1
|
Martino C, Badalamenti R, Frinchi M, Chiarelli R, Palumbo Piccionello A, Urone G, Mauro M, Arizza V, Luparello C, Di Liberto V, Mudò G, Vazzana M. The stunting effect of an oxylipins-containing macroalgae extract on sea urchin reproduction and neuroblastoma cells viability. CHEMOSPHERE 2024; 359:142278. [PMID: 38734249 DOI: 10.1016/j.chemosphere.2024.142278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/03/2024] [Accepted: 05/05/2024] [Indexed: 05/13/2024]
Abstract
Different bioactive molecules extracted from macroalgae, including oxylipins, showed interesting potentials in different applications, from healthcare to biomaterial manufacturing and environmental remediation. Thus far, no studies reported the effects of oxylipins-containing macroalgae extracts on embryo development of marine invertebrates and on neuroblastoma cancer cells. Here, the effects of an oxylipins-containing extract from Ericaria brachycarpa, a canopy-forming brown algae, were investigated on the development of Arbacia lixula sea urchin embryos and on SH-SY5Y neuroblastoma cells viability. Embryos and cells were exposed to concentrations covering a full 0-100% dose-response curve, with doses ranging from 0 to 40 μg mL-1 for embryos and from 0 to 200 μg mL-1 for cells. These natural marine toxins caused a dose-dependent decrease of normal embryos development and of neuroblastoma cells viability. Toxicity was higher for exposures starting from the gastrula embryonal stage if compared to the zygote and pluteus stages, with an EC50 significantly lower by 33 and 68%, respectively. Embryos exposed to low doses showed a general delay in development with a decrease in the ability to calcify, while higher doses caused 100% block of embryo growth. Exposure of SH-SY5Y neuroblastoma cells to 40 μg mL-1 for 72 h caused 78% mortality, while no effect was observed on their neuronal-like cells derivatives, suggesting a selective targeting of proliferating cells. Western Blot experiments on both model systems displayed the modulation of different molecular markers (HSP60, HSP90, LC3, p62, CHOP and cleaved caspase-7), showing altered stress response and enhanced autophagy and apoptosis, confirmed by increased fragmented DNA in apoptotic nuclei. Our study gives new insights into the molecular strategies that marine invertebrates use when responding to their environmental natural toxins and suggests the E. brachycarpa's extract as a potential source for the development of innovative, environmentally friendly products with larvicide and antineoplastic activity.
Collapse
Affiliation(s)
- Chiara Martino
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 18, 90123, Palermo, Italy; NBFC, National Biodiversity Future Center, Piazza Marina 61, 90133, Palermo, Italy.
| | - Rosario Badalamenti
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 18, 90123, Palermo, Italy
| | - Monica Frinchi
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Corso Tukory 129, 90134, Palermo, Italy.
| | - Roberto Chiarelli
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 18, 90123, Palermo, Italy
| | - Antonio Palumbo Piccionello
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 18, 90123, Palermo, Italy
| | - Giulia Urone
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Corso Tukory 129, 90134, Palermo, Italy
| | - Manuela Mauro
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 18, 90123, Palermo, Italy
| | - Vincenzo Arizza
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 18, 90123, Palermo, Italy; NBFC, National Biodiversity Future Center, Piazza Marina 61, 90133, Palermo, Italy
| | - Claudio Luparello
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 18, 90123, Palermo, Italy; NBFC, National Biodiversity Future Center, Piazza Marina 61, 90133, Palermo, Italy
| | - Valentina Di Liberto
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Corso Tukory 129, 90134, Palermo, Italy
| | - Giuseppa Mudò
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Corso Tukory 129, 90134, Palermo, Italy
| | - Mirella Vazzana
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 18, 90123, Palermo, Italy; NBFC, National Biodiversity Future Center, Piazza Marina 61, 90133, Palermo, Italy
| |
Collapse
|
2
|
El Jaddaoui I, Rangel DEN, Bennett JW. Fungal volatiles have physiological properties. Fungal Biol 2023; 127:1231-1240. [PMID: 37495313 DOI: 10.1016/j.funbio.2023.03.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 04/04/2023]
Abstract
All fungi emit mixtures of volatile organic compounds (VOCs) during growth. The qualitative and quantitative composition of these volatile mixtures vary with the species of fungus, the age of the fungus, and the environmental parameters attending growth. In nature, fungal VOCs are found as combinations of alcohols, aldehydes, acids, ethers, esters, ketones, terpenes, thiols and their derivatives, and are responsible for the characteristic odors associated with molds, mushrooms and yeasts. One of the single most common fungal volatiles is 1-octen-3-ol also known as "mushroom alcohol" or "matsutake alcohol." Many volatiles, including 1-octen-3-ol, serve as communication agents and display biological activity as germination inhibitors, plant growth retardants or promoters, and as semiochemicals ("infochemicals") in interactions with arthropods. Volatiles are understudied and underappreciated elements of the chemical lives of fungi. This review gives a brief introduction to fungal volatiles in hopes of raising awareness of the physiological importance of these gas phase fungal metabolites to encourage mycologists and other biologists to stop "throwing away the head space."
Collapse
Affiliation(s)
- Islam El Jaddaoui
- Department of Plant Biology, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Drauzio E N Rangel
- Universidade Tecnológica Federal do Paraná, Dois Vizinhos, Paraná, Brazil
| | - Joan Wennstrom Bennett
- Department of Plant Biology, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA.
| |
Collapse
|
3
|
Nagy L, Vonk P, Künzler M, Földi C, Virágh M, Ohm R, Hennicke F, Bálint B, Csernetics Á, Hegedüs B, Hou Z, Liu X, Nan S, Pareek M, Sahu N, Szathmári B, Varga T, Wu H, Yang X, Merényi Z. Lessons on fruiting body morphogenesis from genomes and transcriptomes of Agaricomycetes. Stud Mycol 2023; 104:1-85. [PMID: 37351542 PMCID: PMC10282164 DOI: 10.3114/sim.2022.104.01] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 12/02/2022] [Indexed: 01/09/2024] Open
Abstract
Fruiting bodies (sporocarps, sporophores or basidiomata) of mushroom-forming fungi (Agaricomycetes) are among the most complex structures produced by fungi. Unlike vegetative hyphae, fruiting bodies grow determinately and follow a genetically encoded developmental program that orchestrates their growth, tissue differentiation and sexual sporulation. In spite of more than a century of research, our understanding of the molecular details of fruiting body morphogenesis is still limited and a general synthesis on the genetics of this complex process is lacking. In this paper, we aim at a comprehensive identification of conserved genes related to fruiting body morphogenesis and distil novel functional hypotheses for functionally poorly characterised ones. As a result of this analysis, we report 921 conserved developmentally expressed gene families, only a few dozens of which have previously been reported to be involved in fruiting body development. Based on literature data, conserved expression patterns and functional annotations, we provide hypotheses on the potential role of these gene families in fruiting body development, yielding the most complete description of molecular processes in fruiting body morphogenesis to date. We discuss genes related to the initiation of fruiting, differentiation, growth, cell surface and cell wall, defence, transcriptional regulation as well as signal transduction. Based on these data we derive a general model of fruiting body development, which includes an early, proliferative phase that is mostly concerned with laying out the mushroom body plan (via cell division and differentiation), and a second phase of growth via cell expansion as well as meiotic events and sporulation. Altogether, our discussions cover 1 480 genes of Coprinopsis cinerea, and their orthologs in Agaricus bisporus, Cyclocybe aegerita, Armillaria ostoyae, Auriculariopsis ampla, Laccaria bicolor, Lentinula edodes, Lentinus tigrinus, Mycena kentingensis, Phanerochaete chrysosporium, Pleurotus ostreatus, and Schizophyllum commune, providing functional hypotheses for ~10 % of genes in the genomes of these species. Although experimental evidence for the role of these genes will need to be established in the future, our data provide a roadmap for guiding functional analyses of fruiting related genes in the Agaricomycetes. We anticipate that the gene compendium presented here, combined with developments in functional genomics approaches will contribute to uncovering the genetic bases of one of the most spectacular multicellular developmental processes in fungi. Citation: Nagy LG, Vonk PJ, Künzler M, Földi C, Virágh M, Ohm RA, Hennicke F, Bálint B, Csernetics Á, Hegedüs B, Hou Z, Liu XB, Nan S, M. Pareek M, Sahu N, Szathmári B, Varga T, Wu W, Yang X, Merényi Z (2023). Lessons on fruiting body morphogenesis from genomes and transcriptomes of Agaricomycetes. Studies in Mycology 104: 1-85. doi: 10.3114/sim.2022.104.01.
Collapse
Affiliation(s)
- L.G. Nagy
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - P.J. Vonk
- Microbiology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands;
| | - M. Künzler
- Institute of Microbiology, Department of Biology, Eidgenössische Technische Hochschule (ETH) Zürich, Zürich, Switzerland;
| | - C. Földi
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - M. Virágh
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - R.A. Ohm
- Microbiology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands;
| | - F. Hennicke
- Project Group Genetics and Genomics of Fungi, Chair Evolution of Plants and Fungi, Ruhr-University Bochum, 44780, Bochum, North Rhine-Westphalia, Germany;
| | - B. Bálint
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - Á. Csernetics
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - B. Hegedüs
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - Z. Hou
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - X.B. Liu
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - S. Nan
- Institute of Applied Mycology, Huazhong Agricultural University, 430070 Hubei Province, PR China
| | - M. Pareek
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - N. Sahu
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - B. Szathmári
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - T. Varga
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - H. Wu
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - X. Yang
- Institute of Applied Mycology, Huazhong Agricultural University, 430070 Hubei Province, PR China
| | - Z. Merényi
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| |
Collapse
|
4
|
Nicoletti R, Andolfi A, Becchimanzi A, Salvatore MM. Anti-Insect Properties of Penicillium Secondary Metabolites. Microorganisms 2023; 11:1302. [PMID: 37317276 PMCID: PMC10221605 DOI: 10.3390/microorganisms11051302] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/13/2023] [Accepted: 05/14/2023] [Indexed: 06/16/2023] Open
Abstract
In connection with their widespread occurrence in diverse environments and ecosystems, fungi in the genus Penicillium are commonly found in association with insects. In addition to some cases possibly implying a mutualistic relationship, this symbiotic interaction has mainly been investigated to verify the entomopathogenic potential in light of its possible exploitation in ecofriendly strategies for pest control. This perspective relies on the assumption that entomopathogenicity is often mediated by fungal products and that Penicillium species are renowned producers of bioactive secondary metabolites. Indeed, a remarkable number of new compounds have been identified and characterized from these fungi in past decades, the properties and possible applications of which in insect pest management are reviewed in this paper.
Collapse
Affiliation(s)
- Rosario Nicoletti
- Council for Agricultural Research and Economics, Research Center for Olive, Fruit and Citrus Crops, 81100 Caserta, Italy;
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy
| | - Anna Andolfi
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy; (A.A.); (M.M.S.)
- BAT Center-Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University of Naples Federico II, 80055 Portici, Italy
| | - Andrea Becchimanzi
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy
- BAT Center-Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University of Naples Federico II, 80055 Portici, Italy
| | - Maria Michela Salvatore
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy; (A.A.); (M.M.S.)
- Institute for Sustainable Plant Protection, National Research Council, 80055 Portici, Italy
| |
Collapse
|
5
|
Liu Z, Fu B, Wang J, Li W, Hu Y, Liu Z, Fu C, Li D, Wang C, Xu N. Transcriptomics Reveals the Effect of Strain Interactions on the Growth of A. Oryzae and Z. Rouxii. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:5525-5534. [PMID: 36989392 DOI: 10.1021/acs.jafc.3c00664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
The microbial community structure in traditional fermented foods is quite complex, making the relationship between strains unclear. In this regard, the co-culture system can simulate microbial interactions during food fermentation and reveal the morphological changes, metabolic processes, and gene expression of microbial communities. The present study sought to investigate the effects of microbial interactions on the growth of Aspergillus oryzae and Zygosaccharomyces rouxii through omics. After co-cultivation, the pH value and dry weight were consistent with the pure culture of Z. rouxii. Additionally, the consumption of reducing sugar decreased, and the enzymatic activity increased compared with the pure culture of fungus. The analysis of volatile organic compounds (VOCs) and transcriptomics showed that co-culture significantly promoted the effect on Z. rouxii. A total of 6 different VOCs and 2202 differentially expressed genes were identified in the pure and co-culture of Z. rouxii. The differentially expressed genes were mainly related to the endonucleolytic cleavage of rRNA, ribosome biogenesis in eukaryotes, and RNA polymerase metabolic pathways. The study results will provide insights into the effect of microbial interactions on the growth of A. oryzae and Z. rouxii.
Collapse
Affiliation(s)
- Zeping Liu
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Bin Fu
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Jing Wang
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Wei Li
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Yong Hu
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Zhijie Liu
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Caixia Fu
- Hubei Tulaohan Flavouring and Food Co., Ltd., Yichang, Hubei 443000, China
| | - Dongsheng Li
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Chao Wang
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Ning Xu
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, Hubei 430068, China
| |
Collapse
|
6
|
Lee CH, Lee YY, Chang YC, Pon WL, Lee SP, Wali N, Nakazawa T, Honda Y, Shie JJ, Hsueh YP. A carnivorous mushroom paralyzes and kills nematodes via a volatile ketone. SCIENCE ADVANCES 2023; 9:eade4809. [PMID: 36652525 PMCID: PMC9848476 DOI: 10.1126/sciadv.ade4809] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 12/16/2022] [Indexed: 05/27/2023]
Abstract
The carnivorous mushroom Pleurotus ostreatus uses an unknown toxin to rapidly paralyze and kill nematode prey upon contact. We report that small lollipop-shaped structures (toxocysts) on fungal hyphae are nematicidal and that a volatile ketone, 3-octanone, is detected in these fragile toxocysts. Treatment of Caenorhabditis elegans with 3-octanone recapitulates the rapid paralysis, calcium influx, and neuronal cell death arising from fungal contact. Moreover, 3-octanone disrupts cell membrane integrity, resulting in extracellular calcium influx into cytosol and mitochondria, propagating cell death throughout the entire organism. Last, we demonstrate that structurally related compounds are also biotoxic to C. elegans, with the length of the ketone carbon chain being crucial. Our work reveals that the oyster mushroom has evolved a specialized structure containing a volatile ketone to disrupt the cell membrane integrity of its prey, leading to rapid cell and organismal death in nematodes.
Collapse
Affiliation(s)
- Ching-Han Lee
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Yi-Yun Lee
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
- Molecular Cell Biology, Taiwan International Graduate Program, Academia Sinica and Graduate Institute of Life Science, National Defense Medical Center, Taipei, Taiwan
| | - Yu-Chu Chang
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Wen-Li Pon
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Sue-Ping Lee
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Niaz Wali
- Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan
- Institute of Biochemical Sciences, National Taiwan University, Taipei 10617, Taiwan
- Chemical Biology and Molecular Biophysics, Taiwan International Graduate Program, Academia Sinica, Taipei 10617, Taiwan
| | - Takehito Nakazawa
- Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Yoichi Honda
- Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Jiun-Jie Shie
- Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan
- Institute of Biochemical Sciences, National Taiwan University, Taipei 10617, Taiwan
- Chemical Biology and Molecular Biophysics, Taiwan International Graduate Program, Academia Sinica, Taipei 10617, Taiwan
| | - Yen-Ping Hsueh
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
- Molecular Cell Biology, Taiwan International Graduate Program, Academia Sinica and Graduate Institute of Life Science, National Defense Medical Center, Taipei, Taiwan
- Department of Biochemical Science and Technology, National Taiwan University, Taipei 10617, Taiwan
- Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan
- Department of Biochemical Science and Technology, National Chiayi University, Chiayi City 60004, Taiwan
| |
Collapse
|
7
|
Macedo GE, Vieira PDB, Rodrigues NR, Gomes KK, Rodrigues JF, Franco JL, Posser T. Effect of fungal indoor air pollutant 1-octen-3-ol on levels of reactive oxygen species and nitric oxide as well as dehydrogenases activities in drosophila melanogaster males. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2022; 85:573-585. [PMID: 35354383 DOI: 10.1080/15287394.2022.2054887] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Fungal pollution of indoor environments contributes to several allergic symptoms and represents a public health problem. It is well-established that 1-octen-3-ol, also known as mushroom alcohol, is a fungal volatile organic compound (VOC) commonly found in damp indoor spaces and responsible for the typical musty odor. Previously it was reported that exposure to 1-octen-3-ol induced inflammations and disrupted mitochondrial morphology and bioenergetic rate in Drosophila melanogaster. The aim of this study was to examine the influence of 1-octen-3-ol on dehydrogenase activity, apoptotic biomarkers, levels of nitric oxide (NO) and reactive oxygen species (ROS), as well as antioxidant enzymes activities. D. melanogaster flies were exposed to an atmosphere containing 1-octen-3-ol (2.5 or ∞l/L) for 24 hr. Data demonstrated that 1-octen-3-ol decreased dehydrogenases activity and NO levels but increased ROS levels accompanied by stimulation of glutathione-S-transferase (GST) and superoxide dismutase (SOD) activities without altering caspase 3/7 activation. These findings indicate that adverse mitochondrial activity effects following exposure of D. melanogaster to 1-octen-3-ol, a fungal VOC, may be attributed to oxidant stress. The underlying mechanisms involved in adverse consequences of indoor fungal exposure appear to be related to necrotic but not apoptotic mechanisms. The adverse consequences were sex-dependent with males displaying higher sensitivity to 1-octen-3-ol. Based upon on the fact that the fly genome shares nearly 75% of disease-related genes to human exposure to this fungus may explain the adverse human responses to mold especially for males.
Collapse
Affiliation(s)
- Giulianna Echeverria Macedo
- Oxidative Stress and Cell Signaling Research Group, Centro Interdisciplinar em Biotecnologia - CIPBIOTEC, Universidade Federal do Pampa, Campus São Gabriel, São Gabriel, Brazil
| | - Patrícia de Brum Vieira
- Oxidative Stress and Cell Signaling Research Group, Centro Interdisciplinar em Biotecnologia - CIPBIOTEC, Universidade Federal do Pampa, Campus São Gabriel, São Gabriel, Brazil
| | - Nathane Rosa Rodrigues
- Oxidative Stress and Cell Signaling Research Group, Centro Interdisciplinar em Biotecnologia - CIPBIOTEC, Universidade Federal do Pampa, Campus São Gabriel, São Gabriel, Brazil
- Departamento de Bioquímica e Biologia Molecular, CCNE, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Karen Kich Gomes
- Oxidative Stress and Cell Signaling Research Group, Centro Interdisciplinar em Biotecnologia - CIPBIOTEC, Universidade Federal do Pampa, Campus São Gabriel, São Gabriel, Brazil
| | - Jéssica Ferreira Rodrigues
- Oxidative Stress and Cell Signaling Research Group, Centro Interdisciplinar em Biotecnologia - CIPBIOTEC, Universidade Federal do Pampa, Campus São Gabriel, São Gabriel, Brazil
| | - Jeferson Luis Franco
- Oxidative Stress and Cell Signaling Research Group, Centro Interdisciplinar em Biotecnologia - CIPBIOTEC, Universidade Federal do Pampa, Campus São Gabriel, São Gabriel, Brazil
- Departamento de Bioquímica e Biologia Molecular, CCNE, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Thaís Posser
- Oxidative Stress and Cell Signaling Research Group, Centro Interdisciplinar em Biotecnologia - CIPBIOTEC, Universidade Federal do Pampa, Campus São Gabriel, São Gabriel, Brazil
| |
Collapse
|
8
|
Wang X, Huang M, Peng Y, Yang W, Shi J. Antifungal activity of 1-octen-3-ol against Monilinia fructicola and its ability in enhancing disease resistance of peach fruit. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108804] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
9
|
Sharifi R, Jeon JS, Ryu CM. Belowground plant-microbe communications via volatile compounds. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:463-486. [PMID: 34727189 DOI: 10.1093/jxb/erab465] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 10/21/2021] [Indexed: 06/13/2023]
Abstract
Volatile compounds play important roles in rhizosphere biological communications and interactions. The emission of plant and microbial volatiles is a dynamic phenomenon that is affected by several endogenous and exogenous signals. Diffusion of volatiles can be limited by their adsorption, degradation, and dissolution under specific environmental conditions. Therefore, rhizosphere volatiles need to be investigated on a micro and spatiotemporal scale. Plant and microbial volatiles can expand and specialize the rhizobacterial niche not only by improving the root system architecture such that it serves as a nutrient-rich shelter, but also by inhibiting or promoting the growth, chemotaxis, survival, and robustness of neighboring organisms. Root volatiles play an important role in engineering the belowground microbiome by shaping the microbial community structure and recruiting beneficial microbes. Microbial volatiles are appropriate candidates for improving plant growth and health during environmental challenges and climate change. However, some technical and experimental challenges limit the non-destructive monitoring of volatile emissions in the rhizosphere in real-time. In this review, we attempt to clarify the volatile-mediated intra- and inter-kingdom communications in the rhizosphere, and propose improvements in experimental design for future research.
Collapse
Affiliation(s)
- Rouhallah Sharifi
- Department of Plant Protection, College of Agriculture and Natural Resources, Razi University, Kermanshah, Iran
| | - Je-Seung Jeon
- Molecular Phytobacteriology Laboratory, Infectious Disease Research Center, KRIBB, Daejeon 34141, South Korea
| | - Choong-Min Ryu
- Molecular Phytobacteriology Laboratory, Infectious Disease Research Center, KRIBB, Daejeon 34141, South Korea
- Biosystem and Bioengineering Program, University of Science and Technology (UST), Daejeon 34141, South Korea
| |
Collapse
|
10
|
Yin G, Zhao H, Pennerman KK, Jurick WM, Fu M, Bu L, Guo A, Bennett JW. Genomic Analyses of Penicillium Species Have Revealed Patulin and Citrinin Gene Clusters and Novel Loci Involved in Oxylipin Production. J Fungi (Basel) 2021; 7:743. [PMID: 34575780 PMCID: PMC8464941 DOI: 10.3390/jof7090743] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/07/2021] [Accepted: 09/07/2021] [Indexed: 01/20/2023] Open
Abstract
Blue mold of apple is caused by several different Penicillium species, among which P. expansum and P. solitum are the most frequently isolated. P. expansum is the most aggressive species, and P. solitum is very weak when infecting apple fruit during storage. In this study, we report complete genomic analyses of three different Penicillium species: P. expansum R21 and P. crustosum NJ1, isolated from stored apple fruit; and P. maximae 113, isolated in 2013 from a flooded home in New Jersey, USA, in the aftermath of Hurricane Sandy. Patulin and citrinin gene cluster analyses explained the lack of patulin production in NJ1 compared to R21 and lack of citrinin production in all three strains. A Drosophila bioassay demonstrated that volatiles emitted by P. solitum SA and P. polonicum RS1 were more toxic than those from P. expansum and P. crustosum strains (R27, R11, R21, G10, and R19). The toxicity was hypothesized to be related to production of eight-carbon oxylipins. Putative lipoxygenase genes were identified in P. expansum and P. maximae strains, but not in P. crustosum. Our data will provide a better understanding of Penicillium spp. complex secondary metabolic capabilities, especially concerning the genetic bases of mycotoxins and toxic VOCs.
Collapse
Affiliation(s)
- Guohua Yin
- Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (H.Z.); (M.F.)
- Department of Plant Biology and Pathology, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA;
| | - Hui Zhao
- Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (H.Z.); (M.F.)
| | - Kayla K. Pennerman
- Toxicology and Mycotoxin Research Unit, U.S. Department of Agriculture, Agricultural Research Service (USDA ARS), Athens, GA 30605, USA;
| | - Wayne M. Jurick
- Food Quality Laboratory, U.S. Department of Agriculture, Agricultural Research Service (USDA ARS), Beltsville, MD 20705, USA;
| | - Maojie Fu
- Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (H.Z.); (M.F.)
| | - Lijing Bu
- Center for Evolutionary & Theoretical Immunology (CETI), Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA;
| | - Anping Guo
- Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (H.Z.); (M.F.)
| | - Joan W. Bennett
- Department of Plant Biology and Pathology, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA;
| |
Collapse
|
11
|
Inamdar AA, Morath S, Bennett JW. Fungal Volatile Organic Compounds: More Than Just a Funky Smell? Annu Rev Microbiol 2021; 74:101-116. [PMID: 32905756 DOI: 10.1146/annurev-micro-012420-080428] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Many volatile organic compounds (VOCs) associated with industry cause adverse health effects, but less is known about the physiological effects of biologically produced volatiles. This review focuses on the VOCs emitted by fungi, which often have characteristic moldy or "mushroomy" odors. One of the most common fungal VOCs, 1-octen-3-ol, is a semiochemical for many arthropod species and also serves as a developmental hormone for several fungal groups. Other fungal VOCs are flavor components of foods and spirits or are assayed in indirect methods for detecting the presence of mold in stored agricultural produce and water-damaged buildings. Fungal VOCs function as antibiotics as well as defense and plant-growth-promoting agents and have been implicated in a controversial medical condition known as sick building syndrome. In this review, we draw attention to the ubiquity, diversity, and toxicological significance of fungal VOCs as well as some of their ecological roles.
Collapse
Affiliation(s)
- Arati A Inamdar
- Department of Pathology, RWJ Barnabas Health, Livingston, New Jersey 07039, USA;
| | - Shannon Morath
- Department of Plant Biology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08901, USA; ,
| | - Joan W Bennett
- Department of Plant Biology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08901, USA; ,
| |
Collapse
|
12
|
Almaliki HS, Angela A, Goraya NJ, Yin G, Bennett JW. Volatile Organic Compounds Produced by Human Pathogenic Fungi Are Toxic to Drosophila melanogaster. FRONTIERS IN FUNGAL BIOLOGY 2021; 1:629510. [PMID: 37743879 PMCID: PMC10512272 DOI: 10.3389/ffunb.2020.629510] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 12/21/2020] [Indexed: 09/26/2023]
Abstract
Volatile organic compounds (VOCs) are low molecular mass organic compounds that easily evaporate at room temperature. Fungi produce diverse mixtures of VOCs, some of which may contribute to "sick building syndrome," and which have been shown to be toxigenic in a variety of laboratory bioassays. We hypothesized that VOCs from medically important fungi might be similarly toxigenic and tested strains of Aspergillus fumigatus, Candida albicans, Cryptococcus neoformans, Cryptococcus gattii, and Saccharomyces cerevisiae in a Drosophila melanogaster eclosion bioassay. Fungi were grown in a shared microhabitat with third instar larvae of D. melanogaster such that there was no physical contact between flies and fungi. As the flies went through metamorphosis, the numbers of larvae, pupae, and adults were counted daily for 15 days. After 8 days, ~80% of controls had eclosed into adults and after 15 days the controls yielded 96-97% eclosion. In contrast, eclosion rates at 8 days were below 70% for flies exposed to VOCs from six different A. fumigatus strains; the eclosion rate at 15 days was only 58% for flies exposed to VOCs from A. fumigatus strain SRRC 1607. When flies were grown in a shared atmosphere with VOCs from S. cerevisiae, after 15 days, 82% of flies had eclosed into adults. Exposure to the VOCs from the medically important yeasts Candida albicans, Cryptococcus neoformans, and Cryptococcus gattii caused significant delays in metamorphosis with eclosion rates of 58% for Candida albicans, 44% for Cryptococcus neoformans, and 56% for Cryptococcus gattii. Using gas chromatography-mass spectrometry, the VOCs from the most toxic and least toxic strains of A. fumigatus were assayed. The two most common VOCs produced by both strains were 1-octen-3-ol and isopentyl alcohol; however, these compounds were produced in 10-fold higher concentrations by the more toxic strain. Our research demonstrates that gas phase compounds emitted by fungal pathogens may have been overlooked as contributing to the pathogenicity of medically important fungi and therefore deserve more scrutiny by the medical mycology research community.
Collapse
Affiliation(s)
- Hadeel S. Almaliki
- Department of Plant Biology, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States
- Technical Institute of Samawa, Al-Furat Al-Awsat Technical University, Samawa, Iraq
| | - Astrid Angela
- Department of Plant Biology, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States
| | - Nayab J. Goraya
- Department of Plant Biology, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States
| | - Guohua Yin
- Department of Plant Biology, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States
| | - Joan W. Bennett
- Department of Plant Biology, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States
| |
Collapse
|
13
|
Macedo GE, de Brum Vieira P, Rodrigues NR, Gomes KK, Martins IK, Franco JL, Posser T. Fungal compound 1-octen-3-ol induces mitochondrial morphological alterations and respiration dysfunctions in Drosophila melanogaster. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 206:111232. [PMID: 32890927 DOI: 10.1016/j.ecoenv.2020.111232] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 08/20/2020] [Accepted: 08/23/2020] [Indexed: 06/11/2023]
Abstract
Fungal volatile organic compounds (VOCs) comprise a group of compounds commonly found in damp or water-damaged indoor places affecting air quality. Indoor fungal pollution is a severe threat to human health, contributing to the onset of allergic diseases. The compound 1-octen-3-ol, known as "mushroom alcohol", is the most abundant VOC and confers the characteristic mold odor. Exposure to 1-octen-3-ol induces inflammatory markers and episodes of allergic rhinitis and conjunctivitis; however, the effects of this compound towards mitochondria are fairly known. The present study aimed to evaluate the effects of 1-octen-3-ol on inflammatory targets and on mitochondrial morphology and bioenergetic rate in D. melanogaster. Drosophilas were exposed by inhalation to 2.5 μL/L and 5 μL/L of 1-octen-3-ol for 24 h. Observation showed a decreasing in the survival and locomotor ability of flies. Superoxide dismutase (SOD) activity was induced whereas Catalase (CAT) activity was inhibited. Analysis of the mitochondria respiration, detected inhibition of complex I and II in the electron transport chain and a decreased bioenergetic rate. Electronic microscopy provided morphological insights of the mitochondrial status in which a disarrangement in mitochondrial cristae profile was observed. 1-Octen-3-ol induced increased activity of caspase 3/7 and ERK phosphorylation. The mRNA relative steady-state levels of p38MAPK and JNK were down-regulated, whereas NF-κB and p53 were up-regulated. In parallel, nitrite levels were induced in relation to the non-exposed group. These findings point to the mitochondria as a crucial target for the toxicity of 1-octen-3-ol in parallel with activation of pro-inflammatory factors and apoptotic signaling pathway cascade.
Collapse
Affiliation(s)
- Giulianna Echeverria Macedo
- Oxidative Stress and Cell Signaling Research Group, Centro Interdisciplinar Em Biotecnologia - CIPBIOTEC, Universidade Federal Do Pampa, Campus São Gabriel, 97307-020, São Gabriel, RS, Brazil.
| | - Patrícia de Brum Vieira
- Oxidative Stress and Cell Signaling Research Group, Centro Interdisciplinar Em Biotecnologia - CIPBIOTEC, Universidade Federal Do Pampa, Campus São Gabriel, 97307-020, São Gabriel, RS, Brazil.
| | - Nathane Rosa Rodrigues
- Oxidative Stress and Cell Signaling Research Group, Centro Interdisciplinar Em Biotecnologia - CIPBIOTEC, Universidade Federal Do Pampa, Campus São Gabriel, 97307-020, São Gabriel, RS, Brazil; Departamento de Bioquímica e Biologia Molecular, CCNE, Universidade Federal de Santa Maria, 97105-900, Santa Maria, RS, Brazil.
| | - Karen Kich Gomes
- Oxidative Stress and Cell Signaling Research Group, Centro Interdisciplinar Em Biotecnologia - CIPBIOTEC, Universidade Federal Do Pampa, Campus São Gabriel, 97307-020, São Gabriel, RS, Brazil.
| | - Illana Kemmerich Martins
- Oxidative Stress and Cell Signaling Research Group, Centro Interdisciplinar Em Biotecnologia - CIPBIOTEC, Universidade Federal Do Pampa, Campus São Gabriel, 97307-020, São Gabriel, RS, Brazil.
| | - Jeferson Luis Franco
- Oxidative Stress and Cell Signaling Research Group, Centro Interdisciplinar Em Biotecnologia - CIPBIOTEC, Universidade Federal Do Pampa, Campus São Gabriel, 97307-020, São Gabriel, RS, Brazil; Departamento de Bioquímica e Biologia Molecular, CCNE, Universidade Federal de Santa Maria, 97105-900, Santa Maria, RS, Brazil.
| | - Thaís Posser
- Oxidative Stress and Cell Signaling Research Group, Centro Interdisciplinar Em Biotecnologia - CIPBIOTEC, Universidade Federal Do Pampa, Campus São Gabriel, 97307-020, São Gabriel, RS, Brazil.
| |
Collapse
|
14
|
Pennerman KK, Scarsella JB, Yin GH, Hua SST, Hartman TG, Bennett JW. Volatile 1-octen-3-ol increases patulin production by Penicillium expansum on a patulin-suppressing medium. Mycotoxin Res 2019; 35:329-340. [PMID: 31025195 DOI: 10.1007/s12550-019-00348-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 02/26/2019] [Accepted: 02/27/2019] [Indexed: 12/21/2022]
Abstract
1-Octen-3-ol is one of the most abundant volatile compounds associated with fungi and functions as a germination and growth inhibitor in several species. By investigating its effect on the biosynthesis of patulin, a mycotoxin made by Penicillium expansum, it was found that a sub-inhibitory level of volatile 1-octen-3-ol increased accumulation of patulin on a medium that normally suppresses the mycotoxin. Transcriptomic sequencing and comparisons of control and treated P. expansum grown on potato dextrose agar (PDA; patulin permissive) or secondary medium agar (SMA; patulin suppressive) revealed that the expression of gox2, a gene encoding a glucose oxidase, was significantly affected, decreasing 10-fold on PDA and increasing 85-fold on SMA. Thirty other genes, mostly involved in transmembrane transport, oxidation-reduction, and carbohydrate metabolism were also differently expressed on the two media. Transcription factors previously found to be involved in regulation of patulin biosynthesis were not significantly affected despite 1-octen-3-ol increasing patulin production on SMA. Further study is needed to determine the relationship between the upregulation of patulin biosynthesis genes and gox2 on SMA, and to identify the molecular mechanism by which 1-octen-3-ol induced this effect.
Collapse
Affiliation(s)
- Kayla K Pennerman
- Department of Plant Biology, Rutgers University, The State University of New Jersey, New Brunswick, NJ, 08901, USA.
| | - Joseph B Scarsella
- Department of Food Science, Rutgers University, The State University of New Jersey, New Brunswick, NJ, 08901, USA
| | - Guo-Hua Yin
- Department of Plant Biology, Rutgers University, The State University of New Jersey, New Brunswick, NJ, 08901, USA
| | - Sui-Sheng T Hua
- Foodborne Toxin Detection and Prevention Research, United States Department of Agriculture, Agricultural Research Service, Albany, CA, 94710, USA
| | - Thomas G Hartman
- Department of Food Science, Rutgers University, The State University of New Jersey, New Brunswick, NJ, 08901, USA
| | - Joan W Bennett
- Department of Plant Biology, Rutgers University, The State University of New Jersey, New Brunswick, NJ, 08901, USA
| |
Collapse
|
15
|
Influence of R and S enantiomers of 1-octen-3-ol on gene expression of Penicillium chrysogenum. J Ind Microbiol Biotechnol 2019; 46:977-991. [PMID: 30923972 DOI: 10.1007/s10295-019-02168-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 03/23/2019] [Indexed: 01/18/2023]
Abstract
Inhibition of spore germination offers an attractive and effective target for controlling fungal species involved in food spoilage. Mushroom alcohol (1-octen-3-ol) functions as a natural self-inhibitor of spore germination for many fungi and, therefore, provides a useful tool for probing the molecular events controlling the early stages of fungal growth. In Penicillium spp., the R and S enantiomers of 1-octen-3-ol delayed spore germination and sporulation in four species of Penicillium involved in soils of fruit and grains, but to different degrees. Because of its well-annotated genome, we used Penicillium chrysogenum to perform a comprehensive comparative transcriptomic analysis of cultures treated with the two enantiomers. Altogether, about 80% of the high-quality reads could be mapped to 11,396 genes in the reference genome. The top three active pathways were metabolic (978 transcripts), biosynthesis of secondary metabolites (420 transcripts), and microbial metabolism in diverse environments (318 transcripts). When compared to the control, treatment with (R)-(-)-1-octen-3-ol affected the transcription levels of 91 genes, while (S)-(+)-1-octen-3-ol affected only 41 genes. Most of the affected transcripts were annotated and predicted to be involved in transport, establishment of localization, and transmembrane transport. Alternative splicing and SNPs' analyses indicated that, compared to the control, the R enantiomer had greater effects on the gene expression pattern of Penicillium chrysogenum than the S enantiomer. A qRT-PCR analysis of 28 randomly selected differentially expressed genes confirmed the transcriptome data. The transcriptomic data have been deposited in NCBI SRA under the accession number SRX1065226.
Collapse
|
16
|
Singh D, Lee CH. Volatiles Mediated Interactions Between Aspergillus oryzae Strains Modulate Morphological Transition and Exometabolomes. Front Microbiol 2018; 9:628. [PMID: 29670599 PMCID: PMC5893800 DOI: 10.3389/fmicb.2018.00628] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 03/19/2018] [Indexed: 11/13/2022] Open
Abstract
Notwithstanding its mitosporic nature, an improbable morpho-transformation state i. e., sclerotial development (SD), is vaguely known in Aspergillus oryzae. Nevertheless an intriguing phenomenon governing mold's development and stress response, the effects of exogenous factors engendering SD, especially the volatile organic compounds (VOCs) mediated interactions (VMI) pervasive in microbial niches have largely remained unexplored. Herein, we examined the effects of intra-species VMI on SD in A. oryzae RIB 40, followed by comprehensive analyses of associated growth rates, pH alterations, biochemical phenotypes, and exometabolomes. We cultivated A. oryzae RIB 40 (S1VMI: KACC 44967) opposite a non-SD partner strain, A. oryzae (S2: KCCM 60345), conditioning VMI in a specially designed “twin plate assembly.” Notably, SD in S1VMI was delayed relative to its non-conditioned control (S1) cultivated without partner strain (S2) in twin plate. Selectively evaluating A. oryzae RIB 40 (S1VMI vs. S1) for altered phenotypes concomitant to SD, we observed a marked disparity for corresponding growth rates (S1VMI < S1)7days, media pH (S1VMI > S1)7days, and biochemical characteristics viz., protease (S1VMI > S1)7days, amylase (S1VMI > nS1)3–7days, and antioxidants (S1VMI > S1)7days levels. The partial least squares—discriminant analysis (PLS-DA) of gas chromatography—time of flight—mass spectrometry (GC-TOF-MS) datasets for primary metabolites exhibited a clustered pattern (PLS1, 22.04%; PLS2, 11.36%), with 7 days incubated S1VMI extracts showed higher abundance of amino acids, sugars, and sugar alcohols with lower organic acids and fatty acids levels, relative to S1. Intriguingly, the higher amino acid and sugar alcohol levels were positively correlated with antioxidant activity, likely impeding SD in S1VMI. Further, the PLS-DA (PLS1, 18.11%; PLS2, 15.02%) based on liquid chromatography—mass spectrometry (LC-MS) datasets exhibited a notable disparity for post-SD (9–11 days) sample extracts with higher oxylipins and 13-desoxypaxilline levels in S1VMI relative to S1, intertwining Aspergillus morphogenesis and secondary metabolism. The analysis of VOCs for the 7 days incubated samples displayed considerably higher accumulation of C-8 compounds in the headspace of twin-plate experimental sets (S1VMI:S2) compared to those in non-conditioned controls (S1 and S2—without respective partner strains), potentially triggering altered morpho-transformation and concurring biochemical as well as metabolic states in molds.
Collapse
Affiliation(s)
- Digar Singh
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, South Korea
| | - Choong H Lee
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, South Korea
| |
Collapse
|
17
|
Padhi S, Dias I, Korn VL, Bennett JW. Pseudogymnoascus destructans: Causative Agent of White-Nose Syndrome in Bats Is Inhibited by Safe Volatile Organic Compounds. J Fungi (Basel) 2018; 4:jof4020048. [PMID: 29642609 PMCID: PMC6023378 DOI: 10.3390/jof4020048] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 03/27/2018] [Accepted: 04/03/2018] [Indexed: 01/12/2023] Open
Abstract
White-nose syndrome (WNS) is caused by Pseudogymnoascus destructans, a psychrophilic fungus that infects hibernating bats and has caused a serious decline in some species. Natural aroma compounds have been used to control growth of fungal food storage pathogens, so we hypothesized that a similar strategy could work for control of P. destructans. The effectiveness of exposure to low concentrations of the vapor phase of four of these compounds was tested on mycelial plugs and conidiospores at temperatures of 5, 10 and 15 °C. Here we report the efficacy of vapor phase mushroom alcohol (1-octen-3-ol) for inhibiting mycelial and conidiospore growth of P. destructans at 0.4 and 0.8 µmol/mL and demonstrate that the R enantiomer of this compound is more effective than the S enantiomer, supporting the finding that biological systems can be sensitive to stereochemistry. Further, we report that vapor phase leaf aldehyde (trans-2-hexenal), a common aroma compound associated with cut grass odors and also the major volatile compound in extra virgin olive oil, is more effective than mushroom alcohol. At 0.05 µmol/mL, trans-2-hexenal is fungicidal to both conidiospores and mycelia of P. destructans.
Collapse
Affiliation(s)
- Sally Padhi
- Department of Plant Biology, Rutgers University, 59 Dudley Road, New Brunswick, NJ 08901, USA.
| | - Itamar Dias
- Department of Plant Biology, Rutgers University, 59 Dudley Road, New Brunswick, NJ 08901, USA.
| | - Victoria L Korn
- Department of Plant Biology, Rutgers University, 59 Dudley Road, New Brunswick, NJ 08901, USA.
| | - Joan W Bennett
- Department of Plant Biology, Rutgers University, 59 Dudley Road, New Brunswick, NJ 08901, USA.
| |
Collapse
|
18
|
Barkal LJ, Procknow CL, Álvarez-García YR, Niu M, Jiménez-Torres JA, Brockman-Schneider RA, Gern JE, Denlinger LC, Theberge AB, Keller NP, Berthier E, Beebe DJ. Microbial volatile communication in human organotypic lung models. Nat Commun 2017; 8:1770. [PMID: 29176665 PMCID: PMC5701243 DOI: 10.1038/s41467-017-01985-4] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Accepted: 10/30/2017] [Indexed: 12/13/2022] Open
Abstract
We inhale respiratory pathogens continuously, and the subsequent signaling events between host and microbe are complex, ultimately resulting in clearance of the microbe, stable colonization of the host, or active disease. Traditional in vitro methods are ill-equipped to study these critical events in the context of the lung microenvironment. Here we introduce a microscale organotypic model of the human bronchiole for studying pulmonary infection. By leveraging microscale techniques, the model is designed to approximate the structure of the human bronchiole, containing airway, vascular, and extracellular matrix compartments. To complement direct infection of the organotypic bronchiole, we present a clickable extension that facilitates volatile compound communication between microbial populations and the host model. Using Aspergillus fumigatus, a respiratory pathogen, we characterize the inflammatory response of the organotypic bronchiole to infection. Finally, we demonstrate multikingdom, volatile-mediated communication between the organotypic bronchiole and cultures of Aspergillus fumigatus and Pseudomonas aeruginosa.
Collapse
Affiliation(s)
- Layla J Barkal
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA.,Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Clare L Procknow
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | | | - Mengyao Niu
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - José A Jiménez-Torres
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA.,Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Rebecca A Brockman-Schneider
- Department of Pediatrics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - James E Gern
- Department of Pediatrics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Loren C Denlinger
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Ashleigh B Theberge
- Department of Chemistry, University of Washington, Seattle, WA, 98195, USA.,Department of Urology, University of Washington School of Medicine, Seattle, WA, 98195, USA
| | - Nancy P Keller
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, 53706, USA.,Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Erwin Berthier
- Department of Chemistry, University of Washington, Seattle, WA, 98195, USA. .,Tasso Inc., Seattle, WA, 98119, USA.
| | - David J Beebe
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA. .,Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, 53705, USA.
| |
Collapse
|
19
|
Zhao G, Yin G, Inamdar AA, Luo J, Zhang N, Yang I, Buckley B, Bennett JW. Volatile organic compounds emitted by filamentous fungi isolated from flooded homes after Hurricane Sandy show toxicity in a Drosophila bioassay. INDOOR AIR 2017; 27:518-528. [PMID: 27748984 DOI: 10.1111/ina.12350] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 10/12/2016] [Indexed: 06/06/2023]
Abstract
Superstorm Sandy provided an opportunity to study filamentous fungi (molds) associated with winter storm damage. We collected 36 morphologically distinct fungal isolates from flooded buildings. By combining traditional morphological and cultural characters with an analysis of ITS sequences (the fungal DNA barcode), we identified 24 fungal species that belong to eight genera: Penicillium (11 species), Fusarium (four species), Aspergillus (three species), Trichoderma (two species), and one species each of Metarhizium, Mucor, Pestalotiopsis, and Umbelopsis. Then, we used a Drosophila larval assay to assess possible toxicity of volatile organic compounds (VOCs) emitted by these molds. When cultured in a shared atmosphere with growing cultures of molds isolated after Hurricane Sandy, larval toxicity ranged from 15 to 80%. VOCs from Aspergillus niger 129B were the most toxic yielding 80% mortality to Drosophila after 12 days. The VOCs from Trichoderma longibrachiatum 117, Mucor racemosus 138a, and Metarhizium anisopliae 124 were relatively non-toxigenic. A preliminary analysis of VOCs was conducted using solid-phase microextraction-gas chromatography-mass spectrometry from two of the most toxic, two of the least toxic, and two species of intermediate toxicity. The more toxic molds produced higher concentrations of 1-octen-3-ol, 3-octanone, 3-octanol, 2-octen-1-ol, and 2-nonanone; while the less toxic molds produced more 3-methyl-1-butanol and 2-methyl-1-propanol, or an overall lower amount of volatiles. Our data support the hypothesis that at certain concentrations, some VOCs emitted by indoor molds are toxigenic.
Collapse
Affiliation(s)
- G Zhao
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - G Yin
- Department of Plant Biology and Pathology, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - A A Inamdar
- Department of Plant Biology and Pathology, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - J Luo
- Department of Plant Biology and Pathology, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - N Zhang
- Department of Plant Biology and Pathology, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - I Yang
- Environmental and Occupational Health Sciences Institute, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - B Buckley
- Environmental and Occupational Health Sciences Institute, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - J W Bennett
- Department of Plant Biology and Pathology, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| |
Collapse
|
20
|
Padhi S, Dias I, Bennett JW. Two volatile-phase alcohols inhibit growth of Pseudogymnoascus destructans, causative agent of white-nose syndrome in bats. Mycology 2016. [DOI: 10.1080/21501203.2016.1269843] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Affiliation(s)
- Sally Padhi
- Department of Plant Biology and Pathology, Rutgers University, New Brunswick, NJ, USA
| | - Itamar Dias
- Department of Plant Biology and Pathology, Rutgers University, New Brunswick, NJ, USA
| | - Joan W. Bennett
- Department of Plant Biology and Pathology, Rutgers University, New Brunswick, NJ, USA
| |
Collapse
|
21
|
Wallingford AK, Connelly HL, Dore Brind'Amour G, Boucher MT, Mafra-Neto A, Loeb GM. Field Evaluation of an Oviposition Deterrent for Management of Spotted-Wing Drosophila, Drosophila suzukii, and Potential Nontarget Effects. JOURNAL OF ECONOMIC ENTOMOLOGY 2016; 109:1779-1784. [PMID: 27247303 DOI: 10.1093/jee/tow116] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 05/05/2016] [Indexed: 06/05/2023]
Abstract
Spotted-wing drosophila, Drosophila suzukii Matsumura (Diptera: Drosophilidae), is a polyphagous, invasive pest of small fruits. Current management relies heavily on chemical insecticides, and an effective oviposition deterrent could contribute to alternative management approaches that reduce the need for these chemical insecticides. A novel deployment method for repelling Drosophila suzukii, thereby reducing D. suzukii oviposition in fall-bearing red raspberry, was evaluated in the field. Infestations occurring within 4 d after deployment were significantly lower in 2-m-long plots (Rubus idaeus 'Caroline') treated with the repellent (20% 1-octen-3-ol in specialized pheromone and lure application technology [SPLAT]) compared to control plots (blank SPLAT). Repellent-treated plots had roughly 28.8 and 49.5% fewer offspring reared per gram of fruit than control plots in two experiments, respectively. Nontarget effects were also evaluated in 2-m plot experiments as well as 5- by 5-m plot experiments. There were no differences in the number of parasitic hymenoptera trapped on yellow sticky cards hung in repellent compared to control plots. While there were no differences in the number of visits to raspberry flowers observed by honey bees in repellent versus control plots, the number of visits by bumble bees was greater in repellent plots compared to control plots. Challenges regarding evaporation rates and potential uses for repellents in an integrated pest management program for the control of D. suzukii are discussed.
Collapse
Affiliation(s)
- Anna K Wallingford
- Cornell University, New York Agricultural Experiment Station, 630 W. North St., Geneva, NY 14456 (; ; ; ; )
| | - Heather L Connelly
- Cornell University, New York Agricultural Experiment Station, 630 W. North St., Geneva, NY 14456 (; ; ; ; )
| | - Gabrielle Dore Brind'Amour
- Cornell University, New York Agricultural Experiment Station, 630 W. North St., Geneva, NY 14456 (; ; ; ; )
| | - Matthew T Boucher
- Cornell University, New York Agricultural Experiment Station, 630 W. North St., Geneva, NY 14456 (; ; ; ; )
| | | | - Greg M Loeb
- Cornell University, New York Agricultural Experiment Station, 630 W. North St., Geneva, NY 14456 (; ; ; ; )
| |
Collapse
|