1
|
Berthon A, Wernisch L, Stoukidi M, Thornton M, Tessier-Lariviere O, Fortier-Poisson P, Mamen J, Pinkney M, Lee S, Sarkans E, Annecchino L, Appleton B, Garsed P, Patterson B, Gonshaw S, Jakopec M, Shunmugam S, Edwards T, Tukiainen A, Jennings J, Lajoie G, Hewage E, Armitage O. Using neural biomarkers to personalize dosing of vagus nerve stimulation. Bioelectron Med 2024; 10:15. [PMID: 38880906 PMCID: PMC11181600 DOI: 10.1186/s42234-024-00147-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 05/17/2024] [Indexed: 06/18/2024] Open
Abstract
BACKGROUND Vagus nerve stimulation (VNS) is an established therapy for treating a variety of chronic diseases, such as epilepsy, depression, obesity, and for stroke rehabilitation. However, lack of precision and side-effects have hindered its efficacy and extension to new conditions. Achieving a better understanding of the relationship between VNS parameters and neural and physiological responses is therefore necessary to enable the design of personalized dosing procedures and improve precision and efficacy of VNS therapies. METHODS We used biomarkers from recorded evoked fiber activity and short-term physiological responses (throat muscle, cardiac and respiratory activity) to understand the response to a wide range of VNS parameters in anaesthetised pigs. Using signal processing, Gaussian processes (GP) and parametric regression models we analyse the relationship between VNS parameters and neural and physiological responses. RESULTS Firstly, we illustrate how considering multiple stimulation parameters in VNS dosing can improve the efficacy and precision of VNS therapies. Secondly, we describe the relationship between different VNS parameters and the evoked fiber activity and show how spatially selective electrodes can be used to improve fiber recruitment. Thirdly, we provide a detailed exploration of the relationship between the activations of neural fiber types and different physiological effects. Finally, based on these results, we discuss how recordings of evoked fiber activity can help design VNS dosing procedures that optimize short-term physiological effects safely and efficiently. CONCLUSION Understanding of evoked fiber activity during VNS provide powerful biomarkers that could improve the precision, safety and efficacy of VNS therapies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Guillaume Lajoie
- Université de Montréal and Mila-Quebec AI Institute, Montréal, Canada
| | | | | |
Collapse
|
2
|
Sag AA, Bittman R, Prologo F, Friedberg EB, Nezami N, Ansari S, Prologo JD. Percutaneous Image-guided Cryoneurolysis: Applications and Techniques. Radiographics 2022; 42:1776-1794. [DOI: 10.1148/rg.220082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
3
|
Kapralou AN, Chrousos GP. Metabolic effects of truncal vagotomy when combined with bariatric-metabolic surgery. Metabolism 2022; 135:155263. [PMID: 35835160 DOI: 10.1016/j.metabol.2022.155263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 06/30/2022] [Accepted: 07/04/2022] [Indexed: 11/25/2022]
Abstract
Bariatric-metabolic surgery (BMS) in patients with obesity frequently leads to remission of concurrent type 2 diabetes mellitus (T2DM), even before body weight loss takes place. This is probably based on the correction of a dysmetabolic cycle in the gastrointestinal physiology of T2DM that includes increased vagus-dependent exocrine pancreatic secretion (EPS) and, hence, amplified digestion and nutrient absorption. The resultant chronic exposure of tissues to high plasma levels of glucose, fatty acids and amino acids causes tissue resistance to the actions of insulin and, at a later stage, β-cell dysfunction and reduction of insulin release. We hypothesize that the addition of a surgical truncal vagotomy (TV) may improve and solidify the beneficial results of BMS on T2DM by stably decreasing EPS, - hence reducing the digestion and absorption of nutrients -, and increasing incretin secretion as a result of increased delivery of unabsorbed nutrients to the distal intestine. This hypothesis is supported by surgical data from gastrointestinal malignancies and peptic ulcer operations that include TV, as well as by vagal blockade studies. We suggest that TV may result in a stable reduction of EPS, and that its combination with the appropriate type of BΜS, may enhance and sustain the salutary effects of the latter on T2DM.
Collapse
Affiliation(s)
| | - George P Chrousos
- University Research Institute of Maternal and Child Health and Precision Medicine, UNESCO Chair on Adolescent Health Care, National and Kapodistrian University of Athens Medical School, Athens, Greece
| |
Collapse
|
4
|
Marmerstein JT, McCallum GA, Durand DM. Decoding Vagus-Nerve Activity with Carbon Nanotube Sensors in Freely Moving Rodents. BIOSENSORS 2022; 12:bios12020114. [PMID: 35200374 PMCID: PMC8870245 DOI: 10.3390/bios12020114] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 02/03/2022] [Accepted: 02/05/2022] [Indexed: 05/07/2023]
Abstract
The vagus nerve is the largest autonomic nerve and a major target of stimulation therapies for a wide variety of chronic diseases. However, chronic recording from the vagus nerve has been limited, leading to significant gaps in our understanding of vagus nerve function and therapeutic mechanisms. In this study, we use a carbon nanotube yarn (CNTY) biosensor to chronically record from the vagus nerves of freely moving rats for over 40 continuous hours. Vagal activity was analyzed using a variety of techniques, such as spike sorting, spike-firing rates, and interspike intervals. Many spike-cluster-firing rates were found to correlate with food intake, and the neural-firing rates were used to classify eating and other behaviors. To our knowledge, this is the first chronic recording and decoding of activity in the vagus nerve of freely moving animals enabled by the axon-like properties of the CNTY biosensor in both size and flexibility and provides an important step forward in our ability to understand spontaneous vagus-nerve function.
Collapse
|
5
|
Unasa H, Jin J, Mauiliu-Wallis M, Hill A. Systematic Review and Meta-Analysis of the Effect of Augmenting Bariatric Surgery with Vagotomy. Bariatr Surg Pract Patient Care 2021. [DOI: 10.1089/bari.2021.0090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Hanson Unasa
- Department of Surgery, University of Auckland, Middlemore Hospital, Auckland, New Zealand
| | - James Jin
- Department of Surgery, University of Auckland, Middlemore Hospital, Auckland, New Zealand
| | | | - Andrew Hill
- Department of Surgery, University of Auckland, Middlemore Hospital, Auckland, New Zealand
| |
Collapse
|
6
|
Yuan F, Latif MA, Shafaat O, Prologo JD, Hill JO, Gudzune KA, Marrone AK, Kraitchman DL, Rogers AM, Khaitan L, Oklu R, Pereira K, Steele K, White SB, Weiss CR. Interventional Radiology Obesity Therapeutics: Proceedings from the Society of Interventional Radiology Foundation Research Consensus Panel. J Vasc Interv Radiol 2021; 32:1388.e1-1388.e14. [PMID: 34462083 DOI: 10.1016/j.jvir.2021.05.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/28/2021] [Accepted: 05/01/2021] [Indexed: 02/06/2023] Open
Abstract
The Society of Interventional Radiology Foundation commissioned a Research Consensus Panel to establish a research agenda on "Obesity Therapeutics" in interventional radiology (IR). The meeting convened a multidisciplinary group of physicians and scientists with expertise in obesity therapeutics. The meeting was intended to review current evidence on obesity therapies, familiarize attendees with the regulatory evaluation process, and identify research deficiencies in IR bariatric interventions, with the goal of prioritizing future high-quality research that would move the field forward. The panelists agreed that a weight loss of >8%-10% from baseline at 6-12 months is a desirable therapeutic endpoint for future IR weight loss therapies. The final consensus on the highest priority research was to design a blinded randomized controlled trial of IR weight loss interventions versus sham control arms, with patients receiving behavioral therapy.
Collapse
Affiliation(s)
- Frank Yuan
- Division of Interventional Radiology, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Muhammad A Latif
- Division of Interventional Radiology, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Epidemiology and Biostatistics, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland
| | - Omid Shafaat
- Division of Interventional Radiology, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - J David Prologo
- Department of Radiology, Division of Vascular and Interventional Radiology, Emory University School of Medicine, Atlanta, Georgia
| | - James O Hill
- Department of Nutrition Sciences, School of Health Professions, Nutrition Obesity Research Center, University of Alabama at Birmingham, Birmingham, Alabama
| | - Kimberly A Gudzune
- Department of Obesity Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - April K Marrone
- Division of Renal, Gastrointestinal, Obesity and Transplant Devices, Office of GastroRenal, ObGyn, General Hospital and Urology Devices, Office of Product Evaluation and Quality, Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, Maryland
| | - Dara L Kraitchman
- Division of MR Research, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Ann M Rogers
- Department of Surgery, Penn State Health Surgical Specialties, Milton S. Hershey Medical Center, Hershey, Pennsylvania
| | - Leena Khaitan
- Department of Surgery, University Hospital Cleveland Medical Center, Cleveland, Ohio
| | - Rahmi Oklu
- Department of Radiology, Division of Vascular and Interventional Radiology, Mayo Clinic, Scottsdale, Arizona
| | - Keith Pereira
- Department of Radiology, Division of Interventional Radiology, Saint Louis University School of Medicine, Saint Louis, Missouri
| | - Kimberley Steele
- Department of General Surgery, Bariatric Surgery Program, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Sarah B White
- Department of Radiology, Division of Vascular and Interventional Radiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Clifford R Weiss
- Division of Interventional Radiology, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| |
Collapse
|
7
|
Loper H, Leinen M, Bassoff L, Sample J, Romero-Ortega M, Gustafson KJ, Taylor DM, Schiefer MA. Both high fat and high carbohydrate diets impair vagus nerve signaling of satiety. Sci Rep 2021; 11:10394. [PMID: 34001925 PMCID: PMC8128917 DOI: 10.1038/s41598-021-89465-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 04/26/2021] [Indexed: 11/23/2022] Open
Abstract
Obesity remains prevalent in the US. One potential treatment is vagus nerve stimulation (VNS), which activates the sensory afferents innervating the stomach that convey stomach volume and establish satiety. However, current VNS approaches and stimulus optimization could benefit from additional understanding of the underlying neural response to stomach distension. In this study, obesity-prone Sprague Dawley rats consumed a standard, high-carbohydrate, or high-fat diet for several months, leading to diet-induced obesity in the latter two groups. Under anesthesia, the neural activity in the vagus nerve was recorded with a penetrating microelectrode array while the stomach was distended with an implanted balloon. Vagal tone during distension was compared to baseline tone prior to distension. Responses were strongly correlated with stomach distension, but the sensitivity to distension was significantly lower in animals that had been fed the nonstandard diets. The results indicate that both high fat and high carbohydrate diets impair vagus activity.
Collapse
Affiliation(s)
- Hailley Loper
- Malcom Randall VA Medical Center, Gainesville, FL, USA.,Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
| | - Monique Leinen
- Malcom Randall VA Medical Center, Gainesville, FL, USA.,Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
| | - Logan Bassoff
- Malcom Randall VA Medical Center, Gainesville, FL, USA.,Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
| | - Jack Sample
- Louis Stokes Cleveland VA Medical Center, Cleveland, OH, USA.,College of Medicine & Life Sciences, University of Toledo, Toledo, OH, USA
| | - Mario Romero-Ortega
- Departments of Biomedical Engineering and Biomedical Sciences, University of Houston, Houston, TX, USA
| | - Kenneth J Gustafson
- Louis Stokes Cleveland VA Medical Center, Cleveland, OH, USA.,Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Dawn M Taylor
- Louis Stokes Cleveland VA Medical Center, Cleveland, OH, USA.,Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA.,Department of Neurosciences, The Cleveland Clinic, Cleveland, OH, USA
| | - Matthew A Schiefer
- Malcom Randall VA Medical Center, Gainesville, FL, USA. .,Louis Stokes Cleveland VA Medical Center, Cleveland, OH, USA. .,Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
8
|
Pisarska-Adamczyk M, Tylec P, Gajewska N, Wierzbicka J, Przęczek K, Małczak P, Wysocki M, Pędziwiatr M, Wierdak M, Major P. Postoperative Olfaction Alteration Following Laparoscopic Bariatric Surgery. J Clin Med 2021; 10:1704. [PMID: 33920942 PMCID: PMC8071304 DOI: 10.3390/jcm10081704] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/26/2021] [Accepted: 04/13/2021] [Indexed: 12/22/2022] Open
Abstract
INTRODUCTION Bariatric surgery is an effective method of treatment for morbid obesity that is known to change nutritional habits. Proper nutrition has an impact on postoperative recovery and outcomes. Diet preferences depend on flavour and olfaction stimuli. Some studies show long-term changes in the sense of smell after bariatric surgery, but little research has addressed olfactory function shortly after surgery. Observations of olfactory changes that occur immediately after bariatric surgery may lead to improvements in postoperative care. AIM The aim of this study is to investigate the impact of bariatric surgery on olfactory changes in the short postoperative period. MATERIAL AND METHODS This is a prospective study of patients undergoing laparoscopic sleeve gastrectomy (LSG) and laparoscopic Roux-en-Y gastric bypass (LRYGB) between April 2018 and December 2018. The control group consists of patients who underwent various non-oncological elective surgical procedures. Patients' olfaction was tested qualitatively and quantitatively the day before and 24 h after surgery. Sniffin Sticks test consists of three subtests: odor threshold, discrimination, and identification. RESULTS The study enrolled 83 patients (LSG = 39; LRYGB = 14; control = 30). Mean scores in the threshold subtest differed significantly in the bariatric group, 9.3 ± 3.9 before the surgery and 8.2 ± 3.0 a day after the surgery (p = 0.032). There were no significant differences between scores from the discrimination subtest, identification subtest and the mean total scores in the bariatric group. There was no observed change in the intensity of the smell in the control group. Analyzing the results of patients undergoing LSG and LRYGB separately, we only showed significant differences in the case of LSG. Mean score from the 1st test (9.12 ± 3.97 vs. 7.75 ± 2.98; p = 0.0339) and mean total score (32.83 ± 5.45 vs. 30.67 ± 4.88; p = 0.0173) differ between repetitive measurements in LSG patients. CONCLUSIONS Our study shows deterioration of odor threshold in the bariatric surgery group compared to the control group 24 h after surgery. However, this change occurred only in patients undergoing LSG.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Mateusz Wierdak
- 2nd Department of General Surgery, Jagiellonian University Medical College, Jakubowskiego 2, 30-688 Kraków, Poland; (M.P.-A.); (P.T.); (N.G.); (J.W.); (K.P.); (P.M.); (M.W.); (M.P.); (P.M.)
| | | |
Collapse
|
9
|
Gautron L. The Phantom Satiation Hypothesis of Bariatric Surgery. Front Neurosci 2021; 15:626085. [PMID: 33597843 PMCID: PMC7882491 DOI: 10.3389/fnins.2021.626085] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 01/06/2021] [Indexed: 01/26/2023] Open
Abstract
The excitation of vagal mechanoreceptors located in the stomach wall directly contributes to satiation. Thus, a loss of gastric innervation would normally be expected to result in abrogated satiation, hyperphagia, and unwanted weight gain. While Roux-en-Y-gastric bypass (RYGB) inevitably results in gastric denervation, paradoxically, bypassed subjects continue to experience satiation. Inspired by the literature in neurology on phantom limbs, I propose a new hypothesis in which damage to the stomach innervation during RYGB, including its vagal supply, leads to large-scale maladaptive changes in viscerosensory nerves and connected brain circuits. As a result, satiation may continue to arise, sometimes at exaggerated levels, even in subjects with a denervated or truncated stomach. The same maladaptive changes may also contribute to dysautonomia, unexplained pain, and new emotional responses to eating. I further revisit the metabolic benefits of bariatric surgery, with an emphasis on RYGB, in the light of this phantom satiation hypothesis.
Collapse
Affiliation(s)
- Laurent Gautron
- Department of Internal Medicine, Center for Hypothalamic Research, The University of Texas Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
10
|
Malbert CH. Vagally Mediated Gut-Brain Relationships in Appetite Control-Insights from Porcine Studies. Nutrients 2021; 13:nu13020467. [PMID: 33573329 PMCID: PMC7911705 DOI: 10.3390/nu13020467] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 01/27/2021] [Accepted: 01/28/2021] [Indexed: 01/07/2023] Open
Abstract
Signals arising from the upper part of the gut are essential for the regulation of food intake, particularly satiation. This information is supplied to the brain partly by vagal nervous afferents. The porcine model, because of its sizeable gyrencephalic brain, omnivorous regimen, and comparative anatomy of the proximal part of the gut to that of humans, has provided several important insights relating to the relevance of vagally mediated gut-brain relationships to the regulation of food intake. Furthermore, its large size combined with the capacity to become obese while overeating a western diet makes it a pivotal addition to existing murine models, especially for translational studies relating to obesity. How gastric, proximal intestinal, and portal information relating to meal arrival and transit are encoded by vagal afferents and their further processing by primary and secondary brain projections are reviewed. Their peripheral and central plasticities in the context of obesity are emphasized. We also present recent insights derived from chronic stimulation of the abdominal vagi with specific reference to the modulation of mesolimbic structures and their role in the restoration of insulin sensitivity in the obese miniature pig model.
Collapse
Affiliation(s)
- Charles-Henri Malbert
- Aniscan Unit, INRAE, Saint-Gilles, 35590 Paris, France;
- National Academy of Medicine, 75000 Paris, France
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5000, Australia
| |
Collapse
|
11
|
|
12
|
Prologo JD, Lin E, Horesh Bergquist S, Knight J, Matta H, Brummer M, Singh A, Patel Y, Corn D. Percutaneous CT-Guided Cryovagotomy in Patients with Class I or Class II Obesity: A Pilot Trial. Obesity (Silver Spring) 2019; 27:1255-1265. [PMID: 31339003 DOI: 10.1002/oby.22523] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 04/13/2019] [Indexed: 12/27/2022]
Abstract
OBJECTIVE This study evaluated the safety of percutaneous CT-guided cryoablation of the vagus nerve (percutaneous cryovagotomy) in participants with class I or class II obesity. METHODS The study was an open-label, single-group, prospective pilot investigation designed around safety-related stopping criteria. Twenty participants with 30 > BMI > 37 underwent percutaneous cryovagotomy with follow-up visits at day 7, 45, 90, and 180. Data related to adverse events, technical success, weight loss, quality of life, dietary intake, global impressions of hunger change, activity, and body composition were analyzed. RESULTS The procedural technical success rate was 100%. There were no adverse events in 19 participants who completed the trial. Ninety-five percent of patients reported decreased appetite following the procedure, and reductions in mean absolute weight and BMI were observed at all time points. The mean quality of life and activity scores improved from baseline to 6 months post procedure, and mean caloric intake and overall body fat decreased over the same period. CONCLUSIONS Percutaneous CT-guided cryovagotomy is feasible and was tolerated without complications or adverse events in this cohort. Quantitative preliminary data from this pilot investigation inform the design of a larger prospective randomized clinical trial.
Collapse
Affiliation(s)
- J David Prologo
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Edward Lin
- Division of General and Gastrointestinal Surgery, Department of Surgery, Emory University School of Medicine, Atlanta, Georgia, USA
| | | | - Jackie Knight
- Department of Radiology and Imaging Sciences, Emory Healthcare, Atlanta, Georgia, USA
| | - Hazem Matta
- Radiology Regional Center, Fort Myers, Florida, USA
| | - Marjin Brummer
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Arvinpal Singh
- Division of Bariatric Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Yogi Patel
- Department of Bioengineering and Neuroengineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - David Corn
- Department of Periodontics and Endodontics, The State University of New York, Buffalo, New York, USA
| |
Collapse
|
13
|
Central Modulation of Energy Homeostasis and Cognitive Performance After Bariatric Surgery. ADVANCES IN NEUROBIOLOGY 2018; 19:213-236. [PMID: 28933067 DOI: 10.1007/978-3-319-63260-5_9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In moderately or morbidly obese patients, bariatric surgery has been proven to be an effective therapeutic approach to control body weight and comorbidities. Surgery-mediated modulation of brain function via modified postoperative secretion of gut peptides and vagal nerve stimulation was identified as an underlying mechanism in weight loss and improvement of weight-related diseases. Increased basal and postprandial plasma levels of gastrointestinal hormones like glucagon-like peptide 1 and peptide YY that act on specific areas of the hypothalamus to reduce food intake, either directly or mediated by the vagus nerve, are observed after surgery while suppression of meal-induced ghrelin release is increased. Hormones released from the adipose tissue like leptin and adiponectin are also affected and leptin plasma levels are reduced in treated patients. Besides homeostatic control of body weight, surgery also changes hedonistic behavior in regard to food intake and cognitive performance involving the limbic system and prefrontal areas.
Collapse
|
14
|
Woods SC, May-Zhang AA, Begg DP. How and why do gastrointestinal peptides influence food intake? Physiol Behav 2018; 193:218-222. [PMID: 29577941 PMCID: PMC6087670 DOI: 10.1016/j.physbeh.2018.02.048] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 02/22/2018] [Accepted: 02/24/2018] [Indexed: 12/19/2022]
Abstract
Despite the ability of some gastrointestinal hormones to reliably reduce meal size when administered prior to a meal, it is not understood why the repeated administration or genetic knockout of these hormones appear largely ineffective in reducing food intake and body weight. Here, we review evidence that the ability of GI peptides such as cholecystokinin (CCK) to elicit satiation is a consequence of prior learning. Evidence includes first, that the ability of some of these signals to modify food intake depends upon past experience and is malleable with new experience. Additionally, the ability of CCK and other gut signals to reduce food intake may not be hard-wired; i.e., any so-called "satiation" signal that reduces food intake in a single-meal situation may not continue to do so over repeated trials. The individual will respond to the signal only so long as it provides reliable information about caloric content. If a particular signal becomes unreliable, the individual will rely on other signals to end meals. Thus, gut peptides/hormones have important metabolic effects such as mediating absorption, digestion, and many aspects of the distribution of ingested nutrients throughout the body; and, if they have been reliably associated with natural stimuli that mediate satiation, they also inform behavior.
Collapse
Affiliation(s)
- Stephen C Woods
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, United States.
| | - Aaron A May-Zhang
- Department of Medicine, Vanderbilt University, Nashville, TN, United States
| | | |
Collapse
|
15
|
Pelot NA, Grill WM. Effects of vagal neuromodulation on feeding behavior. Brain Res 2018; 1693:180-187. [PMID: 29425906 PMCID: PMC6003853 DOI: 10.1016/j.brainres.2018.02.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 01/23/2018] [Accepted: 02/01/2018] [Indexed: 02/06/2023]
Abstract
Implanted vagus nerve stimulation (VNS) for obesity was recently approved by the FDA. However, its efficacy and mechanisms of action remain unclear. Herein, we synthesize clinical and preclinical effects of VNS on feeding behavior and energy balance and discuss engineering considerations for understanding and improving the therapy. Clinical cervical VNS (≤30 Hz) to treat epilepsy or depression has produced mixed effects on weight loss as a side effect, albeit in uncontrolled, retrospective studies. Conversely, preclinical studies (cervical and subdiaphragmatic VNS) mostly report decreased food intake and either decreased weight gain or weight loss. More recent clinical studies report weight loss in response to kilohertz frequency VNS applied to the subdiaphragmatic vagi, albeit with a large placebo effect. Rather than eliciting neural activity, this therapy putatively blocks conduction in the vagus nerves. Overall, stimulation parameters lack systematic exploration, optimization, and justification based on target nerve fibers and therapeutic outcomes. The vagus nerve transduces, transmits, and integrates important neural (efferent and afferent), humoral, energetic, and inflammatory information between the gut and brain. Thus, improved understanding of the biophysics, electrophysiology, and (patho)physiology has the potential to advance VNS as an effective therapy for a wide range of diseases.
Collapse
Affiliation(s)
- Nicole A Pelot
- Department of Biomedical Engineering, Duke University, Room 1427, Fitzpatrick CIEMAS, 101 Science Drive, Campus Box 90281, Durham, NC, USA
| | - Warren M Grill
- Department of Biomedical Engineering, Duke University, Room 1427, Fitzpatrick CIEMAS, 101 Science Drive, Campus Box 90281, Durham, NC, USA; Department of Electrical and Computer Engineering, Duke University, Room 130, Hudson Hall, Campus Box 90291, Durham, NC, USA; Department of Neurobiology, Duke University, Room 101B, Bryan Research Building, 311 Research Drive, Campus Box 3209, Durham, NC, USA; Department of Neurosurgery, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
16
|
Impaired vagus function in rats suppresses bile acid synthesis in the liver by disrupting tight junctions and activating Fxr-Fgf15 signaling in the intestine. Biochem Biophys Res Commun 2018; 495:1490-1496. [DOI: 10.1016/j.bbrc.2017.11.201] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 11/29/2017] [Indexed: 12/12/2022]
|
17
|
Jezdimirovic T, Semeredi S, Stajer V, Calleja-Gonzalez J, Ostojic S. Correlation between body fat and post-exercise heart rate in healthy men and women. Sci Sports 2017. [DOI: 10.1016/j.scispo.2017.05.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
18
|
Khound R, Taher J, Baker C, Adeli K, Su Q. GLP-1 Elicits an Intrinsic Gut-Liver Metabolic Signal to Ameliorate Diet-Induced VLDL Overproduction and Insulin Resistance. Arterioscler Thromb Vasc Biol 2017; 37:2252-2259. [PMID: 29074588 DOI: 10.1161/atvbaha.117.310251] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 10/13/2017] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Perturbations in hepatic lipid and very-low-density lipoprotein (VLDL) metabolism are involved in the pathogenesis of obesity and hepatic insulin resistance. The objective of this study is to delineate the mechanism of subdiaphragmatic vagotomy in preventing obesity, hyperlipidemia, and insulin resistance. APPROACH AND RESULTS By subjecting the complete subdiaphragmatic vagotomized mice to various nutritional conditions and investigating hepatic de novo lipogenesis pathway, we found that complete disruption of subdiaphragmatic vagal signaling resulted in a significant decrease of circulating VLDL-triglyceride compared with the mice obtained sham procedure. Vagotomy further prevented overproduction of VLDL-triglyceride induced by an acute fat load and a high-fat diet-induced obesity, hyperlipidemia, hepatic steatosis, and glucose intolerance. Mechanistic studies revealed that plasma glucagon-like peptide-1 was significantly raised in the vagotomized mice, which was associated with significant reductions in mRNA and protein expression of SREBP-1c (sterol regulatory element-binding protein 1c), SCD-1 (stearoyl-CoA desaturase-1), and FASN (fatty acid synthase), as well as enhanced hepatic insulin sensitivity. In vitro, treating mouse primary hepatocytes with a glucagon-like peptide-1 receptor agonist, exendin-4, for 48 hours inhibited free fatty acid, palmitic acid treatment induced de novo lipid synthesis, and VLDL secretion from hepatocytes. CONCLUSIONS Elevation of glucagon-like peptide-1 in vagotomized mice may prevent VLDL overproduction and insulin resistance induced by high-fat diet. These novel findings, for the first time, delineate an intrinsic gut-liver regulatory circuit that is mediated by glucagon-like peptide-1 in regulating hepatic energy metabolism.
Collapse
Affiliation(s)
- Rituraj Khound
- From the Department of Nutrition and Health Sciences, University of Nebraska-Lincoln (R.K., Q.S.); Molecular Structure and Function, Hospital for Sick Children, Toronto, Ontario, Canada (J.T., C.B., K.A.); and Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Ontario, Canada (J.T.)
| | - Jennifer Taher
- From the Department of Nutrition and Health Sciences, University of Nebraska-Lincoln (R.K., Q.S.); Molecular Structure and Function, Hospital for Sick Children, Toronto, Ontario, Canada (J.T., C.B., K.A.); and Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Ontario, Canada (J.T.)
| | - Christopher Baker
- From the Department of Nutrition and Health Sciences, University of Nebraska-Lincoln (R.K., Q.S.); Molecular Structure and Function, Hospital for Sick Children, Toronto, Ontario, Canada (J.T., C.B., K.A.); and Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Ontario, Canada (J.T.)
| | - Khosrow Adeli
- From the Department of Nutrition and Health Sciences, University of Nebraska-Lincoln (R.K., Q.S.); Molecular Structure and Function, Hospital for Sick Children, Toronto, Ontario, Canada (J.T., C.B., K.A.); and Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Ontario, Canada (J.T.)
| | - Qiaozhu Su
- From the Department of Nutrition and Health Sciences, University of Nebraska-Lincoln (R.K., Q.S.); Molecular Structure and Function, Hospital for Sick Children, Toronto, Ontario, Canada (J.T., C.B., K.A.); and Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Ontario, Canada (J.T.).
| |
Collapse
|
19
|
Steinert RE, Feinle-Bisset C, Asarian L, Horowitz M, Beglinger C, Geary N. Ghrelin, CCK, GLP-1, and PYY(3-36): Secretory Controls and Physiological Roles in Eating and Glycemia in Health, Obesity, and After RYGB. Physiol Rev 2017; 97:411-463. [PMID: 28003328 PMCID: PMC6151490 DOI: 10.1152/physrev.00031.2014] [Citation(s) in RCA: 367] [Impact Index Per Article: 52.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The efficacy of Roux-en-Y gastric-bypass (RYGB) and other bariatric surgeries in the management of obesity and type 2 diabetes mellitus and novel developments in gastrointestinal (GI) endocrinology have renewed interest in the roles of GI hormones in the control of eating, meal-related glycemia, and obesity. Here we review the nutrient-sensing mechanisms that control the secretion of four of these hormones, ghrelin, cholecystokinin (CCK), glucagon-like peptide-1 (GLP-1), and peptide tyrosine tyrosine [PYY(3-36)], and their contributions to the controls of GI motor function, food intake, and meal-related increases in glycemia in healthy-weight and obese persons, as well as in RYGB patients. Their physiological roles as classical endocrine and as locally acting signals are discussed. Gastric emptying, the detection of specific digestive products by small intestinal enteroendocrine cells, and synergistic interactions among different GI loci all contribute to the secretion of ghrelin, CCK, GLP-1, and PYY(3-36). While CCK has been fully established as an endogenous endocrine control of eating in healthy-weight persons, the roles of all four hormones in eating in obese persons and following RYGB are uncertain. Similarly, only GLP-1 clearly contributes to the endocrine control of meal-related glycemia. It is likely that local signaling is involved in these hormones' actions, but methods to determine the physiological status of local signaling effects are lacking. Further research and fresh approaches are required to better understand ghrelin, CCK, GLP-1, and PYY(3-36) physiology; their roles in obesity and bariatric surgery; and their therapeutic potentials.
Collapse
Affiliation(s)
- Robert E Steinert
- University of Adelaide Discipline of Medicine and National Health and Medical Research Council of Australia Centre of Research Excellence in Translating Nutritional Science to Good Health, Adelaide, Australia; DSM Nutritional Products, R&D Human Nutrition and Health, Basel, Switzerland; Institute of Veterinary Physiology, University of Zurich, Zurich, Switzerland; Department of Biomedicine and Division of Gastroenterology, University Hospital Basel, Basel, Switzerland; and Department of Psychiatry, Weill Medical College of Cornell University, New York, New York
| | - Christine Feinle-Bisset
- University of Adelaide Discipline of Medicine and National Health and Medical Research Council of Australia Centre of Research Excellence in Translating Nutritional Science to Good Health, Adelaide, Australia; DSM Nutritional Products, R&D Human Nutrition and Health, Basel, Switzerland; Institute of Veterinary Physiology, University of Zurich, Zurich, Switzerland; Department of Biomedicine and Division of Gastroenterology, University Hospital Basel, Basel, Switzerland; and Department of Psychiatry, Weill Medical College of Cornell University, New York, New York
| | - Lori Asarian
- University of Adelaide Discipline of Medicine and National Health and Medical Research Council of Australia Centre of Research Excellence in Translating Nutritional Science to Good Health, Adelaide, Australia; DSM Nutritional Products, R&D Human Nutrition and Health, Basel, Switzerland; Institute of Veterinary Physiology, University of Zurich, Zurich, Switzerland; Department of Biomedicine and Division of Gastroenterology, University Hospital Basel, Basel, Switzerland; and Department of Psychiatry, Weill Medical College of Cornell University, New York, New York
| | - Michael Horowitz
- University of Adelaide Discipline of Medicine and National Health and Medical Research Council of Australia Centre of Research Excellence in Translating Nutritional Science to Good Health, Adelaide, Australia; DSM Nutritional Products, R&D Human Nutrition and Health, Basel, Switzerland; Institute of Veterinary Physiology, University of Zurich, Zurich, Switzerland; Department of Biomedicine and Division of Gastroenterology, University Hospital Basel, Basel, Switzerland; and Department of Psychiatry, Weill Medical College of Cornell University, New York, New York
| | - Christoph Beglinger
- University of Adelaide Discipline of Medicine and National Health and Medical Research Council of Australia Centre of Research Excellence in Translating Nutritional Science to Good Health, Adelaide, Australia; DSM Nutritional Products, R&D Human Nutrition and Health, Basel, Switzerland; Institute of Veterinary Physiology, University of Zurich, Zurich, Switzerland; Department of Biomedicine and Division of Gastroenterology, University Hospital Basel, Basel, Switzerland; and Department of Psychiatry, Weill Medical College of Cornell University, New York, New York
| | - Nori Geary
- University of Adelaide Discipline of Medicine and National Health and Medical Research Council of Australia Centre of Research Excellence in Translating Nutritional Science to Good Health, Adelaide, Australia; DSM Nutritional Products, R&D Human Nutrition and Health, Basel, Switzerland; Institute of Veterinary Physiology, University of Zurich, Zurich, Switzerland; Department of Biomedicine and Division of Gastroenterology, University Hospital Basel, Basel, Switzerland; and Department of Psychiatry, Weill Medical College of Cornell University, New York, New York
| |
Collapse
|
20
|
Blasi C. The Role of the Vagal Nucleus Tractus Solitarius in the Therapeutic Effects of Obesity Surgery and Other Interventional Therapies on Type 2 Diabetes. Obes Surg 2016; 26:3045-3057. [DOI: 10.1007/s11695-016-2419-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
21
|
Guiraud D, Andreu D, Bonnet S, Carrault G, Couderc P, Hagège A, Henry C, Hernandez A, Karam N, Le Rolle V, Mabo P, Maciejasz P, Malbert CH, Marijon E, Maubert S, Picq C, Rossel O, Bonnet JL. Vagus nerve stimulation: state of the art of stimulation and recording strategies to address autonomic function neuromodulation. J Neural Eng 2016; 13:041002. [PMID: 27351347 DOI: 10.1088/1741-2560/13/4/041002] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Neural signals along the vagus nerve (VN) drive many somatic and autonomic functions. The clinical interest of VN stimulation (VNS) is thus potentially huge and has already been demonstrated in epilepsy. However, side effects are often elicited, in addition to the targeted neuromodulation. APPROACH This review examines the state of the art of VNS applied to two emerging modulations of autonomic function: heart failure and obesity, especially morbid obesity. MAIN RESULTS We report that VNS may benefit from improved stimulation delivery using very advanced technologies. However, most of the results from fundamental animal studies still need to be demonstrated in humans.
Collapse
Affiliation(s)
- David Guiraud
- Inria, DEMAR, Montpellier, France. University of Montpellier, DEMAR, Montpellier, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
Lesions of the lower cranial nerves (LCN) are due to numerous causes, which need to be differentiated to optimize management and outcome. This review aims at summarizing and discussing diseases affecting LCN. Review of publications dealing with disorders of the LCN in humans. Affection of multiple LCN is much more frequent than the affection of a single LCN. LCN may be affected solely or together with more proximal cranial nerves, with central nervous system disease, or with nonneurological disorders. LCN lesions have to be suspected if there are typical symptoms or signs attributable to a LCN. Causes of LCN lesions can be classified as genetic, vascular, traumatic, iatrogenic, infectious, immunologic, metabolic, nutritional, degenerative, or neoplastic. Treatment of LCN lesions depends on the underlying cause. An effective treatment is available in the majority of the cases, but a prerequisite for complete recovery is the prompt and correct diagnosis. LCN lesions need to be considered in case of disturbed speech, swallowing, coughing, deglutition, sensory functions, taste, or autonomic functions, neuralgic pain, dysphagia, head, pharyngeal, or neck pain, cardiac or gastrointestinal compromise, or weakness of the trapezius, sternocleidomastoid, or the tongue muscles. To correctly assess manifestations of LCN lesions, precise knowledge of the anatomy and physiology of the area is required.
Collapse
Affiliation(s)
- Josef Finsterer
- Krankenanstalt Rudolfstiftung, Kaiser-Franz-Josef Spital, Vienna, Austria, Europe
| | - Wolfgang Grisold
- Department of Neurology, Kaiser-Franz-Josef Spital, Vienna, Austria, Europe
| |
Collapse
|
23
|
Val-Laillet D, Aarts E, Weber B, Ferrari M, Quaresima V, Stoeckel L, Alonso-Alonso M, Audette M, Malbert C, Stice E. Neuroimaging and neuromodulation approaches to study eating behavior and prevent and treat eating disorders and obesity. Neuroimage Clin 2015; 8:1-31. [PMID: 26110109 PMCID: PMC4473270 DOI: 10.1016/j.nicl.2015.03.016] [Citation(s) in RCA: 279] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 03/18/2015] [Accepted: 03/19/2015] [Indexed: 12/11/2022]
Abstract
Functional, molecular and genetic neuroimaging has highlighted the existence of brain anomalies and neural vulnerability factors related to obesity and eating disorders such as binge eating or anorexia nervosa. In particular, decreased basal metabolism in the prefrontal cortex and striatum as well as dopaminergic alterations have been described in obese subjects, in parallel with increased activation of reward brain areas in response to palatable food cues. Elevated reward region responsivity may trigger food craving and predict future weight gain. This opens the way to prevention studies using functional and molecular neuroimaging to perform early diagnostics and to phenotype subjects at risk by exploring different neurobehavioral dimensions of the food choices and motivation processes. In the first part of this review, advantages and limitations of neuroimaging techniques, such as functional magnetic resonance imaging (fMRI), positron emission tomography (PET), single photon emission computed tomography (SPECT), pharmacogenetic fMRI and functional near-infrared spectroscopy (fNIRS) will be discussed in the context of recent work dealing with eating behavior, with a particular focus on obesity. In the second part of the review, non-invasive strategies to modulate food-related brain processes and functions will be presented. At the leading edge of non-invasive brain-based technologies is real-time fMRI (rtfMRI) neurofeedback, which is a powerful tool to better understand the complexity of human brain-behavior relationships. rtfMRI, alone or when combined with other techniques and tools such as EEG and cognitive therapy, could be used to alter neural plasticity and learned behavior to optimize and/or restore healthy cognition and eating behavior. Other promising non-invasive neuromodulation approaches being explored are repetitive transcranial magnetic stimulation (rTMS) and transcranial direct-current stimulation (tDCS). Converging evidence points at the value of these non-invasive neuromodulation strategies to study basic mechanisms underlying eating behavior and to treat its disorders. Both of these approaches will be compared in light of recent work in this field, while addressing technical and practical questions. The third part of this review will be dedicated to invasive neuromodulation strategies, such as vagus nerve stimulation (VNS) and deep brain stimulation (DBS). In combination with neuroimaging approaches, these techniques are promising experimental tools to unravel the intricate relationships between homeostatic and hedonic brain circuits. Their potential as additional therapeutic tools to combat pharmacorefractory morbid obesity or acute eating disorders will be discussed, in terms of technical challenges, applicability and ethics. In a general discussion, we will put the brain at the core of fundamental research, prevention and therapy in the context of obesity and eating disorders. First, we will discuss the possibility to identify new biological markers of brain functions. Second, we will highlight the potential of neuroimaging and neuromodulation in individualized medicine. Third, we will introduce the ethical questions that are concomitant to the emergence of new neuromodulation therapies.
Collapse
Key Words
- 5-HT, serotonin
- ADHD, attention deficit hyperactivity disorder
- AN, anorexia nervosa
- ANT, anterior nucleus of the thalamus
- B N, bulimia nervosa
- BAT, brown adipose tissue
- BED, binge eating disorder
- BMI, body mass index
- BOLD, blood oxygenation level dependent
- BS, bariatric surgery
- Brain
- CBF, cerebral blood flow
- CCK, cholecystokinin
- Cg25, subgenual cingulate cortex
- DA, dopamine
- DAT, dopamine transporter
- DBS, deep brain stimulation
- DBT, deep brain therapy
- DTI, diffusion tensor imaging
- ED, eating disorders
- EEG, electroencephalography
- Eating disorders
- GP, globus pallidus
- HD-tDCS, high-definition transcranial direct current stimulation
- HFD, high-fat diet
- HHb, deoxygenated-hemoglobin
- Human
- LHA, lateral hypothalamus
- MER, microelectrode recording
- MRS, magnetic resonance spectroscopy
- Nac, nucleus accumbens
- Neuroimaging
- Neuromodulation
- O2Hb, oxygenated-hemoglobin
- OCD, obsessive–compulsive disorder
- OFC, orbitofrontal cortex
- Obesity
- PD, Parkinson's disease
- PET, positron emission tomography
- PFC, prefrontal cortex
- PYY, peptide tyrosine tyrosine
- SPECT, single photon emission computed tomography
- STN, subthalamic nucleus
- TMS, transcranial magnetic stimulation
- TRD, treatment-resistant depression
- VBM, voxel-based morphometry
- VN, vagus nerve
- VNS, vagus nerve stimulation
- VS, ventral striatum
- VTA, ventral tegmental area
- aCC, anterior cingulate cortex
- dTMS, deep transcranial magnetic stimulation
- daCC, dorsal anterior cingulate cortex
- dlPFC, dorsolateral prefrontal cortex
- fMRI, functional magnetic resonance imaging
- fNIRS, functional near-infrared spectroscopy
- lPFC, lateral prefrontal cortex
- pCC, posterior cingulate cortex
- rCBF, regional cerebral blood flow
- rTMS, repetitive transcranial magnetic stimulation
- rtfMRI, real-time functional magnetic resonance imaging
- tACS, transcranial alternate current stimulation
- tDCS, transcranial direct current stimulation
- tRNS, transcranial random noise stimulation
- vlPFC, ventrolateral prefrontal cortex
- vmH, ventromedial hypothalamus
- vmPFC, ventromedial prefrontal cortex
Collapse
Affiliation(s)
| | - E. Aarts
- Radboud University, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - B. Weber
- Department of Epileptology, University Hospital Bonn, Germany
| | - M. Ferrari
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Italy
| | - V. Quaresima
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Italy
| | - L.E. Stoeckel
- Massachusetts General Hospital, Harvard Medical School, USA
| | - M. Alonso-Alonso
- Beth Israel Deaconess Medical Center, Harvard Medical School, USA
| | | | | | | |
Collapse
|
24
|
Barbosa Lins TC, Valente LM, Sobral Filho DC, Barbosa e Silva O. Relation between heart rate recovery after exercise testing and body mass index. Rev Port Cardiol 2015; 34:27-33. [PMID: 25577658 DOI: 10.1016/j.repc.2014.07.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 05/22/2014] [Accepted: 07/22/2014] [Indexed: 10/24/2022] Open
Abstract
INTRODUCTION Impaired heart rate (HR) recovery after exercise testing is considered a predictor of cardiovascular mortality as it reflects vagus nerve dysfunction. OBJECTIVE To assess the relationship between body mass index (BMI) and HR recovery after exercise. METHODS We analyzed the records of 2443 patients of both sexes, aged between 20 and 59 years, in sinus rhythm, not using negative chronotropic agents and with no myocardial ischemic response to exercise testing carried out at a specialist clinic, between 2005 and 2011. BMI was categorized as normal (18.5-<25 kg/m(2)), overweight (25-≤30 kg/m(2)) or obese (>30 kg/m(2)). The different BMI groups were compared in terms of HR recovery after exercise, which was calculated as the difference between maximum HR during exercise and in the first minute of recovery. Recovery was considered impaired when the difference was ≤12 bpm. RESULTS Eighty-seven (3.6%) patients presented impaired recovery, which was three times more prevalent in the obese group and twice as prevalent in the overweight group compared with the normal group (p<0.001 and p=0.010, respectively). Obese patients presented higher basal HR and lower maximum HR, as well as reduced chronotropic reserve (p<0.001). In multivariate analysis, impaired HR recovery was associated with overweight (relative risk [RR]=1.8; p=0.035), obesity (RR=2; p=0.016), number of metabolic equivalents (RR=0.82; p<0.001) and resting HR (RR=1.05; p<0.001). The hazard ratio for hypertension was 2 (p=0.083, NS). CONCLUSION Impaired HR recovery was associated with higher BMI, demonstrating that obese individuals present vagus nerve dysfunction.
Collapse
Affiliation(s)
- Tereza Cristina Barbosa Lins
- Departamento de Pós-Graduação em Ciências da Saúde, Universidade Federal de Pernambuco, Recife, Pernambuco, Brasil.
| | - Lucila Maria Valente
- Departamento de Pós-Graduação em Ciências da Saúde, Universidade Federal de Pernambuco, Recife, Pernambuco, Brasil
| | - Dário Celestino Sobral Filho
- Departamento de Pós-Graduação em Ciências da Saúde, Universidade Federal de Pernambuco, Recife, Pernambuco, Brasil
| | - Odwaldo Barbosa e Silva
- Departamento de Pós-Graduação em Ciências da Saúde, Universidade Federal de Pernambuco, Recife, Pernambuco, Brasil
| |
Collapse
|
25
|
Relation between heart rate recovery after exercise testing and body mass index. REVISTA PORTUGUESA DE CARDIOLOGIA (ENGLISH EDITION) 2015. [DOI: 10.1016/j.repce.2014.07.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
26
|
Abstract
Glucagon-like peptide 1 (GLP-1) is a cleavage product of the pre-proglucagon gene which is expressed in the α-cells of the pancreas, the L-cells of the intestine, and neurons located in the caudal brainstem and hypothalamus. GLP-1 is of relevance to appetite and weight maintenance because it has actions on the gastrointestinal tract as well as the direct regulation of appetite. It delays gastric emptying and gut motility in humans. In addition, interventricular injections of GLP-1 inhibit food intake, independent of the presence of food in the stomach or gastric emptying. Peripherally administered GLP-1 also affects the central regulation of feeding. It is therefore the synergistic actions of GLP-1 in the gut and brain, acting on both central and peripheral receptors that seem responsible for the effects of the hormone on satiety.
Collapse
Affiliation(s)
- Meera Shah
- Division of Endocrinology & Metabolism Mayo Clinic, 200 First ST SW, Rochester, MN 55905, USA
| | - Adrian Vella
- Division of Endocrinology & Metabolism Mayo Clinic, 200 First ST SW, Rochester, MN 55905, USA
| |
Collapse
|
27
|
Diabesity: Palliating, curing or preventing the dysmetabolic diathesis. Maturitas 2014; 77:243-8. [DOI: 10.1016/j.maturitas.2013.12.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 12/06/2013] [Indexed: 12/26/2022]
|
28
|
Sathananthan M, Ikramuddin S, Swain JM, Shah M, Piccinini F, Dalla Man C, Cobelli C, Rizza RA, Camilleri M, Vella A. The effect of vagal nerve blockade using electrical impulses on glucose metabolism in nondiabetic subjects. Diabetes Metab Syndr Obes 2014; 7:305-12. [PMID: 25050073 PMCID: PMC4103924 DOI: 10.2147/dmso.s65733] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
PURPOSE Vagal interruption causes weight loss in humans and decreases endogenous glucose production in animals. However, it is unknown if this is due to a direct effect on glucose metabolism. We sought to determine if vagal blockade using electrical impulses alters glucose metabolism in humans. PATIENTS AND METHODS We utilized a randomized, cross-over study design where participants were studied after 2 weeks of activation or inactivation of vagal nerve blockade (VNB). Seven obese subjects with impaired fasting glucose previously enrolled in a long-term study to examine the effect of VNB on weight took part. We used a standardized triple-tracer mixed meal to enable measurement of the rate of meal appearance, endogenous glucose production, and glucose disappearance. The 550 kcal meal was also labeled with (111)In-diethylene triamine pentaacetic acid (DTPA) to measure gastrointestinal transit. Insulin action and β-cell responsivity indices were estimated using the minimal model. RESULTS Integrated glucose, insulin, and glucagon concentrations did not differ between study days. This was also reflected in a lack of effect on β-cell responsivity and insulin action. Furthermore, fasting and postprandial endogenous glucose production, integrated meal appearance, and glucose disposal did not differ in the presence or absence of VNB. Similarly, gastric emptying and colonic transit were unchanged by VNB. CONCLUSION In this pilot study in nondiabetic humans, electrical vagal blockade had no acute effects on glucose metabolism, insulin secretion and action, or gastric emptying. It remains to be determined if more pronounced effects would be observed in diabetic subjects.
Collapse
Affiliation(s)
- Matheni Sathananthan
- Division of Endocrinology, Diabetes and Metabolism, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Sayeed Ikramuddin
- Division of General Surgery, University of Minnesota, Minneapolis, MN, USA
| | - James M Swain
- Division of General Surgery, Mayo Clinic College of Medicine, Rochester, MN, USA
- Scottsdale Healthcare Bariatric Center, Scottsdale, AZ, USA
| | - Meera Shah
- Division of Endocrinology, Diabetes and Metabolism, Mayo Clinic College of Medicine, Rochester, MN, USA
| | | | - Chiara Dalla Man
- Department of Information Engineering, University of Padua, Padua, Italy
| | - Claudio Cobelli
- Department of Information Engineering, University of Padua, Padua, Italy
| | - Robert A Rizza
- Division of Endocrinology, Diabetes and Metabolism, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Michael Camilleri
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Adrian Vella
- Division of Endocrinology, Diabetes and Metabolism, Mayo Clinic College of Medicine, Rochester, MN, USA
- Correspondence: Adrian Vella, Endocrine Research Unit, Mayo Clinic College of Medicine, 200 First St SW, 5-194 Joseph Rochester, MN 55905, USA, Tel +1 507 255 6515, Fax +1 507 255 4828, Email
| |
Collapse
|
29
|
Nonsocial functions of hypothalamic oxytocin. ISRN NEUROSCIENCE 2013; 2013:179272. [PMID: 24967304 PMCID: PMC4045544 DOI: 10.1155/2013/179272] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Accepted: 04/23/2013] [Indexed: 01/06/2023]
Abstract
Oxytocin (OXT) is a hypothalamic neuropeptide composed of nine amino acids. The functions of OXT cover a variety of social and nonsocial activity/behaviors. Therapeutic effects of OXT on aberrant social behaviors are attracting more attention, such as social memory, attachment, sexual behavior, maternal behavior, aggression, pair bonding, and trust. The nonsocial behaviors/functions of brain OXT have also received renewed attention, which covers brain development, reproduction, sex, endocrine, immune regulation, learning and memory, pain perception, energy balance, and almost all the functions of peripheral organ systems. Coordinating with brain OXT, locally produced OXT also involves the central and peripheral actions of OXT. Disorders in OXT secretion and functions can cause a series of aberrant social behaviors, such as depression, autism, and schizophrenia as well as disturbance of nonsocial behaviors/functions, such as anorexia, obesity, lactation failure, osteoporosis, diabetes, and carcinogenesis. As more and more OXT functions are identified, it is essential to provide a general view of OXT functions in order to explore the therapeutic potentials of OXT. In this review, we will focus on roles of hypothalamic OXT on central and peripheral nonsocial functions.
Collapse
|
30
|
Shikora S, Toouli J, Herrera MF, Kulseng B, Zulewski H, Brancatisano R, Kow L, Pantoja JP, Johnsen G, Brancatisano A, Tweden KS, Knudson MB, Billington CJ. Vagal blocking improves glycemic control and elevated blood pressure in obese subjects with type 2 diabetes mellitus. J Obes 2013; 2013:245683. [PMID: 23984050 PMCID: PMC3745954 DOI: 10.1155/2013/245683] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Accepted: 05/15/2013] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND An active device that downregulates abdominal vagal signalling has resulted in significant weight loss in feasibility studies. OBJECTIVE To prospectively evaluate the effect of intermittent vagal blocking (VBLOC) on weight loss, glycemic control, and blood pressure (BP) in obese subjects with DM2. METHODS Twenty-eight subjects were implanted with a VBLOC device (Maestro Rechargeable System) at 5 centers in an open-label study. Effects on weight loss, HbA1c, fasting blood glucose, and BP were evaluated at 1 week to 12 months. RESULTS 26 subjects (17 females/9 males, 51 ± 2 years, BMI 37 ± 1 kg/m(2), mean ± SEM) completed 12 months followup. One serious adverse event (pain at implant site) was easily resolved. At 1 week and 12 months, mean excess weight loss percentages (% EWL) were 9 ± 1% and 25 ± 4% (P < 0.0001), and HbA1c declined by 0.3 ± 0.1% and 1.0 ± 0.2% (P = 0.02, baseline 7.8 ± 0.2%). In DM2 subjects with elevated BP (n = 15), mean arterial pressure reduced by 7 ± 3 mmHg and 8 ± 3 mmHg (P = 0.04, baseline 100 ± 2 mmHg) at 1 week and 12 months. All subjects MAP decreased by 3 ± 2 mmHg (baseline 95 ± 2 mmHg) at 12 months. CONCLUSIONS VBLOC was safe in obese DM2 subjects and associated with meaningful weight loss, early and sustained improvements in HbA1c, and reductions in BP in hypertensive DM2 subjects. This trial is registered with ClinicalTrials.gov NCT00555958.
Collapse
Affiliation(s)
- S. Shikora
- Brigham and Women's Hospital, 75 Francis Street, Boston, MA 02115, USA
| | - J. Toouli
- Adelaide Bariatric Center, Flinders Private Hospital, Suite 502/Level 5, Bedford Park, SA, 5041, Australia
| | - M. F. Herrera
- Instituto Nacional de la Nutricion, Salvador Zubiran (INNSZ), Vasco de Quiroga 15, Tlalpan, 1400 Mexico City, DF, Mexico
| | - B. Kulseng
- Center for Obesity, St. Olavs Hospital, Olav Kyrres Gate 6, 7006 Trondheim, Norway
| | - H. Zulewski
- Division of Gastroenterology, University Hospital Basel, 4031 Basel, Switzerland
| | - R. Brancatisano
- Institute of Weight Control, 495 Windsor Road, Baulkham Hills, NSW 2153, Australia
| | - L. Kow
- Adelaide Bariatric Center, Flinders Private Hospital, Suite 502/Level 5, Bedford Park, SA, 5041, Australia
| | - J. P. Pantoja
- Instituto Nacional de la Nutricion, Salvador Zubiran (INNSZ), Vasco de Quiroga 15, Tlalpan, 1400 Mexico City, DF, Mexico
| | - G. Johnsen
- Center for Obesity, St. Olavs Hospital, Olav Kyrres Gate 6, 7006 Trondheim, Norway
| | - A. Brancatisano
- Institute of Weight Control, 495 Windsor Road, Baulkham Hills, NSW 2153, Australia
| | - K. S. Tweden
- EnteroMedics Inc., 2800 Patton Road, St. Paul, MN 55113, USA
- *K. S. Tweden:
| | - M. B. Knudson
- EnteroMedics Inc., 2800 Patton Road, St. Paul, MN 55113, USA
| | - C. J. Billington
- University of Minnesota, Minneapolis, Minnesota Veterans' Administration Medical Center, One Veterans' Drive, Minneapolis, MN 55417, USA
| |
Collapse
|
31
|
Suzuki K, Jayasena CN, Bloom SR. Obesity and appetite control. EXPERIMENTAL DIABETES RESEARCH 2012; 2012:824305. [PMID: 22899902 PMCID: PMC3415214 DOI: 10.1155/2012/824305] [Citation(s) in RCA: 123] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Accepted: 06/20/2012] [Indexed: 01/01/2023]
Abstract
Obesity is one of the major challenges to human health worldwide; however, there are currently no effective pharmacological interventions for obesity. Recent studies have improved our understanding of energy homeostasis by identifying sophisticated neurohumoral networks which convey signals between the brain and gut in order to control food intake. The hypothalamus is a key region which possesses reciprocal connections between the higher cortical centres such as reward-related limbic pathways, and the brainstem. Furthermore, the hypothalamus integrates a number of peripheral signals which modulate food intake and energy expenditure. Gut hormones, such as peptide YY, pancreatic polypeptide, glucagon-like peptide-1, oxyntomodulin, and ghrelin, are modulated by acute food ingestion. In contrast, adiposity signals such as leptin and insulin are implicated in both short- and long-term energy homeostasis. In this paper, we focus on the role of gut hormones and their related neuronal networks (the gut-brain axis) in appetite control, and their potentials as novel therapies for obesity.
Collapse
Affiliation(s)
- Keisuke Suzuki
- Section of Investigative Medicine, Imperial College London, Commonwealth Building, Du Cane Road, London W12 0NN, UK
| | - Channa N. Jayasena
- Section of Investigative Medicine, Imperial College London, Commonwealth Building, Du Cane Road, London W12 0NN, UK
| | - Stephen R. Bloom
- Section of Investigative Medicine, Imperial College London, Commonwealth Building, Du Cane Road, London W12 0NN, UK
| |
Collapse
|
32
|
Abstract
Obesity is one of the major challenges to human health worldwide; however, there are currently no effective pharmacological interventions for obesity. Recent studies have improved our understanding of energy homeostasis by identifying sophisticated neurohumoral networks which convey signals between the brain and gut in order to control food intake. The hypothalamus is a key region which possesses reciprocal connections between the higher cortical centres such as reward-related limbic pathways, and the brainstem. Furthermore, the hypothalamus integrates a number of peripheral signals which modulate food intake and energy expenditure. Gut hormones, such as peptide YY, pancreatic polypeptide, glucagon-like peptide-1, oxyntomodulin, and ghrelin, are modulated by acute food ingestion. In contrast, adiposity signals such as leptin and insulin are implicated in both short- and long-term energy homeostasis. In this paper, we focus on the role of gut hormones and their related neuronal networks (the gut-brain axis) in appetite control, and their potentials as novel therapies for obesity.
Collapse
|
33
|
Vagal afferent controls of feeding: a possible role for gastrointestinal BDNF. Clin Auton Res 2012; 23:15-31. [PMID: 22717678 DOI: 10.1007/s10286-012-0170-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Accepted: 05/24/2012] [Indexed: 01/08/2023]
Abstract
INTRODUCTION Vagal gastrointestinal (GI) afferents do not appear to contribute to long-term controls of feeding, despite downstream connections that could support such a role. This view is largely attributable to a lack of evidence for long-term effects, especially the failure of vagal afferent lesions to produce hyperphagia or obesity. AIMS Here, the possibility is evaluated that "side effects" of vagal lesion methods resulting largely from complexities of vagal organization would probably suppress long-term effects. Criteria based on knowledge of vagal organization were utilized to critique and compare vagal lesion methods and to interpret their effects on GI function, feeding and body weight. RESULTS AND CONCLUSIONS This analysis suggested that it was premature to eliminate a long-term vagal GI afferent role based on the effects of these lesions and highlighted aspects of vagal organization that must be addressed to reduce the problematic side effects of vagal lesions. The potential of "genetic" lesions that alter vagal sensory development to address these aspects, examination of the feasibility of this approach, and the properties of brain-derived neurotrophic factor (BDNF) that made it an attractive candidate for application of this approach are described. BDNF knockout from GI smooth muscle unexpectedly demonstrated substantial overeating and weight gain associated with increased meal size and frequency. The decay of eating rate during a scheduled meal was also reduced. However, meal-induced c-Fos activation was increased in the dorsal motor nucleus of the vagus, suggesting that the effect on eating rate was due to augmentation of GI reflexes by vagal afferents or other neural systems.
Collapse
|
34
|
Tavakkolizadeh A. Role of vagal fibers in weight control and nutrient absorption. J Surg Res 2012; 174:85-7. [PMID: 21435656 DOI: 10.1016/j.jss.2011.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2010] [Revised: 12/28/2010] [Accepted: 02/01/2011] [Indexed: 10/18/2022]
Affiliation(s)
- Ali Tavakkolizadeh
- Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
35
|
Avena NM, Rada PV. Cholinergic modulation of food and drug satiety and withdrawal. Physiol Behav 2012; 106:332-6. [PMID: 22465312 DOI: 10.1016/j.physbeh.2012.03.020] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2011] [Revised: 03/19/2012] [Accepted: 03/20/2012] [Indexed: 01/31/2023]
Abstract
Although they comprise only a small portion of the neurons in the region, cholinergic interneurons in the dorsal striatum appear to play an important role in the regulation of various appetitive behaviors, in part, through their interactions with mesolimbic dopamine (DA) systems. In this review, we describe studies that suggest that the activity of cholinergic interneurons in the nucleus accumbens (NAc) and cholinergic projections to the ventral tegmental area (VTA) affect feeding behavior. In vivo microdialysis studies in rats have revealed that the cessation of a meal is associated with a rise in acetylcholine (ACh) levels in the NAc. ACh activation will suppress feeding, and this is also associated with an increase in synaptic accumulation of ACh. Further, we discuss how, in addition to their role in the ending of a meal, cholinergic interneurons in the NAc play an integral role in the cessation of drug use. Another cholinergic system involved in different aspects of appetitive behavior is the projection from the pedunculpontine nuclei directly to the VTA. Activation of this system enhances behaviors through activation of the mesolimbic DA system, and antagonism of ACh receptors in the VTA can reduce drug self-administration. Finally, we discuss the role of accumbens ACh in both drug and palatable food withdrawal. Studies reveal that accumbens ACh is increased during withdrawal from several different drugs of abuse (including cocaine, nicotine and morphine). This rise in extracellular levels of ACh, coupled with a decrease in extracellular levels of DA, is believed to contribute to an aversive state, which can manifest as behaviors associated with drug withdrawal. This theory has also been applied to studies of overeating and/or "food addiction," and the findings suggest a similar imbalance in DA/ACh levels, which is associated with behavioral indications of drug-like withdrawal. In summary, cholinergic neurons play an important role in the modulation of both food and drug intake, as well as the aversive aspects of food- and drug-related addictive behaviors.
Collapse
Affiliation(s)
- Nicole M Avena
- University of Florida, College of Medicine, Department of Psychiatry, McKnight Brain Institute, Gainesville FL 32610, United States.
| | | |
Collapse
|
36
|
Herbert BM, Herbert C, Pollatos O, Weimer K, Enck P, Sauer H, Zipfel S. Effects of short-term food deprivation on interoceptive awareness, feelings and autonomic cardiac activity. Biol Psychol 2012; 89:71-9. [DOI: 10.1016/j.biopsycho.2011.09.004] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2010] [Revised: 08/17/2011] [Accepted: 09/15/2011] [Indexed: 12/30/2022]
|
37
|
Dankel SN, Staalesen V, Bjørndal B, Berge RK, Mellgren G, Burri L. Tissue-specific effects of bariatric surgery including mitochondrial function. J Obes 2011; 2011:435245. [PMID: 21274278 PMCID: PMC3025372 DOI: 10.1155/2011/435245] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Accepted: 12/14/2010] [Indexed: 12/25/2022] Open
Abstract
A better understanding of the molecular links between obesity and disease is potentially of great benefit for society. In this paper we discuss proposed mechanisms whereby bariatric surgery improves metabolic health, including acute effects on glucose metabolism and long-term effects on metabolic tissues (adipose tissue, skeletal muscle, and liver) and mitochondrial function. More short-term randomized controlled trials should be performed that include simultaneous measurement of metabolic parameters in different tissues, such as tissue gene expression, protein profile, and lipid content. By directly comparing different surgical procedures using a wider array of metabolic parameters, one may further unravel the mechanisms of aberrant metabolic regulation in obesity and related disorders.
Collapse
Affiliation(s)
- Simon N. Dankel
- Institute of Medicine, Haukeland University Hospital, University of Bergen, 5021 Bergen, Norway
- Hormone Laboratory, Haukeland University Hospital, 5021 Bergen, Norway
| | - Vidar Staalesen
- Institute of Medicine, Haukeland University Hospital, University of Bergen, 5021 Bergen, Norway
| | - Bodil Bjørndal
- Institute of Medicine, Haukeland University Hospital, University of Bergen, 5021 Bergen, Norway
| | - Rolf K. Berge
- Institute of Medicine, Haukeland University Hospital, University of Bergen, 5021 Bergen, Norway
| | - Gunnar Mellgren
- Institute of Medicine, Haukeland University Hospital, University of Bergen, 5021 Bergen, Norway
- Hormone Laboratory, Haukeland University Hospital, 5021 Bergen, Norway
- *Gunnar Mellgren:
| | - Lena Burri
- Institute of Medicine, Haukeland University Hospital, University of Bergen, 5021 Bergen, Norway
| |
Collapse
|
38
|
Mood disorders and obesity: understanding inflammation as a pathophysiological nexus. Neuromolecular Med 2010; 13:93-116. [PMID: 21165712 DOI: 10.1007/s12017-010-8140-8] [Citation(s) in RCA: 117] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Accepted: 11/19/2010] [Indexed: 02/06/2023]
Abstract
The aim of this review is to evaluate the evidentiary base supporting the hypothesis that the increased hazard for obesity in mood disorder populations (and vice versa) is a consequence of shared pathophysiological pathways. We conducted a PubMed search of all English-language articles with the following search terms: obesity, inflammation, hypothalamic-pituitary-adrenal axis, insulin, cognition, CNS, and neurotransmitters, cross-referenced with major depressive disorder and bipolar disorder. The frequent co-occurrence of mood disorders and obesity may be characterized by interconnected pathophysiology. Both conditions are marked by structural and functional abnormalities in multiple cortical and subcortical brain regions that subserve cognitive and/or affective processing. Abnormalities in several interacting biological networks (e.g. immuno-inflammatory, insulin signaling, and counterregulatory hormones) contribute to the co-occurence of mood disorders and obesity. Unequivocal evidence now indicates that obesity and mood disorders are chronic low-grade pro-inflammatory states that result in a gradual accumulation of allostatic load. Abnormalities in key effector proteins of the pro-inflammatory cascade include, but are not limited to, cytokines/adipokines such as adiponectin, leptin, and resistin as well as tumor necrosis factor alpha and interleukin-6. Taken together, the bidirectional relationship between obesity and mood disorders may represent an exophenotypic manifestation of aberrant neural and inflammatory networks. The clinical implications of these observations are that, practitioners should screen individuals with obesity for the presence of clinically significant depressive symptoms (and vice versa). This clinical recommendation is amplified in individuals presenting with biochemical indicators of insulin resistance and other concurrent conditions associated with abnormal inflammatory signaling (e.g. cardiovascular disease).
Collapse
|
39
|
Preventing and treating the accelerated ageing of obesity. Maturitas 2010; 66:223-30. [DOI: 10.1016/j.maturitas.2010.02.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2010] [Revised: 02/19/2010] [Accepted: 02/19/2010] [Indexed: 01/06/2023]
|