1
|
Humayun AB, Tithy LH, Wong SY, Li X, Arafat MT. Thermally induced phase separation (TIPS) to fabricate chitosan/pectin based absorbent macroporous sponge with tranexamic acid for stable hemostasis. Int J Biol Macromol 2025; 308:142563. [PMID: 40157681 DOI: 10.1016/j.ijbiomac.2025.142563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 03/12/2025] [Accepted: 03/25/2025] [Indexed: 04/01/2025]
Abstract
Uncontrolled bleeding is one of the major causes of death in military and civilian trauma. Hence, designing a hemostatic agent that ensures safety, quality, and efficiency to stop bleeding is a challenging research area. Although many commercial agents focus on instant blood clotting, the issue of intrinsic coagulation followed by blood clot stabilization is ignored. In this study, a series of chitosan/pectin-based hemostatic sponge samples were prepared by cost-efficient freeze gelation method that utilized the principle of thermally induced phase separation (TIPS). The incorporation of pectin significantly improved the swelling and mechanical property of the sponge, where p < 0.001 and p < 0.01, respectively. This chitosan/pectin based sponge was further incorporated with calcium chloride and an antifibrinolytic agent, tranexamic acid for enhanced functional properties, such as blood clot stabilization and intrinsic coagulation. Furthermore, several morphological, physicochemical, in vitro and in vivo characterizations were performed to analyze the efficacy of the sponge. It was observed that the prepared sample was highly absorbent, macroporous with numerous larger pores, possessed a high porosity and robust mechanical strength. The sponge also aggregated numerous RBCs and platelets to promote hemostasis. Also, the in vitro blood clotting efficiency was found significantly better than commercial product. In case of rat tail experiment, the prepared sample incorporated hemostasis ~10 s and ~ 20 s earlier than commercial Celox (powder) and Medisponge (sponge), respectively. Moreover, the prepared sponge showed moderate wound healing and intrinsic coagulation effect. Therefore, the prepared hemostatic sponge has a remarkable potential to prevent excessive blood loss.
Collapse
Affiliation(s)
- Ayesha Binth Humayun
- Department of Biomedical Engineering, Bangladesh University of Engineering and Technology (BUET), Dhaka 1205, Bangladesh
| | - Lamiya Hassan Tithy
- Department of Biomedical Engineering, Bangladesh University of Engineering and Technology (BUET), Dhaka 1205, Bangladesh
| | - Siew Yee Wong
- Institute of Materials Research and Engineering (IMRE), A*STAR (Agency for Science, Technology and Research), Singapore 138634, Singapore
| | - Xu Li
- Institute of Materials Research and Engineering (IMRE), A*STAR (Agency for Science, Technology and Research), Singapore 138634, Singapore; Institute of Sustainability for Chemicals, Energy and Environment, A*STAR (Agency for Science, Technology and Research), Singapore 138634, Singapore
| | - M Tarik Arafat
- Department of Biomedical Engineering, Bangladesh University of Engineering and Technology (BUET), Dhaka 1205, Bangladesh.
| |
Collapse
|
2
|
Scuto FR, Ciarlantini C, Chiappini V, Pietrelli L, Piozzi A, Girelli AM. Design of a 3D Amino-Functionalized Rice Husk Ash Nano-Silica/Chitosan/Alginate Composite as Support for Laccase Immobilization. Polymers (Basel) 2023; 15:3127. [PMID: 37514516 PMCID: PMC10383677 DOI: 10.3390/polym15143127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
Recycling of agro-industrial waste is one of the major issues addressed in recent years aimed at obtaining products with high added value as a future alternative to traditional ones in the per-spective of a bio-based and circular economy. One of the most produced wastes is rice husk and it is particularly interesting because it is very rich in silica, a material with a high intrinsic value. In the present study, a method to extract silica from rice husk ash (RHA) and to use it as a carrier for the immobilization of laccase from Trametes versicolor was developed. The obtained mesoporous nano-silica was characterized by X-ray diffraction (XRD), ATR-FTIR spectroscopy, Scanning Elec-tron Microscopy (SEM), and Energy Dispersive X-ray spectroscopy (EDS). A nano-silica purity of about 100% was found. Nano-silica was then introduced in a cross-linked chitosan/alginate scaffold to make it more easily recoverable after reuse. To favor laccase immobilization into the composite scaffold, functionalization of the nano-silica with (γ-aminopropyl) triethoxysilane (APTES) was performed. The APTES/RHA nano-silica/chitosan/alginate (ARCA) composite al-lowed to obtain under mild conditions (pH 7, room temperature, 1.5 h reaction time) a robust and easily reusable solid biocatalyst with 3.8 U/g of immobilized enzyme which maintained 50% of its activity after six reuses. The biocatalytic system, tested for syringic acid bioremediation, was able to totally oxidize the contaminant in 24 h.
Collapse
Affiliation(s)
- Francesca Romana Scuto
- Department of Chemistry, Sapienza University of Rome, P. le A. Moro 5, 00185 Rome, Italy
| | - Clarissa Ciarlantini
- Department of Chemistry, Sapienza University of Rome, P. le A. Moro 5, 00185 Rome, Italy
| | - Viviana Chiappini
- Department of Chemistry, Sapienza University of Rome, P. le A. Moro 5, 00185 Rome, Italy
| | - Loris Pietrelli
- DAFNE Department, Tuscia University, Via Santa Maria in Gradi 4, 01100 Viterbo, Italy
| | - Antonella Piozzi
- Department of Chemistry, Sapienza University of Rome, P. le A. Moro 5, 00185 Rome, Italy
| | - Anna M Girelli
- Department of Chemistry, Sapienza University of Rome, P. le A. Moro 5, 00185 Rome, Italy
| |
Collapse
|
3
|
Marcello C, Salam A. A biobased synthesized N-hydroxymethyl starch-amide for enhancing the wet and dry strength of paper products. Carbohydr Polym 2023; 299:120194. [PMID: 36876808 DOI: 10.1016/j.carbpol.2022.120194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 09/26/2022] [Accepted: 10/02/2022] [Indexed: 11/06/2022]
Abstract
The aim of this research was to develop a bio-based paper strength agent for the replacement of petroleum-based paper strength agents. Cationic starch was modified with 2-chloroacetamide in aqueous media. The modification reaction conditions were optimized based on the acetamide functional group incorporated into cationic starch. Further, modified cationic starch was dissolved in water and then reacted with formaldehyde to produce N-hydroxymethyl starch-amide. 1 % N-hydroxymethyl starch-amide was mixed with OCC pulp slurry before preparing the paper sheet for testing the physical properties. The wet tensile index, dry tensile index, and dry burst index of the N-hydroxymethyl starch-amide-treated paper increased 243 %, 36 %, and 38 %, respectively, compared to the control sample. In addition, comparative studies were done between N-hydroxymethyl starch-amide and commercial paper wet strength agent GPAM and PAE. The wet tensile index of 1 % N-hydroxymethyl starch-amide-treated tissue paper was similar to GPAM and PAE, and 2.5 times higher than the control sample.
Collapse
Affiliation(s)
- Cornellius Marcello
- Western Michigan University, Department of Chemical and Paper Engineering, Kalamazoo, MI 49008, USA
| | - Abdus Salam
- Western Michigan University, Department of Chemical and Paper Engineering, Kalamazoo, MI 49008, USA.
| |
Collapse
|
4
|
Mohan P, Rangari VD, Kesavan K. Cationic Chitosan/Pectin Polyelectrolyte Nanocapsules of Moxifloxacin as Novel Topical Management System for Bacterial Keratitis. Curr Eye Res 2022; 47:1498-1507. [PMID: 36099026 DOI: 10.1080/02713683.2022.2124274] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
PURPOSE Moxifloxacin (MOX) is a fourth-generation fluoroquinolone and a broad spectrum antibiotic used in the management of bacterial keratitis (BK). This investigation aimed to formulate MOX-loaded chitosan/pectin cationic polyelectrolyte nanocapsules (CPNCs) for the effective topical treatment of BK. METHODS Physicochemical properties like nanocapsule size, charge, drug entrapment efficiency (EE), viscosity, pH, and in-vitro release profile of CPNCs were evaluated. The in-vitro antibacterial activity of CPNCs and marketed formulations (MFs) was studied against Staphylococcus aureus. Ex-vivo corneal permeation studies of CPNCs were evaluated with the help of a modified diffusion apparatus, which was used with goat cornea. The pharmacodynamic study was performed with optimized CPNCs on a BK-induced rabbit eye model and compared with MF. RESULTS The optimized nanocapsules appeared as positive charge (+19.91 ± 0.66) with a nano size (242.0 ± 0.30 nm) as calculated by the dynamic light scattering method. The in-vitro release profile of CPNCs exhibited sustained release properties. The ex-vivo permeation pattern also supported the improved drug permeation through the cornea from CPNCs as compared with MF. Draize irritation studies confirmed that the prepared formulation is compatible with the corneal tissue. The in-vivo study concluded that the antibacterial activity of CPNCs was improved when evaluated with MF. CONCLUSION The obtained results showed that CPNCs were the better choice for the management of BK therapy due to its capability to improve the corneal adhesion of CPNCs through direct interaction with the mucous membrane of the corneal tissue.
Collapse
Affiliation(s)
- Parasuraman Mohan
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, India
| | - Vinod D Rangari
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, India
| | - Karthikeyan Kesavan
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, India
| |
Collapse
|
5
|
Khushbu, Vaid V, Kaur K, Panwar A, Devi A, Bansal A, Jindal R. A Comparative Evaluation of Sustained Release of Chlorphenamine Based on a Nanocomposite of Chitosan, Pectin and Montmorillonite. ChemistrySelect 2022. [DOI: 10.1002/slct.202104108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Khushbu
- Polymer and Nanomaterial Lab Department of Chemistry Dr B R Ambedkar National Institute of technology Jalandhar 144011 Punjab INDIA
| | - Vasudha Vaid
- Polymer and Nanomaterial Lab Department of Chemistry Dr B R Ambedkar National Institute of technology Jalandhar 144011 Punjab INDIA
| | - Kuljit Kaur
- Faculty of natural Science GNA University Phagwara Punjab 144401 India
| | - Ankush Panwar
- Polymer and Nanomaterial Lab Department of Chemistry Dr B R Ambedkar National Institute of technology Jalandhar 144011 Punjab INDIA
| | - Anupama Devi
- Polymer and Nanomaterial Lab Department of Chemistry Dr B R Ambedkar National Institute of technology Jalandhar 144011 Punjab INDIA
| | - Anshul Bansal
- Polymer and Nanomaterial Lab Department of Chemistry Dr B R Ambedkar National Institute of technology Jalandhar 144011 Punjab INDIA
| | - Rajeev Jindal
- Polymer and Nanomaterial Lab Department of Chemistry Dr B R Ambedkar National Institute of technology Jalandhar 144011 Punjab INDIA
| |
Collapse
|
6
|
Biocompatible poly(galacturonic acid) micro/nanogels with controllable degradation via tunable chemical crosslinking. Int J Biol Macromol 2022; 201:351-363. [PMID: 34998881 DOI: 10.1016/j.ijbiomac.2021.12.107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/03/2021] [Accepted: 12/17/2021] [Indexed: 01/15/2023]
Abstract
Here, one-pot labor-less preparation of two different polygalacturonic acid (PGA) micro/nanogel formulations, PGA-1 and PGA-2, by respectively crosslinking the PGA chains with divinyl sulfone (DVS) and trimethylolpropane triglycidyl ether (TMPGDE) were reported. Various crosslinker ratios, 2.5, 10, 50, and 100% were used for both crosslinkers to demonstrate the tunability of their degradation properties. The PGA micro/nanogels were found spherical-shaped porous particles in 0.5-5.0 μm size range by SEM. The hydrolytic degradation and stability of PGA micro/nanogels in pH 1.0, 7.4, and 9.0 buffer solutions can be controlled by changing the degree of crosslinking. Accordingly, 32 ± 8% and 36 ± 2% weight losses were attained for PGA-1-10% and PGA-2-10% micro/nanogels at pH 1, respectively, and 46 ± 6%, and 68 ± 6% degradations were determined at pH 7.4 within 4 weeks. However, no degradation was observed for both PGA-based micro/nanogel formulations prepared at 25% and 100% crosslinker ratios at all pH conditions. All PGA-based micro/nanogels were totally degraded within 7-10 days at pH 9.0. In the presence of pectinase and amyloglucosidase enzymes, all formulations of PGA micro/nanogels showed more than 80% degradation within 12 h. Furthermore, both PGA formulations showed no significant cytotoxicity against L929 fibroblast cells with 90% and above cell viability up to 250 mg/mL concentrations.
Collapse
|
7
|
Maciel VB, Remedio LN, Yoshida CM, Carvalho RA. Carboxymethyl cellulose-based orally disintegrating films enriched with natural plant extract for oral iron delivery. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102852] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
8
|
Morello G, Quarta A, Gaballo A, Moroni L, Gigli G, Polini A, Gervaso F. A thermo-sensitive chitosan/pectin hydrogel for long-term tumor spheroid culture. Carbohydr Polym 2021; 274:118633. [PMID: 34702456 DOI: 10.1016/j.carbpol.2021.118633] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 01/11/2023]
Abstract
Hydrogels represent a key element in the development of in vitro tumor models, by mimicking the typical 3D tumor architecture in a physicochemical manner and allowing the study of tumor mechanisms. Here we developed a thermo-sensitive, natural polymer-based hydrogel, where chitosan and pectin were mixed and, after a weak base-induced chitosan gelation, a stable semi-Interpenetrating Polymer Network formed. This resulted thermo-responsive at 37 °C, injectable at room temperature, stable up to 6 weeks in vitro, permeable to small/medium-sized molecules (3 to 70 kDa) and suitable for cell-encapsulation. Tunable mechanical and permeability properties were obtained by varying the polymer content. Optimized formulations successfully supported the formation and growth of human colorectal cancer spheroids up to 44 days of culture. The spheroid dimension and density were influenced by the semi-IPN stiffness and permeability. These encouraging results would allow the implementation of faithful tumor models for the study and development of personalized oncological treatments.
Collapse
Affiliation(s)
- Giulia Morello
- Institute of Nanotechnology, CNR, Lecce 73100, Italy; Dipartimento di Matematica e Fisica E. de Giorgi, Università Del Salento, Lecce 73100, Italy
| | | | | | - Lorenzo Moroni
- Institute of Nanotechnology, CNR, Lecce 73100, Italy; Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht 6229ER, the Netherlands
| | - Giuseppe Gigli
- Institute of Nanotechnology, CNR, Lecce 73100, Italy; Dipartimento di Matematica e Fisica E. de Giorgi, Università Del Salento, Lecce 73100, Italy
| | | | | |
Collapse
|
9
|
Durmaz EN, Sahin S, Virga E, de Beer S, de Smet LCPM, de Vos WM. Polyelectrolytes as Building Blocks for Next-Generation Membranes with Advanced Functionalities. ACS APPLIED POLYMER MATERIALS 2021; 3:4347-4374. [PMID: 34541543 PMCID: PMC8438666 DOI: 10.1021/acsapm.1c00654] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 08/10/2021] [Indexed: 05/06/2023]
Abstract
The global society is in a transition, where dealing with climate change and water scarcity are important challenges. More efficient separations of chemical species are essential to reduce energy consumption and to provide more reliable access to clean water. Here, membranes with advanced functionalities that go beyond standard separation properties can play a key role. This includes relevant functionalities, such as stimuli-responsiveness, fouling control, stability, specific selectivity, sustainability, and antimicrobial activity. Polyelectrolytes and their complexes are an especially promising system to provide advanced membrane functionalities. Here, we have reviewed recent work where advanced membrane properties stem directly from the material properties provided by polyelectrolytes. This work highlights the versatility of polyelectrolyte-based membrane modifications, where polyelectrolytes are not only applied as single layers, including brushes, but also as more complex polyelectrolyte multilayers on both porous membrane supports and dense membranes. Moreover, free-standing membranes can also be produced completely from aqueous polyelectrolyte solutions allowing much more sustainable approaches to membrane fabrication. The Review demonstrates the promise that polyelectrolytes and their complexes hold for next-generation membranes with advanced properties, while it also provides a clear outlook on the future of this promising field.
Collapse
Affiliation(s)
- Elif Nur Durmaz
- Membrane
Science and Technology, MESA+ Institute for Nanotechnology, Faculty
of Science and Technology, University of
Twente, Enschede 7500 AE, The Netherlands
| | - Sevil Sahin
- Laboratory
of Organic Chemistry, Wageningen University, 6708 WE Wageningen, The Netherlands
| | - Ettore Virga
- Membrane
Science and Technology, MESA+ Institute for Nanotechnology, Faculty
of Science and Technology, University of
Twente, Enschede 7500 AE, The Netherlands
- Wetsus, European
Centre of Excellence for Sustainable Water
Technology, Oostergoweg
9, 8911 MA Leeuwarden, The Netherlands
| | - Sissi de Beer
- Sustainable
Polymer Chemistry Group, Department of Molecules and Materials MESA+
Institute for Nanotechnology, University
of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Louis C. P. M. de Smet
- Laboratory
of Organic Chemistry, Wageningen University, 6708 WE Wageningen, The Netherlands
| | - Wiebe M. de Vos
- Membrane
Science and Technology, MESA+ Institute for Nanotechnology, Faculty
of Science and Technology, University of
Twente, Enschede 7500 AE, The Netherlands
| |
Collapse
|
10
|
Morello G, Polini A, Scalera F, Rizzo R, Gigli G, Gervaso F. Preparation and Characterization of Salt-Mediated Injectable Thermosensitive Chitosan/Pectin Hydrogels for Cell Embedding and Culturing. Polymers (Basel) 2021; 13:2674. [PMID: 34451215 PMCID: PMC8398595 DOI: 10.3390/polym13162674] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/06/2021] [Accepted: 08/08/2021] [Indexed: 12/17/2022] Open
Abstract
In recent years, growing attention has been directed to the development of 3D in vitro tissue models for the study of the physiopathological mechanisms behind organ functioning and diseases. Hydrogels, acting as 3D supporting architectures, allow cells to organize spatially more closely to what they physiologically experience in vivo. In this scenario, natural polymer hybrid hydrogels display marked biocompatibility and versatility, representing valid biomaterials for 3D in vitro studies. Here, thermosensitive injectable hydrogels constituted by chitosan and pectin were designed. We exploited the feature of chitosan to thermally undergo sol-gel transition upon the addition of salts, forming a compound that incorporates pectin into a semi-interpenetrating polymer network (semi-IPN). Three salt solutions were tested, namely, beta-glycerophosphate (βGP), phosphate buffer (PB) and sodium hydrogen carbonate (SHC). The hydrogel formulations (i) were injectable at room temperature, (ii) gelled at 37 °C and (iii) presented a physiological pH, suitable for cell encapsulation. Hydrogels were stable in culture conditions, were able to retain a high water amount and displayed an open and highly interconnected porosity and suitable mechanical properties, with Young's modulus values in the range of soft biological tissues. The developed chitosan/pectin system can be successfully used as a 3D in vitro platform for studying tissue physiopathology.
Collapse
Affiliation(s)
- Giulia Morello
- Dipartimento di Matematica e Fisica E. De Giorgi, University of Salento, Campus Ecotekne, via Monteroni, 73100 Lecce, Italy; (G.M.); (G.G.)
- CNR NANOTEC—Institute of Nanotechnology c/o Campus Ecotekne, via Monteroni, 73100 Lecce, Italy; (F.S.); (R.R.)
| | - Alessandro Polini
- CNR NANOTEC—Institute of Nanotechnology c/o Campus Ecotekne, via Monteroni, 73100 Lecce, Italy; (F.S.); (R.R.)
| | - Francesca Scalera
- CNR NANOTEC—Institute of Nanotechnology c/o Campus Ecotekne, via Monteroni, 73100 Lecce, Italy; (F.S.); (R.R.)
| | - Riccardo Rizzo
- CNR NANOTEC—Institute of Nanotechnology c/o Campus Ecotekne, via Monteroni, 73100 Lecce, Italy; (F.S.); (R.R.)
| | - Giuseppe Gigli
- Dipartimento di Matematica e Fisica E. De Giorgi, University of Salento, Campus Ecotekne, via Monteroni, 73100 Lecce, Italy; (G.M.); (G.G.)
- CNR NANOTEC—Institute of Nanotechnology c/o Campus Ecotekne, via Monteroni, 73100 Lecce, Italy; (F.S.); (R.R.)
| | - Francesca Gervaso
- CNR NANOTEC—Institute of Nanotechnology c/o Campus Ecotekne, via Monteroni, 73100 Lecce, Italy; (F.S.); (R.R.)
| |
Collapse
|
11
|
Nikolova D, Simeonov M, Tzachev C, Apostolov A, Christov L, Vassileva E. Polyelectrolyte complexes of chitosan and sodium alginate as a drug delivery system for diclofenac sodium. POLYM INT 2021. [DOI: 10.1002/pi.6273] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Denitsa Nikolova
- Laboratory on Structure and Properties of Polymers, Faculty of Chemistry and Pharmacy University of Sofia Sofia Bulgaria
| | - Marin Simeonov
- Laboratory on Structure and Properties of Polymers, Faculty of Chemistry and Pharmacy University of Sofia Sofia Bulgaria
| | - Christo Tzachev
- Laboratory of Pharmaceutical Technology, Faculty of Chemistry and Pharmacy University of Sofia Sofia Bulgaria
| | - Anton Apostolov
- Laboratory on Structure and Properties of Polymers, Faculty of Chemistry and Pharmacy University of Sofia Sofia Bulgaria
| | - Lachezar Christov
- Laboratory on Water Soluble Polymer, Polyelectrolytes and Biopolymers, Faculty of Chemistry and Pharmacy University of Sofia Sofia Bulgaria
| | - Elena Vassileva
- Laboratory on Structure and Properties of Polymers, Faculty of Chemistry and Pharmacy University of Sofia Sofia Bulgaria
| |
Collapse
|
12
|
Garcia Garcia CE, Bossard F, Rinaudo M. Electrospun Biomaterials from Chitosan Blends Applied as Scaffold for Tissue Regeneration. Polymers (Basel) 2021; 13:1037. [PMID: 33810406 PMCID: PMC8036406 DOI: 10.3390/polym13071037] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 03/19/2021] [Accepted: 03/24/2021] [Indexed: 12/31/2022] Open
Abstract
Our objective in this work was to summarize the main results obtained in processing pure chitosan and chitosan/hyaluronan complex in view of biomedical applications, taking advantage of their original properties. In addition, an electrospinning technique was selected to prepare nanofiber mats well adapted for tissue engineering in relation to the large porosity of the materials, allowing an exchange with the environment. The optimum conditions for preparation of purified and stable nanofibers in aqueous solution and phosphate buffer pH = 7.4 are described. Their mechanical properties and degree of swelling are given. Then, the prepared biomaterials are investigated to test their advantage for chondrocyte development after comparison of nanofiber mats and uniform films. For that purpose, the adhesion of cells is studied by atomic force microscopy (AFM) using single-cell force spectroscopy, showing the good adhesion of chondrocytes on chitosan. At the end, adhesion and proliferation of chondrocytes in vitro are examined and clearly show the interest of chitosan nanofiber mats compared to chitosan film for potential application in tissue engineering.
Collapse
Affiliation(s)
- Christian Enrique Garcia Garcia
- Departamento de Ingeniería Química, Universidad de Guadalajara, Blvd. M. García Barragán #1451, Guadalajara C.P. 44430, Jalisco, Mexico
- Institute of Engineering Universite, Universite Grenoble Alpes, CNRS, LRP 38000 Grenoble, France;
| | - Frédéric Bossard
- Institute of Engineering Universite, Universite Grenoble Alpes, CNRS, LRP 38000 Grenoble, France;
| | | |
Collapse
|
13
|
Chitosan grafted/cross-linked with biodegradable polymers: A review. Int J Biol Macromol 2021; 178:325-343. [PMID: 33652051 DOI: 10.1016/j.ijbiomac.2021.02.200] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 02/24/2021] [Accepted: 02/26/2021] [Indexed: 12/29/2022]
Abstract
Public perception of polymers has been drastically changed with the improved plastic management at the end of their life. However, it is widely recognised the need of developing biodegradable polymers, as an alternative to traditional petrochemical polymers. Chitosan (CH), a biodegradable biopolymer with excellent physiological and structural properties, together with its immunostimulatory and antibacterial activity, is a good candidate to replace other polymers, mainly in biomedical applications. However, CH has also several drawbacks, which can be solved by chemical modifications to improve some of its characteristics such as solubility, biological activity, and mechanical properties. Many chemical modifications have been studied in the last decade to improve the properties of CH. This review focussed on a critical analysis of the state of the art of chemical modifications by cross-linking and graft polymerization, between CH or CH derivatives and other biodegradable polymers (polysaccharides or proteins, obtained from microorganisms, synthetized from biomonomers, or from petrochemical products). Both techniques offer the option of including a wide variety of functional groups into the CH chain. Thus, enhanced and new properties can be obtained in accordance with the requirements for different applications, such as the release of drugs, the improvement of antimicrobial properties of fabrics, the removal of dyes, or as scaffolds to develop bone tissues.
Collapse
|
14
|
Hybrid Acrylated Chitosan and Thiolated Pectin Cross-Linked Hydrogels with Tunable Properties. Polymers (Basel) 2021; 13:polym13020266. [PMID: 33466959 PMCID: PMC7830417 DOI: 10.3390/polym13020266] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 01/07/2021] [Accepted: 01/11/2021] [Indexed: 12/18/2022] Open
Abstract
We developed and characterized a new hydrogel system based on the physical and chemical interactions of pectin partially modified with thiol groups and chitosan modified with acrylate end groups. Gelation occurred at high pectin thiol ratios, indicating that a low acrylated chitosan concentration in the hydrogel had a profound effect on the cross-linking. Turbidity, Fourier transform infrared spectroscopy, and free thiol determination analyses were performed to determine the relationships of the different bonds inside the gel. At low pH values below the pKa of chitosan, more electrostatic interactions were formed between opposite charges, but at high pH values, the Michael-type addition reaction between acrylate and thiol took place, creating harder hydrogels. Swelling experiments and Young’s modulus measurements were performed to study the structure and properties of the resultant hydrogels. The nanostructure was examined using small-angle X-ray scattering. The texture profile analysis showed a unique property of hydrogel adhesiveness. By implementing changes in the preparation procedure, we controlled the hydrogel properties. This hybrid hydrogel system can be a good candidate for a wide range of biomedical applications, such as a mucosal biomimetic surface for mucoadhesive testing.
Collapse
|
15
|
Garcia Garcia CE, Soltero Martínez FA, Bossard F, Rinaudo M. Production of Chitosan/Hyaluronan Complex Nanofibers. Characterization and Physical Properties as a Function of the Composition. Polymers (Basel) 2020; 12:E2004. [PMID: 32899169 PMCID: PMC7565965 DOI: 10.3390/polym12092004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 08/31/2020] [Accepted: 09/01/2020] [Indexed: 01/09/2023] Open
Abstract
In this work, optimized conditions for preparation of chitosan and hyaluronan polyelectrolyte complex are proposed. The objective was to produce new biomaterials being biocompatible and bioresorbable in the body as well as approaching the extracellular matrix (ECM) structure. These materials will be tested for chondrocyte development in tissue engineering and wound healing applications. Nanofibers made of the polyelectrolyte complex (PEC) were successfully manufactured by electrospinning, and casted films were used as a model for properties comparison. To our knowledge, it is the first time that stable chitosan/hyaluronan fibers are produced, which were observed to be long-lasting in buffer at pH~7.4. The role of thermal treatment at 120 °C for 4 h is examined to control the degree of swelling by crosslinking of the two polysaccharides by H-bonds and amide bonds formation. The properties of the materials are tested for different PEC compositions at different pH values, based on swelling and solubility degrees, diameters of nanofibers and mechanical performances. The influence of the solvent (acidic potential and composition) utilized to process biomaterials is also examined. Acid formic/water 50/50 v/v is observed to be the more appropriated solvent for the carried-out procedures.
Collapse
Affiliation(s)
- Christian Enrique Garcia Garcia
- Departamento de Ingeniería Química-CUCEI. Blvd. M. García Barragán #1451, C.P., Universidad de Guadalajara, Guadalajara, Jalisco 44430, Mexico;
- Université Grenoble Alpes, CNRS, Grenoble INP, LRP, Institute of Engineering University of Grenoble Alpes, 38000 Grenoble, France;
| | - Félix Armando Soltero Martínez
- Departamento de Ingeniería Química-CUCEI. Blvd. M. García Barragán #1451, C.P., Universidad de Guadalajara, Guadalajara, Jalisco 44430, Mexico;
| | - Frédéric Bossard
- Université Grenoble Alpes, CNRS, Grenoble INP, LRP, Institute of Engineering University of Grenoble Alpes, 38000 Grenoble, France;
| | | |
Collapse
|
16
|
Palomino-Durand C, Lopez M, Marchandise P, Martel B, Blanchemain N, Chai F. Chitosan/Polycyclodextrin (CHT/PCD)-Based Sponges Delivering VEGF to Enhance Angiogenesis for Bone Regeneration. Pharmaceutics 2020; 12:pharmaceutics12090784. [PMID: 32825081 PMCID: PMC7557476 DOI: 10.3390/pharmaceutics12090784] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 08/11/2020] [Accepted: 08/15/2020] [Indexed: 02/07/2023] Open
Abstract
Vascularization is one of the main challenges in bone tissue engineering (BTE). In this study, vascular endothelial growth factor (VEGF), known for its angiogenic effect, was delivered by our developed sponge, derived from a polyelectrolyte complexes hydrogel between chitosan (CHT) and anionic cyclodextrin polymer (PCD). This sponge, as a scaffold for growth factor delivery, was formed by freeze-drying a homogeneous CHT/PCD hydrogel, and thereafter stabilized by a thermal treatment. Microstructure, water-uptake, biodegradation, mechanical properties, and cytocompatibility of sponges were assessed. VEGF-delivery following incubation in medium was then evaluated by monitoring the VEGF-release profile and its bioactivity. CHT/PCD sponge showed a porous (open porosity of 87.5%) interconnected microstructure with pores of different sizes (an average pore size of 153 μm), a slow biodegradation (12% till 21 days), a high water-uptake capacity (~600% in 2 h), an elastic property under compression (elastic modulus of compression 256 ± 4 kPa), and a good cytocompatibility in contact with osteoblast and endothelial cells. The kinetic release of VEGF was found to exert a pro-proliferation and a pro-migration effect on endothelial cells, which are two important processes during scaffold vascularization. Hence, CHT/PCD sponges were promising vehicles for the delivery of growth factors in BTE.
Collapse
Affiliation(s)
- Carla Palomino-Durand
- U1008 Controlled Drug Delivery Systems and Biomaterials, Institut National de la Santé et de la Recherche Médicale (INSERM), Centre Hospitalier Régional Universitaire de Lille (CHU Lille), University of Lille, 59000 Lille, France; (C.P.-D.); (M.L.); (N.B.)
| | - Marco Lopez
- U1008 Controlled Drug Delivery Systems and Biomaterials, Institut National de la Santé et de la Recherche Médicale (INSERM), Centre Hospitalier Régional Universitaire de Lille (CHU Lille), University of Lille, 59000 Lille, France; (C.P.-D.); (M.L.); (N.B.)
| | - Pierre Marchandise
- ULR 4490–MABLab–Adiposité Médullaire et Os, Institut National de la Santé et de la Recherche Médicale (INSERM), Centre Hospitalier Régional Universitaire de Lille (CHU Lille), University of Lille, 59000 Lille, France;
- ULR 4490–MABLab–Adiposité Médullaire et Os, Univ. Littoral Côte d’Opale, 62200 Boulogne-sur-Mer, France
| | - Bernard Martel
- UMR 8207, UMET—Unité Matériaux et Transformations, Centre National de la Recherche Scientifique (CNRS), Institut National de la Recherche Agronomique (INRA), Ecole Nationale Supérieure de Chimie de Lille (ENSCL), University of Lille, 59655 Lille, France;
| | - Nicolas Blanchemain
- U1008 Controlled Drug Delivery Systems and Biomaterials, Institut National de la Santé et de la Recherche Médicale (INSERM), Centre Hospitalier Régional Universitaire de Lille (CHU Lille), University of Lille, 59000 Lille, France; (C.P.-D.); (M.L.); (N.B.)
| | - Feng Chai
- U1008 Controlled Drug Delivery Systems and Biomaterials, Institut National de la Santé et de la Recherche Médicale (INSERM), Centre Hospitalier Régional Universitaire de Lille (CHU Lille), University of Lille, 59000 Lille, France; (C.P.-D.); (M.L.); (N.B.)
- Correspondence: ; Tel.: +33-320-626-997
| |
Collapse
|
17
|
Uptake of Methylene Blue from Aqueous Solution by Pectin–Chitosan Binary Composites. JOURNAL OF COMPOSITES SCIENCE 2020. [DOI: 10.3390/jcs4030095] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
To address the need to develop improved hybrid biopolymer composites, we report on the preparation of composites that contain chitosan and pectin biopolymers with tunable adsorption properties. Binary biopolymer composites were prepared at variable pectin–chitosan composition in a solvent directed synthesis, dimethyl sulfoxide (DMSO) versus water. The materials were characterized using complementary methods (infrared spectroscopy, thermal gravimetric analysis, pH at the point-of-zero charge, and dye-based adsorption isotherms). Pectin and chitosan composites prepared in DMSO yielded a covalent biopolymer framework (CBF), whereas a polyelectrolyte complex (PEC) was formed in water. The materials characterization provided support that cross-linking occurs between amine groups of chitosan and the –COOH groups of pectin. CBF-based composites had a greater uptake of methylene blue (MB) dye over the PEC-based composites. Composites prepared in DMSO were inferred to have secondary adsorption sites for enhanced MB uptake, as evidenced by a monolayer uptake capacity that exceeded the pectin–chitosan PECs by 1.5-fold. This work provides insight on the role of solvent-dependent cross-linking of pectin and chitosan biopolymers. Sonication-assisted reactions in DMSO favor CBFs, while cross-linking in water yields PECs. Herein, composites with tunable structures and variable physicochemical properties are demonstrated by their unique dye adsorption properties in aqueous media.
Collapse
|
18
|
Maciel VB, Yoshida CM, Boesch C, Goycoolea FM, Carvalho RA. Iron-rich chitosan-pectin colloidal microparticles laden with ora-pro-nobis (Pereskia aculeata Miller) extract. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2019.105313] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
19
|
Ćirić A, Krajišnik D, Čalija B, Đekić L. Biocompatible non-covalent complexes of chitosan and different polymers: Characteristics and application in drug delivery. ARHIV ZA FARMACIJU 2020. [DOI: 10.5937/arhfarm2004173q] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
20
|
Coimbra P, Coelho MS, Gamelas JA. Surface characterization of polysaccharide scaffolds by inverse gas chromatography regarding application in tissue engineering. SURF INTERFACE ANAL 2019. [DOI: 10.1002/sia.6693] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Patrícia Coimbra
- Department of Chemical Engineering, CIEPQPFUniversity of Coimbra Coimbra Portugal
| | - Marta S.N. Coelho
- Department of Chemical Engineering, CIEPQPFUniversity of Coimbra Coimbra Portugal
| | - José A.F. Gamelas
- Department of Chemical Engineering, CIEPQPFUniversity of Coimbra Coimbra Portugal
| |
Collapse
|
21
|
Mohammadinejad R, Maleki H, Larrañeta E, Fajardo AR, Nik AB, Shavandi A, Sheikhi A, Ghorbanpour M, Farokhi M, Govindh P, Cabane E, Azizi S, Aref AR, Mozafari M, Mehrali M, Thomas S, Mano JF, Mishra YK, Thakur VK. Status and future scope of plant-based green hydrogels in biomedical engineering. APPLIED MATERIALS TODAY 2019; 16:213-246. [DOI: 10.1016/j.apmt.2019.04.010] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2025]
|
22
|
Smirnova NN. Pervaporation Membranes Based on Interpolyelectrolyte Complexes of an Aromatic Copolyamide Containing Sulfonate and Carboxy Groups. RUSS J APPL CHEM+ 2019. [DOI: 10.1134/s1070427219020083] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
23
|
Salam A, Lucia L, Jameel H. Starch Derivatives that Contribute Significantly to the Bonding and Antibacterial Character of Recycled Fibers. ACS OMEGA 2018; 3:5260-5265. [PMID: 30023913 PMCID: PMC6045384 DOI: 10.1021/acsomega.8b00307] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 04/17/2018] [Indexed: 06/02/2023]
Abstract
The objective of the current research was to fabricate and explore the ability of a renewable resource-based paper strength agent to enhance fiber-fiber bonding and introduce antibacterial properties to recycled fiber paper sheets. The agent corn starch, was modified with diethylenetriamine pentaacetic acid (DTPA), complexed with chitosan, and added to recycled furnishes to provide a plethora of hydrogen bonding sites predicated by acid groups, hydroxyls, and amines. The goal was two-fold: (1) to not only increase interfiber bonding, but (2) afford antibacterial character. The modified corn starch was characterized in previous work by thermal gravimetric analysis, differential scanning calorimeter, and Fourier transform infrared spectroscopy. The recycled pulp slurry was mixed with a ∼1.5% modified starch/chitosan agent before manufacturing a two-dimensional paper substrate that was subjected to mechanical testing. The burst, STFI compressive strength, tensile, and interfiber bonding strength increased 48.8, 49.5, 49.9, and 176%, respectively, while significantly increased gloss was obtained despite slightly diminished tear and roughness. The antibacterial character of these substrates was confirmed by the substrates displaying a 97% bacteria kill rate.
Collapse
Affiliation(s)
- Abdus Salam
- Department
of Forest Biomaterials, North Carolina State
University, Raleigh, North Carolina 27695-8005, United States
- Department
of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
- Georgia-Pacific
LLC, 100 Buckeye Drive, Mount Holly, North Carolina 28120, United States
| | - Lucian Lucia
- Department
of Forest Biomaterials, North Carolina State
University, Raleigh, North Carolina 27695-8005, United States
- Department
of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
- Key
Laboratory of Pulp & Paper Science and Engineering, Qilu University of Technology, Jinan 250353, PR China
| | - Hasan Jameel
- Department
of Forest Biomaterials, North Carolina State
University, Raleigh, North Carolina 27695-8005, United States
| |
Collapse
|
24
|
Bilbao-Sainz C, Chiou BS, Punotai K, Olson D, Williams T, Wood D, Rodov V, Poverenov E, McHugh T. Layer-by-Layer Alginate and Fungal Chitosan Based Edible Coatings Applied to Fruit Bars. J Food Sci 2018; 83:1880-1887. [PMID: 29846934 DOI: 10.1111/1750-3841.14186] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 03/23/2018] [Accepted: 04/12/2018] [Indexed: 12/01/2022]
Abstract
Food waste is currently being generated at an increasing rate. One proposed solution would be to convert it to biopolymers for industrial applications. We recovered chitin from mushroom waste and converted it to chitosan to produce edible coatings. We then used layer-by-layer (LbL) electrostatic deposition of the polycation chitosan and the polyanion alginate to coat fruit bars enriched with ascorbic acid. The performance of the LbL coatings was compared with those containing single layers of fungal chitosan, animal origin chitosan and alginate. Bars containing alginate-chitosan LbL coatings showed increased ascorbic acid content, antioxidant capacity, firmness and fungal growth prevention during storage. Also, the origin of the chitosan did not affect the properties of the coatings. PRACTICAL APPLICATION Mushroom stalk bases could be an alternative source for isolating chitosan with similar properties to animal-based chitosan. Also, layer-by-layer assembly is a cheap, simple method that can improve the quality and safety of fruit bars.
Collapse
Affiliation(s)
| | - Bor-Sen Chiou
- Bioproducts Research Unit, U.S. Dept. of Agriculture, Albany, CA, U.S.A
| | - Kaylin Punotai
- Healthy Processed Foods Research, U.S. Dept. of Agriculture, Albany, CA, U.S.A
| | - Donald Olson
- Healthy Processed Foods Research, U.S. Dept. of Agriculture, Albany, CA, U.S.A
| | - Tina Williams
- Bioproducts Research Unit, U.S. Dept. of Agriculture, Albany, CA, U.S.A
| | - Delilah Wood
- Bioproducts Research Unit, U.S. Dept. of Agriculture, Albany, CA, U.S.A
| | - Victor Rodov
- Postharvest and Food Science Inst., Agricultural Research Organization, The Volcani Center, Rishon LeZion, 50250, Israel
| | - Elena Poverenov
- Postharvest and Food Science Inst., Agricultural Research Organization, The Volcani Center, Rishon LeZion, 50250, Israel
| | - Tara McHugh
- Healthy Processed Foods Research, U.S. Dept. of Agriculture, Albany, CA, U.S.A
| |
Collapse
|
25
|
Martins JG, de Oliveira AC, Garcia PS, Kipper MJ, Martins AF. Durable pectin/chitosan membranes with self-assembling, water resistance and enhanced mechanical properties. Carbohydr Polym 2018. [DOI: 10.1016/j.carbpol.2018.01.112] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
26
|
Lara-Espinoza C, Carvajal-Millán E, Balandrán-Quintana R, López-Franco Y, Rascón-Chu A. Pectin and Pectin-Based Composite Materials: Beyond Food Texture. Molecules 2018; 23:E942. [PMID: 29670040 PMCID: PMC6017442 DOI: 10.3390/molecules23040942] [Citation(s) in RCA: 194] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 04/07/2018] [Accepted: 04/12/2018] [Indexed: 12/03/2022] Open
Abstract
Pectins are plant cell wall natural heteropolysaccharides composed mainly of α-1-4 d-galacturonic acid units, which may or may not be methyl esterified, possesses neutral sugars branching that harbor functional moieties. Physicochemical features as pH, temperature, ions concentration, and cosolute presence, affect directly the extraction yield and gelling capacity of pectins. The chemical and structural features of this polysaccharide enables its interaction with a wide range of molecules, a property that scientists profit from to form new composite matrices for target/controlled delivery of therapeutic molecules, genes or cells. Considered a prebiotic dietary fiber, pectins meetmany regulations easily, regarding health applications within the pharmaceutical industry as a raw material and as an agent for the prevention of cancer. Thus, this review lists many emergent pectin-based composite materials which will probably palliate the impact of obesity, diabetes and heart disease, aid to forestall actual epidemics, expand the ken of food additives and food products design.
Collapse
Affiliation(s)
- Claudia Lara-Espinoza
- Research Center for Food and Development, CIAD, A.C., Carretera a La Victoria Km. 0.6, Hermosillo, Sonora 83304, Mexico.
| | - Elizabeth Carvajal-Millán
- Research Center for Food and Development, CIAD, A.C., Carretera a La Victoria Km. 0.6, Hermosillo, Sonora 83304, Mexico.
| | - René Balandrán-Quintana
- Research Center for Food and Development, CIAD, A.C., Carretera a La Victoria Km. 0.6, Hermosillo, Sonora 83304, Mexico.
| | - Yolanda López-Franco
- Research Center for Food and Development, CIAD, A.C., Carretera a La Victoria Km. 0.6, Hermosillo, Sonora 83304, Mexico.
| | - Agustín Rascón-Chu
- Research Center for Food and Development, CIAD, A.C., Carretera a La Victoria Km. 0.6, Hermosillo, Sonora 83304, Mexico.
| |
Collapse
|
27
|
Fidalgo C, Rodrigues MA, Peixoto T, Lobato JV, Santos JD, Lopes MA. Development of asymmetric resorbable membranes for guided bone and surrounding tissue regeneration. J Biomed Mater Res A 2018; 106:2141-2150. [PMID: 29603876 DOI: 10.1002/jbm.a.36420] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 03/22/2018] [Accepted: 03/27/2018] [Indexed: 12/12/2022]
Abstract
Membranes design for guided tissue engineering have been studied to aid in cell viability and function as tissue barriers. Two asymmetric resorbable membranes for guided bone regeneration (GBR) were produced: chitosan/pectin/poly-caprolactone (PECm) and poly(vinyl alcohol)/polyethylenimine/poly(ethylene glycol) (PVAm). Both membranes were characterized by physical, chemical, mechanical, degradation rate, and in vitro biological assessment. Scanning electron microscopy (SEM) confirmed the membranes asymmetry, in which PECm asymmetry is given by roughness and chemical composition, while PVAm's only by differences in porosity. Fourier transform infrared spectroscopy (FTIR) identified chemical groups and bonds between polymers. Both sides of PVAm revealed to be hydrophobic, whereas the PECm presented one side with higher hydrophobicity than the other. In vitro biological assessment disclosed that PECm presented a higher cell adhesion growth pattern than PVAm, where it seemed to occur a delay in proliferation due to initial low cell adhesion. Both developed membranes are suitable for GBR, since both membranes fulfil the requirements to be used as a tissue barrier. The PECm has an additional role in cell viability that was not observed in the PVAm. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 2141-2150, 2018.
Collapse
Affiliation(s)
- C Fidalgo
- Departamento de Engenharia Metalúrgica e Materiais, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, Porto, 4200-465, Portugal
| | - M A Rodrigues
- Departamento de Engenharia Metalúrgica e Materiais, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, Porto, 4200-465, Portugal
| | - T Peixoto
- Departamento de Engenharia Metalúrgica e Materiais, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, Porto, 4200-465, Portugal
| | - J V Lobato
- Centro Hospitalar Vila nova de Gaia/Espinho, Serviço de Estomatologia, Rua Conceição Fernandes, Vila Nova de Gaia, 4434-502, Portugal.,Faculdade de Ciências da Saúde - Universidade Fernando Pessoa, , Porto, Portugal
| | - J D Santos
- REQUIMTE-LAQV, Departamento de Engenharia Metalúrgica e Materiais, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, Porto, 4200-465, Portugal
| | - M A Lopes
- REQUIMTE-LAQV, Departamento de Engenharia Metalúrgica e Materiais, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, Porto, 4200-465, Portugal
| |
Collapse
|
28
|
Quiñones JP, Peniche H, Peniche C. Chitosan Based Self-Assembled Nanoparticles in Drug Delivery. Polymers (Basel) 2018; 10:polym10030235. [PMID: 30966270 PMCID: PMC6414940 DOI: 10.3390/polym10030235] [Citation(s) in RCA: 158] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 02/20/2018] [Accepted: 02/23/2018] [Indexed: 01/29/2023] Open
Abstract
Chitosan is a cationic polysaccharide that is usually obtained by alkaline deacetylation of chitin poly(N-acetylglucosamine). It is biocompatible, biodegradable, mucoadhesive, and non-toxic. These excellent biological properties make chitosan a good candidate for a platform in developing drug delivery systems having improved biodistribution, increased specificity and sensitivity, and reduced pharmacological toxicity. In particular, chitosan nanoparticles are found to be appropriate for non-invasive routes of drug administration: oral, nasal, pulmonary and ocular routes. These applications are facilitated by the absorption-enhancing effect of chitosan. Many procedures for obtaining chitosan nanoparticles have been proposed. Particularly, the introduction of hydrophobic moieties into chitosan molecules by grafting to generate a hydrophobic-hydrophilic balance promoting self-assembly is a current and appealing approach. The grafting agent can be a hydrophobic moiety forming micelles that can entrap lipophilic drugs or it can be the drug itself. Another suitable way to generate self-assembled chitosan nanoparticles is through the formation of polyelectrolyte complexes with polyanions. This paper reviews the main approaches for preparing chitosan nanoparticles by self-assembly through both procedures, and illustrates the state of the art of their application in drug delivery.
Collapse
Affiliation(s)
- Javier Pérez Quiñones
- Institute of Polymer Chemistry, Johannes Kepler University, Altenberger Strasse 69, 4040 Linz, Austria.
| | - Hazel Peniche
- Centro de Biomateriales, Universidad de La Habana, Ave. Universidad S/N entre G y Ronda, 10400 La Habana, Cuba.
| | - Carlos Peniche
- Facultad de Química, Universidad de La Habana, Zapata S/N entre G y Carlitos Aguirre, 10400 La Habana, Cuba.
| |
Collapse
|
29
|
Bissoyi A, Kumar Singh A, Kumar Pattanayak S, Bit A, Kumar Sinha S, Patel A, Jain V, Kumar Patra P. Understanding the molecular mechanism of improved proliferation and osteogenic potential of human mesenchymal stem cells grown on a polyelectrolyte complex derived from non-mulberry silk fibroin and chitosan. Biomed Mater 2017; 13:015011. [DOI: 10.1088/1748-605x/aa890c] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
30
|
Preparation and characterization of chitosan–poly(vinyl alcohol)–neomycin sulfate films. Polym Bull (Berl) 2017. [DOI: 10.1007/s00289-017-2246-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
31
|
Maciel VBV, Yoshida CMP, Pereira SMSS, Goycoolea FM, Franco TT. Electrostatic Self-Assembled Chitosan-Pectin Nano- and Microparticles for Insulin Delivery. Molecules 2017; 22:molecules22101707. [PMID: 29023400 PMCID: PMC6151702 DOI: 10.3390/molecules22101707] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 09/29/2017] [Accepted: 10/04/2017] [Indexed: 12/31/2022] Open
Abstract
A polyelectrolyte complex system of chitosan-pectin nano- and microparticles was developed to encapsulate the hormone insulin. The aim of this work was to obtain small particles for oral insulin delivery without chemical crosslinkers based on natural and biodegradable polysaccharides. The nano- and microparticles were developed using chitosans (with different degrees of acetylation: 15.0% and 28.8%) and pectin solutions at various charge ratios (n⁺/n- given by the chitosan/pectin mass ratio) and total charge. Nano- and microparticles were characterized regarding particle size, zeta potential, production yield, encapsulation efficiency, stability in different media, transmission electron microscopy and cytotoxicity assays using Caco-2 cells. The insulin release was evaluated in vitro in simulated gastric and intestinal media. Small-sized particles (~240-~1900 nm) with a maximum production yield of ~34.0% were obtained. The highest encapsulation efficiency (~62.0%) of the system was observed at a charge ratio (n⁺/n-) 5.00. The system was stable in various media, particularly in simulated gastric fluid (pH 1.2). Transmission electron microscopy (TEM) analysis showed spherical shape particles when insulin was added to the system. In simulated intestinal fluid (pH 6.8), controlled insulin release occurred over 2 h. In vitro tests indicated that the proposed system presents potential as a drug delivery for oral administration of bioactive peptides.
Collapse
Affiliation(s)
- Vinicius B V Maciel
- Faculty of Animal Science and Food Engineering, USP-University of São Paulo, Av. Duque de Caxias Norte, 225, Pirassununga CEP 13635-900, São Paulo, Brazil.
- School of Chemical Engineering, UNICAMP-State University of Campinas, Av. Albert Einstein, 500, Campinas CEP 13083-852, São Paulo, Brazil.
| | - Cristiana M P Yoshida
- Department of Exact and Earth Science, UNIFESP-Federal University of São Paulo, Rua São Nicolau, 210, Diadema CEP 09913-030, São Paulo, Brazil.
| | - Susana M S S Pereira
- Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität Münster, Schlossgarten 3, 48149 Münster, Germany.
| | - Francisco M Goycoolea
- Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität Münster, Schlossgarten 3, 48149 Münster, Germany.
- School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK.
| | - Telma T Franco
- School of Chemical Engineering, UNICAMP-State University of Campinas, Av. Albert Einstein, 500, Campinas CEP 13083-852, São Paulo, Brazil.
| |
Collapse
|
32
|
Di Martino A, Kucharczyk P, Capakova Z, Humpolicek P, Sedlarik V. Chitosan-based nanocomplexes for simultaneous loading, burst reduction and controlled release of doxorubicin and 5-fluorouracil. Int J Biol Macromol 2017; 102:613-624. [DOI: 10.1016/j.ijbiomac.2017.04.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 03/09/2017] [Accepted: 04/02/2017] [Indexed: 12/17/2022]
|
33
|
Wang X, Wei J, Chen J, Tang S. Tuning of the surface biological behavior of poly(L-lactide)-based composites by the incorporation of polyelectrolyte complexes for bone regeneration. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2017; 28:1713-1727. [PMID: 28657452 DOI: 10.1080/09205063.2017.1348926] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Poly(L-lactide)(PLLA)-based composites have been widely used for tissue regeneration. Novel polyelectrolyte complexes (PECs) consisted of carboxymethyl starch sodium (CMS) and chitosan oligosaccharide (COS) was fabricated and evaluated. The results suggested that the CMS/COS-PECs (CC-PECs) distinguished from the original polymers alone, presenting an amorphous structure. Then, the CC-PECs/PLLA composites were prepared by varying the relative amount of CC-PECs in the PLLA-matrix, demonstrated by means of the surface morphology, hydrophilicity, water uptake, in vitro degradability and primary cell responses. The results suggested that the CC-PECs physically attached on the PLLA surface enhanced the formation of the surface seepage network, which could target modification of the surface biological behavior of the materials. The phenomena had been evidenced by the performed tests in respect to hydrophilicity, water uptake and degradation in PBS, which also may provide effective support for cell adhesion and proliferation. Further, the CC-PECs/PLLA surfaces clearly promoted the adhesion and proliferation of MC3T3-E1 cells compared with PLLA materials, indicating excellent cytocompatibility. This study suggested that the CC-PECs/PLLA-50 composite with excellent biological behavior could be a promising candidate for bone repair.
Collapse
Affiliation(s)
- Xuehong Wang
- a Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology , Shanghai , China
| | - Jie Wei
- a Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology , Shanghai , China
| | - Jianding Chen
- a Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology , Shanghai , China
| | - Songchao Tang
- a Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology , Shanghai , China
| |
Collapse
|
34
|
Das BP, Tsianou M. From polyelectrolyte complexes to polyelectrolyte multilayers: Electrostatic assembly, nanostructure, dynamics, and functional properties. Adv Colloid Interface Sci 2017; 244:71-89. [PMID: 28499602 DOI: 10.1016/j.cis.2016.12.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 12/09/2016] [Accepted: 12/10/2016] [Indexed: 12/21/2022]
Abstract
Polyelectrolyte complexes (PECs) are three-dimensional macromolecular structures formed by association of oppositely charged polyelectrolytes in solution. Polyelectrolyte multilayers (PEMs) can be considered a special case of PECs prepared by layer-by-layer (LbL) assembly that involves sequential deposition of molecular-thick polyelectrolyte layers with nanoscale control over the size, shape, composition and internal organization. Although many functional PEMs with novel physical and chemical characteristics have been developed, the current practical applications of PEMs are limited to those that require only a few bilayers and are relatively easy to prepare. The viability of such engineered materials can be realized only after overcoming the scientific and engineering challenges of understanding the kinetics and transport phenomena involved in the multilayer growth and the factors governing their final structure, composition, and response to external stimuli. There is a great need to model PEMs and to connect PEM behavior with the characteristics of the PEC counterparts to allow for prediction of performance and better design of multilayered materials. This review focuses on the relationship between PEMs and PECs. The constitutive interactions, the thermodynamics and kinetics of polyelectrolyte complexation and PEM formation, PEC phase behavior, PEM growth, the internal structure and stability in PEMs and PECs, and their response to external stimuli are presented. Knowledge of such interactions and behavior can guide rapid fabrication of PEMs and can aid their applications as nanocomposites, coatings, nano-sized reactors, capsules, drug delivery systems, and in electrochemical and sensing devices. The challenges and opportunities in future research directions are also discussed.
Collapse
Affiliation(s)
- Biswa P Das
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York (SUNY), Buffalo, NY 14260-4200, United States
| | - Marina Tsianou
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York (SUNY), Buffalo, NY 14260-4200, United States.
| |
Collapse
|
35
|
Kowalonek J. Studies of chitosan/pectin complexes exposed to UV radiation. Int J Biol Macromol 2017; 103:515-524. [PMID: 28527987 DOI: 10.1016/j.ijbiomac.2017.05.081] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 04/14/2017] [Accepted: 05/15/2017] [Indexed: 12/30/2022]
Abstract
Chitosan and pectin form complexes owing to electrostatic interactions between positively charged amino groups in chitosan and negatively charged carboxylate groups in pectin, which was confirmed by ATR-FTIR spectroscopy and contact angle measurements. Moreover, the formation of these complexes might be associated with the loss of the biopolymers ordering, which resulted in higher surface roughness and lower thermal stability of the complexes in comparison to those of homopolymers. UV rays, used as a sterilizing agent, caused a moderate increase in the surface polarity of the complexes. Roughness parameters of these samples changed irregularly after irradiation, and their thermal stability was slightly affected by UV rays. The results indicated that the complexes studied appeared to present resistance to UV action higher than homopolymers, which is a desirable property in medical or pharmaceutical applications.
Collapse
Affiliation(s)
- Jolanta Kowalonek
- Nicolaus Copernicus University in Toruń, Faculty of Chemistry, 7 Gagarin St., 87-100, Toruń, Poland.
| |
Collapse
|
36
|
Khan MIH, Islam JM, Kabir W, Rahman A, Mizan M, Rahman MF, Amin J, Khan MA. Development of hydrocolloid Bi-layer dressing with bio-adhesive and non-adhesive properties. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 69:609-15. [DOI: 10.1016/j.msec.2016.07.029] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 06/05/2016] [Accepted: 07/12/2016] [Indexed: 12/21/2022]
|
37
|
Mahdizadeh Barzoki Z, Emam-Djomeh Z, Mortazavian E, Akbar Moosavi-Movahedi A, Rafiee Tehrani M. Formulation, in vitro evaluation and kinetic analysis of chitosan-gelatin bilayer muco-adhesive buccal patches of insulin nanoparticles. J Microencapsul 2016; 33:613-624. [PMID: 27606816 DOI: 10.1080/02652048.2016.1234513] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The present study was performed to optimise the formulation of a muco-adhesive buccal patch for insulin nanoparticles (NPs) delivery. Insulin NPs were synthesised by an ionic gelation technique using N-di methyl ethyl chitosan cysteine (DMEC-Cys) as permeation enhancer biopolymer, tripolyphosphate (TPP) and insulin. Buccal patches were developed by solvent-casting technique using chitosan and gelatine as muco-adhesive polymers. Optimised patches were embedded with 3 mg of insulin-loaded NPs with a homogeneous distribution of NPs in the muco-adhesive matrix, which displayed adequate physico-mechanical properties. The drug release characteristics, release mechanism and kinetics were investigated. Data fitting to Peppas equation with a correlation coefficient indicated that the mechanism of drug release followed an anomalous transport that means drug release was afforded through drug diffusion along with polymer erosion. In vitro drug release, release kinetics, physical and mechanical studies for all patch formulations reflected the ideal characteristics of this buccal patch for the delivery of insulin NPs.
Collapse
Affiliation(s)
- Zahra Mahdizadeh Barzoki
- a Transfer Phenomena Laboratory (TPL), Department of Food Science, Technology and Engineering, Faculty of Agricultural Engineering and Technology, College of Agriculture and Natural Resources , University of Tehran , Karadj , Iran
| | - Zahra Emam-Djomeh
- a Transfer Phenomena Laboratory (TPL), Department of Food Science, Technology and Engineering, Faculty of Agricultural Engineering and Technology, College of Agriculture and Natural Resources , University of Tehran , Karadj , Iran.,b Center of Excellence for Application of Modern Technologies for Producing Functional Foods and Drinks , Tehran , Iran
| | - Elaheh Mortazavian
- c Department of Pharmaceutics, Faculty of Pharmacy , Tehran University of Medical Sciences , Tehran , Iran
| | | | - M Rafiee Tehrani
- c Department of Pharmaceutics, Faculty of Pharmacy , Tehran University of Medical Sciences , Tehran , Iran
| |
Collapse
|
38
|
Di Martino A, Pavelkova A, Maciulyte S, Budriene S, Sedlarik V. Polysaccharide-based nanocomplexes for co-encapsulation and controlled release of 5-Fluorouracil and Temozolomide. Eur J Pharm Sci 2016; 92:276-86. [DOI: 10.1016/j.ejps.2016.05.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 04/09/2016] [Accepted: 05/02/2016] [Indexed: 12/17/2022]
|
39
|
Water absorption and moisture permeation properties of chitosan/poly(acrylamide-co-itaconic acid) IPC films. Int J Biol Macromol 2016; 84:1-9. [DOI: 10.1016/j.ijbiomac.2015.11.088] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2015] [Revised: 11/19/2015] [Accepted: 11/30/2015] [Indexed: 01/21/2023]
|
40
|
Siyawamwaya M, Choonara YE, Bijukumar D, Kumar P, Du Toit LC, Pillay V. A Review: Overview of Novel Polyelectrolyte Complexes as Prospective Drug Bioavailability Enhancers. INT J POLYM MATER PO 2015. [DOI: 10.1080/00914037.2015.1038816] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
41
|
Birch NP, Barney LE, Pandres E, Peyton SR, Schiffman JD. Thermal-Responsive Behavior of a Cell Compatible Chitosan/Pectin Hydrogel. Biomacromolecules 2015; 16:1837-43. [PMID: 25932898 PMCID: PMC4943228 DOI: 10.1021/acs.biomac.5b00425] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Biopolymer hydrogels are important materials for wound healing and cell culture applications. While current synthetic polymer hydrogels have excellent biocompatibility and are nontoxic, they typically function as a passive matrix that does not supply any additional bioactivity. Chitosan (CS) and pectin (Pec) are natural polymers with active properties that are desirable for wound healing. Unfortunately, the synthesis of CS/Pec materials have previously been limited by harsh acidic synthesis conditions, which further restricted their use in biomedical applications. In this study, a zero-acid hydrogel has been synthesized from a mixture of chitosan and pectin at biologically compatible conditions. For the first time, we demonstrated that salt could be used to suppress long-range electrostatic interactions to generate a thermoreversible biopolymer hydrogel that has temperature-sensitive gelation. Both the hydrogel and the solution phases are highly elastic, with a power law index of close to -1. When dried hydrogels were placed into phosphate buffered saline solution, they rapidly rehydrated and swelled to incorporate 2.7× their weight. As a proof of concept, we removed the salt from our CS/Pec hydrogels, thus, creating thick and easy to cast polyelectrolyte complex hydrogels, which proved to be compatible with human marrow-derived stem cells. We suggest that our development of an acid-free CS/Pec hydrogel system that has excellent exudate uptake, holds potential for wound healing bandages.
Collapse
Affiliation(s)
- Nathan P. Birch
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003-9303
| | - Lauren E. Barney
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003-9303
| | - Elena Pandres
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003-9303
| | - Shelly R. Peyton
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003-9303
| | - Jessica D. Schiffman
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003-9303
| |
Collapse
|
42
|
Ventura I, Bianco-Peled H. Small-angle X-ray scattering study on pectin–chitosan mixed solutions and thermoreversible gels. Carbohydr Polym 2015; 123:122-9. [DOI: 10.1016/j.carbpol.2015.01.025] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2014] [Revised: 12/07/2014] [Accepted: 01/12/2015] [Indexed: 11/28/2022]
|
43
|
Feng D, Bai B, Wang H, Suo Y. Thermo-chemical modification to produce citric acid–yeast superabsorbent composites for ketoprofen delivery. RSC Adv 2015. [DOI: 10.1039/c5ra23577d] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The native yeast microbes were used to prepare a novel eco-friendly superabsorbent composite through thermo-chemical modification of yeast with citric acid in semi-dry conditions for ketoprofen delivery.
Collapse
Affiliation(s)
- Diejing Feng
- College of Environmental Science and Engineering
- Chang’an University
- Xi’an
- P. R. China
| | - Bo Bai
- Key Laboratory of Tibetan Medicine Research
- Northwest Plateau Institute of Biology
- Chinese Academy of Sciences
- Xining
- P. R. China
| | - Honglun Wang
- Key Laboratory of Tibetan Medicine Research
- Northwest Plateau Institute of Biology
- Chinese Academy of Sciences
- Xining
- P. R. China
| | - Yourui Suo
- Key Laboratory of Tibetan Medicine Research
- Northwest Plateau Institute of Biology
- Chinese Academy of Sciences
- Xining
- P. R. China
| |
Collapse
|
44
|
A preliminary assay of the potential of soy protein isolate and its hydrolysates to provide interfiber bonding enhancements in lignocellulosic furnishes. REACT FUNCT POLYM 2014. [DOI: 10.1016/j.reactfunctpolym.2014.09.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
45
|
Reddy PRS, Eswaramma S, Krishna Rao K, Lee YI. Dual Responsive Pectin Hydrogels and Their Silver Nanocomposites: Swelling Studies, Controlled Drug Delivery and Antimicrobial Applications. B KOREAN CHEM SOC 2014. [DOI: 10.5012/bkcs.2014.35.8.2391] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
46
|
Luo Y, Wang Q. Recent development of chitosan-based polyelectrolyte complexes with natural polysaccharides for drug delivery. Int J Biol Macromol 2014; 64:353-67. [DOI: 10.1016/j.ijbiomac.2013.12.017] [Citation(s) in RCA: 518] [Impact Index Per Article: 47.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 12/03/2013] [Accepted: 12/09/2013] [Indexed: 01/20/2023]
|
47
|
Salam A, Lucia LA, Jameel H. Synthesis, characterization, and evaluation of chitosan-complexed starch nanoparticles on the physical properties of recycled paper furnish. ACS APPLIED MATERIALS & INTERFACES 2013; 5:11029-11037. [PMID: 24080234 DOI: 10.1021/am403261d] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The objectives of the current research were to synthesize and characterize chitosan-complexed starch nanoparticles and examine their effect on the physical performance of recycled pulp, specifically old corrugated containerboard (OCC). This new approach provides a uniquely renewable and useful approach to enhance mechanical properties of pulp while maintaining environmental compatibility, industrial compatibility, and paper qualities. The starch nanoparticles used for the research were prepared from cooked cornstarch gel with ethanol and reacted with diethylenetriamine pentaacetic acid (DTPA) in the presence of sodium hypophosphite. Thereupon, the DTPA-modified starch nanoparticles (SNs) were complexed with chitosan as part of a general chemical strategy to improve their incorporation into an OCC matrix and increase interfiber bonding. Spectral characterization of the SNs was done using TGA, DSC, FT-IR, and SEM to analyze their composition and structure. Approximately 2% chitosan-complexed starch nanoparticle derivatives by mass (SNX/C) of OCC-based slurry were thoroughly mixed before manufacturing a two-dimensional sheet for physical testing. The tensile and burst strength of the modified OCC pulp sheet increased 50 and 49%, respectively, albeit having a decreased tear strength compared to the control sample. However, when the OCC pulp sheet was coated with a 1% SNX/C by mass solution, the tensile and burst strength increased 120 and 70%, respectively, while also providing significantly increased gloss, decreased roughness, and tear strength. Because the mechanical properties are the most critical property facing the recyclability of OCCs, the tremendous gains afforded by the starch nanoparticle-DTPA-chitosan proposed give the system enormous potential applicability as a viable dry strength agent for paper substrates.
Collapse
Affiliation(s)
- Abdus Salam
- Department of Forest Biomaterials, North Carolina State University , Raleigh, North Carolina 27695-8005, United States
| | | | | |
Collapse
|
48
|
Kumar PS, Ramya C, Jayakumar R, Nair SKV, Lakshmanan VK. Drug delivery and tissue engineering applications of biocompatible pectin–chitin/nano CaCO3 composite scaffolds. Colloids Surf B Biointerfaces 2013; 106:109-16. [DOI: 10.1016/j.colsurfb.2013.01.048] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Revised: 12/07/2012] [Accepted: 01/18/2013] [Indexed: 11/16/2022]
|
49
|
Synthesis of polyampholyte microgels from colloidal salts of pectinic acid and their application as pH-responsive emulsifiers. Colloid Polym Sci 2013. [DOI: 10.1007/s00396-013-2903-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
50
|
Hastuti B, Mudasir, Siswanta D, Triyono. The Synthesis of Carboxymethyl Chitosan-Pectin Film as Adsorbent for Lead (II) Metal. ACTA ACUST UNITED AC 2013. [DOI: 10.7763/ijcea.2013.v4.323] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|