koukelli I, Gill MR, Wallington S, Miller RL, Vallis KA, Carlisle R. Indium-111 labelling of liposomal HEGF for radionuclide delivery via ultrasound-induced cavitation. J Control Release 2020; 319:222-233. [PMID: 31891732 DOI: 10.1016/j.jconrel.2019.12.045] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 12/24/2019] [Accepted: 12/27/2019] [Indexed: 02/07/2023]
Abstract
The purpose of this exploratory study was to investigate the combination of a radiopharmaceutical, nanoparticles and ultrasound (US) enhanced delivery to develop a clinically viable therapeutic strategy for tumours overexpressing the epidermal growth factor receptor (EGFR). Molecularly targeted radionuclides have great potential for cancer therapy but are sometimes associated with insufficient delivery resulting in sub-cytotoxic amounts of radioactivity being delivered to the tumour. Liposome formulations are currently used in the clinic to reduce the side effects and improve the pharmacokinetic profile of chemotherapeutic drugs. However, in contrast to non-radioactive agents, loading and release of radiotherapeutics from liposomes can be challenging in the clinical setting. US-activated cavitation agents such as microbubbles (MBs) have been used to release therapeutics from liposomes to enhance the distribution/delivery in a target area. In an effort to harness the benefits of these techniques, the development of a liposome loaded radiopharmaceutical construct for enhanced delivery via acoustic cavitation was studied. The liposomal formulation was loaded with peptide, human epidermal growth factor (HEGF), coupled to a chelator for subsequent radiolabelling with 111Indium ([111In]In3+), in a manner designed to be compatible with preparation in a radiopharmacy. Liposomes were efficiently radiolabelled (57%) within 1 h, with release of ~12% of the radiopeptide following a 20 s exposure to US-mediated cavitation in vitro. In clonogenic studies this level of release resulted in cytotoxicity specifically in cells over-expressing the epidermal growth factor receptor (EGFR), with over 99% reduction in colony survival compared to controls. The formulation extended the circulation time and changed the biodistribution compared to the non-liposomal radiopeptide in vivo, although interestingly the biodistribution did not resemble that of liposome constructs currently used in the clinic. Cavitation of MBs co-injected with liposomes into tumours expressing high levels of EGFR resulted in a 2-fold enhancement in tumour uptake within 20 min. However, owing to the poor vascularisation of the tumour model used the same level of uptake was achieved without US after 24 h. By combining acoustic-cavitation-sensitive liposomes with radiopharmaceuticals this research represents a new concept in achieving targeted delivery of radiopharmaceuticals.
Collapse
Affiliation(s)
- Joshua Owen
- Department of Engineering Science, Institute of Biomedical Engineering, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, UK.
| | - Eloise Thomas
- CRUK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Old Road Campus, Oxford OX3 7DQ, UK
| | - Jyothi Menon
- CRUK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Old Road Campus, Oxford OX3 7DQ, UK; College of Pharmacy, The University of Rhode Island, Kingston, RI 02881, USA
| | - Michael Gray
- Department of Engineering Science, Institute of Biomedical Engineering, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, UK
| | - Irini Skaripa-Koukelli
- CRUK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Old Road Campus, Oxford OX3 7DQ, UK
| | - Martin R Gill
- CRUK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Old Road Campus, Oxford OX3 7DQ, UK
| | - Sheena Wallington
- CRUK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Old Road Campus, Oxford OX3 7DQ, UK
| | - Rebecca L Miller
- Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| | - Katherine A Vallis
- CRUK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Old Road Campus, Oxford OX3 7DQ, UK
| | - Robert Carlisle
- Department of Engineering Science, Institute of Biomedical Engineering, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, UK
| |
Collapse
|
47
|
Jacobsen CB, Raavé R, Pedersen MØ, Adumeau P, Moreau M, Valverde IE, Bjørnsdottir I, Kristensen JB, Grove MF, Raun K, McGuire J, Goncalves V, Heskamp S, Denat F, Gustafsson M. Synthesis and evaluation of zirconium-89 labelled and long-lived GLP-1 receptor agonists for PET imaging. Nucl Med Biol 2020; 82-83:49-56. [DOI: 10.1016/j.nucmedbio.2019.11.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 11/25/2019] [Accepted: 11/28/2019] [Indexed: 12/27/2022]
|
48
|
Zhang X, Chen F, Turker MZ, Ma K, Zanzonico P, Gallazzi F, Shah MA, Prater AR, Wiesner U, Bradbury MS, McDevitt MR, Quinn TP. Targeted melanoma radiotherapy using ultrasmall 177Lu-labeled α-melanocyte stimulating hormone-functionalized core-shell silica nanoparticles. Biomaterials 2020; 241:119858. [PMID: 32120314 DOI: 10.1016/j.biomaterials.2020.119858] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 01/27/2020] [Accepted: 02/10/2020] [Indexed: 02/07/2023]
Abstract
Lutetium-177 (177Lu) radiolabeled ultrasmall (~6 nm dia.) fluorescent core-shell silica nanoparticles (Cornell prime dots or C' dots) were developed for improving efficacy of targeted radiotherapy in melanoma models. PEGylated C' dots were surface engineered to display 10-15 alpha melanocyte stimulating hormone (αMSH) cyclic peptide analogs for targeting the melanocortin-1 receptor (MC1-R) over-expressed on melanoma tumor cells. The 177Lu-DOTA-αMSH-PEG-C' dot product was radiochemically stable, biologically active, and exhibited high affinity cellular binding properties and internalization. Selective tumor uptake and favorable biodistribution properties were also demonstrated, in addition to bulk renal clearance, in syngeneic B16F10 and human M21 xenografted models. Prolonged survival was observed in the treated cohorts relative to controls. Dosimetric analysis showed no excessively high absorbed dose among normal organs. Correlative histopathology of ex vivo treated tumor specimens revealed expected necrotic changes; no acute pathologic findings were noted in the liver or kidneys. Collectively, these results demonstrated that 177Lu-DOTA-αMSH-PEG-C' dot targeted melanoma therapy overcame the unfavorable biological properties and dose-limiting toxicities associated with existing mono-molecular treatments. The unique and tunable surface chemistries of this targeted ultrasmall radiotherapeutic, coupled with its favorable pharmacokinetic properties, substantially improved treatment efficacy and demonstrated a clear survival benefit in melanoma models, which supports its further clinical translation.
Collapse
Affiliation(s)
- Xiuli Zhang
- Harry S. Truman Veterans' Hospital, 800 Hospital Dr., Columbia, MO 65201, United States; Department of Biochemistry, University of Missouri, Columbia, MO 65211, United States
| | - Feng Chen
- Department of Radiology, Sloan Kettering Institute for Cancer Research, New York, NY 10065, United States
| | - Melik Z Turker
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY 14853, United States
| | - Kai Ma
- Elucida Oncology, New York, NY 10016, United States
| | - Pat Zanzonico
- Department of Medical Physics, Sloan Kettering Institute for Cancer Research, New York, NY 10065, United States
| | - Fabio Gallazzi
- Department of Chemistry and Research Core Facilities, University of Missouri, Columbia, MO 65211, United States
| | - Manankumar A Shah
- Harry S. Truman Veterans' Hospital, 800 Hospital Dr., Columbia, MO 65201, United States; Department of Biochemistry, University of Missouri, Columbia, MO 65211, United States
| | - Austin R Prater
- Harry S. Truman Veterans' Hospital, 800 Hospital Dr., Columbia, MO 65201, United States; Department of Biochemistry, University of Missouri, Columbia, MO 65211, United States
| | - Ulrich Wiesner
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY 14853, United States
| | - Michelle S Bradbury
- Department of Radiology, Sloan Kettering Institute for Cancer Research, New York, NY 10065, United States; Molecular Pharmacology Program, Sloan Kettering Institute for Cancer Research, New York, NY 10065, United States
| | - Michael R McDevitt
- Department of Radiology, Sloan Kettering Institute for Cancer Research, New York, NY 10065, United States
| | - Thomas P Quinn
- Harry S. Truman Veterans' Hospital, 800 Hospital Dr., Columbia, MO 65201, United States; Department of Biochemistry, University of Missouri, Columbia, MO 65211, United States.
| |
Collapse
|
49
|
Satpati D, Vats K, Sharma R, Sarma HD, Dash A. 68 Ga-labeling of internalizing RGD (iRGD) peptide functionalized with DOTAGA and NODAGA chelators. J Pept Sci 2020; 26:e3241. [PMID: 31984553 DOI: 10.1002/psc.3241] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 01/01/2020] [Accepted: 01/13/2020] [Indexed: 02/04/2023]
Abstract
The dual interaction with integrins and neuropilin-1 receptor is the peculiar feature of iRGD peptide. Hence, in the present study, two iRGD peptide analogs were synthesized with DOTAGA and NODAGA as bifunctional chelator and aminohexanoic acid as a spacer for radiometalation with 68 GaCl3 . Negatively charged 68 Ga-DOTAGA-iRGD and neutral 68 Ga-NODAGA-iRGD radiotracers were investigated through in vitro cell uptake studies and in vivo biodistribution studies. Significant internalization of radiotracers in murine melanoma B16F10 cells was observed during in vitro studies. During in vivo studies, tumor uptake was higher for neutral 68 Ga-NODAGA-iRGD, but 68 Ga-DOTAGA-iRGD exhibited better tumor-to-blood ratio due to faster blood clearance. High kidney uptake of the two radiotracers was the limitation, which needs to be resolved through modification either in the peptide backbone or spacer/chelator.
Collapse
Affiliation(s)
- Drishty Satpati
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Mumbai, 400085, India.,Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400094, India
| | - Kusum Vats
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Mumbai, 400085, India
| | - Rohit Sharma
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Mumbai, 400085, India.,Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400094, India
| | - Haladhar Dev Sarma
- Radiation Biology and Health Science Division, Bhabha Atomic Research Centre, Mumbai, 400085, India
| | - Ashutosh Dash
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Mumbai, 400085, India.,Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400094, India
| |
Collapse
|
50
|
Velikyan I, Eriksson O. Advances in GLP-1 receptor targeting radiolabeled agent development and prospective of theranostics. Theranostics 2020; 10:437-461. [PMID: 31903131 PMCID: PMC6929622 DOI: 10.7150/thno.38366] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 09/10/2019] [Indexed: 12/15/2022] Open
Abstract
In the light of theranostics/radiotheranostics and prospective of personalized medicine in diabetes and oncology, this review presents prior and current advances in the development of radiolabeled imaging and radiotherapeutic exendin-based agents targeting glucagon-like peptide-1 receptor. The review covers chemistry, preclinical, and clinical evaluation. Such critical aspects as structure-activity-relationship, stability, physiological potency, kidney uptake, and dosimetry are discussed.
Collapse
Affiliation(s)
- Irina Velikyan
- Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
| | - Olof Eriksson
- Science for Life Laboratory, Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
| |
Collapse
|