1
|
O’Donovan CJ, Tan LT, Abidin MAZ, Roderick MR, Grammatikos A, Bernatoniene J. Diagnosis of Chronic Granulomatous Disease: Strengths and Challenges in the Genomic Era. J Clin Med 2024; 13:4435. [PMID: 39124702 PMCID: PMC11313294 DOI: 10.3390/jcm13154435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/17/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
Chronic granulomatous disease (CGD) is a group of rare primary inborn errors of immunity characterised by a defect in the phagocyte respiratory burst, which leads to severe and life-threatening infective and inflammatory complications. Despite recent advances in our understanding of the genetic and molecular pathophysiology of X-linked and autosomal recessive CGD, and growth in the availability of functional and genetic testing, there remain significant barriers to early and accurate diagnosis. In the current review, we provide an up-to-date summary of CGD pathophysiology, underpinning current methods of diagnostic testing for CGD and closely related disorders. We present an overview of the benefits of early diagnosis and when to suspect and test for CGD. We discuss current and historical methods for functional testing of NADPH oxidase activity, as well as assays for measuring protein expression of NADPH oxidase subunits. Lastly, we focus on genetic and genomic methods employed to diagnose CGD, including gene-targeted panels, comprehensive genomic testing and ancillary methods. Throughout, we highlight general limitations of testing, and caveats specific to interpretation of results in the context of CGD and related disorders, and provide an outlook for newborn screening and the future.
Collapse
Affiliation(s)
- Conor J. O’Donovan
- Department of Paediatric Immunology and Infectious Diseases, Bristol Royal Hospital for Children, University Hospitals Bristol and Weston NHS Foundation Trust, Upper Maudlin Street, Bristol BS2 8BJ, UK
- School of Cellular and Molecular Medicine, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | - Lay Teng Tan
- Department of Paediatric Immunology and Infectious Diseases, Bristol Royal Hospital for Children, University Hospitals Bristol and Weston NHS Foundation Trust, Upper Maudlin Street, Bristol BS2 8BJ, UK
- Department of Paediatrics, University Malaya Medical Center, Lembah Pantai, Kuala Lumpur 59100, Malaysia
| | - Mohd A. Z. Abidin
- Department of Paediatric Immunology and Infectious Diseases, Bristol Royal Hospital for Children, University Hospitals Bristol and Weston NHS Foundation Trust, Upper Maudlin Street, Bristol BS2 8BJ, UK
- Department of Paediatrics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Marion R. Roderick
- Department of Paediatric Immunology and Infectious Diseases, Bristol Royal Hospital for Children, University Hospitals Bristol and Weston NHS Foundation Trust, Upper Maudlin Street, Bristol BS2 8BJ, UK
- School of Cellular and Molecular Medicine, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | - Alexandros Grammatikos
- Department of Immunology, Southmead Hospital, North Bristol NHS Trust, Bristol BS10 5NB, UK
| | - Jolanta Bernatoniene
- Department of Paediatric Immunology and Infectious Diseases, Bristol Royal Hospital for Children, University Hospitals Bristol and Weston NHS Foundation Trust, Upper Maudlin Street, Bristol BS2 8BJ, UK
- School of Cellular and Molecular Medicine, University of Bristol, University Walk, Bristol BS8 1TD, UK
| |
Collapse
|
2
|
Sevim-Wunderlich S, Dang T, Rossius J, Schnütgen F, Kühn R. A Mouse Model of X-Linked Chronic Granulomatous Disease for the Development of CRISPR/Cas9 Gene Therapy. Genes (Basel) 2024; 15:706. [PMID: 38927642 PMCID: PMC11203339 DOI: 10.3390/genes15060706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 05/23/2024] [Accepted: 05/25/2024] [Indexed: 06/28/2024] Open
Abstract
Chronic granulomatous disease (CGD) is an inherited immunodeficiency disease mainly caused by mutations in the X-linked CYBB gene that abrogate reactive oxygen species (ROS) production in phagocytes and microbial defense. Gene repair using the CRISPR/Cas9 system in hematopoietic stem and progenitor cells (HSPCs) is a promising technology for therapy for CGD. To support the establishment of efficient and safe gene therapies for CGD, we generated a mouse model harboring a patient-derived mutation in the CYBB gene. Our CybbC517del mouse line shows the hallmarks of CGD and provides a source for Cybb-deficient HSPCs that can be used to evaluate gene-therapy approaches in vitro and in vivo. In a setup using Cas9 RNPs and an AAV repair vector in HSPCs, we show that the mutation can be repaired in 19% of treated cells and that treatment restores ROS production by macrophages. In conclusion, our CybbC517del mouse line provides a new platform for refining and evaluating novel gene therapies and studying X-CGD pathophysiology.
Collapse
Affiliation(s)
- Seren Sevim-Wunderlich
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany; (S.S.-W.); (T.D.); (J.R.)
| | - Tu Dang
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany; (S.S.-W.); (T.D.); (J.R.)
| | - Jana Rossius
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany; (S.S.-W.); (T.D.); (J.R.)
| | - Frank Schnütgen
- Department of Medicine, Hematology/Oncology, University Hospital Frankfurt, Goethe University, 60590 Frankfurt am Main, Germany;
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Frankfurt Cancer Institute, Goethe-University Frankfurt, 60596 Frankfurt am Main, Germany
| | - Ralf Kühn
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany; (S.S.-W.); (T.D.); (J.R.)
| |
Collapse
|
3
|
Sixt S, Gruber M, Kolle G, Galla T, Bitzinger D. The Effect of Local Anesthetics on Neutrophils in the Context of Different Isolation Techniques. Biomedicines 2023; 11:2170. [PMID: 37626667 PMCID: PMC10452207 DOI: 10.3390/biomedicines11082170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 07/28/2023] [Accepted: 07/31/2023] [Indexed: 08/27/2023] Open
Abstract
Various functions of polymorphonuclear neutrophils (PMNs) are related to diseases and postoperative plasma changes. The influence of some local anesthetics (LAs) on PMNs obtained by conventional isolation methods and their functions has already been demonstrated. This study investigates the effect of selected LAs on PMNs, comparing a new isolation method with conventional ones. To obtain the PMNs, we performed either gelafundin sedimentation, hypotonic lysis or density gradient centrifugation. Subsequently, PMNs were mixed with different concentrations of bupivacaine, levobupivacaine, lidocaine or ropivacaine. Live cell imaging and flow cytometry were performed to quantify the migration, ROS production, NETosis and antigen expression of PMNs. We found the inhibition of chemotaxis and ROS production by LAs. PMNs showed a strong reduction in time to half maximal NETosis in response to bupivacaine and lidocaine, but not to levobupivacaine and ropivacaine. We also found distinct differences in survival time and migration duration between the isolation methods. This suggests that the careful selection of LAs has a short-term impact on in vitro PMNs.
Collapse
Affiliation(s)
- Sara Sixt
- Department of Anesthesiology, University Hospital Regensburg, 93042 Regensburg, Germany
| | | | | | | | | |
Collapse
|
4
|
Al Zu'bi YO, Al Sharie AH, Al-Sweedan S, Al-Khatib S, Jaradat SA, Al Tamimi E. Cytomegalovirus and Epstein-Barr Virus Co-infection in a Patient With Chronic Granulomatous Disease Co-existing With Familial Mediterranean Fever and Early-Onset Inflammatory Bowel Disease: A Case Report. Cureus 2023; 15:e44360. [PMID: 37779769 PMCID: PMC10540091 DOI: 10.7759/cureus.44360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2023] [Indexed: 10/03/2023] Open
Abstract
The association between primary immunodeficiencies and autoinflammatory disorders has been popularized over the past decade. In this report, we illustrated the co-infection of cytomegalovirus (CMV) and Epstein-Barr virus (EBV) in a three-year-old Jordanian male patient with an extremely rare variant of the CYBB gene (c.125C>G, p.Thr42Arg) associated with chronic granulomatous disease (CGD) coexisting with familial Mediterranean fever (FMF). CGD and FMF co-existence induced early-onset inflammatory bowel disease mainly resembling Crohn's disease.
Collapse
Affiliation(s)
- Yazan O Al Zu'bi
- Department of Pediatrics, Faculty of Medicine, Jordan University of Science and Technology, Irbid, JOR
| | - Ahmed H Al Sharie
- Department of Pathology and Microbiology, Faculty of Medicine, Jordan University of Science and Technology, Irbid, JOR
| | - Suleimman Al-Sweedan
- Department of Pediatrics, Faculty of Medicine, Jordan University of Science and Technology, Irbid, JOR
| | - Sohaib Al-Khatib
- Department of Pathology and Microbiology, Faculty of Medicine, Jordan University of Science and Technology, Irbid, JOR
| | - Saied A Jaradat
- Department of Biotechnology and Genetic Engineering, Faculty of Science and Arts, Jordan University of Science and Technology, Irbid, JOR
| | - Eyad Al Tamimi
- Department of Pediatrics, King Abdullah University Hospital, Ar Ramtha, JOR
| |
Collapse
|
5
|
Ettel P, Sehgal ANA, Harrison N, Pickl WF, Grabmeier-Pfistershammer K. Glycopeptide Antibiotics Impair Neutrophil Effector Functions. Int Arch Allergy Immunol 2023; 184:932-948. [PMID: 37321197 DOI: 10.1159/000530865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 04/21/2023] [Indexed: 06/17/2023] Open
Abstract
INTRODUCTION Neutrophilic granulocytes represent the first line of defense against microorganisms. Granulocytes phagocytose microorganisms and specifically synthesize oxygen radicals against them, which eventually kills the invaders. METHODS Neutrophilic granulocytes were isolated from peripheral blood of healthy volunteer donors. Putative interference of new-generation antibiotics with neutrophil function was tested using a collection of granulocyte-stimulating agents and Amplex™ Red-based plate assay and flow cytometry-based respiratory burst assays. In addition, phagocytosis of E. coli, IL-8 production, bactericidal activity, and CD62L expression of granulocytes were evaluated. RESULTS Of note, we found that the two glycopeptide antibiotics dalbavancin and teicoplanin inhibited ROS production upon granulocyte activation via different signaling pathways in a dose-dependent manner. Dalbavancin also blocked the PMA-induced shedding of CD62L. In contrast, the oxazolidinone antibiotics tedizolid and linezolid had no effect on neutrophil function, while the combination of ceftazidime/avibactam dose dependently inhibited the fMLP/Cytochalasin B-induced granulocyte burst in a dose-dependent manner. Additionally, we showed that dalbavancin and teicoplanin as well as sulfametrole/trimethoprim and ceftazidime/avibactam inhibited baseline and PMA-induced IL-8 production by neutrophilic granulocytes. Moreover, dalbavancin impaired the bactericidal activity of neutrophilic granulocytes. CONCLUSION We here identified hitherto unknown inhibitory effects of several classes of antibiotics on the effector functions of neutrophilic granulocytes.
Collapse
Affiliation(s)
- Paul Ettel
- Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Institute of Immunology, Vienna, Austria
| | - Al Nasar Ahmed Sehgal
- Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Institute of Immunology, Vienna, Austria
| | - Nicole Harrison
- Medical University of Vienna, Department of Medicine I, Division of Infectious Diseases and Tropical Medicine, Vienna, Austria
| | - Winfried F Pickl
- Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Institute of Immunology, Vienna, Austria
- Karl Landsteiner University of Health Sciences, Krems, Austria
| | | |
Collapse
|
6
|
Abstract
Colorectal cancer (CRC) is second most commonly diagnosed cancer with high morbidity and mortality. The heterogeneity of CRC makes clinical treatment tremendously challenging. Here, we aimed to comprehensively analyze the prognosis of CRC patients based on ANOIKIS- and immune-related genes. ANOIKIS-related genes were identified by differentially analysis of high anoikis score group (ANOIKIS_high group) and low anoikis score group (ANOIKIS_low group) divided by the cutoff value of anoikis score. Immune-related genes were screened by differentially analysis of high immune score group (ImmuneScore_high group) and low immune score group (ImmuneScore_low group) classified by the cutoff value of ImmuneScore. Prognostic ANOIKIS- and immune-related genes were identified by univariate Cox regression analysis. Multivariate Cox regression analysis were used for prognostic model construction. Ferroptosis expression profiles, the infiltration of immune cells, and the somatic mutation status were analyzed and compared. Univariate and multivariate Cox-regression analyses were performed to identify independent prognostic factors for CRC patient. Nomogram that contained the independent prognostic factors was established to predict 1-, 3-, and 5-year OS probability of CRC patients. Three ANOIKIS- and immune-related signatures were applied to construct a prognostic model, which divided the CRC patients into high-risk and low-risk groups. The patients with high-risk scores had obviously shorter OSs than those with low-risk scores. The time dependent ROC curve indicated that the risk score model had a stable performance to predict survival rates. Notably, the age, pathologic T, and risk score could be used independent indicators for CRC prognosis prediction. A nomogram containing the independent prognostic factors showed that the nomogram accurately predicted 1-, 3-, and 5-year survival rates of CRC patients. In our research, a novel prognostic model was developed based on ANOIKIS- and immune-related genes in CRC, which could be used for prognostic prediction of CRC patients.
Collapse
Affiliation(s)
- Zhiqiang Cai
- Department of Radiation and Medical Oncology, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Clinical Cancer Study Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Fuxiang Zhou
- Department of Radiation and Medical Oncology, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Clinical Cancer Study Center, Zhongnan Hospital of Wuhan University, Wuhan, China
- * Correspondence: Fuxiang Zhou, Department of Radiation and Medical Oncology, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Clinical Cancer Study Center, Zhongnan Hospital of Wuhan University, No. 169 Donghu Road, Wuchang District, Wuhan 430071, China (e-mail: )
| |
Collapse
|
7
|
Wu B, Li P, Hong X, Xu C, Wang R, Liang Y. The receptor-like cytosolic kinase RIPK activates NADP-malic enzyme 2 to generate NADPH for fueling ROS production. MOLECULAR PLANT 2022; 15:887-903. [PMID: 35276409 DOI: 10.1016/j.molp.2022.03.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 02/14/2022] [Accepted: 03/06/2022] [Indexed: 06/14/2023]
Abstract
Reactive oxygen species (ROS) production is a conserved immune response in Arabidopsis primarily mediated by respiratory burst oxidase homolog D (RBOHD), a nicotinamide adenine dinucleotide phosphate (NADPH) oxidase associated with the plasma membrane. A rapid increase in NADPH is necessary to fuel RBOHD proteins and thus maintain ROS production. However, the molecular mechanism by which NADPH is generated to fuel RBOHD remains unclear. In this study, we isolated a new mutant allele of FLAGELLIN-INSENSITIVE 4 (FIN4), which encodes the first enzyme in de novo NAD biosynthesis. fin4 mutants show reduced NADPH levels and impaired ROS production. However, FIN4 and other genes involved in NAD- and NADPH-generating pathways are not highly upregulated upon elicitor treatment, raising a possibility that a cytosolic NADP-linked dehydrogenase might be post-transcriptionally activated to maintain the NADPH supply close to RBOHD. To verify this possibility, we isolated the proteins associated with RPM1-INDUCED PROTEIN KINASE (RIPK), a receptor-like cytoplasmic kinase that regulates broad-spectrum ROS signaling in plant immunity, and identified NADP-malic enzyme 2 (NADP-ME2), an NADPH-generating enzyme. Compared with wild-type plants, nadp-me2 mutants display decreased NADP-ME activity, lower NADPH levels, and reduced ROS production in response to immune elicitors. Furthermore, we found that RIPK can directly phosphorylate NADP-ME2 and enhance its activity in vitro. The phosphorylation of the NADP-ME2 S371 residue contributes to ROS production upon immune elicitor treatment and susceptibility to the necrotrophic bacterium Pectobacterium carotovorum. Collectively, our study suggests that RIPK phosphorylates and activates NADP-ME2 to rapidly increase cytosolic NADPH, thus fueling RBOHD to sustain ROS production in plant immunity.
Collapse
Affiliation(s)
- Binyan Wu
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Ping Li
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Xiufang Hong
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Cuihong Xu
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Ran Wang
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Yan Liang
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
8
|
Zhao Q, Yin J, Ma J, Liu X, Wu J, Li C. De novo mutation of CYBB gene in a boy presenting as intra-abdominal infection of Burkholderia contaminans: a case report. Ital J Pediatr 2022; 48:55. [PMID: 35365205 PMCID: PMC8974071 DOI: 10.1186/s13052-022-01246-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 03/17/2022] [Indexed: 11/23/2022] Open
Abstract
Background Chronic granulomatous disease (CGD) is an inborn error of immunity. It is characterized by recurrent bacterial or fungal infections, including infections by Burkholderia species. This is due to respiratory burst dysfunction of phagocytes. Currently, there is no report on Burkholderia contaminans (B. Contaminans) infection in children with CGD. Case presentation We present a previously healthy, 17-month-old Chinese boy infected with B. Contaminans in the intra-abdominal regions. Immunological screening, including assessment of cellular immunity and humoral immunity did not yield conclusive results. The level of nicotinamide adenine dinucleotide phosphatase (NADPH) activity was decreased and whole-exome sequencing identified a de novo mutation in the CYBB gene. Conclusions For specific pathogens such as B. Contaminans, immune assessment should be carried out even if there is no positive medical history or specificity in basic immunity screening.
Collapse
Affiliation(s)
- Qianqian Zhao
- Department of Pediatric Immunology, Tianjin Children's Hospital (Tianjin University Children's Hospital), Tianjin, China
| | - Jing Yin
- Department of Pediatric Immunology, Tianjin Children's Hospital (Tianjin University Children's Hospital), Tianjin, China
| | - Jijun Ma
- Department of Pediatric Immunology, Tianjin Children's Hospital (Tianjin University Children's Hospital), Tianjin, China
| | - Xiaoxue Liu
- Department of Pediatric Immunology, Tianjin Children's Hospital (Tianjin University Children's Hospital), Tianjin, China
| | - Jiawen Wu
- Department of Pediatric Immunology, Tianjin Children's Hospital (Tianjin University Children's Hospital), Tianjin, China
| | - Chongwei Li
- Department of Pediatric Immunology, Tianjin Children's Hospital (Tianjin University Children's Hospital), Tianjin, China.
| |
Collapse
|
9
|
Hu M, Zou L, Lu J, Yang Z, Chen Y, Xu Y, Sun C. Construction of a 5-feature gene model by support vector machine for classifying osteoporosis samples. Bioengineered 2021; 12:6821-6830. [PMID: 34622712 PMCID: PMC8806423 DOI: 10.1080/21655979.2021.1971026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Osteoporosis is a progressive bone disease in the elderly and lacks an effective classification method of patients. This study constructed a gene signature for an accurate prediction and classification of osteoporosis patients. Three gene expression datasets of osteoporosis samples were acquired from the Gene Expression Omnibus database with pre-set criteria. Differentially expressed genes (DEGs) between normal and diseased osteoporosis samples were screened using Limma package in R language. Protein–protein interaction (PPI) network was established based on interaction data of the DEGs from the Human Protein Reference Database. Classification accuracy of the classifier was assessed with sensitivity, specificity and area under curve (AUC) using the pROC package in the R. Pathway enrichment analysis was performed on feature genes with clusterProfiler. A total of 310 differentially expressed genes between two samples were associated with positive regulation of protein secretion and cytokine secretion, neutrophil-mediated immunity, and neutrophil activation. PPI network of DEGs consisted of 12 genes. A SVM classifier based on five feature genes was developed to classify osteoporosis samples, showing a higher prediction accuracy and AUC for GSE35959, GSE62402, GSE13850, GSE56814, GSE56815 and GSE7429 datasets. A SVM classifier with a high accuracy was developed for predicting osteoporosis. The genes included may be the potential feature genes in osteoporosis development.AbbreviationsDEGs: Differentially expressed genes; PPI: protein–protein interaction; WHO: World Health Organization; SVM: Support vector machine; GEO: Gene Expression Omnibus; KEGG: Kyoto Encyclopedia of Genes and Genomes; GO: Gene Ontology; BP: Biological Process; CC: Cellular Component; MF: Molecular Function; SVM: Support vector machines
Collapse
Affiliation(s)
- Minwei Hu
- Department of Orthopedics, Ruijin Hospital LuWan Branch, School of Medicine, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Ling Zou
- Department of Orthopedics, Ruijin Hospital LuWan Branch, School of Medicine, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jiong Lu
- Department of Orthopedics, Ruijin Hospital LuWan Branch, School of Medicine, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zeyu Yang
- Department of Orthopedics, Ruijin Hospital LuWan Branch, School of Medicine, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yinan Chen
- Department of Orthopedics, Ruijin Hospital LuWan Branch, School of Medicine, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yaozeng Xu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Changhui Sun
- Department of Orthopedics, Ruijin Hospital LuWan Branch, School of Medicine, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
10
|
Taylor JP, Tse HM. The role of NADPH oxidases in infectious and inflammatory diseases. Redox Biol 2021; 48:102159. [PMID: 34627721 PMCID: PMC8487856 DOI: 10.1016/j.redox.2021.102159] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 09/30/2021] [Accepted: 09/30/2021] [Indexed: 02/06/2023] Open
Abstract
Nicotinamide adenine dinucleotide phosphate (NADPH) oxidases (NOX) are enzymes that generate superoxide or hydrogen peroxide from molecular oxygen utilizing NADPH as an electron donor. There are seven enzymes in the NOX family: NOX1-5 and dual oxidase (DUOX) 1-2. NOX enzymes in humans play important roles in diverse biological functions and vary in expression from tissue to tissue. Importantly, NOX2 is involved in regulating many aspects of innate and adaptive immunity, including regulation of type I interferons, the inflammasome, phagocytosis, antigen processing and presentation, and cell signaling. DUOX1 and DUOX2 play important roles in innate immune defenses at epithelial barriers. This review discusses the role of NOX enzymes in normal physiological processes as well as in disease. NOX enzymes are important in autoimmune diseases like type 1 diabetes and have also been implicated in acute lung injury caused by infection with SARS-CoV-2. Targeting NOX enzymes directly or through scavenging free radicals may be useful therapies for autoimmunity and acute lung injury where oxidative stress contributes to pathology.
Collapse
Affiliation(s)
- Jared P Taylor
- Department of Microbiology, Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Hubert M Tse
- Department of Microbiology, Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
11
|
Vermot A, Petit-Härtlein I, Smith SME, Fieschi F. NADPH Oxidases (NOX): An Overview from Discovery, Molecular Mechanisms to Physiology and Pathology. Antioxidants (Basel) 2021; 10:890. [PMID: 34205998 PMCID: PMC8228183 DOI: 10.3390/antiox10060890] [Citation(s) in RCA: 260] [Impact Index Per Article: 86.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/21/2021] [Accepted: 05/26/2021] [Indexed: 01/17/2023] Open
Abstract
The reactive oxygen species (ROS)-producing enzyme NADPH oxidase (NOX) was first identified in the membrane of phagocytic cells. For many years, its only known role was in immune defense, where its ROS production leads to the destruction of pathogens by the immune cells. NOX from phagocytes catalyzes, via one-electron trans-membrane transfer to molecular oxygen, the production of the superoxide anion. Over the years, six human homologs of the catalytic subunit of the phagocyte NADPH oxidase were found: NOX1, NOX3, NOX4, NOX5, DUOX1, and DUOX2. Together with the NOX2/gp91phox component present in the phagocyte NADPH oxidase assembly itself, the homologs are now referred to as the NOX family of NADPH oxidases. NOX are complex multidomain proteins with varying requirements for assembly with combinations of other proteins for activity. The recent structural insights acquired on both prokaryotic and eukaryotic NOX open new perspectives for the understanding of the molecular mechanisms inherent to NOX regulation and ROS production (superoxide or hydrogen peroxide). This new structural information will certainly inform new investigations of human disease. As specialized ROS producers, NOX enzymes participate in numerous crucial physiological processes, including host defense, the post-translational processing of proteins, cellular signaling, regulation of gene expression, and cell differentiation. These diversities of physiological context will be discussed in this review. We also discuss NOX misregulation, which can contribute to a wide range of severe pathologies, such as atherosclerosis, hypertension, diabetic nephropathy, lung fibrosis, cancer, or neurodegenerative diseases, giving this family of membrane proteins a strong therapeutic interest.
Collapse
Affiliation(s)
- Annelise Vermot
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, 38000 Grenoble, France; (A.V.); (I.P.-H.)
| | - Isabelle Petit-Härtlein
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, 38000 Grenoble, France; (A.V.); (I.P.-H.)
| | - Susan M. E. Smith
- Department of Molecular and Cellular Biology, Kennesaw State University, Kennesaw, GA 30144, USA;
| | - Franck Fieschi
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, 38000 Grenoble, France; (A.V.); (I.P.-H.)
| |
Collapse
|
12
|
Sharma S, Advani D, Das A, Malhotra N, Khosla A, Arora V, Jha A, Yadav M, Ambasta RK, Kumar P. Pharmacological intervention in oxidative stress as a therapeutic target in neurological disorders. J Pharm Pharmacol 2021; 74:461-484. [PMID: 34050648 DOI: 10.1093/jpp/rgab064] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 04/01/2021] [Indexed: 12/18/2022]
Abstract
OBJECTIVES Oxidative stress is a major cellular burden that triggers reactive oxygen species (ROS) and antioxidants that modulate signalling mechanisms. Byproducts generated from this process govern the brain pathology and functions in various neurological diseases. As oxidative stress remains the key therapeutic target in neurological disease, it is necessary to explore the multiple routes that can significantly repair the damage caused due to ROS and consequently, neurodegenerative disorders (NDDs). Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase is the critical player of oxidative stress that can also be used as a therapeutic target to combat NDDs. KEY FINDINGS Several antioxidants signalling pathways are found to be associated with oxidative stress and show a protective effect against stressors by increasing the release of various cytoprotective enzymes and also exert anti-inflammatory response against this oxidative damage. These pathways along with antioxidants and reactive species can be the defined targets to eliminate or reduce the harmful effects of neurological diseases. SUMMARY Herein, we discussed the underlying mechanism and crucial role of antioxidants in therapeutics together with natural compounds as a pharmacological tool to combat the cellular deformities cascades caused due to oxidative stress.
Collapse
Affiliation(s)
- Sudhanshu Sharma
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi, India
| | - Dia Advani
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi, India
| | - Ankita Das
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi, India
| | - Nishtha Malhotra
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi, India
| | - Akanksha Khosla
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi, India
| | - Vanshika Arora
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi, India
| | - Ankita Jha
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi, India
| | - Megha Yadav
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi, India
| | - Rashmi K Ambasta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi, India
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi, India
| |
Collapse
|
13
|
A case of chronic granulomatous disease diagnosed in adulthood. JOURNAL OF SURGERY AND MEDICINE 2021. [DOI: 10.28982/josam.740047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
14
|
Mollin M, Beaumel S, Vigne B, Brault J, Roux-Buisson N, Rendu J, Barlogis V, Catho G, Dumeril C, Fouyssac F, Monnier D, Gandemer V, Revest M, Brion JP, Bost-Bru C, Jeziorski E, Eitenschenck L, Jarrasse C, Drillon Haus S, Houachée-Chardin M, Hancart M, Michel G, Bertrand Y, Plantaz D, Kelecic J, Traberg R, Kainulainen L, Fauré J, Fieschi F, Stasia MJ. Clinical, functional and genetic characterization of 16 patients suffering from chronic granulomatous disease variants - identification of 11 novel mutations in CYBB. Clin Exp Immunol 2020; 203:247-266. [PMID: 32954498 DOI: 10.1111/cei.13520] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/25/2020] [Accepted: 09/07/2020] [Indexed: 12/13/2022] Open
Abstract
Chronic granulomatous disease (CGD) is a rare inherited disorder in which phagocytes lack nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activity. The most common form is the X-linked CGD (X91-CGD), caused by mutations in the CYBB gene. Clinical, functional and genetic characterizations of 16 CGD cases of male patients and their relatives were performed. We classified them as suffering from different variants of CGD (X910 , X91- or X91+ ), according to NADPH oxidase 2 (NOX2) expression and NADPH oxidase activity in neutrophils. Eleven mutations were novel (nine X910 -CGD and two X91- -CGD). One X910 -CGD was due to a new and extremely rare double missense mutation Thr208Arg-Thr503Ile. We investigated the pathological impact of each single mutation using stable transfection of each mutated cDNA in the NOX2 knock-out PLB-985 cell line. Both mutations leading to X91- -CGD were also novel; one deletion, c.-67delT, was localized in the promoter region of CYBB; the second c.253-1879A>G mutation activates a splicing donor site, which unveils a cryptic acceptor site leading to the inclusion of a 124-nucleotide pseudo-exon between exons 3 and 4 and responsible for the partial loss of NOX2 expression. Both X91- -CGD mutations were characterized by a low cytochrome b558 expression and a faint NADPH oxidase activity. The functional impact of new missense mutations is discussed in the context of a new three-dimensional model of the dehydrogenase domain of NOX2. Our study demonstrates that low NADPH oxidase activity found in both X91- -CGD patients correlates with mild clinical forms of CGD, whereas X910 -CGD and X91+ -CGD cases remain the most clinically severe forms.
Collapse
Affiliation(s)
- M Mollin
- Pôle de Biologie, Centre Hospitalier Universitaire Grenoble Alpes, CGD Diagnosis and Research Centre (CDiReC), Grenoble, France
| | - S Beaumel
- Pôle de Biologie, Centre Hospitalier Universitaire Grenoble Alpes, CGD Diagnosis and Research Centre (CDiReC), Grenoble, France
| | - B Vigne
- Pôle de Biologie, Centre Hospitalier Universitaire Grenoble Alpes, CGD Diagnosis and Research Centre (CDiReC), Grenoble, France
| | - J Brault
- Pôle de Biologie, Centre Hospitalier Universitaire Grenoble Alpes, CGD Diagnosis and Research Centre (CDiReC), Grenoble, France
| | - N Roux-Buisson
- Pôle de Biologie, Centre Hospitalier Universitaire Grenoble Alpes, Laboratoire de Biochimie et Génétique Moléculaire, Grenoble, France.,Grenoble Institut Neurosciences, Université Grenoble Alpes, Inserm U1216, Grenoble, France
| | - J Rendu
- Pôle de Biologie, Centre Hospitalier Universitaire Grenoble Alpes, Laboratoire de Biochimie et Génétique Moléculaire, Grenoble, France.,Grenoble Institut Neurosciences, Université Grenoble Alpes, Inserm U1216, Grenoble, France
| | - V Barlogis
- Service de Pédiatrie et Hématologie Pédiatrique, Centre Hospitalier Universitaire La Timone, Marseille, France
| | - G Catho
- Institut d'Hématologie et d'Oncologie Pédiatrique, Hospices Civiles de Lyon, Lyon, France
| | - C Dumeril
- Service de Pédiatrie, Centre Hospitalier Annecy Genevois, Pringy, France
| | - F Fouyssac
- Département d'Onco-hématologie Pédiatrique, Centre Hospitalier Universitaire de Nancy, Vandoeuvre-lès-Nancy, France
| | - D Monnier
- Laboratoire d'Immunologie Cellulaire, Centre Hospitalier Universitaire Pontchaillou, Rennes, France
| | - V Gandemer
- Service d'Onco-hématologie Pédiatrique, Centre Hospitalier Universitaire de Rennes, Rennes, France
| | - M Revest
- Service des Maladies Infectieuses et Réanimation Médicale, Centre Hospitalier Universitaire de Rennes, Rennes, France
| | - J-P Brion
- Pôle Médecine Aigue et Communautaire, Service d'Infectiologie, Centre Hospitalier Universitaire Grenoble Alpes, Grenoble, France
| | - C Bost-Bru
- Département de Pédiatrie, Centre Hospitalier Universitaire Grenoble Alpes, Grenoble, France
| | - E Jeziorski
- Département Urgences Post-urgences, CHU Montpellier, Pathogenesis and Control of Chronic Infections, INSERM, Université de Montpellier, Montpellier, France
| | - L Eitenschenck
- Service de Pédiatrie, Centre Hospitalier Annecy Genevois, Pringy, France
| | - C Jarrasse
- Service de Pédiatrie, Centre Hospitalier Annecy Genevois, Pringy, France
| | - S Drillon Haus
- Service de Pédiatrie et Onco-hématologie, Centre Hospitalier Universitaire de Strasbourg, Hôpital de Hautepierre, Strasbourg, France
| | - M Houachée-Chardin
- Institut d'Hématologie et d'Oncologie Pédiatrique, Hospices Civiles de Lyon, Lyon, France
| | - M Hancart
- Département Urgences Post-urgences, CHU Montpellier, Pathogenesis and Control of Chronic Infections, INSERM, Université de Montpellier, Montpellier, France
| | - G Michel
- Service de Pédiatrie et Hématologie Pédiatrique, Centre Hospitalier Universitaire La Timone, Marseille, France
| | - Y Bertrand
- Institut d'Hématologie et d'Oncologie Pédiatrique, Hospices Civiles de Lyon, Lyon, France
| | - D Plantaz
- Département de Pédiatrie, Centre Hospitalier Universitaire Grenoble Alpes, Grenoble, France
| | - J Kelecic
- Klinicki Bolnicki Centar Zagreb, Zagreb, Croatia
| | - R Traberg
- Hospital of Lithuanian University of Health Sciences, Kauno Klinikos, Kaunas, Lithuania
| | - L Kainulainen
- Department of Pediatrics, University Hospital of Turku, Turku, Finland.,Faculty of Medicine Turku, University of Turku, Turku, Finland
| | - J Fauré
- Pôle de Biologie, Centre Hospitalier Universitaire Grenoble Alpes, Laboratoire de Biochimie et Génétique Moléculaire, Grenoble, France.,Grenoble Institut Neurosciences, Université Grenoble Alpes, Inserm U1216, Grenoble, France
| | - F Fieschi
- Univ. Grenoble Alpes, CEA, CNRS, IBS, F-38044, Grenoble, France
| | - M J Stasia
- Pôle de Biologie, Centre Hospitalier Universitaire Grenoble Alpes, CGD Diagnosis and Research Centre (CDiReC), Grenoble, France.,Univ. Grenoble Alpes, CEA, CNRS, IBS, F-38044, Grenoble, France
| |
Collapse
|
15
|
Xu X, Xia C, Huang Y. Different roles of intracellular and extracellular reactive oxygen species of neutrophils in type 2 diabetic mice with invasive aspergillosis. Immunobiology 2020; 225:151996. [PMID: 32962816 DOI: 10.1016/j.imbio.2020.151996] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/28/2020] [Accepted: 07/29/2020] [Indexed: 11/29/2022]
Abstract
Diabetic patients have an increased risk of invasive aspergillosis (IA), but the mechanism is still unclear. Reactive oxygen species (ROS) produced by neutrophils play a key role in defense against Aspergillus infection. Since diabetes mellitus affects the production of ROS from neutrophils, the purpose of this study is to investigate whether this effect is related to the susceptibility of diabetic mice to IA. C57BL/6 mice were used to establish type 2 diabetes mellitus (T2DM) model, and IA was induced by airway infection with Aspergillus fumigatus. After infection, the fungal load, neutrophil count and ROS content in the lung tissues of T2DM mice were higher than those in the control mice, and the inflammation of the lung tissue was more serious. After being exposed to hyphae in vitro, compared with the control group, neutrophils in T2DM mice had higher apoptosis rate and intracellular ROS content, as well as lower viability, extracellular ROS content and fungicidal ability. In summary, after T2DM mice are infected with A. fumigatus, the reduction of extracellular ROS produced by neutrophils may lead to a decrease in fungicidal ability, while the increase of intracellular ROS is related to neutrophil and lung tissue damage.
Collapse
Affiliation(s)
- Xianghua Xu
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital (Changhai Hospital), Naval Medical University, Changhai Road 168, Yangpu, Shanghai 200433, China.
| | - Chu Xia
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital (Changhai Hospital), Naval Medical University, Changhai Road 168, Yangpu, Shanghai 200433, China.
| | - Yi Huang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital (Changhai Hospital), Naval Medical University, Changhai Road 168, Yangpu, Shanghai 200433, China.
| |
Collapse
|
16
|
Li QY, Li P, Myint Phyu Sin Htwe N, Shangguan KK, Liang Y. Antepenultimate residue at the C-terminus of NADPH oxidase RBOHD is critical for its function in the production of reactive oxygen species in Arabidopsis. J Zhejiang Univ Sci B 2020; 20:713-727. [PMID: 31379142 PMCID: PMC6700349 DOI: 10.1631/jzus.b1900105] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 05/12/2019] [Indexed: 12/14/2022]
Abstract
Production of reactive oxygen species (ROS) is a conserved immune response primarily mediated by NADPH oxidases (NOXs), also known in plants as respiratory burst oxidase homologs (RBOHs). Most microbe-associated molecular patterns (MAMPs) trigger a very fast and transient ROS burst in plants. However, recently, we found that lipopolysaccharides (LPS), a typical bacterial MAMP, triggered a biphasic ROS burst. In this study, we isolated mutants defective in LPS-triggered biphasic ROS burst (delt) in Arabidopsis, and cloned the DELT1 gene that was shown to encode RBOHD. In the delt1-2 allele, the antepenultimate residue, glutamic acid (E919), at the C-terminus of RBOHD was mutated to lysine (K). E919 is a highly conserved residue in NADPH oxidases, and a mutation of the corresponding residue E568 in human NOX2 has been reported to be one of the causes of chronic granulomatous disease. Consistently, we found that residue E919 was indispensable for RBOHD function in the MAMP-induced ROS burst and stomatal closure. It has been suggested that the mutation of this residue in other NADPH oxidases impairs the protein's stability and complex assembly. However, we found that the E919K mutation did not affect RBOHD protein abundance or the ability of protein association, suggesting that the residue E919 in RBOHD might have a regulatory mechanism different from that of other NOXs. Taken together, our results confirm that the antepenultimate residue E is critical for NADPH oxidases and provide a new insight into the regulatory mechanisms of RBOHD.
Collapse
|
17
|
Brault J, Vigne B, Stasia MJ. Ex Vivo Models of Chronic Granulomatous Disease. Methods Mol Biol 2020; 1982:587-622. [PMID: 31172497 DOI: 10.1007/978-1-4939-9424-3_35] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Induced pluripotent stem cells (iPSCs) are pluripotent stem cells that can be established from dedifferentiation of all somatic cell types by epigenetic phenomena. iPSCs can be differentiated into any mature cells like neurons, hepatocytes, or pancreatic cells that have not been easily available to date. Thus, iPSCs are widely used for disease modeling, drug discovery, and cell therapy development. Here, we describe a protocol to obtain human mature and functional neutrophils and macrophages as ex vivo models of X-linked chronic granulomatous disease (X-CGD). This method can be applied to model the other genetic forms of CGD. We also describe methods for testing the characteristics and functions of neutrophils and macrophages by morphology, phagocytosis assay, release of granule markers or cytokines, cell surface markers, and NADPH oxidase activity.
Collapse
Affiliation(s)
- Julie Brault
- Centre Diagnostic et Recherche CGD (CDiReC), Pôle Biologie, CHU Grenoble Alpes, Grenoble, France
| | - Bénédicte Vigne
- Centre Diagnostic et Recherche CGD (CDiReC), Pôle Biologie, CHU Grenoble Alpes, Grenoble, France
| | - Marie José Stasia
- Centre Diagnostic et Recherche CGD (CDiReC), Pôle Biologie, CHU Grenoble Alpes, Grenoble, France. .,Universite Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, Grenoble, France.
| |
Collapse
|
18
|
The NADPH Oxidase and the Phagosome. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1246:153-177. [DOI: 10.1007/978-3-030-40406-2_9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
19
|
Ziegler CS, Bouchab L, Tramier M, Durand D, Fieschi F, Dupré-Crochet S, Mérola F, Nüße O, Erard M. Quantitative live-cell imaging and 3D modeling reveal critical functional features in the cytosolic complex of phagocyte NADPH oxidase. J Biol Chem 2019; 294:3824-3836. [PMID: 30630949 DOI: 10.1074/jbc.ra118.006864] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 01/08/2019] [Indexed: 01/18/2023] Open
Abstract
Phagocyte NADPH oxidase produces superoxide anions, a precursor of reactive oxygen species (ROS) critical for host responses to microbial infections. However, uncontrolled ROS production contributes to inflammation, making NADPH oxidase a major drug target. It consists of two membranous (Nox2 and p22phox) and three cytosolic subunits (p40phox, p47phox, and p67phox) that undergo structural changes during enzyme activation. Unraveling the interactions between these subunits and the resulting conformation of the complex could shed light on NADPH oxidase regulation and help identify inhibition sites. However, the structures and the interactions of flexible proteins comprising several well-structured domains connected by intrinsically disordered protein segments are difficult to investigate by conventional techniques such as X-ray crystallography, NMR, or cryo-EM. Here, we developed an analytical strategy based on FRET-fluorescence lifetime imaging (FLIM) and fluorescence cross-correlation spectroscopy (FCCS) to structurally and quantitatively characterize NADPH oxidase in live cells. We characterized the inter- and intramolecular interactions of its cytosolic subunits by elucidating their conformation, stoichiometry, interacting fraction, and affinities in live cells. Our results revealed that the three subunits have a 1:1:1 stoichiometry and that nearly 100% of them are present in complexes in living cells. Furthermore, combining FRET data with small-angle X-ray scattering (SAXS) models and published crystal structures of isolated domains and subunits, we built a 3D model of the entire cytosolic complex. The model disclosed an elongated complex containing a flexible hinge separating two domains ideally positioned at one end of the complex and critical for oxidase activation and interactions with membrane components.
Collapse
Affiliation(s)
- Cornelia S Ziegler
- From the Laboratoire de Chimie Physique, CNRS, Université Paris-Sud, Université Paris-Saclay, 91405, Orsay France
| | - Leïla Bouchab
- From the Laboratoire de Chimie Physique, CNRS, Université Paris-Sud, Université Paris-Saclay, 91405, Orsay France
| | - Marc Tramier
- the Université Rennes, CNRS, Institut de Génétique et Développement de Rennes - UMR 6290, BIOSIT - UMS 3480, F-35000 Rennes, France
| | - Dominique Durand
- the Institute for Integrative Biology of the Cell, CEA, CNRS UMR 9198, Université Paris-Sud, Université Paris-Saclay, 91190 Gif-sur-Yvette, France, and
| | - Franck Fieschi
- the Université Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, F-38044 Grenoble, France
| | - Sophie Dupré-Crochet
- From the Laboratoire de Chimie Physique, CNRS, Université Paris-Sud, Université Paris-Saclay, 91405, Orsay France
| | - Fabienne Mérola
- From the Laboratoire de Chimie Physique, CNRS, Université Paris-Sud, Université Paris-Saclay, 91405, Orsay France
| | - Oliver Nüße
- From the Laboratoire de Chimie Physique, CNRS, Université Paris-Sud, Université Paris-Saclay, 91405, Orsay France,
| | - Marie Erard
- From the Laboratoire de Chimie Physique, CNRS, Université Paris-Sud, Université Paris-Saclay, 91405, Orsay France,
| |
Collapse
|
20
|
Abstract
Structure-function analysis of specific regions of NOX2 can be carried out after stable expression of site-directed mutagenesis-modified NOX2 in the X0-CGD PLB-985 cell model. Indeed, the generation of this human cellular model by Prof. MC Dinauer's team gave researchers the opportunity to gain a deeper understanding of functional regions of NOX2. With this model cell line, the functional impact of X+-CGD or of new mutations in NOX2 can be highlighted, as the biological material is not limited. PLB-985 cells transfected with various NOX2 mutations can be easily cultured and differentiated into neutrophils or monocytes/macrophages. Several measurements in intact mutated NOX2 PLB-985 cells can be carried out such as NOX2 expression, cytochrome b 558 spectrum, enzymatic activity, and assembly of the NADPH oxidase complex. Purified membranes or purified cytochrome b 558 from mutated NOX2 PLB-985 cells can be used for the study of the impact of specific mutations on NADPH oxidase or diaphorase activity, FAD incorporation, and NADPH or NADH binding in a cell-free assay system. Here, we describe a method to generate mutated NOX2 PLB-985 cells in order to analyze NOX2 structure-function relationships.
Collapse
Affiliation(s)
- Sylvain Beaumel
- Centre Diagnostic et Recherche CGD (CDiReC), Pôle Biologie, CHU Grenoble Alpes, Grenoble, France
| | - Marie José Stasia
- Centre Diagnostic et Recherche CGD (CDiReC), Pôle Biologie, CHU Grenoble Alpes, Grenoble, France.
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, Grenoble, France.
| |
Collapse
|
21
|
Maaloul I, Ameur SB, Chabchoub I, Kolsi R, Bahloul M, Kamoun T, Bouaziz M, Hachicha M. Fulminant mulch pneumonitis in a previously healthy child. Arch Pediatr 2018; 25:495-496. [PMID: 30340947 DOI: 10.1016/j.arcped.2018.09.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 09/09/2018] [Accepted: 09/23/2018] [Indexed: 10/28/2022]
Abstract
Chronic granulomatous disease (CGD) is associated with multiple and recurrent infections. In patients with CGD, invasive pulmonary infection with aspergillus species remains the greatest cause of mortality. Acute fulminant presentations of fungal pneumonia are catastrophic. It is a medical emergency, and currently the treatment is based on association of corticosteroids and antifungal therapy. We describe the case of an 11-year-old boy, with late initial presentation of CGD, which was revealed by fulminant aspergillus pneumonia. He was successfully treated with an association of high doses of steroids and voriconazole.
Collapse
Affiliation(s)
- I Maaloul
- Department of pediatrics, Sfax Medical School, Hedi Chaker Hospital, Sfax, Tunisia.
| | - S Ben Ameur
- Department of pediatrics, Sfax Medical School, Hedi Chaker Hospital, Sfax, Tunisia
| | - I Chabchoub
- Department of pediatrics, Sfax Medical School, Hedi Chaker Hospital, Sfax, Tunisia
| | - R Kolsi
- Department of pediatrics, Sfax Medical School, Hedi Chaker Hospital, Sfax, Tunisia
| | - M Bahloul
- Intensive care unit, Sfax Medical School, Habib Bourguiba Hospital, Sfax, Tunisia
| | - T Kamoun
- Department of pediatrics, Sfax Medical School, Hedi Chaker Hospital, Sfax, Tunisia
| | - M Bouaziz
- Intensive care unit, Sfax Medical School, Habib Bourguiba Hospital, Sfax, Tunisia
| | - M Hachicha
- Department of pediatrics, Sfax Medical School, Hedi Chaker Hospital, Sfax, Tunisia
| |
Collapse
|
22
|
Tatsiy O, McDonald PP. Physiological Stimuli Induce PAD4-Dependent, ROS-Independent NETosis, With Early and Late Events Controlled by Discrete Signaling Pathways. Front Immunol 2018; 9:2036. [PMID: 30279690 PMCID: PMC6153332 DOI: 10.3389/fimmu.2018.02036] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 08/17/2018] [Indexed: 12/18/2022] Open
Abstract
Neutrophils are known to extrude decondensed chromatin, thus forming NETs (neutrophil extracellular traps). These structures immobilize pathogens, thereby preventing their spreading, and are also adorned with antimicrobial molecules. NETs can also influence pathogenesis in chronic inflammation, autoimmunity, and cancer. Despite the importance of NETs, the molecular mechanisms underlying their formation, as well as the upstream signaling pathways involved, are only partially understood. Likewise, current methodological approaches to quantify NETs suffer from significant drawbacks, not the least being the inclusion of a significant non-specific signal. In this study, we used novel, fluorescent polymers that only bind extruded chromatin, allowing a specific and standardized quantification of NETosis. This allowed us to reliably rank the relative potency of various physiologic NET inducers. In neutrophils activated with such stimuli, inhibition of the Syk or PI3K pathways blocked NETosis by acting upon late events in NET formation. Inhibition of the TAK1, p38 MAPK, or MEK pathways also hindered NETosis, but by acting on early events. By contrast, inhibiting PKC, Src family kinases, or JNK failed to prevent NETosis; cycloheximide or actinomycin D were also ineffective. Expectedly, NET formation was deeply compromised following inhibition of the NADPH oxidase in PMA-activated neutrophils, but was found to be ROS-independent in response to physiological agonists. Conversely, we show for the first time in human neutrophils that selective inhibition of PAD4 potently prevents NETosis by all stimuli tested. Our data substantially extends current knowledge of the signaling pathways controlling NETosis, and reveals how they affect early or late stages of the phenomenon. In view of the involvement of NETs in several pathologies, our findings also identify molecular targets that could be exploited for therapeutic intervention.
Collapse
Affiliation(s)
- Olga Tatsiy
- Pulmonary Division, Faculty of Medicine, Centre de recherche du CHUS and Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Patrick P McDonald
- Pulmonary Division, Faculty of Medicine, Centre de recherche du CHUS and Université de Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
23
|
Al-Riyami AZ, Al-Zadjali S, Al-Mamari S, Al-Said B, Al-Qassabi J, Al-Tamemi S. Correlation between flow cytometry and molecular findings in autosomal recessive chronic granulomatous disease: A cohort study from Oman. Int J Lab Hematol 2018; 40:592-596. [PMID: 29947158 DOI: 10.1111/ijlh.12873] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 05/28/2018] [Indexed: 12/31/2022]
Abstract
BACKGROUND Chronic granulomatous disease (CGD) is an X-linked (XL) or autosomal recessive (AR) primary immunodeficiency disease. Respiratory burst assessment by flow cytometry is a rapid test of granulocyte stimulation, and results predict the underlying genotype. This study aims to describe the immune-phenotypic profile of patients with CGD diagnosed in our center and correlate that with underlying genetic mutations. METHODS Immuno-phenotypic and genetic data on all patients with CGD diagnosed at Sultan Qaboos University Hospital (SQUH) were reviewed. RESULTS A total of 32 patients were diagnosed with CGD using molecular studies. Genetically confirmed individuals included 1 patient with XL-CGD (a large deletion involving the CYBB and XK genes resulting in a McLeod phenotype), 27 patients with AR-CGD with a c.579G>A (p.Trp193X) mutation at the NCF1 gene, and 4 patients with AR-CGD with a c.784G>A (p.Gly262Ser) mutation at the NCF1 gene. Flow cytometry and molecular results were available for comparison in 26 patients with AR-CGD. The patients with AR-CGD had a range of flow cytometry-generated fluorescent patterns as follows: reduced neutrophil stimulation with a sharp peak (12/26), reduced neutrophil stimulation with a broad peak (11/26), and a complete lack of neutrophil stimulation (3/26). No consistent flow cytometry-generated fluorescent pattern was observed in either of the 2 AR mutations identified in our patients. CONCLUSION Flow cytometry is a robust test of CGD diagnosis. However, results should be interpreted with caution when predicting the underlying probable genotype, and results need to be complemented with definitive molecular studies.
Collapse
Affiliation(s)
- A Z Al-Riyami
- Department of Hematology, Sultan Qaboos University Hospital, Muscat, Oman
| | - S Al-Zadjali
- Department of Hematology, Sultan Qaboos University Hospital, Muscat, Oman
| | - S Al-Mamari
- Department of Hematology, Sultan Qaboos University Hospital, Muscat, Oman
| | - B Al-Said
- Department of Hematology, Sultan Qaboos University Hospital, Muscat, Oman
| | - J Al-Qassabi
- Department of Hematology, Sultan Qaboos University Hospital, Muscat, Oman
| | - S Al-Tamemi
- Department of Child Health, Sultan Qaboos University Hospital, Muscat, Oman
| |
Collapse
|
24
|
Singh AK, Hertzberger RY, Knaus UG. Hydrogen peroxide production by lactobacilli promotes epithelial restitution during colitis. Redox Biol 2018; 16:11-20. [PMID: 29471162 PMCID: PMC5835490 DOI: 10.1016/j.redox.2018.02.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 02/01/2018] [Accepted: 02/10/2018] [Indexed: 12/14/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a multifactorial chronic inflammatory disease of the gastrointestinal tract, characterized by cycles of acute flares, recovery and remission phases. Treatments for accelerating tissue restitution and prolonging remission are scarce, but altering the microbiota composition to promote intestinal homeostasis is considered a safe, economic and promising approach. Although probiotic bacteria have not yet fulfilled fully their promise in clinical trials, understanding the mechanism of how they exert beneficial effects will permit devising improved therapeutic strategies. Here we probe if one of the defining features of lactobacilli, the ability to generate nanomolar H2O2, contributes to their beneficial role in colitis. H2O2 generation by wild type L. johnsonii was modified by either deleting or overexpressing the enzymatic H2O2 source(s) followed by orally administering the bacteria before and during DSS colitis. Boosting luminal H2O2 concentrations within a physiological range accelerated recovery from colitis, while significantly exceeding this H2O2 level triggered bacteraemia. This study supports a role for increasing H2O2 within the physiological range at the epithelial barrier, independently of the enzymatic source and/or delivery mechanism, for inducing recovery and remission in IBD.
Collapse
Affiliation(s)
- Ashish K Singh
- Conway Institute, School of Medicine, University College Dublin, Dublin, Ireland
| | - Rosanne Y Hertzberger
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands; NIZO Food Research, Ede, The Netherlands
| | - Ulla G Knaus
- Conway Institute, School of Medicine, University College Dublin, Dublin, Ireland.
| |
Collapse
|
25
|
Yu JE, Azar AE, Chong HJ, Jongco AM, Prince BT. Considerations in the Diagnosis of Chronic Granulomatous Disease. J Pediatric Infect Dis Soc 2018; 7:S6-S11. [PMID: 29746674 PMCID: PMC5946934 DOI: 10.1093/jpids/piy007] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Chronic granulomatous disease (CGD) is a rare primary immunodeficiency that is caused by defects in the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase complex. The disease presents in most patients initially with infection, especially of the lymph nodes, lung, liver, bone, and skin. Patients with CGD are susceptible to a narrow spectrum of pathogens, and Staphylococcus aureus, Burkholderia cepacia complex, Serratia marcescens, Nocardia species, and Aspergillus species are the most common organisms implicated in North America. Granuloma formation, most frequently in the gastrointestinal and genitourinary systems, is a common complication of CGD and can be seen even before diagnosis. An increased incidence of autoimmune disease has also been described in patients with CGD and X-linked female carriers. In patients who present with signs and symptoms consistent with CGD, a flow cytometric dihydrorhodamine neutrophil respiratory burst assay is a quick and cost-effective way to evaluate NADPH oxidase function. The purpose of this review is to highlight considerations for and challenges in the diagnosis of CGD.
Collapse
Affiliation(s)
- Joyce E Yu
- Division of Allergy, Immunology and Rheumatology, Department of Pediatrics, Columbia University Medical Center, New York, New York
| | - Antoine E Azar
- Division of Allergy and Clinical Immunology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Hey J Chong
- Division of Pulmonary Medicine, Allergy and Immunology, Department of Pediatrics, Children’s Hospital of Pittsburgh of UPMC, Pennsylvania
| | - Artemio M Jongco
- Division of Allergy and Immunology, Department of Medicine and Pediatrics, Cohen Children’s Medical Center of New York, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Merinoff Center for Patient-Oriented Research, Feinstein Institute for Medical Research, Great Neck
| | - Benjamin T Prince
- Division of Allergy and Immunology, Department of Pediatrics, Nationwide Children’s Hospital, The Ohio State University College of Medicine, Columbus,Correspondence: B. T. Prince, MD, MSci, Nationwide Children’s Hospital, Division of Allergy and Immunology, 700 Children’s Dr, Columbus, OH 43215 ()
| |
Collapse
|
26
|
Beghin A, Comini M, Soresina A, Imberti L, Zucchi M, Plebani A, Montanelli A, Porta F, Lanfranchi A. Chronic Granulomatous Disease in children: a single center experience. Clin Immunol 2018; 188:12-19. [DOI: 10.1016/j.clim.2017.11.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 11/28/2017] [Accepted: 11/30/2017] [Indexed: 01/04/2023]
|
27
|
Wolach B, Gavrieli R, de Boer M, van Leeuwen K, Wolach O, Grisaru-Soen G, Broides A, Etzioni A, Somech R, Roos D. Analysis of Chronic Granulomatous Disease in the Kavkazi Population in Israel Reveals Phenotypic Heterogeneity in Patients with the Same NCF1 mutation (c.579G>A). J Clin Immunol 2018; 38:193-203. [PMID: 29411231 DOI: 10.1007/s10875-018-0475-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Accepted: 01/03/2018] [Indexed: 02/05/2023]
Abstract
PURPOSE Chronic granulomatous disease (CGD) is an innate immune deficiency disorder of phagocytes, resulting from mutations in the components of the NADPH oxidase complex that impair the synthesis of oxygen radicals, thus rendering patients susceptible to recurrent infections and excessive hyperinflammatory responses. The most common autosomal recessive form of CGD is p47phox deficiency, which is often clinically milder than the more common X-linked recessive form. Here, we report data on genetics, clinical and biochemical findings in 17 CGD patients of Kavkazi origin with the nonsense mutation c.579G>A in the NCF1 gene, leading to p47phox deficiency. METHODS Diagnosis was based on detailed clinical evaluation, respiratory burst activity by cytochrome c reduction and dihydrorhodamine-1,2,3 (DHR) assay by flow cytometry, expression of p47phox by immunoblotting and molecular confirmation by DNA sequence analysis. RESULTS Twelve male and five female patients with median age at onset of 2.5 years (range 1 day to 9 years) were included in the study. The present cohort displays an encouraging 88% overall long-term survival, with median follow-up of 17 years. Clinical manifestations varied from mild to severe expression of the disease. Correlation between genotype and phenotype is unpredictable, although the Kavkazi patients were more severely affected than other patients with p47phox deficiency. CONCLUSIONS Kavkazi CGD patients harbor a common genetic mutation that is associated with a heterogeneous clinical phenotype. Early diagnosis and proper clinical management in an experienced phagocytic leukocyte center is imperative to ensure favorable patient outcome. New treatment strategies are ongoing, but results are not yet conclusive.
Collapse
Affiliation(s)
- Baruch Wolach
- Pediatric Hematology Clinic and the Laboratory for Leukocyte Function, Meir Medical Center, 59 Tchernichovsky St., 44281 Kfar Saba, Israel. .,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| | - Ronit Gavrieli
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,The Laboratory for Leukocyte Function, Meir Medical Center, Kfar Saba, Israel
| | - Martin de Boer
- Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Karin van Leeuwen
- Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Ofir Wolach
- Institute of Hematology, Davidoff Cancer Center, Rabin Medical Center, Petach Tikva, Israel
| | - Galia Grisaru-Soen
- Pediatric Infectious Diseases Unit, Dana Children's Hospital, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Arnon Broides
- Immunology Clinic, Soroka University Medical Center, Beer Sheva, Israel.,Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Amos Etzioni
- Meyer Children's Hospital and Rappaport Faculty of Medicine, The Technion, Haifa, Israel
| | - Raz Somech
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Immunology Service, Department of Pediatrics, Safra Children's Hospital, Sheba Medical Center, Tel Hashomer, Israel
| | - Dirk Roos
- Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
28
|
Nayernia Z, Colaianna M, Robledinos-Antón N, Gutzwiller E, Sloan-Béna F, Stathaki E, Hibaoui Y, Cuadrado A, Hescheler J, Stasia MJ, Saric T, Jaquet V, Krause KH. Decreased neural precursor cell pool in NADPH oxidase 2-deficiency: From mouse brain to neural differentiation of patient derived iPSC. Redox Biol 2017; 13:82-93. [PMID: 28575744 PMCID: PMC5454143 DOI: 10.1016/j.redox.2017.04.026] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 04/19/2017] [Accepted: 04/20/2017] [Indexed: 10/28/2022] Open
Abstract
There is emerging evidence for the involvement of reactive oxygen species (ROS) in the regulation of stem cells and cellular differentiation. Absence of the ROS-generating NADPH oxidase NOX2 in chronic granulomatous disease (CGD) patients, predominantly manifests as immune deficiency, but has also been associated with decreased cognition. Here, we investigate the role of NOX enzymes in neuronal homeostasis in adult mouse brain and in neural cells derived from human induced pluripotent stem cells (iPSC). High levels of NOX2 were found in mouse adult neurogenic regions. In NOX2-deficient mice, neurogenic regions showed diminished redox modifications, as well as decrease in neuroprecursor numbers and in expression of genes involved in neural differentiation including NES, BDNF and OTX2. iPSC from healthy subjects and patients with CGD were used to study the role of NOX2 in human in vitro neuronal development. Expression of NOX2 was low in undifferentiated iPSC, upregulated upon neural induction, and disappeared during neuronal differentiation. In human neurospheres, NOX2 protein and ROS generation were polarized within the inner cell layer of rosette structures. NOX2 deficiency in CGD-iPSCs resulted in an abnormal neural induction in vitro, as revealed by a reduced expression of neuroprogenitor markers (NES, BDNF, OTX2, NRSF/REST), and a decreased generation of mature neurons. Vector-mediated NOX2 expression in NOX2-deficient iPSCs rescued neurogenesis. Taken together, our study provides novel evidence for a regulatory role of NOX2 during early stages of neurogenesis in mouse and human.
Collapse
Affiliation(s)
- Zeynab Nayernia
- Department of Pathology and Immunology, University of Geneva Medical School, 1-rue Michel Servet, 1211 Geneva, Switzerland
| | - Marilena Colaianna
- Department of Pathology and Immunology, University of Geneva Medical School, 1-rue Michel Servet, 1211 Geneva, Switzerland
| | - Natalia Robledinos-Antón
- Instituto de Investigaciones Biomédicas "Alberto Sols", Faculty of Medicine, Autonomous University of Madrid (UAM), Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Eveline Gutzwiller
- Department of Pathology and Immunology, University of Geneva Medical School, 1-rue Michel Servet, 1211 Geneva, Switzerland
| | - Frédérique Sloan-Béna
- Hôpitaux Universitaires de Genève HUG, Laboratoires de Cytogénétique Constitutionnelle, Service de Médecine Génétique, Geneva, Switzerland
| | - Elisavet Stathaki
- Hôpitaux Universitaires de Genève HUG, Laboratoires de Cytogénétique Constitutionnelle, Service de Médecine Génétique, Geneva, Switzerland
| | - Yousef Hibaoui
- Department of Genetic Medicine and Development, University of Geneva Medical School, 1 rue Michel Servet, 1211 Geneva, Switzerland
| | - Antonio Cuadrado
- Instituto de Investigaciones Biomédicas "Alberto Sols", Faculty of Medicine, Autonomous University of Madrid (UAM), Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Jürgen Hescheler
- Center for Physiology and Pathophysiology, Institute for Neurophysiology, Medical Faculty, University of Cologne, Cologne 50931, Germany
| | - Marie-José Stasia
- Université Grenoble Alpes, Techniques de l'Ingénierie Médicale et de la Complexité- Grenoble, F38000 Grenoble, France
| | - Tomo Saric
- Center for Physiology and Pathophysiology, Institute for Neurophysiology, Medical Faculty, University of Cologne, Cologne 50931, Germany
| | - Vincent Jaquet
- Department of Pathology and Immunology, University of Geneva Medical School, 1-rue Michel Servet, 1211 Geneva, Switzerland
| | - Karl-Heinz Krause
- Department of Pathology and Immunology, University of Geneva Medical School, 1-rue Michel Servet, 1211 Geneva, Switzerland.
| |
Collapse
|
29
|
Williams D, Kadaria D, Sodhi A, Fox R, Williams G, Threlkeld S. Chronic Granulomatous Disease Presenting as Aspergillus Fumigatus Pneumonia in a Previously Healthy Young Woman. AMERICAN JOURNAL OF CASE REPORTS 2017; 18:351-354. [PMID: 28377567 PMCID: PMC5388307 DOI: 10.12659/ajcr.902764] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Chronic Granulomatous Disease (CGD) is a rare immunodeficiency disease caused by a genetic defect in the NADPH (nicotinamide adenine dinucleotide phosphate) oxidase enzyme, resulting in increased susceptibility to bacterial and fungal infections. The inheritance can be X-linked or autosomal recessive. Patients usually present with repeated infections early in life. We present an unusual case of a 23-year-old patient diagnosed with CGD. CASE REPORT A 23-year-old white woman with no previous history of recurrent infections presented with complaints of fever, shortness of breath, and diffuse myalgia. She had been treated twice for similar complaints recently, but without resolution. She was febrile, tachypneic, tachycardic, and hypoxic at presentation. Physical examination revealed diffuse inspiratory rales. Laboratory results showed leukocytosis. Her initial chest X-ray and CT chest showed reticular nodular interstitial lung disease pattern. Despite being on broad-spectrum antibiotics for 5 days, she continued to require supplemental oxygen and continued to be tachypneic, with minimal activity. Initial diagnostic tests, including bronchoscopy with biopsy and lavage, did not reveal a diagnosis. She then underwent a video-assisted thoracoscopic surgery (VATS) lung biopsy. The biopsy slides showed suppurative granulomatous inflammation affecting greater than 50% of the parenchymal lung surface. Fungal hyphae consistent with Aspergillus were present in those granulomas. A diagnosis of CGD was made and she was started on Voriconazole. She improved with treatment. Her neutrophil burst test showed negative burst on stimulation, indicating phagocytic dysfunction consistent with CGD. Autosomal recessive CGD was confirmed by genetic testing. CONCLUSIONS CGD can present in adulthood without any previous symptoms and signs. Clinicians should consider this disease in patients presenting with recurrent or non-resolving infections. Timely treatment and prophylaxis has been shown to reduce serious infections as well as mortality in these patients.
Collapse
Affiliation(s)
- David Williams
- Department of Pulmonary, Critical Care, and Sleep Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Dipen Kadaria
- Department of Pulmonary, Critical Care, and Sleep Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Amik Sodhi
- Department of Pulmonary, Critical Care, and Sleep Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Roy Fox
- Department of Pulmonary Critical Care, Baptist Memorial Health Care, Memphis, TN, USA
| | - Glenn Williams
- Department of Pulmonary Critical Care, Baptist Memorial Health Care, Memphis, TN, USA
| | - Stephen Threlkeld
- Department of Infectious Disease, Baptist Memorial Health Care, Memphis, TN, USA
| |
Collapse
|
30
|
Brault J, Vaganay G, Le Roy A, Lenormand JL, Cortes S, Stasia MJ. Therapeutic effects of proteoliposomes on X-linked chronic granulomatous disease: proof of concept using macrophages differentiated from patient-specific induced pluripotent stem cells. Int J Nanomedicine 2017; 12:2161-2177. [PMID: 28356734 PMCID: PMC5367562 DOI: 10.2147/ijn.s128611] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Chronic granulomatous disease (CGD) is a rare inherited immunodeficiency due to dysfunction of the phagocytic nicotinamide adenine dinucleotide phosphate (NADPH) oxidase complex leading to severe and recurrent infections in early childhood. The main genetic form is the X-linked CGD leading to the absence of cytochrome b558 composed of NOX2 and p22phox, the membrane partners of the NADPH oxidase complex. The first cause of death of CGD patients is pulmonary infections. Recombinant proteoliposome-based therapy is an emerging and innovative approach for membrane protein delivery, which could be an alternative local, targeted treatment to fight lung infections in CGD patients. We developed an enzyme therapy using recombinant NOX2/p22phox liposomes to supply the NADPH oxidase activity in X0-linked CGD (X0-CGD) macrophages. Using an optimized prokaryotic cell-free protein synthesis system, a recombinant cytochrome b558 containing functional hemes was produced and directly inserted into the lipid bilayer of specific liposomes. The size of the NOX2/p22phox liposomes was estimated to be around 700 nm. These proteoliposomes were able to generate reactive oxygen species (ROS) in an activated reconstituted cell-free NADPH oxidase activation assay in the presence of recombinant p47phox, p67phox and Rac, the cytosolic components of the NADPH oxidase complex. Furthermore, using flow cytometry and fluorescence microscopy, we demonstrated that cytochrome b558 was successfully delivered to the plasma membrane of X0-CGD-induced pluripotent stem cell (iPSC)-derived macrophages. In addition, NADPH oxidase activity was restored in X0-CGD iPSC-derived macrophages treated with NOX2/p22phox liposomes for 8 h without any toxicity. In conclusion, we confirmed that proteoliposomes provide a new promising technology for the delivery of functional proteins to the membrane of targeted cells. This efficient liposomal enzyme replacement therapy will be useful for future treatment of pulmonary infections in CGD patients refractory to conventional anti-infectious treatments.
Collapse
Affiliation(s)
- Julie Brault
- UMR CNRS 5525, University of Grenoble Alpes, Grenoble, France; CGD Diagnosis and Research Centre, University Hospital Centre of Grenoble Alpes, Grenoble, France
| | | | - Aline Le Roy
- IBS, University of Grenoble Alpes, Grenoble, France; CNRS, IBS, University Grenoble Alpes, Grenoble, France; CEA, IBS, University of Grenoble Alpes, Grenoble, France
| | | | | | - Marie José Stasia
- UMR CNRS 5525, University of Grenoble Alpes, Grenoble, France; CGD Diagnosis and Research Centre, University Hospital Centre of Grenoble Alpes, Grenoble, France
| |
Collapse
|
31
|
Ma MW, Wang J, Zhang Q, Wang R, Dhandapani KM, Vadlamudi RK, Brann DW. NADPH oxidase in brain injury and neurodegenerative disorders. Mol Neurodegener 2017; 12:7. [PMID: 28095923 PMCID: PMC5240251 DOI: 10.1186/s13024-017-0150-7] [Citation(s) in RCA: 292] [Impact Index Per Article: 41.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 01/05/2017] [Indexed: 12/11/2022] Open
Abstract
Oxidative stress is a common denominator in the pathology of neurodegenerative disorders such as Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, amyotrophic lateral sclerosis, and multiple sclerosis, as well as in ischemic and traumatic brain injury. The brain is highly vulnerable to oxidative damage due to its high metabolic demand. However, therapies attempting to scavenge free radicals have shown little success. By shifting the focus to inhibit the generation of damaging free radicals, recent studies have identified NADPH oxidase as a major contributor to disease pathology. NADPH oxidase has the primary function to generate free radicals. In particular, there is growing evidence that the isoforms NOX1, NOX2, and NOX4 can be upregulated by a variety of neurodegenerative factors. The majority of recent studies have shown that genetic and pharmacological inhibition of NADPH oxidase enzymes are neuroprotective and able to reduce detrimental aspects of pathology following ischemic and traumatic brain injury, as well as in chronic neurodegenerative disorders. This review aims to summarize evidence supporting the role of NADPH oxidase in the pathology of these neurological disorders, explores pharmacological strategies of targeting this major oxidative stress pathway, and outlines obstacles that need to be overcome for successful translation of these therapies to the clinic.
Collapse
Affiliation(s)
- Merry W Ma
- Charlie Norwood VA Medical Center, One Freedom Way, Augusta, GA, 30904, USA.,Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, 1120 Fifteenth Street, Augusta, GA, 30912, USA
| | - Jing Wang
- Charlie Norwood VA Medical Center, One Freedom Way, Augusta, GA, 30904, USA.,Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, 1120 Fifteenth Street, Augusta, GA, 30912, USA
| | - Quanguang Zhang
- Charlie Norwood VA Medical Center, One Freedom Way, Augusta, GA, 30904, USA.,Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, 1120 Fifteenth Street, Augusta, GA, 30912, USA
| | - Ruimin Wang
- Charlie Norwood VA Medical Center, One Freedom Way, Augusta, GA, 30904, USA.,Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, 1120 Fifteenth Street, Augusta, GA, 30912, USA
| | - Krishnan M Dhandapani
- Charlie Norwood VA Medical Center, One Freedom Way, Augusta, GA, 30904, USA.,Department of Neurosurgery, Medical College of Georgia, Augusta University, 1120 Fifteenth Street, Augusta, GA, 30912, USA
| | - Ratna K Vadlamudi
- Department of Obstetrics and Gynecology, University of Texas Health Science Center, 7703 Medical Drive, San Antonio, TX, 78229, USA
| | - Darrell W Brann
- Charlie Norwood VA Medical Center, One Freedom Way, Augusta, GA, 30904, USA. .,Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, 1120 Fifteenth Street, Augusta, GA, 30912, USA.
| |
Collapse
|
32
|
Baillet A, Hograindleur M, El Benna J, Grichine A, Berthier S, Morel F, Paclet M. Unexpected function of the phagocyte NADPH oxidase in supporting hyperglycolysis in stimulated neutrophils: key role of 6‐phosphofructo‐2‐kinase. FASEB J 2016; 31:663-673. [DOI: 10.1096/fj.201600720r] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 10/17/2016] [Indexed: 01/23/2023]
Affiliation(s)
- Athan Baillet
- Groupe de Recherche et D'etude du Processus Inflammatoire (GREPI), EA 7408Université Grenoble AlpesSaint‐Martin‐d'HèresFrance
- Rheumatology DepartmentCentre Hospitalier Universitaire Grenoble AlpesLa TroncheFrance
| | - Marc‐André Hograindleur
- Groupe de Recherche et D'etude du Processus Inflammatoire (GREPI), EA 7408Université Grenoble AlpesSaint‐Martin‐d'HèresFrance
| | - Jamel El Benna
- INSERM, Unité 1149, Centre National de la Recherche Scientifique ERL8252Centre de Recherche sur l'InflammationParisFrance
- Université Paris Diderot, Sorbonne Paris CitéLaboratoire d'Excellence InflamexDépartements HospitaloUniversitaires Fibrosis, Inflammation, Remodeling in Cardiovascular, Respiratory and Renal Diseases (DHU FIRE), Faculté de Médecine, Site Xavier BichatParisFrance
| | - Alexei Grichine
- Platform Optical Microscopy–Cell ImagingUniversité Joseph Fourier, INSERM Unité 823, Institut Albert BonniotLa TroncheFrance
| | - Sylvie Berthier
- Groupe de Recherche et D'etude du Processus Inflammatoire (GREPI), EA 7408Université Grenoble AlpesSaint‐Martin‐d'HèresFrance
- Pôle BiologieCentre Hospitalier Universitaire Grenoble AlpesLa TroncheFrance
| | - Françoise Morel
- Groupe de Recherche et D'etude du Processus Inflammatoire (GREPI), EA 7408Université Grenoble AlpesSaint‐Martin‐d'HèresFrance
| | - Marie‐Hélèene Paclet
- Groupe de Recherche et D'etude du Processus Inflammatoire (GREPI), EA 7408Université Grenoble AlpesSaint‐Martin‐d'HèresFrance
- Pôle BiologieCentre Hospitalier Universitaire Grenoble AlpesLa TroncheFrance
| |
Collapse
|
33
|
Akyıl FT, Sevim T, Barış S, Aksoy E, Tokyay DA, Bodur Y, Aktaş O. Two Chronic Granulomatous Disease Diagnosed in Adult Age. Turk Thorac J 2016; 17:163-167. [PMID: 29404148 DOI: 10.5578/ttj.30515] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 02/23/2016] [Indexed: 12/16/2022]
Abstract
Chronic granulomatous disease (CGD) is a rare, inherited primary immunodeficiency that is usually diagnosed at adulthood and is presented with recurrent bacterial and fungal infections. In this case report, two adult cases of CGD have been presented. A 29-year-old woman was referred to our clinic with hypoxic respiratory failure, with a pre-diagnosis of multidrug resistant tuberculosis (TB). Her lung biopsy had been reported as granulomatous inflammation, she had not responded to a 5 month anti-TB treatment. A complete medical history consisted of 4 occasions of treatment with anti-TB drugs and that her sister and brother had undergone TB therapy. However, since childhood, a TB bacilli had never been isolated microbiologically in the siblings. Patient's parents were third degree consanguineous. The patient still had a purulent drainage around the operation site. Microbiological studies of the wound drainage and respiratory tract have not encountered any specific microorganism. Investigation of an immunodeficiency has proved CGD through nitroblue tetrazolium test. Her siblings has been diagnosed as CGD as well. Second case, a 19-year-old male, has been admitted to our clinic with complaints of fever, chest pain and an abscess lesion in the anterior chest wall. His medical history comprised 3 recurrences of pneumonia within last 2 years. In physical examination, a 3 × 5 cm fluctuant swelling lesion on the anterior chest wall. Radiologically, new pneumonic consolidations were detected. Sputum specimens did not provide any specific microorganism, cultures of the chest-wall abscess fluid grew aspergillus. His parents had been living in the same village but no consanguinity was known. Due to recurrent infections, immunodeficiency tests had been investigated. He was diagnosed as CGD due to dihydrorhodamin test. These two cases signify that, in our country where consanguinity is common, etiology of recurrent unexplained infections, abscesses and granulomas should be investigated and CGD should be in differantial diagnosis list.
Collapse
Affiliation(s)
- Fatma Tokgöz Akyıl
- Clinic of Chest Diseases, Süreyyapaşa Chest Diseases and Chest Surgery Training and Research Hospital, İstanbul, Turkey
| | - Tülin Sevim
- Clinic of Chest Diseases, Süreyyapaşa Chest Diseases and Chest Surgery Training and Research Hospital, İstanbul, Turkey
| | - Safa Barış
- Clinic of Pediatric Allergy and İmmunology, Marmara University Hospital, İstanbul, Turkey
| | - Emine Aksoy
- Clinic of Chest Diseases, Süreyyapaşa Chest Diseases and Chest Surgery Training and Research Hospital, İstanbul, Turkey
| | - Dilem Anıl Tokyay
- Clinic of Chest Diseases, Süreyyapaşa Chest Diseases and Chest Surgery Training and Research Hospital, İstanbul, Turkey
| | - Yasemin Bodur
- Clinic of Chest Diseases, Süreyyapaşa Chest Diseases and Chest Surgery Training and Research Hospital, İstanbul, Turkey
| | - Oğuz Aktaş
- Clinic of Chest Diseases, Süreyyapaşa Chest Diseases and Chest Surgery Training and Research Hospital, İstanbul, Turkey
| |
Collapse
|
34
|
|
35
|
Waqas M, Zafar S, Rehman T, Riyaz M, Bari ME, Idrees R. Cerebral aspergillosis and pulmonary tuberculosis in a child with chronic granulomatous disease. Surg Neurol Int 2016; 7:62. [PMID: 27308089 PMCID: PMC4901839 DOI: 10.4103/2152-7806.183166] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 04/14/2016] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND Chronic granulomatous disease (CGD) is an immune disorder that affects phagocytes. It is characterized by recurrent or persistent bacterial and fungal infections. Reports of tuberculosis (TB) in patients with CGD are rare. In developing countries, where TB is endemic, possibility of other chronic infections is often overlooked by physicians. CASE DESCRIPTION We report the case of a 4-year-old boy who had recurrent respiratory infections and episodes of headache. He was put on antituberculosis (ATT) drugs without microbiological or pathological evidence 2 months prior to presentation. The child did not improve and was brought to our hospital where a computed tomography scan revealed multiple cerebral abscesses. These abscesses were excised. The microbiological specimen was determined to be positive for Aspergillus fumigatus. His tracheal aspirate was positive for Mycobacterium tuberculosis polymerase chain reaction assay. Further work-up confirmed the diagnosis of CGD in the child. CONCLUSION This report describes the course of the patient's illness in order to highlight the challenges associated with the management of these infections. We also aim to stress on the importance of pathological diagnosis before starting a therapy.
Collapse
Affiliation(s)
- Muhammed Waqas
- Department of Surgery, Section of Neurosurgery, The Aga Khan University Hospital Karachi, Pakistan
| | - Sidra Zafar
- Department of Surgery, Section of Neurosurgery, The Aga Khan University Hospital Karachi, Pakistan
| | - Tooba Rehman
- Department of Surgery, Section of Neurosurgery, The Aga Khan University Hospital Karachi, Pakistan
| | - Muhammed Riyaz
- Department of Surgery, Section of Neurosurgery, The Aga Khan University Hospital Karachi, Pakistan
| | - Muhammed E Bari
- Department of Surgery, Section of Neurosurgery, The Aga Khan University Hospital Karachi, Pakistan
| | - Romana Idrees
- Department of Pathology and Laboratory Medicine, The Aga Khan University Hospital Karachi, Pakistan
| |
Collapse
|
36
|
Li XJ, Deng L, Brandt SL, Goodwin CB, Ma P, Yang Z, Mali RS, Liu Z, Kapur R, Serezani CH, Chan RJ. Role of p85α in neutrophil extra- and intracellular reactive oxygen species generation. Oncotarget 2016; 7:23096-105. [PMID: 27049833 PMCID: PMC5029613 DOI: 10.18632/oncotarget.8500] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 03/23/2016] [Indexed: 12/15/2022] Open
Abstract
Drug resistance is a growing problem that necessitates new strategies to combat pathogens. Neutrophil phagocytosis and production of intracellular ROS, in particular, has been shown to cooperate with antibiotics in the killing of microbes. This study tested the hypothesis that p85α, the regulatory subunit of PI3K, regulates production of intracellular ROS. Genetic knockout of p85α in mice caused decreased expression of catalytic subunits p110α, p110β, and p110δ, but did not change expression levels of the NADPH oxidase complex subunits p67phox, p47phox, and p40phox. When p85α, p55α, and p50α (all encoded by Pik3r1) were deleted, there was an increase in intracellular ROS with no change in phagocytosis in response to both Fcγ receptor and complement receptor stimulation. Furthermore, the increased intracellular ROS correlated with significantly improved neutrophil killing of both methicillin-susceptible and methicillin-resistant S. aureus. Our findings suggest inhibition of p85α as novel approach to improving the clearance of resistant pathogens.
Collapse
Affiliation(s)
- Xing Jun Li
- Department of Pediatrics, Indianapolis, IN, USA
- Herman B Wells Center for Pediatric Research, Indianapolis, IN, USA
| | - Lisa Deng
- Herman B Wells Center for Pediatric Research, Indianapolis, IN, USA
- Department of Medical & Molecular Genetics, Indianapolis, IN, USA
| | | | - Charles B. Goodwin
- Herman B Wells Center for Pediatric Research, Indianapolis, IN, USA
- Department of Medical & Molecular Genetics, Indianapolis, IN, USA
| | - Peilin Ma
- Department of Pathology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Zhenyun Yang
- Department of Pediatrics, Indianapolis, IN, USA
- Herman B Wells Center for Pediatric Research, Indianapolis, IN, USA
| | - Raghu S. Mali
- Department of Pediatrics, Indianapolis, IN, USA
- Herman B Wells Center for Pediatric Research, Indianapolis, IN, USA
| | - Ziyue Liu
- Department of Biostatistics, Indiana University Richard M. Fairbanks School of Public Health, Indianapolis, IN, USA
| | - Reuben Kapur
- Department of Pediatrics, Indianapolis, IN, USA
- Herman B Wells Center for Pediatric Research, Indianapolis, IN, USA
- Department of Medical & Molecular Genetics, Indianapolis, IN, USA
- Department of Microbiology & Immunology, Indianapolis, IN, USA
| | | | - Rebecca J. Chan
- Department of Pediatrics, Indianapolis, IN, USA
- Herman B Wells Center for Pediatric Research, Indianapolis, IN, USA
- Department of Medical & Molecular Genetics, Indianapolis, IN, USA
| |
Collapse
|
37
|
Wen Z, Shimojima Y, Shirai T, Li Y, Ju J, Yang Z, Tian L, Goronzy JJ, Weyand CM. NADPH oxidase deficiency underlies dysfunction of aged CD8+ Tregs. J Clin Invest 2016; 126:1953-67. [PMID: 27088800 DOI: 10.1172/jci84181] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 02/18/2016] [Indexed: 12/13/2022] Open
Abstract
Immune aging results in progressive loss of both protective immunity and T cell-mediated suppression, thereby conferring susceptibility to a combination of immunodeficiency and chronic inflammatory disease. Here, we determined that older individuals fail to generate immunosuppressive CD8+CCR7+ Tregs, a defect that is even more pronounced in the age-related vasculitic syndrome giant cell arteritis. In young, healthy individuals, CD8+CCR7+ Tregs are localized in T cell zones of secondary lymphoid organs, suppress activation and expansion of CD4 T cells by inhibiting the phosphorylation of membrane-proximal signaling molecules, and effectively inhibit proliferative expansion of CD4 T cells in vitro and in vivo. We identified deficiency of NADPH oxidase 2 (NOX2) as the molecular underpinning of CD8 Treg failure in the older individuals and in patients with giant cell arteritis. CD8 Tregs suppress by releasing exosomes that carry preassembled NOX2 membrane clusters and are taken up by CD4 T cells. Overexpression of NOX2 in aged CD8 Tregs promptly restored suppressive function. Together, our data support NOX2 as a critical component of the suppressive machinery of CD8 Tregs and suggest that repairing NOX2 deficiency in these cells may protect older individuals from tissue-destructive inflammatory disease, such as large-vessel vasculitis.
Collapse
|
38
|
Associação de imunodeficiência primária com lúpus eritematoso sistêmico: revisão da literatura e as lições aprendidas pela Divisão de Reumatologia de um hospital universitário terciário em São Paulo. REVISTA BRASILEIRA DE REUMATOLOGIA 2016. [DOI: 10.1016/j.rbr.2015.03.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
39
|
O'Neill S, Brault J, Stasia MJ, Knaus UG. Genetic disorders coupled to ROS deficiency. Redox Biol 2015; 6:135-156. [PMID: 26210446 PMCID: PMC4550764 DOI: 10.1016/j.redox.2015.07.009] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 07/15/2015] [Accepted: 07/16/2015] [Indexed: 12/24/2022] Open
Abstract
Maintaining the redox balance between generation and elimination of reactive oxygen species (ROS) is critical for health. Disturbances such as continuously elevated ROS levels will result in oxidative stress and development of disease, but likewise, insufficient ROS production will be detrimental to health. Reduced or even complete loss of ROS generation originates mainly from inactivating variants in genes encoding for NADPH oxidase complexes. In particular, deficiency in phagocyte Nox2 oxidase function due to genetic variants (CYBB, CYBA, NCF1, NCF2, NCF4) has been recognized as a direct cause of chronic granulomatous disease (CGD), an inherited immune disorder. More recently, additional diseases have been linked to functionally altered variants in genes encoding for other NADPH oxidases, such as for DUOX2/DUOXA2 in congenital hypothyroidism, or for the Nox2 complex, NOX1 and DUOX2 as risk factors for inflammatory bowel disease. A comprehensive overview of novel developments in terms of Nox/Duox-deficiency disorders is presented, combined with insights gained from structure-function studies that will aid in predicting functional defects of clinical variants.
Collapse
Affiliation(s)
- Sharon O'Neill
- Conway Institute, University College Dublin, Dublin, Ireland
| | - Julie Brault
- Université Grenoble Alpes, TIMC-IMAG Pôle Biologie, CHU de Grenoble, Grenoble, France; CGD Diagnosis and Research Centre, Pôle Biologie, CHU de Grenoble, Grenoble, France
| | - Marie-Jose Stasia
- Université Grenoble Alpes, TIMC-IMAG Pôle Biologie, CHU de Grenoble, Grenoble, France; CGD Diagnosis and Research Centre, Pôle Biologie, CHU de Grenoble, Grenoble, France
| | - Ulla G Knaus
- Conway Institute, University College Dublin, Dublin, Ireland.
| |
Collapse
|
40
|
Bonilla FA, Khan DA, Ballas ZK, Chinen J, Frank MM, Hsu JT, Keller M, Kobrynski LJ, Komarow HD, Mazer B, Nelson RP, Orange JS, Routes JM, Shearer WT, Sorensen RU, Verbsky JW, Bernstein DI, Blessing-Moore J, Lang D, Nicklas RA, Oppenheimer J, Portnoy JM, Randolph CR, Schuller D, Spector SL, Tilles S, Wallace D. Practice parameter for the diagnosis and management of primary immunodeficiency. J Allergy Clin Immunol 2015; 136:1186-205.e1-78. [PMID: 26371839 DOI: 10.1016/j.jaci.2015.04.049] [Citation(s) in RCA: 421] [Impact Index Per Article: 46.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Revised: 04/18/2015] [Accepted: 04/23/2015] [Indexed: 02/07/2023]
Abstract
The American Academy of Allergy, Asthma & Immunology (AAAAI) and the American College of Allergy, Asthma & Immunology (ACAAI) have jointly accepted responsibility for establishing the "Practice parameter for the diagnosis and management of primary immunodeficiency." This is a complete and comprehensive document at the current time. The medical environment is a changing environment, and not all recommendations will be appropriate for all patients. Because this document incorporated the efforts of many participants, no single individual, including those who served on the Joint Task Force, is authorized to provide an official AAAAI or ACAAI interpretation of these practice parameters. Any request for information about or an interpretation of these practice parameters by the AAAAI or ACAAI should be directed to the Executive Offices of the AAAAI, the ACAAI, and the Joint Council of Allergy, Asthma & Immunology. These parameters are not designed for use by pharmaceutical companies in drug promotion.
Collapse
|
41
|
Reactive oxygen species and mitochondria: A nexus of cellular homeostasis. Redox Biol 2015; 6:472-485. [PMID: 26432659 PMCID: PMC4596921 DOI: 10.1016/j.redox.2015.09.005] [Citation(s) in RCA: 696] [Impact Index Per Article: 77.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 09/08/2015] [Accepted: 09/09/2015] [Indexed: 02/07/2023] Open
Abstract
Reactive oxygen species (ROS) are integral components of multiple cellular pathways even though excessive or inappropriately localized ROS damage cells. ROS function as anti-microbial effector molecules and as signaling molecules that regulate such processes as NF-kB transcriptional activity, the production of DNA-based neutrophil extracellular traps (NETs), and autophagy. The main sources of cellular ROS are mitochondria and NADPH oxidases (NOXs). In contrast to NOX-generated ROS, ROS produced in the mitochondria (mtROS) were initially considered to be unwanted by-products of oxidative metabolism. Increasing evidence indicates that mtROS have been incorporated into signaling pathways including those regulating immune responses and autophagy. As metabolic hubs, mitochondria facilitate crosstalk between the metabolic state of the cell with these pathways. Mitochondria and ROS are thus a nexus of multiple pathways that determine the response of cells to disruptions in cellular homeostasis such as infection, sterile damage, and metabolic imbalance. In this review, we discuss the roles of mitochondria in the generation of ROS-derived anti-microbial effectors, the interplay of mitochondria and ROS with autophagy and the formation of DNA extracellular traps, and activation of the NLRP3 inflammasome by ROS and mitochondria.
Collapse
|
42
|
Errante PR, Perazzio SF, Frazão JB, da Silva NP, Andrade LEC. Primary immunodeficiency association with systemic lupus erythematosus: review of literature and lessons learned by the Rheumatology Division of a tertiary university hospital at São Paulo, Brazil. REVISTA BRASILEIRA DE REUMATOLOGIA 2015; 56:58-68. [PMID: 27267335 DOI: 10.1016/j.rbre.2015.07.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 03/08/2015] [Indexed: 01/02/2023] Open
Abstract
Primary immunodeficiency disorders (PID) represent a heterogeneous group of diseases resulting from inherited defects in the development, maturation and normal function of immune cells; thus, turning individuals susceptible to recurrent infections, allergy, autoimmunity, and malignancies. In this retrospective study, autoimmune diseases (AIDs), in special systemic lupus erythematosus (SLE) which arose associated to the course of PID, are described. Classically, the literature describes three groups of PID associated with SLE: (1) deficiency of Complement pathway components, (2) defects in immunoglobulin synthesis, and (3) chronic granulomatous disease (CGD). Currently, other PID have been described with clinical manifestation of SLE, such as Wiskott-Aldrich syndrome (WAS), autoimmune polyendocrinopathy candidiasis ectodermal dystrophy (APECED), autoimmune lymphoproliferative syndrome (ALPS) and idiopathic CD4(+) lymphocytopenia. Also we present findings from an adult cohort from the outpatient clinic of the Rheumatology Division of Universidade Federal de São Paulo. The PID manifestations found by our study group were considered mild in terms of severity of infections and mortality in early life. Thus, it is possible that some immunodeficiency states are compatible with survival regarding infectious susceptibility; however these states might represent a strong predisposing factor for the development of immune disorders like those observed in SLE.
Collapse
Affiliation(s)
- Paolo Ruggero Errante
- Department of Immunology, Institute of Biomedical Sciences, Universidade de São Paulo (USP), São Paulo, SP, Brazil; Department of Medicine, Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Sandro Félix Perazzio
- Department of Medicine, Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Josias Brito Frazão
- Department of Immunology, Institute of Biomedical Sciences, Universidade de São Paulo (USP), São Paulo, SP, Brazil
| | - Neusa Pereira da Silva
- Department of Medicine, Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil
| | | |
Collapse
|
43
|
Maddux AB, Douglas IS. Is the developmentally immature immune response in paediatric sepsis a recapitulation of immune tolerance? Immunology 2015; 145:1-10. [PMID: 25691226 DOI: 10.1111/imm.12454] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 02/09/2015] [Accepted: 02/10/2015] [Indexed: 12/23/2022] Open
Abstract
Immunologically immature neonates suffer the highest incidence of paediatric sepsis. Postnatal immunological maturation is characterized by a relatively hypo-inflammatory immune response. The mechanisms that differentiate the mature and immature immune responses resemble those that differentiate the hyper- and hypo-inflammatory responses in severe sepsis. Immunological maturational differences likely affect the neonate's ability to mount an appropriate hyper-inflammatory response, a counteractive hypo-inflammatory response, and subsequent return to immune system homeostasis. To better understand the role of the hypo-inflammatory response in paediatric sepsis, we will explore the maturation of the immune system and the effect it may have on the sepsis-induced hypo-inflammatory response.
Collapse
Affiliation(s)
- Aline B Maddux
- Division of Pediatric Critical Care, Children's Hospital Colorado, University of Colorado School of Medicine, Aurora, CO, USA
| | | |
Collapse
|
44
|
Kang HS, Hwang G, Shin KS. Long-term outcome of patients with p22 (phox) -deficient chronic granulomatous disease on Jeju Island, Korea. KOREAN JOURNAL OF PEDIATRICS 2015; 58:129-35. [PMID: 25932034 PMCID: PMC4414627 DOI: 10.3345/kjp.2015.58.4.129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 07/17/2014] [Accepted: 09/25/2014] [Indexed: 02/05/2023]
Abstract
Purpose This study investigated the long-term clinical outcomes of patients with p22phox-deficient chronic granulomatous disease (CGD) on Jeju Island and retrospectively evaluated the effects of interferon-gamma (IFN-γ) prophylaxis. Methods The medical records of 15 patients with CGD were retrospectively reviewed. The efficacy of IFN-γ prophylaxis was evaluated by comparing the frequency of severe infections before and after starting continuous prophylaxis with IFN-γ. Results At the time of the analysis, 14 patients were alive, with a median age of 14.3 years. The diagnosis of CGD was made at a median age of 2.4 years, and the median age at onset of severe infection was 0.3 years. Thirteen of the 15 patients had their first severe infection within the first year of life. The overall incidence of severe infection was 1.36 infections per patient-year; pneumonia, suppurative lymphadenitis, and skin and subcutaneous abscesses were the most common infections. Aspergillus species were the most frequently isolated microorganisms, present in 15.8% of isolates. IFN-γ did not significantly change the rate of severe infection. The survival rate for patients after 2 years of age was 93%; there was a prolonged survival plateau beyond the age of 2. Conclusion Compared with cases of X-linked CGD reported in other studies, patients with CGD on Jeju Island did not show obviously different clinical manifestations, but they had a significantly higher survival rate. Further studies with a substantially longer period of observation, and with more patients under intensive surveillance are necessary to elucidate the prophylactic efficiency of IFN-γ.
Collapse
Affiliation(s)
- Hyun Sik Kang
- Department of Pediatrics, Jeju National University School of Medicine, Jeju, Korea
| | - Geol Hwang
- Department of Pediatrics, Jeju National University School of Medicine, Jeju, Korea
| | - Kyung-Sue Shin
- Department of Pediatrics, Jeju National University School of Medicine, Jeju, Korea
| |
Collapse
|
45
|
Wang K, Fang X, Ma N, Lin Q, Huang Z, Liu W, Xu M, Chen X, Zhang W, Zhang Y. Myeloperoxidase-deficient zebrafish show an augmented inflammatory response to challenge with Candida albicans. FISH & SHELLFISH IMMUNOLOGY 2015; 44:109-116. [PMID: 25665803 DOI: 10.1016/j.fsi.2015.01.038] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 01/29/2015] [Accepted: 01/29/2015] [Indexed: 06/04/2023]
Abstract
Myeloperoxidase is a key component of neutrophil granules involved in killing engulfed microorganisms. We obtained a zebrafish mutant (smu681) lacking Sudan black staining by large-scale screening, which was a neutrophil-replete but myeloperoxidase-deficient mutant. When infiltrated with Candida albicans, smu681 embryos and sibling embryos showed similar survival after infection. Proliferation of C. albicans was more rapid in smu681 embryos than in sibling embryos, although it was eventually suppressed. In addition, the number of neutrophils accumulating at the site of infection was significantly larger in mutant embryos than in sibling embryos, and mutant embryos showed increased expression of several inflammatory cytokines after C. albicans infection. These findings indicate that myeloperoxidase deficiency alters the inflammatory response to fungal infection.
Collapse
Affiliation(s)
- Kun Wang
- Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Guangdong Higher Education Institutes, Department of Cell Biology, Southern Medical University, Guangzhou 510515, PR China
| | - Xiao Fang
- Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Guangdong Higher Education Institutes, Department of Cell Biology, Southern Medical University, Guangzhou 510515, PR China
| | - Ning Ma
- Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Guangdong Higher Education Institutes, Department of Cell Biology, Southern Medical University, Guangzhou 510515, PR China
| | - Qing Lin
- Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Guangdong Higher Education Institutes, Department of Cell Biology, Southern Medical University, Guangzhou 510515, PR China
| | - Zhibin Huang
- Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Guangdong Higher Education Institutes, Department of Cell Biology, Southern Medical University, Guangzhou 510515, PR China
| | - Wei Liu
- Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Guangdong Higher Education Institutes, Department of Cell Biology, Southern Medical University, Guangzhou 510515, PR China
| | - Mengchang Xu
- Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Guangdong Higher Education Institutes, Department of Cell Biology, Southern Medical University, Guangzhou 510515, PR China
| | - Xiaohui Chen
- Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Guangdong Higher Education Institutes, Department of Cell Biology, Southern Medical University, Guangzhou 510515, PR China
| | - Wenqing Zhang
- Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Guangdong Higher Education Institutes, Department of Cell Biology, Southern Medical University, Guangzhou 510515, PR China.
| | - Yiyue Zhang
- Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Guangdong Higher Education Institutes, Department of Cell Biology, Southern Medical University, Guangzhou 510515, PR China.
| |
Collapse
|
46
|
Tauzin S, Starnes TW, Becker FB, Lam PY, Huttenlocher A. Redox and Src family kinase signaling control leukocyte wound attraction and neutrophil reverse migration. ACTA ACUST UNITED AC 2015; 207:589-98. [PMID: 25488917 PMCID: PMC4259815 DOI: 10.1083/jcb.201408090] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Redox and Src family kinase signaling in tissue adjacent to a wound coordinates initial attraction of leukocytes and the subsequent repulsion of neutrophils following contact with macrophages to resolve inflammation. Tissue damage induces early recruitment of neutrophils through redox-regulated Src family kinase (SFK) signaling in neutrophils. Redox-SFK signaling in epithelium is also necessary for wound resolution and tissue regeneration. How neutrophil-mediated inflammation resolves remains unclear. In this paper, we studied the interactions between macrophages and neutrophils in response to tissue damage in zebrafish and found that macrophages contact neutrophils and induce resolution via neutrophil reverse migration. We found that redox-SFK signaling through p22phox and Yes-related kinase is necessary for macrophage wound attraction and the subsequent reverse migration of neutrophils. Importantly, macrophage-specific reconstitution of p22phox revealed that macrophage redox signaling is necessary for neutrophil reverse migration. Thus, redox-SFK signaling in adjacent tissues is essential for coordinated leukocyte wound attraction and repulsion through pathways that involve contact-mediated guidance.
Collapse
Affiliation(s)
- Sebastien Tauzin
- Departments of Pediatrics and Medical Microbiology and Immunology, Microbiology Doctoral Training Program and Medical Scientist Training Program, Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, WI 53706
| | - Taylor W Starnes
- Departments of Pediatrics and Medical Microbiology and Immunology, Microbiology Doctoral Training Program and Medical Scientist Training Program, Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, WI 53706
| | - Francisco Barros Becker
- Departments of Pediatrics and Medical Microbiology and Immunology, Microbiology Doctoral Training Program and Medical Scientist Training Program, Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, WI 53706 Departments of Pediatrics and Medical Microbiology and Immunology, Microbiology Doctoral Training Program and Medical Scientist Training Program, Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, WI 53706
| | - Pui-ying Lam
- Departments of Pediatrics and Medical Microbiology and Immunology, Microbiology Doctoral Training Program and Medical Scientist Training Program, Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, WI 53706 Departments of Pediatrics and Medical Microbiology and Immunology, Microbiology Doctoral Training Program and Medical Scientist Training Program, Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, WI 53706
| | - Anna Huttenlocher
- Departments of Pediatrics and Medical Microbiology and Immunology, Microbiology Doctoral Training Program and Medical Scientist Training Program, Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, WI 53706
| |
Collapse
|
47
|
Identification of NOX2 regions for normal biosynthesis of cytochrome b558 in phagocytes highlighting essential residues for p22phox binding. Biochem J 2015; 464:425-37. [PMID: 25252997 DOI: 10.1042/bj20140555] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Cytochrome b558, the redox core of the NADPH oxidase (NOX) complex in phagocytes, is composed of NOX2 and p22phox, the synthesis of which is intimately connected but not fully understood. We reproduced 10 rare X-minus chronic granulomatous disease (CGD) mutations of highly conserved residues in NOX1-NOX4, in X0-CGD PLB-985 cells in order to analyse their impact on the synthesis of cytochrome b558. According to the impact of these mutations on the level of expression of NADPH oxidase 2 (NOX2) and its activity, mutants were categorized into group A (W18C, E309K, K315del and I325F), characterized by a linear relationship between NOX2 expression and NOX activity, and group B (H338Y, P339H, G389A and F656-F570del), showing an absence of NOX activity associated with variable levels of NOX2 expression. These last residues belong to the FAD-binding pocket of NOX2, suggesting that this functional domain also plays a role in the structural integrity of NOX2. Finally, we observed an abnormal accumulation of p65 (65-kDa monomer), the NOX2 precursor and p65-p22phox dissociation in the W18C, E309K, I325F and G389A mutants, pointing out a possible role of the first transmembrane domain (Trp18), and the region between the membrane and the dehydrogenase domain of NOX2 (Glu309, Ile325 and Gly389), in the binding with p22phox.
Collapse
|
48
|
Chuong Nguyen MV, Lardy B, Paclet MH, Rousset F, Berthier S, Baillet A, Grange L, Gaudin P, Morel F. [NADPH oxidases, Nox: new isoenzymes family]. Med Sci (Paris) 2015; 31:43-52. [PMID: 25658730 DOI: 10.1051/medsci/20153101012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
NADPH oxidases, Nox, are a family of isoenzymes, composed of seven members, whose sole function is to produce reactive oxygen species (ROS). Although Nox catalyze the same enzymatic reaction, they acquired from a common ancestor during evolution, specificities related to their tissue expression, subcellular localization, activation mechanisms and regulation. Their functions could vary depending on the pathophysiological state of the tissues. Indeed, ROS are not only bactericidal weapons in phagocytes but also essential cellular signaling molecules and their overproduction is involved in chronic diseases and diseases of aging. The understanding of the mechanisms involved in the function of Nox and the emergence of Nox inhibitors, require a thorough knowledge of their nature and structure. The objectives of this review are to highlight, in a structure/function approach, the main similar and differentiated properties shared by the human Nox isoenzymes.
Collapse
Affiliation(s)
- Minh Vu Chuong Nguyen
- GREPI (groupe de recherche et d'étude du processus inflammatoire), université Joseph Fourier, Grenoble, France EFS Rhône-Alpes, 29, avenue des Maquis du Grésivaudan, 38700 La Tronche, France
| | - Bernard Lardy
- GREPI (groupe de recherche et d'étude du processus inflammatoire), université Joseph Fourier, Grenoble, France EFS Rhône-Alpes, 29, avenue des Maquis du Grésivaudan, 38700 La Tronche, France - DBTP (département de biochimie, toxicologie et pharmacologie), institut de biologie et pathologie, CHU de Grenoble, France
| | - Marie-Hélène Paclet
- GREPI (groupe de recherche et d'étude du processus inflammatoire), université Joseph Fourier, Grenoble, France EFS Rhône-Alpes, 29, avenue des Maquis du Grésivaudan, 38700 La Tronche, France - DBTP (département de biochimie, toxicologie et pharmacologie), institut de biologie et pathologie, CHU de Grenoble, France
| | - Francis Rousset
- GREPI (groupe de recherche et d'étude du processus inflammatoire), université Joseph Fourier, Grenoble, France EFS Rhône-Alpes, 29, avenue des Maquis du Grésivaudan, 38700 La Tronche, France
| | - Sylvie Berthier
- GREPI (groupe de recherche et d'étude du processus inflammatoire), université Joseph Fourier, Grenoble, France EFS Rhône-Alpes, 29, avenue des Maquis du Grésivaudan, 38700 La Tronche, France
| | - Athan Baillet
- GREPI (groupe de recherche et d'étude du processus inflammatoire), université Joseph Fourier, Grenoble, France EFS Rhône-Alpes, 29, avenue des Maquis du Grésivaudan, 38700 La Tronche, France - Clinique universitaire de rhumatologie, Hôpital Sud, CHU de Grenoble, France
| | - Laurent Grange
- GREPI (groupe de recherche et d'étude du processus inflammatoire), université Joseph Fourier, Grenoble, France EFS Rhône-Alpes, 29, avenue des Maquis du Grésivaudan, 38700 La Tronche, France - Clinique universitaire de rhumatologie, Hôpital Sud, CHU de Grenoble, France
| | - Philippe Gaudin
- GREPI (groupe de recherche et d'étude du processus inflammatoire), université Joseph Fourier, Grenoble, France EFS Rhône-Alpes, 29, avenue des Maquis du Grésivaudan, 38700 La Tronche, France - Clinique universitaire de rhumatologie, Hôpital Sud, CHU de Grenoble, France
| | - Françoise Morel
- GREPI (groupe de recherche et d'étude du processus inflammatoire), université Joseph Fourier, Grenoble, France EFS Rhône-Alpes, 29, avenue des Maquis du Grésivaudan, 38700 La Tronche, France
| |
Collapse
|
49
|
Li XJ, Goodwin CB, Nabinger SC, Richine BM, Yang Z, Hanenberg H, Ohnishi H, Matozaki T, Feng GS, Chan RJ. Protein-tyrosine phosphatase Shp2 positively regulates macrophage oxidative burst. J Biol Chem 2014; 290:3894-909. [PMID: 25538234 DOI: 10.1074/jbc.m114.614057] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Macrophages are vital to innate immunity and express pattern recognition receptors and integrins for the rapid detection of invading pathogens. Stimulation of Dectin-1 and complement receptor 3 (CR3) activates Erk- and Akt-dependent production of reactive oxygen species (ROS). Shp2, a protein-tyrosine phosphatase encoded by Ptpn11, promotes activation of Ras-Erk and PI3K-Akt and is crucial for hematopoietic cell function; however, no studies have examined Shp2 function in particulate-stimulated ROS production. Maximal Dectin-1-stimulated ROS production corresponded kinetically to maximal Shp2 and Erk phosphorylation. Bone marrow-derived macrophages (BMMs) from mice with a conditionally deleted allele of Ptpn11 (Shp2(flox/flox);Mx1Cre+) produced significantly lower ROS levels compared with control BMMs. Although YFP-tagged phosphatase dead Shp2-C463A was strongly recruited to the early phagosome, its expression inhibited Dectin-1- and CR3-stimulated phospho-Erk and ROS levels, placing Shp2 phosphatase function and Erk activation upstream of ROS production. Further, BMMs expressing gain of function Shp2-D61Y or Shp2-E76K and peritoneal exudate macrophages from Shp2D61Y/+;Mx1Cre+ mice produced significantly elevated levels of Dectin-1- and CR3-stimulated ROS, which was reduced by pharmacologic inhibition of Erk. SIRPα (signal regulatory protein α) is a myeloid inhibitory immunoreceptor that requires tyrosine phosphorylation to exert its inhibitory effect. YFP-Shp2C463A-expressing cells have elevated phospho-SIRPα levels and an increased Shp2-SIRPα interaction compared with YFP-WT Shp2-expressing cells. Collectively, these findings indicate that Shp2 phosphatase function positively regulates Dectin-1- and CR3-stimulated ROS production in macrophages by dephosphorylating and thus mitigating the inhibitory function of SIRPα and by promoting Erk activation.
Collapse
Affiliation(s)
- Xing Jun Li
- From the Department of Pediatrics, the Herman B Wells Center for Pediatric Research, and
| | - Charles B Goodwin
- the Herman B Wells Center for Pediatric Research, and the Department of Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Sarah C Nabinger
- the Department of Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Briana M Richine
- the Herman B Wells Center for Pediatric Research, and the Department of Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Zhenyun Yang
- West Coast University, Los Angeles, California 91606
| | - Helmut Hanenberg
- From the Department of Pediatrics, the Herman B Wells Center for Pediatric Research, and the Department of Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana 46202, the Department of Otorhinolaryngology and Head/Neck Surgery, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Hiroshi Ohnishi
- the Gunma University Graduate School of Health Sciences, Maebashi, Gunma 371-8514, Japan
| | - Takashi Matozaki
- the Kobe University Graduate School of Medicine, Chuo-Ku, Kobe 650-0017, Japan, and
| | - Gen-Sheng Feng
- the Department of Pathology, University of California, San Diego, La Jolla, California 92093
| | - Rebecca J Chan
- From the Department of Pediatrics, the Herman B Wells Center for Pediatric Research, and the Department of Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana 46202,
| |
Collapse
|
50
|
Genestet C, Le Gouellec A, Chaker H, Polack B, Guery B, Toussaint B, Stasia MJ. Scavenging of reactive oxygen species by tryptophan metabolites helps Pseudomonas aeruginosa escape neutrophil killing. Free Radic Biol Med 2014; 73:400-10. [PMID: 24929180 DOI: 10.1016/j.freeradbiomed.2014.06.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 06/03/2014] [Accepted: 06/04/2014] [Indexed: 10/25/2022]
Abstract
Pseudomonas aeruginosa is responsible for persistent infections in cystic fibrosis patients, suggesting an ability to circumvent innate immune defenses. This bacterium uses the kynurenine pathway to catabolize tryptophan. Interestingly, many host cells also produce kynurenine, which is known to control immune system homeostasis. We showed that most strains of P. aeruginosa isolated from cystic fibrosis patients produce a high level of kynurenine. Moreover, a strong transcriptional activation of kynA (the first gene involved in the kynurenine pathway) was observed upon contact with immune cells and particularly with neutrophils. In addition, using coculture of human neutrophils with various strains of P. aeruginosa producing no (ΔkynA) or a high level of kynurenine (ΔkynU or ΔkynA pkynA), we demonstrated that kynurenine promotes bacterial survival. In addition, increasing the amount kynurenine inhibits reactive oxygen species production by activated neutrophils, as evaluated by chemiluminescence with luminol or isoluminol or SOD-sensitive cytochrome c reduction assay. This inhibition is due neither to a phagocytosis defect nor to direct NADPH oxidase inhibition. Indeed, kynurenine has no effect on oxygen consumption by neutrophils activated by PMA or opsonized zymosan. Using in vitro reactive oxygen species-producing systems, we showed that kynurenine scavenges hydrogen peroxide and, to a lesser extent, superoxide. Kynurenine׳s scavenging effect occurs mainly intracellularly after bacterial stimulation, probably in the phagosome. In conclusion, the kynurenine pathway allows P. aeruginosa to circumvent the innate immune response by scavenging neutrophil reactive oxygen species production.
Collapse
Affiliation(s)
- Charlotte Genestet
- TIMC/Therex Laboratory, UMR 5525 (CNRS-UJF), Faculty of Medicine, University of Grenoble Alpes, Grenoble F-38041, France
| | - Audrey Le Gouellec
- TIMC/Therex Laboratory, UMR 5525 (CNRS-UJF), Faculty of Medicine, University of Grenoble Alpes, Grenoble F-38041, France
| | - Hichem Chaker
- TIMC/Therex Laboratory, UMR 5525 (CNRS-UJF), Faculty of Medicine, University of Grenoble Alpes, Grenoble F-38041, France
| | - Benoit Polack
- TIMC/Therex Laboratory, UMR 5525 (CNRS-UJF), Faculty of Medicine, University of Grenoble Alpes, Grenoble F-38041, France
| | - Benoit Guery
- Recherche translationnelle hôte pathogène, Université Lille 2, Faculté de Médecine, CHRU, Lille, France
| | - Bertrand Toussaint
- TIMC/Therex Laboratory, UMR 5525 (CNRS-UJF), Faculty of Medicine, University of Grenoble Alpes, Grenoble F-38041, France
| | - Marie José Stasia
- TIMC/Therex Laboratory, UMR 5525 (CNRS-UJF), Faculty of Medicine, University of Grenoble Alpes, Grenoble F-38041, France; Chronic Granulomatous Disease Diagnosis and Research Center, Pôle Biologie, CHU de Grenoble, Grenoble F-38043, France.
| |
Collapse
|