1
|
Zhong F, Yao F, Bai Q, Liu J, Li X, Huang B, Wang X. A novel molecular classification based on efferocytosis-related genes for predicting clinical outcome and treatment response in acute myeloid leukemia. Inflamm Res 2024; 73:1889-1902. [PMID: 39223320 DOI: 10.1007/s00011-024-01938-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 08/06/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Previous studies have shown that macrophage-mediated efferocytosis is involved in immunosuppression in acute myeloid leukemia (AML). However, the regulatory role of efferocytosis in AML remains unclear and needs further elucidation. METHODS We first identified the key efferocytosis-related genes (ERGs) based on the expression matrix. Efferocytosis-related molecular subtypes were obtained by consensus clustering algorithm. Differences in immune landscape and biological processes among molecular subtypes were further evaluated. The efferocytosis score model was constructed to quantify molecular subtypes and evaluate its value in prognosis prediction and treatment decision-making in AML. RESULTS Three distinct efferocytosis-related molecular subtypes were identified and divided into immune activation, immune desert, and immunosuppression subtypes based on the characteristics of the immune landscape. We evaluated the differences in clinical and biological features among different molecular subtypes, and the construction of an efferocytosis score model can effectively quantify the subtypes. A low efferocytosis score is associated with immune activation and reduced mutation frequency, and patients have a better prognosis. A high efferocytosis score reflects immune exhaustion, increased activity of tumor marker pathways, and poor prognosis. The prognostic predictive value of the efferocytosis score model was confirmed in six AML cohorts. Patients exhibiting high efferocytosis scores may derive therapeutic benefits from anti-PD-1 immunotherapy, whereas those with low efferocytosis scores tend to exhibit greater sensitivity towards chemotherapy. Analysis of treatment data in ex vivo AML cells revealed a group of drugs with significant differences in sensitivity between different efferocytosis score groups. Finally, we validated model gene expression in a clinical cohort. CONCLUSIONS This study reveals that efferocytosis plays a non-negligible role in shaping the diversity and complexity of the AML immune microenvironment. Assessing the individual efferocytosis-related molecular subtype in individuals will help to enhance our understanding of the characterization of the AML immune landscape and guide the establishment of more effective clinical treatment strategies.
Collapse
Affiliation(s)
- Fangmin Zhong
- Jiangxi Province Key Laboratory of Immunology and Inflammation, Jiangxi Provincial Clinical Research Center for Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Fangyi Yao
- Jiangxi Province Key Laboratory of Immunology and Inflammation, Jiangxi Provincial Clinical Research Center for Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Qin Bai
- Jiangxi Province Key Laboratory of Immunology and Inflammation, Jiangxi Provincial Clinical Research Center for Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Jing Liu
- Jiangxi Province Key Laboratory of Immunology and Inflammation, Jiangxi Provincial Clinical Research Center for Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Xiaolin Li
- Jiangxi Province Key Laboratory of Immunology and Inflammation, Jiangxi Provincial Clinical Research Center for Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China.
| | - Bo Huang
- Jiangxi Province Key Laboratory of Immunology and Inflammation, Jiangxi Provincial Clinical Research Center for Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China.
| | - Xiaozhong Wang
- Jiangxi Province Key Laboratory of Immunology and Inflammation, Jiangxi Provincial Clinical Research Center for Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China.
| |
Collapse
|
2
|
Ghorbanzadeh S, Khojini JY, Abouali R, Alimardan S, Zahedi M, Tahershamsi Z, Tajbakhsh A, Gheibihayat SM. Clearing the Path: Exploring Apoptotic Cell Clearance in Inflammatory and Autoimmune Disorders for Therapeutic Advancements. Mol Biotechnol 2024:10.1007/s12033-024-01222-6. [PMID: 38935260 DOI: 10.1007/s12033-024-01222-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 01/22/2024] [Indexed: 06/28/2024]
Abstract
Inflammatory and autoimmune disorders, characterized by dysregulated immune responses leading to tissue damage and chronic inflammation, present significant health challenges. This review uniquely focuses on efferocytosis-the phagocyte-mediated clearance of apoptotic cells-and its pivotal role in these disorders. We delve into the intricate mechanisms of efferocytosis' four stages and their implications in disease pathogenesis, distinguishing our study from previous literature. Our findings highlight impaired efferocytosis in conditions like atherosclerosis and asthma, proposing its targeting as a novel therapeutic strategy. We discuss the therapeutic potential of efferocytosis in modulating immune responses and resolving inflammation, offering a new perspective in treating inflammatory disorders.
Collapse
Affiliation(s)
- Shadi Ghorbanzadeh
- Department of Medical Genetics, Faculty of Medicine, Hormozgan University of Medical Science, Bandar Abbas, Iran
| | - Javad Yaghmoorian Khojini
- Department of Medical Biotechnology, School of Medicine, Shahid Sadoughi University of Medical Sciences, P.O. Box: 8915173143, Yazd, IR, Iran
| | - Reza Abouali
- Department of Health Sciences, Interdisciplinary Research Center of Autoimmune Diseases-IRCAD, Università del Piemonte Orientale, Novara, Italy
| | - Sajad Alimardan
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Zahedi
- Department of Medical Biotechnology, School of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
- Student Research Committee, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Tahershamsi
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Amir Tajbakhsh
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyed Mohammad Gheibihayat
- Department of Medical Biotechnology, School of Medicine, Shahid Sadoughi University of Medical Sciences, P.O. Box: 8915173143, Yazd, IR, Iran.
- Yazd Cardiovascular Research Center, Non-Communicable Diseases Research Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| |
Collapse
|
3
|
Tang XX, Shimada H, Ikegaki N. A Perspective on the CD47-SIRPA Axis in High-Risk Neuroblastoma. Curr Oncol 2024; 31:3212-3226. [PMID: 38920727 PMCID: PMC11202629 DOI: 10.3390/curroncol31060243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 05/29/2024] [Accepted: 05/31/2024] [Indexed: 06/27/2024] Open
Abstract
Neuroblastoma is a pediatric cancer with significant clinical heterogeneity. Despite extensive efforts, it is still difficult to cure children with high-risk neuroblastoma. Immunotherapy is a promising approach to treat children with this devastating disease. We have previously reported that macrophages are important effector cells in high-risk neuroblastoma. In this perspective article, we discuss the potential function of the macrophage inhibitory receptor SIRPA in the homeostasis of tumor-associated macrophages in high-risk neuroblastoma. The ligand of SIRPA is CD47, known as a "don't eat me" signal, which is highly expressed on cancer cells compared to normal cells. CD47 is expressed on both tumor and stroma cells, whereas SIRPA expression is restricted to macrophages in high-risk neuroblastoma tissues. Notably, high SIRPA expression is associated with better disease outcome. According to the current paradigm, the interaction between CD47 on tumor cells and SIRPA on macrophages leads to the inhibition of tumor phagocytosis. However, data from recent clinical trials have called into question the use of anti-CD47 antibodies for the treatment of adult and pediatric cancers. The restricted expression of SIRPA on macrophages in many tissues argues for targeting SIRPA on macrophages rather than CD47 in CD47/SIRPA blockade therapy. Based on the data available to date, we propose that disruption of the CD47-SIRPA interaction by anti-CD47 antibody would shift the macrophage polarization status from M1 to M2, which is inferred from the 1998 study by Timms et al. In contrast, the anti-SIRPA F(ab')2 lacking Fc binds to SIRPA on the macrophage, mimics the CD47-SIRPA interaction, and thus maintains M1 polarization. Anti-SIRPA F(ab')2 also prevents the binding of CD47 to SIRPA, thereby blocking the "don't eat me" signal. The addition of tumor-opsonizing and macrophage-activating antibodies is expected to enhance active tumor phagocytosis.
Collapse
Affiliation(s)
- Xao X. Tang
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA;
| | - Hiroyuki Shimada
- Departments of Pathology and Pediatrics, School of Medicine, Stanford University, Stanford, CA 94305, USA;
| | - Naohiko Ikegaki
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA;
| |
Collapse
|
4
|
Haczku A. Cell-Corpse Clearance after Lung Damage: The Essential Role of MerTK-mediated Alveolar Macrophage Efferocytosis. Am J Respir Cell Mol Biol 2024; 70:433-434. [PMID: 38502903 PMCID: PMC11160414 DOI: 10.1165/rcmb.2024-0108ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 03/19/2024] [Indexed: 03/21/2024] Open
Affiliation(s)
- Angela Haczku
- School of Medicine University of California Davis, California
| |
Collapse
|
5
|
Xie M, Gong T, Wang Y, Li Z, Lu M, Luo Y, Min L, Tu C, Zhang X, Zeng Q, Zhou Y. Advancements in Photothermal Therapy Using Near-Infrared Light for Bone Tumors. Int J Mol Sci 2024; 25:4139. [PMID: 38673726 PMCID: PMC11050412 DOI: 10.3390/ijms25084139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/31/2024] [Accepted: 04/04/2024] [Indexed: 04/28/2024] Open
Abstract
Bone tumors, particularly osteosarcoma, are prevalent among children and adolescents. This ailment has emerged as the second most frequent cause of cancer-related mortality in adolescents. Conventional treatment methods comprise extensive surgical resection, radiotherapy, and chemotherapy. Consequently, the management of bone tumors and bone regeneration poses significant clinical challenges. Photothermal tumor therapy has attracted considerable attention owing to its minimal invasiveness and high selectivity. However, key challenges have limited its widespread clinical use. Enhancing the tumor specificity of photosensitizers through targeting or localized activation holds potential for better outcomes with fewer adverse effects. Combinations with chemotherapies or immunotherapies also present avenues for improvement. In this review, we provide an overview of the most recent strategies aimed at overcoming the limitations of photothermal therapy (PTT), along with current research directions in the context of bone tumors, including (1) target strategies, (2) photothermal therapy combined with multiple therapies (immunotherapies, chemotherapies, and chemodynamic therapies, magnetic, and photodynamic therapies), and (3) bifunctional scaffolds for photothermal therapy and bone regeneration. We delve into the pros and cons of these combination methods and explore current research focal points. Lastly, we address the challenges and prospects of photothermal combination therapy.
Collapse
Affiliation(s)
- Mengzhang Xie
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610041, China; (M.X.); (T.G.); (Y.W.); (Z.L.); (M.L.); (Y.L.); (L.M.); (C.T.)
| | - Taojun Gong
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610041, China; (M.X.); (T.G.); (Y.W.); (Z.L.); (M.L.); (Y.L.); (L.M.); (C.T.)
| | - Yitian Wang
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610041, China; (M.X.); (T.G.); (Y.W.); (Z.L.); (M.L.); (Y.L.); (L.M.); (C.T.)
| | - Zhuangzhuang Li
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610041, China; (M.X.); (T.G.); (Y.W.); (Z.L.); (M.L.); (Y.L.); (L.M.); (C.T.)
| | - Minxun Lu
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610041, China; (M.X.); (T.G.); (Y.W.); (Z.L.); (M.L.); (Y.L.); (L.M.); (C.T.)
| | - Yi Luo
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610041, China; (M.X.); (T.G.); (Y.W.); (Z.L.); (M.L.); (Y.L.); (L.M.); (C.T.)
| | - Li Min
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610041, China; (M.X.); (T.G.); (Y.W.); (Z.L.); (M.L.); (Y.L.); (L.M.); (C.T.)
| | - Chongqi Tu
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610041, China; (M.X.); (T.G.); (Y.W.); (Z.L.); (M.L.); (Y.L.); (L.M.); (C.T.)
| | - Xingdong Zhang
- National Engineering Biomaterials, Sichuan University Research Center for Chengdu, Chengdu 610064, China;
- NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterials, Institute of Regulatory Science for Medical Devices, National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Qin Zeng
- National Engineering Biomaterials, Sichuan University Research Center for Chengdu, Chengdu 610064, China;
- NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterials, Institute of Regulatory Science for Medical Devices, National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Yong Zhou
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610041, China; (M.X.); (T.G.); (Y.W.); (Z.L.); (M.L.); (Y.L.); (L.M.); (C.T.)
| |
Collapse
|
6
|
Mann V, Sundaresan A, Shishodia S. Overnutrition and Lipotoxicity: Impaired Efferocytosis and Chronic Inflammation as Precursors to Multifaceted Disease Pathogenesis. BIOLOGY 2024; 13:241. [PMID: 38666853 PMCID: PMC11048223 DOI: 10.3390/biology13040241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/25/2024] [Accepted: 04/04/2024] [Indexed: 04/28/2024]
Abstract
Overnutrition, driven by the consumption of high-fat, high-sugar diets, has reached epidemic proportions and poses a significant global health challenge. Prolonged overnutrition leads to the deposition of excessive lipids in adipose and non-adipose tissues, a condition known as lipotoxicity. The intricate interplay between overnutrition-induced lipotoxicity and the immune system plays a pivotal role in the pathogenesis of various diseases. This review aims to elucidate the consequences of impaired efferocytosis, caused by lipotoxicity-poisoned macrophages, leading to chronic inflammation and the subsequent development of severe infectious diseases, autoimmunity, and cancer, as well as chronic pulmonary and cardiovascular diseases. Chronic overnutrition promotes adipose tissue expansion which induces cellular stress and inflammatory responses, contributing to insulin resistance, dyslipidemia, and metabolic syndrome. Moreover, sustained exposure to lipotoxicity impairs the efferocytic capacity of macrophages, compromising their ability to efficiently engulf and remove dead cells. The unresolved chronic inflammation perpetuates a pro-inflammatory microenvironment, exacerbating tissue damage and promoting the development of various diseases. The interaction between overnutrition, lipotoxicity, and impaired efferocytosis highlights a critical pathway through which chronic inflammation emerges, facilitating the development of severe infectious diseases, autoimmunity, cancer, and chronic pulmonary and cardiovascular diseases. Understanding these intricate connections sheds light on potential therapeutic avenues to mitigate the detrimental effects of overnutrition and lipotoxicity on immune function and tissue homeostasis, thereby paving the way for novel interventions aimed at reducing the burden of these multifaceted diseases on global health.
Collapse
Affiliation(s)
| | | | - Shishir Shishodia
- Department of Biology, Texas Southern University, Houston, TX 77004, USA; (V.M.); (A.S.)
| |
Collapse
|
7
|
Kur IM, Weigert A. Phosphatidylserine externalization as immune checkpoint in cancer. Pflugers Arch 2024:10.1007/s00424-024-02948-7. [PMID: 38573347 DOI: 10.1007/s00424-024-02948-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/13/2024] [Accepted: 03/16/2024] [Indexed: 04/05/2024]
Abstract
Cancer is the second leading cause of mortality worldwide. Despite recent advances in cancer treatment including immunotherapy with immune checkpoint inhibitors, new unconventional biomarkers and targets for the detection, prognosis, and treatment of cancer are still in high demand. Tumor cells are characterized by mutations that allow their unlimited growth, program their local microenvironment to support tumor growth, and spread towards distant sites. While a major focus has been on altered tumor genomes and proteomes, crucial signaling molecules such as lipids have been underappreciated. One of these molecules is the membrane phospholipid phosphatidylserine (PS) that is usually found at cytosolic surfaces of cellular membranes but can be rapidly and massively shuttled to the extracellular leaflet of the plasma membrane during apoptosis to serve as a limiting factor for immune responses. These immunosuppressive interactions are exploited by tumor cells to evade the immune system. In this review, we describe mechanisms of immune regulation in tumors, discuss if PS may constitute an inhibitory immune checkpoint, and describe current and future strategies for targeting PS to reactivate the tumor-associated immune system.
Collapse
Affiliation(s)
- Ivan-Maximiliano Kur
- Faculty of Medicine, Institute of Biochemistry I, Goethe-University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Andreas Weigert
- Faculty of Medicine, Institute of Biochemistry I, Goethe-University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany.
- Frankfurt Cancer Institute, Goethe-University Frankfurt, 60596, Frankfurt, Germany.
- German Cancer Consortium (DKTK), Partner Site, Frankfurt, Germany.
- Cardiopulmonary Institute (CPI), 60590, Frankfurt, Germany.
| |
Collapse
|
8
|
Hong SM, Lee A, Kim B, Lee J, Seon S, Ha Y, Ng JT, Yoon G, Lim SB, Morgan MJ, Cha J, Lee D, Kim Y. NAMPT-Driven M2 Polarization of Tumor-Associated Macrophages Leads to an Immunosuppressive Microenvironment in Colorectal Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2303177. [PMID: 38308188 PMCID: PMC11005718 DOI: 10.1002/advs.202303177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 12/16/2023] [Indexed: 02/04/2024]
Abstract
Nicotinamide phosphoribosyltransferase (NAMPT) is a metabolic enzyme with key roles in inflammation. Previous studies have examined the consequences of its upregulated expression in cancer cells themselves, but studies are limited with respect to its role in the other cells within the tumor microenvironment (TME) during colorectal cancer (CRC) progression. Using single-cell RNA sequencing (scRNA-seq) data, it is founded that NAMPT is highly expressed in SPP1+ tumor-associated macrophages (TAMs), a unique subset of TAMs associated with immunosuppressive activity. A NAMPThigh gene signature in SPP1+ TAMs correlated with worse prognostic outcomes in CRC patients. The effect of Nampt deletion in the myeloid compartment of mice during CRC development is explored. NAMPT deficiency in macrophages resulted in HIF-1α destabilization, leading to reduction in M2-like TAM polarization. NAMPT deficiency caused significant decreases in the efferocytosis activity of macrophages, which enhanced STING signaling and the induction of type I IFN-response genes. Expression of these genes contributed to anti-tumoral immunity via potentiation of cytotoxic T cell activity in the TME. Overall, these findings suggest that NAMPT-initiated TAM-specific genes can be useful in predicting poor CRC patient outcomes; strategies aimed at targeting NAMPT may provide a promising therapeutic approach for building an immunostimulatory TME in CRC progression.
Collapse
Affiliation(s)
- Sun Mi Hong
- Department of BiochemistryAjou University School of Medicine164 Worldcup‐ro, Yeongtong‐guSuwonGyeonggi‐do16499Republic of Korea
| | - A‐Yeon Lee
- Department of BiochemistryAjou University School of Medicine164 Worldcup‐ro, Yeongtong‐guSuwonGyeonggi‐do16499Republic of Korea
- Department of Biomedical SciencesGraduate School of Ajou University164 Worldcup‐ro, Yeongtong‐guSuwonGyeonggi‐do16499Republic of Korea
| | - Byeong‐Ju Kim
- Department of BiochemistryAjou University School of Medicine164 Worldcup‐ro, Yeongtong‐guSuwonGyeonggi‐do16499Republic of Korea
- Department of Biomedical SciencesGraduate School of Ajou University164 Worldcup‐ro, Yeongtong‐guSuwonGyeonggi‐do16499Republic of Korea
| | - Jeong‐Eun Lee
- Department of BiochemistryAjou University School of Medicine164 Worldcup‐ro, Yeongtong‐guSuwonGyeonggi‐do16499Republic of Korea
- Department of Biomedical SciencesGraduate School of Ajou University164 Worldcup‐ro, Yeongtong‐guSuwonGyeonggi‐do16499Republic of Korea
| | - Su‐Yeon Seon
- Department of BiochemistryAjou University School of Medicine164 Worldcup‐ro, Yeongtong‐guSuwonGyeonggi‐do16499Republic of Korea
- Department of Biomedical SciencesGraduate School of Ajou University164 Worldcup‐ro, Yeongtong‐guSuwonGyeonggi‐do16499Republic of Korea
| | - Yu‐Jin Ha
- Department of BiochemistryAjou University School of Medicine164 Worldcup‐ro, Yeongtong‐guSuwonGyeonggi‐do16499Republic of Korea
- Department of Biomedical SciencesGraduate School of Ajou University164 Worldcup‐ro, Yeongtong‐guSuwonGyeonggi‐do16499Republic of Korea
| | - Jestlin Tianthing Ng
- Department of BiochemistryAjou University School of Medicine164 Worldcup‐ro, Yeongtong‐guSuwonGyeonggi‐do16499Republic of Korea
- Department of Biomedical SciencesGraduate School of Ajou University164 Worldcup‐ro, Yeongtong‐guSuwonGyeonggi‐do16499Republic of Korea
| | - Gyesoon Yoon
- Department of BiochemistryAjou University School of Medicine164 Worldcup‐ro, Yeongtong‐guSuwonGyeonggi‐do16499Republic of Korea
- Department of Biomedical SciencesGraduate School of Ajou University164 Worldcup‐ro, Yeongtong‐guSuwonGyeonggi‐do16499Republic of Korea
| | - Su Bin Lim
- Department of BiochemistryAjou University School of Medicine164 Worldcup‐ro, Yeongtong‐guSuwonGyeonggi‐do16499Republic of Korea
- Department of Biomedical SciencesGraduate School of Ajou University164 Worldcup‐ro, Yeongtong‐guSuwonGyeonggi‐do16499Republic of Korea
| | - Michael J. Morgan
- Department of Natural SciencesNortheastern State UniversityTahlequahOK74464USA
| | - Jong‐Ho Cha
- Department of Biomedical SciencesCollege of MedicineInha UniversityIncheon22212South Korea
- Department of Biomedical Science and EngineeringGraduate SchoolInha UniversityIncheon22212South Korea
| | - Dakeun Lee
- Department of Biomedical SciencesGraduate School of Ajou University164 Worldcup‐ro, Yeongtong‐guSuwonGyeonggi‐do16499Republic of Korea
- Department of PathologyAjou University School of Medicine164 Worldcup‐ro, Yeongtong‐guSuwonGyeonggi‐do16499Republic of Korea
| | - You‐Sun Kim
- Department of BiochemistryAjou University School of Medicine164 Worldcup‐ro, Yeongtong‐guSuwonGyeonggi‐do16499Republic of Korea
- Department of Biomedical SciencesGraduate School of Ajou University164 Worldcup‐ro, Yeongtong‐guSuwonGyeonggi‐do16499Republic of Korea
| |
Collapse
|
9
|
Zhao C, Wang C, Shan W, Wang Z, Chen X, Deng H. Nanomedicines for an Enhanced Immunogenic Cell Death-Based In Situ Cancer Vaccination Response. Acc Chem Res 2024; 57:905-918. [PMID: 38417027 DOI: 10.1021/acs.accounts.3c00771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2024]
Abstract
Cancer vaccines have shown tremendous potential in preventing and treating cancer by providing immunogenic antigens to initiate specific tumor immune responses. An in situ vaccine prepared from an autologous tumor can mobilize a patient's own tumor cell lysate as a reservoir of specific antigens, thus triggering a broad immune response and diverse antitumor immunity in an individually tailored manner. Its efficacy is much better than that of conventional vaccines with a limited number of epitopes. Several conventional therapies, including radiotherapy (RT), chemotherapeutics, photodynamic therapy (PDT), and photothermal therapy (PTT) can activate an anticancer in situ vaccine response by inducing immunogenic cell death (ICD), triggering the exposure of tumor-associated antigens (TAAs), cancerous testis antigens, neoantigens, and danger-associated molecular patterns (DAMPs) with low cost. However, the immunogenicity of dying tumor cells is low, making released antigens and DAMPs insufficient to initiate a robust immune response against malignant cancer. Moreover, the immunosuppressive tumor microenvironment (TME) severely hinders the infiltration and sensitization of effector immune cells, causing tolerogenic immunological effects.Herein, we mainly focus on the research in developing nanoplatforms to surmount the major challenges met by ICD-based in situ vaccines. We first summarized a variety of nanotechnologies that enable enhanced immunogenicity of dying cancer cells by enhancing antigenicity and adjuvanticity. The robust antigenicity was obtained via regulating the tumor cells death mode or the dying state to amplify the recognition of tumor debris by professional antigen-presenting cells (APCs). The adjuvanticity was potentiated by raising the level or intensifying the activity of endogenous adjuvants or promoting the intelligent delivery of exogenous immunostimulants to activate immune cell recruitment and promote antigen presentation. Additionally, versatile approaches to reverse immunosuppressive TME to boost the in situ tumor vaccination response are also highlighted in detail. On one hand, by modulating the cell metabolism in TME, the expansion and activity of effector versus immunosuppressive cells can be optimized to improve the efficiency of in situ vaccines. On the other hand, regulating cellular components in TME, such as reversing adverse immune cell phenotypes or inhibiting the activity of interstitial cells, can also significantly enhance the ICD-based antitumor immunotherapy effect. Finally, our viewpoint on the future challenges and opportunities in this hopeful area is presented. We expect that this Account can offer much more insight into the design, planning, and development of cutting-edge in situ tumor vaccine platforms, promoting more attention and academic-industry collaborations, accelerating the advanced progress of in situ tumor vaccine-based immunotherapy in the clinic.
Collapse
Affiliation(s)
- Caiyan Zhao
- School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi 710126, China
- International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment and Xi'an Key Laboratory of Intelligent Sensing and Regulation of Trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
| | - Changrong Wang
- School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi 710126, China
- International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment and Xi'an Key Laboratory of Intelligent Sensing and Regulation of Trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
| | - Wenbo Shan
- School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi 710126, China
- International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment and Xi'an Key Laboratory of Intelligent Sensing and Regulation of Trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
| | - Zhongliang Wang
- School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi 710126, China
- International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment and Xi'an Key Laboratory of Intelligent Sensing and Regulation of Trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore 119074, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - Hongzhang Deng
- School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi 710126, China
- International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment and Xi'an Key Laboratory of Intelligent Sensing and Regulation of Trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
| |
Collapse
|
10
|
Zhao Y, Li M, Mao J, Su Y, Huang X, Xia W, Leng X, Zan T. Immunomodulation of wound healing leading to efferocytosis. SMART MEDICINE 2024; 3:e20230036. [PMID: 39188510 PMCID: PMC11235971 DOI: 10.1002/smmd.20230036] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 12/18/2023] [Indexed: 08/28/2024]
Abstract
Effectively eliminating apoptotic cells is precisely controlled by a variety of signaling molecules and a phagocytic effect known as efferocytosis. Abnormalities in efferocytosis may bring about the development of chronic conditions, including angiocardiopathy, chronic inflammatory diseases and autoimmune diseases. During wound healing, failure of efferocytosis leads to the collection of apoptosis, the release of necrotic material and chronic wounds that are difficult to heal. In addition to the traditional phagocytes-macrophages, other important cell species including dendritic cells, neutrophils, vascular endothelial cells, fibroblasts and keratinocytes contribute to wounding healing. This review summarizes how efferocytosis-mediated immunomodulation plays a repair-promoting role in wound healing, providing new insights for patients suffering from various cutaneous wounds.
Collapse
Affiliation(s)
- Yun Zhao
- Department of Plastic and Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Department of Cosmetic and Plastic SurgeryAffiliated Hospital of Qingdao UniversityQingdaoChina
| | - Minxiong Li
- Department of Plastic and Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Jiayi Mao
- Department of Plastic and Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yinghong Su
- Department of Plastic and Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Xin Huang
- Department of Plastic and Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Wenzheng Xia
- Department of Plastic and Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Xiangfeng Leng
- Department of Cosmetic and Plastic SurgeryAffiliated Hospital of Qingdao UniversityQingdaoChina
| | - Tao Zan
- Department of Plastic and Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| |
Collapse
|
11
|
Drexhage LZ, Zhang S, Dupont M, Ragaller F, Sjule E, Cabezas-Caballero J, Deimel LP, Robertson H, Russell RA, Dushek O, Sezgin E, Karaji N, Sattentau QJ. Apoptosis-mediated ADAM10 activation removes a mucin barrier promoting T cell efferocytosis. Nat Commun 2024; 15:541. [PMID: 38225245 PMCID: PMC10789802 DOI: 10.1038/s41467-023-44619-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 12/22/2023] [Indexed: 01/17/2024] Open
Abstract
Efferocytic clearance of apoptotic cells in general, and T cells in particular, is required for tissue and immune homeostasis. Transmembrane mucins are extended glycoproteins highly expressed in the cell glycocalyx that function as a barrier to phagocytosis. Whether and how mucins may be regulated during cell death to facilitate efferocytic corpse clearance is not well understood. Here we show that normal and transformed human T cells express a subset of mucins which are rapidly and selectively removed from the cell surface during apoptosis. This process is mediated by the ADAM10 sheddase, the activity of which is associated with XKR8-catalyzed flipping of phosphatidylserine to the outer leaflet of the plasma membrane. Mucin clearance enhances uptake of apoptotic T cells by macrophages, confirming mucins as an enzymatically-modulatable barrier to efferocytosis. Together these findings demonstrate a glycocalyx regulatory pathway with implications for therapeutic intervention in the clearance of normal and transformed apoptotic T cells.
Collapse
Affiliation(s)
- Linnea Z Drexhage
- The Sir William Dunn School of Pathology, The University of Oxford, Oxford, OX13RE, UK
| | - Shengpan Zhang
- The Sir William Dunn School of Pathology, The University of Oxford, Oxford, OX13RE, UK
| | - Maeva Dupont
- The Sir William Dunn School of Pathology, The University of Oxford, Oxford, OX13RE, UK
- Immunocore Ltd., 92 Park Dr, Milton, Abingdon, OX14 4RY, UK
| | - Franziska Ragaller
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, 17165, Solna, Sweden
| | - Ellen Sjule
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, 17165, Solna, Sweden
| | | | - Lachlan P Deimel
- The Sir William Dunn School of Pathology, The University of Oxford, Oxford, OX13RE, UK
| | - Helen Robertson
- The Sir William Dunn School of Pathology, The University of Oxford, Oxford, OX13RE, UK
| | - Rebecca A Russell
- The Sir William Dunn School of Pathology, The University of Oxford, Oxford, OX13RE, UK
- SpyBiotech Ltd.; 7600 Quorum, Oxford Business Park North, Oxford, OX4 2JZ, UK
| | - Omer Dushek
- The Sir William Dunn School of Pathology, The University of Oxford, Oxford, OX13RE, UK
| | - Erdinc Sezgin
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, 17165, Solna, Sweden
| | - Niloofar Karaji
- The Sir William Dunn School of Pathology, The University of Oxford, Oxford, OX13RE, UK.
- Oxford Biomedica plc.; Windrush Court, Transport Way, Oxford, OX4 6LT, UK.
| | - Quentin J Sattentau
- The Sir William Dunn School of Pathology, The University of Oxford, Oxford, OX13RE, UK.
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association; Berlin-Buch, 13125, Berlin, Germany.
- Experimental and Clinical Research Center (ECRC), Charité Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, Lindenberger Weg 80, 13125, Berlin, Germany.
| |
Collapse
|
12
|
Xu W, Han L, Zhu P, Cheng Y, Chen X. Development of a prognostic model for glioblastoma multiforme based on the expression levels of efferocytosis-related genes. Aging (Albany NY) 2023; 15:15578-15598. [PMID: 38159261 PMCID: PMC10781462 DOI: 10.18632/aging.205422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 12/04/2023] [Indexed: 01/03/2024]
Abstract
Glioblastoma multiforme (GBM) is one of the most common and aggressive brain tumors. The microenvironment of GBM is characterized by its highly immunosuppressive nature with infiltration of immunosuppressive cells and the expression levels of cytokines. Efferocytosis is a biological process in which phagocytes remove apoptotic cells and vesicles from tissues. Efferocytosis plays a noticeable function in the formation of immunosuppressive environment. This study aimed to develop an efferocytosis-related prognostic model for GBM. The bioinformatic methods were utilized to analyze the transcriptomic data of GBM and normal samples. Clinical and RNA-seq data were sourced from TCGA database comprising 167 tumor samples and 5 normal samples, and 167 tumor samples for which survival information was available. Transcriptomic data of 1034 normal samples were collected from the Genotype-Tissue Expression (GTEx) database as a control sample supplement to the TCGA database. In the end, 167 tumor samples and 1039 normal samples were obtained for transcriptome analysis. Efferocytosis-related differentially expressed genes (ERDEGs) were obtained by intersecting 7487 differentially expressed genes (DEGs) between GBM and normal samples along with 1189 hub genes. Functional enrichment analyses revealed that ERDEGs were mainly involved in cytokine-mediated immune responses. Moreover, 9 prognosis-related genes (PRGs) were identified by the least absolute shrinkage and selection operator (LASSO) regression analysis, and a prognostic model was therefore developed. The nomogram combining age and risk score could effectively predict GBM patients' prognosis. GBM patients in the high-risk group had higher immune infiltration, invasion, epithelial-mesenchymal transition, angiogenesis scores and poorer tumor purity. In addition, the high-risk group exhibited higher half maximal inhibitory concentration (IC50) values for temozolomide, carmustine, and vincristine. Expression analysis indicated that PRGs were overexpressed in GBM cells. PDIA4 knockdown reduced efferocytosis in vitro. In summary, the proposed prognostic model for GBM based on efferocytosis-related genes exhibited a robust performance.
Collapse
Affiliation(s)
- Wenzhe Xu
- Department of Neurosurgery, Qilu Hospital of Shandong University and Institute of Brain and Brain-Inspired Science, Shandong University, Shandong, Jinan 250012, China
| | - Lihui Han
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Shandong, Jinan 250012, China
| | - Pengfei Zhu
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Shandong, Jinan 250012, China
| | - Yufeng Cheng
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Shandong, Jinan 250012, China
| | - Xuan Chen
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Shandong, Jinan 250012, China
| |
Collapse
|
13
|
Liu Z, Lin J, Li B, Zhou Y, Li C, Cui Y, Tian F, Tang R, Wang X. Manganese-mineralized cancer cells as immunogenic cancer vaccines for tumor immunotherapy. J Mater Chem B 2023; 11:10923-10928. [PMID: 37934507 DOI: 10.1039/d3tb01538f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
The strategy of using tumor cells to construct whole-cell cancer vaccines has received widespread attention. However, the limited immunogenicity of inactivated tumor cells and the challenge of overcoming immune suppression in solid tumors have hindered the application of whole-cell-based cancer immune therapy. Inspired by the regulatory effects of MnO2 and spatiotemporal control capability of material layers in cell surface engineering, we developed a manganese (Mn)-mineralized tumor cell, B16F10@MnO2, by inactivating B16F10 melanoma cells with KMnO4 to generate manganese-mineralized tumor cells. The cell-based composite was formed by combining amorphous MnO2 with the membrane structure of cells based on the redox reaction between KMnO4 and tumor cells. The MnO2 layer induced a stronger phagocytosis of ovalbumin (OVA)-expressing tumor cells by antigen presenting cells than formaldehyde-fixed cells did, resulting in specific antigen-presentation in vitro and in vivo and subsequent immune responses. Intratumoral therapy with B16F10@MnO2 inhibited B16F10 tumor growth. Moreover, the infiltration of CD8+ T cells within B16F10 solid tumors and the proportion of central memory T cells both increased in B16F10@MnO2 treated tumor-bearing mice, indicating enhanced adaptive immunity. This study provides a convenient and effective method to improve whole-cell-based anti-tumor therapy.
Collapse
Affiliation(s)
- Zhenyu Liu
- Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou 310058, China.
| | - Jiake Lin
- Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou 310058, China.
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Benke Li
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Yuemin Zhou
- Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou 310058, China.
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Chen Li
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Yihao Cui
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Fengchao Tian
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Ruikang Tang
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Xiaoyu Wang
- Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
14
|
Mohammad-Rafiei F, Moadab F, Mahmoudi A, Navashenaq JG, Gheibihayat SM. Efferocytosis: a double-edged sword in microbial immunity. Arch Microbiol 2023; 205:370. [PMID: 37925389 DOI: 10.1007/s00203-023-03704-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 09/30/2023] [Accepted: 10/10/2023] [Indexed: 11/06/2023]
Abstract
Efferocytosis is characterized as the rapid and efficient process by which dying or dead cells are removed. This type of clearance is initiated via "find-me" signals, and then, carries on by "eat-me" and "don't-eat-me" ones. Efferocytosis has a critical role to play in tissue homeostasis and innate immunity. However, some evidence suggests it as a double-edged sword in microbial immunity. In other words, some pathogens have degraded efferocytosis by employing efferocytic mechanisms to bypass innate immune detection and promote infection, despite the function of this process for the control and clearance of pathogens. In this review, the efferocytosis mechanisms from the recognition of dying cells to phagocytic engulfment are initially presented, and then, its diverse roles in inflammation and immunity are highlighted. In this case, much focus is also laid on some bacterial, viral, and parasitic infections caused by Mycobacterium tuberculosis (M. tb), Mycobacterium marinum (M. marinum), Listeria monocytogenes (L. monocytogenes), Chlamydia pneumoniae (CP), Klebsiella pneumoniae (KP), Influenza A virus (IAV), human immunodeficiency virus (HIV), and Leishmania, respectively.
Collapse
Affiliation(s)
- Fatemeh Mohammad-Rafiei
- Department of Medical Biotechnology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Fatemeh Moadab
- Division of Rheumatology, Department of Medicine, University of Washington, Seattle, USA
| | - Ali Mahmoudi
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Science, Mashhad, Iran
| | | | - Seyed Mohammad Gheibihayat
- Department of Medical Biotechnology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| |
Collapse
|
15
|
Liu J, Wei L. Construction and validation of an efferocytosis-related prognostic signature in lung adenocarcinoma. J Cancer Res Clin Oncol 2023; 149:14577-14596. [PMID: 37578523 DOI: 10.1007/s00432-023-05251-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 08/04/2023] [Indexed: 08/15/2023]
Abstract
BACKGROUND Accumulating evidence highlights the potential significance of efferocytosis in tumor progression. This study is directed towards the construction of a prognostic risk model for lung adenocarcinoma (LUAD), grounded on efferocytosis-related genes (ERGs). METHODS Employing LASSO-COX regression analysis, a risk-prognostic model was formulated, centered on seven ERGs. Concurrently, a nomogram was established that incorporated patient clinical features and risk scores. The predictive accuracy of the risk model and the nomogram was substantiated via external validation sets. The landscapes of immune infiltration and genetic mutation were evaluated for high- and low-risk groups, with the expression of seven key genes validated through RT-PCR. RESULTS Our findings reveal that the high-risk group displayed considerably inferior survival outcomes in comparison to the low-risk group. A diminished abundance of immune cell infiltrates and a higher prevalence of gene mutations characterized the high-risk group. Genes with high expression were markedly enriched in pathways related to cell proliferation. The superior predictive performance of the risk model and nomogram was adequately substantiated by the external validation sets (GSE31210, GSE30219, and GSE50081). In addition, we discerned several potential therapeutic drugs demonstrating different sensitivities across patient risk groups. The differential expression of seven central genes was confirmed in A549, H1299, and BEAS-2B cell lines. CONCLUSION The constructed risk model and nomogram display high accuracy in predicting the survival and immune landscape of LUAD patients, thus providing invaluable prognostic tools in clinical scenarios.
Collapse
Affiliation(s)
- Jian Liu
- Department of Thoracic Surgery, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, 450003, Henan, China
| | - Li Wei
- Department of Thoracic Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou, 450003, Henan, China.
| |
Collapse
|
16
|
Qiu H, Shao Z, Wen X, Liu Z, Chen Z, Qu D, Ding X, Zhang L. Efferocytosis: An accomplice of cancer immune escape. Biomed Pharmacother 2023; 167:115540. [PMID: 37741255 DOI: 10.1016/j.biopha.2023.115540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 09/13/2023] [Accepted: 09/17/2023] [Indexed: 09/25/2023] Open
Abstract
The clearance of apoptotic cells by efferocytes such as macrophages and dendritic cells is termed as "efferocytosis", it plays critical roles in maintaining tissue homeostasis in multicellular organisms. Currently, available studies indicate that efferocytosis-related molecules and pathways are tightly associated with cancer development, metastasis and treatment resistance, efferocytosis also induces an immunosuppressive tumor microenvironment and assists cancer cells escape from immune surveillance. In this study, we reviewed the underlying mechanisms of efferocytosis in mediating the occurrence of cancer immune escape, and then emphatically summarized the strategies of using efferocytosis as therapeutic target to enhance the anti-tumor efficacies of immune checkpoint inhibitors, hoping to provide powerful evidences for more effective therapeutic regimens of malignant tumors.
Collapse
Affiliation(s)
- Hui Qiu
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China; Department of Radiation Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Zhiying Shao
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xin Wen
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China; Department of Radiation Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Zhengyang Liu
- Department of Radiation Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Ziqin Chen
- Department of Radiation Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Debao Qu
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China; Department of Radiation Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xin Ding
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China; Department of Radiation Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.
| | - Longzhen Zhang
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China; Department of Radiation Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.
| |
Collapse
|
17
|
Lyu J, Liu H, Chen L, Liu C, Tao J, Yao Y, Li L, Huang Y, Zhou Z. In situ hydrogel enhances non-efferocytic phagocytosis for post-surgical tumor treatment. J Control Release 2023; 363:402-414. [PMID: 37751825 DOI: 10.1016/j.jconrel.2023.09.041] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/22/2023] [Accepted: 09/21/2023] [Indexed: 09/28/2023]
Abstract
Post-surgical efferocytosis of tumor associated macrophages (TAMs) originates an immunosuppressive tumor microenvironment and facilitates abscopal metastasis of residual tumor cells. Currently, few strategies could inhibit efferocytosis while recovering the tumor-eliminative phagocytosis of TAMs. Herein, we developed an in situ hydrogel that contains anti-CD47 antibody (aCD47) and apocynin (APO), an inhibitor of nicotinamide adenine dinucleotide phosphate oxidase. This hydrogel amplifies the non-efferocytic phagocytosis of TAMs by (1) blocking the extracellular "Don't eat me" signal of efferocytosis with aCD47, which enhances the receptor-mediated recognition and engulfment of tumor cells by TAMs in the post-surgical tumor bed, and (2) by utilizing APO to dispose of tumor debris in a non-efferocytic manner, which prevents acidification and maturation of efferosomes and allows for M1-polarization of TAMs, leading to improved antigen presentation ability. With the complementary intervention of extracellular and intracellular, this hydrogel reverses the immunosuppressive effects of efferocytosis, and induces a potent M1-associated Th1 immune response against tumor recurrence. In addition, the in situ detachment and distal colonization of metastatic tumor cells were efficiently restrained due to the intervention of efferocytosis. Collectively, the hydrogel potentiates surgery treatment of tumor by recovering the tumor-elimination ability of post-surgical TAMs.
Collapse
Affiliation(s)
- Jiayan Lyu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China
| | - Huizhi Liu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China
| | - Liqiang Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China
| | - Chendong Liu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China
| | - Jing Tao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China
| | - Yuan Yao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China
| | - Lian Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China
| | - Yuan Huang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China
| | - Zhou Zhou
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China.
| |
Collapse
|
18
|
Di Carlo SE, Raffenne J, Varet H, Ode A, Granados DC, Stein M, Legendre R, Tuckermann J, Bousquet C, Peduto L. Depletion of slow-cycling PDGFRα +ADAM12 + mesenchymal cells promotes antitumor immunity by restricting macrophage efferocytosis. Nat Immunol 2023; 24:1867-1878. [PMID: 37798557 PMCID: PMC10602852 DOI: 10.1038/s41590-023-01642-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 09/07/2023] [Indexed: 10/07/2023]
Abstract
The capacity to survive and thrive in conditions of limited resources and high inflammation is a major driver of tumor malignancy. Here we identified slow-cycling ADAM12+PDGFRα+ mesenchymal stromal cells (MSCs) induced at the tumor margins in mouse models of melanoma, pancreatic cancer and prostate cancer. Using inducible lineage tracing and transcriptomics, we demonstrated that metabolically altered ADAM12+ MSCs induced pathological angiogenesis and immunosuppression by promoting macrophage efferocytosis and polarization through overexpression of genes such as Gas6, Lgals3 and Csf1. Genetic depletion of ADAM12+ cells restored a functional tumor vasculature, reduced hypoxia and acidosis and normalized CAFs, inducing infiltration of effector T cells and growth inhibition of melanomas and pancreatic neuroendocrine cancer, in a process dependent on TGF-β. In human cancer, ADAM12 stratifies patients with high levels of hypoxia and innate resistance mechanisms, as well as factors associated with a poor prognosis and drug resistance such as AXL. Altogether, our data show that depletion of tumor-induced slow-cycling PDGFRα+ MSCs through ADAM12 restores antitumor immunity.
Collapse
Affiliation(s)
- Selene E Di Carlo
- Stroma, Inflammation & Tissue Repair Unit, Institut Pasteur, Université Paris Cité, INSERM U1224, Paris, France
| | - Jerome Raffenne
- INSERM U1037, Cancer Research Center of Toulouse (CRCT), Toulouse, France
| | - Hugo Varet
- Transcriptome and Epigenome Platform-Biomics Pole, Institut Pasteur, Université Paris Cité, Paris, France
- Bioinformatics and Biostatistics Hub, Institut Pasteur, Université Paris Cité, Paris, France
| | - Anais Ode
- Stroma, Inflammation & Tissue Repair Unit, Institut Pasteur, Université Paris Cité, INSERM U1224, Paris, France
| | - David Cabrerizo Granados
- Stroma, Inflammation & Tissue Repair Unit, Institut Pasteur, Université Paris Cité, INSERM U1224, Paris, France
- Laboratory for Disease Mechanisms in Cancer, KU Leuven, Leuven, Belgium
| | - Merle Stein
- Institute of Comparative Molecular Endocrinology, University of Ulm, Ulm, Germany
| | - Rachel Legendre
- Transcriptome and Epigenome Platform-Biomics Pole, Institut Pasteur, Université Paris Cité, Paris, France
- Bioinformatics and Biostatistics Hub, Institut Pasteur, Université Paris Cité, Paris, France
| | - Jan Tuckermann
- Institute of Comparative Molecular Endocrinology, University of Ulm, Ulm, Germany
| | - Corinne Bousquet
- INSERM U1037, Cancer Research Center of Toulouse (CRCT), Toulouse, France
| | - Lucie Peduto
- Stroma, Inflammation & Tissue Repair Unit, Institut Pasteur, Université Paris Cité, INSERM U1224, Paris, France.
| |
Collapse
|
19
|
Ubil E, Zahid KR. Structure and functions of Mer, an innate immune checkpoint. Front Immunol 2023; 14:1244170. [PMID: 37936688 PMCID: PMC10626544 DOI: 10.3389/fimmu.2023.1244170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 10/09/2023] [Indexed: 11/09/2023] Open
Abstract
Immunotherapy is a promising therapeutic tool that promotes the elimination of cancerous cells by a patient's own immune system. However, in the clinical setting, the number of cancer patients benefitting from immunotherapy is limited. Identification and targeting of other immune subsets, such as tumor-associated macrophages, and alternative immune checkpoints, like Mer, may further limit tumor progression and therapy resistance. In this review, we highlight the key roles of macrophage Mer signaling in immune suppression. We also summarize the role of pro-inflammatory (M1) and anti-inflammatory (M2) phenotypes in tumor onset and progression and how Mer structure and activation can be targeted therapeutically to alter activation state. Preclinical and clinical studies focusing on Mer kinase inhibition have demonstrated the potential of targeting this innate immune checkpoint, leading to improved anti-tumor responses and patient outcomes.
Collapse
Affiliation(s)
- Eric Ubil
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, United States
| | | |
Collapse
|
20
|
Chen Z, Li Z, Huang H, Shen G, Ren Y, Mao X, Wang L, Li Z, Wang W, Li G, Zhao B, Guo W, Hu Y. Cancer Immunotherapy Based on Cell Membrane-Coated Nanocomposites Augmenting cGAS/STING Activation by Efferocytosis Blockade. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302758. [PMID: 37381095 DOI: 10.1002/smll.202302758] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 06/07/2023] [Indexed: 06/30/2023]
Abstract
Innate immunity triggered by the cGAS/STING pathway has the potential to improve cancer immunotherapy. Previously, the authors reported that double-stranded DNA (dsDNA) released by dying tumor cells can trigger the cGAS/STING pathway. However, owing to efferocytosis, dying tumor cells are engulfed and cleared before the damaged dsDNA is released; hence, immunologic tolerance and immune escape occur. Herein, a cancer-cell-membrane biomimetic nanocomposites that exhibit tumor-immunotherapeutic effects are synthesized by augmenting the cGAS/STING pathway and suppressing efferocytosis. Once internalized by cancer cells, a combined chemo/chemodynamic therapy would be triggered, which damages their nuclear and mitochondrial DNA. Furthermore, the releasing Annexin A5 protein could inhibit efferocytosis effect and promote immunostimulatory secondary necrosis by preventing phosphatidylserine exposure, resulting in the burst release of dsDNA. These dsDNA fragments, as molecular patterns to immunogenic damage, escape from the cancer cells, activate the cGAS/STING pathway, enhance cross-presentation inside dendritic cells, and promote M1-polarization of tumor-associated macrophages. In vivo experiments suggest that the proposed nanocomposite could recruit cytotoxic T-cells and facilitate long-term immunological memory. Moreover, when combined with immune-checkpoint blockades, it could augment the immune response. Therefore, this novel biomimetic nanocomposite is a promising strategy for generating adaptive antitumor immune responses.
Collapse
Affiliation(s)
- Zhian Chen
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Zhenhao Li
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Huilin Huang
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Guodong Shen
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Yingxin Ren
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Xinyuan Mao
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Lingzhi Wang
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Zhenyuan Li
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Weisheng Wang
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Guoxin Li
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Bingxia Zhao
- Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, P. R. China
- Experiment Education/Administration Center, School of Basic Medical Science, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Weihong Guo
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Yanfeng Hu
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, P. R. China
| |
Collapse
|
21
|
Khalaji A, Yancheshmeh FB, Farham F, Khorram A, Sheshbolouki S, Zokaei M, Vatankhah F, Soleymani-Goloujeh M. Don't eat me/eat me signals as a novel strategy in cancer immunotherapy. Heliyon 2023; 9:e20507. [PMID: 37822610 PMCID: PMC10562801 DOI: 10.1016/j.heliyon.2023.e20507] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 09/04/2023] [Accepted: 09/27/2023] [Indexed: 10/13/2023] Open
Abstract
Cancer stands as one of the prominent global causes of death, with its incidence burden continuously increasing, leading to a substantial rise in mortality rates. Cancer treatment has seen the development of various strategies, each carrying its drawbacks that can negatively impact the quality of life for cancer patients. The challenge remains significant within the medical field to establish a definitive cancer treatment that minimizes complications and limitations. In the forthcoming years, exploring new strategies to surmount the failures in cancer treatment appears to be an unavoidable pursuit. Among these strategies, immunology-based ones hold substantial promise in combatting cancer and immune-related disorders. A particular subset of this approach identifies "eat me" and "Don't eat me" signals in cancer cells, contrasting them with their counterparts in non-cancerous cells. This distinction could potentially mark a significant breakthrough in treating diverse cancers. By delving into signal transduction and engineering novel technologies that utilize distinct "eat me" and "Don't eat me" signals, a valuable avenue may emerge for advancing cancer treatment methodologies. Macrophages, functioning as vital components of the immune system, regulate metabolic equilibrium, manage inflammatory disorders, oversee fibrosis, and aid in the repair of injuries. However, in the context of tumor cells, the overexpression of "Don't eat me" signals like CD47, PD-L1, and beta-2 microglobulin (B2M), an anti-phagocytic subunit of the primary histocompatibility complex class I, enables these cells to evade macrophages and proliferate uncontrollably. Conversely, the presentation of an "eat me" signal, such as Phosphatidylserine (PS), along with alterations in charge and glycosylation patterns on the cellular surface, modifications in intercellular adhesion molecule-1 (ICAM-1) epitopes, and the exposure of Calreticulin and PS on the outer layer of the plasma membrane represent universally observed changes on the surface of apoptotic cells, preventing phagocytosis from causing harm to adjacent non-tumoral cells. The current review provides insight into how signaling pathways and immune cells either stimulate or obstruct these signals, aiming to address challenges that may arise in future immunotherapy research. A potential solution lies in combination therapies targeting the "eat me" and "Don't eat me" signals in conjunction with other targeted therapeutic approaches. This innovative strategy holds promise as a novel avenue for the future treatment of cancer.
Collapse
Affiliation(s)
- Amirreza Khalaji
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatereh Baharlouei Yancheshmeh
- Cardiac Rehabilitation Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Fatemeh Farham
- Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Arya Khorram
- Department of Laboratory Sciences, School of Allied Medical Sciences, Alborz University of Medical Sciences, Karaj, Iran
| | - Shiva Sheshbolouki
- Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Maryam Zokaei
- Department of Food Science and Technology, Faculty of Nutrition Science, Food Science and Technology/National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Veterinary Medicine, Beyza Branch, Islamic Azad University, Beyza, Iran
| | - Fatemeh Vatankhah
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Soleymani-Goloujeh
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| |
Collapse
|
22
|
Zhou C, Gan X, Sun S, Wang L, Zhang Y, Zhang J. Construction of an efferocytosis-related long non-coding ribonucleic acid scoring system to predict clinical outcome and immunotherapy response in pancreatic adenocarcinoma. Biochem Biophys Rep 2023; 35:101540. [PMID: 37692763 PMCID: PMC10482751 DOI: 10.1016/j.bbrep.2023.101540] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/30/2023] [Accepted: 08/30/2023] [Indexed: 09/12/2023] Open
Abstract
Background Efferocytosis suppresses antitumour immune responses by inducing the release and secretion of cytokines. Long non-coding ribonucleic acids (lncRNAs) have various functions in different forms of programmed cell death and in immune regulation. This study aims to explore the potential role of efferocytosis-related lncRNAs as biomarkers in pancreatic adenocarcinoma (PAAD). Methods Transcriptome profiles, simple nucleotide variations and clinical data of patients with PAAD were extracted from The Cancer Genome Atlas (TCGA) database. Co-expression algorithms identified efferocytosis-related lncRNAs. The efferocytosis-related lncRNA scoring system (ERLncSys) was established using Cox regression and the Least Absolute Shrinkage and Selection Operator algorithm. Additionally, Kaplan-Meier (K-M) curves, Cox regression, receiver operating characteristic (ROC) curves and clinical parameter stratification analyses were used to evaluate ERlncSys. Moreover, ERlncSys was explored through Gene Set Variation Analysis, Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses. Furthermore, the TIMER platform, ESTIMATE algorithm, single sample Gene Set Enrichment Analysis and immune checkpoint analysis were utilised to explore the predictive power of ERlncSys for the tumour immune microenvironment (TIME). Finally, a consensus clustering algorithm identified distinct molecular profiles among patients with PAAD, aiding in the identification of potential beneficiaries for immunotherapy. Results K-M, Cox regression and ROC analyses confirmed the robust prognostic efficacy of ERlncSys. Clinical stratification analysis indicated the broad applicability of ERlncSys in PAAD. Additionally, mmunological analyses indicated that ERlncSys can determine immune cell infiltration status in the TIME. Furthermore, consensus clustering analysis based on ERlncSys divided the TCGA-PAAD cohort into two clusters. Cluster 1 exhibited characteristics consistent with an immune 'hot tumour' compared to cluster 2, suggesting cluster 1 is a more suitable population for immune checkpoint inhibitor therapy. Conclusion The established ErlncSys aids in predicting the prognosis and understanding the TIME landscape of patients with PAAD. In turn, it facilitates the identification of optimal candidates for immunotherapy. This study introduces novel insights into the potential value of efferocytosis-related lncRNAs as biomarkers in PAAD.
Collapse
Affiliation(s)
| | - Xiaoshuang Gan
- Suzhou Traditional Chinese Medicine Hospital of Anhui Province, Suzhou, 234000, China
| | - Shandong Sun
- Suzhou Traditional Chinese Medicine Hospital of Anhui Province, Suzhou, 234000, China
| | - Lei Wang
- Suzhou Traditional Chinese Medicine Hospital of Anhui Province, Suzhou, 234000, China
| | - Yong Zhang
- Suzhou Traditional Chinese Medicine Hospital of Anhui Province, Suzhou, 234000, China
| | | |
Collapse
|
23
|
Xiong Y, Rao Y, Hu J, Luo Z, Chen C. Nanoparticle-Based Photothermal Therapy for Breast Cancer Noninvasive Treatment. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2305140. [PMID: 37561994 DOI: 10.1002/adma.202305140] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/29/2023] [Indexed: 08/12/2023]
Abstract
Rapid advancements in materials science and nanotechnology, intertwined with oncology, have positioned photothermal therapy (PTT) as a promising noninvasive treatment strategy for cancer. The breast's superficial anatomical location and aesthetic significance render breast cancer a particularly pertinent candidate for the clinical application of PTT following melanoma. This review comprehensively explores the research conducted on the various types of nanoparticles employed in PTT for breast cancer and elaborates on their specific roles and mechanisms of action. The integration of PTT with existing clinical therapies for breast cancer is scrutinized, underscoring its potential for synergistic outcomes. Additionally, the mechanisms underlying PTT and consequential modifications to the tumor microenvironment after treatment are elaborated from a medical perspective. Future research directions are suggested, with an emphasis on the development of integrative platforms that combine multiple therapeutic approaches and the optimization of nanoparticle synthesis for enhanced treatment efficacy. The goal is to push the boundaries of PTT toward a comprehensive, clinically applicable treatment for breast cancer.
Collapse
Affiliation(s)
- Yao Xiong
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, No 238 Jiefang Road, Wuchang District, Wuhan, Hubei, 430060, P. R. China
| | - Yan Rao
- Animal Biosafety Level III Laboratory at the Center for Animal Experiment, Wuhan University School of Medicine, Wuhan, Hubei, 430000, P. R. China
| | - Jiawei Hu
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, No 238 Jiefang Road, Wuchang District, Wuhan, Hubei, 430060, P. R. China
| | - Zixuan Luo
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, No 238 Jiefang Road, Wuchang District, Wuhan, Hubei, 430060, P. R. China
| | - Chuang Chen
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, No 238 Jiefang Road, Wuchang District, Wuhan, Hubei, 430060, P. R. China
| |
Collapse
|
24
|
Liu T, Li C, Zhang J, Hu H, Li C. Unveiling efferocytosis-related signatures through the integration of single-cell analysis and machine learning: a predictive framework for prognosis and immunotherapy response in hepatocellular carcinoma. Front Immunol 2023; 14:1237350. [PMID: 37575252 PMCID: PMC10414188 DOI: 10.3389/fimmu.2023.1237350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 07/13/2023] [Indexed: 08/15/2023] Open
Abstract
Background Hepatocellular carcinoma (HCC) represents a prominent gastrointestinal malignancy with a grim clinical outlook. In this regard, the discovery of novel early biomarkers holds substantial promise for ameliorating HCC-associated mortality. Efferocytosis, a vital immunological process, assumes a central position in the elimination of apoptotic cells. However, comprehensive investigations exploring the role of efferocytosis-related genes (EFRGs) in HCC are sparse, and their regulatory influence on HCC immunotherapy and targeted drug interventions remain poorly understood. Methods RNA sequencing data and clinical characteristics of HCC patients were acquired from the TCGA database. To identify prognostically significant genes in HCC, we performed the limma package and conducted univariate Cox regression analysis. Subsequently, machine learning algorithms were employed to identify hub genes. To assess the immunological landscape of different HCC subtypes, we employed the CIBERSORT algorithm. Furthermore, single-cell RNA sequencing (scRNA-seq) was utilized to investigate the expression levels of ERFGs in immune cells and to explore intercellular communication within HCC tissues. The migratory capacity of HCC cells was evaluated using CCK-8 assays, while drug sensitivity prediction reliability was determined through wound-healing assays. Results We have successfully identified a set of nine genes, termed EFRGs, that hold significant potential for the establishment of a hepatocellular carcinoma-specific prognostic model. Furthermore, leveraging the individual risk scores derived from this model, we were able to stratify patients into two distinct risk groups, unveiling notable disparities in terms of immune infiltration patterns and response to immunotherapy. Notably, the model's capacity to accurately predict drug responses was substantiated through comprehensive experimental investigations, encompassing wound-healing assay, and CCK8 experiments conducted on the HepG2 and Huh7 cell lines. Conclusions We constructed an EFRGs model that serves as valuable tools for prognostic assessment and decision-making support in the context of immunotherapy and chemotherapy.
Collapse
Affiliation(s)
- Tao Liu
- Colorectal and Anal Surgery Department, General Surgery Center, First Hospital of Jilin University, Changchun, Jilin, China
| | - Chao Li
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians University, Munich, Germany
| | - Jiantao Zhang
- Colorectal and Anal Surgery Department, General Surgery Center, First Hospital of Jilin University, Changchun, Jilin, China
| | - Han Hu
- Colorectal and Anal Surgery Department, General Surgery Center, First Hospital of Jilin University, Changchun, Jilin, China
| | - Chenyao Li
- Colorectal and Anal Surgery Department, General Surgery Center, First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
25
|
Sharma R, Antypiuk A, Vance SZ, Manwani D, Pearce Q, Cox JE, An X, Yazdanbakhsh K, Vinchi F. Macrophage metabolic rewiring improves heme-suppressed efferocytosis and tissue damage in sickle cell disease. Blood 2023; 141:3091-3108. [PMID: 36952641 PMCID: PMC10315632 DOI: 10.1182/blood.2022018026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 03/16/2023] [Accepted: 03/19/2023] [Indexed: 03/25/2023] Open
Abstract
Sickle cell disease (SCD) is hallmarked by an underlying chronic inflammatory condition, which is contributed by heme-activated proinflammatory macrophages. Although previous studies addressed heme ability to stimulate macrophage inflammatory skewing through Toll-like receptor4 (TLR4)/reactive oxygen species signaling, how heme alters cell functional properties remains unexplored. Macrophage-mediated immune cell recruitment and apoptotic cell (AC) clearance are relevant in the context of SCD, in which tissue damage, cell apoptosis, and inflammation occur owing to vaso-occlusive episodes, hypoxia, and ischemic injury. Here we show that heme strongly alters macrophage functional response to AC damage by exacerbating immune cell recruitment and impairing cell efferocytic capacity. In SCD, heme-driven excessive leukocyte influx and defective efferocytosis contribute to exacerbated tissue damage and sustained inflammation. Mechanistically, these events depend on heme-mediated activation of TLR4 signaling and suppression of the transcription factor proliferator-activated receptor γ (PPARγ) and its coactivator peroxisome proliferator-activated receptor γ coactivator 1α (PGC1α). These changes reduce efferocytic receptor expression and promote mitochondrial remodeling, resulting in a coordinated functional and metabolic reprogramming of macrophages. Overall, this results in limited AC engulfment, impaired metabolic shift to mitochondrial fatty acid β-oxidation, and, ultimately, reduced secretion of the antiinflammatory cytokines interleukin-4 (IL-4) and IL-10, with consequent inhibition of continual efferocytosis, resolution of inflammation, and tissue repair. We further demonstrate that impaired phagocytic capacity is recapitulated by macrophage exposure to plasma of patients with SCD and improved by hemopexin-mediated heme scavenging, PPARγ agonists, or IL-4 exposure through functional and metabolic macrophage rewiring. Our data indicate that therapeutic improvement of heme-altered macrophage functional properties via heme scavenging or PGC1α/PPARγ modulation significantly ameliorates tissue damage associated with SCD pathophysiology.
Collapse
Affiliation(s)
- Richa Sharma
- Iron Research Laboratory, Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY
| | - Ada Antypiuk
- Iron Research Laboratory, Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY
| | - S. Zebulon Vance
- Iron Research Laboratory, Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY
| | - Deepa Manwani
- Department of Pediatrics, Albert Einstein College of Medicine, New York, NY
- Pediatric Hematology, The Children's Hospital at Montefiore, New York, NY
| | - Quentinn Pearce
- Department of Biochemistry, University of Utah, Salt Lake City, UT
- Metabolomics, Mass Spectrometry, and Proteomics Core, University of Utah, Salt Lake City, UT
| | - James E. Cox
- Department of Biochemistry, University of Utah, Salt Lake City, UT
- Metabolomics, Mass Spectrometry, and Proteomics Core, University of Utah, Salt Lake City, UT
| | - Xiuli An
- Laboratory of Membrane Biology, New York Blood Center, New York, NY
| | | | - Francesca Vinchi
- Iron Research Laboratory, Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY
| |
Collapse
|
26
|
Xu K, Liu Y, Luo H, Wang T. Efferocytosis signatures as prognostic markers for revealing immune landscape and predicting immunotherapy response in hepatocellular carcinoma. Front Pharmacol 2023; 14:1218244. [PMID: 37383726 PMCID: PMC10294713 DOI: 10.3389/fphar.2023.1218244] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 06/02/2023] [Indexed: 06/30/2023] Open
Abstract
Background: Hepatocellular carcinoma (HCC) is a highly lethal liver cancer with late diagnosis; therefore, the identification of new early biomarkers could help reduce mortality. Efferocytosis, a process in which one cell engulfs another cell, including macrophages, dendritic cells, NK cells, etc., plays a complex role in tumorigenesis, sometimes promoting and sometimes inhibiting tumor development. However, the role of efferocytosis-related genes (ERGs) in HCC progression has been poorly studied, and their regulatory effects in HCC immunotherapy and drug targeting have not been reported. Methods: We downloaded efferocytosis-related genes from the Genecards database and screened for ERGs that showed significant expression changes between HCC and normal tissues and were associated with HCC prognosis. Machine learning algorithms were used to study prognostic gene features. CIBERSORT and pRRophetic R packages were used to evaluate the immune environment of HCC subtypes and predict treatment response. CCK-8 experiments conducted on HCC cells were used to assess the reliability of drug sensitivity prediction. Results: We constructed a prognostic prediction model composed of six genes, and the ROC curve showed good predictive accuracy of the risk model. In addition, two ERG-related subgroups in HCC showed significant differences in tumor immune landscape, immune response, and prognostic stratification. The CCK-8 experiment conducted on HCC cells confirmed the reliability of drug sensitivity prediction. Conclusion: Our study emphasizes the importance of efferocytosis in HCC progression. The risk model based on efferocytosis-related genes developed in our study provides a novel precision medicine approach for HCC patients, allowing clinicians to customize treatment plans based on unique patient characteristics. The results of our investigation carry noteworthy implications for the development of individualized treatment approaches involving immunotherapy and chemotherapy, thereby potentially facilitating the realization of personalized and more efficacious therapeutic interventions for HCC.
Collapse
Affiliation(s)
- Ke Xu
- Department of Oncology, Chongqing General Hospital, Chongqing, China
| | - Yu Liu
- Department of Oncology, Chongqing General Hospital, Chongqing, China
| | - Huiyan Luo
- Department of Oncology, Chongqing General Hospital, Chongqing, China
| | - Tengfei Wang
- Department of Equipment, Bishan Hospital of Chongqing, Chongqing, China
| |
Collapse
|
27
|
Zhai X, Pu D, Wang R, Zhang J, Lin Y, Wang Y, Zhai N, Peng X, Zhou Q, Li L. Gas6/AXL pathway: immunological landscape and therapeutic potential. Front Oncol 2023; 13:1121130. [PMID: 37265798 PMCID: PMC10231434 DOI: 10.3389/fonc.2023.1121130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 04/10/2023] [Indexed: 06/03/2023] Open
Abstract
Cancer is a disease with ecological and evolutionary unity, which seriously affects the survival and quality of human beings. Currently, many reports have suggested Gas6 plays an important role in cancer. Binding of gas6 to TAM receptors is associated with the carcinogenetic mechanisms of multiple malignancies, such as in breast cancer, chronic lymphocytic leukemia, non-small cell lung cancer, melanoma, prostate cancer, etc., and shortened overall survival. It is accepted that the Gas6/TAM pathway can promote the malignant transformation of various types of cancer cells. Gas6 has the highest affinity for Axl, an important member of the TAM receptor family. Knockdown of the TAM receptors Axl significantly affects cell cycle progression in tumor cells. Interestingly, Gas6 also has an essential function in the tumor microenvironment. The Gas6/AXL pathway regulates angiogenesis, immune-related molecular markers and the secretion of certain cytokines in the tumor microenvironment, and also modulates the functions of a variety of immune cells. In addition, evidence suggests that the Gas6/AXL pathway is involved in tumor therapy resistance. Recently, multiple studies have begun to explore in depth the importance of the Gas6/AXL pathway as a potential tumor therapeutic target as well as its broad promise in immunotherapy; therefore, a timely review of the characteristics of the Gas6/AXL pathway and its value in tumor treatment strategies is warranted. This comprehensive review assessed the roles of Gas6 and AXL receptors and their associated pathways in carcinogenesis and cancer progression, summarized the impact of Gas6/AXL on the tumor microenvironment, and highlighted the recent research progress on the relationship between Gas6/AXL and cancer drug resistance.
Collapse
Affiliation(s)
- Xiaoqian Zhai
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Dan Pu
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Rulan Wang
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jiabi Zhang
- Department of Nutrition and Integrative Physiology, College of Health, University of Utah, Salt Lake City, UT, United States
| | - Yiyun Lin
- Graduate School of Biomedical Sciences, MD Anderson Cancer Center UT Health, Houston, TX, United States
| | - Yuqing Wang
- Graduate School of Biomedical Sciences, Baylor College of Medicine, Houston, TX, United States
| | - Ni Zhai
- Neurosurgery Intensive Care Unit, The 987th Hospital of the Joint Logistics Support Force of the Chinese People's Liberation Army, Baoji, Shanxi, China
| | - Xuan Peng
- Department of Pathophysiology, Hubei Minzu University, Enshi, Hubei, China
| | - Qinghua Zhou
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Lu Li
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
28
|
Sun Y, Xiao W, Yu Y, Jiang Y, Xiao Z, Huang D, Zhong T, Li J, Xiang X, He Y, Li Z. Colorectal cancer-derived extracellular vesicles containing HSP70 enhance macrophage phagocytosis by up-regulating MARCO expression. Exp Cell Res 2023; 426:113565. [PMID: 36958650 DOI: 10.1016/j.yexcr.2023.113565] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/14/2023] [Accepted: 03/18/2023] [Indexed: 03/25/2023]
Abstract
In recent years, we have realized that extracellular vesicles (EVs) play a critical role in regulating the intercellular communication between tumor and immune cells in the tumor microenvironment (TME). Tumor-derived extracellular vesicles (TDEVs) profoundly affect the functional changes of tumor-associated macrophages (TAMs) and promote their M2 polarization. Meanwhile, macrophages have a strong phagocytic ability in phagocytosing apoptotic cells. Especially in the course of chemotherapy or radiotherapy, TAMs can phagocytose and remove apoptotic tumor cells, showing anti-inflammatory and pro-tumor effects. However, the underlying mechanisms by which TDEVs regulate macrophage phagocytosis of apoptotic tumor cells have not been fully elucidated. In this study, we focused on the effect of colorectal cancer-derived extracellular vesicles (CRC-EVs) on macrophages. We demonstrated that CRC-EVs enhanced macrophage phagocytosis of apoptotic CRC cells. We then determined that heat shock protein 70 (HSP70) carried in CRC-EVs was responsible for this effect by using mass spectrometry-based proteomic analysis and the CRISPR-Cas9 system. Through transcriptome sequencing of macrophages, we found that the enhanced phagocytosis of macrophages was mainly due to the up-regulation of the macrophage receptor with collagenous structure (MARCO). In addition, we confirmed that the up-regulation of MARCO was mediated by the AKT-STAT3 signaling pathway. Taken together, this study revealed a novel EVs-mediated macrophage phagocytosis mechanism involved in the clearance of apoptotic tumor cells in TME. Targeting TDEVs may have potential therapeutic applications in tumor treatment.
Collapse
Affiliation(s)
- Yu Sun
- Guangdong Provincial Key Laboratory of Digestive Cancer Research; Digestive Medicine Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China; Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China
| | - Wenjun Xiao
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China
| | - Yang Yu
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China
| | - Yuchen Jiang
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China
| | - Zhijie Xiao
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China
| | - Defa Huang
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi Province, 341004, China
| | - Tianyu Zhong
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi Province, 341004, China
| | - Jiang Li
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China
| | - Xi Xiang
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China
| | - Yulong He
- Guangdong Provincial Key Laboratory of Digestive Cancer Research; Digestive Medicine Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China; Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China.
| | - Zhigang Li
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China.
| |
Collapse
|
29
|
Hu Z, Wang G, Zhang R, Yang Y, Wang J, Hu J, Reheman A. Sustained-release behavior and the antitumor effect of charge-convertible poly(amino acid)s drug-loaded nanoparticles. Drug Deliv Transl Res 2023:10.1007/s13346-023-01323-w. [PMID: 36913103 DOI: 10.1007/s13346-023-01323-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/28/2023] [Indexed: 03/14/2023]
Abstract
Enhancing tissue permeability and achieving drug aggregation is the key to targeted tumor therapy. A series triblock copolymers of poly(ethylene glycol)-poly(L-lysine)-poly(L-glutamine) were synthesized by ring-opening polymerization, and charge-convertible nano-delivery system was constructed by loading doxorubicin (DOX) with 2-(hexaethylimide) ethanol on side chain. In normal environment (pH = 7.4), the zeta potential of the drug-loaded nanoparticle solution is negative, which is conducive to avoiding the identification and clearance of nanoparticles by the reticulo-endothelial system, while potential-reversal can be achieved in the tumor microenvironment, which effectively promotes cellular uptake. Nanoparticles could effectively reduce the distribution of DOX in normal tissues and achieve targeted aggregation at tumor sites, which can effectively improve the antitumor effect, while would not causing toxicity and damage to normal body.
Collapse
Affiliation(s)
- Zhuang Hu
- Center for Molecular Science and Engineering, College of Science, Northeastern University, Shenyang, 110819, People's Republic of China
| | - Gongshu Wang
- Center for Molecular Science and Engineering, College of Science, Northeastern University, Shenyang, 110819, People's Republic of China
| | - Rui Zhang
- Center for Molecular Science and Engineering, College of Science, Northeastern University, Shenyang, 110819, People's Republic of China
| | - Yingyu Yang
- Fujian Key Laboratory of Toxicant and Drug Toxicology, Medical College, Ningde Normal University, Ningde, Fujian, 352100, People's Republic of China
| | - Jiwei Wang
- Fujian Key Laboratory of Toxicant and Drug Toxicology, Medical College, Ningde Normal University, Ningde, Fujian, 352100, People's Republic of China.
| | - Jianshe Hu
- Center for Molecular Science and Engineering, College of Science, Northeastern University, Shenyang, 110819, People's Republic of China.
| | - Aikebaier Reheman
- Fujian Province University Engineering Research Center of Mindong She Medicine, Medical College, Ningde Normal University, Ningde, Fujian, 352100, People's Republic of China
| |
Collapse
|
30
|
Dilara Fatma Akin, Özkan D. Molecular profiling of TAM tyrosine kinase receptors and ligands in endometrial carcinoma: An in silico-study. Taiwan J Obstet Gynecol 2023; 62:311-324. [PMID: 36965901 DOI: 10.1016/j.tjog.2022.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2022] [Indexed: 03/27/2023] Open
Abstract
OBJECTIVES TAM Receptors (TYRO3, AXL, and MerTK) and their ligands on tumor-associated macrophages are promising therapeutic targets for most solid cancers. However, in endometrial cancer, the most common invasive gynecologic malignancy, the TAM receptor-mediated activation pathway, its molecular mechanisms, and its pathophysiology are unknown. The goal of this research; to uncover the comprehensive genetic profile of TAM receptors and ligands in endometrial cancer. MATERIAL AND METHODS Mutation and expression profiles of the Uterine Corpus Endometrial Carcinoma (UCEC) cohort (n = 509) were obtained using bioinformatics tools providing data from The Cancer Genome Atlas (TCGA). PolyPhen-2 and SNAP tools were used to predict the oncogenic/pathogenic properties of the identified mutations for UCEC. STRING network analysis was performed to better understand the functional relationships of the mutant proteins in cellular processes. Furthermore to the mutation profile, gene expression and survival profiles were also determined. Finally, the correlation between target genes and macrophage infiltration was investigated using the tool TIMER. RESULTS A total of 229 mutations were detected in 6 genes, and 81 missense mutations are pathogenic. In the UCEC cohort, the expression level of MerTK, AXL, GAS6, and PROS1 was statistically significantly lower in the patient group, while the expression level of CD47 was higher in the patient group than in the healthy group (p < 0.01). Protein-protein interaction analysis identified target genes, SRC protein responsible for important cellular mechanisms such as cell proliferation, adhesion and migration, ITGB3, ITGAV and THSB1 proteins involved in endothelial mesenchymal transition and tumor metabolism reprogramming, and FOLR1 involved in DNA replication and damage repair. CONCLUSION We believe that TAM receptors and their ligands may be attractive molecular targets for the treatment of endometrial carcinoma because they act as pleiotropic inhibitors of immune cells, effectively regulate phagocytic clearance of apoptotic cells, and make the tumor microenvironment a more suitable niche for the tumour.
Collapse
Affiliation(s)
- Dilara Fatma Akin
- Nigde Ömer Halisdemir University, Faculty of Medicine, Medical Biology, Nigde, Turkey.
| | - Didem Özkan
- Istanbul Okan University, Vocational School of Health Service, Istanbul, Turkey
| |
Collapse
|
31
|
Razi S, Yaghmoorian Khojini J, Kargarijam F, Panahi S, Tahershamsi Z, Tajbakhsh A, Gheibihayat SM. Macrophage efferocytosis in health and disease. Cell Biochem Funct 2023; 41:152-165. [PMID: 36794573 DOI: 10.1002/cbf.3780] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 01/31/2023] [Accepted: 02/06/2023] [Indexed: 02/17/2023]
Abstract
Creating cellular homeostasis within a defined tissue typically relates to the processes of apoptosis and efferocytosis. A great example here is cell debris that must be removed to prevent unwanted inflammatory responses and then reduce autoimmunity. In view of that, defective efferocytosis is often assumed to be responsible for the improper clearance of apoptotic cells (ACs). This predicament triggers off inflammation and even results in disease development. Any disruption of phagocytic receptors, molecules as bridging groups, or signaling routes can also inhibit macrophage efferocytosis and lead to the impaired clearance of the apoptotic body. In this line, macrophages as professional phagocytic cells take the lead in the efferocytosis process. As well, insufficiency in macrophage efferocytosis facilitates the spread of a wide variety of diseases, including neurodegenerative diseases, kidney problems, types of cancer, asthma, and the like. Establishing the functions of macrophages in this respect can be thus useful in the treatment of many diseases. Against this background, this review aimed to recapitulate the knowledge about the mechanisms related to macrophage polarization under physiological or pathological conditions, and shed light on its interaction with efferocytosis.
Collapse
Affiliation(s)
- Shokufeh Razi
- Department of Genetics, Faculty of Basic Sciences, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Javad Yaghmoorian Khojini
- Department of Medical Biotechnology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Fateme Kargarijam
- Department of Biotechnology, Faculty of Sciences and Advanced Technology in Biology, University of Science and Culture, Tehran, Iran
| | - Susan Panahi
- Department of Microbiology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Zahra Tahershamsi
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Amir Tajbakhsh
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyed Mohammad Gheibihayat
- Department of Medical Biotechnology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.,Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Munich, Germany
| |
Collapse
|
32
|
Yoshida S, Hamada Y, Narita M, Sato D, Tanaka K, Mori T, Tezuka H, Suda Y, Tamura H, Aoki K, Kuzumaki N, Narita M. Elucidation of the mechanisms underlying tumor aggravation by the activation of stress-related neurons in the paraventricular nucleus of the hypothalamus. Mol Brain 2023; 16:18. [PMID: 36732798 PMCID: PMC9896675 DOI: 10.1186/s13041-023-01006-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 01/13/2023] [Indexed: 02/04/2023] Open
Abstract
A growing body of evidence suggests that excess stress could aggravate tumor progression. The paraventricular nucleus (PVN) of the hypothalamus plays an important role in the adaptation to stress because the hypothalamic-pituitary-adrenal (HPA) axis can be activated by inducing the release of corticotropin-releasing hormone (CRH) from the PVN. In this study, we used pharmacogenetic techniques to investigate whether concomitant activation of CRHPVN neurons could directly contribute to tumor progression. Tumor growth was significantly promoted by repeated activation of CRHPVN neurons, which was followed by an increase in the plasma levels of corticosterone. Consistent with these results, chronic administration of glucocorticoids induced tumor progression. Under the concomitant activation of CRHPVN neurons, the number of cytotoxic CD8+ T cells in the tumor microenvironment was dramatically decreased, and the mRNA expression levels of hypoxia inducible factor 1 subunit α (HIF1α), glucocorticoid receptor (GR) and Tsc22d3 were upregulated in inhibitory lymphocytes, tumor-associated macrophages (TAMs) and myeloid-derived suppressor cells (MDSCs). Furthermore, the mRNA levels of various kinds of driver molecules related to tumor progression and tumor metastasis were prominently elevated in cancer cells by concomitant activation of CRHPVN neurons. These findings suggest that repeated activation of the PVN-CRHergic system may aggravate tumor growth through a central-peripheral-associated tumor immune system.
Collapse
Affiliation(s)
- Sara Yoshida
- grid.412239.f0000 0004 1770 141XDepartment of Pharmacology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-Ku, Tokyo, 142-8501 Japan ,grid.272242.30000 0001 2168 5385Division of Cancer Pathophysiology, National Cancer Center Research Institute (NCCRI), 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045 Japan
| | - Yusuke Hamada
- grid.412239.f0000 0004 1770 141XDepartment of Pharmacology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-Ku, Tokyo, 142-8501 Japan ,grid.272242.30000 0001 2168 5385Division of Cancer Pathophysiology, National Cancer Center Research Institute (NCCRI), 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045 Japan
| | - Michiko Narita
- grid.272242.30000 0001 2168 5385Division of Cancer Pathophysiology, National Cancer Center Research Institute (NCCRI), 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045 Japan
| | - Daisuke Sato
- grid.412239.f0000 0004 1770 141XDepartment of Pharmacology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-Ku, Tokyo, 142-8501 Japan ,grid.272242.30000 0001 2168 5385Division of Cancer Pathophysiology, National Cancer Center Research Institute (NCCRI), 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045 Japan
| | - Kenichi Tanaka
- grid.412239.f0000 0004 1770 141XDepartment of Pharmacology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-Ku, Tokyo, 142-8501 Japan ,grid.272242.30000 0001 2168 5385Division of Cancer Pathophysiology, National Cancer Center Research Institute (NCCRI), 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045 Japan
| | - Tomohisa Mori
- grid.412239.f0000 0004 1770 141XDepartment of Pharmacology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-Ku, Tokyo, 142-8501 Japan
| | - Hiroyuki Tezuka
- grid.256115.40000 0004 1761 798XDepartment of Cellular Function Analysis, Research Promotion Headquarters, Fujita Health University, 1-98 Dengakugakubo, Kutsukake-Cho, Toyoake, Aichi 470-1192 Japan
| | - Yukari Suda
- grid.412239.f0000 0004 1770 141XDepartment of Pharmacology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-Ku, Tokyo, 142-8501 Japan ,grid.272242.30000 0001 2168 5385Division of Cancer Pathophysiology, National Cancer Center Research Institute (NCCRI), 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045 Japan
| | - Hideki Tamura
- grid.412239.f0000 0004 1770 141XInstitute for Advanced Life Sciences, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-Ku, Tokyo, 142-8501 Japan ,grid.412239.f0000 0004 1770 141XLaboratory of Biofunctional Science, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-Ku, Tokyo, 142-8501 Japan
| | - Kazunori Aoki
- grid.272242.30000 0001 2168 5385Department of Immune Medicine, National Cancer Center Research Institute (NCCRI), 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045 Japan
| | - Naoko Kuzumaki
- Department of Pharmacology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-Ku, Tokyo, 142-8501, Japan. .,Division of Cancer Pathophysiology, National Cancer Center Research Institute (NCCRI), 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan.
| | - Minoru Narita
- Department of Pharmacology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-Ku, Tokyo, 142-8501, Japan. .,Division of Cancer Pathophysiology, National Cancer Center Research Institute (NCCRI), 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan.
| |
Collapse
|
33
|
Wu G, Chen B, Jiang J, Chen Y, Chen Y, Wang H. Identification of a pyroptosis-based model for predicting clinical outcomes from immunotherapy in patients with metastatic melanoma. Cancer Med 2023; 12:4921-4937. [PMID: 36151761 PMCID: PMC9972144 DOI: 10.1002/cam4.5178] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 07/04/2022] [Accepted: 08/14/2022] [Indexed: 11/09/2022] Open
Abstract
Immunotherapy has greatly improved outcomes for patients with advanced melanoma, but good predictive biomarkers remain lacking in clinical practice. Although increasing evidence has revealed a vital role of pyroptosis in the tumor microenvironment (TME), it remains unclear for pyroptosis as a predictive biomarker for immunotherapy in melanoma. RNA sequencing data and annotated clinical information of melanoma patients were obtained from four published immunotherapy datasets. LASSO regression analysis was conducted to develop a pyroptosis-based model for quantifying a pyroptosis score in each tumor. Based on four clinical cohorts, we evaluated the predictive capability of the model using multiple immunotherapeutic outcomes, including clinical benefits, overall survival (OS), and progression-free survival (PFS). Furthermore, we depicted the distinctive TME features associated with pyroptosis. Compared with the group with low pyroptosis scores, the group with high pyroptosis scores consistently achieved better durable clinical benefits in four independent cohorts and the meta-cohort. ROC analysis validated that the pyroptosis-based model was a reliable biomarker for predicting clinical benefits from immunotherapy in melanoma. Survival analyses showed that the group with high pyroptosis scores harbored more favorable OS and PFS than those with low pyroptosis scores. Molecular analysis revealed that tumors with high pyroptosis scores displayed a typical immune-inflamed phenotype in TME, including enrichment of immunostimulatory pathways, increased level of tumor-infiltrating lymphocytes, upregulation of immune effectors, and activation of the antitumor immune response. Our findings suggested that the pyroptosis-related model associated with multiple immune-inflamed characteristics might be a reliable tool for predicting clinical benefit and survival outcomes from immunotherapy in melanoma.
Collapse
Affiliation(s)
- Guanghao Wu
- School of Clinical Medicine, Hangzhou Normal University Medical College, Hangzhou, China
| | - Biying Chen
- Department of Surgical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Junjie Jiang
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yiran Chen
- Department of Surgical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yanyan Chen
- Department of Surgical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Haiyong Wang
- Department of Surgical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
34
|
Single-cell RNA-sequencing reveals radiochemotherapy-induced innate immune activation and MHC-II upregulation in cervical cancer. Signal Transduct Target Ther 2023; 8:44. [PMID: 36710358 PMCID: PMC9884664 DOI: 10.1038/s41392-022-01264-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 11/14/2022] [Accepted: 11/22/2022] [Indexed: 01/31/2023] Open
Abstract
Radiochemotherapy (RCT) is a powerful treatment for cervical cancer, which affects not only malignant cells but also the immune and stromal compartments of the tumor. Understanding the remodeling of the local ecosystem induced by RCT would provide valuable insights into improving treatment strategies for cervical cancer. In this study, we applied single-cell RNA-sequencing to paired pre- and post-RCT tumor biopsies from patients with cervical cancer and adjacent normal cervical tissues. We found that the residual population of epithelial cells post-RCT showed upregulated expression of MHC class II genes. Moreover, RCT led to the accumulation of monocytic myeloid-derived suppressor cells with increased pro-inflammatory features and CD16+ NK cells with a higher cytotoxic gene expression signature. However, subclusters of T cells showed no significant increase in the expression of cytotoxic features post-RCT. These results reveal the complex responses of the tumor ecosystem to RCT, providing evidence of activation of innate immunity and MHC-II upregulation in cervical cancer.
Collapse
|
35
|
Knudsen-Clark AM, Cazarin J, Altman BJ. Do macrophages follow the beat of circadian rhythm in TIME (Tumor Immune Microenvironment)? F1000Res 2023; 12:101. [PMID: 37469718 PMCID: PMC10352629 DOI: 10.12688/f1000research.129863.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/18/2023] [Indexed: 07/21/2023] Open
Abstract
Advances in cancer research have made clear the critical role of the immune response in clearing tumors. This breakthrough in scientific understanding was heralded by the success of immune checkpoint blockade (ICB) therapies such as anti-programmed cell death protein 1 (PD-1)/ programmed death-ligand 1 (PD-L1) and anti-cytotoxic T-lymphocyte-associated protein 4 (CTLA-4), as well as the success of chimeric antigen receptor (CAR) T cells in treating liquid tumors. Thus, much effort has been made to further understand the role of the immune response in tumor progression, and how we may target it to treat cancer. Macrophages are a component of the tumor immune microenvironment (TIME) that can promote tumor growth both indirectly, by suppressing T cell responses necessary for tumor killing, as well as directly, through deposition of extracellular matrix and promotion of angiogenesis. Thus, understanding regulation of macrophages within the tumor microenvironment (TME) is key to targeting them for immunotherapy. However, circadian rhythms (24-hour cycles) are a fundamental aspect of macrophage biology that have yet to be investigated for their role in macrophage-mediated suppression of the anti-tumor immune response Circadian rhythms regulate macrophage-mediated immune responses through time-of-day-dependent regulation of macrophage function. A better understanding of the circadian biology of macrophages in the context of the TME may allow us to exploit synergy between existing and upcoming treatments and circadian regulation of immunity.
Collapse
Affiliation(s)
- Amelia M. Knudsen-Clark
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY, 14620, USA
| | - Juliana Cazarin
- Department of Biomedical Genetics, University of Rochester School of Medicine and Dentistry, Rochester, NY, 14620, USA
| | - Brian J. Altman
- Department of Biomedical Genetics, University of Rochester School of Medicine and Dentistry, Rochester, NY, 14620, USA
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, 14620, USA
| |
Collapse
|
36
|
Mendoza-Reinoso V, Schnepp PM, Baek DY, Rubin JR, Schipani E, Keller ET, McCauley LK, Roca H. Bone Marrow Macrophages Induce Inflammation by Efferocytosis of Apoptotic Prostate Cancer Cells via HIF-1α Stabilization. Cells 2022; 11:cells11233712. [PMID: 36496973 PMCID: PMC9737180 DOI: 10.3390/cells11233712] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 11/10/2022] [Accepted: 11/16/2022] [Indexed: 11/23/2022] Open
Abstract
The clearance of apoptotic cancer cells by macrophages, known as efferocytosis, fuels the bone-metastatic growth of prostate cancer cells via pro-inflammatory and immunosuppressive processes. However, the exact molecular mechanisms remain unclear. In this study, single-cell transcriptomics of bone marrow (BM) macrophages undergoing efferocytosis of apoptotic prostate cancer cells revealed a significant enrichment in their cellular response to hypoxia. Here, we show that BM macrophage efferocytosis increased hypoxia inducible factor-1alpha (HIF-1α) and STAT3 phosphorylation (p-STAT3 at Tyr705) under normoxic conditions, while inhibitors of p-STAT3 reduced HIF-1α. Efferocytosis promoted HIF-1α stabilization, reduced its ubiquitination, and induced HIF-1α and p-STAT3 nuclear translocation. HIF-1α stabilization in efferocytic BM macrophages resulted in enhanced expression of pro-inflammatory cytokine MIF, whereas BM macrophages with inactive HIF-1α reduced MIF expression upon efferocytosis. Stabilization of HIF-1α using the HIF-prolyl-hydroxylase inhibitor, Roxadustat, enhanced MIF expression in BM macrophages. Furthermore, BM macrophages treated with recombinant MIF protein activated NF-κB (p65) signaling and increased the expression of pro-inflammatory cytokines. Altogether, these findings suggest that the clearance of apoptotic cancer cells by BM macrophages triggers p-STAT3/HIF-1α/MIF signaling to promote further inflammation in the bone tumor microenvironment where a significant number of apoptotic cancer cells are present.
Collapse
Affiliation(s)
- Veronica Mendoza-Reinoso
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI 48109, USA
| | - Patricia M. Schnepp
- Department of Urology, Medical School, University of Michigan, Ann Arbor, MI 48109, USA
| | - Dah Youn Baek
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI 48109, USA
| | - John R. Rubin
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI 48109, USA
| | - Ernestina Schipani
- Department of Orthopaedic Surgery, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Evan T. Keller
- Department of Urology, Medical School, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Pathology, Medical School, University of Michigan, Ann Arbor, MI 48109, USA
- Correspondence: (E.T.K.); (L.K.M.); (H.R.)
| | - Laurie K. McCauley
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI 48109, USA
- Department of Pathology, Medical School, University of Michigan, Ann Arbor, MI 48109, USA
- Correspondence: (E.T.K.); (L.K.M.); (H.R.)
| | - Hernan Roca
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI 48109, USA
- Correspondence: (E.T.K.); (L.K.M.); (H.R.)
| |
Collapse
|
37
|
Chen S, Cui W, Chi Z, Xiao Q, Hu T, Ye Q, Zhu K, Yu W, Wang Z, Yu C, Pan X, Dai S, Yang Q, Jin J, Zhang J, Li M, Yang D, Yu Q, Wang Q, Yu X, Yang W, Zhang X, Qian J, Ding K, Wang D. Tumor-associated macrophages are shaped by intratumoral high potassium via Kir2.1. Cell Metab 2022; 34:1843-1859.e11. [PMID: 36103895 DOI: 10.1016/j.cmet.2022.08.016] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 06/10/2022] [Accepted: 08/17/2022] [Indexed: 01/11/2023]
Abstract
The tumor microenvironment (TME) is a unique niche governed by constant crosstalk within and across all intratumoral cellular compartments. In particular, intratumoral high potassium (K+) has shown immune-suppressive potency on T cells. However, as a pan-cancer characteristic associated with local necrosis, the impact of this ionic disturbance on innate immunity is unknown. Here, we reveal that intratumoral high K+ suppresses the anti-tumor capacity of tumor-associated macrophages (TAMs). We identify the inwardly rectifying K+ channel Kir2.1 as a central modulator of TAM functional polarization in high K+ TME, and its conditional depletion repolarizes TAMs toward an anti-tumor state, sequentially boosting local anti-tumor immunity. Kir2.1 deficiency disturbs the electrochemically dependent glutamine uptake, engendering TAM metabolic reprogramming from oxidative phosphorylation toward glycolysis. Kir2.1 blockade attenuates both murine tumor- and patient-derived xenograft growth. Collectively, our findings reveal Kir2.1 as a determinant and potential therapeutic target for regaining the anti-tumor capacity of TAMs within ionic-imbalanced TME.
Collapse
Affiliation(s)
- Sheng Chen
- Institute of Immunology and Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, P.R. China; Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, P.R. China; Cancer Center, Zhejiang University, Hangzhou 310058, P.R. China
| | - Wenyu Cui
- Institute of Immunology and Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, P.R. China; Eye Center, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, P.R. China
| | - Zhexu Chi
- Institute of Immunology and Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, P.R. China
| | - Qian Xiao
- Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, P.R. China; Cancer Center, Zhejiang University, Hangzhou 310058, P.R. China
| | - Tianyi Hu
- Institute of Immunology and Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, P.R. China
| | - Qizhen Ye
- Institute of Immunology and Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, P.R. China
| | - Kaixiang Zhu
- Institute of Immunology and Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, P.R. China
| | - Weiwei Yu
- Institute of Immunology and Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, P.R. China; Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, P.R. China
| | - Zhen Wang
- Institute of Immunology and Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, P.R. China
| | - Chengxuan Yu
- Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, P.R. China; Cancer Center, Zhejiang University, Hangzhou 310058, P.R. China
| | - Xiang Pan
- Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, P.R. China; Cancer Center, Zhejiang University, Hangzhou 310058, P.R. China
| | - Siqi Dai
- Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, P.R. China; Cancer Center, Zhejiang University, Hangzhou 310058, P.R. China
| | - Qi Yang
- Department of Pathology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, P.R. China
| | - Jiacheng Jin
- Institute of Immunology and Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, P.R. China
| | - Jian Zhang
- Institute of Immunology and Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, P.R. China
| | - Mobai Li
- Institute of Immunology and Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, P.R. China
| | - Dehang Yang
- Institute of Immunology and Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, P.R. China
| | - Qianzhou Yu
- Institute of Immunology and Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, P.R. China
| | - Quanquan Wang
- Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, P.R. China; Cancer Center, Zhejiang University, Hangzhou 310058, P.R. China
| | - Xiafei Yu
- Department of Biophysics, Zhejiang University School of Medicine, Hangzhou 310058, P.R. China
| | - Wei Yang
- Department of Biophysics, Zhejiang University School of Medicine, Hangzhou 310058, P.R. China
| | - Xue Zhang
- Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, Hangzhou 310058, P.R. China
| | - Junbin Qian
- Zhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, P.R. China; Institute of Genetics, Zhejiang University School of Medicine, Hangzhou 310058, P.R. China; Cancer Center, Zhejiang University, Hangzhou 310058, P.R. China
| | - Kefeng Ding
- Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, P.R. China; Cancer Center, Zhejiang University, Hangzhou 310058, P.R. China.
| | - Di Wang
- Institute of Immunology and Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, P.R. China; Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, P.R. China.
| |
Collapse
|
38
|
Jeon Y, Kang H, Yang Y, Park D, Choi B, Kim J, Kim J, Nam K. A Novel Selective Axl/Mer/CSF1R Kinase Inhibitor as a Cancer Immunotherapeutic Agent Targeting Both Immune and Tumor Cells in the Tumor Microenvironment. Cancers (Basel) 2022; 14:cancers14194821. [PMID: 36230744 PMCID: PMC9563311 DOI: 10.3390/cancers14194821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 09/25/2022] [Accepted: 09/29/2022] [Indexed: 12/03/2022] Open
Abstract
Simple Summary Immune checkpoint blockade has had great success over the past decade, but many patients with cancer do not benefit because most immune checkpoint inhibitors only target T cells. Targeting non-T cell populations in the tumor microenvironment (TME) has been shown to affect responses to them. Simultaneous inhibition of Axl, Mer and CSF1R by a novel receptor tyrosine kinase inhibitor Q702 induces antitumor immunity by reducing the number of M2 macrophages and MDSCs and inducing M1 macrophages and cytotoxic CD8 T cells in the TME, and increasing the expression of MHC-I and E-cadherin in tumor cells. Our data indicate that therapy targeting both immune cells and cancer cells in the TME by Q702 can induce more effective clinical responses in patients with cancer. Abstract Although immune checkpoint blockade (ICB) represents a major breakthrough in cancer immunotherapy, only a limited number of patients with cancer benefit from ICB-based immunotherapy because most immune checkpoint inhibitors (ICIs) target only T cell activation. Therefore, targeting non-T cell components in the tumor microenvironment (TME) can help subvert resistance and increase the applications of ICB-based therapy. Axl and Mer are involved in the carcinogenesis of multiple types of cancer by modulating immune and biological behaviors within tumors. Colony stimulating factor 1 receptor (CSF1R) mediates tumorigenesis in the TME by enhancing tumor associated macrophage (TAM) and myeloid-derived suppressor cell (MDSC) infiltration, facilitating immune escape. Therefore, the simultaneous inhibition of Axl, Mer, and CSF1R kinases may improve therapeutic efficacy by targeting non-T cell components in the TME. Here, we present Q702, a selective, potent small molecule inhibitor targeting Axl, Mer, and CSF1R, for oral administration. Q702 induced antitumor activity in syngeneic tumor mouse models by: remodeling the TME toward immune stimulation; expanding M1 macrophage and CD8 T cell populations and decreasing M2 macrophage and MDSC populations in the TME; and increasing MHC class I and E-cadherin expression in tumor cells. Thus, Q702 may have great potential to broaden the coverage of populations benefiting from ICB-based immunotherapy.
Collapse
|
39
|
Tajbakhsh A, Gheibihayat SM, Askari H, Savardashtaki A, Pirro M, Johnston TP, Sahebkar A. Statin-regulated phagocytosis and efferocytosis in physiological and pathological conditions. Pharmacol Ther 2022; 238:108282. [DOI: 10.1016/j.pharmthera.2022.108282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 09/10/2022] [Accepted: 09/13/2022] [Indexed: 10/14/2022]
|
40
|
C3d(g), iron nanoparticles, hemin and cytochrome c may induce oxidative cytotoxicity in tumors and reduce tumor-associated myeloid cells-mediated immunosuppression. Med Hypotheses 2022. [DOI: 10.1016/j.mehy.2022.110944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
41
|
Deng X, Wang Z, Luo Y, Li Z, Chen L. Prediction of lung squamous cell carcinoma immune microenvironment and immunotherapy efficiency with pyroptosis-derived genes. Medicine (Baltimore) 2022; 101:e30304. [PMID: 36123889 PMCID: PMC9478317 DOI: 10.1097/md.0000000000030304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Lung squamous cell carcinoma (LUSC) is a common subtype of lung cancer that exhibits diverse pyroptosis regulatory patterns. Studies have highlighted the significance of pyroptosis in cancer invasion and immune responses. We aimed to explore the signatures of pyroptosis-related genes and their immune relevance in LUSC. Using The Cancer Genome Atlas (TCGA)-LUSC cohort and 5 gene expression omnibus (GEO) datasets, we performed consensus clustering based on 41 pyroptosis-related genes, and single sample gene set enrichment analysis (ssGSEA) was employed to calculate the infiltration levels of distinct clusters. A pyroptosis scoring scheme using the principal component analysis (PCA) method was used to quantify pyroptosis regulation in patients with LUSC and predict their prognosis. Four pyroptosis clusters were identified among 833 LUSC samples, which were associated with different Kyoto encyclopedia of genes and genome (KEGG) signaling pathways and tumor microenvironment infiltration features, and were highly consistent with 4 reported immune phenotypes: immune-responsive, immune-non-functional, immune-exclusion, and immune-ignorance. We then divided the patients into high- and low-pyroptosis score subgroups, and patients with higher scores were characterized by prolonged survival and attenuated immune infiltration. Moreover, higher scores were correlated with male patients, higher microsatellite instability, lower immune checkpoint inhibitor expression (such as CTLA-4 and GAL-9), and high mutation rates of typical mutated genes (e.g., TP53 and TTN). In particular, patients with lower pyroptosis scores showed better immune response to immune checkpoint inhibitor treatment. Pyroptosis regulatory patterns in the immune microenvironment can predict the clinical outcomes of patients with LUSC. Accurately quantifying the pyroptosis of individual patients will strengthen the understanding of heterogeneity within the LUSC tumor microenvironment infiltration areas.
Collapse
Affiliation(s)
- Xiaheng Deng
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhibo Wang
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yu Luo
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhihua Li
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Liang Chen
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Liang Chen, Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210000, China (e-mail: )
| |
Collapse
|
42
|
Cheng L, Weng B, Jia C, Zhang L, Hu B, Deng L, Mou N, Sun F, Hu J. The expression and significance of efferocytosis and immune checkpoint related molecules in pancancer samples and the correlation of their expression with anticancer drug sensitivity. Front Pharmacol 2022; 13:977025. [PMID: 36059952 PMCID: PMC9437300 DOI: 10.3389/fphar.2022.977025] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 07/27/2022] [Indexed: 11/13/2022] Open
Abstract
Background: The efferocytosis-related molecules have been considered to be correlated with the resistance to cancer chemotherapy. The aim of this study was to investigate the expression and significance of efferocytosis-related molecules in cancers and the correlation of their expression with anticancer drug sensitivity, and provide new potential targets and treatment options for cancers.Methods: We investigated the differential expression of 15 efferocytosis-related molecules (Axl, Tyro3, MerTK, CX3CL1, Tim-4, BAI1, Stab2, Gas6, IDO1, Rac1, MFGE8, ICAM-1, CD47, CD31, and PD-L1) and other 12 common immune checkpoint-related molecules in tumor and normal tissues, the correlation between their expression and various clinicopathological features in 16 types of cancers using publicly available pancancer datasets in The Cancer Genome Atlas. We also analyzed the correlation of the expression of efferocytosis and immune checkpoint related molecules with 126 types of anticancer drugs sensitivity using drug-RNA-seq data.Results: There is a panel of circulating molecules among the 27 molecules. Based on the results of differential expression and correlation with various clinicopathological features of efferocytosis-related molecules in cancers, we identified new potential therapeutic targets for anticancer therapy, such as Axl for kidney renal clear cell carcinoma, Tyro3 for liver hepatocellular carcinoma, and IDO1 for renal papillary cell carcinoma. Except for BAI1, CD31, and MerTK, the enhanced expressions of Axl, Tyro3, Gas6, MFGE8, Stab2, Tim-4, CX3CL1, IDO1, Rac1, and PD-L1 were associated with decreased sensitivity of the cancer cells to many anti-cancer drugs; however, for other common immune checkpoint-related molecules, only enhanced expressions of PD-1, CD28, CTLA4, and HVEM were associated with decreased sensitivity of the cancer cells to a few drugs.Conclusion: The efferocytosis-related molecules were significantly associated with clinical outcomes in many types of cancers and played important roles in resistance to chemotherapy. Combination therapy targeting efferocytosis-related molecules and other immune checkpoint-related molecules is necessary to reduce resistance to chemotherapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Jing Hu
- *Correspondence: Fengjun Sun, ; Jing Hu,
| |
Collapse
|
43
|
Mahmoudi A, Firouzjaei AA, Darijani F, Navashenaq JG, Taghizadeh E, Darroudi M, Gheibihayat SM. Effect of diabetes on efferocytosis process. Mol Biol Rep 2022; 49:10849-10863. [PMID: 35902446 DOI: 10.1007/s11033-022-07725-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/04/2022] [Accepted: 06/16/2022] [Indexed: 11/28/2022]
Abstract
Diabetes is a complex of genetic, metabolic, and autoimmune disorders that are characterized by hyperglycemia. Elevated apoptotic cell count following defective clearance of dead cells that can cause chronic inflammation is a hallmark of the diabetic wound. Effective dead cell clearance is a prerequisite for rapid inflammation resolution and successful recovery. Efferocytosis is a multistep process in which phagocytes engulf the dead cells. Cell body elimination is of great significance in disease and homeostasis. Recent research has clarified that diabetic wounds have an enhanced load of the apoptotic cell, which is partly attributed to the dysfunction of macrophages in apoptotic clearance at the site of the diabetic wounds. In the current work, we highlight the pathways implicated in efferocytosis, from the diagnosis of apoptotic cells to the phagocytic swallowing and the homeostatic resolution, and explain the possible pathophysiological episodes occurring when the proceeding is abrogated. Also, we describe the last development in the management of inflammation in diabetes wound and future directions of surveillance.
Collapse
Affiliation(s)
- Ali Mahmoudi
- Department of medical biotechnology and nanotechnology, faculty of medicine, Mashhad University of Medical science, Mashhad, Iran
| | - Ali Ahmadizad Firouzjaei
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Darijani
- Department of Hematology and Medical Laboratory Sciences, Faculty of Allied Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | | | - Eskandar Taghizadeh
- Department of Medical Genetic, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Majid Darroudi
- Nuclear Medicine Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Basic Medical Sciences, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Seyed Mohammad Gheibihayat
- Department of Medical Biotechnology, School of Medicine, Shahid Sadoughi University of Medical Sciences, P.O. Box: 8915173143, Yazd, Iran.
| |
Collapse
|
44
|
Catanzaro E, Feron O, Skirtach AG, Krysko DV. Immunogenic Cell Death and Role of Nanomaterials Serving as Therapeutic Vaccine for Personalized Cancer Immunotherapy. Front Immunol 2022; 13:925290. [PMID: 35844506 PMCID: PMC9280641 DOI: 10.3389/fimmu.2022.925290] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 06/02/2022] [Indexed: 07/20/2023] Open
Abstract
Immunogenic cell death (ICD) is a rapidly growing research area representing one of the emerging therapeutic strategies of cancer immunotherapy. ICD is an umbrella term covering several cell death modalities including apoptosis, necroptosis, ferroptosis and pyroptosis, and is the product of a balanced combination of adjuvanticity (damage-associated molecular patterns and chemokines/cytokines) and antigenicity (tumor associated antigens). Only a limited number of anti-cancer therapies are available to induce ICD in experimental cancer therapies and even much less is available for clinical use. To overcome this limitation, nanomaterials can be used to increase the immunogenicity of cancer cells killed by anti-cancer therapy, which in themselves are not necessarily immunogenic. In this review, we outline the current state of knowledge of ICD modalities and discuss achievements in using nanomaterials to increase the immunogenicity of dying cancer cells. The emerging trends in modulating the immunogenicity of dying cancer cells in experimental and translational cancer therapies and the challenges facing them are described. In conclusion, nanomaterials are expected to drive further progress in their use to increase efficacy of anti-cancer therapy based on ICD induction and in the future, it is necessary to validate these strategies in clinical settings, which will be a challenging research area.
Collapse
Affiliation(s)
- Elena Catanzaro
- Cell Death Investigation and Therapy (CDIT) Laboratory, Department of Human Structure and Repair, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent, Ghent, Belgium
| | - Olivier Feron
- Cancer Translational Research Laboratory, Pole of Pharmacology and Therapeutics, Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, Brussels, Belgium
| | - André G. Skirtach
- Cancer Research Institute Ghent, Ghent, Belgium
- Nano-BioTechnology Laboratory, Department of Biotechnology, Ghent University, Ghent, Belgium
| | - Dmitri V. Krysko
- Cell Death Investigation and Therapy (CDIT) Laboratory, Department of Human Structure and Repair, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent, Ghent, Belgium
- Institute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
- Department of Pathophysiology, Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| |
Collapse
|
45
|
Zheng Y, Han Y, Sun Q, Li Z. Harnessing anti-tumor and tumor-tropism functions of macrophages via nanotechnology for tumor immunotherapy. EXPLORATION (BEIJING, CHINA) 2022; 2:20210166. [PMID: 37323705 PMCID: PMC10190945 DOI: 10.1002/exp.20210166] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 01/10/2022] [Indexed: 06/15/2023]
Abstract
Reprogramming the immunosuppressive tumor microenvironment by modulating macrophages holds great promise in tumor immunotherapy. As a class of professional phagocytes and antigen-presenting cells in the innate immune system, macrophages can not only directly engulf and clear tumor cells, but also play roles in presenting tumor-specific antigen to initiate adaptive immunity. However, the tumor-associated macrophages (TAMs) usually display tumor-supportive M2 phenotype rather than anti-tumor M1 phenotype. They can support tumor cells to escape immunological surveillance, aggravate tumor progression, and impede tumor-specific T cell immunity. Although many TAMs-modulating agents have shown great success in therapy of multiple tumors, they face enormous challenges including poor tumor accumulation and off-target side effects. An alternative solution is the use of advanced nanostructures, which not only can deliver TAMs-modulating agents to augment therapeutic efficacy, but also can directly serve as modulators of TAMs. Another important strategy is the exploitation of macrophages and macrophage-derived components as tumor-targeting delivery vehicles. Herein, we summarize the recent advances in targeting and engineering macrophages for tumor immunotherapy, including (1) direct and indirect effects of macrophages on the augmentation of immunotherapy and (2) strategies for engineering macrophage-based drug carriers. The existing perspectives and challenges of macrophage-based tumor immunotherapies are also highlighted.
Collapse
Affiliation(s)
- Yanhui Zheng
- Center for Molecular Imaging and Nuclear MedicineState Key Laboratory of Radiation Medicine and ProtectionSchool for Radiological and Interdisciplinary Sciences (RAD‐X)Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education InstitutionsSoochow UniversitySuzhouChina
| | - Yaobao Han
- Center for Molecular Imaging and Nuclear MedicineState Key Laboratory of Radiation Medicine and ProtectionSchool for Radiological and Interdisciplinary Sciences (RAD‐X)Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education InstitutionsSoochow UniversitySuzhouChina
| | - Qiao Sun
- Center for Molecular Imaging and Nuclear MedicineState Key Laboratory of Radiation Medicine and ProtectionSchool for Radiological and Interdisciplinary Sciences (RAD‐X)Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education InstitutionsSoochow UniversitySuzhouChina
| | - Zhen Li
- Center for Molecular Imaging and Nuclear MedicineState Key Laboratory of Radiation Medicine and ProtectionSchool for Radiological and Interdisciplinary Sciences (RAD‐X)Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education InstitutionsSoochow UniversitySuzhouChina
| |
Collapse
|
46
|
Zheng X, Chen J, Nan T, Zheng L, Lan J, Jin X, Cai Y, Liu H, Chen W. FAM198B promotes colorectal cancer progression by regulating the polarization of tumor-associated macrophages via the SMAD2 signaling pathway. Bioengineered 2022; 13:12435-12445. [PMID: 35587159 PMCID: PMC9276016 DOI: 10.1080/21655979.2022.2075300] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most common malignant tumors. Tumor-associated macrophages (TAMs) promote the progression of CRC, but the mechanism is not completely clear. The present study aimed to reveal the expression and function of FAM198B in TAMs, and the role of FAM198B in mediating macrophage polarization in CRC. The role of FAM198B in macrophage activity, cell cycle, and angiogenesis was evaluated by CCK-8 assay, flow cytometry, and vasculogenic mimicry assay. The effects of FAM198B on macrophage polarization were determined by flow cytometry. The function of FAM198B-mediated macrophage polarization on CRC progression was evaluated by transwell assays. Bioinformatic analyses and rescue assays were performed to identify biological functions and signaling pathways involved in FAM198B regulation of macrophage polarization. Increased FAM198B expression in TAMs is negatively associated with poor CRC prognosis. Functional assays showed that FAM198B promotes M2 macrophage polarization, which leads to CRC cell proliferation, migration, and invasion. Mechanistically, FAM198B regulates the M2 polarization of macrophages by targeting SMAD2, identifying the SMAD2 pathway as a mechanism by which FAM198B promotes CRC progression through regulating macrophage polarization. These findings provide a possible molecular mechanism for FAM198B in TAMs in CRC and suggest that FAM198B may be a novel therapeutic target in CRC.
Collapse
Affiliation(s)
- Xiaoxiao Zheng
- College of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.,Cancer Institute of Integrated Traditional Chinese and Western Medicine, Key Laboratory of Cancer Prevention and Therapy Combining Traditional Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, Zhejiang, China
| | - Jiabin Chen
- Cancer Institute of Integrated Traditional Chinese and Western Medicine, Key Laboratory of Cancer Prevention and Therapy Combining Traditional Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, Zhejiang, China
| | - Tianhao Nan
- College of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Li Zheng
- Cancer Institute of Integrated Traditional Chinese and Western Medicine, Key Laboratory of Cancer Prevention and Therapy Combining Traditional Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, Zhejiang, China
| | - Jiahua Lan
- Cancer Institute of Integrated Traditional Chinese and Western Medicine, Key Laboratory of Cancer Prevention and Therapy Combining Traditional Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, Zhejiang, China
| | - Xiaoqin Jin
- Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Ying Cai
- Cancer Institute of Integrated Traditional Chinese and Western Medicine, Key Laboratory of Cancer Prevention and Therapy Combining Traditional Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, Zhejiang, China
| | - Hao Liu
- Cancer Institute of Integrated Traditional Chinese and Western Medicine, Key Laboratory of Cancer Prevention and Therapy Combining Traditional Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, Zhejiang, China
| | - Wei Chen
- College of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.,Cancer Institute of Integrated Traditional Chinese and Western Medicine, Key Laboratory of Cancer Prevention and Therapy Combining Traditional Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
47
|
Jangani M, Vuononvirta J, Yamani L, Ward E, Capasso M, Nadkarni S, Balkwill F, Marelli-Berg F. Loss of mTORC2-induced metabolic reprogramming in monocytes uncouples migration and maturation from production of proinflammatory mediators. J Leukoc Biol 2022; 111:967-980. [PMID: 34585416 DOI: 10.1002/jlb.1a0920-588r] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Monocyte migration to the sites of inflammation and maturation into macrophages are key steps for their immune effector function. Here, we show that mechanistic target of rapamycin complex 2 (mTORC2)-dependent Akt activation is instrumental for metabolic reprogramming at the early stages of macrophage-mediated immunity. Despite an increased production of proinflammatory mediators, monocytes lacking expression of the mTORC2 component Rictor fail to efficiently migrate to inflammatory sites and fully mature into macrophages, resulting in reduced inflammatory responses in vivo. The mTORC2-dependent phosphorylation of Akt is instrumental for the enhancement of glycolysis and mitochondrial respiration, required to sustain monocyte maturation and motility. These observations are discussed in the context of therapeutic strategies aimed at selective inhibition of mTORC2 activity.
Collapse
Affiliation(s)
- Maryam Jangani
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, UK
| | - Juho Vuononvirta
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, UK
| | - Lamya Yamani
- Barts Cancer Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, UK
| | - Eleanor Ward
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, UK
| | - Melania Capasso
- Barts Cancer Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, UK
- German Center for Neurodegenerative Diseases (DZNE) within the Helmholtz Association, Bonn, Germany
| | - Suchita Nadkarni
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, UK
| | - Frances Balkwill
- Barts Cancer Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, UK
| | - Federica Marelli-Berg
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, UK
| |
Collapse
|
48
|
Wei YT, Wang XR, Yan C, Huang F, Zhang Y, Liu X, Wen ZF, Sun XT, Zhang Y, Chen YQ, Gao R, Pan N, Wang LX. Thymosin α-1 reverses M2 polarization of tumor-associated macrophages during efferocytosis. Cancer Res 2022; 82:1991-2002. [PMID: 35364609 DOI: 10.1158/0008-5472.can-21-4260] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/24/2022] [Accepted: 03/30/2022] [Indexed: 11/16/2022]
Abstract
The immunological effects of chemotherapy-induced tumor cell death are not completely understood. Accumulating evidence suggests that phagocytic clearance of apoptotic tumor cells, also known as efferocytosis, is an immunologically silent process, thus maintaining an immunosuppressive tumor microenvironment (TME). Here we report that, in the breast tumor microenvironment, thymosin α-1 (Tα-1) significantly reverses M2 polarization of IL-10-producing tumor-associated macrophages (TAM) during efferocytosis induced by apoptotic cells. Mechanistically, Tα-1, which bound to phosphatidylserine on the surface of apoptotic tumor cells and was internalized by macrophages, triggered the activation of SH2-containing inositol 5'-phosphatase 1 (SHIP1) through the lysosomal toll-like receptor 7 (TLR7)/MyD88 pathway, subsequently resulting in dephosphorylation of efferocytosis-activated TBK1 and reduction of efferocytosis-induced IL-10. Tα-1 combined with epirubicin chemotherapy markedly suppressed tumor growth in an in vivo breast cancer model by reducing macrophage-derived IL-10 and enhancing the number and function of tumor-infiltrating CD4+ and CD8+ T cells. In conclusion, Tα-1 improved the curative effect of chemotherapy by reversing M2 polarization of efferocytosis-activated macrophages, suggesting that Tα-1 injection immediately after chemotherapy may contribute to highly synergistic anti-tumor effects in breast cancer patients.
Collapse
Affiliation(s)
- Yi-Ting Wei
- Medical School of Southeast University, Nanjing, China
| | - Xu-Ru Wang
- Medical School of Southeast University, Nanjing, China
| | - Chunguang Yan
- Medical School of Southeast University, Nanjing, China
| | - Fang Huang
- Medical School of Southeast University, Nanjing, China
| | | | - Xueming Liu
- Medical School of Southeast University, Nanjing, China
| | - Zhi-Fa Wen
- Medical School of Southeast University, Nanjing, China
| | - Xiao-Tong Sun
- Medical School of Southeast University, Nanjing, China
| | - Yue Zhang
- Medical School of Southeast University, Nanjing, China
| | | | - Rong Gao
- Medical School of Southeast University, Nanjing, China
| | - Ning Pan
- Medical School of Southeast University, Nanjing, China
| | - Li-Xin Wang
- Medical School of Southeast University, Nanjing, China
| |
Collapse
|
49
|
Godugu K, Mousa SA, Glinsky GV, Lin HY, Davis PJ. In Vivo Clearance of Apoptotic Debris From Tumor Xenografts Exposed to Chemically Modified Tetrac: Is There a Role for Thyroid Hormone Analogues in Efferocytosis? Front Endocrinol (Lausanne) 2022; 13:745327. [PMID: 35311239 PMCID: PMC8931655 DOI: 10.3389/fendo.2022.745327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 01/28/2022] [Indexed: 11/16/2022] Open
Abstract
Apoptosis is induced in cancer cells and tumor xenografts by the thyroid hormone analogue tetraiodothyroacetic acid (tetrac) or chemically modified forms of tetrac. The effect is initiated at a hormone receptor on the extracellular domain of plasma membrane integrin αvβ3. The tumor response to tetrac includes 80% reduction in size of glioblastoma xenograft in two weeks of treatment, with absence of residual apoptotic cancer cell debris; this is consistent with efferocytosis. The molecular basis for efferocytosis linked to tetrac is incompletely understood, but several factors are proposed to play roles. Tetrac-based anticancer agents are pro-apoptotic by multiple intrinsic and extrinsic pathways and differential effects on specific gene expression, e.g., downregulation of the X-linked inhibitor of apoptosis (XIAP) gene and upregulation of pro-apoptotic chemokine gene, CXCL10. Tetrac also enhances transcription of chemokine CXCR4, which is relevant to macrophage function. Tetrac may locally control the conformation of phagocyte plasma membrane integrin αvβ3; this is a cell surface recognition system for apoptotic debris that contains phagocytosis signals. How tetrac may facilitate the catabolism of the engulfed apoptotic cell debris requires additional investigation.
Collapse
Affiliation(s)
- Kavitha Godugu
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY, United States
| | - Shaker A. Mousa
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY, United States
| | - Gennadi V. Glinsky
- Institute of Engineering in Medicine, University of California, San Diego, CA, United States
| | - Hung-Yun Lin
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- Cancer Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- Traditional Herbal Medicine Research Center of Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan
| | - Paul J. Davis
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY, United States
- Department of Medicine, Albany Medical College, Albany, NY, United States
| |
Collapse
|
50
|
Plundrich D, Chikhladze S, Fichtner-Feigl S, Feuerstein R, Briquez PS. Molecular Mechanisms of Tumor Immunomodulation in the Microenvironment of Colorectal Cancer. Int J Mol Sci 2022; 23:2782. [PMID: 35269922 PMCID: PMC8910988 DOI: 10.3390/ijms23052782] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/24/2022] [Accepted: 02/25/2022] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer remains one of the most important health challenges in our society. The development of cancer immunotherapies has fostered the need to better understand the anti-tumor immune mechanisms at play in the tumor microenvironment and the strategies by which the tumor escapes them. In this review, we provide an overview of the molecular interactions that regulate tumor inflammation. We particularly discuss immunomodulatory cell-cell interactions, cell-soluble factor interactions, cell-extracellular matrix interactions and cell-microbiome interactions. While doing so, we highlight relevant examples of tumor immunomodulation in colorectal cancer.
Collapse
Affiliation(s)
- Dorothea Plundrich
- Department of General and Visceral Surgery, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Sophia Chikhladze
- Department of General and Visceral Surgery, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
- Department of Biomedical Sciences, Cedars-Sinai Cancer Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA 900048, USA
- Department of Medicine, Cedars-Sinai Cancer Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA 900048, USA
| | - Stefan Fichtner-Feigl
- Department of General and Visceral Surgery, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Reinhild Feuerstein
- Department of General and Visceral Surgery, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Priscilla S Briquez
- Department of General and Visceral Surgery, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| |
Collapse
|