1
|
Leifheit ME, Johnson G, Kuzel TM, Schneider JR, Barker E, Yun HD, Ustun C, Goldufsky JW, Gupta K, Marzo AL. Enhancing Therapeutic Efficacy of FLT3 Inhibitors with Combination Therapy for Treatment of Acute Myeloid Leukemia. Int J Mol Sci 2024; 25:9448. [PMID: 39273395 PMCID: PMC11394928 DOI: 10.3390/ijms25179448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/21/2024] [Accepted: 08/23/2024] [Indexed: 09/15/2024] Open
Abstract
FMS-like tyrosine kinase 3 (FLT3) mutations are genetic changes found in approximately thirty percent of patients with acute myeloid leukemia (AML). FLT3 mutations in AML represent a challenging clinical scenario characterized by a high rate of relapse, even after allogeneic hematopoietic stem cell transplantation (allo-HSCT). The advent of FLT3 tyrosine kinase inhibitors (TKIs), such as midostaurin and gilteritinib, has shown promise in achieving complete remission. However, a substantial proportion of patients still experience relapse following TKI treatment, necessitating innovative therapeutic strategies. This review critically addresses the current landscape of TKI treatments for FLT3+ AML, with a particular focus on gilteritinib. Gilteritinib, a highly selective FLT3 inhibitor, has demonstrated efficacy in targeting the mutant FLT3 receptor, thereby inhibiting aberrant signaling pathways that drive leukemic proliferation. However, monotherapy with TKIs may not be sufficient to eradicate AML blasts. Specifically, we provide evidence for integrating gilteritinib with mammalian targets of rapamycin (mTOR) inhibitors and interleukin-15 (IL-15) complexes. The combination of gilteritinib, mTOR inhibitors, and IL-15 complexes presents a compelling strategy to enhance the eradication of AML blasts and enhance NK cell killing, offering a potential for improved patient outcomes.
Collapse
Affiliation(s)
- Malia E Leifheit
- Department of Internal Medicine, Division of Hematology, and Oncology and Cell Therapy, Rush University Medical Center, Chicago, IL 60612, USA
| | - Gunnar Johnson
- Department of Internal Medicine, Division of Hematology, and Oncology and Cell Therapy, Rush University Medical Center, Chicago, IL 60612, USA
| | - Timothy M Kuzel
- Department of Internal Medicine, Division of Hematology, and Oncology and Cell Therapy, Rush University Medical Center, Chicago, IL 60612, USA
| | - Jeffrey R Schneider
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL 60612, USA
| | - Edward Barker
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL 60612, USA
| | - Hyun D Yun
- Hematology, Oncology, Veterans Affairs Long Beach Healthcare System, Long Beach, CA 90822, USA
- Department of Medicine, Division of Hematology, Oncology, School of Medicine, University of California, Irvine, CA 92617, USA
| | - Celalettin Ustun
- Department of Internal Medicine, Division of Hematology, and Oncology and Cell Therapy, Rush University Medical Center, Chicago, IL 60612, USA
| | - Josef W Goldufsky
- Department of Internal Medicine, Division of Hematology, and Oncology and Cell Therapy, Rush University Medical Center, Chicago, IL 60612, USA
| | - Kajal Gupta
- Department of Surgery, Rush University Medical Center, Chicago, IL 60612, USA
| | - Amanda L Marzo
- Department of Internal Medicine, Division of Hematology, and Oncology and Cell Therapy, Rush University Medical Center, Chicago, IL 60612, USA
| |
Collapse
|
2
|
Chen Z, Ou Y, Ye F, Li W, Jiang H, Liu S. Machine learning identifies the role of SMAD6 in the prognosis and drug susceptibility in bladder cancer. J Cancer Res Clin Oncol 2024; 150:264. [PMID: 38767747 PMCID: PMC11106122 DOI: 10.1007/s00432-024-05798-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 05/10/2024] [Indexed: 05/22/2024]
Abstract
BACKGROUND Bladder cancer (BCa) is among the most prevalent malignant tumors affecting the urinary system. Due to its highly recurrent nature, standard treatments such as surgery often fail to significantly improve patient prognosis. Our research aims to predict prognosis and identify precise therapeutic targets for novel treatment interventions. METHODS We collected and screened genes related to the TGF-β signaling pathway and performed unsupervised clustering analysis on TCGA-BLCA samples based on these genes. Our analysis revealed two novel subtypes of bladder cancer with completely different biological characteristics, including immune microenvironment, drug sensitivity, and more. Using machine learning classifiers, we identified SMAD6 as a hub gene contributing to these differences and further investigated the role of SMAD6 in bladder cancer in the single-cell transcriptome data. Additionally, we analyzed the relationship between SMAD6 and immune checkpoint genes. Finally, we performed a series of in vitro assays to verify the function of SMAD6 in bladder cancer cell lines. RESULTS We have revealed two novel subtypes of bladder cancer, among which C1 exhibits a worse prognosis, lower drug sensitivity, a more complex tumor microenvironment, and a 'colder' immune microenvironment compared to C2. We identified SMAD6 as a key gene responsible for the differences and further explored its impact on the molecular characteristics of bladder cancer. Through in vitro experiments, we found that SMAD6 promoted the prognosis of BCa patients by inhibiting the proliferation and migration of BCa cells. CONCLUSION Our study reveals two novel subtypes of BCa and identifies SMAD6 as a highly promising therapeutic target.
Collapse
Affiliation(s)
- Ziang Chen
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
- Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yuxi Ou
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
- Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Fangdie Ye
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
- Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Weijian Li
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
- Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Haowen Jiang
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China.
- Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China.
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China.
| | - Shenghua Liu
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
3
|
Saeed MA, Peng B, Kim K, Rawat K, Kuehm LM, Siegel ZR, Borkowski A, Habib N, Van Tine B, Sheikh N, Tuyen V, Thorek DLJ, Fehniger TA, Pachynski RK. High-Dimensional Analyses Reveal IL15 Enhances Activation of Sipuleucel-T Lymphocyte Subsets and Reverses Immunoresistance. Cancer Immunol Res 2024; 12:559-574. [PMID: 38407894 DOI: 10.1158/2326-6066.cir-23-0652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 12/21/2023] [Accepted: 02/21/2024] [Indexed: 02/27/2024]
Abstract
Sipuleucel-T (sip-T) is the only FDA-approved autologous cellular immunotherapy for metastatic castration-resistant prostate cancer (mCRPC). To elucidate parameters of the response profile to this therapy, we report high-dimensional analyses of sip-T using cytometry by time of flight (CyTOF) and show a lymphoid predominance, with CD3+ T cells constituting the highest proportion (median ∼60%) of sip-T, followed by B cells, and natural killer (NK) and NKT cells. We hypothesized that treatment of sip-T with homeostatic cytokines known to activate/expand effector lymphocytes could augment efficacy against prostate tumors. Of the cytokines tested, IL15 was the most effective at enhancing activation and proliferation of effector lymphocytes, as well as augmenting tumor cytotoxicity in vitro. Co-culture of sip-T with IL15 and control or prostate-relevant antigens showed substantial activation and expansion of CD8+ T cells and NKT cells in an antigen-specific manner. Adoptive transfer of IL15-treated sip-T into NSG mice resulted in more potent prostate tumor growth inhibition compared with control sip-T. Evaluation of tumor-infiltrating lymphocytes revealed a 2- to 14-fold higher influx of sip-T and a significant increase in IFNγ producing CD8+ T cells and NKT cells within the tumor microenvironment in the IL15 group. In conclusion, we put forward evidence that IL15 treatment can enhance the functional antitumor immunity of sip-T, providing rationale for combining IL15 or IL15 agonists with sip-T to treat patients with mCRPC.
Collapse
Affiliation(s)
- Muhammad A Saeed
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St Louis, Missouri
| | - Bo Peng
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St Louis, Missouri
| | - Kevin Kim
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St Louis, Missouri
| | - Kavita Rawat
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St Louis, Missouri
| | - Lindsey M Kuehm
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St Louis, Missouri
| | - Zoe R Siegel
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St Louis, Missouri
| | - Ariel Borkowski
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St Louis, Missouri
| | - Nabih Habib
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St Louis, Missouri
| | - Brian Van Tine
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St Louis, Missouri
- Siteman Cancer Center, Washington University School of Medicine, St Louis, Missouri
| | | | - Vu Tuyen
- Dendreon Pharmaceuticals LLC, Seattle, Washington
| | - Daniel L J Thorek
- Siteman Cancer Center, Washington University School of Medicine, St Louis, Missouri
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, Missouri
| | - Todd A Fehniger
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St Louis, Missouri
- Siteman Cancer Center, Washington University School of Medicine, St Louis, Missouri
- Bursky Center for Human Immunology and Immunotherapy, Washington University School of Medicine, St Louis, Missouri
| | - Russell K Pachynski
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St Louis, Missouri
- Siteman Cancer Center, Washington University School of Medicine, St Louis, Missouri
- Bursky Center for Human Immunology and Immunotherapy, Washington University School of Medicine, St Louis, Missouri
| |
Collapse
|
4
|
Deng Z, Fan T, Xiao C, Tian H, Zheng Y, Li C, He J. TGF-β signaling in health, disease, and therapeutics. Signal Transduct Target Ther 2024; 9:61. [PMID: 38514615 PMCID: PMC10958066 DOI: 10.1038/s41392-024-01764-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 08/31/2023] [Accepted: 01/31/2024] [Indexed: 03/23/2024] Open
Abstract
Transforming growth factor (TGF)-β is a multifunctional cytokine expressed by almost every tissue and cell type. The signal transduction of TGF-β can stimulate diverse cellular responses and is particularly critical to embryonic development, wound healing, tissue homeostasis, and immune homeostasis in health. The dysfunction of TGF-β can play key roles in many diseases, and numerous targeted therapies have been developed to rectify its pathogenic activity. In the past decades, a large number of studies on TGF-β signaling have been carried out, covering a broad spectrum of topics in health, disease, and therapeutics. Thus, a comprehensive overview of TGF-β signaling is required for a general picture of the studies in this field. In this review, we retrace the research history of TGF-β and introduce the molecular mechanisms regarding its biosynthesis, activation, and signal transduction. We also provide deep insights into the functions of TGF-β signaling in physiological conditions as well as in pathological processes. TGF-β-targeting therapies which have brought fresh hope to the treatment of relevant diseases are highlighted. Through the summary of previous knowledge and recent updates, this review aims to provide a systematic understanding of TGF-β signaling and to attract more attention and interest to this research area.
Collapse
Affiliation(s)
- Ziqin Deng
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Tao Fan
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Chu Xiao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - He Tian
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yujia Zheng
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Chunxiang Li
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Jie He
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
5
|
Ye J, Liu Q, He Y, Song Z, Lin B, Hu Z, Hu J, Ning Y, Cai C, Li Y. Combined therapy of CAR-IL-15/IL-15Rα-T cells and GLIPR1 knockdown in cancer cells enhanced anti-tumor effect against gastric cancer. J Transl Med 2024; 22:171. [PMID: 38368374 PMCID: PMC10874561 DOI: 10.1186/s12967-024-04982-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 02/12/2024] [Indexed: 02/19/2024] Open
Abstract
BACKGROUND Chimeric antigen receptor (CAR) T cell therapy has shown remarkable responses in hematological malignancies with several approved products, but not in solid tumors. Patients suffer from limited response and tumor relapse due to low efficacy of CAR-T cells in the complicated and immunosuppressive tumor microenvironment. This clinical challenge has called for better CAR designs and combined strategies to improve CAR-T cell therapy against tumor changes. METHODS In this study, IL-15/IL-15Rα was inserted into the extracellular region of CAR targeting mesothelin. In-vitro cytotoxicity and cytokine production were detected by bioluminescence-based killing and ELISA respectively. In-vivo xenograft mice model was used to evaluate the anti-tumor effect of CAR-T cells. RNA-sequencing and online database analysis were used to identify new targets in residual gastric cancer cells after cytotoxicity assay. CAR-T cell functions were detected in vitro and in vivo after GLI Pathogenesis Related 1 (GLIPR1) knockdown in gastric cancer cells. Cell proliferation and migration of gastric cancer cells were detected by CCK-8 and scratch assay respectively after GLIPR1 were overexpressed or down-regulated. RESULTS CAR-T cells constructed with IL-15/IL-15Rα (CAR-ss-T) showed significantly improved CAR-T cell expansion, cytokine production and cytotoxicity, and resulted in superior tumor control compared to conventional CAR-T cells in gastric cancer. GLIPR1 was up-regulated after CAR-T treatment and survival was decreased in gastric cancer patients with high GLIPR1 expression. Overexpression of GLIPR1 inhibited cytotoxicity of conventional CAR-T but not CAR-ss-T cells. CAR-T treatment combined with GLIPR1 knockdown increased anti-tumor efficacy in vitro and in vivo. CONCLUSIONS Our data demonstrated for the first time that this CAR structure design combined with GLIPR1 knockdown in gastric cancer improved CAR-T cell-mediated anti-tumor response.
Collapse
Affiliation(s)
- Jianbin Ye
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Qiaoyuan Liu
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Yunxuan He
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Zhenkun Song
- Shenzhen Beike Biotechnology Co., Ltd., Shenzhen, 518000, Guangdong, People's Republic of China
| | - Bao Lin
- Shenzhen Beike Biotechnology Co., Ltd., Shenzhen, 518000, Guangdong, People's Republic of China
| | - Zhiwei Hu
- Shenzhen Beike Biotechnology Co., Ltd., Shenzhen, 518000, Guangdong, People's Republic of China
| | - Juanyuan Hu
- Shenzhen Beike Biotechnology Co., Ltd., Shenzhen, 518000, Guangdong, People's Republic of China
| | - Yunshan Ning
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, Guangdong, People's Republic of China.
| | - Cheguo Cai
- Shenzhen Beike Biotechnology Co., Ltd., Shenzhen, 518000, Guangdong, People's Republic of China.
| | - Yan Li
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, Guangdong, People's Republic of China.
| |
Collapse
|
6
|
Kumar V, Mahato RI. Natural killer cells for pancreatic cancer immunotherapy: Role of nanoparticles. Cancer Lett 2023; 579:216462. [PMID: 37924937 PMCID: PMC10842153 DOI: 10.1016/j.canlet.2023.216462] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/04/2023] [Accepted: 10/17/2023] [Indexed: 11/06/2023]
Abstract
Advanced pancreatic cancer patients have a dismal prognosis despite advances in integrative therapy. The field of tumor immunology has witnessed significant advancements for cancer treatment. However, immunotherapy for pancreatic cancer is not very effective due to its highly complex tumor microenvironment (TME). Natural killer (NK) cells are lymphocytes that play an important role in the innate immune system. NK cells do not require antigen pre-sensitization, nor are they confined by the major histocompatibility complex (MHC). NK cells have the potential to eliminate cancer cells through CAR-dependent and CAR-independent pathways, demonstrating reduced levels of systemic toxicity in the process. The availability of several potential sources of NK cells is an additional benefit that contributes to meeting the therapeutic criteria. Adding nanotechnology to enhance the functions of effector NK cells is also an appealing strategy. This article primarily discusses various approaches recently been utilized to enhance the NK functions for the treatment of pancreatic cancer. In addition, new advances in boosting NK cell therapeutic efficacy by nanoparticle mediation are presented, with a focus on pancreatic cancer.
Collapse
Affiliation(s)
- Virender Kumar
- Department of Pharmaceutical Sciences University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Ram I Mahato
- Department of Pharmaceutical Sciences University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
7
|
Vu SH, Pham HH, Pham TTP, Le TT, Vo MC, Jung SH, Lee JJ, Nguyen XH. Adoptive NK Cell Therapy - a Beacon of Hope in Multiple Myeloma Treatment. Front Oncol 2023; 13:1275076. [PMID: 38023191 PMCID: PMC10656693 DOI: 10.3389/fonc.2023.1275076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023] Open
Abstract
Major advances in the treatment of multiple myeloma (MM) have been achieved by effective new agents such as proteasome inhibitors, immunomodulatory drugs, or monoclonal antibodies. Despite significant progress, MM remains still incurable and, recently, cellular immunotherapy has emerged as a promising treatment for relapsed/refractory MM. The emergence of chimeric antigen receptor (CAR) technology has transformed immunotherapy by enhancing the antitumor functions of T cells and natural killer (NK) cells, leading to effective control of hematologic malignancies. Recent advancements in gene delivery to NK cells have paved the way for the clinical application of CAR-NK cell therapy. CAR-NK cell therapy strategies have demonstrated safety, tolerability, and substantial efficacy in treating B cell malignancies in various clinical settings. However, their effectiveness in eliminating MM remains to be established. This review explores multiple approaches to enhance NK cell cytotoxicity, persistence, expansion, and manufacturing processes, and highlights the challenges and opportunities associated with CAR-NK cell therapy against MM. By shedding light on these aspects, this review aims to provide valuable insights into the potential of CAR-NK cell therapy as a promising approach for improving the treatment outcomes of MM patients.
Collapse
Affiliation(s)
- Son Hai Vu
- Hi-Tech Center and Vinmec-VinUni Institute of Immunology, Vinmec Healthcare System, Hanoi, Vietnam
| | - Ha Hong Pham
- Hi-Tech Center and Vinmec-VinUni Institute of Immunology, Vinmec Healthcare System, Hanoi, Vietnam
| | - Thao Thi Phuong Pham
- Hi-Tech Center and Vinmec-VinUni Institute of Immunology, Vinmec Healthcare System, Hanoi, Vietnam
| | - Thanh Thien Le
- Hi-Tech Center and Vinmec-VinUni Institute of Immunology, Vinmec Healthcare System, Hanoi, Vietnam
| | - Manh-Cuong Vo
- Research Center for Cancer Immunotherapy, Chonnam National University Hwasun Hospital, Hwasun, Jeollanamdo, Republic of Korea
| | - Sung-Hoon Jung
- Research Center for Cancer Immunotherapy, Chonnam National University Hwasun Hospital, Hwasun, Jeollanamdo, Republic of Korea
- Department of Hematology-Oncology, Chonnam National University Hwasun Hospital and Chonnam National University Medical School, Hwasun, Jeollanamdo, Republic of Korea
| | - Je-Jung Lee
- Research Center for Cancer Immunotherapy, Chonnam National University Hwasun Hospital, Hwasun, Jeollanamdo, Republic of Korea
- Department of Hematology-Oncology, Chonnam National University Hwasun Hospital and Chonnam National University Medical School, Hwasun, Jeollanamdo, Republic of Korea
| | - Xuan-Hung Nguyen
- Hi-Tech Center and Vinmec-VinUni Institute of Immunology, Vinmec Healthcare System, Hanoi, Vietnam
- College of Health Sciences, VinUniversity, Hanoi, Vietnam
| |
Collapse
|
8
|
Zhi L, Wang X, Gao Q, He W, Shang C, Guo C, Niu Z, Zhu W, Zhang X. Intrinsic and extrinsic factors determining natural killer cell fate: Phenotype and function. Biomed Pharmacother 2023; 165:115136. [PMID: 37453199 DOI: 10.1016/j.biopha.2023.115136] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/26/2023] [Accepted: 07/07/2023] [Indexed: 07/18/2023] Open
Abstract
Natural killer (NK) cells are derived from hematopoietic stem cells. They belong to the innate lymphoid cell family, which is an important part of innate immunity. This family plays a role in the body mainly through the release of perforin, granzyme, and various cytokines and is involved in cytotoxicity and cytokine-mediated immune regulation. NK cells involved in normal immune regulation and the tumor microenvironment (TME) can exhibit completely different states. Here, we discuss the growth, development, and function of NK cells in regard to intrinsic and extrinsic factors. Intrinsic factors are those that influence NK cells to promote cell maturation and exert their effector functions under the control of internal metabolism and self-related genes. Extrinsic factors include the metabolism of the TME and the influence of related proteins on the "fate" of NK cells. This review targets the potential of NK cell metabolism, cellular molecules, regulatory genes, and other mechanisms involved in immune regulation. We further discuss immune-mediated tumor therapy, which is the trend of current research.
Collapse
Affiliation(s)
- Lingtong Zhi
- Henan Province Engineering Research Center of Innovation for Synthetic Biology, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, Henan Province 453003, PR China
| | - Xing Wang
- Henan Province Engineering Research Center of Innovation for Synthetic Biology, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, Henan Province 453003, PR China
| | - Qing Gao
- Henan Province Engineering Research Center of Innovation for Synthetic Biology, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, Henan Province 453003, PR China
| | - Wenhui He
- Henan Province Engineering Research Center of Innovation for Synthetic Biology, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, Henan Province 453003, PR China
| | - Chongye Shang
- Henan Province Engineering Research Center of Innovation for Synthetic Biology, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, Henan Province 453003, PR China
| | - Changjiang Guo
- Henan Province Engineering Research Center of Innovation for Synthetic Biology, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, Henan Province 453003, PR China
| | - Zhiyuan Niu
- Henan Province Engineering Research Center of Innovation for Synthetic Biology, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, Henan Province 453003, PR China
| | - Wuling Zhu
- Henan Province Engineering Research Center of Innovation for Synthetic Biology, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, Henan Province 453003, PR China.
| | - Xuan Zhang
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan 453003, PR China.
| |
Collapse
|
9
|
Scheffschick A, Nenonen J, Xiang M, Winther AH, Ehrström M, Wahren-Herlenius M, Eidsmo L, Brauner H. Skin infiltrating NK cells in cutaneous T-cell lymphoma are increased in number and display phenotypic alterations partially driven by the tumor. Front Immunol 2023; 14:1168684. [PMID: 37691935 PMCID: PMC10485839 DOI: 10.3389/fimmu.2023.1168684] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 07/25/2023] [Indexed: 09/12/2023] Open
Abstract
Cutaneous T-cell lymphomas (CTCL) are characterized by focal infiltration of malignant T cell clones in solitary skin lesions. Many CTCL patients experience an indolent disease, but some progress to advanced disease with high fatality. We hypothesized that natural killer (NK) cells participate in local control of tumor growth in CTCL skin. Immunohistochemistry and flow cytometry analysis of the density, localization, phenotype and function of NK cells in twenty-nine fresh or formalin-fixed skin biopsies from twenty-four CTCL patients and twenty-three biopsies from twenty healthy controls highlighted higher numbers of CD56+CD3- NK cells in CTCL skin. A reduced fraction of CTCL skin NK cells expressed the maturation marker CD57, the cytotoxic protein granzyme B and the activation marker CD69, indicating reduced tumor-killing abilities of the NK cells. Retained expression of immune checkpoint proteins or inhibitory proteins including PD1, TIM3, LAG3, CD73 and NKG2A and the activating receptors CD16 and NKp46 indicated maintained effector functions. Indeed, the capacity of NK cells to produce anti-tumor acting IFNγ upon PMA+ionomycin stimulation was similar in cells from CTCL and healthy skin. Co-cultures of primary human NK cells or the NK cell line NKL with CTCL cells resulted in reduced levels of granzyme B and CD69, indicating that close cellular interactions with CTCL cells induced the impaired functional NK cell phenotype. In conclusion, increased numbers of NK cells in CTCL skin exhibit a partially impaired phenotype in terms of activity. Enhancing NK cell activity with NK cell activating cytokines such as IL-15 or immune checkpoint blockade therefore represents a potential immunotherapeutic approach in CTCL.
Collapse
Affiliation(s)
- Andrea Scheffschick
- Division of Rheumatology, Department of Medicine, Solna and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Julia Nenonen
- Division of Rheumatology, Department of Medicine, Solna and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Mengmeng Xiang
- Division of Rheumatology, Department of Medicine, Solna and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Anna H. Winther
- Division of Rheumatology, Department of Medicine, Solna and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Dermatology, Karolinska University Hospital, Stockholm, Sweden
| | - Marcus Ehrström
- Department of Reconstructive Plastic Surgery, Karolinska University Hospital, Stockholm, Sweden
| | - Marie Wahren-Herlenius
- Division of Rheumatology, Department of Medicine, Solna and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- The Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Liv Eidsmo
- Division of Rheumatology, Department of Medicine, Solna and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Hanna Brauner
- Division of Rheumatology, Department of Medicine, Solna and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Dermatology, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
10
|
Lui G, Minnar CM, Soon-Shiong P, Schlom J, Gameiro SR. Exploiting an Interleukin-15 Heterodimeric Agonist (N803) for Effective Immunotherapy of Solid Malignancies. Cells 2023; 12:1611. [PMID: 37371081 DOI: 10.3390/cells12121611] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/13/2023] [Accepted: 05/15/2023] [Indexed: 06/29/2023] Open
Abstract
Identifying effective immunotherapies for solid tumors remains challenging despite the significant clinical responses observed in subsets of patients treated with immune checkpoint inhibitors. Interleukin-15 (IL-15) is a promising cytokine for the treatment of cancer as it stimulates NK and CD8+ lymphocytes. However, unfavorable pharmacokinetics and safety concerns render recombinant IL-15 (rIL-15) a less attractive modality. These shortcomings were addressed by the clinical development of heterodimeric IL-15 agonists, including N803. In preclinical tumor models, N803 elicited significant Th1 immune activation and tumor suppressive effects, primarily mediated by NK and CD8+ T lymphocytes. In addition, multiple clinical studies have demonstrated N803 to be safe for the treatment of cancer patients. The combination of N803 with the immune checkpoint inhibitor nivolumab demonstrated encouraging clinical responses in nivolumab-naïve and nivolumab-refractory patients with non-small cell lung cancer. In a recent Phase II/III clinical study, most Bacillus Calmette-Guerin (BCG)-refractory bladder cancer patients treated with N803 plus BCG experienced durable complete responses. Currently, N803 is being evaluated preclinically and clinically in combination with various agents, including chemotherapeutics, immune checkpoint inhibitors, vaccines, and other immuno-oncology agents. This report will review the mechanism(s) of action of N803 and how it relates to the preclinical and clinical studies of N803.
Collapse
Affiliation(s)
- Grace Lui
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Christine M Minnar
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | - Jeffrey Schlom
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sofia R Gameiro
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
11
|
Cai M, Huang X, Huang X, Ju D, Zhu YZ, Ye L. Research progress of interleukin-15 in cancer immunotherapy. Front Pharmacol 2023; 14:1184703. [PMID: 37251333 PMCID: PMC10213988 DOI: 10.3389/fphar.2023.1184703] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 05/04/2023] [Indexed: 05/31/2023] Open
Abstract
Interleukin-15 (IL-15) is a cytokine that belongs to the interleukin-2 (IL-2) family and is essential for the development, proliferation, and activation of immune cells, including natural killer (NK) cells, T cells and B cells. Recent studies have revealed that interleukin-15 also plays a critical role in cancer immunotherapy. Interleukin-15 agonist molecules have shown that interleukin-15 agonists are effective in inhibiting tumor growth and preventing metastasis, and some are undergoing clinical trials. In this review, we will summarize the recent progress in interleukin-15 research over the past 5 years, highlighting its potential applications in cancer immunotherapy and the progress of interleukin-15 agonist development.
Collapse
Affiliation(s)
- Menghan Cai
- School of Pharmacy and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, Macau SAR, China
| | - Xuan Huang
- Minhang Hospital and Department of Biological Medicines at School of Pharmacy, Fudan University, Shanghai, China
- Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai, China
| | - Xiting Huang
- Minhang Hospital and Department of Biological Medicines at School of Pharmacy, Fudan University, Shanghai, China
- Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai, China
| | - Dianwen Ju
- Minhang Hospital and Department of Biological Medicines at School of Pharmacy, Fudan University, Shanghai, China
- Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai, China
| | - Yi Zhun Zhu
- School of Pharmacy and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, Macau SAR, China
| | - Li Ye
- School of Pharmacy and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, Macau SAR, China
- Minhang Hospital and Department of Biological Medicines at School of Pharmacy, Fudan University, Shanghai, China
- Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai, China
| |
Collapse
|
12
|
Fendl B, Berghoff AS, Preusser M, Maier B. Macrophage and monocyte subsets as new therapeutic targets in cancer immunotherapy. ESMO Open 2023; 8:100776. [PMID: 36731326 PMCID: PMC10024158 DOI: 10.1016/j.esmoop.2022.100776] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/05/2022] [Accepted: 12/11/2022] [Indexed: 02/04/2023] Open
Abstract
The introduction of immune checkpoint inhibitors (ICIs) for the treatment of solid cancers dramatically turned the tables in clinical routine. However, therapy success is still limited with up to 70% of non-responders in patients with ICI treatment. Traditionally, most immunotherapy approaches aim at directly stimulating anti-tumor T cell responses. More recently, tumor-associated macrophages have come into focus due to their predominance in solid tumors. Intensive cross-talk with tumor cells and immune as well as stromal cells within the tumor microenvironment can drive either pro- or anti-tumorigenic macrophage phenotypes. In turn, tumor-associated macrophages strongly shape cytokine and metabolite levels in the tumor microenvironment and thus are central players in anti-tumor immunity. Thus, ambivalent macrophage populations exist which raises therapeutic possibilities to either enhance or diminish their functionality. However, molecular signals controlling tumor-associated macrophage polarization are incompletely understood. Gaining in-depth understanding of monocyte/macrophage properties both in circulation and within distinct tumor microenvironments would (i) allow the development of new therapeutic approaches, and (ii) could additionally aid our understanding of underlying mechanisms limiting current therapy with the option of combinatorial therapies to increase efficacy. In this review, we summarize recent data addressing heterogeneity of tumor-associated macrophage populations and we discuss strategies to target macrophages using known molecular pathways with the potential for straight-forward clinical application.
Collapse
Affiliation(s)
- B Fendl
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Vienna, Austria; Christian Doppler Laboratory for Personalized Immunotherapy, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - A S Berghoff
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Vienna, Austria; Christian Doppler Laboratory for Personalized Immunotherapy, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - M Preusser
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Vienna, Austria; Christian Doppler Laboratory for Personalized Immunotherapy, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - B Maier
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria.
| |
Collapse
|
13
|
Xiong Q, Zhang H, Ji X, Zhang Y, Shi G, Dai L, Cheng F, Wang H, Luo J, Xu J, Ji Y, Su X, Yang W, Zhang L, Deng H. A novel membrane-bound interleukin-2 promotes NK-92 cell persistence and anti-tumor activity. Oncoimmunology 2022; 11:2127282. [PMID: 36185809 PMCID: PMC9519007 DOI: 10.1080/2162402x.2022.2127282] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A major challenge in natural killer (NK) cell immunotherapy is the limited persistence of NK cells in vivo. However, the proliferation of NK cells is dependent on cytokines such as interleukin-2 (IL-2). Although IL-2 is a critical cytokine for NK cell activation and survival, IL-2 administration in adoptive NK cell therapy can induce adverse toxicities. To improve the persistence of NK cells and attenuate the systemic toxicity of IL-2, we constructed a cell-restricted artificial IL-2, named membrane-bound IL-2 (mbIL-2), comprising human IL-2 and human IL-2Rα joined by a classic linker. We found that mbIL-2-activated NK-92 cells can survive and proliferate in vitro and in vivo, independent of exogenous IL-2, while mbIL-2-expressing NK-92 cells do not support bystander cell survival or proliferation. Additionally, mbIL-2 enhanced NK-92 cell-mediated antitumor activity by tuning the IL-2 receptor downstream signals and NK cell receptor repertoire expression. To conclude, our novel mbIL-2 improves NK-92 cell persistence and enhances NK-92 cell-mediated antitumor activity. NK-92 cells genetically modified to express the novel mbIL-2 with potential significance for clinical development.
Collapse
Affiliation(s)
- Qi Xiong
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, P.R. China
| | - Hantao Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, P.R. China
| | - Xuanle Ji
- The College of Life Sciences, Sichuan University, Chengdu, P.R. China
| | - Yong Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, P.R. China
| | - Gang Shi
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, P.R. China
| | - Lei Dai
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, P.R. China
| | - Fuyi Cheng
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, P.R. China
| | - Huiling Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, P.R. China
| | - Jieyan Luo
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, P.R. China
| | - Jia Xu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, P.R. China
| | - Yanhong Ji
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, P.R. China
| | - Xiaolan Su
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, P.R. China
| | - Weixiao Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, P.R. China
| | - Lin Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, P.R. China
| | - Hongxin Deng
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, P.R. China
- Research Unit of Gene and Immunotherapy, Chinese Academy of Medical Sciences, Beijing, P.R. China
| |
Collapse
|
14
|
Li F, Liu S. Focusing on NK cells and ADCC: A promising immunotherapy approach in targeted therapy for HER2-positive breast cancer. Front Immunol 2022; 13:1083462. [PMID: 36601109 PMCID: PMC9806173 DOI: 10.3389/fimmu.2022.1083462] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
Human epidermal growth factor receptor 2 (HER2)-positive breast cancer has a high metastatic potential. Monoclonal antibodies (mAbs) that target HER2, such as trastuzumab and pertuzumab, are the cornerstone of adjuvant therapy for HER2-positive breast cancer. A growing body of preclinical and clinical evidence points to the importance of innate immunity mediated by antibody-dependent cellular cytotoxicity (ADCC) in the clinical effect of mAbs on the resulting anti-tumor response. In this review, we provide an overview of the role of natural killer (NK) cells and ADCC in targeted therapy of HER2-positive breast cancer, including the biological functions of NK cells and the role of NK cells and ADCC in anti-HER2 targeted drugs. We then discuss regulatory mechanisms and recent strategies to leverage our knowledge of NK cells and ADCC as an immunotherapy approach for HER2-positive breast cancer.
Collapse
|
15
|
Mendoza-Valderrey A, Alvarez M, De Maria A, Margolin K, Melero I, Ascierto ML. Next Generation Immuno-Oncology Strategies: Unleashing NK Cells Activity. Cells 2022; 11:3147. [PMID: 36231109 PMCID: PMC9562848 DOI: 10.3390/cells11193147] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/06/2022] [Accepted: 10/02/2022] [Indexed: 11/19/2022] Open
Abstract
In recent years, immunotherapy has become a powerful therapeutic option against multiple malignancies. The unique capacity of natural killer (NK) cells to attack cancer cells without antigen specificity makes them an optimal immunotherapeutic tool for targeting tumors. Several approaches are currently being pursued to maximize the anti-tumor properties of NK cells in the clinic, including the development of NK cell expansion protocols for adoptive transfer, the establishment of a favorable microenvironment for NK cell activity, the redirection of NK cell activity against tumor cells, and the blockage of inhibitory mechanisms that constrain NK cell function. We here summarize the recent strategies in NK cell-based immunotherapies and discuss the requirement to further optimize these approaches for enhancement of the clinical outcome of NK cell-based immunotherapy targeting tumors.
Collapse
Affiliation(s)
- Alberto Mendoza-Valderrey
- Rosalie and Harold Rae Brown Cancer Immunotherapy Research Program, Borstein Family Melanoma Program, Translational Immunology Department, Saint John’s Cancer Institute, Santa Monica, CA 90404, USA
| | - Maite Alvarez
- Program for Immunology and Immunotherapy, CIMA, Universidad de Navarra, 31008 Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
| | - Andrea De Maria
- Department of Health Sciences, University of Genoa, 16126 Genova, Italy
- IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Kim Margolin
- Borstein Family Melanoma Program, Saint John’s Cancer Institute, Santa Monica, CA 90404, USA
| | - Ignacio Melero
- Program for Immunology and Immunotherapy, CIMA, Universidad de Navarra, 31008 Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
- Department of Immunology and Immunotherapy, Clínica Universidad de Navarra, 31008 Pamplona, Spain
| | - Maria Libera Ascierto
- Rosalie and Harold Rae Brown Cancer Immunotherapy Research Program, Borstein Family Melanoma Program, Translational Immunology Department, Saint John’s Cancer Institute, Santa Monica, CA 90404, USA
| |
Collapse
|
16
|
Aguilar-Cazares D, Chavez-Dominguez R, Marroquin-Muciño M, Perez-Medina M, Benito-Lopez JJ, Camarena A, Rumbo-Nava U, Lopez-Gonzalez JS. The systemic-level repercussions of cancer-associated inflammation mediators produced in the tumor microenvironment. Front Endocrinol (Lausanne) 2022; 13:929572. [PMID: 36072935 PMCID: PMC9441602 DOI: 10.3389/fendo.2022.929572] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 08/01/2022] [Indexed: 12/15/2022] Open
Abstract
The tumor microenvironment is a dynamic, complex, and redundant network of interactions between tumor, immune, and stromal cells. In this intricate environment, cells communicate through membrane-membrane, ligand-receptor, exosome, soluble factors, and transporter interactions that govern cell fate. These interactions activate the diverse and superfluous signaling pathways involved in tumor promotion and progression and induce subtle changes in the functional activity of infiltrating immune cells. The immune response participates as a selective pressure in tumor development. In the early stages of tumor development, the immune response exerts anti-tumor activity, whereas during the advanced stages, the tumor establishes mechanisms to evade the immune response, eliciting a chronic inflammation process that shows a pro-tumor effect. The deregulated inflammatory state, in addition to acting locally, also triggers systemic inflammation that has repercussions in various organs and tissues that are distant from the tumor site, causing the emergence of various symptoms designated as paraneoplastic syndromes, which compromise the response to treatment, quality of life, and survival of cancer patients. Considering the tumor-host relationship as an integral and dynamic biological system, the chronic inflammation generated by the tumor is a communication mechanism among tissues and organs that is primarily orchestrated through different signals, such as cytokines, chemokines, growth factors, and exosomes, to provide the tumor with energetic components that allow it to continue proliferating. In this review, we aim to provide a succinct overview of the involvement of cancer-related inflammation at the local and systemic level throughout tumor development and the emergence of some paraneoplastic syndromes and their main clinical manifestations. In addition, the involvement of these signals throughout tumor development will be discussed based on the physiological/biological activities of innate and adaptive immune cells. These cellular interactions require a metabolic reprogramming program for the full activation of the various cells; thus, these requirements and the by-products released into the microenvironment will be considered. In addition, the systemic impact of cancer-related proinflammatory cytokines on the liver-as a critical organ that produces the leading inflammatory markers described to date-will be summarized. Finally, the contribution of cancer-related inflammation to the development of two paraneoplastic syndromes, myelopoiesis and cachexia, will be discussed.
Collapse
Affiliation(s)
- Dolores Aguilar-Cazares
- Laboratorio de Investigacion en Cancer Pulmonar, Departamento de Enfermedades Cronico-Degenerativas, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosio Villegas”, Mexico City, Mexico
| | - Rodolfo Chavez-Dominguez
- Laboratorio de Investigacion en Cancer Pulmonar, Departamento de Enfermedades Cronico-Degenerativas, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosio Villegas”, Mexico City, Mexico
- Posgrado en Ciencias Biologicas, Universidad Nacional Autonoma de Mexico, Mexico City, Mexico
| | - Mario Marroquin-Muciño
- Laboratorio de Investigacion en Cancer Pulmonar, Departamento de Enfermedades Cronico-Degenerativas, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosio Villegas”, Mexico City, Mexico
- Laboratorio de Quimioterapia Experimental, Departamento de Bioquimica, Escuela Nacional de Ciencias Biologicas, Instituto Politecnico Nacional, Mexico City, Mexico
| | - Mario Perez-Medina
- Laboratorio de Investigacion en Cancer Pulmonar, Departamento de Enfermedades Cronico-Degenerativas, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosio Villegas”, Mexico City, Mexico
- Laboratorio de Quimioterapia Experimental, Departamento de Bioquimica, Escuela Nacional de Ciencias Biologicas, Instituto Politecnico Nacional, Mexico City, Mexico
| | - Jesus J. Benito-Lopez
- Laboratorio de Investigacion en Cancer Pulmonar, Departamento de Enfermedades Cronico-Degenerativas, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosio Villegas”, Mexico City, Mexico
- Posgrado en Ciencias Biologicas, Universidad Nacional Autonoma de Mexico, Mexico City, Mexico
| | - Angel Camarena
- Laboratorio de Human Leukocyte Antigen (HLA), Instituto Nacional de Enfermedades Respiratorias “Ismael Cosio Villegas”, Mexico City, Mexico
| | - Uriel Rumbo-Nava
- Clinica de Neumo-Oncologia, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosio Villegas”, Mexico City, Mexico
| | - Jose S. Lopez-Gonzalez
- Laboratorio de Investigacion en Cancer Pulmonar, Departamento de Enfermedades Cronico-Degenerativas, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosio Villegas”, Mexico City, Mexico
| |
Collapse
|
17
|
Functional crosstalk and regulation of natural killer cells in tumor microenvironment: Significance and potential therapeutic strategies. Genes Dis 2022. [DOI: 10.1016/j.gendis.2022.07.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
18
|
Gumberger P, Bjornsson B, Sandström P, Bojmar L, Zambirinis CP. The Liver Pre-Metastatic Niche in Pancreatic Cancer: A Potential Opportunity for Intervention. Cancers (Basel) 2022; 14:3028. [PMID: 35740692 PMCID: PMC9221452 DOI: 10.3390/cancers14123028] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/30/2022] [Accepted: 06/11/2022] [Indexed: 12/16/2022] Open
Abstract
Cancer-related mortality is primarily a consequence of metastatic dissemination and associated complications. Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal malignancies and tends to metastasize early, especially in the liver. Emerging evidence suggests that organs that develop metastases exhibit microscopic changes that favor metastatic growth, collectively known as "pre-metastatic niches". By definition, a pre-metastatic niche is chronologically established before overt metastatic outgrowth, and its generation involves the release of tumor-derived secreted factors that modulate cells intrinsic to the recipient organ, as well as recruitment of additional cells from tertiary sites, such as bone marrow-all orchestrated by the primary tumor. The pre-metastatic niche is characterized by tumor-promoting inflammation with tumor-supportive and immune-suppressive features, remodeling of the extracellular matrix, angiogenic modulation and metabolic alterations that support growth of disseminated tumor cells. In this paper, we review the current state of knowledge of the hepatic pre-metastatic niche in PDAC and attempt to create a framework to guide future diagnostic and therapeutic studies.
Collapse
Affiliation(s)
- Peter Gumberger
- Department of Surgery, Linköping University, 58183 Linköping, Sweden; (P.G.); (B.B.); (P.S.)
- Department of Biomedical and Clinical Sciences, Linköping University, 58183 Linköping, Sweden;
| | - Bergthor Bjornsson
- Department of Surgery, Linköping University, 58183 Linköping, Sweden; (P.G.); (B.B.); (P.S.)
- Department of Biomedical and Clinical Sciences, Linköping University, 58183 Linköping, Sweden;
| | - Per Sandström
- Department of Surgery, Linköping University, 58183 Linköping, Sweden; (P.G.); (B.B.); (P.S.)
- Department of Biomedical and Clinical Sciences, Linköping University, 58183 Linköping, Sweden;
| | - Linda Bojmar
- Department of Biomedical and Clinical Sciences, Linköping University, 58183 Linköping, Sweden;
- Children’s Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children’s Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA
| | | |
Collapse
|
19
|
Sajid M, Liu L, Sun C. The Dynamic Role of NK Cells in Liver Cancers: Role in HCC and HBV Associated HCC and Its Therapeutic Implications. Front Immunol 2022; 13:887186. [PMID: 35669776 PMCID: PMC9165341 DOI: 10.3389/fimmu.2022.887186] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/12/2022] [Indexed: 11/21/2022] Open
Abstract
Hepatocellular carcinoma (HCC) remains an important complication of chronic liver disease, especially when cirrhosis occurs. Existing treatment strategies include surgery, loco-regional techniques, and chemotherapy. Natural killer cells are distinctive cytotoxic lymphocytes that play a vital role in fighting tumors and infections. As an important constituent of the innate immune system against cancer, phenotypic and functional deviations of NK cells have been demonstrated in HCC patients who also exhibit perturbation of the NK-activating receptor/ligand axis. The rate of recurrence of tumor-infiltrating and circulating NK cells are positively associated with survival benefits in HCC and have prognostic significance, suggesting that NK cell dysfunction is closely related to HCC progression. NK cells are the first-line effector cells of viral hepatitis and play a significant role by directly clearing virus-infected cells or by activating antigen-specific T cells by producing IFN-γ. In addition, chimeric antigen receptor (CAR) engineered NK cells suggest an exclusive opportunity to produce CAR-NKs with several specificities with fewer side effects. In the present review, we comprehensively discuss the innate immune landscape of the liver, particularly NK cells, and the impact of tumor immune microenvironment (TIME) on the function of NK cells and the biological function of HCC. Furthermore, the role of NK cells in HCC and HBV-induced HCC has also been comprehensively elaborated. We also elaborate on available NK cell-based immunotherapeutic approaches in HCC treatment and summarize current advancements in the treatment of HCC. This review will facilitate researchers to understand the importance of the innate immune landscape of NK cells and lead to devising innovative immunotherapeutic strategies for the systematic treatment of HCC.
Collapse
Affiliation(s)
- Muhammad Sajid
- Department of Hepatobiliary Surgery, Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Heifei, China
- Transplant and Immunology Laboratory, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Lianxin Liu
- Department of Hepatobiliary Surgery, Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Heifei, China
| | - Cheng Sun
- Department of Hepatobiliary Surgery, Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Heifei, China
- Transplant and Immunology Laboratory, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Chinese Academy of Sciences (CAS) Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Institute of Immunology, University of Science and Technology of China, Hefei, China
| |
Collapse
|
20
|
Dunai C, Ames E, Ochoa MC, Fernandez-Sendin M, Melero I, Simonetta F, Baker J, Alvarez M. Killers on the loose: Immunotherapeutic strategies to improve NK cell-based therapy for cancer treatment. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2022; 370:65-122. [PMID: 35798507 DOI: 10.1016/bs.ircmb.2022.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Natural killer (NK) cells are innate lymphocytes that control tumor progression by not only directly killing cancer cells, but also by regulating other immune cells, helping to orchestrate a coordinated anti-tumor response. However, despite the tremendous potential that this cell type has, the clinical results obtained from diverse NK cell-based immunotherapeutic strategies have been, until recent years, rather modest. The intrinsic regulatory mechanisms that are involved in the control of their activation as well as the multiple mechanisms that tumor cells have developed to escape NK cell-mediated cytotoxicity likely account for the unsatisfactory clinical outcomes. The current approaches to improve long-term NK cell function are centered on modulating different molecules involved in both the activation and inhibition of NK cells, and the latest data seems to advocate for combining strategies that target multiple aspects of NK cell regulation. In this review, we summarize the different strategies (such as engineered NK cells, CAR-NK, NK cell immune engagers) that are currently being used to take advantage of this potent and complex immune cell.
Collapse
Affiliation(s)
- Cordelia Dunai
- Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, Liverpool, United Kingdom
| | - Erik Ames
- Department of Pathology, Stanford University, Stanford, CA, United States
| | - Maria C Ochoa
- Program for Immunology and Immunotherapy, CIMA, Universidad de Navarra, Pamplona, Spain; Navarra Institute for Health Research (IdiSNA), Pamplona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Myriam Fernandez-Sendin
- Program for Immunology and Immunotherapy, CIMA, Universidad de Navarra, Pamplona, Spain; Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - Ignacio Melero
- Program for Immunology and Immunotherapy, CIMA, Universidad de Navarra, Pamplona, Spain; Navarra Institute for Health Research (IdiSNA), Pamplona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain; Department of Immunology and Immunotherapy, Clínica Universidad de Navarra, Pamplona, Spain
| | - Federico Simonetta
- Division of Hematology, Department of Oncology, Geneva University Hospitals, Geneva, Switzerland; Translational Research Centre in Onco-Haematology, Faculty of Medicine, Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Jeanette Baker
- Blood and Marrow Transplantation, Stanford University School of Medicine, Stanford, CA, United States
| | - Maite Alvarez
- Program for Immunology and Immunotherapy, CIMA, Universidad de Navarra, Pamplona, Spain; Navarra Institute for Health Research (IdiSNA), Pamplona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.
| |
Collapse
|
21
|
Gideon HP, Hughes TK, Tzouanas CN, Wadsworth MH, Tu AA, Gierahn TM, Peters JM, Hopkins FF, Wei JR, Kummerlowe C, Grant NL, Nargan K, Phuah JY, Borish HJ, Maiello P, White AG, Winchell CG, Nyquist SK, Ganchua SKC, Myers A, Patel KV, Ameel CL, Cochran CT, Ibrahim S, Tomko JA, Frye LJ, Rosenberg JM, Shih A, Chao M, Klein E, Scanga CA, Ordovas-Montanes J, Berger B, Mattila JT, Madansein R, Love JC, Lin PL, Leslie A, Behar SM, Bryson B, Flynn JL, Fortune SM, Shalek AK. Multimodal profiling of lung granulomas in macaques reveals cellular correlates of tuberculosis control. Immunity 2022; 55:827-846.e10. [PMID: 35483355 PMCID: PMC9122264 DOI: 10.1016/j.immuni.2022.04.004] [Citation(s) in RCA: 111] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 02/08/2022] [Accepted: 04/07/2022] [Indexed: 12/12/2022]
Abstract
Mycobacterium tuberculosis lung infection results in a complex multicellular structure: the granuloma. In some granulomas, immune activity promotes bacterial clearance, but in others, bacteria persist and grow. We identified correlates of bacterial control in cynomolgus macaque lung granulomas by co-registering longitudinal positron emission tomography and computed tomography imaging, single-cell RNA sequencing, and measures of bacterial clearance. Bacterial persistence occurred in granulomas enriched for mast, endothelial, fibroblast, and plasma cells, signaling amongst themselves via type 2 immunity and wound-healing pathways. Granulomas that drove bacterial control were characterized by cellular ecosystems enriched for type 1-type 17, stem-like, and cytotoxic T cells engaged in pro-inflammatory signaling networks involving diverse cell populations. Granulomas that arose later in infection displayed functional characteristics of restrictive granulomas and were more capable of killing Mtb. Our results define the complex multicellular ecosystems underlying (lack of) granuloma resolution and highlight host immune targets that can be leveraged to develop new vaccine and therapeutic strategies for TB.
Collapse
Affiliation(s)
- Hannah P Gideon
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, USA
| | - Travis K Hughes
- Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA, USA; Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Constantine N Tzouanas
- Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA, USA; Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Marc H Wadsworth
- Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA, USA; Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ang Andy Tu
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Todd M Gierahn
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Joshua M Peters
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Forrest F Hopkins
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA; Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Jun-Rong Wei
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA; Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Conner Kummerlowe
- Program in Computational and Systems Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Nicole L Grant
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | | | - Jia Yao Phuah
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - H Jacob Borish
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Pauline Maiello
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Alexander G White
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Caylin G Winchell
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, USA; Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Sarah K Nyquist
- Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA, USA; Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Program in Computational and Systems Biology, Massachusetts Institute of Technology, Cambridge, MA, USA; Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Sharie Keanne C Ganchua
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Amy Myers
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Kush V Patel
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Cassaundra L Ameel
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Catherine T Cochran
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Samira Ibrahim
- Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA, USA; Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jaime A Tomko
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Lonnie James Frye
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jacob M Rosenberg
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA; Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA
| | - Angela Shih
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA
| | - Michael Chao
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA; Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Edwin Klein
- Division of Laboratory Animal Research, University of Pittsburgh, Pittsburgh PA, USA
| | - Charles A Scanga
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jose Ordovas-Montanes
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Bonnie Berger
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Joshua T Mattila
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, USA; Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Rajhmun Madansein
- Department of Cardiothoracic Surgery, University of KwaZulu Natal, Durban, South Africa
| | - J Christopher Love
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA; Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA; The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Philana Ling Lin
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, USA; Department of Pediatrics, University of Pittsburgh School of Medicine, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Alasdair Leslie
- Africa Health Research Institute, Durban, South Africa; School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa; Department of Infection and Immunity, University College London, London, UK
| | - Samuel M Behar
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, USA
| | - Bryan Bryson
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - JoAnne L Flynn
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Sarah M Fortune
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| | - Alex K Shalek
- Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA, USA; Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA; The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
22
|
Bourayou E, Golub R. Signaling Pathways Tuning Innate Lymphoid Cell Response to Hepatocellular Carcinoma. Front Immunol 2022; 13:846923. [PMID: 35281021 PMCID: PMC8904901 DOI: 10.3389/fimmu.2022.846923] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 01/28/2022] [Indexed: 11/13/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the deadliest cancers worldwide and its incidence continues to rise globally. Various causes can lead to its development such as chronic viral infections causing hepatitis, cirrhosis or nonalcoholic steatohepatitis (NASH). The contribution of immune cells to HCC development and progression has been extensively studied when it comes to adaptive lymphocytes or myeloid populations. However, the role of the innate lymphoid cells (ILCs) is still not well defined. ILCs are a family of lymphocytes comprising five subsets including circulating Natural Killer (NK) cells, ILC1s, ILC2s, ILC3s and lymphocytes tissue-inducer cells (LTi). Mostly located at epithelial surfaces, tissue-resident ILCs and NK cells can rapidly react to environmental changes to mount appropriate immune responses. Here, we provide an overview of their roles and actions in HCC with an emphasis on the importance of diverse signaling pathways (Notch, TGF-β, Wnt/β-catenin…) in the tuning of their response to HCC.
Collapse
Affiliation(s)
- Elsa Bourayou
- Institut Pasteur, Université de Paris, INSERM U1223, Lymphocyte and Immunity Unit, Paris, France
| | - Rachel Golub
- Institut Pasteur, Université de Paris, INSERM U1223, Lymphocyte and Immunity Unit, Paris, France
| |
Collapse
|
23
|
Maddineni S, Silberstein JL, Sunwoo JB. Emerging NK cell therapies for cancer and the promise of next generation engineering of iPSC-derived NK cells. J Immunother Cancer 2022; 10:jitc-2022-004693. [PMID: 35580928 PMCID: PMC9115029 DOI: 10.1136/jitc-2022-004693] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/23/2022] [Indexed: 12/11/2022] Open
Abstract
Adoptive cell therapy is a rapidly advancing approach to cancer immunotherapy that seeks to facilitate antitumor responses by introducing potent effector cells into the tumor microenvironment. Expanded autologous T cells, particularly T cells with engineered T cell receptors (TCR) and chimeric antigen receptor-T cells have had success in various hematologic malignancies but have faced challenges when applied to solid tumors. As a result, other immune subpopulations may provide valuable and orthogonal options for treatment. Natural killer (NK) cells offer the possibility of significant tumor clearance and recruitment of additional immune subpopulations without the need for prior antigen presentation like in T or B cells that could require removal of endogenous antigen specificity mediated via the T cell receptor (TCR and/or the B ecll receptor (BCR). In recent years, NK cells have been demonstrated to be increasingly important players in the immune response against cancer. Here, we review multiple avenues for allogeneic NK cell therapy, including derivation of NK cells from peripheral blood or umbilical cord blood, the NK-92 immortalized cell line, and induced pluripotent stem cells (iPSCs). We also describe the potential of engineering iPSC-derived NK cells and the utility of this platform. Finally, we consider the benefits and drawbacks of each approach and discuss recent developments in the manufacturing and genetic or metabolic engineering of NK cells to have robust and prolonged antitumor responses in preclinical and clinical settings.
Collapse
Affiliation(s)
- Sainiteesh Maddineni
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, Palo Alto, California, USA
| | - John L Silberstein
- Program in Immunology, Stanford University School of Medicine, Palo Alto, California, USA.,Department of Bioengineering, Stanford University, Palo Alto, California, USA
| | - John B Sunwoo
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, Palo Alto, California, USA
| |
Collapse
|
24
|
Goldenson BH, Hor P, Kaufman DS. iPSC-Derived Natural Killer Cell Therapies - Expansion and Targeting. Front Immunol 2022; 13:841107. [PMID: 35185932 PMCID: PMC8851389 DOI: 10.3389/fimmu.2022.841107] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 01/13/2022] [Indexed: 12/15/2022] Open
Abstract
Treatment of cancer with allogeneic natural killer (NK) cell therapies has seen rapid development, especially use against hematologic malignancies. Clinical trials of NK cell-based adoptive transfer to treat relapsed or refractory malignancies have used peripheral blood, umbilical cord blood and pluripotent stem cell-derived NK cells, with each approach undergoing continued clinical development. Improving the potency of these therapies relies on genetic modifications to improve tumor targeting and to enhance expansion and persistence of the NK cells. Induced pluripotent stem cell (iPSC)-derived NK cells allow for routine targeted introduction of genetic modifications and expansion of the resulting NK cells derived from a clonal starting cell population. In this review, we discuss and summarize recent important advances in the development of new iPSC-derived NK cell therapies, with a focus on improved targeting of cancer. We then discuss improvements in methods to expand iPSC-derived NK cells and how persistence of iPSC-NK cells can be enhanced. Finally, we describe how these advances may combine in future NK cell-based therapy products for the treatment of both hematologic malignancies and solid tumors.
Collapse
Affiliation(s)
- Benjamin H Goldenson
- Department of Medicine, Division of Regenerative Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Pooja Hor
- Department of Medicine, Division of Regenerative Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Dan S Kaufman
- Department of Medicine, Division of Regenerative Medicine, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|
25
|
Mirlekar B. Tumor promoting roles of IL-10, TGF-β, IL-4, and IL-35: Its implications in cancer immunotherapy. SAGE Open Med 2022; 10:20503121211069012. [PMID: 35096390 PMCID: PMC8793114 DOI: 10.1177/20503121211069012] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 12/07/2021] [Indexed: 12/23/2022] Open
Abstract
Cytokines play a critical role in regulating host immune response toward cancer and determining the overall fate of tumorigenesis. The tumor microenvironment is dominated mainly by immune-suppressive cytokines that control effector antitumor immunity and promote survival and the proliferation of cancer cells, which ultimately leads to enhanced tumor growth. In addition to tumor cells, the heterogeneous immune cells present within the tumor milieu are the significant source of immune-suppressive cytokines. These cytokines are classified into a broad range; however, in most tumor types, the interleukin-10, transforming growth factor-β, interleukin-4, and interleukin-35 are consistently reported as immune-suppressive cytokines that help tumor growth and metastasis. The most emerging concern in cancer treatment is hijacking and restraining the activity of antitumor immune cells in the tumor niche due to a highly immune-suppressive environment. This review summarizes the role and precise functions of interleukin-10, transforming growth factor-β, interleukin-4, and interleukin-35 in modulating tumor immune contexture and its implication in developing effective immune-therapeutic approaches. CONCISE CONCLUSION Recent effort geared toward developing novel immune-therapeutic approaches faces significant challenges due to sustained mutations in tumor cells and a highly immune-suppressive microenvironment present within the tumor milieu. The cytokines play a crucial role in developing an immune-suppressive environment that ultimately dictates the fate of tumorigenesis. This review critically covers the novel aspects of predominant immune-suppressive cytokines such as interleukin-10, transforming growth factor-β, interleukin-4, and interleukin-35 in dictating the fate of tumorigenesis and how targeting these cytokines can help the development of better immune-therapeutic drug regimens for the treatment of cancer.
Collapse
Affiliation(s)
- Bhalchandra Mirlekar
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
26
|
Terrén I, Borrego F. Role of NK Cells in Tumor Progression. EXPERIENTIA SUPPLEMENTUM (2012) 2022; 113:169-187. [PMID: 35165864 DOI: 10.1007/978-3-030-91311-3_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Natural Killer (NK) cells are effector lymphocytes with the ability to generate an antitumor response. NK cells encompass a diverse group of subsets with different properties and have the capacity to kill cancer cells by different means. However, tumor cells have developed several mechanisms to evade NK cell-mediated killing. In this chapter, we summarize some aspects of NK cell biology with the aim to understand the competence of these cells and explore some of the challenges that NK cells have to face in different malignancies. Moreover, we will review the current knowledge about the role of NK cells in tumor progression and describe their phenotype and effector functions in tumor tissues and peripheral blood from cancer patients. Finally, we will recapitulate several findings from different studies focused on determining the prognostic value of NK cells in distinct cancers.
Collapse
Affiliation(s)
- Iñigo Terrén
- Immunopathology Group, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
| | - Francisco Borrego
- Immunopathology Group, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain.
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain.
| |
Collapse
|
27
|
Mazza R, Maher J. Prospects for Development of Induced Pluripotent Stem Cell-Derived CAR-Targeted Immunotherapies. Arch Immunol Ther Exp (Warsz) 2021; 70:2. [PMID: 34897554 PMCID: PMC8666432 DOI: 10.1007/s00005-021-00640-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 11/24/2021] [Indexed: 12/27/2022]
Abstract
Technologies required to generate induced pluripotent stem cells (iPSC) were first described 15 years ago, providing a strong impetus to the field of regenerative medicine. In parallel, immunotherapy has finally emerged as a clinically meaningful modality of cancer therapy. In particular, impressive efficacy has been achieved in patients with selected haematological malignancies using ex vivo expanded autologous T cells engineered to express chimeric antigen receptors (CARs). While solid tumours account for over 90% of human cancer, they currently are largely refractory to this therapeutic approach. Nonetheless, given the considerable innovation taking place worldwide in the CAR field, it is likely that effective solutions for common solid tumours will emerge in the near future. Such a development will create significant new challenges in the scalable delivery of these complex, costly and individualised therapies. CAR-engineered immune cell products that originate from iPSCs offer the potential to generate unlimited numbers of homogeneous, standardised cell products in which multiple defined gene modification events have been introduced to ensure safety, potency and reproducibility. Here, we review some of the emerging strategies in use to engineer CAR-expressing iPSC-derived drug products.
Collapse
Affiliation(s)
- Roberta Mazza
- Leucid Bio Ltd, Guy's Hospital, Great Maze Pond, London, SE1 9RT, UK
| | - John Maher
- Leucid Bio Ltd, Guy's Hospital, Great Maze Pond, London, SE1 9RT, UK.
- King's College London, School of Cancer and Pharmaceutical Sciences, Guy's Cancer Centre, Great Maze Pond, London, SE1 9RT, UK.
- Department of Immunology, Eastbourne Hospital, Kings Drive, Eastbourne, BN21 2UD, East Sussex, UK.
| |
Collapse
|
28
|
Huang Y, Luo Y, Ou W, Wang Y, Dong D, Peng X, Luo Y. Exosomal lncRNA SNHG10 derived from colorectal cancer cells suppresses natural killer cell cytotoxicity by upregulating INHBC. Cancer Cell Int 2021; 21:528. [PMID: 34641864 PMCID: PMC8507338 DOI: 10.1186/s12935-021-02221-2] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 09/23/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Exosome-mediated crosstalk between cancer cells and immune cells contributes to tumor growth. In this study, we investigated the mechanism underlying the exosome-mediated immune escape of colorectal cancer (CRC) cells from natural killer (NK) cells via the transfer of long noncoding RNAs (lncRNAs). METHODS An epithelial-mesenchymal transition (EMT) model of SW480 cells was established by transforming growth factor beta (TGF-β), followed by the assessment of the effect of EMT-derived exosomes (EMT-exo) on the functions of NK cells. RNA sequencing was performed to identify exosomal lncRNAs and target genes. The function of exosomal lncRNAs in tumor growth was further verified in vivo. RESULTS EMT-exo suppressed the proliferation, cytotoxicity, IFN-γ production, and perforin-1 and granzyme B secretion of NK cells. RNA sequencing revealed that SNHG10 expression was upregulated in EMT-exo compared with that in non-EMT-exo. Moreover, SNHG10 expression was upregulated in tumor tissues in CRC, which was associated with poor prognosis. Overexpression of SNHG10 in exosomes (oe-lnc-SNHG10 exo) significantly suppressed the viability and cytotoxicity of NK cells. Transcriptome sequencing of NK cells revealed that the expression levels of 114 genes were upregulated in the oe-lnc-SNHG10 exo group, including inhibin subunit beta C (INHBC), which was involved in the TGF-β signaling pathway. Si-INHBC treatment abrogated the effect of oe-lnc-SNHG10 exo on NK cells. oe-lnc-SNHG10 exo induced tumor growth and upregulated INHBC expression in mice and downregulated the expression of perforin, granzyme B, and NK1.1 in tumor tissues. CONCLUSIONS The CRC cell-derived exosomal lncRNA SNHG10 suppresses the function of NK cells by upregulating INHBC expression. This study provides evidence that exosomal lncRNAs contribute to immune escape by inducing NK cell inhibition and proposes a potential treatment strategy for CRC.
Collapse
Affiliation(s)
- Yiwen Huang
- Department of Emergency, Nansha Hospital, Guangzhou First People's Hospital, School of Medicine, Southern China University of Technology, Guangzhou, Guangdong, China
| | - Yanbo Luo
- Department of Gastrointestinal and Hepatobiliary Surgery, Shenzhen Longhua District Central Hospital, No. 187, Guanlan Road, Longhua District, Shenzhen, 518110, Guangdong Province, China
| | - Wentao Ou
- Department of General Surgery, Nansha Hospital, Guangzhou First People's Hospital, School of Medicine, Southern China University of Technology, Guangzhou, Guangdong, China
| | - Yuanyuan Wang
- Department of Neurology, Nansha Hospital, Guangzhou First People's Hospital, School of Medicine, Southern China University of Technology, Guangzhou, Guangdong, China
| | - Dong Dong
- Department of General Surgery, Nansha Hospital, Guangzhou First People's Hospital, School of Medicine, Southern China University of Technology, Guangzhou, Guangdong, China
| | - Xiaowen Peng
- Department of Laboratory Medicine, Guangzhou First People's Hospital, School of Medicine, Nansha Hospital, Southern China University of Technology, Guangzhou, Guangdong, China
| | - Yuqi Luo
- Department of Gastrointestinal and Hepatobiliary Surgery, Shenzhen Longhua District Central Hospital, No. 187, Guanlan Road, Longhua District, Shenzhen, 518110, Guangdong Province, China.
| |
Collapse
|
29
|
Cabo M, Santana-Hernández S, Costa-Garcia M, Rea A, Lozano-Rodríguez R, Ataya M, Balaguer F, Juan M, Ochoa MC, Menéndez S, Comerma L, Rovira A, Berraondo P, Albanell J, Melero I, López-Botet M, Muntasell A. CD137 Costimulation Counteracts TGFβ Inhibition of NK-cell Antitumor Function. Cancer Immunol Res 2021; 9:1476-1490. [PMID: 34580116 DOI: 10.1158/2326-6066.cir-21-0030] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 06/19/2021] [Accepted: 09/22/2021] [Indexed: 11/16/2022]
Abstract
Enhancing natural killer (NK) cell-based cancer immunotherapy by overcoming immunosuppression is an area of intensive research. Here, we have demonstrated that the anti-CD137 agonist urelumab can overcome TGFβ-mediated inhibition of human NK-cell proliferation and antitumor function. Transcriptomic, immunophenotypic, and functional analyses showed that CD137 costimulation modified the transcriptional program induced by TGFβ on human NK cells by rescuing their proliferation in response to IL2, preserving their expression of activating receptors (NKG2D) and effector molecules (granzyme B, IFNγ) while allowing the acquisition of tumor-homing/retention features (CXCR3, CD103). Activated NK cells cultured in the presence of TGFβ1 and CD137 agonist recovered CCL5 and IFNγ secretion and showed enhanced direct and antibody-dependent cytotoxicity upon restimulation with cancer cells. Trastuzumab treatment of fresh breast carcinoma-derived multicellular cultures induced CD137 expression on tumor-infiltrating CD16+ NK cells, enabling the action of urelumab, which fostered tumor-infiltrating NK cells and recapitulated the enhancement of CCL5 and IFNγ production. Bioinformatic analysis pointed to IFNG as the driver of the association between NK cells and clinical response to trastuzumab in patients with HER2-positive primary breast cancer, highlighting the translational relevance of the CD137 costimulatory axis for enhancing IFNγ production. Our data reveals CD137 as a targetable checkpoint for overturning TGFβ constraints on NK-cell antitumor responses.
Collapse
Affiliation(s)
- Mariona Cabo
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Sara Santana-Hernández
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | | | - Anna Rea
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Roberto Lozano-Rodríguez
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | | | - Francesc Balaguer
- Gastroenterology Department, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Hospital Clínic, University of Barcelona, Barcelona, Spain
| | - Manel Juan
- Immunology Department, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Maria C Ochoa
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.,Centro de Investigación Médica Aplicada (CIMA)-Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Navarra Institute of Health Research (IDISNA), Universidad de Navarra, Pamplona, Spain
| | - Silvia Menéndez
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Laura Comerma
- Pathology Department, Hospital del Mar, Barcelona, Spain
| | - Ana Rovira
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.,Oncology Department, Hospital del Mar, Barcelona, Spain
| | - Pedro Berraondo
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.,Centro de Investigación Médica Aplicada (CIMA)-Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Navarra Institute of Health Research (IDISNA), Universidad de Navarra, Pamplona, Spain
| | - Joan Albanell
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain.,Oncology Department, Hospital del Mar, Barcelona, Spain
| | - Ignacio Melero
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.,Centro de Investigación Médica Aplicada (CIMA)-Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Navarra Institute of Health Research (IDISNA), Universidad de Navarra, Pamplona, Spain.,Clínica Universitaria de Navarra, Pamplona, Spain
| | - Miguel López-Botet
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Aura Muntasell
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain. .,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.,Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
30
|
Cody JW, Ellis-Connell AL, O’Connor SL, Pienaar E. Mathematical modeling of N-803 treatment in SIV-infected non-human primates. PLoS Comput Biol 2021; 17:e1009204. [PMID: 34319980 PMCID: PMC8351941 DOI: 10.1371/journal.pcbi.1009204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 08/09/2021] [Accepted: 06/21/2021] [Indexed: 12/01/2022] Open
Abstract
Immunomodulatory drugs could contribute to a functional cure for Human Immunodeficiency Virus (HIV). Interleukin-15 (IL-15) promotes expansion and activation of CD8+ T cell and natural killer (NK) cell populations. In one study, an IL-15 superagonist, N-803, suppressed Simian Immunodeficiency Virus (SIV) in non-human primates (NHPs) who had received prior SIV vaccination. However, viral suppression attenuated with continued N-803 treatment, partially returning after long treatment interruption. While there is evidence of concurrent drug tolerance, immune regulation, and viral escape, the relative contributions of these mechanisms to the observed viral dynamics have not been quantified. Here, we utilize mathematical models of N-803 treatment in SIV-infected macaques to estimate contributions of these three key mechanisms to treatment outcomes: 1) drug tolerance, 2) immune regulation, and 3) viral escape. We calibrated our model to viral and lymphocyte responses from the above-mentioned NHP study. Our models track CD8+ T cell and NK cell populations with N-803-dependent proliferation and activation, as well as viral dynamics in response to these immune cell populations. We compared mathematical models with different combinations of the three key mechanisms based on Akaike Information Criterion and important qualitative features of the NHP data. Two minimal models were capable of reproducing the observed SIV response to N-803. In both models, immune regulation strongly reduced cytotoxic cell activation to enable viral rebound. Either long-term drug tolerance or viral escape (or some combination thereof) could account for changes to viral dynamics across long breaks in N-803 treatment. Theoretical explorations with the models showed that less-frequent N-803 dosing and concurrent immune regulation blockade (e.g. PD-L1 inhibition) may improve N-803 efficacy. However, N-803 may need to be combined with other immune therapies to countermand viral escape from the CD8+ T cell response. Our mechanistic model will inform such therapy design and guide future studies. Immune therapy may be a critical component in the functional cure for Human Immunodeficiency Virus (HIV). N-803 is an immunotherapeutic drug that activates antigen-specific CD8+ T cells of the immune system. These CD8+ T cells eliminate HIV-infected cells in order to limit the spread of infection in the body. In one study, N-803 reduced plasma viremia in macaques that were infected with Simian Immunodeficiency Virus, an analog of HIV. Here, we used mathematical models to analyze the data from this study to better understand the effects of N-803 therapy on the immune system. Our models indicated that inhibitory signals may be reversing the stimulatory effect of N-803. Results also suggested the possibilities that tolerance to N-803 could build up within the CD8+ T cells themselves and that the treatment may be selecting for virus strains that are not targeted by CD8+ T cells. Our models predict that N-803 therapy may be made more effective if the time between doses is increased or if inhibitory signals are blocked by an additional drug. Also, N-803 may need to be combined with other immune therapies to target virus that would otherwise evade CD8+ T cells.
Collapse
Affiliation(s)
- Jonathan W. Cody
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, United States of America
| | - Amy L. Ellis-Connell
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Shelby L. O’Connor
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Elsje Pienaar
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, United States of America
- * E-mail:
| |
Collapse
|
31
|
Peng X, Chen L, Jiao Y, Wang Y, Hao Z, Zhan X. Application of natural killer cells in pancreatic cancer. Oncol Lett 2021; 22:647. [PMID: 34386069 DOI: 10.3892/ol.2021.12908] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 06/30/2021] [Indexed: 12/24/2022] Open
Abstract
Pancreatic cancer, a highly malignant disease, is characterized by rapid progression and early metastasis. Although the integrative treatment of pancreatic cancer has made great progress, the prognosis of patients with advanced pancreatic cancer remains extremely poor. In recent years, with the advancements in tumor immunology, immunotherapy has become a promising remedy for pancreatic cancer. Natural killer (NK) cells are the key lymphocytes in the innate immune system. NK cell function does not require antigen pre-sensitization and is not major histocompatibility complex restricted. By targeting tumors or virus-infected cells, the cells play a key role in immune surveillance. Although several questions about NK cells in pancreatic cancer still need to be further studied, there are extensive theories supporting the clinical application prospects of NK cell immunotherapy in pancreatic cancer. Since very few studies have evaluated the role of NK cells in pancreatic cancer, this review provides a comprehensive update of the role of NK cells in pancreatic cancer immunotherapy.
Collapse
Affiliation(s)
- Xiaobo Peng
- Department of Oncology, Changhai Hospital Affiliated to Naval Military Medical University, Shanghai 200433, P.R. China
| | - Ling Chen
- Department of Oncology, Changhai Hospital Affiliated to Naval Military Medical University, Shanghai 200433, P.R. China
| | - Yuan Jiao
- Department of Oncology, Changhai Hospital Affiliated to Naval Military Medical University, Shanghai 200433, P.R. China
| | - Yujie Wang
- Department of Oncology, Changhai Hospital Affiliated to Naval Military Medical University, Shanghai 200433, P.R. China
| | - Zhibin Hao
- Department of Oncology, Changhai Hospital Affiliated to Naval Military Medical University, Shanghai 200433, P.R. China
| | - Xianbao Zhan
- Department of Oncology, Changhai Hospital Affiliated to Naval Military Medical University, Shanghai 200433, P.R. China
| |
Collapse
|
32
|
Fabian KP, Padget MR, Donahue RN, Solocinski K, Robbins Y, Allen CT, Lee JH, Rabizadeh S, Soon-Shiong P, Schlom J, Hodge JW. PD-L1 targeting high-affinity NK (t-haNK) cells induce direct antitumor effects and target suppressive MDSC populations. J Immunother Cancer 2021; 8:jitc-2019-000450. [PMID: 32439799 PMCID: PMC7247398 DOI: 10.1136/jitc-2019-000450] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/29/2020] [Indexed: 12/12/2022] Open
Abstract
Background Although immune checkpoint inhibitors have revolutionized cancer treatment, clinical benefit with this class of agents has been limited to a subset of patients. Hence, more effective means to target tumor cells that express immune checkpoint molecules should be developed. For the first time, we report a novel natural killer (NK) cell line, programmed death-ligand 1 (PD-L1) targeting high-affinity natural killer (t-haNK), which was derived from NK-92 and was engineered to express high-affinity CD16, endoplasmic reticulum-retained interleukin (IL)-2, and a PD-L1-specific chimeric antigen receptor (CAR). We show that PD-L1 t-haNK cells also retained the expression of native NK receptors and carried a high content of granzyme and perforin granules. Methods NanoString, flow cytometry, and immunofluorescence analyses were performed to characterize the phenotype of irradiated PD-L1 t-haNK cells. In vitro PD-L1 t-haNK cell activity against cancer cell lines and human peripheral blood mononuclear cells (PBMCs) was determined via flow-based and 111In-release killing assays. The antitumor effect of PD-L1 t-haNK cells in vivo was investigated using MDA-MB-231, H460, and HTB1 xenograft models in NOD-scid IL2Rgammanull (NSG) mice. Additionally, the antitumor effect of PD-L1 t-haNK cells, in combination with anti-PD-1 and N-803, an IL-15 superagonist, was evaluated using mouse oral cancer 1 syngeneic model in C57BL/6 mice. Results We show that PD-L1 t-haNK cells expressed PD-L1-targeting CAR and CD16, retained the expression of native NK receptors, and carried a high content of granzyme and perforin granules. In vitro, we demonstrate the ability of irradiated PD-L1 t-haNK cells to lyse 20 of the 20 human cancer cell lines tested, including triple negative breast cancer (TNBC) and lung, urogenital, and gastric cancer cells. The cytotoxicity of PD-L1 t-haNK cells was correlated to the PD-L1 expression of the tumor targets and can be improved by pretreating the targets with interferon (IFN)-γ. In vivo, irradiated PD-L1 t-haNK cells inhibited the growth of engrafted TNBC and lung and bladder tumors in NSG mice. The combination of PD-L1 t-haNK cells with N-803 and anti-PD-1 antibody resulted in superior tumor growth control of engrafted oral cavity squamous carcinoma tumors in C57BL/6 mice. In addition, when cocultured with human PBMCs, PD-L1 t-haNK cells preferentially lysed the myeloid-derived suppressor cell population but not other immune cell types. Conclusion These studies demonstrate the antitumor efficacy of PD-L1 t-haNK cells and provide a rationale for the potential use of these cells in clinical studies.
Collapse
Affiliation(s)
- Kellsye P Fabian
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Michelle R Padget
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Renee N Donahue
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Kristen Solocinski
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Yvette Robbins
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Clint T Allen
- Section on Translational Tumor Immunology, National Institute on Deafness and Other Communication Disorders, Bethesda, Maryland, USA
| | - John H Lee
- ImmunityBio, Santa Cruz, California, USA
| | - Shahrooz Rabizadeh
- NantOmics, Culver City, California, USA.,ImmunityBio, Culver City, California, USA
| | - Patrick Soon-Shiong
- NantOmics, Culver City, California, USA.,ImmunityBio, Culver City, California, USA
| | - Jeffrey Schlom
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - James W Hodge
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| |
Collapse
|
33
|
Two Complementarity Immunotherapeutics in Non-Small-Cell Lung Cancer Patients-Mechanism of Action and Future Concepts. Cancers (Basel) 2021; 13:cancers13112836. [PMID: 34200219 PMCID: PMC8201041 DOI: 10.3390/cancers13112836] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 05/19/2021] [Accepted: 05/31/2021] [Indexed: 12/19/2022] Open
Abstract
Simple Summary Here, we focused on the most important mechanisms of action of combined immunotherapy with modern anticancer approaches in patients with non-small-cell lung cancer. This knowledge is extremely important for lung cancer clinicians. First, it facilitates proper involvement of the patient in the treatment and monitoring its effectiveness. More importantly, the knowledge of the immunotherapy mechanisms will certainly allow quick recognition of the side effects of such a therapy, which are totally different of those observed after chemotherapy. Side effects of combination therapies can occur at any stage of treatment, and even after completion thereof. This review article could particularly explain the mechanism of action of combined immunotherapy, which have different targets in patients. Abstract Due to the limited effectiveness of immunotherapy used as first-line monotherapy in patients with non-small-cell lung cancer (NSCLC), the concepts of combining classical immunotherapy based on immune checkpoint antibodies with other treatment methods have been developed. Pembrolizumab and atezolizumab were registered in combination with chemotherapy for the treatment of metastatic NSCLC, while durvalumab found its application in consolidation therapy after successful chemoradiotherapy in patients with locally advanced NSCLC. Exceptionally attractive, due to their relatively low toxicity and high effectiveness, are treatment approaches in which a combination of two different immunotherapy methods is applied. This method is based on observations from clinical trials in which nivolumab and ipilimumab were used as first-line therapy for advanced NSCLC. It turned out that the dual blockade of immune checkpoints activated T lymphocytes in different compartments of the immune response, at the same time affecting the downregulation of immune suppressor cells (regulatory T cells). These experiments not only resulted in the registration of combination therapy with nivolumab and ipilimumab, but also initiated other clinical trials using immune checkpoint inhibitors (ICIs) in combination with other ICIs or activators of costimulatory molecules found on immune cells. There are also studies in which ICIs are associated with molecules that modify the tumour environment. This paper describes the mechanism of the synergistic effect of a combination of different immunotherapy methods in NSCLC patients.
Collapse
|
34
|
Liu B, Zhu X, Kong L, Wang M, Spanoudis C, Chaturvedi P, George V, Jiao JA, You L, Egan JO, Echeverri C, Gallo VL, Xing J, Ravelo K, Prendes C, Antolinez J, Denissova J, Muniz GJ, Jeng EK, Rhode PR, Wong HC. Bifunctional TGF-β trap/IL-15 Protein Complex Elicits Potent NK Cell and CD8 + T Cell Immunity Against Solid Tumors. Mol Ther 2021; 29:2949-2962. [PMID: 34091051 DOI: 10.1016/j.ymthe.2021.06.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/28/2021] [Accepted: 06/01/2021] [Indexed: 10/21/2022] Open
Abstract
Advances in immunostimulatory and anti-immunosuppressive therapeutics have revolutionized cancer treatment. However, novel immunotherapeutics with these dual functions are not frequently reported. Here we describe the creation of a heterodimeric bifunctional fusion molecule, HCW9218, constructed using our soluble tissue factor-based scaffold technology. This complex comprises extracellular domains of the human transforming growth factor-β (TGF-β) receptor II and a human interleukin (IL)-15/IL-15 receptor α complex. HCW9218 can be readily expressed in CHO cells and purified using antibody-based affinity chromatography in a large-scale manufacturing setting. HCW9218 potently activates mouse natural killer (NK) cells and CD8+ T cells in vitro and in vivo to enhance cell proliferation, metabolism and antitumor cytotoxic activities. Similarly, human immune cells become activated with increased cytotoxicity following incubation with HCW9218. This fusion complex also exhibits TGF-β neutralizing activity in vitro and sequesters plasma TGF-β in vivo. In a syngeneic B16F10 melanoma model, HCW9218 displayed strong antitumor activity mediated by NK cells and CD8+ T cells, and increased their infiltration into tumors. Repeat-dose subcutaneous administration of HCW9218 was well tolerated by mice, with a half-life sufficient to provide long lasting biological activity. Thus, HCW9218 may serve as a novel therapeutic to simultaneously provide immunostimulation and lessen immunosuppression associated with tumors.
Collapse
Affiliation(s)
- Bai Liu
- HCW Biologics Inc., Miramar, FL, 33025 USA
| | | | - Lin Kong
- HCW Biologics Inc., Miramar, FL, 33025 USA
| | - Meng Wang
- HCW Biologics Inc., Miramar, FL, 33025 USA
| | | | | | | | | | - Lijing You
- HCW Biologics Inc., Miramar, FL, 33025 USA
| | | | | | | | - Jilan Xing
- HCW Biologics Inc., Miramar, FL, 33025 USA
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Desbois M, Béal C, Charrier M, Besse B, Meurice G, Cagnard N, Jacques Y, Béchard D, Cassard L, Chaput N. IL-15 superagonist RLI has potent immunostimulatory properties on NK cells: implications for antimetastatic treatment. J Immunother Cancer 2021; 8:jitc-2020-000632. [PMID: 32532840 PMCID: PMC7295443 DOI: 10.1136/jitc-2020-000632] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/07/2020] [Indexed: 12/14/2022] Open
Abstract
Background As the immune system is compromised in patients with cancer, therapeutic strategies to stimulate immunity appear promising, to avoid relapse and increase long-term overall survival. Interleukin-15 (IL-15) has similar properties to IL-2, but does not cause activation-induced cell death nor activation and proliferation of regulatory T cells (Treg), which makes it a serious candidate for anticancer immunotherapy. However, IL-15 has a short half-life and high doses are needed to achieve responses. Designed to enhance its activity, receptor-linker-IL-15 (RLI) (SO-C101) is a fusion molecule of human IL-15 covalently linked to the human IL-15Rα sushi+ domain currently assessed in a phase I/Ib clinical trial on patients with advanced/metastatic solid cancer. Methods We investigated the antimetastatic activity of RLI in a 4T1 mouse mammary carcinoma that spontaneously metastasizes and evaluated its immunomodulatory role in the metastatic lung microenvironment. We further characterized the proliferation, maturation and cytotoxic functions of natural killer (NK) cells in tumor-free mice treated with RLI. Finally, we explored the effect of RLI on human NK cells from healthy donors and patients with non-small cell lung cancer (NSCLC). Results RLI treatment displayed antimetastatic properties in the 4T1 mouse model. By characterizing the lung microenvironment, we observed that RLI restored the balance between NK cells and neutrophils (CD11b+ Ly6Ghigh Ly6Clow) that massively infiltrate lungs of 4T1-tumor bearing mice. In addition, the ratio between NK cells and Treg was strongly increased by RLI treatment. Further pharmacodynamic studies in tumor-free mice revealed superior proliferative and cytotoxic functions on NK cells after RLI treatment compared with IL-15 alone. Characterization of the maturation stage of NK cells demonstrated that RLI favored accumulation of CD11b+ CD27high KLRG1+ mature NK cells. Finally, RLI demonstrated potent immunostimulatory properties on human NK cells by inducing proliferation and activation of NK cells from healthy donors and enhancing cytotoxic responses to NKp30 crosslinking in NK cells from patients with NSCLC. Conclusions Collectively, our work demonstrates superior activity of RLI compared with rhIL-15 in modulating and activating NK cells and provides additional evidences for a therapeutic strategy using RLI as antimetastatic molecule.
Collapse
Affiliation(s)
- Mélanie Desbois
- Analyse Moléculaire, Modélisation et Imagerie de la Maladie Cancéreuse, Laboratoire d'Immunomonitoring en Oncologie, Gustave Roussy Institute, INSERM, CNRS, Paris-Saclay University, Villejuif, Île-de-France, France.,Cytune Pharma, Nantes, France.,Faculté de Médecine, Paris-Saclay University, Le Kremlin-Bicêtre, Île-de-France, France
| | - Coralie Béal
- Centre d'investigation Clinique Biothérapie 1428, Gustave Roussy Institute, Villejuif, Île-de-France, France
| | - Mélinda Charrier
- Analyse Moléculaire, Modélisation et Imagerie de la Maladie Cancéreuse, Laboratoire d'Immunomonitoring en Oncologie, Gustave Roussy Institute, INSERM, CNRS, Paris-Saclay University, Villejuif, Île-de-France, France.,Faculté de Médecine, Paris-Saclay University, Le Kremlin-Bicêtre, Île-de-France, France.,Centre d'investigation Clinique Biothérapie 1428, Gustave Roussy Institute, Villejuif, Île-de-France, France
| | - Benjamin Besse
- Faculté de Médecine, Paris-Saclay University, Le Kremlin-Bicêtre, Île-de-France, France.,Comité de Pathologie Thoracique, Gustave Roussy Institute, Villejuif, Île-de-France, France
| | - Guillaume Meurice
- Plateforme de Bioinformatique, Gustave Roussy Institute, Villejuif, Île-de-France, France
| | - Nicolas Cagnard
- Plateforme de Bioinformatique, Université Paris Descartes, Paris, Île-de-France, France
| | | | | | - Lydie Cassard
- Analyse Moléculaire, Modélisation et Imagerie de la Maladie Cancéreuse, Laboratoire d'Immunomonitoring en Oncologie, Gustave Roussy Institute, INSERM, CNRS, Paris-Saclay University, Villejuif, Île-de-France, France
| | - Nathalie Chaput
- Analyse Moléculaire, Modélisation et Imagerie de la Maladie Cancéreuse, Laboratoire d'Immunomonitoring en Oncologie, Gustave Roussy Institute, INSERM, CNRS, Paris-Saclay University, Villejuif, Île-de-France, France .,Faculty of Pharmacy, University Paris-Saclay, Chatenay-Malabry, France
| |
Collapse
|
36
|
Wolfson B, Franks SE, Hodge JW. Stay on Target: Reengaging Cancer Vaccines in Combination Immunotherapy. Vaccines (Basel) 2021; 9:vaccines9050509. [PMID: 34063388 PMCID: PMC8156017 DOI: 10.3390/vaccines9050509] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/10/2021] [Accepted: 05/12/2021] [Indexed: 12/12/2022] Open
Abstract
Effective treatment of established tumors requires rational multicombination immunotherapy strategies designed to target all functions of the patient immune system and tumor immune microenvironment. While these combinations build on the foundation of successful immune checkpoint blockade antibodies, it is increasingly apparent that successful immunotherapy will also require a cancer vaccine backbone to engage the immune system, thereby ensuring that additional immuno-oncology agents will engage a tumor-specific immune response. This review summarizes ongoing clinical trials built upon the backbone of cancer vaccines and focusing on those clinical trials that utilize multicombination (3+) immuno-oncology agents. We examine combining cancer vaccines with multiple checkpoint blockade antibodies, novel multifunctional molecules, adoptive cell therapy and immune system agonists. These combinations and those yet to enter the clinic represent the future of cancer immunotherapy. With a cancer vaccine backbone, we are confident that current and coming generations of rationally designed multicombination immunotherapy can result in effective therapy of established tumors.
Collapse
|
37
|
Chen Z, Yang Y, Neo SY, Shi H, Chen Y, Wagner AK, Larsson K, Tong L, Jakobsson PJ, Alici E, Wu J, Cao Y, Wang K, Liu LL, Mao Y, Sarhan D, Lundqvist A. Phosphodiesterase 4A confers resistance to PGE2-mediated suppression in CD25 + /CD54 + NK cells. EMBO Rep 2021; 22:e51329. [PMID: 33480074 PMCID: PMC7926252 DOI: 10.15252/embr.202051329] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 12/14/2020] [Accepted: 12/21/2020] [Indexed: 12/22/2022] Open
Abstract
Inadequate persistence of tumor‐infiltrating natural killer (NK) cells is associated with poor prognosis in cancer patients. The solid tumor microenvironment is characterized by the presence of immunosuppressive factors, including prostaglandin E2 (PGE2), that limit NK cell persistence. Here, we investigate if the modulation of the cytokine environment in lung cancer with IL‐2 or IL‐15 renders NK cells resistant to suppression by PGE2. Analyzing Cancer Genome Atlas (TCGA) data, we found that high NK cell gene signatures correlate with significantly improved overall survival in patients with high levels of the prostaglandin E synthase (PTGES). In vitro, IL‐15, in contrast to IL‐2, enriches for CD25+/CD54+ NK cells with superior mTOR activity and increased expression of the cAMP hydrolyzing enzyme phosphodiesterase 4A (PDE4A). Consequently, this distinct population of NK cells maintains their function in the presence of PGE2 and shows an increased ability to infiltrate lung adenocarcinoma tumors in vitro and in vivo. Thus, strategies to enrich CD25+/CD54+ NK cells for adoptive cell therapy should be considered.
Collapse
Affiliation(s)
- Ziqing Chen
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Ying Yang
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden.,Department of Respiratory Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China.,School of Medicine, Zhejiang University, Hangzhou, China
| | - Shi Y Neo
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Hao Shi
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Yi Chen
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Arnika K Wagner
- Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Karin Larsson
- Rheumatology Unit, Department of Medicine, Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Le Tong
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Per-Johan Jakobsson
- Rheumatology Unit, Department of Medicine, Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Evren Alici
- Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Jing Wu
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Yihai Cao
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Kai Wang
- School of Medicine, Zhejiang University, Hangzhou, China
| | - Lisa L Liu
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Yumeng Mao
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Dhifaf Sarhan
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Andreas Lundqvist
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
38
|
Zhang S, Zhao J, Bai X, Handley M, Shan F. Biological effects of IL-15 on immune cells and its potential for the treatment of cancer. Int Immunopharmacol 2020; 91:107318. [PMID: 33383444 DOI: 10.1016/j.intimp.2020.107318] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/09/2020] [Accepted: 12/15/2020] [Indexed: 02/06/2023]
Abstract
Interleukin-15 (IL-15) has recently emerged as a novel immunomodulatory cytokine in cancer immunotherapy. IL-15 has the potential to reject and destroy cancer cells in the tumor microenvironment by expanding and activating natural killer (NK), natural killer T (NKT), and memory (m) CD8+T cells. Due to the feasible outcomes obtained from preclinical studies and phase 1/2 clinical trials, IL-15-based therapy, including chimeric antigen receptor (CAR) T cell or CAR NK cell infusion following in vitro expansion in the presence of IL-15, used in combination with checkpoint inhibitors and other therapy may extend to clinical practice in the future. It is also important to understand the biological characteristics of IL-15 to ensure the maximal benefit of therapeutic strategies. Here, we summarize the current development of IL-15 in the following areas: anti-tumor mechanisms in the tumor microenvironment, advances in IL-15-based therapy itself or in combination with other methods, including biological agents, monoclonal antibodies, and adoptive immunotherapy.
Collapse
Affiliation(s)
- Shuling Zhang
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Jianzhu Zhao
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Xueli Bai
- Department of Gynecology, The Fourth Affiliated Hospital of China Medical University, Shenyang 110004, China
| | - Mike Handley
- Cytocm lnc, 3001 Aloma Ave, Winter Park, FL 32792, USA
| | - Fengping Shan
- Department of Immunology, School of Basic Medical Science, China Medical University, Shenyang 110122, China.
| |
Collapse
|
39
|
Zhu X, Qin X, Wang X, Wang Y, Cao W, Zhang J, Chen W. Oral cancer cell‑derived exosomes modulate natural killer cell activity by regulating the receptors on these cells. Int J Mol Med 2020; 46:2115-2125. [PMID: 33125101 PMCID: PMC7595664 DOI: 10.3892/ijmm.2020.4736] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 08/19/2020] [Indexed: 02/05/2023] Open
Abstract
Oral cancer (OC) is the most common type of head and neck malignant tumor. Tumor‑derived exosomes induce a complex extracellular environment that affects tumor immunity. In the present study, exosomes were isolated from OC cell lines (WSU‑HN4 and SCC‑9) by ultrafiltration and the protein content of these oral cancer‑derived exosomes (OCEXs) was analyzed by mass spectrometry, which revealed the enrichment of transforming growth factor (TGF)‑β1. Natural killer (NK) cells were examined by flow cytometry following co‑culture with OCEXs. The expression of killer cell lectin like receptor K1 (KLRK1; also known as NKG2D, as used herein) and natural cytotoxicity triggering receptor 3 (NCR3; also known as NKp30, as used herein) in NK cells was found to be significantly upregulated following co‑culture with the OCEXs for 1 day, whereas this expression decreased at 7 days. Killer cell lectin like receptor C1 (KLRC1; also known as NKG2A; as used herein) expression exhibited an opposite trend at 1 day. In addition, NK cell cytotoxicity against the OC cells was enhanced at 1 day, but was attenuated at 7 days. TGF‑β1 inhibited the function of NK cells at 7 days, whereas it had no obvious effects at 1 and 3 days. On the whole, the findings of the present study reveal changes in NK cell function and provide new insight into NK cell dysfunction.
Collapse
Affiliation(s)
- Xueqin Zhu
- Department of Oral and Maxillofacial-Head and Neck Oncology and Faculty of Oral and Maxillofacial Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine
- Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai 200011, P.R. China
| | - Xing Qin
- Department of Oral and Maxillofacial-Head and Neck Oncology and Faculty of Oral and Maxillofacial Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine
- Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai 200011, P.R. China
| | - Xiaoning Wang
- Department of Oral and Maxillofacial-Head and Neck Oncology and Faculty of Oral and Maxillofacial Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine
- Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai 200011, P.R. China
| | - Yingnan Wang
- Department of Oral and Maxillofacial-Head and Neck Oncology and Faculty of Oral and Maxillofacial Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine
- Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai 200011, P.R. China
| | - Wei Cao
- Department of Oral and Maxillofacial-Head and Neck Oncology and Faculty of Oral and Maxillofacial Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine
- Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai 200011, P.R. China
| | - Jianjun Zhang
- Department of Oral and Maxillofacial-Head and Neck Oncology and Faculty of Oral and Maxillofacial Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine
- Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai 200011, P.R. China
| | - Wantao Chen
- Department of Oral and Maxillofacial-Head and Neck Oncology and Faculty of Oral and Maxillofacial Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine
- Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai 200011, P.R. China
- Correspondence to: Professor Wantao Chen, Department of Oral and Maxillofacial-Head and Neck Oncology and Faculty of Oral and Maxillofacial Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, P.R. China, E-mail:
| |
Collapse
|
40
|
Tan C, Waldmann TA. Bench-to-bedside translation of interleukin-15 for immunotherapy: principles and challenges. Expert Opin Drug Deliv 2020; 17:895-898. [PMID: 32357804 DOI: 10.1080/17425247.2020.1764933] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Chalet Tan
- Department of Pharmaceutics and Drug Delivery, University of Mississippi , Oxford, MS, USA
| | - Thomas A Waldmann
- Lymphoid Malignancies Branch, Center of Cancer Research, National Cancer Institute, National Institutes of Health , Bethesda, MD, USA
| |
Collapse
|
41
|
Knudson KM, Hodge JW, Schlom J, Gameiro SR. Rationale for IL-15 superagonists in cancer immunotherapy. Expert Opin Biol Ther 2020; 20:705-709. [PMID: 32159390 DOI: 10.1080/14712598.2020.1738379] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Karin M Knudson
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health , Bethesda, MD, USA
| | - James W Hodge
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health , Bethesda, MD, USA
| | - Jeffrey Schlom
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health , Bethesda, MD, USA
| | - Sofia R Gameiro
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health , Bethesda, MD, USA
| |
Collapse
|
42
|
Moui A, Klein M, Hassoun D, Dijoux E, Cheminant MA, Magnan A, Bouchaud G. The IL-15 / sIL-15Rα complex modulates immunity without effect on asthma features in mouse. Respir Res 2020; 21:33. [PMID: 31996218 PMCID: PMC6988344 DOI: 10.1186/s12931-020-1301-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 01/20/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Interleukin 15 (IL-15) is a growth and modulating factor for B, T lymphocytes and natural killer cells (NK). Its action on innate and adaptive immunity is modulated by its alpha chain receptor (IL-15Rα). The IL-15/sIL-15Rα complex (IL-15Cx) increases the bioavailability and activity of the cytokine in vivo. IL-15Cx has been used in diseases to dampen IL-15 inflammation by the use of soluble IL-15Ralpha specificity. Here, we aim to evaluate the interest of IL-15Cx in a mouse model of asthma. METHODS Using a mouse model of asthma consisting in percutaneous sensitization and intranasal challenge with total house dust mite extract, we evaluated the effect of IL-15Cx injected intraperitoneally four times after a first nasal challenge. Respiratory function was assessed by the technique of forced oscillations (Flexivent®). The effect on bronchial remodeling was evaluated by lung histology. The inflammatory status was analyzed by flow cytometry. RESULTS We observed that the IL-15Cx modulates lung and systemic inflammation by increasing NK cells, CD8+ memory T cells and regulatory cells. However, IL-15Cx displays no effect on bronchial hyperreactivity, bronchial remodeling nor cellular bronchial infiltrate, but limits the secretion of bronchial mucus and modulates only inflammatory response in a HDM-allergic asthma murine model. CONCLUSIONS IL-15Cx has a limited effect on immune response in asthma and has no effect on lung function in mice. Thus, it limits its therapeutic potential but might suggest a combinatory potential with other therapeutics.
Collapse
Affiliation(s)
- Antoine Moui
- L'institut du thorax, Inserm, CNRS, Université́ de Nantes, Nantes, France.,L'institut du thorax, CHU de Nantes, service de pneumologie, Nantes, France
| | - Martin Klein
- L'institut du thorax, Inserm, CNRS, Université́ de Nantes, Nantes, France
| | - Dorian Hassoun
- L'institut du thorax, Inserm, CNRS, Université́ de Nantes, Nantes, France.,L'institut du thorax, CHU de Nantes, service de pneumologie, Nantes, France
| | - Eléonore Dijoux
- L'institut du thorax, Inserm, CNRS, Université́ de Nantes, Nantes, France
| | | | - Antoine Magnan
- L'institut du thorax, Inserm, CNRS, Université́ de Nantes, Nantes, France.,L'institut du thorax, CHU de Nantes, service de pneumologie, Nantes, France
| | - Grégory Bouchaud
- INRA, UR1268 BIA, rue de la Géraudière, F-44316, Nantes, France.
| |
Collapse
|
43
|
Hitting More Birds with a Stone: Impact of TGF-β on ILC Activity in Cancer. J Clin Med 2020; 9:jcm9010143. [PMID: 31948072 PMCID: PMC7019362 DOI: 10.3390/jcm9010143] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 12/20/2019] [Accepted: 01/03/2020] [Indexed: 12/17/2022] Open
Abstract
Transforming growth factor (TGF)-β is a central immunosuppressive cytokine within tumor microenvironment inhibiting the expansion and function of major cellular components of adaptive and innate immune system. Among them, compelling evidence has demonstrated that TGF-β is a key regulator of natural killer (NK) cells, innate lymphoid cells (ILCs) with a critical role in immunosurveillance against different kinds of cancer cells. A TGF-β rich tumor microenvironment blocks NK cell activity at multiple levels. This immunosuppressive factor exerts direct regulatory effects on NK cells including inhibition of cytokine production, alteration of activating/inhibitory receptor expression, and promotion of the conversion into non cytotoxic group I ILC (ILC1). Concomitantly, TGF-β can render tumor cells less susceptible to NK cell-mediated recognition and lysis. Indeed, accumulating evidence suggest that changes in levels of NKG2D ligands, mainly MICA, as well as an increase of immune checkpoint inhibitors (e.g., PD-L1) and other inhibitory ligands on cancer cells significantly contribute to TGF-β-mediated suppression of NK cell activity. Here, we will take into consideration two major mechanisms underlying the negative regulation of ILC function by TGF-β in cancer. First, we will address how TGF-β impacts the balance of signals governing NK cell activity. Second, we will review recent advances on the role of this cytokine in driving ILC plasticity in cancer. Finally, we will discuss how the development of therapeutic approaches blocking TGF-β may reverse the suppression of host immune surveillance and improve anti-tumor NK cell response in the clinic.
Collapse
|
44
|
Regulation of Cancer Immune Checkpoint: Mono- and Poly-Ubiquitination: Tags for Fate. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1248:295-324. [PMID: 32185716 DOI: 10.1007/978-981-15-3266-5_13] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The antagonism, stalemate and compromise between the immune system and tumor cells is closely associated with tumor development and progression. In recent years, tumor immunotherapy has made continuous breakthroughs. It has become an important approach for cancer treatment, improving the survival and prognosis of more and more tumor patients. Further investigating the mechanism of tumor immune regulation, and exploring tumor immunotherapy targets with high specificity and wide applicability will provide researchers and clinicians with favorable weapons towards cancer. Ubiquitination affects protein fate through influencing the activity, stability and location of target protein. The regulation of substrate protein fate by ubiquitination is involved in cell cycle, apoptosis, transcriptional regulation, DNA repair, immune response, protein degradation and quality control. E3 ubiquitin ligase selectively recruits specific protein substrates through specific protein-protein interactions to determine the specificity of the overall ubiquitin modification reaction. Immune-checkpoint inhibitory pathway is an important mechanism for tumor cells to evade immune killing, which can inhibit T cell activity. Blocking the immune checkpoints and activating T cells through targeting the negative regulatory factors of T cell activation and removing the "brake" of T lymphocytes can enhance T cells immune response against tumors. Therefore, blocking the immune checkpoint is one of the methods to enhance the activity of T cells, and it is also a hot target for the development of anti-tumor drugs in recent years, whose inhibitors have shown good effect in specific tumor treatment. Ubiquitination, as one of the most important posttranslational modification of proteins, also modulates the expression, intracellular trafficking, subcellular and membranous location of immune checkpoints, regulating the immune surveillance of T cells to tumors.
Collapse
|
45
|
Lazarova M, Steinle A. Impairment of NKG2D-Mediated Tumor Immunity by TGF-β. Front Immunol 2019; 10:2689. [PMID: 31803194 PMCID: PMC6873348 DOI: 10.3389/fimmu.2019.02689] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 10/31/2019] [Indexed: 12/14/2022] Open
Abstract
Transforming growth factor-β (TGF-β) suppresses innate and adaptive immune responses via multiple mechanisms. TGF-β also importantly contributes to the formation of an immunosuppressive tumor microenvironment thereby promoting tumor growth. Amongst others, TGF-β impairs tumor recognition by cytotoxic lymphocytes via NKG2D. NKG2D is a homodimeric C-type lectin-like receptor expressed on virtually all human NK cells and cytotoxic T cells, and stimulates their effector functions upon engagement by NKG2D ligands (NKG2DL). While NKG2DL are mostly absent from healthy cells, their expression is induced by cellular stress and malignant transformation, and, accordingly, frequently detected on various tumor cells. Hence, the NKG2D axis is thought to play a decisive role in cancer immunosurveillance and, obviously, often is compromised in clinically apparent tumors. There is mounting evidence that TGF-β, produced by tumor cells and immune cells in the tumor microenvironment, plays a key role in blunting the NKG2D-mediated tumor surveillance. Here, we review the current knowledge on the impairment of NKG2D-mediated cancer immunity through TGF-β and discuss therapeutic approaches aiming at counteracting this major immune escape pathway. By reducing tumor-associated expression of NKG2DL and blinding cytotoxic lymphocytes through down-regulation of NKG2D, TGF-β is acting upon both sides of the NKG2D axis severely compromising NKG2D-mediated tumor rejection. Consequently, novel therapies targeting the TGF-β pathway are expected to reinvigorate NKG2D-mediated tumor elimination and thereby to improve the survival of cancer patients.
Collapse
Affiliation(s)
- Mariya Lazarova
- Institute for Molecular Medicine, Goethe-University Frankfurt am Main, Frankfurt am Main, Germany
| | - Alexander Steinle
- Institute for Molecular Medicine, Goethe-University Frankfurt am Main, Frankfurt am Main, Germany
| |
Collapse
|
46
|
Inhibition of TGF- β1 Signaling by IL-15: A Novel Role for IL-15 in the Control of Renal Epithelial-Mesenchymal Transition: IL-15 Counteracts TGF- β1-Induced EMT in Renal Fibrosis. Int J Cell Biol 2019; 2019:9151394. [PMID: 31360169 PMCID: PMC6642769 DOI: 10.1155/2019/9151394] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 12/10/2018] [Accepted: 05/29/2019] [Indexed: 01/23/2023] Open
Abstract
Renal tubulointerstitial fibrosis is the final common pathway in end-stage renal disease and is characterized by aberrant accumulation of extracellular matrix (ECM) components secreted by myofibroblasts. Tubular type 2 EMT, induced by TGF-β, plays an important role in renal fibrosis, by participating directly or indirectly in myofibroblasts generation. TGF-β1-induced apoptosis and fibrosis in experimental chronic murine kidney diseases are concomitantly associated with an intrarenal decreased expression of the IL-15 survival factor. Since IL-15 counteracts TGF-β1 effects in different cell models, we analyzed whether (1) human chronic inflammatory nephropathies evolving towards fibrosis could be also characterized by a weak intrarenal IL-15 expression and (2) IL-15 could inhibit epithelial-mesenchymal transition (EMT) and excess matrix deposition in human renal proximal tubular epithelial cells (RPTEC). Our data show that different human chronic kidney diseases are characterized by a strong decreased expression of intrarenal IL-15, which is particularly relevant in diabetic nephropathy, in which type 2 tubular EMT plays an important role in fibrosis. Moreover, primary epithelial tubular cultures deprived of growth supplements rapidly produce active TGF-β1 inducing a “spontaneous” EMT process characterized by the loss of membrane-bound IL-15 (mbIL-15) expression. Both “spontaneous” EMT and recombinant human (rh) TGF-β1-induced EMT models can be inhibited by treating RPTEC and HK2 cells with rhIL-15. Through a long-lasting phospho-c-jun activation, IL-15 inhibits rhTGF-β1-induced Snail1 expression, the master inducer of EMT, and blocks TGF-β1-induced tubular EMT and downstream collagen synthesis. In conclusion, our data suggest that intrarenal IL-15 could be a natural inhibitor of TGF-β in human kidney able to guarantee epithelial homeostasis and to prevent EMT process. Thus, both in vivo and in vitro an unbalance in intrarenal IL-15 and TGF-β1 levels could render RPTEC cells more prone to undergo EMT process. Exogenous IL-15 treatment could be beneficial in some human nephropathies such as diabetic nephropathy.
Collapse
|
47
|
Ungefroren H. Blockade of TGF-β signaling: a potential target for cancer immunotherapy? Expert Opin Ther Targets 2019; 23:679-693. [PMID: 31232607 DOI: 10.1080/14728222.2019.1636034] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Introduction: Malignant tumors often escape surveillance and eventual destruction by the host immune system through a variety of strategies including production of transforming growth factor (TGF)-β. Because of its generally immunosuppressive role, TGF-β has emerged as a promising therapeutic target in cancer immunotherapy. Areas covered: This article looks at specific mechanisms of how TGF-β controls the function of various immune cell subsets in the tumor microenvironment and focusses on T-cells. Various inhibition tools of TGF-β signaling and potential targets of therapeutic intervention are assessed along with the recent progress in combining TGF-β blockade and immune-mediated therapies. To round off the article, a summary of results from clinical trials is provided in which TGF-β blockade has shown therapeutic benefit for patients. Expert opinion: Data from preclinical models have shown that blocking TGF-β signaling can overcome resistance mechanisms and in combination with immune-checkpoint therapies, can yield additive or synergistic anti-tumor responses. The future of immunooncology will therefore be based on combination trials. Since response rates may critically depend on both cancer type and stage, selection of only those patients who can benefit from combinatorial immunotherapy regimens is of utmost importance.
Collapse
Affiliation(s)
- Hendrik Ungefroren
- a First Department of Medicine , University Hospital Schleswig-Holstein, Campus Lübeck, and University of Lübeck , Lübeck , Germany.,b Clinic for General Surgery, Visceral, Thoracic, Transplantation and Pediatric Surgery , University Hospital Schleswig-Holstein , Campus Kiel, Kiel , Germany
| |
Collapse
|
48
|
Lee EK, Sunwoo JB. Natural Killer Cells and Thyroid Diseases. Endocrinol Metab (Seoul) 2019; 34:132-137. [PMID: 31257741 PMCID: PMC6599908 DOI: 10.3803/enm.2019.34.2.132] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 05/30/2019] [Accepted: 06/07/2019] [Indexed: 01/09/2023] Open
Abstract
Abnormal production of thyroid hormone is one of the common endocrine disorders, and thyroid hormone production declines with age. The aging process also negatively affects the immune system. An interaction between endocrine system and the immune system has been proposed to be bidirectional. Emerging evidence suggests an interaction between a lymphocyte population, called natural killer (NK) cells and thyroid gland function. Here, we review the relationship between NK cells and thyroid function and disease.
Collapse
Affiliation(s)
- Eun Kyung Lee
- Center for Thyroid Cancer, National Cancer Center, Goyang, Korea
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - John B Sunwoo
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
49
|
Souza-Fonseca-Guimaraes F, Cursons J, Huntington ND. The Emergence of Natural Killer Cells as a Major Target in Cancer Immunotherapy. Trends Immunol 2019; 40:142-158. [PMID: 30639050 DOI: 10.1016/j.it.2018.12.003] [Citation(s) in RCA: 203] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 12/11/2018] [Accepted: 12/12/2018] [Indexed: 12/14/2022]
Abstract
Immune 'checkpoint' inhibitors can increase the activity of tumor-resident cytotoxic lymphocytes and have revolutionized cancer treatment. Current therapies block inhibitory pathways in tumor-infiltrating CD8+ T cells and recent studies have shown similar programs in other effector populations such as natural killer (NK) cells. NK cells are critical for immunosurveillance, particularly the control of metastatic cells or hematological cancers. However, how NK cells specifically recognize transformed cells and dominant negative feedback pathways, as well as how tumors escape NK cell control, remains undefined. This review summarizes recent advances that have illuminated inhibitory checkpoints in NK cells, some of which are shared with conventional cytotoxic T lymphocytes. It also outlines emerging approaches aimed at unleashing the potential of NK cells in immunotherapy.
Collapse
Affiliation(s)
- Fernando Souza-Fonseca-Guimaraes
- Molecular Immunology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia; Department of Medical Biology, University of Melbourne, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Victoria 3010, Australia.
| | - Joseph Cursons
- Department of Medical Biology, University of Melbourne, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Victoria 3010, Australia; Bioinformatics Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
| | - Nicholas D Huntington
- Molecular Immunology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia; Department of Medical Biology, University of Melbourne, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Victoria 3010, Australia; Biomedicine Discovery Institute and the Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia.
| |
Collapse
|
50
|
Fantini M, David JM, Wong HC, Annunziata CM, Arlen PM, Tsang KY. An IL-15 Superagonist, ALT-803, Enhances Antibody-Dependent Cell-Mediated Cytotoxicity Elicited by the Monoclonal Antibody NEO-201 Against Human Carcinoma Cells. Cancer Biother Radiopharm 2019; 34:147-159. [PMID: 30601063 PMCID: PMC6482908 DOI: 10.1089/cbr.2018.2628] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND A major mechanism of action for therapeutic antibodies is antibody-dependent cell-mediated cytotoxicity (ADCC). ALT-803 is an interleukin-15 superagonist complex that enhances ADCC against human carcinoma cells in vitro and exerts an antitumor activity in murine, rat, and human carcinomas in vivo. The authors investigated the ability of ALT-803 to modulate ADCC mediated by the humanized IgG1 monoclonal antibody (mAb) NEO-201 against human carcinoma cells. MATERIALS AND METHODS ALT-803 modulating activity on ADCC mediated by NEO-201 was evaluated on several NEO-201 ligand-expressing human carcinoma cells. Purified human natural killer (NK) cells from multiple healthy donors were treated with ALT-803 before their use as effectors in ADCC assay. Modulation of NK cell phenotype and cytotoxic function by exposure to ALT-803 was evaluated by flow cytometry and gene expression analysis. RESULTS ALT-803 significantly enhanced ADCC mediated by NEO-201. ALT-803 also upregulated NK activating receptors, antiapoptotic factors, and factors involved in the NK cytotoxicity, as well as downregulated gene expression of NK inhibiting receptors. CONCLUSIONS These findings indicate that ALT-803 can enhance ADCC activity mediated by NEO-201, by modulating NK activation and cytotoxicity, suggesting a possible clinical use of ALT-803 in combination with NEO-201 for the treatment of human carcinomas.
Collapse
Affiliation(s)
| | | | | | - Christina M. Annunziata
- Women's Malignancy Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | | | - Kwong Y. Tsang
- Precision Biologics, Inc., Rockville, Maryland
- Address correspondence to: Kwong Y. Tsang; Precision Biologics, Inc.; 9600 Medical Center Drive, Suite 300, Rockville, MD 20850
| |
Collapse
|