1
|
Wiafe-Kwakye CS, Fournier A, Maurais H, Southworth KJ, Molloy SD, Neely MN. Comparative Genomic Analysis of Prophages in Human Vaginal Isolates of Streptococcus agalactiae. Pathogens 2024; 13:610. [PMID: 39204211 PMCID: PMC11357604 DOI: 10.3390/pathogens13080610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/16/2024] [Accepted: 07/18/2024] [Indexed: 09/03/2024] Open
Abstract
Prophages, viral genomes integrated into bacterial genomes, are known to enhance bacterial colonization, adaptation, and ecological fitness, providing a better chance for pathogenic bacteria to disseminate and cause infection. Streptococcus agalactiae (Group B Streptococcus or GBS) is a common bacterium found colonizing the genitourinary tract of humans. However, GBS-colonized pregnant women are at risk of passing the organism to the neonate, where it can cause severe infections. GBS typically encode one or more prophages in their genomes, yet their role in pathogen fitness and virulence has not yet been described. Sequencing and bioinformatic analysis of the genomic content of GBS human isolates identified 42 complete prophages present in their genomes. Comparative genomic analyses of the prophage sequences revealed that the prophages could be classified into five distinct clusters based on their genomic content, indicating significant diversity in their genetic makeup. Prophage diversity was also identified across GBS capsule serotypes, sequence types (STs), and clonal clusters (CCs). Comprehensive genomic annotation revealed that all GBS strains encode paratox, a protein that prevents the uptake of DNA in Streptococcus, either on the chromosome, on the prophage, or both, and each prophage genome has at least one toxin-antitoxin system.
Collapse
Affiliation(s)
- Caitlin S. Wiafe-Kwakye
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME 04469, USA (S.D.M.)
| | - Andrew Fournier
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME 04469, USA (S.D.M.)
| | - Hannah Maurais
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME 04469, USA (S.D.M.)
| | - Katie J. Southworth
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME 04469, USA (S.D.M.)
| | - Sally D. Molloy
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME 04469, USA (S.D.M.)
- The Honors College, University of Maine, Orono, ME 04469, USA
| | - Melody N. Neely
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME 04469, USA (S.D.M.)
| |
Collapse
|
2
|
Kiecka A, Macura B, Szczepanik M. Modulation of allergic contact dermatitis via gut microbiota modified by diet, vitamins, probiotics, prebiotics, and antibiotics. Pharmacol Rep 2023; 75:236-248. [PMID: 36729361 PMCID: PMC10060339 DOI: 10.1007/s43440-023-00454-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/22/2023] [Accepted: 01/23/2023] [Indexed: 02/03/2023]
Abstract
Allergic contact dermatitis is one of the most common recorded occupational diseases. There are many different substances that the skin comes into contact with on a daily basis and that can cause ACD, e.g., preservatives, surfactants, and antimicrobial agents. The development of a mouse model of ACD has provided insight into the immune mechanisms involved. Drugs used in the treatment of skin diseases have many side effects. Therefore, alternative methods of suppressing the immune response to reduce the symptoms of skin diseases are being sought. In recent years, high hopes have been placed on dietary modulation and supplementation to affect the intestinal microbial composition and promote anti-inflammatory responses. In addition, other studies have shown the crucial role of intestinal microbiota in many immune-mediated diseases. Recognition and characterization of pro- and anti-inflammatory nutrients and supplements may be crucial to support the treatment of diseases such as atopic dermatitis, acne vulgaris, psoriasis, and allergic contact dermatitis.
Collapse
Affiliation(s)
- Aneta Kiecka
- Faculty of Health Sciences, Institute of Physiotherapy, Chair of Biomedical Sciences, Jagiellonian University Medical College, Kopernika 7a, 31-034, Kraków, Poland.
| | - Barbara Macura
- Faculty of Health Sciences, Institute of Physiotherapy, Chair of Biomedical Sciences, Jagiellonian University Medical College, Kopernika 7a, 31-034, Kraków, Poland
| | - Marian Szczepanik
- Faculty of Health Sciences, Institute of Physiotherapy, Chair of Biomedical Sciences, Jagiellonian University Medical College, Kopernika 7a, 31-034, Kraków, Poland
| |
Collapse
|
3
|
Effects of Lactobacillus on the Differentiation of Intestinal Mucosa Immune Cells and the Composition of Gut Microbiota in Soybean-Sensitized Mice. Foods 2023; 12:foods12030627. [PMID: 36766155 PMCID: PMC9914075 DOI: 10.3390/foods12030627] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/11/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
In the early stage of this study, three strains of Lactobacillus with anti-soybean allergy potential were screened: Lactobacillus acidophilus CICC 6081, Lactobacillus delbrueckii subsp. Bulgaricus CICC 6103 and Lactobacillus plantarum subsp. Plantarum CICC 20988. The aim of this study was to analyze the desensitization effect of three strains of Lactobacillus administered by gavage to soybean-allergic mice through the differentiation of immune cells in intestinal lymph nodes and the changes to gut microbiota. The results showed that the three strains of Lactobacillus could stimulate the proliferation of dendritic cells (DCs) and regulate the balance of Th1/Th2 differentiation in the MLNs and PPs of soybean-allergic mice. Furthermore, the Th17/Tregs cell-differentiation ratio in the MLNs of the Lactobacillus-treated mice was significantly lower than that of the allergic mice (p < 0.05). Compared to the control group, the Shannon, Sobs and Ace indexes of intestinal microbiota in the allergic mice were significantly increased (p < 0.05), and the proportion of Clostridiales was significantly higher (p < 0.05), which was reversed by Lactobacillus gavage. In conclusion, the three strains of Lactobacillus can inhibit the intestinal mucosal immune response and regulate gut microbiota balance in soybean-allergic mice.
Collapse
|
4
|
Nowicka D, Chilicka K, Dzieńdziora-Urbińska I. Host-Microbe Interaction on the Skin and Its Role in the Pathogenesis and Treatment of Atopic Dermatitis. Pathogens 2022; 11:pathogens11010071. [PMID: 35056019 PMCID: PMC8779626 DOI: 10.3390/pathogens11010071] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/04/2022] [Accepted: 01/04/2022] [Indexed: 12/12/2022] Open
Abstract
Atopic dermatitis (AD) is a condition with a complex and unclear aetiology. Possible causes of AD encompass alterations in the structure and function of the epidermal barrier, disturbances in the skin microbiome, immune factors, allergens, bacterial and fungal infections as well as environmental and genetic factors. In patients with AD, acute skin lesions are colonized by a greater number of bacteria and fungi than chronic lesions, clinically unchanged atopic skin and the skin of healthy people. Mechanisms promoting skin colonization by pathogens include complex interplay among several factors. Apart from disturbances of the skin microbiome, increased adhesion in atopic skin, defects of innate immune response resulting in the lack of or restriction of growth of microorganisms also contribute to susceptibility to the skin colonization of and infections, especially with Staphylococcus aureus. This review of the literature attempts to identify factors that are involved in the pathogenesis of AD-related bacterial and fungal skin colonization. Studies on the microbiome, commensal microorganisms and the role of skin microorganisms in maintaining healthy skin bring additional insight into the treatment and prevention of AD. In the light of presented mechanisms, reduction in colonization may become both causative and symptomatic treatment in AD.
Collapse
Affiliation(s)
- Danuta Nowicka
- Department of Dermatology, Venereology and Allergology, Wroclaw Medical University, 50-368 Wrocław, Poland
- Correspondence:
| | - Karolina Chilicka
- Department of Health Sciences, University of Opole, 45-040 Opole, Poland; (K.C.); (I.D.-U.)
| | | |
Collapse
|
5
|
The Interaction Between Viruses and Intestinal Microbiota: A Review. Curr Microbiol 2021; 78:3597-3608. [PMID: 34350485 PMCID: PMC8336530 DOI: 10.1007/s00284-021-02623-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 07/28/2021] [Indexed: 02/07/2023]
Abstract
As the main pathogen threatening human and animal health, viruses can affect the immunity and metabolism of bodies. There are innate microbial barriers in the digestive tract of the body to preserve the homeostasis of the animal body, which directly or indirectly influences the host defence against viral infection. Understanding the interaction between viruses and intestinal microbiota or probiotics is helpful to study the pathogenesis of diseases. Here, we review recent studies on the interaction mechanism between intestinal microbiota and viruses. The interaction can be divided into two aspects: inhibition of viral infection by microbiota and promotion of viral infection by microbiota. The treatment of viral infection by probiotics is summarized.
Collapse
|
6
|
Song B, Tang D, Yan S, Fan H, Li G, Shahid MS, Mahmood T, Guo Y. Effects of age on immune function in broiler chickens. J Anim Sci Biotechnol 2021; 12:42. [PMID: 33731181 PMCID: PMC7971956 DOI: 10.1186/s40104-021-00559-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 01/18/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND There are many diseases in poultry, many of which are caused by poor immune function. It is not clear how cytokines and various immune cell functions change with age in modern broilers. The purpose of this study was to explore the patterns of development of the immunity of the broiler chickens in cage. RESULTS The results showed that there were 3 development patterns of immunity in the broiler chickens. The first pattern was Down-Up. Cytokines and some immune indicators first decreased and then increased, and the lowest levels of immunity basically occurred from d 6 to 13. The second pattern was Up-Down, and from d 30 to 34, the highest levels of non-specific cellular immunity components, such as the peripheral blood mononuclear macrophage ratio, specific cellular immunity components, such as the peripheral blood helper T (Th) cell ratio and T cell and B cell proliferation activity, and mucosal immunity components, such as the ileal CD4, TGF-β1 and IgA mRNA levels, were observed. The third pattern was Up-Up, and the levels of the non-specific cellular immunity components, such as the serum nitric oxide (NO), C3 and C4 levels, the specific cellular immunity components, such as the spleen index, peripheral blood IL-2, IFN-γ/IL-4, cytotoxic T (Tc) cell ratio, and splenic NF-κB mRNA levels, the humoral immunity components, such as the serum IgG level, the mucosal immunity components, such as the ileal MHC-II, CD3d, TCRβ subunit, TCRζ subunit, IFN-γ, pIgR mRNA and ileal mucosa sIgA levels, were continuing to increase from d 1 to 34. CONCLUSIONS It could be concluded that the immune system and its function have not developed well in the broiler chickens d 6 to 13 and that the immune system does not mature until d 30 to 34 in the broiler chickens in cages. It is necessary to enhance the immune function of the broiler chickens through nutritional measures from d 1 to 30.
Collapse
Affiliation(s)
- Bochen Song
- The State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Dazhi Tang
- The State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Shaojia Yan
- The State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Hao Fan
- The State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Guang Li
- The State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Muhammad Suhaib Shahid
- The State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Tahir Mahmood
- The State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Yuming Guo
- The State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
7
|
Perinatal treatment of parents with the broad-spectrum antibiotic enrofloxacin aggravates contact sensitivity in adult offspring mice. Pharmacol Rep 2021; 73:664-671. [PMID: 33481210 PMCID: PMC7994221 DOI: 10.1007/s43440-021-00217-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 12/17/2020] [Accepted: 01/05/2021] [Indexed: 01/04/2023]
Abstract
BACKGROUND Antibiotics, while eliminating pathogens, also partially deplete commensal bacteria. Antibiotic-induced dysbiosis may contribute to the observed rise in "immune-mediated" diseases, including autoimmunity and allergy. The aim of this study is to investigate the impact of perinatal antibiotic treatment on T cell-mediated immune response in adult mice. METHODS Oral treatment with broad-spectrum antibiotic enrofloxacin during gestation and breastfeeding or breastfeeding or gestation alone was used to evaluate whether antibiotic exposure early in life could modulate contact sensitivity (CS) in adult mice. RESULTS Here, we demonstrated that enrofloxacin treatment during gestation and breastfeeding, but not during pregnancy or breastfeeding alone, aggravated CS reaction in adult mice measured by ear swelling. These data correlate with increased myeloperoxidase (MPO) activity in the ear extracts and elevated production of IL-6 and IL-17A by auricular lymph node cells (ELNC) and was not influenced by food consumption and body weight. In each dosing regimen, enrofloxacin treatment reduced the relative abundance of Enterococcus spp. but did not influence the relative abundances of Lactobacillus, Clostridium cluster XIVa, XIVab, I, Bacteroidetes, and segmented filamentous bacteria (SFB). However, prolonged enrofloxacin-treatment during both gestation and breastfeeding decreased the relative abundance of Clostridium cluster IV. CONCLUSION These data show that long-term perinatal enrofloxacin treatment induces intestinal dysbiosis, characterized by decreased levels of anti-inflammatory Clostridium cluster IV, and alters T cell-dependent immune responses, enhancing CS reaction in adult mice.
Collapse
|
8
|
Liu J, Tu C, Yu J, Chen M, Tan C, Zheng X, Wang Z, Liang Y, Wang K, Wu J, Li Y. Maternal microbiome regulation prevents early allergic airway diseases in mouse offspring. Pediatr Allergy Immunol 2020; 31:962-973. [PMID: 32608528 DOI: 10.1111/pai.13315] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 06/20/2020] [Accepted: 06/23/2020] [Indexed: 12/20/2022]
Abstract
BACKGROUND Asthma is a serious global health problem, severely affecting the lives of sufferers and their families. An exceptionally hygienic home and reduced microbial exposure can aggravate the incidence of childhood asthma. METHODS Specific-pathogen-free BALB/c mice were pre-treated with bacterial lysate (BL; 1 mg/kg) as a high microbial load maternal mouse model, and then, the offspring mice were established as an allergic airway disease (AAD) model. The expression levels of TLR2, TLR4, and HDAC9 in the mother's intestine and the offspring's lungs were detected. Relevant indicators of regulatory T cells (Tregs) were identified in the mother and offspring mice. The changes in the expression of Th1-, Th2-, Th9-, and Th17-related cytokines in the offspring mice were evaluated among different pre-treated groups. RESULTS After augmenting the mothers' intestinal microbiota through oral BL gavage, the expression of TLR2 and TLR4 in the colon mucosa and colon lymphoid tissues was enhanced and that of HDAC9 in the colon mucosa was decreased, and the proportion of spleen Tregs was increased. The offspring showed similar changes in the AAD model compared with the offspring of the control-group mothers: TLR2 and TLR4 expression in the lungs and the proportion of spleen Tregs increased, HDAC9 expression in the lungs decreased, and AAD-induced airway pathologic characteristics were reversed; additionally, Th1/Th2 and Th9 imbalances were rectified. CONCLUSIONS This study presents a new framework for the prevention of childhood asthma, elucidating the mechanism of regulating the mother's intestinal microbiome to protect the offspring's early asthma via animal experiments.
Collapse
Affiliation(s)
- Jing Liu
- Department of Respiratory and Critical Care Medicine, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, China
| | - Changli Tu
- Department of Respiratory and Critical Care Medicine, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, China
| | - Jinyan Yu
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Jilin University, Changchun, China
| | - Meizhu Chen
- Department of Respiratory and Critical Care Medicine, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, China
| | - Cuiyan Tan
- Department of Respiratory and Critical Care Medicine, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, China
| | - Xiaobin Zheng
- Department of Respiratory and Critical Care Medicine, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, China
| | - Zhenguo Wang
- Department of Respiratory and Critical Care Medicine, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, China
| | - Yingjian Liang
- Department of Respiratory and Critical Care Medicine, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, China
| | - Kongqiu Wang
- Department of Respiratory and Critical Care Medicine, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, China
| | - Jian Wu
- Department of Respiratory and Critical Care Medicine, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, China
| | - Yanlei Li
- Department of Clinical Laboratory, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
9
|
Booalayan H, Abdualrasool M, Al-Shanfari S, Boujarwa A, Al-Mukaimi A, Alkandery O, Akhtar S. Exposure to environmental tobacco smoke and prevalence of asthma among adolescents in a middle eastern country. BMC Public Health 2020; 20:1210. [PMID: 32770990 PMCID: PMC7414674 DOI: 10.1186/s12889-020-09245-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 07/12/2020] [Indexed: 02/01/2023] Open
Abstract
Background There is increasing evidence linking environmental tobacco smoke (ETS) exposure at homes to the development of asthma among adolescents. Few studies have addressed this issue in the Middle Eastern countries including Kuwait. Therefore, this cross-sectional study assessed the prevalence of ETS exposure at home, prevalence of asthma and other respiratory conditions and examined the ETS exposure at home and personal tobacco smoking as risk factors for self-reported asthma among high-school students in Kuwait. Methods In this cross-sectional study, we enrolled participants from nine high-schools of Hawally Governorate of Kuwait during October 2015. We adapted a previously validated self-administered questionnaire for data collection. Prevalence of self-reported asthma and ETS exposure (≥ 1 smoker at home vs. none) were computed. The association between exposures of interest and self-reported asthma status was examined using a multivariable log-binomial regression model. Results Of 800 enrolled participants, 746 (92.2%) consented and completed the questionnaire. The participants with mean (SD) age of 16.8 (0.68) years were predominantly Kuwaiti (74.8%) and female (50.1%). The prevalence of ETS exposure at home and personal current smoking was 54 and 12.4% respectively. Self-reported asthma prevalence was 20.5%. Furthermore, the prevalence of physician-diagnosed asthma, wheezing during the last 12 months and wheezing ‘ever’ was 16.4, 20.1 and 26.2%, respectively. Fitted multivariable log-binomial regression model revealed that compared with the non-asthmatic, participants with self-reported asthma tended to be current smokers (adjusted prevalence ratio (adjusted PR) = 1.82; 95% CI: 1.30–2.56; p = 0.001) or have had ETS exposure at home (adjusted PR = 1.64; 95% CI: 1.21–2.23; p = 0.002). Conclusions We recorded a high prevalence of ETS exposure at home, high prevalence of self-reported asthma and identified ETS exposure at home and being a current smoker as strong risk factors for self-reported asthma among adolescents. Voluntary household smoking bans may substantially minimize the ETS exposure among adolescents. Additionally, such restriction may inculcate an antismoking attitude and prevent smoking initiation among adolescents. Such efforts may bring about reduction in ETS exposure and associated asthma risk and other smoking-related morbidities in this and other similar settings.
Collapse
Affiliation(s)
- Hussain Booalayan
- Department of Community Medicine and Behavioral Sciences, Faculty of Medicine, Kuwait University, PO Box 24923, 13110, Safat, Kuwait
| | - Mosa Abdualrasool
- Department of Community Medicine and Behavioral Sciences, Faculty of Medicine, Kuwait University, PO Box 24923, 13110, Safat, Kuwait
| | - Saad Al-Shanfari
- Department of Community Medicine and Behavioral Sciences, Faculty of Medicine, Kuwait University, PO Box 24923, 13110, Safat, Kuwait
| | - Abdulwahab Boujarwa
- Department of Community Medicine and Behavioral Sciences, Faculty of Medicine, Kuwait University, PO Box 24923, 13110, Safat, Kuwait
| | - Abdullah Al-Mukaimi
- Department of Community Medicine and Behavioral Sciences, Faculty of Medicine, Kuwait University, PO Box 24923, 13110, Safat, Kuwait
| | - Omar Alkandery
- Department of Community Medicine and Behavioral Sciences, Faculty of Medicine, Kuwait University, PO Box 24923, 13110, Safat, Kuwait
| | - Saeed Akhtar
- Department of Community Medicine and Behavioral Sciences, Faculty of Medicine, Kuwait University, PO Box 24923, 13110, Safat, Kuwait.
| |
Collapse
|
10
|
Vangoitsenhoven R, Cresci GAM. Role of Microbiome and Antibiotics in Autoimmune Diseases. Nutr Clin Pract 2020; 35:406-416. [DOI: 10.1002/ncp.10489] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 02/21/2020] [Accepted: 03/09/2020] [Indexed: 12/15/2022] Open
Affiliation(s)
- Roman Vangoitsenhoven
- Bariatric and Metabolic Institute Cleveland Clinic Cleveland Ohio USA
- Department of Chronic Diseases, Metabolism and Ageing KU Leuven Leuven Belgium
| | - Gail A. M. Cresci
- Department of Pediatric Gastroenterology Cleveland Clinic Children's Hospital Cleveland Ohio USA
- Department of Inflammation and Immunity Cleveland Clinic Cleveland Ohio USA
| |
Collapse
|
11
|
Liu W, Chen M, Duo L, Wang J, Guo S, Sun H, Menghe B, Zhang H. Characterization of potentially probiotic lactic acid bacteria and bifidobacteria isolated from human colostrum. J Dairy Sci 2020; 103:4013-4025. [PMID: 32113772 DOI: 10.3168/jds.2019-17602] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 12/26/2019] [Indexed: 01/02/2023]
Abstract
Breast milk is the main source of nutrition for infants; it contains considerable microflora that can be transmitted to the infant endogenously or by breastfeeding, and it plays an important role in the maturation and development of the immune system. In this study, we isolated and identified lactic acid bacteria (LAB) from human colostrum, and screened 2 strains with probiotic potential. The LAB isolated from 40 human colostrum samples belonged to 5 genera: Lactobacillus, Bifidobacterium, Streptococcus, Enterococcus, and Staphylococcus. We also isolated Propionibacterium and Actinomyces. We identified a total of 197 strains of LAB derived from human colostrum based on their morphology and 16S rRNA sequence, among them 8 strains of Bifidobacterium and 10 strains of Lactobacillus, including 3 Bifidobacterium species and 4 Lactobacillus species. The physiological and biochemical characteristics of strains with good probiotic characteristics were evaluated. The tolerances of some of the Bifidobacterium and Lactobacillus strains to gastrointestinal fluid and bile salts were evaluated in vitro, using the probiotic strains Bifidobacterium lactis BB12 and Lactobacillus rhamnosus GG as controls. Among them, B. lactis Probio-M8 and L. rhamnosus Probio-M9 showed survival rates of 97.25 and 78.33% after digestion for 11 h in artificial gastrointestinal juice, and they exhibited growth delays of 0.95 and 1.87 h, respectively, in 0.3% bile salts. These two strains have the potential for application as probiotics and will facilitate functional studies of probiotics in breast milk and the development of human milk-derived probiotics.
Collapse
Affiliation(s)
- Wenjun Liu
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education of China, Inner Mongolia Agricultural University, Hohhot, 010018, China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs of China, Inner Mongolia Agricultural University, Hohhot, 010018, China; Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Meixuan Chen
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education of China, Inner Mongolia Agricultural University, Hohhot, 010018, China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs of China, Inner Mongolia Agricultural University, Hohhot, 010018, China; Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Lana Duo
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education of China, Inner Mongolia Agricultural University, Hohhot, 010018, China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs of China, Inner Mongolia Agricultural University, Hohhot, 010018, China; Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Jicheng Wang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education of China, Inner Mongolia Agricultural University, Hohhot, 010018, China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs of China, Inner Mongolia Agricultural University, Hohhot, 010018, China; Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Shuai Guo
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education of China, Inner Mongolia Agricultural University, Hohhot, 010018, China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs of China, Inner Mongolia Agricultural University, Hohhot, 010018, China; Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Haotian Sun
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education of China, Inner Mongolia Agricultural University, Hohhot, 010018, China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs of China, Inner Mongolia Agricultural University, Hohhot, 010018, China; Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Bilige Menghe
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education of China, Inner Mongolia Agricultural University, Hohhot, 010018, China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs of China, Inner Mongolia Agricultural University, Hohhot, 010018, China; Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, 010018, China.
| | - Heping Zhang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education of China, Inner Mongolia Agricultural University, Hohhot, 010018, China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs of China, Inner Mongolia Agricultural University, Hohhot, 010018, China; Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, 010018, China.
| |
Collapse
|
12
|
Gu L, Zhang W, Yang W, Liu H. Systematic review and meta-analysis of whether cesarean section contributes to the incidence of allergic diseases in children: A protocol for systematic review and meta analysis. Medicine (Baltimore) 2019; 98:e18394. [PMID: 31876711 PMCID: PMC6946297 DOI: 10.1097/md.0000000000018394] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 11/15/2019] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND As abundant evidence shows the composition of gut flora in children born by caesarean section is different from that of vaginal delivery children, studies on whether caesarean section would increase the offspring's risk of developing allergic disease attract extensive attention. However, the results of different researches are inconsistent. Therefore we conduct a systematic review and meta-analysis to explore the relationship between caesarean section and childhood allergic disease. METHODS The protocol followed Preferred Reporting Items for Systematic Reviews and Meta-Analyses Protocols. Cohort studies for investigating the relationship between caesarean section and the risk of childhood allergic disease will be searched in 4 main databases (PubMed, EMBASE, the Cochrane Library, and the web of science). In addition, a manual search of the references of relevant published studies will also be considered. Four common allergic outcomes will be included: asthma, allergic rhinitis, food allergy, and atopic dermatitis. Studies selection, data extraction, and risk of bias assessment will be conducted by 2 independent reviewers. The primary outcome is the incidence of 4 allergic diseases. RESULTS The results will provide useful information on whether caesarean section contributes to the increase of allergic disease in children. CONCLUSION The findings of this study will be published in a peer-reviewed journal. PROSPERO REGISTRATION NUMBER CRD42019135196.
Collapse
Affiliation(s)
- Li Gu
- Department of Pediatric Pneumology
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Weijian Zhang
- Department of Pediatric Pneumology
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Wenhao Yang
- Department of Pediatric Pneumology
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Hanmin Liu
- Department of Pediatric Pneumology
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
13
|
Liška J, Siala K, Čuláková B, Holeček V, Sobotová Š, Sýkora J, Šefrna F. 10-year experience with umbilical cord blood IgE and microbiome therapy. Ital J Pediatr 2019; 45:35. [PMID: 30857564 PMCID: PMC6413446 DOI: 10.1186/s13052-019-0620-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 02/18/2019] [Indexed: 10/07/2023] Open
Abstract
BACKGROUND The benefit of probiotics in newborn children in relation to allergy and general morbidity later in life appears to be controversial. Allergic diseases represent an increasingly important health problem worldwide in recent years. This is evident in all age groups. The occurrence of allergic illnesses also continues to rise exponentially, and thus the use of preventive and prognostic methods, particularly in children with an inherently higher risk of allergy, is gaining increased importance. Since the advent of probiotics the effect of probiosis on immunity through alterations of composition and function of the human gut microbiome has been increasingly studied. The exact mechanisms have not yet been clearly defined. The Academy of Sciences of the Czech Republic (The Czech Academy of Sciences has suggested that the expression of TH1 and TH2 cytokines in umbilical blood is associated with an increased risk of allergies. The counter -balance of Th1 and Th2 affect Immunoglobulin E (IgE) production and maturation of the gastrointestinal tract epithelium. CASE PRESENTATION We examined IgE levels in 3000 samples of umbilical blood taken from children born into families with a positive history of allergy in one or both parents from 2007 to 2017. At the age of ten days, those with high IgE were given Colinfant Newborn (a lyophilized non-pathogenic strain of Escherichia.coli) for one month, three times weekly. At 15 months and three years we investigated the levels of Immunoglobulins E,A and G, and the incidence of illness and allergy. The results revealed that allergy and high umbilical IgE is strongly linked with family history (p ≤ 0.001). We also detected differences in seasonality, especially with regards to pollen allergies. Eighty percent of children treated with Colinfant Newborn had significantly reduced IgE and morbidity at 13-15 months and 3 years, and furthermore without any clinical signs of allergy. Normalization of Immunoglobulins A and G was seen in 90% of treated subjects (p ≤ 0.001). These levels significantly correlated with an almost negligible morbidity up to 4 years of life. Colinfant Newborn, a lyophilized strain of Esherichia coli (E. coli), and a normal component of intestinal flora, readily colonizes the intestinal tract. It's long term presence significantly stimulates the production of specific and non-specific intestinal antibodies. and optimalizes immune development through tolerance. In our study Colinfant Newborn reduced the incidence of infections later in life by safely and effectively normalizing immunoglobulin levels in the majority of treated patients. CONCLUSION Our study strongly suggests as positive effect of physiological Escherichia coli on the microbiome of newborn children as evidenced by a significantly reduced incidence of allergy and morbidity when applied early in life. These benefits appear to be strongly strain specific.
Collapse
Affiliation(s)
- Jiří Liška
- Mulac Hospital, Newborn Department, Pilsen, Czech Republic
| | - Konrad Siala
- Mulac Hospital, Newborn Department, Pilsen, Czech Republic
| | | | - Václav Holeček
- Department of Clinical Chemistry and Hematology, Mulac Hospital, Pilsen, Czech Republic
| | - Štěpánka Sobotová
- Department of Clinical Chemistry and Hematology, Mulac Hospital, Pilsen, Czech Republic
| | - Josef Sýkora
- Department of Pediatrics, Charles University, Faculty of Medicine, Faculty Hospital, Pilsen, Czech Republic
| | - František Šefrna
- Department of Health Accounting and Statistics, University Hospital Pilsen, Pilsen, Czech Republic
| |
Collapse
|
14
|
Loo EXL, Chew LJM, Zulkifli AB, Ta LDH, Kuo IC, Goh A, Teoh OH, Van Bever H, Gluckman PD, Yap F, Tan KH, Chong YS, Lee BW, Shek LPC. Comparison of microbiota and allergen profile in house dust from homes of allergic and non-allergic subjects- results from the GUSTO study. World Allergy Organ J 2018; 11:37. [PMID: 30534340 PMCID: PMC6280478 DOI: 10.1186/s40413-018-0212-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 10/04/2018] [Indexed: 02/08/2023] Open
Abstract
Background The prevalence of allergic diseases, such as asthma, allergic rhinitis, eczema and food allergy, has been increasing worldwide, as shown in a large number of studies, including the International Study of Asthma and Allergies in Childhood (ISAAC). However, there is significant variation in the prevalence of these diseases in different regions, suggesting that there may be location-specific factors such as environment and microbial exposure affecting allergic disease prevalence. Hence, in this study we determine if there is a difference in microbiota composition and allergen concentration of household dust collected from the homes of non-allergic and allergic subjects from the Growing Up in Singapore Towards Healthy Outcomes (GUSTO) cohort. Methods From the Growing Up in Singapore Towards Healthy Outcomes (GUSTO) cohort, 25 allergic subjects and 25 non-allergic subjects were selected at the year 5.5 follow up. Definitions of allergic outcomes were standardized in the questionnaires administered at 3, 6, 9, 12, 15, 18, 24, 36, 48 and 60 months to ensure consistency during interviews and home visits. Allergen sensitization was determined by skin prick testing (SPT) at 18, 36 and 60 months. Dust samples were collected from the subject’s bed, sofa, and play area. DNA extraction was carried out and V3-V4 hypervariable regions of bacterial 16S rRNA gene were sequenced. Protein extraction was performed and allergens assayed by using multiplex assay and ELISA. Results The most abundant phyla in house dust were Actinobacteria (29.8%), Firmicutes (27.7%), and Proteobacteria (22.4%). Although there were no differences in bacteria abundance and diversity between house dust samples of allergic and non-allergic subjects, the relative abundance of Anaplasmataceae, Bacteroidaceae, and Leptospiraceae were significantly higher in dust samples of allergic subjects as compared to non-allergic subjects in 2 or more locations. The concentration of Der p 1 was significantly lower in bed dust samples of allergic subjects (Median [Interquartile range], 174 ng/g [115–299 ng/g]) as compared to non-allergic subjects (309 ng/g [201–400 ng/g]; P < 0.05). The concentration of tropomyosin was significantly higher in sofa dust samples of allergic subjects (175 ng/g [145–284 ng/g] as compared to non-allergic subjects (116 ng/g [52.8–170 ng/g]; P < 0.05). Conclusion In conclusion, we found a differential microbiota and allergen profile between homes of allergic and non-allergic subjects. Trial registration NCT01174875 Registered 1 July 2010, retrospectively registered. Electronic supplementary material The online version of this article (10.1186/s40413-018-0212-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Evelyn Xiu Ling Loo
- 1Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
| | - Lamony Jian Ming Chew
- 2Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Atiqa Binte Zulkifli
- 2Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Le Duc Huy Ta
- 2Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - I-Chun Kuo
- 2Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Anne Goh
- 3Allergy Service, Department of Paediatrics, KK Women's and Children's Hospital, Singapore, Singapore
| | - Oon Hoe Teoh
- 10Respiratory Medicine Service, Department of Paediatrics, KK Women's and Children's Hospital, Singapore, Singapore
| | - Hugo Van Bever
- 2Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,7Khoo Teck Puat-National University Children's Medical Institute, National University Hospital, National University Health System, Singapore, Singapore
| | - Peter D Gluckman
- 5Growth, Development and Metabolism Programme, Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (ASTAR), Singapore, Singapore.,6Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Fabian Yap
- 9Department of Endocrinology, KK Women's and Children's Hospital, Singapore, Singapore
| | - Kok Hian Tan
- 8Department of Maternal Fetal Medicine, KK Women's and Children's Hospital, Singapore, Singapore
| | - Yap Seng Chong
- 1Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (ASTAR), Singapore, Singapore.,4Department of Obstetrics & Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Bee Wah Lee
- 2Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Lynette Pei-Chi Shek
- 1Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (ASTAR), Singapore, Singapore.,2Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,7Khoo Teck Puat-National University Children's Medical Institute, National University Hospital, National University Health System, Singapore, Singapore
| |
Collapse
|
15
|
Figueroa-Lozano S, de Vos P. Relationship Between Oligosaccharides and Glycoconjugates Content in Human Milk and the Development of the Gut Barrier. Compr Rev Food Sci Food Saf 2018; 18:121-139. [DOI: 10.1111/1541-4337.12400] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 09/17/2018] [Accepted: 09/18/2018] [Indexed: 12/15/2022]
Affiliation(s)
- Susana Figueroa-Lozano
- Immunoendocrinology, Div. of Medical Biology, Dept. of Pathology and Medical Biology; Univ. of Groningen and University Medical Center Groningen; Groningen The Netherlands
| | - Paul de Vos
- Immunoendocrinology, Div. of Medical Biology, Dept. of Pathology and Medical Biology; Univ. of Groningen and University Medical Center Groningen; Groningen The Netherlands
| |
Collapse
|
16
|
Strzępa A, Lobo FM, Majewska-Szczepanik M, Szczepanik M. Antibiotics and autoimmune and allergy diseases: Causative factor or treatment? Int Immunopharmacol 2018; 65:328-341. [PMID: 30359934 DOI: 10.1016/j.intimp.2018.10.021] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 10/11/2018] [Accepted: 10/14/2018] [Indexed: 02/06/2023]
Abstract
The newborn infant emerges from an almost sterile environment into a world of bacteria. Bacteria colonize the infant's skin, lungs, and, of most importance, the gut. The process of bacterial colonization is coordinated, and each body niche acquires a unique composition of bacteria. In the gut, most bacteria belong to the Firmicutes and Bacteroidetes phyla, while Actinobacteria and Proteobacteria are far less abundant. Some of these bacteria possess strong immunoregulatory properties. Bacterial colonization is essential to skew the newborn's immune response away from the allergy-favoring Type-2 response towards a Type-1 immune response, which is essential for pathogen elimination. Imbalance between Type 1 and Type 2 responses, however, can promote autoimmunity. In addition, the microbiota shapes immune responses in adults. Autoimmune and allergic diseases are commonly associated with an altered composition of resident bacteria, which is known as dysbiosis. Perhaps the most common cause of disruption and alteration of the bacterial colonization of newborns is the use of antibiotics. It is not known whether the dysbiosis precedes or is the consequence of allergic and autoimmune disorders, and whether antibiotics can be a trigger for these disorders, depending on the type of antibiotic used and the maturity of immune system. In this review, we discuss the development of the microbiota in different body niches and their immunomodulatory potential. We evaluate the impact of antibiotics, both in mice and in humans, on microbial communities and how that may impact the development and manifestation of diseases through all stages of life: the prenatal period, childhood, and adulthood.
Collapse
Affiliation(s)
- Anna Strzępa
- Department of Medical Biology, Faculty of Health Sciences, Jagiellonian University Medical College, ul. Kopernika 7a, 31-034 Krakow, Poland
| | - Francis M Lobo
- Section of Allergy and Clinical Immunology, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Monika Majewska-Szczepanik
- Department of Medical Biology, Faculty of Health Sciences, Jagiellonian University Medical College, ul. Kopernika 7a, 31-034 Krakow, Poland
| | - Marian Szczepanik
- Department of Medical Biology, Faculty of Health Sciences, Jagiellonian University Medical College, ul. Kopernika 7a, 31-034 Krakow, Poland.
| |
Collapse
|
17
|
Hajavi J, Esmaeili SA, Varasteh AR, Vazini H, Atabati H, Mardani F, Momtazi-Borojeni AA, Hashemi M, Sankian M, Sahebkar A. The immunomodulatory role of probiotics in allergy therapy. J Cell Physiol 2018; 234:2386-2398. [PMID: 30192002 DOI: 10.1002/jcp.27263] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 07/24/2018] [Indexed: 12/14/2022]
Abstract
The increased incidence of allergic disorders may be the result of a relative fall in microbial induction in the intestinal immune system during infancy and early childhood. Probiotics have recently been proposed as viable microorganisms for the prevention and treatment of specific allergic diseases. Different mechanisms have been considered for this probiotic property, such as generation of cytokines from activated pro-T-helper type 1 after bacterial contact. However, the effects of its immunomodulatory potential require validation for clinical applications. This review will focus on the currently available data on the benefits of probiotics in allergy disease.
Collapse
Affiliation(s)
- Jafar Hajavi
- Department of Basic Sciences, Faculty of Allied Medicine, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Seyed-Alireza Esmaeili
- Immunology Research Center, BuAli Research Institute, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Abdol-Reza Varasteh
- Allergy Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Vazini
- Nursing Department, Basic Sciences Faculty, Hamedan Branch, Islamic Azad University, Hamedan, Iran
| | - Hadi Atabati
- Leishmaniasis Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Fatemeh Mardani
- Immunology Research Center, BuAli Research Institute, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir A Momtazi-Borojeni
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Medical Biotechnology, Nanotechnology Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Hashemi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mojtaba Sankian
- Immunology Research Center, BuAli Research Institute, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
18
|
Kang Y, Cai Y. The development of probiotics therapy to obesity: a therapy that has gained considerable momentum. Hormones (Athens) 2018; 17:141-151. [PMID: 29858841 DOI: 10.1007/s42000-018-0003-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Accepted: 01/06/2018] [Indexed: 02/06/2023]
Abstract
Obesity is a growing epidemic worldwide. The most frequent cause leading to the development of obesity is an imbalance between energy intake and energy expenditure. The gut microbiota is an environmental factor involved in obesity and metabolic disorders which reveals that obese animal and human subjects present alterations in the composition of the gut microbiota compared to their lean counterparts. Furthermore, evidence has so far demonstrated that the gut microbiota, which influences whole-body metabolism, by affecting energy balance, but also inflammation and gut barrier function, integrates peripheral and central food intake regulatory signals, thereby altering body weight. At the same time, these data suggest that species of intestinal commensal bacteria may play either a pathogenic or a protective role in the development of obesity. Though still a relatively nascent field of research, evidence to date suggests that manipulating the gut microbiome may represent effective treatment for the prevention or management of obesity. Various studies have described the beneficial effects of specific bacteria on the characteristics of obesity. However, the available data in this field remain limited and the relevant scientific work has only recently begun. This review aims to summarize the notable advances and contributions in the field that may prove useful for identifying probiotics that target obesity and its related disorders.
Collapse
Affiliation(s)
- Yongbo Kang
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi, China.
- Medical Faculty, Kunming University of Science and Technology, No.727 South Jingming Rd. Chenggong District, Kunming, 650500, China.
- Genetics and Pharmacogenomics Laboratory, Kunming University of Science and Technology, Kunming, Yunnan, China.
| | - Yue Cai
- Medical Faculty, Kunming University of Science and Technology, No.727 South Jingming Rd. Chenggong District, Kunming, 650500, China
- Pathogen Biology Laboratory, Kunming University of Science and Technology, Kunming, Yunnan, China
| |
Collapse
|
19
|
Wooldridge AL, McMillan M, Marshall HS, Gatford KL. Relationship between birth weight or fetal growth rate and postnatal allergy: a systematic review protocol. ACTA ACUST UNITED AC 2018; 14:11-20. [PMID: 27941506 DOI: 10.11124/jbisrir-2016-003177] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
REVIEW QUESTION/OBJECTIVE The objective of this systematic review is to synthesize the best available evidence on the relationship between size at birth or fetal growth and postnatal allergy. Specifically, this review aims to assess evidence regarding relationships between absolute birth weight at term, birth weight corrected for gestational age, expressed as relative to population or customized growth data, or fetal growth measures and physician-diagnosed or parent- and self-reported postnatal clinical allergic disease (eczema/atopic dermatitis, hay fever/rhinitis, allergic asthma or anaphylaxis).The specific review question is: what is the association between the absolute birth weight at full-term or birth weight relative to population or customized data and corrected for gestational age or direct measures of fetal growth, and physician-diagnosed or parent- and self-reported clinical allergic disease (eczema/atopic dermatitis, hay fever/rhinitis, allergic asthma or anaphylaxis)?
Collapse
Affiliation(s)
- Amy L Wooldridge
- 1Robinson Research Institute and School of Medicine, The University of Adelaide, Adelaide, Australia 2Vaccinology and Immunology Research Trials Unit (VIRTU), Women's and Children's Hospital, North Adelaide, Australia
| | | | | | | |
Collapse
|
20
|
Adiga A, Chu S, Eubank S, Kuhlman CJ, Lewis B, Marathe A, Marathe M, Nordberg EK, Swarup S, Vullikanti A, Wilson ML. Disparities in spread and control of influenza in slums of Delhi: findings from an agent-based modelling study. BMJ Open 2018; 8:e017353. [PMID: 29358419 PMCID: PMC5780711 DOI: 10.1136/bmjopen-2017-017353] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 10/31/2017] [Accepted: 11/03/2017] [Indexed: 12/02/2022] Open
Abstract
OBJECTIVES This research studies the role of slums in the spread and control of infectious diseases in the National Capital Territory of India, Delhi, using detailed social contact networks of its residents. METHODS We use an agent-based model to study the spread of influenza in Delhi through person-to-person contact. Two different networks are used: one in which slum and non-slum regions are treated the same, and the other in which 298 slum zones are identified. In the second network, slum-specific demographics and activities are assigned to the individuals whose homes reside inside these zones. The main effects of integrating slums are that the network has more home-related contacts due to larger family sizes and more outside contacts due to more daily activities outside home. Various vaccination and social distancing interventions are applied to control the spread of influenza. RESULTS Simulation-based results show that when slum attributes are ignored, the effectiveness of vaccination can be overestimated by 30%-55%, in terms of reducing the peak number of infections and the size of the epidemic, and in delaying the time to peak infection. The slum population sustains greater infection rates under all intervention scenarios in the network that treats slums differently. Vaccination strategy performs better than social distancing strategies in slums. CONCLUSIONS Unique characteristics of slums play a significant role in the spread of infectious diseases. Modelling slums and estimating their impact on epidemics will help policy makers and regulators more accurately prioritise allocation of scarce medical resources and implement public health policies.
Collapse
Affiliation(s)
- Abhijin Adiga
- Network Dynamics and Simulation Sciences Laboratory, Biocomplexity Institute, Virginia Tech, Blacksburg, Virginia, USA
| | - Shuyu Chu
- Network Dynamics and Simulation Sciences Laboratory, Biocomplexity Institute, Virginia Tech, Blacksburg, Virginia, USA
| | - Stephen Eubank
- Network Dynamics and Simulation Sciences Laboratory, Biocomplexity Institute, Virginia Tech, Blacksburg, Virginia, USA
| | - Christopher J Kuhlman
- Network Dynamics and Simulation Sciences Laboratory, Biocomplexity Institute, Virginia Tech, Blacksburg, Virginia, USA
| | - Bryan Lewis
- Network Dynamics and Simulation Sciences Laboratory, Biocomplexity Institute, Virginia Tech, Blacksburg, Virginia, USA
| | - Achla Marathe
- Network Dynamics and Simulation Sciences Laboratory, Biocomplexity Institute, Virginia Tech, Blacksburg, Virginia, USA
| | - Madhav Marathe
- Network Dynamics and Simulation Sciences Laboratory, Biocomplexity Institute, Virginia Tech, Blacksburg, Virginia, USA
| | - Eric K Nordberg
- Network Dynamics and Simulation Sciences Laboratory, Biocomplexity Institute, Virginia Tech, Blacksburg, Virginia, USA
| | - Samarth Swarup
- Network Dynamics and Simulation Sciences Laboratory, Biocomplexity Institute, Virginia Tech, Blacksburg, Virginia, USA
| | - Anil Vullikanti
- Network Dynamics and Simulation Sciences Laboratory, Biocomplexity Institute, Virginia Tech, Blacksburg, Virginia, USA
| | - Mandy L Wilson
- Network Dynamics and Simulation Sciences Laboratory, Biocomplexity Institute, Virginia Tech, Blacksburg, Virginia, USA
| |
Collapse
|
21
|
Jenmalm MC. The mother-offspring dyad: microbial transmission, immune interactions and allergy development. J Intern Med 2017; 282:484-495. [PMID: 28727206 DOI: 10.1111/joim.12652] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The increasing prevalence of allergy in affluent countries may be caused by reduced intensity and diversity of microbial stimulation, resulting in abnormal postnatal immune maturation. Most studies investigating the underlying immunomodulatory mechanisms have focused on postnatal microbial exposure, for example demonstrating that the gut microbiota differs in composition and diversity during the first months of life in children who later do or do not develop allergic disease. However, it is also becoming increasingly evident that the maternal microbial environment during pregnancy is important in childhood immune programming, and the first microbial encounters may occur already in utero. During pregnancy, there is a close immunological interaction between the mother and her offspring, which provides important opportunities for the maternal microbial environment to influence the immune development of the child. In support of this theory, combined pre- and postnatal supplementations seem to be crucial for the preventive effect of probiotics on infant eczema. Here, the influence of microbial and immune interactions within the mother-offspring dyad on childhood allergy development will be discussed. In addition, how perinatal transmission of microbes and immunomodulatory factors from mother to offspring may shape appropriate immune maturation during infancy and beyond, potentially via epigenetic mechanisms, will be examined. Deeper understanding of these interactions between the maternal and offspring microbiome and immunity is needed to identify efficacious preventive measures to combat the allergy epidemic.
Collapse
Affiliation(s)
- M C Jenmalm
- Department of Clinical and Experimental Medicine, Unit of Autoimmunity and Immune Regulation, Linköping University, Linköping, Sweden.,International Inflammation (in-FLAME) Network of the World Universities Network, Sydney, NSW, Australia
| |
Collapse
|
22
|
Allergy prevention by breastfeeding: possible mechanisms and evidence from human cohorts. Curr Opin Allergy Clin Immunol 2017; 16:427-33. [PMID: 27518839 DOI: 10.1097/aci.0000000000000303] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
PURPOSE OF REVIEW Allergy is a modern disease which does not seem to benefit from breast milk preventive effects. We propose that maternal milk composition has not adapted to the needs of allergy prevention because of the recent and rapid increase of allergy. Modulation of breast milk composition may be the best strategy to counteract allergy development. We will review recent advances in understanding of allergy physiopathology and how breast milk factors may be specifically appropriate to interfere with allergy development in early life. RECENT FINDINGS There is strong evidence both from rodent and human studies that breast milk factors may impact on parameters which are now recognized to be essential for allergy physiopathology: infant gut barrier function, microbiota metabolites production, and oral tolerance induction. Data from human cohorts support the possibility to modify breast milk composition by selected interventions and to impact health outcomes in offspring. SUMMARY Nutritional intervention in lactating mothers should endow breast milk with the capacity to combat allergy epidemics in addition to infectious disease.
Collapse
|
23
|
Wampach L, Heintz-Buschart A, Hogan A, Muller EEL, Narayanasamy S, Laczny CC, Hugerth LW, Bindl L, Bottu J, Andersson AF, de Beaufort C, Wilmes P. Colonization and Succession within the Human Gut Microbiome by Archaea, Bacteria, and Microeukaryotes during the First Year of Life. Front Microbiol 2017; 8:738. [PMID: 28512451 PMCID: PMC5411419 DOI: 10.3389/fmicb.2017.00738] [Citation(s) in RCA: 170] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 04/10/2017] [Indexed: 12/26/2022] Open
Abstract
Perturbations to the colonization process of the human gastrointestinal tract have been suggested to result in adverse health effects later in life. Although much research has been performed on bacterial colonization and succession, much less is known about the other two domains of life, archaea, and eukaryotes. Here we describe colonization and succession by bacteria, archaea and microeukaryotes during the first year of life (samples collected around days 1, 3, 5, 28, 150, and 365) within the gastrointestinal tract of infants delivered either vaginally or by cesarean section and using a combination of quantitative real-time PCR as well as 16S and 18S rRNA gene amplicon sequencing. Sequences from organisms belonging to all three domains of life were detectable in all of the collected meconium samples. The microeukaryotic community composition fluctuated strongly over time and early diversification was delayed in infants receiving formula milk. Cesarean section-delivered (CSD) infants experienced a delay in colonization and succession, which was observed for all three domains of life. Shifts in prokaryotic succession in CSD infants compared to vaginally delivered (VD) infants were apparent as early as days 3 and 5, which were characterized by increased relative abundances of the genera Streptococcus and Staphylococcus, and a decrease in relative abundance for the genera Bifidobacterium and Bacteroides. Generally, a depletion in Bacteroidetes was detected as early as day 5 postpartum in CSD infants, causing a significantly increased Firmicutes/Bacteroidetes ratio between days 5 and 150 when compared to VD infants. Although the delivery mode appeared to have the strongest influence on differences between the infants, other factors such as a younger gestational age or maternal antibiotics intake likely contributed to the observed patterns as well. Our findings complement previous observations of a delay in colonization and succession of CSD infants, which affects not only bacteria but also archaea and microeukaryotes. This further highlights the need for resolving bacterial, archaeal, and microeukaryotic dynamics in future longitudinal studies of microbial colonization and succession within the neonatal gastrointestinal tract.
Collapse
Affiliation(s)
- Linda Wampach
- Luxembourg Centre for Systems Biomedicine, University of LuxembourgEsch-sur-Alzette, Luxembourg
| | - Anna Heintz-Buschart
- Luxembourg Centre for Systems Biomedicine, University of LuxembourgEsch-sur-Alzette, Luxembourg
| | - Angela Hogan
- Integrated BioBank of LuxembourgLuxembourg, Luxembourg
| | - Emilie E L Muller
- Luxembourg Centre for Systems Biomedicine, University of LuxembourgEsch-sur-Alzette, Luxembourg
| | - Shaman Narayanasamy
- Luxembourg Centre for Systems Biomedicine, University of LuxembourgEsch-sur-Alzette, Luxembourg
| | - Cedric C Laczny
- Luxembourg Centre for Systems Biomedicine, University of LuxembourgEsch-sur-Alzette, Luxembourg
| | - Luisa W Hugerth
- Science for Life Laboratory, Division of Gene Technology, School of Biotechnology, Royal Institute of TechnologyStockholm, Sweden
| | - Lutz Bindl
- Centre Hospitalier de LuxembourgLuxembourg, Luxembourg
| | - Jean Bottu
- Centre Hospitalier de LuxembourgLuxembourg, Luxembourg
| | - Anders F Andersson
- Science for Life Laboratory, Division of Gene Technology, School of Biotechnology, Royal Institute of TechnologyStockholm, Sweden
| | - Carine de Beaufort
- Luxembourg Centre for Systems Biomedicine, University of LuxembourgEsch-sur-Alzette, Luxembourg.,Centre Hospitalier de LuxembourgLuxembourg, Luxembourg
| | - Paul Wilmes
- Luxembourg Centre for Systems Biomedicine, University of LuxembourgEsch-sur-Alzette, Luxembourg
| |
Collapse
|
24
|
Liu MY, Yang ZY, Dai WK, Huang JQ, Li YH, Zhang J, Qiu CZ, Wei C, Zhou Q, Sun X, Feng X, Li DF, Wang HP, Zheng YJ. Protective effect of Bifidobacterium infantis CGMCC313-2 on ovalbumin-induced airway asthma and β-lactoglobulin-induced intestinal food allergy mouse models. World J Gastroenterol 2017; 23:2149-2158. [PMID: 28405142 PMCID: PMC5374126 DOI: 10.3748/wjg.v23.i12.2149] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 01/17/2017] [Accepted: 02/17/2017] [Indexed: 02/06/2023] Open
Abstract
AIM To determine whether oral administration of Bifidobacterium infantis CGMCC313-2 (B. infantis CGMCC313-2) inhibits allergen-induced airway inflammation and food allergies in a mouse model.
METHODS Ovalbumin (OVA)-induced allergic asthma and β-lactoglobulin-induced food allergy mouse models were used in this study. Following oral administration of B. infantis CGMCC313-2 during or after allergen sensitization, histopathologic changes in the lung and intestine were evaluated by hematoxylin and eosin (HE) staining. In the allergic asthma mouse model, we evaluated the proportion of lung-infiltrating inflammatory cells. OVA-specific IgE and IgG1 levels in serum and cytokine levels in bronchoalveolar lavage fluid (BALF) were also assessed. In the food allergy mouse model, the levels of total IgE and cytokines in serum were measured.
RESULTS Oral administration of B. infantis CGMCC313-2 during or after allergen sensitization suppressed allergic inflammation in lung and intestinal tissues, while the proportion of infiltrating inflammatory cells was significantly decreased in the BALF of allergic asthma mice. Moreover, B. infantis CGMCC313-2 decreased the serum levels of total IgE in food allergy mice, and reductions in IgE and IgG1 were also observed in OVA-induced allergic asthma mice. The expression of interleukin-4 (IL-4) and IL-13 in both serum and BALF was suppressed following the administration of B. infantis CGMCC313-2, while an effect on serum IL-10 levels was not observed.
CONCLUSION B. infantis CGMCC313-2 inhibits the secretion of allergen-induced IgE, IL-4 and IL-13, and attenuates allergic inflammation.
Collapse
|
25
|
The Oral β-Lactamase SYN-004 (Ribaxamase) Degrades Ceftriaxone Excreted into the Intestine in Phase 2a Clinical Studies. Antimicrob Agents Chemother 2017; 61:AAC.02197-16. [PMID: 28052855 PMCID: PMC5328510 DOI: 10.1128/aac.02197-16] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 12/20/2016] [Indexed: 12/28/2022] Open
Abstract
SYN-004 (ribaxamase) is a β-lactamase designed to be orally administered concurrently with intravenous β-lactam antibiotics, including most penicillins and cephalosporins. Ribaxamase's anticipated mechanism of action is to degrade excess β-lactam antibiotic that is excreted into the small intestine. This enzymatic inactivation of excreted antibiotic is expected to protect the gut microbiome from disruption and thus prevent undesirable side effects, including secondary infections such as Clostridium difficile infections, as well as other antibiotic-associated diarrheas. In phase 1 clinical studies, ribaxamase was well tolerated compared to a placebo group and displayed negligible systemic absorption. The two phase 2a clinical studies described here were performed to confirm the mechanism of action of ribaxamase, degradation of β-lactam antibiotics in the human intestine, and were therefore conducted in subjects with functioning ileostomies to allow serial sampling of their intestinal chyme. Ribaxamase fully degraded ceftriaxone to below the level of quantitation in the intestines of all subjects in both studies. Coadministration of oral ribaxamase with intravenous ceftriaxone was also well tolerated, and the plasma pharmacokinetics of ceftriaxone were unchanged by ribaxamase administration. Since ribaxamase is formulated as a pH-dependent, delayed-release formulation, the activity of ribaxamase in the presence of the proton pump inhibitor esomeprazole was examined in the second study; coadministration of these drugs did not adversely affect ribaxamase's ability to degrade ceftriaxone excreted into the intestine. These studies have confirmed the in vivo mechanism of action of ribaxamase, degradation of β-lactam antibiotics in the human intestine (registered at ClinicalTrials.gov under NCT02419001 and NCT02473640).
Collapse
|
26
|
Gianchecchi E, Fierabracci A. On the pathogenesis of insulin-dependent diabetes mellitus: the role of microbiota. Immunol Res 2017; 65:242-256. [PMID: 27421719 DOI: 10.1007/s12026-016-8832-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Type 1 diabetes (T1D) is an autoimmune disorder characterized by the selective destruction of insulin-producing β cells as result of a complex interplay between genetic, stochastic and environmental factors in genetically susceptible individuals. An increasing amount of experimental data from animal models and humans has supported the role played by imbalanced gut microbiome in T1D pathogenesis. The commensal intestinal microbiota is fundamental for several physiologic mechanisms, including the establishment of immune homeostasis. Alterations in its composition have been correlated to changes in the gut immune system, including defective tolerance to food antigens, intestinal inflammation and enhanced gut permeability. Early findings reported differences in the intestinal microbiome of subjects affected by prediabetes or overt disease compared to healthy individuals. The present review focuses on microbiota-host homeostasis, its alterations, factors that influence microbiome composition and discusses their putative correlation with T1D development. Further studies are necessary to clarify the role played by microbiota modifications in the processes that cause enhanced permeability and the autoimmune mechanisms responsible for T1D onset.
Collapse
Affiliation(s)
- Elena Gianchecchi
- Vismederi Srl, Siena, Italy
- Infectivology and Clinical Trials Area, Bambino Gesù Children's Hospital, IRCCS, Viale S. Paolo 15, 00146, Rome, Italy
| | - Alessandra Fierabracci
- Infectivology and Clinical Trials Area, Bambino Gesù Children's Hospital, IRCCS, Viale S. Paolo 15, 00146, Rome, Italy.
| |
Collapse
|
27
|
Lemas DJ, Yee S, Cacho N, Miller D, Cardel M, Gurka M, Janicke D, Shenkman E. Exploring the contribution of maternal antibiotics and breastfeeding to development of the infant microbiome and pediatric obesity. Semin Fetal Neonatal Med 2016; 21:406-409. [PMID: 27424917 DOI: 10.1016/j.siny.2016.04.013] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Pediatric obesity, a significant public health concern, has been associated with adult premature mortality and the development of type 2 diabetes and cardiovascular disease. Evidence has suggested that the gut microbiota is associated with pediatric obesity. Establishment of the infant gut microbiome is dependent on a dynamic maternal-infant microbiota exchange during early life. The objective of this review is to describe maternal factors such as feeding practices and antibiotic use that may influence the infant gut microbiome and risk for obesity. The complex components in human milk have many nutritional benefits to the infant; however, the microbiome in human milk may be an important factor to help regulate the infant's weight. We discuss maternal antibiotics and the effects on breast milk as critical exposures that alter the infant's gut microbiome and influence the risk of pediatric obesity.
Collapse
Affiliation(s)
- Dominick J Lemas
- University of Florida, Department of Health Outcomes and Policy, Gainesville, FL, USA.
| | - Shanique Yee
- University of Florida, Department of Health Outcomes and Policy, Gainesville, FL, USA
| | - Nicole Cacho
- University of Florida, Department of Pediatrics, Division of Neonatology, Gainesville, FL, USA
| | - Darci Miller
- University of Florida, Department of Health Outcomes and Policy, Gainesville, FL, USA
| | - Michelle Cardel
- University of Florida, Department of Health Outcomes and Policy, Gainesville, FL, USA
| | - Matthew Gurka
- University of Florida, Department of Health Outcomes and Policy, Gainesville, FL, USA
| | - David Janicke
- University of Florida, Department of Clinical and Health Psychology, Gainesville, FL, USA
| | - Elizabeth Shenkman
- University of Florida, Department of Health Outcomes and Policy, Gainesville, FL, USA
| |
Collapse
|
28
|
Schmiedeberg K, Krause H, Röhl FW, Hartig R, Jorch G, Brunner-Weinzierl MC. T Cells of Infants Are Mature, but Hyporeactive Due to Limited Ca2+ Influx. PLoS One 2016; 11:e0166633. [PMID: 27893767 PMCID: PMC5125607 DOI: 10.1371/journal.pone.0166633] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 11/01/2016] [Indexed: 12/12/2022] Open
Abstract
CD4 T cells in human infants and adults differ in the initiation and strength of their responses. The molecular basis for these differences is not yet understood. To address this the principle key molecular events of TCR- and CD28-induced signaling in naive CD4 T cells, such as Ca2+ influx, NFAT expression, phosphorylation and translocation into the nucleus, ERK activation and IL-2 response, were analyzed over at least the first 3 years of life. We report dramatically reduced IL-2 and TNFα responses in naive CD31+ T cells during infancy. Looking at the obligatory Ca2+ influx required to induce T cell activation and proliferation, we demonstrate characteristic patterns of impairment for each stage of infancy that are partly due to the differential usage of Ca2+ stores. Consistent with those findings, translocation of NFATc2 is limited, but still dependent on Ca2+ influx as demonstrated by sensitivity to cyclosporin A (CsA) treatment. Thus weak Ca2+ influx functions as a catalyst for the implementation of restricted IL-2 response in T cells during infancy. Our studies also define limited mobilization of Ca2+ ions as a characteristic property of T cells during infancy. This work adds to our understanding of infants’ poor T cell responsiveness against pathogens.
Collapse
Affiliation(s)
- Kristin Schmiedeberg
- Department of Experimental Pediatrics, University Hospital, Otto-von-Guericke University, Magdeburg, Germany
| | - Hardy Krause
- Clinic of Pediatric Surgery University Hospital, Otto-von-Guericke University, Magdeburg, Germany
| | - Friedrich-Wilhelm Röhl
- Institute of Biometry and Medical Informatics University Hospital, Otto-von-Guericke University, Magdeburg, Germany
| | - Roland Hartig
- Institute for Molecular and Clinical Immunology, University Hospital, Otto-von-Guericke University, Magdeburg, Germany
| | - Gerhard Jorch
- Department of Experimental Pediatrics, University Hospital, Otto-von-Guericke University, Magdeburg, Germany
| | - Monika C. Brunner-Weinzierl
- Department of Experimental Pediatrics, University Hospital, Otto-von-Guericke University, Magdeburg, Germany
- * E-mail:
| |
Collapse
|
29
|
|
30
|
Grieger JA, Clifton VL, Tuck AR, Wooldridge AL, Robertson SA, Gatford KL. In utero Programming of Allergic Susceptibility. Int Arch Allergy Immunol 2016; 169:80-92. [PMID: 27044002 DOI: 10.1159/000443961] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Around 30-40% of the world's population will experience allergy, the most common and earliest-onset noncommunicable disease. With a steady rise in the incidence of allergic disease over recent decades, up to 18% of children will suffer a respiratory, food or skin allergy before their 18th birthday. There is compelling evidence that the risk of developing allergy is influenced by early life events and particularly in utero exposures. METHODS A comprehensive literature review was undertaken which outlines prenatal risk factors and potential mechanisms underlying the development of allergy in childhood. RESULTS Exposures including maternal cigarette smoking, preterm birth and Caesarean delivery are implicated in predisposing infants to the later development of allergy. In contrast, restricted growth in utero, a healthy maternal diet and a larger family size are protective, but the mechanisms here are unclear and require further investigation. CONCLUSION To ameliorate the allergy pandemic in young children, we must define prenatal mechanisms that alter the programming of the fetal immune system and also identify specific targets for antenatal interventions.
Collapse
Affiliation(s)
- Jessica A Grieger
- Robinson Research Institute and School of Medicine, University ofAdelaide, Adelaide, S.A., Australia
| | | | | | | | | | | |
Collapse
|
31
|
Trueba AF, Ritz T, Trueba G. The Role of the Microbiome in the Relationship of Asthma and Affective Disorders. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 874:263-88. [PMID: 26589224 DOI: 10.1007/978-3-319-20215-0_13] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The effect of stress, anxiety and other affective states on inflammatory conditions such as asthma is well documented. Although several immune pathway mechanisms have been proposed and studied, they cannot fully explain the relationship. In this chapter we present a new perspective on asthma development and exacerbation that integrates findings on the role of psychological factors in asthma with the microbiome and the hygiene hypothesis in asthma development.
Collapse
Affiliation(s)
- Ana F Trueba
- Universidad San Francisco de Quito, Quito, Ecuador.
| | - Thomas Ritz
- Southern Methodist University, Dallas, TX, USA.
| | | |
Collapse
|
32
|
|
33
|
Ding G, Ji R, Bao Y. Risk and protective factors for the development of childhood asthma. Paediatr Respir Rev 2015; 16:133-9. [PMID: 25155282 DOI: 10.1016/j.prrv.2014.07.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 05/31/2014] [Accepted: 07/27/2014] [Indexed: 10/25/2022]
Abstract
Childhood asthma prevalence worldwide has been increasing markedly over several decades. Various theories have been proposed to account for this alarming trend. The disease has a broad spectrum of potential determinants ranging from genetics to lifestyle and environmental factors. Epidemiological observations have demonstrated that several important lifestyle and environmental factors including obesity, urban living, dietary patterns such as food low in antioxidants and fast food, non-breastfeeding, gut flora imbalance, cigarette smoking, air pollution, and viral infection are associated with asthma exacerbations in children. However, only environmental tobacco smoke has been associated with the development of asthma. Despite epidemiological studies indicating that many other factors are probably associated with the development of asthma, the relationships are not considered causal due to the inadequate evidence and inconsistent results from recent studies. This may highlight that sufficient data and exact mechanisms of causality are still in need of further study.
Collapse
Affiliation(s)
- Guodong Ding
- Department of Pediatrics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; MOE and Shanghai Key Laboratory of Children's Environment Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ruoxu Ji
- Department of Pediatrics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yixiao Bao
- Department of Pediatrics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
34
|
Abstract
Peanut allergy is an IgE-mediated, persisting immune disorder that is of major concern worldwide. Currently, no routine immunotherapy is available to treat this often severe and sometimes fatal food allergy. Traditional subcutaneous allergen immunotherapy with crude peanut extracts has proven not feasible due to the high risk of severe systemic side effects. The allergen-specific approaches under preclinical and clinical investigation comprise subcutaneous, oral, sublingual and epicutaneous immunotherapy with whole-peanut extracts as well as applications of hypoallergenic peanut allergens or T cell epitope peptides. Allergen-nonspecific approaches include monoclonal anti-IgE antibodies, TCM herbal formulations and Toll-like receptor 9-based immunotherapy. The potential of genetically engineered plants with reduced allergen levels is being explored as well as the beneficial influence of lactic acid bacteria and soybean isoflavones on peanut allergen-induced symptoms. Although the underlying mechanisms still need to be elucidated, several of these strategies hold great promise. It can be estimated that individual strategies or a combination thereof will result in a successful immunotherapy regime for peanut-allergic individuals within the next decade.
Collapse
Affiliation(s)
- Merima Bublin
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | | |
Collapse
|
35
|
Penders J, Gerhold K, Thijs C, Zimmermann K, Wahn U, Lau S, Hamelmann E. New insights into the hygiene hypothesis in allergic diseases: mediation of sibling and birth mode effects by the gut microbiota. Gut Microbes 2014; 5:239-44. [PMID: 24637604 PMCID: PMC4063851 DOI: 10.4161/gmic.27905] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
There is convincing evidence from both human and animal studies suggesting that the infant intestinal microbiota plays an important role in regulating immune responses associated with the development of allergic diseases. To date there are, however, still no definite bacterial taxa or particular subsets of the microbiota that have been consistently associated with allergic diseases, which is mainly attributable to the methodological dissimilarities between studies. As such there is a need to apply different methodological concepts to enhance a deeper and more refined understanding of the relationship between the gut microbiota and allergies. Within our recent studies we reported that colonization by clostridia in early infancy increased the risk of atopic dermatitis. Using subsequent mediation analysis, we demonstrated that birth mode and having older siblings strongly impacted the infant microbiota which in turn affected the risk of atopic dermatitis. The results of these mediation analyses contributed stronger evidence for a causal link of birth mode and birth order on allergy risk through modulation of the microbiota composition.
Collapse
Affiliation(s)
- John Penders
- Department of Medical Microbiology; School for Nutrition, Toxicology, and Metabolism; Maastricht University Medical Centre; Maastricht, the Netherlands,Department of Epidemiology; School for Public Health and Primary Care; Maastricht University; Maastricht, the Netherlands,Correspondence to: John Penders,
| | - Kerstin Gerhold
- Department of Pediatric Pneumology and Immunology; Charité-Universitätsmedizin Berlin; Berlin, Germany
| | - Carel Thijs
- Department of Epidemiology; School for Public Health and Primary Care; Maastricht University; Maastricht, the Netherlands
| | | | - Ulrich Wahn
- Department of Pediatric Pneumology and Immunology; Charité-Universitätsmedizin Berlin; Berlin, Germany
| | - Susanne Lau
- Department of Pediatric Pneumology and Immunology; Charité-Universitätsmedizin Berlin; Berlin, Germany
| | - Eckard Hamelmann
- University Children’s Hospital St Josef; Ruhr-Universität Bochum; Bochum, Germany
| |
Collapse
|
36
|
Kuitunen M. Probiotics prevent allergic diseases in high-risk children. Expert Rev Clin Immunol 2014; 5:221-4. [DOI: 10.1586/eci.09.3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
37
|
Abstract
The mammalian gastrointestinal tract harbors a highly diverse microbial population termed the microbiome, which plays a major role in nutrition, metabolism, protection against pathogens, and development of the immune system. It is estimated that at least 1000 different bacterial species cohabit the human intestinal tract. Herein we provide a brief review of the developing intestinal microbiome, with the understanding that its development often begins before birth and that disturbance in the microbiome during fetal life, birth, and shortly thereafter may result in adverse consequences. Postnatally, numerous environmental factors including premature delivery, mode of delivery, antibiotic usage, and diet can play an important role in how the intestinal microbiome of infants is shaped. The fact that human milk contains microbes is likely to have important ramifications. We discuss where these microbes come from and their potential role.
Collapse
Affiliation(s)
| | - Josef Neu
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
38
|
Tsabouri S, Priftis KN, Chaliasos N, Siamopoulou A. Modulation of gut microbiota downregulates the development of food allergy in infancy. Allergol Immunopathol (Madr) 2014; 42:69-77. [PMID: 23827644 DOI: 10.1016/j.aller.2013.03.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2013] [Accepted: 03/25/2013] [Indexed: 02/06/2023]
Abstract
In humans, microbial colonisation of the intestine begins just after birth. However, development of the normal flora is a gradual process, which is initially determined by factors such as genetic aspects, the maternal-foetal interaction, place and mode of delivery, early feedings strategies, and the use of antibiotics. Current knowledge on the significance and impact of the gut microflora on the development of the gut immune system indicates that a close relationship between allergic sensitisation and the development of the intestinal microflora may occur in infancy. Intestinal micro-organisms could downregulate the allergic inflammation by counterbalancing type 2 T-helper cell responses and by enhancing allergen exclusion through an immunological response.
Collapse
Affiliation(s)
- S Tsabouri
- Child Health Department, Medical School, University of Ioannina, Greece.
| | - K N Priftis
- Third Department of Paediatrics, University of Athens School of Medicine, Attikon University Hospital, Athens, Greece
| | - N Chaliasos
- Child Health Department, Medical School, University of Ioannina, Greece
| | - A Siamopoulou
- Child Health Department, Medical School, University of Ioannina, Greece
| |
Collapse
|
39
|
Bourlioux P. Actualité du microbiote intestinal. ANNALES PHARMACEUTIQUES FRANÇAISES 2014; 72:15-21. [DOI: 10.1016/j.pharma.2013.09.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 08/21/2013] [Accepted: 09/01/2013] [Indexed: 12/26/2022]
|
40
|
Bertelsen RJ, Brantsæter AL, Magnus MC, Haugen M, Myhre R, Jacobsson B, Longnecker MP, Meltzer HM, London SJ. Probiotic milk consumption in pregnancy and infancy and subsequent childhood allergic diseases. J Allergy Clin Immunol 2014; 133:165-71.e1-8. [PMID: 24034345 PMCID: PMC3912862 DOI: 10.1016/j.jaci.2013.07.032] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 07/02/2013] [Accepted: 07/12/2013] [Indexed: 12/14/2022]
Abstract
BACKGROUND Whether probiotics, which can influence the microbiome, prevent infant eczema or allergic disease remains an open question. Most studies have focused on high-risk infants. OBJECTIVES We sought to assess whether consumption of probiotic milk products protects against atopic eczema, rhinoconjunctivitis, and asthma in early childhood in a large population-based pregnancy cohort (the Norwegian Mother and Child Cohort study). METHODS We examined associations between consumption of probiotic milk products in pregnancy and infancy with questionnaire-reported atopic eczema, rhinoconjunctivitis, and asthma in 40,614 children. Relative risks (RRs) were calculated by using general linear models adjusted for potential confounders. RESULTS Consumption of probiotic milk in pregnancy was associated with a slightly reduced relative risk (RR) of atopic eczema at 6 months (adjusted RR, 0.94; 95% CI, 0.89-0.99) and of rhinoconjunctivitis between 18 and 36 months (adjusted RR, 0.87; 95% CI, 0.78-0.98) compared with no consumption during pregnancy. Maternal history of allergic disease did not notably influence the associations. When both the mother (during pregnancy) and infant (after 6 months of age) had consumed probiotic milk, the adjusted RR of rhinoconjunctivitis was 0.80 (95% CI, 0.68-0.93) relative to no consumption by either. Probiotic milk consumption was not associated with asthma at 36 months. CONCLUSIONS In this population-based cohort consumption of probiotic milk products was related to a reduced incidence of atopic eczema and rhinoconjunctivitis, but no association was seen for incidence of asthma by 36 months of age.
Collapse
Affiliation(s)
- Randi J Bertelsen
- Department of Food, Water and Cosmetics, Norwegian Institute of Public Health, Oslo, Norway; Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC.
| | - Anne Lise Brantsæter
- Department of Exposure and Risk Assessment, Norwegian Institute of Public Health, Oslo, Norway
| | - Maria C Magnus
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC; Department of Chronic Diseases, Norwegian Institute of Public Health, Oslo, Norway
| | - Margaretha Haugen
- Department of Exposure and Risk Assessment, Norwegian Institute of Public Health, Oslo, Norway
| | - Ronny Myhre
- Department of Genes and Environment, Norwegian Institute of Public Health, Oslo, Norway
| | - Bo Jacobsson
- Department of Genes and Environment, Norwegian Institute of Public Health, Oslo, Norway; Department of Obstetrics and Gynecology, Sahlgrenska Academy, Gothenburg, Sweden
| | - Matthew P Longnecker
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC
| | - Helle M Meltzer
- Department of Exposure and Risk Assessment, Norwegian Institute of Public Health, Oslo, Norway
| | - Stephanie J London
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC
| |
Collapse
|
41
|
Abstract
Emerging technologies derived largely from the Human Genome Project are being applied to evaluating the intestinal microbiota in preterm infants. The microbial ecology of the developing intestine is highly related to health and disease and new discoveries are emerging that will help us understand disorders in the development of the intestinal microbial ecosystem and how to eventually manipulate them to prevent diseases such as necrotizing enterocolitis and late onset sepsis. Here, a brief overview of the developing microbiome as it pertains to several aspects of health and disease in the preterm infant is presented.
Collapse
Affiliation(s)
- Josef Neu
- Division of Neonatology, Department of Pediatric, University of Florida College of Medicine, 1600 SW Archer Road, Human Development Building HD 112, Gainesville, FL 32610 USA
| |
Collapse
|
42
|
Kim KH, Jahan SA, Kabir E. A review on human health perspective of air pollution with respect to allergies and asthma. ENVIRONMENT INTERNATIONAL 2013; 59:41-52. [PMID: 23770580 DOI: 10.1016/j.envint.2013.05.007] [Citation(s) in RCA: 194] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 05/10/2013] [Accepted: 05/11/2013] [Indexed: 05/27/2023]
Abstract
The increase in cases of asthma and allergies has become an important health issue throughout the globe. Although these ailments were not common diseases a few short decades ago, they are now affecting a large part of the population in many regions. Exposure to environmental (both outdoor and indoor) pollutants may partially account for the prevalence of such diseases. In this review, we provide a multidisciplinary review based on the most up-to-date survey of literature regarding various types of airborne pollutants and their associations with asthma-allergies. The major pollutants in this respect include both chemical (nitrogen dioxide, ozone, sulfur dioxide, particulate matter, and volatile organic compounds) and biophysical parameters (dust mites, pet allergens, and mold). The analysis was extended further to describe the development of these afflictions in the human body and the subsequent impact on health. This publication is organized to offer an overview on the current state of research regarding the significance of air pollution and its linkage with allergy and asthma.
Collapse
Affiliation(s)
- Ki-Hyun Kim
- Department of Environment & Energy, Sejong University, Seoul 143-747, Republic of Korea.
| | | | | |
Collapse
|
43
|
Duytschaever G, Huys G, Bekaert M, Boulanger L, De Boeck K, Vandamme P. Dysbiosis of bifidobacteria and Clostridium cluster XIVa in the cystic fibrosis fecal microbiota. J Cyst Fibros 2013; 12:206-15. [DOI: 10.1016/j.jcf.2012.10.003] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Revised: 10/09/2012] [Accepted: 10/10/2012] [Indexed: 02/06/2023]
|
44
|
Bråbäck L, Ekéus C, Lowe AJ, Hjern A. Confounding with familial determinants affects the association between mode of delivery and childhood asthma medication - a national cohort study. Allergy Asthma Clin Immunol 2013; 9:14. [PMID: 23590822 PMCID: PMC3643829 DOI: 10.1186/1710-1492-9-14] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Accepted: 03/06/2013] [Indexed: 11/10/2022] Open
Abstract
Background Mode of delivery may affect the risk of asthma but the findings have not been consistent and factors shared by siblings may confound the associations in previous studies. Methods The association between mode of delivery and dispensed inhaled corticosteroid (ICS) (a marker of asthma) was examined in a register based national cohort (n=199 837). A cohort analysis of all first born children aged 2-5 and 6-9 years was performed. An age-matched sibling-pair analysis was also performed to account for shared genetic and environmental risk factors. Results Analyses of first-borns demonstrated that elective caesarean section was associated with an increased risk of dispensed ICS in both 2-5 (adjusted odds ratio (aOR)=1.19, 95% confidence interval (CI) 1.09-1.29) and 6-9 (aOR=1.21, 1.09-1.34) age groups. In the sibling-pair analysis, the increased risk associated with elective caesarean section was confirmed in 2-5 year olds (aOR=1.22, 1.05-1.43) but not in 6-9 year olds (aOR=1.06, 0.78-1.44). Emergency caesarean section and vacuum extraction had some association with dispensed ICS in the analyses of first-borns but these associations were not confirmed in the sibling-pair analyses. Conclusions Confounding by familial factors affects the association between mode of delivery and dispensed ICS. Despite this confounding, there was some evidence that elective caesarean section contributed to a modestly increased risk of dispensed ICS but only up to five years of age.
Collapse
Affiliation(s)
- Lennart Bråbäck
- Occupational & Environmental Medicine, Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden ; Department of Research and Development, Västernorrland County Council, Sundsvall, Sweden ; Department of Research and Development, Sundsvalls sjukhus, Sundsvall, SE 85186, Sweden
| | - Cecilia Ekéus
- Department of Women's and Children's Health, Division of Reproductive and Perinatal Health, Karolinska Institutet, Stockholm, Sweden
| | - Adrian J Lowe
- Occupational & Environmental Medicine, Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden ; Murdoch Childrens Research Institute, Melbourne, Australia ; Centre for MEGA Epidemiology , School of Population Health, The University of Melbourne, Melbourne, Australia
| | - Anders Hjern
- Centre for Health Equity Studies (CHESS), Karolinska Institutet/Stockholm University, Stockholm, Sweden ; Clinical Epidemiology, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
45
|
Cho CE, Norman M. Cesarean section and development of the immune system in the offspring. Am J Obstet Gynecol 2013; 208:249-54. [PMID: 22939691 DOI: 10.1016/j.ajog.2012.08.009] [Citation(s) in RCA: 192] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Revised: 04/26/2012] [Accepted: 08/08/2012] [Indexed: 12/15/2022]
Abstract
This review examines the relation between the mode of delivery and development of the immune system in the offspring. Recent epidemiological studies provide evidence that elective cesarean section (CS) is associated with aberrant short-term immune responses in the newborn infant, and a greater risk of developing immune diseases such as asthma, allergies, type 1 diabetes, and celiac disease. However, it is still unknown whether CS causes a long-term effect on the immune system of the offspring that contributes to compromised immune health. With the dramatic increase in the rate of CS today, a greater emphasis should be placed on the discussion among both professionals and childbearing women on potential consequences of CS on the health of the offspring.
Collapse
Affiliation(s)
- Clara E Cho
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.
| | | |
Collapse
|
46
|
Fierer N, Ferrenberg S, Flores GE, González A, Kueneman J, Legg T, Lynch RC, McDonald D, Mihaljevic JR, O'Neill SP, Rhodes ME, Song SJ, Walters WA. From Animalcules to an Ecosystem: Application of Ecological Concepts to the Human Microbiome. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2012. [DOI: 10.1146/annurev-ecolsys-110411-160307] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The human body is inhabited by billions of microbial cells and these microbial symbionts play critical roles in human health. Human-associated microbial communities are diverse, and the structure of these communities is variable across body habitats, through time, and between individuals. We can apply concepts developed by plant and animal ecologists to better understand and predict the spatial and temporal patterns in these communities. Due to methodological limitations and the largely unknown natural history of most microbial taxa, this integration of ecology into research on the human microbiome is still in its infancy. However, such integration will yield a deeper understanding of the role of the microbiome in human health and an improved ability to test ecological concepts that are more difficult to test in plant and animal systems.
Collapse
Affiliation(s)
- Noah Fierer
- Department of Ecology and Evolutionary Biology,
- Cooperative Institute for Research in Environmental Sciences,
| | | | | | | | | | - Teresa Legg
- Department of Ecology and Evolutionary Biology,
| | | | | | | | - Sean P. O'Neill
- Department of Ecology and Evolutionary Biology,
- Institute of Arctic and Alpine Research, and
| | | | - Se Jin Song
- Department of Ecology and Evolutionary Biology,
| | - William A. Walters
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado 80309
| |
Collapse
|
47
|
Immunological footprint: the development of a child's immune system in environments rich in microorganisms and parasites. Parasitology 2011; 138:1508-18. [PMID: 21767432 DOI: 10.1017/s0031182011000588] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The shaping of a child's immune system starts in utero, with possible long-term consequences in later life. This review highlights the studies conducted on the development of the immune system in early childhood up to school-age, discussing the impact that environmental factors may have. Emphasis has been put on studies conducted in geographical regions where exposure to micro-organisms and parasites are particularly high, and the effect that maternal exposures to these may have on an infant's immune responses to third-party antigens. In this respect we discuss the effect on responses to vaccines, co-infections and on the development of allergic disorders. In addition, studies of the impact that such environmental factors may have on slightly older (school) children are highlighted emphasizing the need for large studies in low to middle income countries, that are sufficiently powered and have longitudinal follow-up components to understand the immunological footprint of a child and the consequences throughout life.
Collapse
|
48
|
Weise C, Zhu Y, Ernst D, Kühl AA, Worm M. Oral administration of Escherichia coli Nissle 1917 prevents allergen-induced dermatitis in mice. Exp Dermatol 2011; 20:805-9. [PMID: 21740462 DOI: 10.1111/j.1600-0625.2011.01326.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND The prevalence of allergies has been linked to Western life style factors including a decrease of microbial exposure. Probiotics, such as Escherichia coli Nissle 1917 (EcN), have been shown to be beneficial for prevention and treatment of several chronic inflammatory diseases. OBJECTIVE The aim of this study was to investigate the impact of oral EcN administration on development and outcome of allergen-induced dermatitis. METHODS In sensitized BALB/c mice, skin inflammation was induced by topical allergen application. EcN was administered orally in a preventive manner. Severity of dermatitis was analysed by evaluation of skin score, local cellular and cytokine profile. The systemic immune response was assessed by analysis of immunoglobulins and allergen-dependent cytokine response. RESULTS Oral EcN administration improved allergen-induced dermatitis dose-dependently. In parallel, a reduction of epidermal thickness and infiltrating immune cells together with an enhanced number of forkhead box P3 (Foxp3)(+) cells and a trend of increased IFNγ, IL-10 and TGFβ expression was detected in eczematous skin. In allergen-stimulated splenocytes reduced IL-4 and IFNγ along with an elevated IL-10 production and a tendency to an increased TGFβ secretion were observed. CONCLUSIONS Our findings indicate that EcN alters the local allergen-induced immune response by increase of Foxp3(+) cells and by favouring an immunoregulatory cytokine pattern. Thus, oral administration of EcN might be an effective strategy in prevention and potentially therapy of allergic inflammatory skin diseases.
Collapse
Affiliation(s)
- Christin Weise
- Allergy-Center-Charité, Department of Dermatology and Allergy, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | | | | | | | | |
Collapse
|
49
|
Abstract
Increasing awareness of the role of intestinal commensal bacteria in the development and modulation of the immune system has led to great interest in the therapeutic potential of probiotics and other bacteria-based strategies for a range of immune-related disorders. Studies in animal models have identified strong immunomodulatory effects of many nonpathogenic bacteria and provided evidence that intestinal microbes can activate a common mucosal immune response and, thus, influence sites distant to the intestine, including the respiratory tract. Respiratory effects of probiotics in animal models have included attenuating allergic airway responses and protecting against respiratory pathogens. Dendritic cells appear central to directing the beneficial immune response to probiotic bacteria and in translating microbial signals from the innate to the adaptive immune system, whereas regulatory T cells are emerging as potentially key effectors of probiotic-mediated responses, particularly in the reduction of allergic inflammation. Despite progress in basic research, clinical trials of probiotics in allergy/asthma and respiratory infection have been highly variable at best, leading to an undermining of confidence in this potential therapeutic strategy. It is clear that there is still much to learn regarding the determinants of the diverse immune responses elicited by different bacterial strains. A deeper knowledge of the interactions between administered probiotics and the existing microbiota, together with an understanding of how the dialogue between microbes and the innate immune system is translated into beneficial/protective responses, will be required before we can achieve clinically effective bacteria-based strategies that maintain and promote respiratory health.
Collapse
Affiliation(s)
- Paul Forsythe
- Brain-Body Institute and Department of Medicine, McMaster University, Hamilton, ON, Canada.
| |
Collapse
|
50
|
Abstract
Concurrent with the trend of increasing cesarean delivery numbers, there has been an epidemic of both autoimmune diseases and allergic diseases. Several theories have emerged suggesting that environmental influences are contributing to this phenomenon, most notably, the hygiene hypothesis. This article provides background about the human microbiota and its relationship to the developing immune system as well as the relationship of mode of delivery on the colonization of the infant intestine, development of the immune system, and subsequent childhood allergies, asthma, and autoimmune diseases.
Collapse
Affiliation(s)
- Josef Neu
- Professor of Pediatrics, Division of Neonatology, University of Florida; Gainesville, Florida
- Director, Neonatology Fellowship Training Program, University of Florida, Gainesville, Florida
| | - Jona Rushing
- Fellow, Department of Obstetrics and Gynecology, Division of Maternal Fetal Medicine, University of Florida, Gainesville, Florida
| |
Collapse
|