1
|
Nowak K, Wójcik AM, Konopka K, Jarosz A, Dombert K, Gaj MD. miR156-SPL and miR169-NF-YA Modules Regulate the Induction of Somatic Embryogenesis in Arabidopsis via LEC- and Auxin-Related Pathways. Int J Mol Sci 2024; 25:9217. [PMID: 39273166 PMCID: PMC11394981 DOI: 10.3390/ijms25179217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/21/2024] [Accepted: 08/23/2024] [Indexed: 09/15/2024] Open
Abstract
The embryogenic transition of plant somatic cells to produce somatic embryos requires extensive reprogramming of the cell transcriptome. The prominent role of transcription factors (TFs) and miRNAs in controlling somatic embryogenesis (SE) induction in plants was documented. The profiling of MIRNA expression in the embryogenic culture of Arabidopsis implied the contribution of the miR156 and miR169 to the embryogenic induction. In the present study, the function of miR156 and miR169 and the candidate targets, SPL and NF-YA genes, were investigated in Arabidopsis SE. The results showed that misexpression of MIRNA156 and candidate SPL target genes (SPL2, 3, 4, 5, 9, 10, 11, 13, 15) negatively affected the embryogenic potential of transgenic explants, suggesting that specific fine-tuning of the miR156 and target genes expression levels seems essential for efficient SE induction. The results revealed that SPL11 under the control of miR156 might contribute to SE induction by regulating the master regulators of SE, the LEC (LEAFY COTYLEDON) genes (LEC1, LEC2, FUS3). Moreover, the role of miR169 and its candidate NF-YA targets in SE induction was demonstrated. The results showed that several miR169 targets, including NF-YA1, 3, 5, 8, and 10, positively regulated SE. We found, that miR169 via NF-YA5 seems to modulate the expression of a master SE regulator LEC1/NF-YA and other auxin-related genes: YUCCA (YUC4, 10) and PIN1 in SE induction. The study provided new insights into miR156-SPL and miR169-NF-YA functions in the auxin-related and LEC-controlled regulatory network of SE.
Collapse
Affiliation(s)
| | | | | | | | | | - Małgorzata D. Gaj
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia, 40-007 Katowice, Poland; (A.M.W.); (K.K.); (A.J.); (K.D.)
| |
Collapse
|
2
|
Wang J, Zhang L, Qi L, Zhang S. Integrated transcriptomic and metabolic analyses provide insights into the maintenance of embryogenic potential and the biosynthesis of phenolic acids and flavonoids involving transcription factors in Larix kaempferi (Lamb.) Carr. FRONTIERS IN PLANT SCIENCE 2022; 13:1056930. [PMID: 36466286 PMCID: PMC9714495 DOI: 10.3389/fpls.2022.1056930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/01/2022] [Indexed: 06/17/2023]
Abstract
Somatic embryogenesis (SE) techniques have been established for micropropagation or basic research related to plant development in many conifer species. The frequent occurrence of non-embryogenic callus (NEC) during SE has impose constraints on the application of somatic embryogenesis SE in Larix kaempferi (Lamb.) Carr, but the potential regulatory mechanisms are poorly understood. In this study, integrated transcriptomic and metabolomic analyses were performed in embryogenic callus (EC) and NEC originating from a single immature zygotic embryo to better decipher the key molecular and metabolic mechanisms required for embryogenic potential maintenance. The results showed that a total of 13,842 differentially expressed genes (DEGs) were found in EC and NEC, among which many were enriched in plant hormone signal transduction, starch and sucrose metabolism, phenylpropanoid biosynthesis, flavonoid biosynthesis, and the biosynthesis of amino acids pathways. Metabolite profiling showed that 441 differentially accumulated metabolites (DAMs) were identified in EC and NEC. Both EC and NEC had vigorous primary metabolic activities, while most secondary metabolites were upregulated in NEC. Many totipotency-related transcription factor (TF) genes such as BBMs, WUSs, and LEC1 showed higher expression levels in EC compared with NEC, which may result in the higher accumulation of indole 3-acetic acid (IAA) in EC. NEC was characterized by upregulation of genes and metabolites associated with stress responses, such as DEGs involved in jasmonic acid (JA) and ethylene (ETH) biosynthesis and signal transduction pathways, and DEGs and DAMs related to phenylpropanoid and flavonoid biosynthesis. We predicted and analyzed TFs that could target several key co-expressed structural DEGs including two C4H genes, two CcoAOMT genes and three HCT genes involved in phenylpropanoid and flavonoid biosynthesis. Based on the targeted relationship and the co-expression network, two ERFs (Lk23436 and Lk458687), one MYB (Lk34626) and one C2C2-dof (Lk37167) may play an important role in regulating phenolic acid and flavonoid biosynthesis by transcriptionally regulating the expression of these structural genes. This study shows an approach involving integrated transcriptomic and metabolic analyses to obtain insights into molecular events underlying embryogenic potential maintenance and the biosynthesis mechanisms of key metabolites involving TF regulation, which provides valuable information for the improvement of SE efficiency in L. kaempferi.
Collapse
Affiliation(s)
- Junchen Wang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
- Key Laboratory of Tree Breeding and Cultivation, National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Lifeng Zhang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
- Key Laboratory of Tree Breeding and Cultivation, National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Liwang Qi
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
- Key Laboratory of Tree Breeding and Cultivation, National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Shougong Zhang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
- Key Laboratory of Tree Breeding and Cultivation, National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| |
Collapse
|
3
|
Fritsche S, Rippel Salgado L, Boron AK, Hanning KR, Donaldson LA, Thorlby G. Transcriptional Regulation of Pine Male and Female Cone Initiation and Development: Key Players Identified Through Comparative Transcriptomics. Front Genet 2022; 13:815093. [PMID: 35368695 PMCID: PMC8971679 DOI: 10.3389/fgene.2022.815093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 02/24/2022] [Indexed: 11/24/2022] Open
Abstract
With long reproductive timescales, large complex genomes, and a lack of reliable reference genomes, understanding gene function in conifers is extremely challenging. Consequently, our understanding of which genetic factors influence the development of reproductive structures (cones) in monoecious conifers remains limited. Genes with inferred roles in conifer reproduction have mostly been identified through homology and phylogenetic reconstruction with their angiosperm counterparts. We used RNA-sequencing to generate transcriptomes of the early morphological stages of cone development in the conifer species Pinus densiflora and used these to gain a deeper insight into the transcriptional changes during male and female cone development. Paired-end Illumina sequencing was used to generate transcriptomes from non-reproductive tissue and male and female cones at four time points with a total of 382.82 Gbp of data generated. After assembly and stringent filtering, a total of 37,164 transcripts were retrieved, of which a third were functionally annotated using the Mercator plant pipeline. Differentially expressed gene (DEG) analysis resulted in the identification of 172,092 DEGs in the nine tissue types. This, alongside GO gene enrichment analyses, pinpointed transcripts putatively involved in conifer reproductive structure development, including co-orthologs of several angiosperm flowering genes and several that have not been previously reported in conifers. This study provides a comprehensive transcriptome resource for male and early female cone development in the gymnosperm species Pinus densiflora. Characterisation of this resource has allowed the identification of potential key players and thus provides valuable insights into the molecular regulation of reproductive structure development in monoecious conifers.
Collapse
Affiliation(s)
- Steffi Fritsche
- Forest Genetics and Biotechnology, Scion, Rotorua, New Zealand
| | - Leonardo Rippel Salgado
- Forest Genetics and Biotechnology, Scion, Rotorua, New Zealand
- Molecular and Digital Breeding, The New Zealand Institute for Plant and Food Research, Te Puke, New Zealand
| | | | | | | | - Glenn Thorlby
- Forest Genetics and Biotechnology, Scion, Rotorua, New Zealand
- *Correspondence: Glenn Thorlby,
| |
Collapse
|
4
|
Hassani SB, Trontin JF, Raschke J, Zoglauer K, Rupps A. Constitutive Overexpression of a Conifer WOX2 Homolog Affects Somatic Embryo Development in Pinus pinaster and Promotes Somatic Embryogenesis and Organogenesis in Arabidopsis Seedlings. FRONTIERS IN PLANT SCIENCE 2022; 13:838421. [PMID: 35360299 PMCID: PMC8960953 DOI: 10.3389/fpls.2022.838421] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
Although full sequence data of several embryogenesis-related genes are available in conifers, their functions are still poorly understood. In this study, we focused on the transcription factor WUSCHEL-related HOMEOBOX 2 (WOX2), which is involved in determination of the apical domain during early embryogenesis, and is required for initiation of the stem cell program in the embryogenic shoot meristem of Arabidopsis. We studied the effects of constitutive overexpression of Pinus pinaster WOX2 (PpWOX2) by Agrobacterium-mediated transformation of P. pinaster somatic embryos and Arabidopsis seedlings. Overexpression of PpWOX2 during proliferation and maturation of somatic embryos of P. pinaster led to alterations in the quantity and quality of cotyledonary embryos. In addition, transgenic somatic seedlings of P. pinaster showed non-embryogenic callus formation in the region of roots and subsequently inhibited root growth. Overexpression of PpWOX2 in Arabidopsis promoted somatic embryogenesis and organogenesis in a part of the transgenic seedlings of the first and second generations. A concomitant increased expression of endogenous embryogenesis-related genes such as AtLEC1 was detected in transgenic plants of the first generation. Various plant phenotypes observed from single overexpressing transgenic lines of the second generation suggest some significant interactions between PpWOX2 and AtWOX2. As an explanation, functional redundancy in the WOX family is suggested for seed plants. Our results demonstrate that the constitutive high expression of PpWOX2 in Arabidopsis and P. pinaster affected embryogenesis-related traits. These findings further support some evolutionary conserved roles of this gene in embryo development of seed plants and have practical implications toward somatic embryogenesis induction in conifers.
Collapse
Affiliation(s)
- Seyedeh Batool Hassani
- Department of Plant Systematics and Evolution, Institute of Biology, Humboldt-Universität zu Berlin, Berlin, Germany
| | | | - Juliane Raschke
- Department of Plant Systematics and Evolution, Institute of Biology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Kurt Zoglauer
- Department of Plant Systematics and Evolution, Institute of Biology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Andrea Rupps
- Department of Plant Systematics and Evolution, Institute of Biology, Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
5
|
Li WF, Kang Y, Zhang Y, Zang QL, Qi LW. Concerted control of the LaRAV1-LaCDKB1;3 module by temperature during dormancy release and reactivation of larch. TREE PHYSIOLOGY 2021; 41:1918-1937. [PMID: 33847364 PMCID: PMC8498939 DOI: 10.1093/treephys/tpab052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 04/07/2021] [Indexed: 05/03/2023]
Abstract
Dormancy release and reactivation of temperate-zone trees involve the temperature-modulated expression of cell-cycle genes. However, information on the detailed regulatory mechanism is limited. Here, we compared the transcriptomes of the stems of active and dormant larch trees, emphasizing the expression patterns of cell-cycle genes and transcription factors and assessed their relationships and responses to temperatures. Twelve cell-cycle genes and 31 transcription factors were strongly expressed in the active stage. Promoter analysis suggested that these 12 genes might be regulated by transcription factors from 10 families. Altogether, 73 cases of regulation between 16 transcription factors and 12 cell-cycle genes were predicted, while the regulatory interactions between LaMYB20 and LaCYCB1;1, and LaRAV1 and LaCDKB1;3 were confirmed by yeast one-hybrid and dual-luciferase assays. Last, we found that LaRAV1 and LaCDKB1;3 had almost the same expression patterns during dormancy release and reactivation induced naturally or artificially by temperature, indicating that the LaRAV1-LaCDKB1;3 module functions in the temperature-modulated dormancy release and reactivation of larch trees. These results provide new insights into the link between temperature and cell-cycle gene expression, helping to understand the temperature control of tree growth and development in the context of climate change.
Collapse
Affiliation(s)
- Wan-Feng Li
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation, National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, No. 1, Dongxiaofu, Xiangshan Road, Haidian District, Beijing 100091, People's Republic of China
| | - Yanhui Kang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation, National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, No. 1, Dongxiaofu, Xiangshan Road, Haidian District, Beijing 100091, People's Republic of China
| | - Yao Zhang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation, National Forestry and Grassland Administration, Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, No. 1, Dongxiaofu, Xiangshan Road, Haidian District, Beijing 100091, People's Republic of China
| | - Qiao-Lu Zang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation, National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, No. 1, Dongxiaofu, Xiangshan Road, Haidian District, Beijing 100091, People's Republic of China
| | - Li-Wang Qi
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation, National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, No. 1, Dongxiaofu, Xiangshan Road, Haidian District, Beijing 100091, People's Republic of China
| |
Collapse
|
6
|
Jia A, Xu L, Wang Y. Venn diagrams in bioinformatics. Brief Bioinform 2021; 22:6220174. [PMID: 33839742 DOI: 10.1093/bib/bbab108] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 03/04/2021] [Accepted: 03/11/2021] [Indexed: 02/06/2023] Open
Abstract
Venn diagrams are widely used tools for graphical depiction of the unions, intersections and distinctions among multiple datasets, and a large number of programs have been developed to generate Venn diagrams for applications in various research areas. However, a comprehensive review comparing these tools has not been previously performed. In this review, we collect Venn diagram generators (i.e. tools for visualizing the relationships of input lists within a Venn diagram) and Venn diagram application tools (i.e. tools for analyzing the relationships between biological data and visualizing them in a Venn diagram) to compare their functional capacity as follows: ability to generate high-quality diagrams; maximum datasets handled by each program; input data formats; output diagram styles and image output formats. We also evaluate the picture beautification parameters of the Venn diagram generators in terms of the graphical layout and briefly describe the functional characteristics of the most popular Venn diagram application tools. Finally, we discuss the challenges in improving Venn diagram application tools and provide a perspective on Venn diagram applications in bioinformatics. Our aim is to assist users in selecting suitable tools for analyzing and visualizing user-defined datasets.
Collapse
Affiliation(s)
- Anqiang Jia
- Biological Science Research Center at Southwest University, Chongqing 400715, China
| | - Ling Xu
- University of California, Berkeley 400715, China
| | - Yi Wang
- Biological Science Research Center at Southwest University, Chongqing 400715, China
| |
Collapse
|
7
|
Shmakov VN, Konstantinov YM. Somatic embryogenesis in Larix: the state of art and perspectives. Vavilovskii Zhurnal Genet Selektsii 2021; 24:575-588. [PMID: 33659843 PMCID: PMC7716517 DOI: 10.18699/vj20.651] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Clonal propagation of conifers using somatic embryogenesis is essential for the selection of tree species,
and for the implementation of afforestation and reforestation. In combination with cryopreservation, somatic
embryogenesis
creates the basis for the development of economically valuable lines of clones and elite genotypes.
The industrial use of such genetically verified clone lines in forestry can significantly increase forest productivity compared
to any conventional methods for improving tree crops that are available. Larch is considered as one of the main
conifer candidates for large-scale reforestation, not only due to the vastness of its habitat, but also due to the unique
quality of its wood, rapid growth and high ecological plasticity. However, the vast majority of larch species are characterized
by uneven yields and extremely low seed quality. In this regard, obtaining planting material for reforestation
from larch seeds on seed plantations is not advisable, but can be successfully implemented in afforestation programs
using somatic embryogenesis technologies. Research on the somatic embryogenesis of larch has been conducted
for over 30 years, which allowed considerable experience in this field to be accumulated. To date, the conditions for
the initiation and maintenance of embryogenic cultures, as well as for the formation and development of somatic
embryos have been determined. Significant progress has been made in the study of both the factors affecting these
processes and the molecular mechanisms that underlie the various stages of embryogenesis. Nevertheless, despite
the successes achieved, knowledge available today on the somatic embryogenesis of representatives of the genus
Larix is still not enough to develop technologies for producing valuable plant-breeding material in vitro. This review
analyzes the current state of research on the problem of somatic embryogenesis of representatives of the genus Larix.
Particular attention is paid to the choice of explants for somatic embryogenesis, the composition of the media for
cultivation, the dependence of the potential of somatic embryogenesis on the duration of cultivation, and the genetic
control of somatic embryogenesis.
Collapse
Affiliation(s)
- V N Shmakov
- Siberian Institute of Plant Physiology and Biochemistry of Siberian Branch of the Russian Academy of Sciences, Irkutsk, Russia
| | - Yu M Konstantinov
- Siberian Institute of Plant Physiology and Biochemistry of Siberian Branch of the Russian Academy of Sciences, Irkutsk, Russia Irkutsk State University, Irkutsk, Russia
| |
Collapse
|
8
|
Chan PL, Rose RJ, Abdul Murad AM, Zainal Z, Ong PW, Ooi LCL, Low ETL, Ishak Z, Yahya S, Song Y, Singh R. Early nodulin 93 protein gene: essential for induction of somatic embryogenesis in oil palm. PLANT CELL REPORTS 2020; 39:1395-1413. [PMID: 32734510 DOI: 10.1007/s00299-020-02571-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 07/16/2020] [Indexed: 06/11/2023]
Abstract
Transcript profiling during the early induction phase of oil palm tissue culture and RNAi studies in a model somatic embryogenesis system showed that EgENOD93 expression is essential for somatic embryogenesis. Micropropagation of oil palm through tissue culture is vital for the generation of superior and uniform elite planting materials. Studies were carried out to identify genes to distinguish between leaf explants with the potential to develop into embryogenic or non-embryogenic callus. Oil palm cDNA microarrays were co-hybridized with cDNA probes of reference tissue, separately with embryo forming (media T527) and non-embryo (media T694) forming leaf explants sampled at Day 7, Day 14 and Day 21. Analysis of the normalized datasets has identified 77, 115 and 127 significantly differentially expressed genes at Day 7, Day 14, and Day 21, respectively. An early nodulin 93 protein gene (ENOD93), was highly expressed at Day 7, Day 14, and Day 21 and in callus (media T527), as assessed by RT-qPCR. Validation of EgENOD93 across tissue culture lines of different genetic background and media composition showed the potential of this gene as an embryogenic marker. In situ RNA hybridization and functional characterization in Medicago truncatula provided additional evidence that ENOD93 is essential for somatic embryogenesis. This study supports the suitability of EgENOD93 as a marker to predict the potential of leaf explants to produce embryogenic callus. Crosstalk among stresses, auxin, and Nod-factor like signalling molecules likely induces the expression of EgENOD93 for embryogenic callus formation.
Collapse
Affiliation(s)
- Pek-Lan Chan
- Advanced Biotechnology and Breeding Centre, Malaysian Palm Oil Board (MPOB), No. 6, Persiaran Institusi, Bandar Baru Bangi, 43000, Kajang, Selangor, Malaysia.
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor, Malaysia.
| | - Ray J Rose
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Abdul Munir Abdul Murad
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor, Malaysia
| | - Zamri Zainal
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor, Malaysia
| | - Pei-Wen Ong
- Advanced Biotechnology and Breeding Centre, Malaysian Palm Oil Board (MPOB), No. 6, Persiaran Institusi, Bandar Baru Bangi, 43000, Kajang, Selangor, Malaysia
- Institute of Plant Biology, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei, 10617, Taiwan, ROC
| | - Leslie Cheng-Li Ooi
- Advanced Biotechnology and Breeding Centre, Malaysian Palm Oil Board (MPOB), No. 6, Persiaran Institusi, Bandar Baru Bangi, 43000, Kajang, Selangor, Malaysia
| | - Eng-Ti Leslie Low
- Advanced Biotechnology and Breeding Centre, Malaysian Palm Oil Board (MPOB), No. 6, Persiaran Institusi, Bandar Baru Bangi, 43000, Kajang, Selangor, Malaysia
| | - Zamzuri Ishak
- Advanced Biotechnology and Breeding Centre, Malaysian Palm Oil Board (MPOB), No. 6, Persiaran Institusi, Bandar Baru Bangi, 43000, Kajang, Selangor, Malaysia
- , No.16, Jalan 3/5E, 43650, Bandar Baru Bangi, Selangor, Malaysia
| | - Suzaini Yahya
- Sime Darby Biotech Laboratories Sdn Bhd., Km10, Jalan Banting-Kelanang, P.O. Box 207, 42700, Banting, Selangor, Malaysia
- , Taman Alam Shah, 41000, Klang, Selangor, Malaysia
| | - Youhong Song
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, 2308, Australia
- School of Agronomy, Anhui Agricultural University, Hefei, China
| | - Rajinder Singh
- Advanced Biotechnology and Breeding Centre, Malaysian Palm Oil Board (MPOB), No. 6, Persiaran Institusi, Bandar Baru Bangi, 43000, Kajang, Selangor, Malaysia
| |
Collapse
|
9
|
Gao J, Xue J, Xue Y, Liu R, Ren X, Wang S, Zhang X. Transcriptome sequencing and identification of key callus browning-related genes from petiole callus of tree peony (Paeonia suffruticosa cv. Kao) cultured on media with three browning inhibitors. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 149:36-49. [PMID: 32035251 DOI: 10.1016/j.plaphy.2020.01.029] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 01/18/2020] [Accepted: 01/18/2020] [Indexed: 06/10/2023]
Abstract
Tree peony (Paeonia suffruticosa Andrews) has ornamental, oil, and medicinal values, and demand in the markets for uniform tree peony seedlings is increasing. Micropropagation could quickly propagate uniform seedlings. However, the heavy browning phenomenon hinders large-scale development of uniform tree peony seedlings. In this paper, we measured the total phenolic compounds content, and sequenced the transcriptomes of tree peony 'Kao' petiole calluses cultured on media with three browning antagonist treatments and fresh petioles to identify the key genes involved in callus browning. Polyvinylpyrrolidone (PVP) treatment can reduce production of phenolic compounds and promote callus regeneration. A total of 218,957 unigenes were obtained from fresh petiole and three kinds of browning petiole calluses by transcriptome sequencing. The average sequence length of unigenes was 446 bp with an N50 of 493 bp. Functional annotation analysis revealed that 43,428, 45,357, 31,194, 30,019, and 21,357 unigenes were annotated using the NCBI-NR database, Swiss-Prot, KOG, GO, and KEGG, respectively. In total, 33 differentially expressed genes (DEGs) were identified as potentially associated with callus browning. Among these DEGs, 12 genes were predicted to participate in phenolic compounds biosynthesis, three genes were predicted to be involved in phenolic compounds oxidation, and six genes were predicted to participate in callus regeneration. Moreover, six transcription factors were observed to be differentially expressed in the fresh petiole and three treated petioles in tree peony. This study comprehensively identifies browning-related gene resources and will possibly help in deciphering the molecular mechanisms of callus browning of tree peony in the future.
Collapse
Affiliation(s)
- Jie Gao
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, PR China, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Institute of Peony, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Jingqi Xue
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, PR China, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Institute of Peony, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Yuqian Xue
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, PR China, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Institute of Peony, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Rong Liu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, PR China, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Institute of Peony, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Xiuxia Ren
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, PR China, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Institute of Peony, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Shunli Wang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, PR China, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Institute of Peony, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Xiuxin Zhang
- National Agricultural Science & Technology Center, Chengdu, China.
| |
Collapse
|
10
|
Li SN, Cheng P, Bai YQ, Shi Y, Yu JY, Li RC, Zhou RN, Zhang ZG, Wu XX, Chen QS. Analysis of Soybean Somatic Embryogenesis Using Chromosome Segment Substitution Lines and Transcriptome Sequencing. Genes (Basel) 2019; 10:E943. [PMID: 31752416 PMCID: PMC6896167 DOI: 10.3390/genes10110943] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 11/05/2019] [Accepted: 11/18/2019] [Indexed: 12/15/2022] Open
Abstract
Soybean is an important cash crop that is widely used as a source of vegetable protein and edible oil. The regeneration ability of soybean directly affects the application of biotechnology. In this study, we used the exogenous hormone 2,4-D to treat immature embryos. Different levels of somatic incidence were selected from the chromosome segment substitution lines (CSSLs) constructed by SN14 and ZYD00006. Transcriptome sequencing of extreme materials was performed, and 2666 differentially expressed genes were obtained. At the same time, a difference table was generated by combining the data on CSSL rearrangement. In the extreme materials, a total of 93 differentially expressed genes were predicted and were then analyzed by cluster analysis and Gene Ontology (GO) annotation. After screening and annotating the target genes, three differentially expressed genes with hormone pathways were identified. The expression patterns of the target genes were verified by real-time quantitative PCR (qRT-PCR). Haplotype polymorphism detection and linkage disequilibrium analysis were performed on the candidate gene Glyma.09g248200. This study provided more information on the regulation network of soybean somatic embryogenesis and regeneration processes, and further identified important genes in the soybean regeneration process and provided a theoretical basis for accelerating the application of biotechnology to soybean for improving its breeding efficiency.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Zhan-Guo Zhang
- College of Agriculture, Northeast Agricultural University, Harbin 150030, Heilongjiang, China; (S.-N.L.); (P.C.); (Y.-Q.B.); (Y.S.); (J.-Y.Y.); (R.-C.L.); (R.-N.Z.)
| | - Xiao-Xia Wu
- College of Agriculture, Northeast Agricultural University, Harbin 150030, Heilongjiang, China; (S.-N.L.); (P.C.); (Y.-Q.B.); (Y.S.); (J.-Y.Y.); (R.-C.L.); (R.-N.Z.)
| | - Qing-Shan Chen
- College of Agriculture, Northeast Agricultural University, Harbin 150030, Heilongjiang, China; (S.-N.L.); (P.C.); (Y.-Q.B.); (Y.S.); (J.-Y.Y.); (R.-C.L.); (R.-N.Z.)
| |
Collapse
|
11
|
Wang S, Gao J, Xue J, Xue Y, Li D, Guan Y, Zhang X. De novo sequencing of tree peony (Paeonia suffruticosa) transcriptome to identify critical genes involved in flowering and floral organ development. BMC Genomics 2019; 20:572. [PMID: 31296170 PMCID: PMC6624964 DOI: 10.1186/s12864-019-5857-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 05/29/2019] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Tree peony (Paeonia suffruticosa Andrews) is a globally famous ornamental flower, with large and colorful flowers and abundant flower types. However, a relatively short and uniform flowering period hinders the applications and production of ornamental tree peony. Unfortunately, the molecular mechanism of regulating flowering time and floral organ development in tree peony has yet to be elucidated. Because of the absence of genomic information, 454-based transcriptome sequence technology for de novo transcriptomics was used to identify the critical flowering genes using re-blooming, non-re-blooming, and wild species of tree peonies. RESULTS A total of 29,275 unigenes were obtained from the bud transcriptome, with an N50 of 776 bp. The average length of unigenes was 677.18 bp, and the longest sequence was 5815 bp. Functional annotation showed that 22,823, 17,321, 13,312, 20,041, and 9940 unigenes were annotated by NCBI-NR, Swiss-Prot, COG, GO, and KEGG, respectively. Within the differentially expressed genes (DEGs) 64 flowering-related genes were identified and some important flowering genes were also characterized by bioinformatics methods, reverse transcript polymerase chain reaction (RT-PCR), and rapid-amplification of cDNA ends (RACE). Then, the putative genetic network of flowering induction pathways and a floral organ development model were put forward, according to the comparisons of DEGs in any two samples and expression levels of the important flowering genes in differentiated buds, buds from different developmental stages, and with GA or vernalization treated. In tree peony, five pathways (long day, vernalization, autonomous, age, and gibberellin) regulated flowering, and the floral organ development followed an ABCE model. Moreover, it was also found that the genes PsAP1, PsCOL1, PsCRY1, PsCRY2, PsFT, PsLFY, PsLHY, PsGI, PsSOC1, and PsVIN3 probably regulated re-blooming of tree peony. CONCLUSION This study provides a comprehensive report on the flowering-related genes in tree peony for the first time and investigated the expression levels of the critical flowering related genes in buds of different cultivars, developmental stages, differentiated primordium, and flower parts. These results could provide valuable insights into the molecular mechanisms of flowering time regulation and floral organ development.
Collapse
Affiliation(s)
- Shunli Wang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, Beijing, People's Republic of China.,Institute of Vegetables and Flowers, Chinese Academy of Agricultural Science, Institute of Peony, Chinese Academy of Agricultural Science, Beijing, 100081, China
| | - Jie Gao
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, Beijing, People's Republic of China.,Institute of Vegetables and Flowers, Chinese Academy of Agricultural Science, Institute of Peony, Chinese Academy of Agricultural Science, Beijing, 100081, China
| | - Jingqi Xue
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, Beijing, People's Republic of China.,Institute of Vegetables and Flowers, Chinese Academy of Agricultural Science, Institute of Peony, Chinese Academy of Agricultural Science, Beijing, 100081, China
| | - Yuqian Xue
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, Beijing, People's Republic of China.,Institute of Vegetables and Flowers, Chinese Academy of Agricultural Science, Institute of Peony, Chinese Academy of Agricultural Science, Beijing, 100081, China
| | - Dandan Li
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, Beijing, People's Republic of China.,Institute of Vegetables and Flowers, Chinese Academy of Agricultural Science, Institute of Peony, Chinese Academy of Agricultural Science, Beijing, 100081, China
| | - Yanren Guan
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, Beijing, People's Republic of China.,Institute of Vegetables and Flowers, Chinese Academy of Agricultural Science, Institute of Peony, Chinese Academy of Agricultural Science, Beijing, 100081, China
| | - Xiuxin Zhang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, Beijing, People's Republic of China. .,Institute of Vegetables and Flowers, Chinese Academy of Agricultural Science, Institute of Peony, Chinese Academy of Agricultural Science, Beijing, 100081, China.
| |
Collapse
|
12
|
Gautier F, Eliášová K, Leplé JC, Vondráková Z, Lomenech AM, Le Metté C, Label P, Costa G, Trontin JF, Teyssier C, Lelu-Walter MA. Repetitive somatic embryogenesis induced cytological and proteomic changes in embryogenic lines of Pseudotsuga menziesii [Mirb.]. BMC PLANT BIOLOGY 2018; 18:164. [PMID: 30097018 PMCID: PMC6086078 DOI: 10.1186/s12870-018-1337-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 05/31/2018] [Indexed: 05/06/2023]
Abstract
BACKGROUND To explore poorly understood differences between primary and subsequent somatic embryogenic lines of plants, we induced secondary (2ry) and tertiary (3ry) lines from cotyledonary somatic embryos (SEs) of two Douglas-fir genotypes: SD4 and TD17. The 2ry lines exhibited significantly higher embryogenic potential (SE yields) than the 1ry lines initiated from zygotic embryos (SD4, 2155 vs 477; TD17, 240 vs 29 g- 1 f.w.). Moreover, we observed similar differences in yield between 2ry and 3ry lines of SD4 (2400 vs 3921 g- 1 f.w.). To elucidate reasons for differences in embryogenic potential induced by repetitive somatic embryogenesis we then compared 2ry vs 1ry and 2ry vs 3ry lines at histo-cytological (using LC-MS/MS) and proteomic levels. RESULTS Repetitive somatic embryogenesis dramatically improved the proliferating lines' cellular organization (genotype SD4's most strongly). Frequencies of singulated, bipolar SEs and compact polyembryogenic centers with elongated suspensors and apparently cleavable embryonal heads increased in 2ry and (even more) 3ry lines. Among 2300-2500 identified proteins, 162 and 228 were classified significantly differentially expressed between 2ry vs 1ry and 3ry vs 2ry lines, respectively, with special emphasis on "Proteolysis" and "Catabolic process" Gene Ontology categories. Strikingly, most of the significant proteins (> 70%) were down-regulated in 2ry relative to 1ry lines, but up-regulated in 3ry relative to 2ry lines, revealing a down-up pattern of expression. GO category enrichment analyses highlighted the opposite adjustments of global protein patterns, particularly for processes involved in chitin catabolism, lignin and L-phenylalanine metabolism, phenylpropanoid biosynthesis, oxidation-reduction, and response to karrikin. Sub-Network Enrichment Analyses highlighted interactions between significant proteins and both plant growth regulators and secondary metabolites after first (especially jasmonic acid, flavonoids) and second (especially salicylic acid, abscisic acid, lignin) embryogenesis cycles. Protein networks established after each induction affected the same "Plant development" and "Defense response" biological processes, but most strongly after the third cycle, which could explain the top embryogenic performance of 3ry lines. CONCLUSIONS This first report of cellular and molecular changes after repetitive somatic embryogenesis in conifers shows that each cycle enhanced the structure and singularization of EMs through modulation of growth regulator pathways, thereby improving the lines' embryogenic status.
Collapse
Affiliation(s)
- Florian Gautier
- BioForA, INRA, ONF, F-45075 Orléans, France
- SylvaLIM, University Limoges, F-78060 Limoges, France
| | - Kateřina Eliášová
- Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 165 02 Praha, 6-Lysolaje Czech Republic
| | - Jean-Charles Leplé
- BioForA, INRA, ONF, F-45075 Orléans, France
- BIOGECO, INRA, University Bordeaux, F-33610 Cestas, France
| | - Zuzana Vondráková
- Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 165 02 Praha, 6-Lysolaje Czech Republic
| | - Anne-Marie Lomenech
- Plateforme Protéome, Centre de Génomique Fonctionnelle, University Bordeaux, F-33000 Bordeaux, France
| | | | - Philippe Label
- University Clermont Auvergne, INRA, PIAF, F-63000 Clermont–Ferrand, France
| | - Guy Costa
- SylvaLIM, University Limoges, F-78060 Limoges, France
| | - Jean-François Trontin
- Pôle Biotechnologie et Sylviculture Avancée, FCBA, Campus Forêt-Bois de Pierroton, F-33610 Cestas, France
| | | | | |
Collapse
|
13
|
Góngora-Castillo E, Nic-Can GI, Galaz-Ávalos RM, Loyola-Vargas VM. Elaboration of Transcriptome During the Induction of Somatic Embryogenesis. Methods Mol Biol 2018; 1815:411-427. [PMID: 29981139 DOI: 10.1007/978-1-4939-8594-4_29] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Somatic embryogenesis (SE) is one of the most studied developmental processes due to its applications, such as plant micropropagation, transformation, and germplasm conservation. The use of massive techniques of sequencing, as well as the use of subtractive hybridization and macroarrays, has led to the identification of hundreds of genes involved in the SE process. These have been important developments to study the molecular aspects of the progress of SE. With the advent of the new massive techniques for sequencing RNA, it has been possible to see a more complete picture of whole processes. In this chapter we present a technique to handle the elaboration of the transcriptome from the extraction of RNA until the assembly of the complete transcriptome.
Collapse
Affiliation(s)
- Elsa Góngora-Castillo
- CONACYT Research Fellow-Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, Mérida, Yucatán, Mexico.
| | - Geovanny I Nic-Can
- CONACYT Research Fellow-Campus de Ciencias Exactas e Ingeniería, Universidad Autónoma de Yucatán, Mérida, Yucatán, Mexico
| | - Rosa M Galaz-Ávalos
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, Mérida, Yucatán, Mexico
| | - Víctor M Loyola-Vargas
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, Mérida, Yucatán, Mexico
| |
Collapse
|
14
|
Liu Y, El-Kassaby YA. Global Analysis of Small RNA Dynamics during Seed Development of Picea glauca and Arabidopsis thaliana Populations Reveals Insights on their Evolutionary Trajectories. FRONTIERS IN PLANT SCIENCE 2017; 8:1719. [PMID: 29046688 PMCID: PMC5632664 DOI: 10.3389/fpls.2017.01719] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 09/20/2017] [Indexed: 06/07/2023]
Abstract
While DNA methylation carries genetic signals and is instrumental in the evolution of organismal complexity, small RNAs (sRNAs), ~18-24 ribonucleotide (nt) sequences, are crucial mediators of methylation as well as gene silencing. However, scant study deals with sRNA evolution via featuring their expression dynamics coupled with species of different evolutionary time. Here we report an atlas of sRNAs and microRNAs (miRNAs, single-stranded sRNAs) produced over time at seed-set of two major spermatophytes represented by populations of Picea glauca and Arabidopsis thaliana with different seed-set duration. We applied diverse profiling methods to examine sRNA and miRNA features, including size distribution, sequence conservation and reproduction-specific regulation, as well as to predict their putative targets. The top 27 most abundant miRNAs were highly overlapped between the two species (e.g., miR166,-319 and-396), but in P. glauca, they were less abundant and significantly less correlated with seed-set phases. The most abundant sRNAs in libraries were deeply conserved miRNAs in the plant kingdom for Arabidopsis but long sRNAs (24-nt) for P. glauca. We also found significant difference in normalized expression between populations for population-specific sRNAs but not for lineage-specific ones. Moreover, lineage-specific sRNAs were enriched in the 21-nt size class. This pattern is consistent in both species and alludes to a specific type of sRNAs (e.g., miRNA, tasiRNA) being selected for. In addition, we deemed 24 and 9 sRNAs in P. glauca and Arabidopsis, respectively, as sRNA candidates targeting known adaptive genes. Temperature had significant influence on selected gene and miRNA expression at seed development in both species. This study increases our integrated understanding of sRNA evolution and its potential link to genomic architecture (e.g., sRNA derivation from genome and sRNA-mediated genomic events) and organismal complexity (e.g., association between different sRNA expression and their functionality).
Collapse
|
15
|
Enriching Genomic Resources and Marker Development from Transcript Sequences of Jatropha curcas for Microgravity Studies. Int J Genomics 2017; 2017:8614160. [PMID: 28154822 PMCID: PMC5244023 DOI: 10.1155/2017/8614160] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 11/28/2016] [Indexed: 01/22/2023] Open
Abstract
Jatropha (Jatropha curcas L.) is an economically important species with a great potential for biodiesel production. To enrich the jatropha genomic databases and resources for microgravity studies, we sequenced and annotated the transcriptome of jatropha and developed SSR and SNP markers from the transcriptome sequences. In total 1,714,433 raw reads with an average length of 441.2 nucleotides were generated. De novo assembling and clustering resulted in 115,611 uniquely assembled sequences (UASs) including 21,418 full-length cDNAs and 23,264 new jatropha transcript sequences. The whole set of UASs were fully annotated, out of which 59,903 (51.81%) were assigned with gene ontology (GO) term, 12,584 (10.88%) had orthologs in Eukaryotic Orthologous Groups (KOG), and 8,822 (7.63%) were mapped to 317 pathways in six different categories in Kyoto Encyclopedia of Genes and Genome (KEGG) database, and it contained 3,588 putative transcription factors. From the UASs, 9,798 SSRs were discovered with AG/CT as the most frequent (45.8%) SSR motif type. Further 38,693 SNPs were detected and 7,584 remained after filtering. This UAS set has enriched the current jatropha genomic databases and provided a large number of genetic markers, which can facilitate jatropha genetic improvement and many other genetic and biological studies.
Collapse
|
16
|
Merino I, Abrahamsson M, Sterck L, Craven-Bartle B, Canovas F, von Arnold S. Transcript profiling for early stages during embryo development in Scots pine. BMC PLANT BIOLOGY 2016; 16:255. [PMID: 27863470 PMCID: PMC5116219 DOI: 10.1186/s12870-016-0939-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 10/28/2016] [Indexed: 05/22/2023]
Abstract
BACKGROUND Characterization of the expression and function of genes regulating embryo development in conifers is interesting from an evolutionary point of view. However, our knowledge about the regulation of embryo development in conifers is limited. During early embryo development in Pinus species the proembyo goes through a cleavage process, named cleavage polyembryony, giving rise to four embryos. One of these embryos develops to a dominant embryo, which will develop further into a mature, cotyledonary embryo, while the other embryos, the subordinate embryos, are degraded. The main goal of this study has been to identify processes that might be important for regulating the cleavage process and for the development of a dominant embryo. RESULTS RNA samples from embryos and megagametophytes at four early developmental stages during seed development in Pinus sylvestris were subjected to high-throughput sequencing. A total of 6.6 million raw reads was generated, resulting in 121,938 transcripts, out of which 36.106 contained ORFs. 18,638 transcripts were differentially expressed (DETs) in embryos and megagametophytes. GO enrichment analysis of transcripts up-regulated in embryos showed enrichment for different cellular processes, while those up-regulated in megagametophytes were enriched for accumulation of storage material and responses to stress. The highest number of DETs was detected during the initiation of the cleavage process. Transcripts related to embryogenic competence, cell wall modifications, cell division pattern, axis specification and response to hormones and stress were highly abundant and differentially expressed during early embryo development. The abundance of representative DETs was confirmed by qRT-PCR analyses. CONCLUSION Based on the processes identified in the GO enrichment analyses and the expression of the selected transcripts we suggest that (i) processes related to embryogenic competence and cell wall loosening are involved in activating the cleavage process; (ii) apical-basal polarization is strictly regulated in dominant embryos but not in the subordinate embryos; (iii) the transition from the morphogenic phase to the maturation phase is not completed in subordinate embryos. This is the first genome-wide transcript expression profiling of the earliest stages during embryo development in a Pinus species. Our results can serve as a framework for future studies to reveal the functions of identified genes.
Collapse
Affiliation(s)
- Irene Merino
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences, Box 7080, 750 07 Uppsala, Sweden
| | - Malin Abrahamsson
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences, Box 7080, 750 07 Uppsala, Sweden
| | - Lieven Sterck
- Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium
- Bioinformatics Institute Ghent, Ghent University, Ghent, B-9000 Belgium
| | - Blanca Craven-Bartle
- Department of Molecular Biology and Biochemistry, School of Sciences, Campus de Teatinos, Universidad de Malaga, 29071 Malaga, Spain
| | - Francisco Canovas
- Department of Molecular Biology and Biochemistry, School of Sciences, Campus de Teatinos, Universidad de Malaga, 29071 Malaga, Spain
| | - Sara von Arnold
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences, Box 7080, 750 07 Uppsala, Sweden
| |
Collapse
|
17
|
Zhang Y, Han X, Sang J, He X, Liu M, Qiao G, Zhuo R, He G, Hu J. Transcriptome analysis of immature xylem in the Chinese fir at different developmental phases. PeerJ 2016; 4:e2097. [PMID: 27330860 PMCID: PMC4906661 DOI: 10.7717/peerj.2097] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 05/10/2016] [Indexed: 12/23/2022] Open
Abstract
Background.Chinese fir [Cunninghamia lanceolata (Lamb.) Hook.] is one of the most important native tree species for timber production in southern China. An understanding of overall fast growing stage, stem growth stage and senescence stage cambium transcriptome variation is lacking. We used transcriptome sequencing to identify the repertoire of genes expressed during development of xylem tissue in Chinese fir, aiming to delineate the molecular mechanisms of wood formation. Results. We carried out transcriptome sequencing at three different cultivation ages (7Y, 15Y and 21Y) generating 68.71 million reads (13.88 Gbp). A total of 140,486 unigenes with a mean size of 568.64 base pairs (bp) were obtained via de novo assembly. Of these, 27,427 unigenes (19.52%) were further annotated by comparison to public protein databases. A total of 5,331 (3.79%) unigenes were mapped into 118 pathways by searching against the Kyoto Encyclopedia of Genes and Genomes Pathway database (KEGG). Differentially expressed genes (DEG) analysis identified 3, 16 and 5,899 DEGs from the comparison of 7Y vs. 15Y, 7Y vs. 21Y and 15Y vs. 21Y, respectively, in the immature xylem tissues, including 2,638 significantly up-regulated and 3,280 significantly down-regulated genes. Besides, five NAC transcription factors, 190 MYB transcription factors, and 34 WRKY transcription factors were identified respectively from Chinese fir transcriptome. Conclusion. Our results revealed the active transcriptional pathways and identified the DEGs at different cultivation phases of Chinese fir wood formation. This transcriptome dataset will aid in understanding and carrying out future studies on the molecular basis of Chinese fir wood formation and contribute to future artificial production and applications.
Collapse
Affiliation(s)
- Yunxing Zhang
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China
- Key Laboratory of Tree Breeding of Zhejiang Province, The Research Institute of Subtropical of Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang, China
- Institute of Architectural and Artistic Design, Henan Polytechnic University, Jiaozuo, Henan, China
| | - Xiaojiao Han
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China
- Key Laboratory of Tree Breeding of Zhejiang Province, The Research Institute of Subtropical of Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang, China
| | - Jian Sang
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China
- Key Laboratory of Tree Breeding of Zhejiang Province, The Research Institute of Subtropical of Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang, China
| | - Xuelian He
- Key Laboratory of Tree Breeding of Zhejiang Province, The Research Institute of Subtropical of Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang, China
| | - Mingying Liu
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China
- Key Laboratory of Tree Breeding of Zhejiang Province, The Research Institute of Subtropical of Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang, China
| | - Guirong Qiao
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China
- Key Laboratory of Tree Breeding of Zhejiang Province, The Research Institute of Subtropical of Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang, China
| | - Renying Zhuo
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China
- Key Laboratory of Tree Breeding of Zhejiang Province, The Research Institute of Subtropical of Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang, China
| | - Guiping He
- Key Laboratory of Tree Breeding of Zhejiang Province, The Research Institute of Subtropical of Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang, China
| | - Jianjun Hu
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China
- Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| |
Collapse
|
18
|
Shi X, Zhang C, Liu Q, Zhang Z, Zheng B, Bao M. De novo comparative transcriptome analysis provides new insights into sucrose induced somatic embryogenesis in camphor tree (Cinnamomum camphora L.). BMC Genomics 2016; 17:26. [PMID: 26727885 PMCID: PMC4700650 DOI: 10.1186/s12864-015-2357-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Accepted: 09/11/2015] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND Somatic embryogenesis is a notable illustration of cell totipotency, by which somatic cells undergo dedifferentiation and then differentiate into somatic embryos. Our previous work demonstrated that pretreatment of immature zygotic embryos with 0.5 M sucrose solution for 72 h efficiently induced somatic embryo initiation in camphor tree. To better understand the molecular basis of somatic embryogenesis induced by osmotic stress, de novo transcriptome sequencing of three tissues of camphor tree (immature zygotic embryos, sucrose-pretreated immature zygotic embryos, and somatic embryos induced from sucrose-pretreated zygotic embryos) were conducted using Illumina Hiseq 2000 platform. RESULTS A total of 30.70 G high quality clean reads were obtained from cDNA libraries of the three samples. The overall de novo assembly of cDNA sequence data generated 205592 transcripts, with an average length of 998 bp. 114229 unigenes (55.56 % of all transcripts) with an average length of 680 bp were annotated with gene descriptions, gene ontology terms or metabolic pathways based on Blastx search against Nr, Nt, Swissprot, GO, COG/KOG, and KEGG databases. CEGMA software identified 237 out of 248 ultra-conserved core proteins as 'complete' in the transcriptome assembly, showing a completeness of 95.6 %. A total of 897 genes previously annotated to be potentially involved in somatic embryogenesis were identified. Comparative transcriptome analysis showed that a total of 3335 genes were differentially expressed in the three samples. The differentially expressed genes were divided into six groups based on K-means clustering. Expression level analysis of 52 somatic embryogenesis-related genes indicated a high correlation between RNA-seq and qRT-PCR data. Gene enrichment analysis showed significantly differential expression of genes responding to stress and stimulus. CONCLUSIONS The present work reported a de novo transcriptome assembly and global analysis focused on gene expression changes during initiation and formation of somatic embryos in camphor tree. Differential expression of somatic embryogenesis-related genes indicates that sucrose induced somatic embryogenesis may share or partly share the mechanisms of somatic embryogenesis induced by plant hormones. This study provides comprehensive transcript information and gene expression data for camphor tree. It could also serve as an important platform resource for further functional studies in plant embryogenesis.
Collapse
Affiliation(s)
- Xueping Shi
- Key Laboratory of Horticultural Plant Biology of Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, P. R. China.
| | - Cuijie Zhang
- Key Laboratory of Horticultural Plant Biology of Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, P. R. China.
| | - Qinhong Liu
- Key Laboratory of Horticultural Plant Biology of Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, P. R. China.
| | - Zhe Zhang
- Key Laboratory of Horticultural Plant Biology of Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, P. R. China.
| | - Bo Zheng
- Key Laboratory of Horticultural Plant Biology of Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, P. R. China.
| | - Manzhu Bao
- Key Laboratory of Horticultural Plant Biology of Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, P. R. China.
| |
Collapse
|
19
|
Trontin JF, Klimaszewska K, Morel A, Hargreaves C, Lelu-Walter MA. Molecular Aspects of Conifer Zygotic and Somatic Embryo Development: A Review of Genome-Wide Approaches and Recent Insights. Methods Mol Biol 2016; 1359:167-207. [PMID: 26619863 DOI: 10.1007/978-1-4939-3061-6_8] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Genome-wide profiling (transcriptomics, proteomics, metabolomics) is providing unprecedented opportunities to unravel the complexity of coordinated gene expression during embryo development in trees, especially conifer species harboring "giga-genome." This knowledge should be critical for the efficient delivery of improved varieties through seeds and/or somatic embryos in fluctuating markets and to cope with climate change. We reviewed "omics" as well as targeted gene expression studies during both somatic and zygotic embryo development in conifers and tentatively puzzled over the critical processes and genes involved at the specific developmental and transition stages. Current limitations to the interpretation of these large datasets are going to be lifted through the ongoing development of comprehensive genome resources in conifers. Nevertheless omics already confirmed that master regulators (e.g., transcription and epigenetic factors) play central roles. As in model angiosperms, the molecular regulation from early to late embryogenesis may mainly arise from spatiotemporal modulation of auxin-, gibberellin-, and abscisic acid-mediated responses. Omics also showed the potential for the development of tools to assess the progress of embryo development or to build genotype-independent, predictive models of embryogenesis-specific characteristics.
Collapse
Affiliation(s)
- Jean-François Trontin
- FCBA, Pôle Biotechnologie et Sylviculture Avancée, Campus Forêt-Bois de Pierroton, 71 Route d'Arcachon, Cestas, 33610, France.
| | - Krystyna Klimaszewska
- Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, 1055 du P.E.P.S., 10380, Stn. Sainte-Foy, QC, Canada, G1V 4C7
| | - Alexandre Morel
- INRA, UR 0588 Unité Amélioration, Génétique et Physiologie Forestières, 2163 Avenue de la Pomme de Pin, CS 4001, Ardon, Orléans Cedex 2, 45075, France
| | | | - Marie-Anne Lelu-Walter
- INRA, UR 0588 Unité Amélioration, Génétique et Physiologie Forestières, 2163 Avenue de la Pomme de Pin, CS 4001, Ardon, Orléans Cedex 2, 45075, France
| |
Collapse
|
20
|
Hu X, Yang J, Li C. Transcriptomic Response to Nitric Oxide Treatment in Larix olgensis Henry. Int J Mol Sci 2015; 16:28582-97. [PMID: 26633380 PMCID: PMC4691064 DOI: 10.3390/ijms161226117] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 11/17/2015] [Accepted: 11/20/2015] [Indexed: 11/16/2022] Open
Abstract
Larix olgensis Henry is an important coniferous species found in plantation forests in northeastern China, but it is vulnerable to pathogens. Nitric oxide (NO) is an important molecule involved in plant resistance to pathogens. To study the regulatory role of NO at the transcriptional level, we characterized the transcriptomic response of L. olgensis seedlings to sodium nitroprusside (SNP, NO donor) using Illumina sequencing and de novo transcriptome assembly. A significant number of putative metabolic pathways and functions associated with the unique sequences were identified. Genes related to plant pathogen infection (FLS2, WRKY33, MAPKKK, and PR1) were upregulated with SNP treatment. This report describes the potential contribution of NO to disease resistance in L. olgensis as induced by biotic stress. Our results provide a substantial contribution to the genomic and transcriptomic resources for L. olgensis, as well as expanding our understanding of the involvement of NO in defense responses at the transcriptional level.
Collapse
Affiliation(s)
- Xiaoqing Hu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China.
| | - Jingli Yang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China.
| | - Chenghao Li
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China.
| |
Collapse
|
21
|
Development and characterization of polymorphic genic-SSR markers in Larix kaempferi. Molecules 2015; 20:6060-7. [PMID: 25856058 PMCID: PMC6272221 DOI: 10.3390/molecules20046060] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Revised: 03/24/2015] [Accepted: 03/26/2015] [Indexed: 12/05/2022] Open
Abstract
New simple sequence repeat (SSR) markers were developed in the Japanese larch (Larix kaempferi) using unigene sequences for further genetic diversity studies and the genetic improvement of breeding programs. One thousand two handred and thirty five (1235) primer pairs were tested and 165 successfully identified in L. kaempferi. Out of the amplified candidate markers, 145 (90.6%) exhibited polymorphism among 24 individuals of L. kaempferi, with the number of alleles per locus (Na), observed heterozygosity (Ho), expected heterozygosity (He) and polymorphic information content (PIC) averaging at 4.510, 0.487, 0.518 and 0.459, respectively. Cross-species amplification of randomly selection of 30 genic-SSRs among the 145 polymorphic ones showed that 80.0% of the SSRs could be amplified in Larix olgensis, 86.7% could be amplified in Larix principi-rupprechtii and 83.0% could be amplified in Larix gmelinii. High rates of cross-species amplification were observed. The genic-SSRs developed herein would be a valuable resource for genetic analysis of Larix kaempferi and related species, and also have the potential to facilitate the genetic improvement and breeding of larch.
Collapse
|
22
|
Han H, Sun X, Xie Y, Feng J, Zhang S. Transcriptome and proteome profiling of adventitious root development in hybrid larch (Larix kaempferi × Larix olgensis). BMC PLANT BIOLOGY 2014; 14:305. [PMID: 25425065 PMCID: PMC4253636 DOI: 10.1186/s12870-014-0305-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 10/27/2014] [Indexed: 05/12/2023]
Abstract
BACKGROUND Hybrids of larch (Larix kaempferi × Larix olgensis) are important afforestation species in northeastern China. They are routinely propagated via rooted stem cuttings. Despite the importance of rooting, little is known about the regulation of adventitious root development in larch hybrids. 454 GS FLX Titanium technology represents a new method for characterizing the transcriptomes of non-model species. This method can be used to identify differentially expressed genes, and then two-dimensional difference gel electrophoresis (2D-DIGE) and matrix-assisted laser desorption-ionization time-of-flight mass spectrometry (MALDI-TOF/TOF MS) analyses can be used to analyze their corresponding proteins. In this study, we analyzed semi-lignified cuttings of two clones of L. kaempferi × L. olgensis with different rooting capacities to study the molecular basis of adventitious root development. RESULTS We analyzed two clones; clone 25-5, with strong rooting capacity, and clone 23-12, with weak rooting capacity. We constructed four cDNA libraries from 25-5 and 23-12 at two development stages. Sequencing was conducted using the 454 pyrosequencing platform. A total of 957832 raw reads was produced; 95.07% were high-quality reads, and were assembled into 45137 contigs and 61647 singletons. The functions of the unigenes, as indicated by their Gene Ontology annotation, included diverse roles in the molecular functions, biological processes, and cellular component categories. We analyzed 75 protein spots (-fold change ≥ 2, P ≤ 0.05) by 2D-DIGE, and identified the differentially expressed proteins using MALDI-TOF/TOF MS. A joint analysis of transcriptome and proteome showed genes related to two pathways, polyamine synthesis and stress response, might play an important role on adventitious root development. CONCLUSIONS These results provide fundamental and important information for research on the molecular mechanism of adventitious root development. We also demonstrated for the first time the combined use of two important technologies as a powerful approach to advance research on non-model, but otherwise important, larch species.
Collapse
Affiliation(s)
- Hua Han
- />State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Xiangshan Rd, Beijing, 100091 P. R. China
| | - Xiaomei Sun
- />State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Xiangshan Rd, Beijing, 100091 P. R. China
- />Research Institute of Forestry, Chinese Academy of Forestry, Xiangshan Rd, Beijing, 100091 P. R. China
| | - Yunhui Xie
- />Research Institute of Forestry, Chinese Academy of Forestry, Xiangshan Rd, Beijing, 100091 P. R. China
| | - Jian Feng
- />Forestry Biotechnology and Analysis Test Center, Liaoning Academy of Forestry Sciences, Chongshan Rd, Liaoning, 110032 P. R. China
| | - Shougong Zhang
- />State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Xiangshan Rd, Beijing, 100091 P. R. China
- />Research Institute of Forestry, Chinese Academy of Forestry, Xiangshan Rd, Beijing, 100091 P. R. China
| |
Collapse
|
23
|
Morel A, Teyssier C, Trontin JF, Eliášová K, Pešek B, Beaufour M, Morabito D, Boizot N, Le Metté C, Belal-Bessai L, Reymond I, Harvengt L, Cadene M, Corbineau F, Vágner M, Label P, Lelu-Walter MA. Early molecular events involved in Pinus pinaster Ait. somatic embryo development under reduced water availability: transcriptomic and proteomic analyses. PHYSIOLOGIA PLANTARUM 2014; 152:184-201. [PMID: 24460664 DOI: 10.1111/ppl.12158] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 12/19/2013] [Accepted: 12/20/2013] [Indexed: 05/22/2023]
Abstract
Maritime pine somatic embryos (SEs) require a reduction in water availability (high gellan gum concentration in the maturation medium) to reach the cotyledonary stage. This key switch, reported specifically for pine species, is not yet well understood. To facilitate the use of somatic embryogenesis for mass propagation of conifers, we need a better understanding of embryo development. Comparison of both transcriptome (Illumina RNA sequencing) and proteome [two-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis with mass spectrometry (MS) identification] of immature SEs, cultured on either high (9G) or low (4G) gellan gum concentration, was performed, together with analysis of water content, fresh and dry mass, endogenous abscisic acid (ABA; gas chromatography-MS), soluble sugars (high-pressure liquid chromatography), starch and confocal laser microscope observations. This multiscale, integrated analysis was used to unravel early molecular and physiological events involved in SE development. Under unfavorable conditions (4G), the glycolytic pathway was enhanced, possibly in relation to cell proliferation that may be antagonistic to SE development. Under favorable conditions (9G), SEs adapted to culture constraint by activating specific protective pathways, and ABA-mediated molecular and physiological responses promoting embryo development. Our results suggest that on 9G, germin-like protein and ubiquitin-protein ligase could be used as predictive markers of SE development, whereas protein phosphatase 2C could be a biomarker for culture adaptive responses. This is the first characterization of early molecular mechanisms involved in the development of pine SEs following an increase in gellan gum concentration in the maturation medium, and it is also the first report on somatic embryogenesis in conifers combining transcriptomic and proteomic datasets.
Collapse
Affiliation(s)
- Alexandre Morel
- INRA, UR 0588 Unité Amélioration, Génétique et Physiologie Forestières, 2163 Avenue de la Pomme de Pin, CS 4001, Ardon, F-45075 Orléans Cedex 2, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Zhang C, Wang Y, Fu J, Dong L, Gao S, Du D. Transcriptomic analysis of cut tree peony with glucose supply using the RNA-Seq technique. PLANT CELL REPORTS 2014; 33:111-29. [PMID: 24132406 DOI: 10.1007/s00299-013-1516-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Revised: 09/17/2013] [Accepted: 09/23/2013] [Indexed: 05/04/2023]
Abstract
Several unigenes encoding ACS and ERF involved in ethylene biosynthesis and signal transduction were greatly down-regulated in the petal transcriptome of cut tree peony 'Luoyang Hong' with glucose treatment. Glucose also repressed stress-related transcription factor genes DREB, CBF, NAC, WRKY and bHLH. Tree peony (Paeonia suffruticosa Andrews) is a famous traditional flower in China. Glucose supply prolonging vase life of cut tree peony flowers is associated with its role in the suppression of sensitivity to ethylene and ethylene production, but the regulation mechanism of sugar on ethylene biosynthesis and signaling is unclear. In the present work, a normalized cDNA pool was constructed as the reference transcriptome from mixed petals of different developmental cut tree peony 'Luoyang Hong' and sequenced using the Illumina HiSeq™ 2000 platform. We obtained 33,117 unigenes annotated with public protein databases. In addition, the transcriptome change in petals of cut tree peony with glucose supply and the control treatment was investigated. With non-redundant annotation, 173 differentially expressed genes were identified, with 41 up-regulated genes and 132 down-regulated genes. According to RNA-Seq data and real-time quantitative polymerase chain reaction validation, one unigene encoding ACS, a key ethylene synthetic enzyme, and four unigenes encoding ERF, which is involved in ethylene signal transduction was greatly down-regulated with glucose treatment. Furthermore, stress-related transcription factor genes DREB, CBF, NAC, WRKY and bHLH were also repressed with glucose supply, as well as several other stress-responsive and stress-tolerance genes, indicating that glucose supply probably releases the effects induced by various environmental stress. All the results and analysis are valuable resources for better understanding of the beneficial influence of exogenous sugars on cut tree peony.
Collapse
Affiliation(s)
- Chao Zhang
- College of Landscape Architecture, National Flower Engineering Technology Research Center, Beijing Forestry University, Beijing, 100083, People's Republic of China
| | | | | | | | | | | |
Collapse
|
25
|
Cui Z, Li X, Liu Y, Song C, Hui M, Shi G, Luo D, Li Y. Transcriptome profiling analysis on whole bodies of microbial challenged Eriocheir sinensis larvae for immune gene identification and SNP development. PLoS One 2013; 8:e82156. [PMID: 24324760 PMCID: PMC3852986 DOI: 10.1371/journal.pone.0082156] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2013] [Accepted: 10/21/2013] [Indexed: 01/04/2023] Open
Abstract
To study crab immunogenetics of individuals, newly hatched Eriocheir sinensis larvae were stimulated with a mixture of three pathogen strains (Gram-positive bacteria Micrococcus luteus, Gram-negative bacteria Vibrio alginolyticus and fungi Pichia pastoris; 108 cfu·mL-1). A total of 44,767,566 Illumina clean reads corresponding to 4.52 Gb nucleotides were generated and assembled into 100,252 unigenes (average length: 1,042 bp; range: 201-19,357 bp). 17,097 (26.09%) of 65,535 non-redundant unigenes were annotated in NCBI non-redundant protein (Nr) database. Moreover, 23,188 (35.38%) unigenes were assigned to three Gene Ontology (GO) categories, 15,071 (23.00%) to twenty-six Clusters of orthologous Groups (COG) and 8,574 (13.08%) to six Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, respectively. Numerous genes were further identified to be associated with multiple immune pathways, including Toll, immune deficiency (IMD), janus kinase (JAK)-signal transducers and activators of transcription (STAT) and mitogen-activated protein kinase (MAPK) pathways. Some of them, such as tumor necrosis factor receptor associated factor 6 (TRAF6), fibroblast growth factor (FGF), protein-tyrosine phosphatase (PTP), JNK-interacting protein 1 (JIP1), were first identified in E. sinensis. TRAF6 was even first discovered in crabs. Additionally, 49,555 single nucleotide polymorphisms (SNPs) were developed from over 13,309 unigenes. This is the first transcriptome report of whole bodies of E. sinensis larvae after immune challenge. Data generated here not only provide detail information to identify novel genes in genome reference-free E. sinensis, but also facilitate our understanding on host immunity and defense mechanism of the crab at whole transcriptome level.
Collapse
Affiliation(s)
- Zhaoxia Cui
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- National & Local Joint Engineering Laboratory for Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- * E-mail:
| | - Xihong Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yuan Liu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Chengwen Song
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Min Hui
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Guohui Shi
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Danli Luo
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yingdong Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| |
Collapse
|
26
|
De Cremer K, Mathys J, Vos C, Froenicke L, Michelmore RW, Cammue BPA, De Coninck B. RNAseq-based transcriptome analysis of Lactuca sativa infected by the fungal necrotroph Botrytis cinerea. PLANT, CELL & ENVIRONMENT 2013; 36:1992-2007. [PMID: 23534608 DOI: 10.1111/pce.12106] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Accepted: 03/20/2013] [Indexed: 05/23/2023]
Abstract
The fungal pathogen Botrytis cinerea establishes a necrotrophic interaction with its host plants, including lettuce (Lactuca sativa), causing it to wilt, collapse and eventually dry up and die, which results in serious economic losses. Global expression profiling using RNAseq and the newly sequenced lettuce genome identified a complex network of genes involved in the lettuce-B. cinerea interaction. The observed high number of differentially expressed genes allowed us to classify them according to the biological pathways in which they are implicated, generating a holistic picture. Most pronounced were the induction of the phenylpropanoid pathway and terpenoid biosynthesis, whereas photosynthesis was globally down-regulated at 48 h post-inoculation. Large-scale comparison with data available on the interaction of B. cinerea with the model plant Arabidopsis thaliana revealed both general and species-specific responses to infection with this pathogen. Surprisingly, expression analysis of selected genes could not detect significant systemic transcriptional alterations in lettuce leaves distant from the inoculation site. Additionally, we assessed the response of these lettuce genes to a biotrophic pathogen, Bremia lactucae, revealing that similar pathways are induced during compatible interactions of lettuce with necrotrophic and biotrophic pathogens.
Collapse
Affiliation(s)
- Kaat De Cremer
- Centre of Microbial and Plant Genetics, Katholieke Universiteit Leuven, Kasteelpark Arenberg 20, 3001, Heverlee, Belgium
| | | | | | | | | | | | | |
Collapse
|
27
|
cDNA cloning, genomic organization and expression analysis during somatic embryogenesis of the translationally controlled tumor protein (TCTP) gene from Japanese larch (Larix leptolepis). Gene 2013; 529:150-8. [PMID: 23933269 DOI: 10.1016/j.gene.2013.07.076] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Revised: 07/01/2013] [Accepted: 07/22/2013] [Indexed: 11/22/2022]
Abstract
A full-length cDNA and genomic sequences of a translationally controlled tumor protein (TCTP) gene were isolated from Japanese larch (Larix leptolepis) and designated LaTCTP. The length of the cDNA was 1, 043 bp and contained a 504 bp open reading frame that encodes a predicted protein of 167 amino acids, characterized by two signature sequences of the TCTP protein family. Analysis of the LaTCTP gene structure indicated four introns and five exons, and it is the largest of all currently known TCTP genes in plants. The 5'-flanking promoter region of LaTCTP was cloned using an improved TAIL-PCR technique. In this region we identified many important potential cis-acting elements, such as a Box-W1 (fungal elicitor responsive element), a CAT-box (cis-acting regulatory element related to meristem expression), a CGTCA-motif (cis-acting regulatory element involved in MeJA-responsiveness), a GT1-motif (light responsive element), a Skn-1-motif (cis-acting regulatory element required for endosperm expression) and a TGA-element (auxin-responsive element), suggesting that expression of LaTCTP is highly regulated. Expression analysis demonstrated ubiquitous localization of LaTCTP mRNA in the roots, stems and needles, high mRNA levels in the embryonal-suspensor mass (ESM), browning embryogenic cultures and mature somatic embryos, and low levels of mRNA at day five during somatic embryogenesis. We suggest that LaTCTP might participate in the regulation of somatic embryo development. These results provide a theoretical basis for understanding the molecular regulatory mechanism of LaTCTP and lay the foundation for artificial regulation of somatic embryogenesis.
Collapse
|
28
|
Li SG, Li WF, Han SY, Yang WH, Qi LW. Stage-specific regulation of four HD-ZIP III transcription factors during polar pattern formation in Larix leptolepis somatic embryos. Gene 2013; 522:177-83. [DOI: 10.1016/j.gene.2013.03.117] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Revised: 03/08/2013] [Accepted: 03/22/2013] [Indexed: 12/01/2022]
|
29
|
Zhang J, Wu T, Li L, Han S, Li X, Zhang S, Qi L. Dynamic expression of small RNA populations in larch (Larix leptolepis). PLANTA 2013; 237:89-101. [PMID: 22983700 DOI: 10.1007/s00425-012-1753-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Accepted: 08/26/2012] [Indexed: 06/01/2023]
Abstract
Small RNAs (sRNAs) are emerging as essential regulators of biological processes. However, several studies have reported that gymnosperms do not express appreciable amounts of 24-nt sRNAs, and conifers in particular may have a unique sRNA-silencing signature. Here, we compared the sRNA transcriptomes of Japanese larch somatic embryos (SE) and seedlings. SE sRNAs exhibited a length bias toward 24 nt, while seedlings showed a bias toward a 21-nt length. We also confirmed that larch is capable of producing 24-nt sRNAs based on a polyacrylamide gel analysis. The sRNA expression patterns varied according to developmental stage, which might be associated with Dicer-like 3 and RNA-dependent RNA polymerase2 (RDR2) levels. Our data suggest that many MIR loci that produce canonical microRNAs (miRNAs, 20-22 nt) and long sRNAs (23-26 nt) have dual functions; the latter were preferentially produced in SE compared to seedlings. However, the ratio of miRNAs to total sRNAs in seedlings was higher than in SE, and most miRNAs were upregulated in seedlings. Trans-acting small interfering RNAs (ta-siRNAs) generated from TAS3 triggered by miR390 were identified, and levels of the three detected ta-siRNAs peaked in mature embryos, which was not consistent with the lowest RDR6 level. These findings indicate that larch, and possibly other gymnosperms, shares a common sRNA pathway with other land plants, and that the sRNA distribution pattern varies according to developmental stage, which may be attributable to the expression of sRNA pathway genes.
Collapse
Affiliation(s)
- Junhong Zhang
- Laboratory of Cell Biology, Research Institute of Forestry, Chinese Academy of Forestry, Xiangshan Road, Beijing 100091, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|