1
|
Zhou L, Li R, Yang X, Peng Y, Wang Y, Xu Q, Yang Y, Iqbal A, Su X, Zhou Y. Interaction of R2R3-MYB transcription factor EgMYB111 with ABA receptors enhances cold tolerance in oil palm. Int J Biol Macromol 2025; 305:141223. [PMID: 39984081 DOI: 10.1016/j.ijbiomac.2025.141223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 02/12/2025] [Accepted: 02/16/2025] [Indexed: 02/23/2025]
Abstract
The oil palm is a prominent tropical oil crop with holds considerable economic value. MYB transcription factors are key regulators in growth and plant stress adaptation mechanisms in plants. However, the roles and operational mechanisms of MYB genes in oil palm are not yet well understood. In this study, EgMYB111 was cloned from oil palm, and its behavior under cold stress was examined in genetically engineered tobacco and oil palm embryoids. Physiological and biochemical analysis demonstrated that genetically engineered lines exhibited substantially greater cold tolerance than control plants. EgMYB111 was noticed to localize within the nucleus, and cold stress significantly enhanced the expression of the GUS gene managed by the EgMYB111 expression regulator. Interestingly, EgMYB111 was involved in the reaction to stress via an abscisic acid (ABA)-mediated pathway. Yeast two-hybrid experiments confirmed the involvement of EgMYB111 and the ABA receptor proteins PYR1 and PYL9. Moreover, the transient transformation of oil palm protoplasts combined with qRT-PCR analysis revealed that the over-activity of EgMYB111 induced a significant induction of the genes EgSnRK2.1, EgSnRK2.3, and EgSnRK2.5. In addition, dual-luciferase analyses, yeast one-hybrid assays, and electrophoretic mobility shift assays (EMSA) established that EgMYB111 binds to the promoters of EgSnRK2.1, EgSnRK2.3, and EgSnRK2.5, thereby regulating their transcription and enhancing low-temperature resilience in oil palm. The work concludes that the EgMYB111 performs a key role in augmenting cold adaptability in oil palm by governing the transcription of key genes utilizing an ABA-regulated pathway.
Collapse
Affiliation(s)
- Lixia Zhou
- National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; Hainan Key Laboratory of Tropical Oil Crops Biology/Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China.
| | - Rui Li
- National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; Hainan Key Laboratory of Tropical Oil Crops Biology/Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China
| | - Xuanwen Yang
- National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; National Key Laboratory for Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Yanling Peng
- National Key Laboratory for Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Yiwen Wang
- National Key Laboratory for Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China; Melbourne Integrative Genomics, School of Mathematics and Statistics, The University of Melbourne, Melbourne, VIC, Australia
| | - Qi Xu
- National Key Laboratory for Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Yaodong Yang
- National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; Hainan Key Laboratory of Tropical Oil Crops Biology/Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China
| | - Amjad Iqbal
- Hainan Key Laboratory of Tropical Oil Crops Biology/Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China; Department of Food Science & Technology, Abdul Wali Khan University Mardan, Pakistan
| | - Xiangnian Su
- National Key Laboratory for Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Yongfeng Zhou
- National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; National Key Laboratory for Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| |
Collapse
|
2
|
Jin ZL, Wang WN, Nan Q, Liu JW, Ju YL, Fang YL. VvNAC17, a grape NAC transcription factor, regulates plant response to drought-tolerance and anthocyanin synthesis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 219:109379. [PMID: 39653005 DOI: 10.1016/j.plaphy.2024.109379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 11/03/2024] [Accepted: 12/03/2024] [Indexed: 02/05/2025]
Abstract
NAC transcription factors are unique to plants and play a role in stress. In this study, the VvNAC17 gene was isolated from grapes, and tested the functions of VvNAC17 under drought stress. The expression level of VvNAC17 in callus could be highly induced by drought stress. VvNAC17 overexpression in callus conferred drought-resistant phenotypes with lower MDA content, higher antioxidant enzyme activity (CAT, POD, SOD), higher monomer anthocyanin content, and higher expression levels of some drought-related genes (VvDREB1A, VvDREB2A, VvDREB2D, VvRD29A, VvPIN5) and anthocyanin-biosynthesis-related genes (VvUFGT, VvANS, VvANR, VvDFR,VvLAR). Meanwhile, the Y1H and Dual-LUC assays showed that VvNAC17 could activate VvDREB1A and VvUFGT expression by binding to its promoter. Futhermore, RNA-seq showed that VvNAC17 can affect grape growth and development by affecting the photosynthesis and metabolism of some macromolecules. Taken together, the NAC transcription factor VvNAC17 could positively regulates drought-tolerance. VvNAC17 is a promising candidate for improving drought resistance in grape.
Collapse
Affiliation(s)
- Zi-Lan Jin
- College of Enology, Northwest A & F University, Yangling, 712100, Shaanxi, China
| | - Wan-Ni Wang
- College of Enology, Northwest A & F University, Yangling, 712100, Shaanxi, China
| | - Qiong Nan
- College of Enology, Northwest A & F University, Yangling, 712100, Shaanxi, China
| | - Jia-Wen Liu
- College of Enology, Northwest A & F University, Yangling, 712100, Shaanxi, China
| | - Yan-Lun Ju
- College of Enology, Northwest A & F University, Yangling, 712100, Shaanxi, China.
| | - Yu-Lin Fang
- College of Enology, Northwest A & F University, Yangling, 712100, Shaanxi, China; Heyang Viti-viniculture Station, Northwest A & F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
3
|
He L, Lai G, Lin J, Guo A, Yang F, Pan R, Che J, Lai C. VdCHS2 Overexpression Enhances Anthocyanin Biosynthesis, Modulates the Composition Ratio, and Increases Antioxidant Activity in Vitis davidii Cells. Antioxidants (Basel) 2024; 13:1472. [PMID: 39765801 PMCID: PMC11673275 DOI: 10.3390/antiox13121472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/23/2024] [Accepted: 11/26/2024] [Indexed: 01/11/2025] Open
Abstract
Anthocyanins are significant secondary metabolites that are essential for plant growth and development, possessing properties such as antioxidant, anti-inflammatory, and anti-cancer activities and cardiovascular protection. They offer significant potential for applications in food, medicine, and cosmetics. However, since anthocyanins are mainly obtained through plant extraction and chemical synthesis, they encounter various challenges, including resource depletion, ecological harm, environmental pollution, and the risk of toxic residuals. To address these issues, this study proposes a plant cell factory approach as a novel alternative solution for anthocyanin acquisition. In this study, the VdCHS2 gene was successfully transformed into spine grape cells, obtaining a high-yield anthocyanin cell line designated as OE1. Investigations of the light spectrum demonstrated that white light promoted spine grape cell growth, while short-wavelength blue light significantly boosted anthocyanin production. Targeted metabolomics analysis revealed that the total anthocyanin content in the OE1 cell line reached 11 mg/g, representing a 60% increase compared to the WT. A total of 54 differentially accumulated metabolites were identified, among which 44 were upregulated. Overexpression of the CHS gene enhanced the expression of downstream genes involved in anthocyanin biosynthesis, resulting in the differential expression of CHI, F3Hb, F3'5'H, DFR4, and LDOX. This led to the differential accumulation of anthocyanin monomers, predominantly consisting of 3-O-glucosides and 3-O-galactosides, thereby causing alterations in anthocyanin levels and composition. Furthermore, the OE1 cell line increased the activity of various antioxidant enzymes, improved the clearance of reactive oxygen species, and reduced the levels of hydrogen peroxide (H2O2) and malondialdehyde (MDA). The subsequent cultivation of the transformed OE1 cell line, in conjunction with cell suspension culture, established a plant cell factory for anthocyanin production, significantly increasing anthocyanin yield while shortening the culture duration. This study elucidates the molecular mechanisms through which the VdCHS2 gene influenced anthocyanin accumulation and compositional variations. Additionally, it established a model for a small-scale anthocyanin plant cell factory, thereby providing a theoretical and practical foundation for the targeted synthesis of anthocyanin components and the development and utilization of plant natural products.
Collapse
Affiliation(s)
- Liyuan He
- Institute of Food Science and Technology, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China; (L.H.); (G.L.); (J.L.); (A.G.); (F.Y.); (R.P.)
- Key Laboratory of Processing of Subtropical Characteristic Fruits, Vegetables and Edible Fungi, Ministry of Agriculture and Rural Affairs of China, Fuzhou 350003, China
| | - Gongti Lai
- Institute of Food Science and Technology, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China; (L.H.); (G.L.); (J.L.); (A.G.); (F.Y.); (R.P.)
- Key Laboratory of Processing of Subtropical Characteristic Fruits, Vegetables and Edible Fungi, Ministry of Agriculture and Rural Affairs of China, Fuzhou 350003, China
| | - Junxuan Lin
- Institute of Food Science and Technology, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China; (L.H.); (G.L.); (J.L.); (A.G.); (F.Y.); (R.P.)
- Key Laboratory of Processing of Subtropical Characteristic Fruits, Vegetables and Edible Fungi, Ministry of Agriculture and Rural Affairs of China, Fuzhou 350003, China
| | - Aolin Guo
- Institute of Food Science and Technology, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China; (L.H.); (G.L.); (J.L.); (A.G.); (F.Y.); (R.P.)
- Key Laboratory of Processing of Subtropical Characteristic Fruits, Vegetables and Edible Fungi, Ministry of Agriculture and Rural Affairs of China, Fuzhou 350003, China
| | - Fangxue Yang
- Institute of Food Science and Technology, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China; (L.H.); (G.L.); (J.L.); (A.G.); (F.Y.); (R.P.)
- Key Laboratory of Processing of Subtropical Characteristic Fruits, Vegetables and Edible Fungi, Ministry of Agriculture and Rural Affairs of China, Fuzhou 350003, China
| | - Ruo Pan
- Institute of Food Science and Technology, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China; (L.H.); (G.L.); (J.L.); (A.G.); (F.Y.); (R.P.)
- Key Laboratory of Processing of Subtropical Characteristic Fruits, Vegetables and Edible Fungi, Ministry of Agriculture and Rural Affairs of China, Fuzhou 350003, China
| | - Jianmei Che
- Institute of Resources, Environment and Soil Fertilizer, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China
| | - Chengchun Lai
- Institute of Food Science and Technology, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China; (L.H.); (G.L.); (J.L.); (A.G.); (F.Y.); (R.P.)
- Key Laboratory of Processing of Subtropical Characteristic Fruits, Vegetables and Edible Fungi, Ministry of Agriculture and Rural Affairs of China, Fuzhou 350003, China
| |
Collapse
|
4
|
Li W, Wu H, Hua J, Zhu C, Guo S. Arbuscular mycorrhizal fungi enhanced resistance to low-temperature weak-light stress in snapdragon ( Antirrhinum majus L.) through physiological and transcriptomic responses. FRONTIERS IN PLANT SCIENCE 2024; 15:1330032. [PMID: 38681217 PMCID: PMC11045995 DOI: 10.3389/fpls.2024.1330032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 03/25/2024] [Indexed: 05/01/2024]
Abstract
Introduction Low temperature (LT) and weak light (WL) seriously affects the yield and quality of snapdragon in winter greenhouse. Arbuscular mycorrhizal fungi (AMF) exert positive role in regulating growth and enhancing abiotic stress tolerance in plants. Nevertheless, the molecular mechanisms by AMF improve the LT combined with WL (LTWL) tolerance in snapdragon remain mostly unknown. Methods We compared the differences in root configuration, osmoregulatory substances, enzymatic and non-enzymatic antioxidant enzyme defense systems and transcriptome between AMF-inoculated and control groups under LT, WL, low light, and LTWL conditions. Results Our analysis showed that inoculation with AMF effectively alleviated the inhibition caused by LTWL stress on snapdragon root development, and significantly enhanced the contents of soluble sugars, soluble proteins, proline, thereby maintaining the osmotic adjustment of snapdragon. In addition, AMF alleviated reactive oxygen species damage by elevating the contents of AsA, and GSH, and the activities of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), ascorbate peroxidase (APX), dehydroascorbate reductase (DHAR), monodehydroascorbate reductase (MDHAR), and glutathione reductase (GR). RNA-seq analysis revealed that AMF regulated the expression of genes related to photosynthesis (photosystem I related proteins, photosystem II related proteins, chlorophyll a/b binding protein), active oxygen metabolism (POD, Fe-SOD, and iron/ascorbate family oxidoreductase), plant hormone synthesis (ARF5 and ARF16) and stress-related transcription factors gene (bHLH112, WRKY72, MYB86, WRKY53, WRKY6, and WRKY26) under LTWL stress. Discussion We concluded that mycorrhizal snapdragon promotes root development and LTWL tolerance by accumulation of osmoregulatory substances, activation of enzymatic and non-enzymatic antioxidant defense systems, and induction expression of transcription factor genes and auxin synthesis related genes. This study provides a theoretical basis for AMF in promoting the production of greenhouse plants in winter.
Collapse
Affiliation(s)
- Wei Li
- Country College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, Shandong, China
- Institute of Mycorrhizal Biotechnology, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Haiying Wu
- Country College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, Shandong, China
- Institute of Mycorrhizal Biotechnology, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Junkai Hua
- Country College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, Shandong, China
- Institute of Mycorrhizal Biotechnology, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Chengshang Zhu
- Country College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, Shandong, China
- Institute of Mycorrhizal Biotechnology, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Shaoxia Guo
- Country College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, Shandong, China
- Institute of Mycorrhizal Biotechnology, Qingdao Agricultural University, Qingdao, Shandong, China
| |
Collapse
|
5
|
Kumari A, Sharma P, Rani M, Laxmi V, Sahil, Sahi C, Satturu V, Katiyar-Agarwal S, Agarwal M. Meta-QTL and ortho analysis unravels the genetic architecture and key candidate genes for cold tolerance at seedling stage in rice. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2024; 30:93-108. [PMID: 38435852 PMCID: PMC10902255 DOI: 10.1007/s12298-024-01412-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/13/2023] [Accepted: 01/10/2024] [Indexed: 03/05/2024]
Abstract
Rice, a critical cereal crop, grapples with productivity challenges due to its inherent sensitivity to low temperatures, primarily during the seedling and booting stages. Recognizing the polygenic complexity of cold stress signaling in rice, a meta-analysis was undertaken, focusing on 20 physiological traits integral to cold tolerance. This initiative allowed the consolidation of genetic data from 242 QTLs into 58 meta-QTLs, thereby significantly constricting the genetic and physical intervals, with 84% of meta-QTLs (MQTLs) being reduced to less than 2 Mb. The list of 10,505 genes within these MQTLs, was further refined utilizing expression datasets to pinpoint 46 pivotal genes exhibiting noteworthy differential regulation during cold stress. The study underscored the presence of several TFs such as WRKY, NAC, CBF/DREB, MYB, and bHLH, known for their roles in cold stress response. Further, ortho-analysis involving maize, barley, and Arabidopsis identified OsWRKY71, among others, as a prospective candidate for enhancing cold tolerance in diverse crop plants. In conclusion, our study delineates the intricate genetic architecture underpinning cold tolerance in rice and propounds significant candidate genes, offering crucial insights for further research and breeding strategies focused on fortifying crops against cold stress, thereby bolstering global food resilience. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-024-01412-1.
Collapse
Affiliation(s)
- Anita Kumari
- Department of Botany, University of Delhi, Delhi, India
| | - Priya Sharma
- Department of Botany, University of Delhi, Delhi, India
| | - Mamta Rani
- Department of Botany, University of Delhi, Delhi, India
| | - Vijay Laxmi
- Department of Botany, University of Delhi, Delhi, India
| | - Sahil
- Department of Botany, University of Delhi, Delhi, India
| | - Chandan Sahi
- Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, Madhya Pradesh 462066 India
| | - Vanisree Satturu
- Professor Jayashankar, Telangana State Agricultural University, Hyderabad, India
| | | | - Manu Agarwal
- Department of Botany, University of Delhi, Delhi, India
| |
Collapse
|
6
|
Mei C, Yang J, Mei Q, Jia D, Yan P, Feng B, Mamat A, Gong X, Guan Q, Mao K, Wang J, Ma F. MdNAC104 positively regulates apple cold tolerance via CBF-dependent and CBF-independent pathways. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:2057-2073. [PMID: 37387580 PMCID: PMC10502760 DOI: 10.1111/pbi.14112] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 06/15/2023] [Accepted: 06/17/2023] [Indexed: 07/01/2023]
Abstract
Low temperature is the main environmental factor affecting the yield, quality and geographical distribution of crops, which significantly restricts development of the fruit industry. The NAC (NAM, ATAF1/2 and CUC2) transcription factor (TF) family is involved in regulating plant cold tolerance, but the mechanisms underlying these regulatory processes remain unclear. Here, the NAC TF MdNAC104 played a positive role in modulating apple cold tolerance. Under cold stress, MdNAC104-overexpressing transgenic plants exhibited less ion leakage and lower ROS (reactive oxygen species) accumulation, but higher contents of osmoregulatory substances and activities of antioxidant enzymes. Transcriptional regulation analysis showed that MdNAC104 directly bound to the MdCBF1 and MdCBF3 promoters to promote expression. In addition, based on combined transcriptomic and metabolomic analyses, as well as promoter binding and transcriptional regulation analyses, we found that MdNAC104 stimulated the accumulation of anthocyanin under cold conditions by upregulating the expression of anthocyanin synthesis-related genes, including MdCHS-b, MdCHI-a, MdF3H-a and MdANS-b, and increased the activities of the antioxidant enzymes by promoting the expression of the antioxidant enzyme-encoding genes MdFSD2 and MdPRXR1.1. In conclusion, this study revealed the MdNAC104 regulatory mechanism of cold tolerance in apple via CBF-dependent and CBF-independent pathways.
Collapse
Affiliation(s)
- Chuang Mei
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of HorticultureNorthwest A & F UniversityYanglingShaanxiChina
- The State Key Laboratory of Genetic Improvement and Germplasm Innovation of Crop Resistance in Arid Desert Regions (Preparation), Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Institute of Horticulture CropsXinjiang Academy of Agricultural SciencesUrumqiChina
| | - Jie Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of HorticultureNorthwest A & F UniversityYanglingShaanxiChina
| | - Quanlin Mei
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of HorticultureNorthwest A & F UniversityYanglingShaanxiChina
| | - Dongfeng Jia
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of HorticultureNorthwest A & F UniversityYanglingShaanxiChina
| | - Peng Yan
- The State Key Laboratory of Genetic Improvement and Germplasm Innovation of Crop Resistance in Arid Desert Regions (Preparation), Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Institute of Horticulture CropsXinjiang Academy of Agricultural SciencesUrumqiChina
| | - Beibei Feng
- The State Key Laboratory of Genetic Improvement and Germplasm Innovation of Crop Resistance in Arid Desert Regions (Preparation), Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Institute of Horticulture CropsXinjiang Academy of Agricultural SciencesUrumqiChina
| | - Aisajan Mamat
- The State Key Laboratory of Genetic Improvement and Germplasm Innovation of Crop Resistance in Arid Desert Regions (Preparation), Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Institute of Horticulture CropsXinjiang Academy of Agricultural SciencesUrumqiChina
| | - Xiaoqing Gong
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of HorticultureNorthwest A & F UniversityYanglingShaanxiChina
| | - Qingmei Guan
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of HorticultureNorthwest A & F UniversityYanglingShaanxiChina
| | - Ke Mao
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of HorticultureNorthwest A & F UniversityYanglingShaanxiChina
| | - Jixun Wang
- The State Key Laboratory of Genetic Improvement and Germplasm Innovation of Crop Resistance in Arid Desert Regions (Preparation), Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Institute of Horticulture CropsXinjiang Academy of Agricultural SciencesUrumqiChina
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of HorticultureNorthwest A & F UniversityYanglingShaanxiChina
| |
Collapse
|
7
|
Zhang Y, Wang J, Xiao Y, Jiang C, Cheng L, Guo S, Luo C, Wang Y, Jia H. Proteomics analysis of a tobacco variety resistant to brown spot disease and functional characterization of NbMLP423 in Nicotiana benthamiana. Mol Biol Rep 2023; 50:4395-4409. [PMID: 36971909 DOI: 10.1007/s11033-023-08330-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 02/09/2023] [Indexed: 03/29/2023]
Abstract
BACKGROUND Tobacco brown spot disease is an important disease caused by Alternaria alternata that affects tobacco production and quality worldwide. Planting resistant varieties is the most economical and effective way to control this disease. However, the lack of understanding of the mechanism of tobacco resistance to tobacco brown spot has hindered progress in the breeding of resistant varieties. METHODS AND RESULTS In this study, differentially expressed proteins (DEPs), including 12 up-regulated and 11 down-regulated proteins, were screened using isobaric tags for relative and absolute quantification (iTRAQ) by comparing resistant and susceptible pools and analyzing the associated functions and metabolic pathways. Significantly up-regulated expression of the major latex-like protein gene 423 (MLP 423) was detected in both the resistant parent and the population pool. Bioinformatics analysis showed that the NbMLP423 cloned in Nicotiana benthamiana had a similar structure to the NtMLP423 in Nicotiana tabacum, and that expression of both genes respond rapidly to Alternaria alternata infection. NbMLP423 was then used to study the subcellular localization and expression in different tissues, followed by both silencing and the construction of an overexpression system for NbMLP423. The silenced plants demonstrated inhibited TBS resistance, while the overexpressed plants exhibited significantly enhanced resistance. Exogenous applications of plant hormones, such as salicylic acid, had a significant inducing effect on NbMLP423 expression. CONCLUSIONS Taken together, our results provide insights into the role of NbMLP423 in plants against tobacco brown spot infection and provide a foundation for obtaining resistant tobacco varieties through the construction of new candidate genes of the MLP subfamily.
Collapse
Affiliation(s)
- Yu Zhang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, People's Republic of China
| | - Jie Wang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, People's Republic of China
| | - Yong Xiao
- Sichuan Tobacco Company, Chengdu, 610000, People's Republic of China
| | - Caihong Jiang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, People's Republic of China
| | - Lirui Cheng
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, People's Republic of China
| | - Shiping Guo
- Sichuan Tobacco Company, Chengdu, 610000, People's Republic of China
| | - Chenggang Luo
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, People's Republic of China.
| | - Yuanying Wang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, People's Republic of China.
| | - Haijiang Jia
- Raw Material Technology Center of Guangxi Tobacco, Nanning, 530000, China.
| |
Collapse
|
8
|
Sun MM, Liu X, Huang XJ, Yang JJ, Qin PT, Zhou H, Jiang MG, Liao HZ. Genome-Wide Identification and Expression Analysis of the NAC Gene Family in Kandelia obovata, a Typical Mangrove Plant. Curr Issues Mol Biol 2022; 44:5622-5637. [PMID: 36421665 PMCID: PMC9689236 DOI: 10.3390/cimb44110381] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/10/2022] [Accepted: 11/11/2022] [Indexed: 11/15/2023] Open
Abstract
The NAC (NAM, ATAF1/2, and CUC2) gene family, one of the largest transcription factor families in plants, acts as positive or negative regulators in plant response and adaption to various environmental stresses, including cold stress. Multiple reports on the functional characterization of NAC genes in Arabidopsis thaliana and other plants are available. However, the function of the NAC genes in the typical woody mangrove (Kandelia obovata) remains poorly understood. Here, a comprehensive analysis of NAC genes in K. obovata was performed with a pluri-disciplinary approach including bioinformatic and molecular analyses. We retrieved a contracted NAC family with 68 genes from the K. obovata genome, which were unevenly distributed in the chromosomes and classified into ten classes. These KoNAC genes were differentially and preferentially expressed in different organs, among which, twelve up-regulated and one down-regulated KoNAC genes were identified. Several stress-related cis-regulatory elements, such as LTR (low-temperature response), STRE (stress response element), ABRE (abscisic acid response element), and WUN (wound-responsive element), were identified in the promoter regions of these 13 KoNAC genes. The expression patterns of five selected KoNAC genes (KoNAC6, KoNAC15, KoNAC20, KoNAC38, and KoNAC51) were confirmed by qRT-PCR under cold treatment. These results strongly implied the putative important roles of KoNAC genes in response to chilling and other stresses. Collectively, our findings provide valuable information for further investigations on the function of KoNAC genes.
Collapse
Affiliation(s)
- Man-Man Sun
- Guangxi Key Laboratory of Polysaccharide Materials and Modification, School of Marine Sciences and Biotechnology, Guangxi Minzu University, 158 West Daxue Road, Nanning 530008, China
| | - Xiu Liu
- Guangxi Key Laboratory of Special Non-Wood Forest Cultivation and Utilization, Guangxi Forestry Research Institute, 23 Yongwu Road, Nanning 530002, China
| | - Xiao-Juan Huang
- Guangxi Key Laboratory of Polysaccharide Materials and Modification, School of Marine Sciences and Biotechnology, Guangxi Minzu University, 158 West Daxue Road, Nanning 530008, China
| | - Jing-Jun Yang
- Guangxi Key Laboratory of Special Non-Wood Forest Cultivation and Utilization, Guangxi Forestry Research Institute, 23 Yongwu Road, Nanning 530002, China
| | - Pei-Ting Qin
- Guangxi Key Laboratory of Polysaccharide Materials and Modification, School of Marine Sciences and Biotechnology, Guangxi Minzu University, 158 West Daxue Road, Nanning 530008, China
| | - Hao Zhou
- Guangxi Key Laboratory of Polysaccharide Materials and Modification, School of Marine Sciences and Biotechnology, Guangxi Minzu University, 158 West Daxue Road, Nanning 530008, China
| | - Ming-Guo Jiang
- Guangxi Key Laboratory of Polysaccharide Materials and Modification, School of Marine Sciences and Biotechnology, Guangxi Minzu University, 158 West Daxue Road, Nanning 530008, China
| | - Hong-Ze Liao
- Guangxi Key Laboratory of Polysaccharide Materials and Modification, School of Marine Sciences and Biotechnology, Guangxi Minzu University, 158 West Daxue Road, Nanning 530008, China
| |
Collapse
|
9
|
Rai N, Rai KK, Singh MK, Singh J, Kaushik P. Investigating NAC Transcription Factor Role in Redox Homeostasis in Solanum lycopersicum L.: Bioinformatics, Physiological and Expression Analysis under Drought Stress. PLANTS (BASEL, SWITZERLAND) 2022; 11:2930. [PMID: 36365384 PMCID: PMC9654907 DOI: 10.3390/plants11212930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/24/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
NAC transcription factors regulate stress-defence pathways and developmental processes in crop plants. However, their detailed functional characterization in tomatoes needs to be investigated comprehensively. In the present study, tomato hybrids subjected to 60 and 80 days of drought stress conditions showed a significant increase in membrane damage and reduced relative water, chlorophyll and proline content. However, hybrids viz., VRTH-16-3 and VRTH-17-68 showed superior growth under drought stress, as they were marked with low electrolytic leakage, enhanced relative water content, proline content and an enhanced activity of enzymatic antioxidants, along with the upregulation of NAC and other stress-defence pathway genes. Candidate gene(s) exhibiting maximum expression in all the hybrids under drought stress were subjected to detailed in silico characterization to provide significant insight into its structural and functional classification. The homology modelling and superimposition analysis of predicted tomato NAC protein showed that similar amino acid residues were involved in forming the conserved WKAT domain. DNA docking discovered that the SlNAC1 protein becomes activated and exerts a stress-defence response after the possible interaction of conserved DNA elements using Pro72, Asn73, Trp81, Lys82, Ala83, Thr84, Gly85, Thr86 and Asp87 residues. A protein-protein interaction analysis identified ten functional partners involved in the induction of stress-defence tolerance.
Collapse
Affiliation(s)
- Nagendra Rai
- Indian Institute of Vegetable Research (IIVR), Varanasi 221305, UP, India
| | - Krishna Kumar Rai
- Indian Institute of Vegetable Research (IIVR), Varanasi 221305, UP, India
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, UP, India
| | - Manish Kumar Singh
- Indian Institute of Vegetable Research (IIVR), Varanasi 221305, UP, India
| | - Jagdish Singh
- Indian Institute of Vegetable Research (IIVR), Varanasi 221305, UP, India
| | - Prashant Kaushik
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, 46022 Valencia, Spain
| |
Collapse
|
10
|
Figueroa N, Gómez R. Bolstered plant tolerance to low temperatures by overexpressing NAC transcription factors: identification of critical variables by meta-analysis. PLANTA 2022; 256:92. [PMID: 36181642 DOI: 10.1007/s00425-022-04007-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
The potential biotechnological application of NAC overexpression has been challenged by meta-analysis, establishing a correlation between the magnitudes of several physiological and biochemical parameters and the enhanced tolerance to cold. Overexpression of various NAC (NAM/ATAF/CUC) transcription factors in different plant systems was shown to confer enhanced tolerance to low temperatures by inducing both common and distinctive stress response pathways. However, lack of consensus on the type of parameters evaluated, their magnitudes, and direction of the responses complicates drawing general conclusions on the effects of NAC expression in plant physiology. We report herein a meta-analysis summarizing the most critical response variables used to study the effect of overexpressing NAC regulators on cold stress tolerance. We found that NAC overexpression affected all of the outcome parameters in stressed plants, and one response in control conditions. Transformed plants displayed an increase of at least 40% in positive responses, while negative outcomes were reduced by at least 30%. The most reported parameters included survival, electrolyte leakage, and malondialdehyde contents, whereas the most sensitive to the treatments were the Fv/Fm parameter, survival, and the activity of catalases. We also explored how different experimental arrangements affected the magnitudes of the responses. NAC-mediated improvements were best observed after severe stress episodes and during brief treatments (ranging from 5 to 24 h), especially in terms of antioxidant activities, accumulation of free proline, and parameters related to membrane integrity. Use of heterologous expression also favored several indicators of plant fitness. Our findings should help both basic and applied research on the influence of NAC expression on enhanced tolerance to cold.
Collapse
Affiliation(s)
- Nicolás Figueroa
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-UNR/CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), 2000, Rosario, Argentina.
| | - Rodrigo Gómez
- Cátedra de Fisiología Vegetal, Facultad de Ciencias Agrarias, Universidad Nacional de Rosario (UNR), 2123, Zavalla, Santa Fe, Argentina
| |
Collapse
|
11
|
Hajibarat Z, Saidi A. Senescence-associated proteins and nitrogen remobilization in grain filling under drought stress condition. J Genet Eng Biotechnol 2022; 20:101. [PMID: 35819732 PMCID: PMC9276853 DOI: 10.1186/s43141-022-00378-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 06/14/2022] [Indexed: 11/25/2022]
Abstract
Background Plants use escape strategies including premature senescence and leaf reduction to cope in response to drought stress, which in turn reduces plant leaves and photosynthesis. This strategy allows the new generation (seeds) to survive under drought but, plants experience more yield loss during stress condition. The amount of damage caused by drought stress is compensated by the expression of genes involved in regulating leaf aging. Leaf senescence alters the expression of thousands of genes and ultimately affecting grain protein content, grain yield, and nitrogen utilization efficiency. Also, under drought stress, nitrogen in the soil will not become as much available and causes the beginning and acceleration of the senescence process of leaves. The main body of the abstract This review identified proteins signaling and functional proteins involved in senescence. Further, transcription factors and cell wall degradation enzymes (proteases) related to senescence during drought stress were surveyed. We discuss the regulatory pathways of genes as a result of the degradation of proteins during senescence process. Senescence is strongly influenced by plant hormones and environmental factors including the availability of nitrogen. During maturity or drought stress, reduced nitrogen uptake can cause nitrogen to be remobilized from leaves and stems to seeds, eventually leading to leaf senescence. Under these conditions, genes involved in chloroplast degradation and proteases show increased expression. The functional (proteases) and regulatory proteins such as protein kinases and phosphatases as well as transcription factors (AP2/ERF, NAC, WRKY, MYB, and bZIP) are involved in leaf senescence and drought stress. Short conclusion In this review, senescence-associated proteins involved in leaf senescence and regulatory and functional proteins in response to drought stress during grain filling were surveyed. The present study predicts on the role of nitrogen transporters, transcription factors and regulatory genes involved in the late stages of plant growth with the aim of understanding their mechanisms of action during grain filling stage. For a better understanding, the relevant evidence for the balance between grain filling and protein breakdown during grain filling in cereals is presented.
Collapse
Affiliation(s)
- Zohreh Hajibarat
- Department of Plant Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Abbas Saidi
- Department of Plant Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran.
| |
Collapse
|
12
|
Vergata C, Yousefi S, Buti M, Vestrucci F, Gholami M, Sarikhani H, Salami SA, Martinelli F. Meta-analysis of transcriptomic responses to cold stress in plants. FUNCTIONAL PLANT BIOLOGY : FPB 2022; 49:704-724. [PMID: 35379384 DOI: 10.1071/fp21230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 03/10/2022] [Indexed: 06/14/2023]
Abstract
Transcriptomic analyses are needful tools to gain insight into the molecular mechanisms underlying plant responses to abiotic stresses. The aim of this study was to identify key genes differentially regulated in response to chilling stress in various plant species with different levels of tolerance to low temperatures. A meta-analysis was performed using the RNA-Seq data of published studies whose experimental conditions were comparable. The results confirmed the importance of ethylene in the hormonal cross-talk modulating the defensive responses against chilling stress, especially in sensitive species. The transcriptomic activity of five Ethylene Response Factors genes and a REDOX Responsive Transcription Factor 1 involved in hormone-related pathways belonging to ethylene metabolism and signal transduction were induced. Transcription activity of two genes encoding for heat shock factors was enhanced, together with various genes associated with developmental processes. Several transcription factor families showed to be commonly induced between different plant species. Protein-protein interaction networks highlighted the role of the photosystems I and II, as well as genes encoding for HSF and WRKY transcription factors. A model of gene regulatory network underlying plant responses to chilling stress was developed, allowing the delivery of new candidate genes for genetic improvement of crops towards low temperatures tolerance.
Collapse
Affiliation(s)
- Chiara Vergata
- Department of Biology, University of Florence, Firenze, Italy
| | - Sanaz Yousefi
- Department of Horticultural Science, Bu-Ali Sina University, Hamedan, Iran
| | - Matteo Buti
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, Firenze, Italy
| | | | - Mansour Gholami
- Department of Horticultural Science, Bu-Ali Sina University, Hamedan, Iran
| | - Hassan Sarikhani
- Department of Horticultural Science, Bu-Ali Sina University, Hamedan, Iran
| | - Seyed Alireza Salami
- Department of Horticultural Sciences, Faculty of Agriculture and Natural Resources, University of Tehran, Tehran, Iran
| | | |
Collapse
|
13
|
Geng L, Su L, Fu L, Lin S, Zhang J, Liu Q, Jiang X. Genome-wide analysis of the rose (Rosa chinensis) NAC family and characterization of RcNAC091. PLANT MOLECULAR BIOLOGY 2022; 108:605-619. [PMID: 35169911 DOI: 10.1007/s11103-022-01250-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 01/30/2022] [Indexed: 06/14/2023]
Abstract
A genome-wide analysis identified 116 NAC genes in rose, including stress-related ones with different expression patterns under drought and salt stress. Silencing of RcNAC091, a member of the ATAF subfamily, decreased dehydration tolerance in rose. The NAC (NAM, ATAF, and CUC) transcription factors (TFs) are plant-specific proteins that regulate various developmental processes and stress responses. However, knowledge of the NAC TFs in rose (Rosa chinensis), one of the most important horticultural crops, is limited. In this study, 116 NAC genes were identified from the rose genome and classified into 16 subfamilies based on protein phylogenetic analysis. Chromosomal mapping revealed that the RcNAC genes were unevenly distributed on the seven chromosomes of rose. Gene structure and motif analysis identified a total of ten conserved motifs, of which motifs 1-7 were highly conserved and present in most rose NACs, while motifs 8-10 were present only in a few subfamilies. Further study of the stress-related RcNACs based on the transcriptome data showed differences in the expression patterns among the organs, at various floral developmental stages, and under drought and salt stress in rose leaves and roots. The stress-related RcNACs possessed cis-regulatory elements (CREs) categorized into three groups corresponding to plant growth and development, phytohormone response, and abiotic and biotic stress response. Reverse transcription-quantitative real-time PCR (RT-qPCR) analysis of 11 representative RcNACs revealed their differential expression in rose leaves and roots under abscisic acid (ABA), polyethylene glycol (PEG), and sodium chloride (NaCl) treatments. Furthermore, the silencing of RcNAC091 verified its role in positively regulating the dehydration stress response. Overall, the present study provides valuable insights into stress-related RcNACs and paves the way for stress tolerance in rose.
Collapse
Affiliation(s)
- Lifang Geng
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, 266000, China
| | - Lin Su
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, 266000, China
| | - Lufeng Fu
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, 266000, China
| | - Shang Lin
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, 266000, China
| | - Jianmei Zhang
- Yantai Service Center of Forest Resources Monitoring and Protection, Yantai, 264000, China
| | - Qinghua Liu
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, 266000, China
| | - Xinqiang Jiang
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, 266000, China.
| |
Collapse
|
14
|
Overexpression of CpWRKY75 from Chimonanthus praecox Promotes Flowering Time in Transgenic Arabidopsis. Genes (Basel) 2021; 13:genes13010068. [PMID: 35052409 PMCID: PMC8774968 DOI: 10.3390/genes13010068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 11/17/2022] Open
Abstract
WRKY transcription factors play critical roles in the physiological processes of plants. Although the roles of WRKYs have been characterized in some model plants, their roles in woody plants, especially wintersweet (Chimonanthus praecox), are largely unclear. In this study, a wintersweet WRKY gene named CpWRKY75 belonging to group IIc was isolated and its characteristics were identified. CpWRKY75 is a nucleus-localized protein, and exhibited no transcriptional activation activity in yeast. CpWRKY75 was highly expressed in flowers at different bloom stages. Ectopic expression of CpWRKY75 significantly promoted the flowering time of transgenic Arabidopsis (Arabidopsis thaliana), as determined by the rosette leaf number and first flower open time. The expression levels of flowering-related genes were quantified by qRT-PCR, and the results suggested that CpWRKY75 had obvious influence on the expression level of MICRORNA156C (MIR156C), SQUAMOSA PROMOTER BINDING PROTEIN-LIKE3 (SPL3) and SQUAMOSA PROMOTER BINDING PROTEIN-LIKE 9 (SPL9), FLOWERING LOCUS T (FT), LEAFY (LFY), SUPPRESSOR OF OVEREXPRESSION OF CO 1 (SOC1), APETALA1 (AP1), CAULIFLOWER (CAL), and FRUITFULL (FUL). These results suggest that CpWRKY75 might have a flowering time regulation function, and additionally provide a new gene resource for the genetic engineering of woody flowering plants.
Collapse
|
15
|
Warsi MK, Howladar SM, Alsharif MA. Regulon: An overview of plant abiotic stress transcriptional regulatory system and role in transgenic plants. BRAZ J BIOL 2021; 83:e245379. [PMID: 34495147 DOI: 10.1590/1519-6984.245379] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 03/16/2021] [Indexed: 11/21/2022] Open
Abstract
Population growth is increasing rapidly around the world, in these consequences we need to produce more foods to full fill the demand of increased population. The world is facing global warming due to urbanizations and industrialization and in this concerns plants exposed continuously to abiotic stresses which is a major cause of crop hammering every year. Abiotic stresses consist of Drought, Salt, Heat, Cold, Oxidative and Metal toxicity which damage the crop yield continuously. Drought and salinity stress severally affected in similar manner to plant and the leading cause of reduction in crop yield. Plants respond to various stimuli under abiotic or biotic stress condition and express certain genes either structural or regulatory genes which maintain the plant integrity. The regulatory genes primarily the transcription factors that exert their activity by binding to certain cis DNA elements and consequently either up regulated or down regulate to target expression. These transcription factors are known as masters regulators because its single transcript regulate more than one gene, in this context the regulon word is fascinating more in compass of transcription factors. Progress has been made to better understand about effect of regulons (AREB/ABF, DREB, MYB, and NAC) under abiotic stresses and a number of regulons reported for stress responsive and used as a better transgenic tool of Arabidopsis and Rice.
Collapse
Affiliation(s)
- M K Warsi
- Department of Biochemistry, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - S M Howladar
- Department of Biology, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - M A Alsharif
- Architecture Department, Faculty of Engineering. Albaha University, Albaha, Saudi Arabia
| |
Collapse
|
16
|
NAC Transcription Factor PwNAC11 Activates ERD1 by Interaction with ABF3 and DREB2A to Enhance Drought Tolerance in Transgenic Arabidopsis. Int J Mol Sci 2021; 22:ijms22136952. [PMID: 34203360 PMCID: PMC8269012 DOI: 10.3390/ijms22136952] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/18/2021] [Accepted: 06/22/2021] [Indexed: 12/13/2022] Open
Abstract
NAC (NAM, ATAF1/2, and CUC2) transcription factors are ubiquitously distributed in eukaryotes and play significant roles in stress response. However, the functional verifications of NACs in Picea (P.) wilsonii remain largely uncharacterized. Here, we identified the NAC transcription factor PwNAC11 as a mediator of drought stress, which was significantly upregulated in P. wilsonii under drought and abscisic acid (ABA) treatments. Yeast two-hybrid assays showed that both the full length and C-terminal of PwNAC11 had transcriptional activation activity and PwNAC11 protein cannot form a homodimer by itself. Subcellular observation demonstrated that PwNAC11 protein was located in nucleus. The overexpression of PwNAC11 in Arabidopsis obviously improved the tolerance to drought stress but delayed flowering time under nonstress conditions. The steady-state level of antioxidant enzymes' activities and light energy conversion efficiency were significantly increased in PwNAC11 transgenic lines under dehydration compared to wild plants. PwNAC11 transgenic lines showed hypersensitivity to ABA and PwNAC11 activated the expression of the downstream gene ERD1 by binding to ABA-responsive elements (ABREs) instead of drought-responsive elements (DREs). Genetic evidence demonstrated that PwNAC11 physically interacted with an ABA-induced protein-ABRE Binding Factor3 (ABF3)-and promoted the activation of ERD1 promoter, which implied an ABA-dependent signaling cascade controlled by PwNAC11. In addition, qRT-PCR and yeast assays showed that an ABA-independent gene-DREB2A-was also probably involved in PwNAC11-mediated drought stress response. Taken together, our results provide the evidence that PwNAC11 plays a dominant role in plants positively responding to early drought stress and ABF3 and DREB2A synergistically regulate the expression of ERD1.
Collapse
|
17
|
Zhang YM, Guo P, Xia X, Guo H, Li Z. Multiple Layers of Regulation on Leaf Senescence: New Advances and Perspectives. FRONTIERS IN PLANT SCIENCE 2021; 12:788996. [PMID: 34938309 PMCID: PMC8685244 DOI: 10.3389/fpls.2021.788996] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 11/03/2021] [Indexed: 05/22/2023]
Abstract
Leaf senescence is the last stage of leaf development and is an orderly biological process accompanied by degradation of macromolecules and nutrient recycling, which contributes to plant fitness. Forward genetic mutant screening and reverse genetic studies of senescence-associated genes (SAGs) have revealed that leaf senescence is a genetically regulated process, and the initiation and progression of leaf senescence are influenced by an array of internal and external factors. Recently, multi-omics techniques have revealed that leaf senescence is subjected to multiple layers of regulation, including chromatin, transcriptional and post-transcriptional, as well as translational and post-translational levels. Although impressive progress has been made in plant senescence research, especially the identification and functional analysis of a large number of SAGs in crop plants, we still have not unraveled the mystery of plant senescence, and there are some urgent scientific questions in this field, such as when plant senescence is initiated and how senescence signals are transmitted. This paper reviews recent advances in the multiple layers of regulation on leaf senescence, especially in post-transcriptional regulation such as alternative splicing.
Collapse
Affiliation(s)
- Yue-Mei Zhang
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Pengru Guo
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Xinli Xia
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Hongwei Guo
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Zhonghai Li
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- *Correspondence: Zhonghai Li,
| |
Collapse
|
18
|
Genome-wide identification and characterization of bHLH family genes from Ginkgo biloba. Sci Rep 2020; 10:13723. [PMID: 32792673 PMCID: PMC7426926 DOI: 10.1038/s41598-020-69305-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 07/02/2020] [Indexed: 01/05/2023] Open
Abstract
Basic helix–loop–helix (bHLH) proteins, one of the most important and largest transcription factor family in plants, play important roles in regulating growth and development, stress response. In recent years, many bHLH family genes have been identified and characterized in woody plants. However, a systematic analysis of the bHLH gene family has not been reported in Ginkgo biloba, the oldest relic plant species. In this study, we identifed a total of 85 GbbHLH genes from the genomic and transcriptomic databases of G. biloba, which were classified into 17 subfamilies based on the phylogenetic analysis. Gene structures analysis indicated that the number of exon–intron range in GbbHLHs from 0 to 12. The MEME analysis showed that two conserved motifs, motif 1 and motif 2, distributed in most GbbHLH protein. Subcellular localization analysis exhibited that most GbbHLHs located in nucleus and a few GbbHLHs were distributed in chloroplast, plasma membrane and peroxisome. Promoter cis-element analysis revealed that most of the GbbHLH genes contained abundant cis-elements that involved in plant growth and development, secondary metabolism biosynthesis, various abiotic stresses response. In addition, correlation analysis between gene expression and flavonoid content screened seven candidate GbbHLH genes involved in flavonoid biosynthesis, providing the targeted gene encoding transcript factor for increase the flavonoid production through genetic engineering in G. biloba.
Collapse
|
19
|
Gong L, Zhang H, Liu X, Gan X, Nie F, Yang W, Zhang L, Chen Y, Song Y, Zhang H. Ectopic expression of HaNAC1, an ATAF transcription factor from Haloxylon ammodendron, improves growth and drought tolerance in transgenic Arabidopsis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 151:535-544. [PMID: 32305820 DOI: 10.1016/j.plaphy.2020.04.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 04/05/2020] [Accepted: 04/06/2020] [Indexed: 06/11/2023]
Abstract
NAC transcription factors play a pivotal role in plant growth, development and response to abiotic stress. However, their biological functions in desert trees are largely unknown. In this work, the NAC transcription factor HaNAC1 from Haloxylon ammodendron, a typical wooden plant normally grown in desert, was isolated, and its possible role in plant growth and resistance to drought stress was investigated. HaNAC1 encodes an ATAF subfamily transcription factor containing one NAC domain with five conserved regions. Quantitative real time PCR analyses revealed that HaNAC1 was ubiquitously expressed in various tissues and organs such as roots, stems, leaves and seeds, with a predominant expression in stems. Further studies demonstrated that expression of HaNAC1 was significantly induced by osmotic stress in Haloxylon ammodendron seedlings, and subcellular localization analysis indicated that GFP-HaNAC1 fusion protein was localized to the nucleus in Arabidopsis leaf protoplast. Ectopic expression of HaNAC1 led to promoted growth and drought tolerance in transgenic Arabidopsis, accompanied with up-regulated expression of stress-inducible marker genes, and increased accumulation of proline, IAA and ABA under both normal and drought stress conditions. In addition, co-immunoprecipitation and Bi-molecular fluorescence complementation assays illustrated that HaNAC1 directly interacted with AtNAC32. All these results suggest that HaNAC1 is involved in both the growth and drought resistance of Haloxylon ammodendron, and could be used as a promising candidate gene for the breeding of crops with augmented tolerance to drought stress.
Collapse
Affiliation(s)
- Lei Gong
- Ningxia Key Laboratory for Agrobiotechnology, Agricultural Bio-Technology Center, Ningxia Academy of Agriculture and Forestry Science, 590 Huanghe East Road, Yinchuan, Ningxia Hui Nationality Autonomous Region, 750002, China
| | - Haiwen Zhang
- School of Life Sciences, Ningxia University, 489 Helanshan West Road, Yinchuan, Ningxia Hui Nationality Autonomous Region, 750021, China
| | - Xuan Liu
- Ningxia Key Laboratory for Agrobiotechnology, Agricultural Bio-Technology Center, Ningxia Academy of Agriculture and Forestry Science, 590 Huanghe East Road, Yinchuan, Ningxia Hui Nationality Autonomous Region, 750002, China
| | - Xiaoyan Gan
- Ningxia Key Laboratory for Agrobiotechnology, Agricultural Bio-Technology Center, Ningxia Academy of Agriculture and Forestry Science, 590 Huanghe East Road, Yinchuan, Ningxia Hui Nationality Autonomous Region, 750002, China
| | - Fengjie Nie
- Ningxia Key Laboratory for Agrobiotechnology, Agricultural Bio-Technology Center, Ningxia Academy of Agriculture and Forestry Science, 590 Huanghe East Road, Yinchuan, Ningxia Hui Nationality Autonomous Region, 750002, China
| | - Wenjing Yang
- Ningxia Key Laboratory for Agrobiotechnology, Agricultural Bio-Technology Center, Ningxia Academy of Agriculture and Forestry Science, 590 Huanghe East Road, Yinchuan, Ningxia Hui Nationality Autonomous Region, 750002, China
| | - Li Zhang
- Ningxia Key Laboratory for Agrobiotechnology, Agricultural Bio-Technology Center, Ningxia Academy of Agriculture and Forestry Science, 590 Huanghe East Road, Yinchuan, Ningxia Hui Nationality Autonomous Region, 750002, China
| | - Yuchao Chen
- Ningxia Key Laboratory for Agrobiotechnology, Agricultural Bio-Technology Center, Ningxia Academy of Agriculture and Forestry Science, 590 Huanghe East Road, Yinchuan, Ningxia Hui Nationality Autonomous Region, 750002, China
| | - Yuxia Song
- Ningxia Key Laboratory for Agrobiotechnology, Agricultural Bio-Technology Center, Ningxia Academy of Agriculture and Forestry Science, 590 Huanghe East Road, Yinchuan, Ningxia Hui Nationality Autonomous Region, 750002, China.
| | - Hongxia Zhang
- College of Agriculture, Ludong University, 186 Hongqizhong Road, Yantai, 264025, China; Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong (Ludong University), 186 Hongqizhong Road, Yantai, Shandong Province, 264025, China.
| |
Collapse
|
20
|
Wang Y, Cao S, Guan C, Kong X, Wang Y, Cui Y, Liu B, Zhou Y, Zhang Y. Overexpressing the NAC transcription factor LpNAC13 from Lilium pumilum in tobacco negatively regulates the drought response and positively regulates the salt response. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 149:96-110. [PMID: 32058898 DOI: 10.1016/j.plaphy.2020.01.036] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 01/29/2020] [Accepted: 01/29/2020] [Indexed: 05/25/2023]
Abstract
NACs are one of the largest transcription factor families in plants and are involved in the response to abiotic stress. A new stress-responsive NAC transcription factor gene, LpNAC13, was isolated from Lilium pumilum bulbs. The expression of LpNAC13 was induced by drought, salt, cold and ABA treatments. LpNAC13 overexpressing plants were generated to explore the function of LpNAC13 in response to drought and salt stress. Overexpression of LpNAC13 in tobacco displayed a reduced drought tolerance but exhibited an enhanced salt tolerance. The LpNAC13 overexpression plants had decreased antioxidant enzyme activities, content of proline and chlorophyll, increased MDA content under drought condition, the results in the LpNAC13 plants under salt condition were opposite to those under drought condition. The seed germination and root length assays of overexpression of LpNAC13 showed decreased sensitivity to ABA. Functional analyses demonstrate that LpNAC13 plays opposite roles in drought and salt stress tolerance, acting as a negative regulator of drought response but as a positive regulator of salt response in tobacco.
Collapse
Affiliation(s)
- Ying Wang
- College of Landscape Architecture, Northeast Forestry University, Harbin, 150040, China
| | - Shangjie Cao
- College of Landscape Architecture, Northeast Forestry University, Harbin, 150040, China
| | - Chunjing Guan
- College of Landscape Architecture, Northeast Forestry University, Harbin, 150040, China
| | - Xin Kong
- College of Landscape Architecture, Northeast Forestry University, Harbin, 150040, China
| | - Yiping Wang
- College of Landscape Architecture, Northeast Forestry University, Harbin, 150040, China
| | - Ying Cui
- College of Landscape Architecture, Northeast Forestry University, Harbin, 150040, China
| | - Bin Liu
- College of Landscape Architecture, Northeast Forestry University, Harbin, 150040, China
| | - Yunwei Zhou
- College of Landscape Architecture, Northeast Forestry University, Harbin, 150040, China
| | - Yanni Zhang
- College of Landscape Architecture, Northeast Forestry University, Harbin, 150040, China.
| |
Collapse
|
21
|
Wang G, Yuan Z, Zhang P, Liu Z, Wang T, Wei L. Genome-wide analysis of NAC transcription factor family in maize under drought stress and rewatering. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2020; 26:705-717. [PMID: 32255934 PMCID: PMC7113357 DOI: 10.1007/s12298-020-00770-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 12/26/2019] [Accepted: 01/22/2020] [Indexed: 05/20/2023]
Abstract
The plant-specific NAC transcription factor (TFs) plays crucial role in plant growth as well as in stress resistance. In the present study, 87 Zea mays NAC TFs were obtained from the transcriptome analysis using drought-resistant maize inbred line Y882 as experimental material under PEG stress and rewatering treatment. Comprehensive analyses were conducted including genes structure, chromosomal localization, phylogenetic tree and motif prediction, cis-elements and expression patterns. The results showed that the 87 ZmNAC genes distributed on 10 chromosomes and were categorized into 15 groups based on their conserved gene structure and motifs. Phylogenetic tree analysis was also constructed referencing to the counterparts of Arabidopsis and rice, and the stress-related cis-elements in the promoter region were also analyzed. 87 ZmNAC genes exhibited different expression levels at 3 treatment points, indicating different response to drought stress. This genome-wide analysis of 87 ZmNAC genes will provide basis for further gene function detection.
Collapse
Affiliation(s)
- Guorui Wang
- Agricultural College of Henan Agricultural University, Zhengzhou, 450046 Henan China
| | - Zhen Yuan
- Agricultural College of Henan Agricultural University, Zhengzhou, 450046 Henan China
| | - Pengyu Zhang
- Agricultural College of Henan Agricultural University, Zhengzhou, 450046 Henan China
| | - Zhixue Liu
- Agricultural College of Henan Agricultural University, Zhengzhou, 450046 Henan China
| | - Tongchao Wang
- Agricultural College of Henan Agricultural University, Zhengzhou, 450046 Henan China
| | - Li Wei
- Agricultural College of Henan Agricultural University, Zhengzhou, 450046 Henan China
| |
Collapse
|
22
|
Jian H, Xie L, Wang Y, Cao Y, Wan M, Lv D, Li J, Lu K, Xu X, Liu L. Characterization of cold stress responses in different rapeseed ecotypes based on metabolomics and transcriptomics analyses. PeerJ 2020; 8:e8704. [PMID: 32266113 PMCID: PMC7120054 DOI: 10.7717/peerj.8704] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 02/06/2020] [Indexed: 01/04/2023] Open
Abstract
The winter oilseed ecotype is more tolerant to low temperature than the spring ecotype. Transcriptome and metabolome analyses of leaf samples of five spring Brassica napus L. (B. napus) ecotype lines and five winter B. napus ecotype lines treated at 4 °C and 28 °C were performed. A total of 25,460 differentially expressed genes (DEGs) of the spring oilseed ecotype and 28,512 DEGs of the winter oilseed ecotype were identified after cold stress; there were 41 differentially expressed metabolites (DEMs) in the spring and 47 in the winter oilseed ecotypes. Moreover, more than 46.2% DEGs were commonly detected in both ecotypes, and the extent of the changes were much more pronounced in the winter than spring ecotype. By contrast, only six DEMs were detected in both the spring and winter oilseed ecotypes. Eighty-one DEMs mainly belonged to primary metabolites, including amino acids, organic acids and sugars. The large number of specific genes and metabolites emphasizes the complex regulatory mechanisms involved in the cold stress response in oilseed rape. Furthermore, these data suggest that lipid, ABA, secondary metabolism, signal transduction and transcription factors may play distinct roles in the spring and winter ecotypes in response to cold stress. Differences in gene expression and metabolite levels after cold stress treatment may have contributed to the cold tolerance of the different oilseed ecotypes.
Collapse
Affiliation(s)
- Hongju Jian
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Ling Xie
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Yanhua Wang
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Yanru Cao
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Mengyuan Wan
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Dianqiu Lv
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Jiana Li
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Kun Lu
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Xinfu Xu
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Liezhao Liu
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| |
Collapse
|
23
|
Pancaldi F, Trindade LM. Marginal Lands to Grow Novel Bio-Based Crops: A Plant Breeding Perspective. FRONTIERS IN PLANT SCIENCE 2020; 11:227. [PMID: 32194604 PMCID: PMC7062921 DOI: 10.3389/fpls.2020.00227] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 02/13/2020] [Indexed: 05/09/2023]
Abstract
The biomass demand to fuel a growing global bio-based economy is expected to tremendously increase over the next decades, and projections indicate that dedicated biomass crops will satisfy a large portion of it. The establishment of dedicated biomass crops raises huge concerns, as they can subtract land that is required for food production, undermining food security. In this context, perennial biomass crops suitable for cultivation on marginal lands (MALs) raise attraction, as they could supply biomass without competing for land with food supply. While these crops withstand marginal conditions well, their biomass yield and quality do not ensure acceptable economic returns to farmers and cost-effective biomass conversion into bio-based products, claiming genetic improvement. However, this is constrained by the lack of genetic resources for most of these crops. Here we first review the advantages of cultivating novel perennial biomass crops on MALs, highlighting management practices to enhance the environmental and economic sustainability of these agro-systems. Subsequently, we discuss the preeminent breeding targets to improve the yield and quality of the biomass obtainable from these crops, as well as the stability of biomass production under MALs conditions. These targets include crop architecture and phenology, efficiency in the use of resources, lignocellulose composition in relation to bio-based applications, and tolerance to abiotic stresses. For each target trait, we outline optimal ideotypes, discuss the available breeding resources in the context of (orphan) biomass crops, and provide meaningful examples of genetic improvement. Finally, we discuss the available tools to breed novel perennial biomass crops. These comprise conventional breeding methods (recurrent selection and hybridization), molecular techniques to dissect the genetics of complex traits, speed up selection, and perform transgenic modification (genetic mapping, QTL and GWAS analysis, marker-assisted selection, genomic selection, transformation protocols), and novel high-throughput phenotyping platforms. Furthermore, novel tools to transfer genetic knowledge from model to orphan crops (i.e., universal markers) are also conceptualized, with the belief that their development will enhance the efficiency of plant breeding in orphan biomass crops, enabling a sustainable use of MALs for biomass provision.
Collapse
Affiliation(s)
| | - Luisa M. Trindade
- Plant Breeding, Wageningen University & Research, Wageningen, Netherlands
| |
Collapse
|
24
|
Zhang F, Ji S, Wei B, Cheng S, Wang Y, Hao J, Wang S, Zhou Q. Transcriptome analysis of postharvest blueberries (Vaccinium corymbosum 'Duke') in response to cold stress. BMC PLANT BIOLOGY 2020; 20:80. [PMID: 32075582 PMCID: PMC7031921 DOI: 10.1186/s12870-020-2281-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 02/07/2020] [Indexed: 05/05/2023]
Abstract
BACKGROUND Blueberry (Vaccinium spp.) is a small berry with high economic value. Although cold storage can extend the storage time of blueberry to more than 60 days, it leads to chilling injury (CI) displaying as pedicle pits; and the samples of 0 °C-30 days was the critical point of CI. However, little is known about the mechanism and the molecular basis response to cold stress in blueberry have not been explained definitely. To comprehensively reveal the CI mechanisms in response to cold stress, we performed high-throughput RNA Seq analysis to investigate the gene regulation network in 0d (control) and 30d chilled blueberry. At the same time, the pitting and decay rate, electrolyte leakage (EL), malondialdehyde (MDA) proline content and GSH content were measured. RESULTS Two cDNA libraries from 0d (control) and 30d chilled samples were constructed and sequenced, generating a total of 35,060 unigenes with an N50 length of 1348 bp. Of these, 1852 were differentially expressed, with 1167 upregulated and 685 downregulated. Forty-five cold-induced transcription factor (TF) families containing 1023 TFs were identified. The DEGs indicated biological processes such as stress responses; cell wall metabolism; abscisic acid, gibberellin, membrane lipid, energy metabolism, cellular components, and molecular functions were significantly responsed to cold storage. The transcriptional level of 40 DEGs were verified by qRT-PCR. CONCLUSIONS The postharvest cold storage leads serious CI in blueberry, which substantially decreases the quality, storability and consumer acceptance. The MDA content, proline content, EL increased and the GSH content decreased in this chilled process. The biological processes such as stress responses, hormone metabolic processes were significantly affected by CI. Overall, the results obtained here are valuable for preventing CI under cold storage and could help to perfect the lack of the genetic information of non-model plant species.
Collapse
Affiliation(s)
- Fan Zhang
- College of Food, Shenyang Agricultural University, No.120 Dongling Road, Shenhe District, Shenyang City, Liaoning Province 110866 People’s Republic of China
| | - Shujuan Ji
- College of Food, Shenyang Agricultural University, No.120 Dongling Road, Shenhe District, Shenyang City, Liaoning Province 110866 People’s Republic of China
| | - Baodong Wei
- College of Food, Shenyang Agricultural University, No.120 Dongling Road, Shenhe District, Shenyang City, Liaoning Province 110866 People’s Republic of China
| | - Shunchang Cheng
- College of Food, Shenyang Agricultural University, No.120 Dongling Road, Shenhe District, Shenyang City, Liaoning Province 110866 People’s Republic of China
| | - Yajuan Wang
- College of Food, Shenyang Agricultural University, No.120 Dongling Road, Shenhe District, Shenyang City, Liaoning Province 110866 People’s Republic of China
| | - Jia Hao
- College of Food, Shenyang Agricultural University, No.120 Dongling Road, Shenhe District, Shenyang City, Liaoning Province 110866 People’s Republic of China
| | - Siyao Wang
- College of Food, Shenyang Agricultural University, No.120 Dongling Road, Shenhe District, Shenyang City, Liaoning Province 110866 People’s Republic of China
| | - Qian Zhou
- College of Food, Shenyang Agricultural University, No.120 Dongling Road, Shenhe District, Shenyang City, Liaoning Province 110866 People’s Republic of China
| |
Collapse
|
25
|
Shan Z, Jiang Y, Li H, Guo J, Dong M, Zhang J, Liu G. Genome-wide analysis of the NAC transcription factor family in broomcorn millet (Panicum miliaceum L.) and expression analysis under drought stress. BMC Genomics 2020; 21:96. [PMID: 32000662 PMCID: PMC6993341 DOI: 10.1186/s12864-020-6479-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 01/10/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Broomcorn millet is a drought-tolerant cereal that is widely cultivated in the semiarid regions of Asia, Europe, and other continents; however, the mechanisms underlying its drought-tolerance are poorly understood. The NAM, ATAF1/2, and CUC2 (NAC) transcription factors form a large plant-specific gene family that is involved in the regulation of tissue development and abiotic stress. To date, NAC transcription factors have not been systematically researched in broomcorn millet. RESULTS In the present study, a total of 180 NAC (PmNAC) genes were identified from the broomcorn millet genome and named uniformly according to their chromosomal distribution. Phylogenetic analysis demonstrated that the PmNACs clustered into 12 subgroups, including the broomcorn millet-specific subgroup Pm_NAC. Gene structure and protein motif analyses indicated that closely clustered PmNAC genes were relatively conserved within each subgroup, while genome mapping analysis revealed that the PmNAC genes were unevenly distributed on broomcorn millet chromosomes. Transcriptome analysis revealed that the PmNAC genes differed greatly in expression in various tissues and under different drought stress durations. The expression of 10 selected genes under drought stress was analyzed using quantitative real-time PCR. CONCLUSION In this study, 180 NAC genes were identified in broomcorn millet, and their phylogenetic relationships, gene structures, protein motifs, chromosomal distribution, duplication, expression patterns in different tissues, and responses to drought stress were studied. These results will be useful for the further study of the functional characteristics of PmNAC genes, particularly with regards to drought resistance.
Collapse
Affiliation(s)
- Zhongying Shan
- Institute of Millet Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, 050035, Hebei, China
- College of Ecology and Garden Architecture, Dezhou University, Dezhou, 253023, China
| | - Yanmiao Jiang
- Institute of Millet Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, 050035, Hebei, China
- Key Laboratory of Minor Crops in Hebei, Shijiazhuang, 050035, Hebei, China
| | - Haiquan Li
- Institute of Millet Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, 050035, Hebei, China
- Key Laboratory of Minor Crops in Hebei, Shijiazhuang, 050035, Hebei, China
| | - Jinjie Guo
- Institute of Millet Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, 050035, Hebei, China
- Key Laboratory of Minor Crops in Hebei, Shijiazhuang, 050035, Hebei, China
| | - Ming Dong
- Institute of Millet Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, 050035, Hebei, China
- Key Laboratory of Minor Crops in Hebei, Shijiazhuang, 050035, Hebei, China
| | - Jianan Zhang
- Institute of Millet Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, 050035, Hebei, China
- Key Laboratory of Minor Crops in Hebei, Shijiazhuang, 050035, Hebei, China
| | - Guoqing Liu
- Institute of Millet Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, 050035, Hebei, China.
- Key Laboratory of Minor Crops in Hebei, Shijiazhuang, 050035, Hebei, China.
| |
Collapse
|
26
|
Thuy Quynh Nguyen T, Thanh Huyen Trinh L, Bao Vy Pham H, Vien Le T, Kim Hue Phung T, Lee SH, Cheong JJ. Evaluation of proline, soluble sugar and ABA content in soybean Glycine max (L.) under drought stress memory. AIMS BIOENGINEERING 2020. [DOI: 10.3934/bioeng.2020011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
|
27
|
Ju YL, Yue XF, Min Z, Wang XH, Fang YL, Zhang JX. VvNAC17, a novel stress-responsive grapevine (Vitis vinifera L.) NAC transcription factor, increases sensitivity to abscisic acid and enhances salinity, freezing, and drought tolerance in transgenic Arabidopsis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 146:98-111. [PMID: 31734522 DOI: 10.1016/j.plaphy.2019.11.002] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 10/24/2019] [Accepted: 11/02/2019] [Indexed: 05/07/2023]
Abstract
Drought stress is the primary factor limiting the growth and fruit quality of grapevines worldwide. However, the biological function of the NAC [No apical meristem (NAM), Arabidopsis transcription activation factor (ATAF), Cup-shaped cotyledon (CUC)] transcription factor (TF) in grapevine is not clear. In this study, we reported that VvNAC17, a novel NAC transcription factor, was expressed in various tissues following drought, high temperature (45 °C), freezing (4 °C), salicylic acid (SA), and abscisic acid (ABA) treatments in grapevine. The VvNAC17 protein was localized in the nucleus of Arabidopsis thaliana protoplasts and demonstrated transcriptional activation activities at its C-terminus in yeast. The VvNAC17 gene was overexpressed in Arabidopsis thaliana. Under mannitol and salt stress, the germination rates of the VvNAC17-overexpression lines were higher than those of the wild-type plants, as were the root lengths. The VvNAC17-overexpression lines showed greater tolerance to freezing stress along with a higher survival rate. Following ABA treatment, the seed germination rate and the root length of the VvNAC17-overexpression lines were inhibited, and the stomatal opening and stomatal density were reduced. When subjected to drought and dehydration stress, the VvNAC17-overexpression lines showed improved survival and reduced water loss rates in comparison to the wild-type plants. Under drought conditions, the VvNAC17-overexpression lines had lower malondialdehyde and H2O2 contents, but higher peroxidase, superoxide dismutase, and catalase activities as well as higher proline content. Moreover, the expression of marker genes, including ABI5, AREB1, COR15A, COR47, P5CS, RD22, and RD29A, was up-regulated in the VvNAC17-overexpression lines when subjected to ABA and drought treatments. The results suggest that in transgenic Arabidopsis over-expression of VvNAC17 enhances resistance to drought while up-regulating the expression of ABA- and stress-related genes.
Collapse
Affiliation(s)
- Yan-Lun Ju
- College of Enology, Northwest A & F University, Yangling, Shaanxi, 712100, China.
| | - Xiao-Feng Yue
- College of Enology, Northwest A & F University, Yangling, Shaanxi, 712100, China.
| | - Zhuo Min
- Department of Brewing Engineering, Moutai University, Renhuai, Guizhou, 564507, China.
| | - Xian-Hang Wang
- College of Enology, Northwest A & F University, Yangling, Shaanxi, 712100, China.
| | - Yu-Lin Fang
- College of Enology, Northwest A & F University, Yangling, Shaanxi, 712100, China.
| | - Jun-Xiang Zhang
- Ningxia Grape and Wine Research Institute, Ningxia University, Yinchuan, Ningxia, 750000, China.
| |
Collapse
|
28
|
Hoang XLT, Nguyen NC, Nguyen YNH, Watanabe Y, Tran LSP, Thao NP. The Soybean GmNAC019 Transcription Factor Mediates Drought Tolerance in Arabidopsis in an Abscisic Acid-Dependent Manner. Int J Mol Sci 2019; 21:E286. [PMID: 31906240 PMCID: PMC6981368 DOI: 10.3390/ijms21010286] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 12/27/2019] [Indexed: 12/27/2022] Open
Abstract
Being master regulators of gene expression, transcription factors (TFs) play important roles in determining plant growth, development and reproduction. To date, many TFs have been shown to positively mediate plant responses to environmental stresses. In the current study, the biological functions of a stress-responsive NAC [NAM (No Apical Meristem), ATAF1/2 (Arabidopsis Transcription Activation Factor1/2), CUC2 (Cup-shaped Cotyledon2)]-TF encoding gene isolated from soybean (GmNAC019) in relation to plant drought tolerance and abscisic acid (ABA) responses were investigated. By using a heterologous transgenic system, we revealed that transgenic Arabidopsis plants constitutively expressing the GmNAC019 gene exhibited higher survival rates in a soil-drying assay, which was associated with lower water loss rate in detached leaves, lower cellular hydrogen peroxide content and stronger antioxidant defense under water-stressed conditions. Additionally, the exogenous treatment of transgenic plants with ABA showed their hypersensitivity to this phytohormone, exhibiting lower rates of seed germination and green cotyledons. Taken together, these findings demonstrated that GmNAC019 functions as a positive regulator of ABA-mediated plant response to drought, and thus, it has potential utility for improving plant tolerance through molecular biotechnology.
Collapse
Affiliation(s)
- Xuan Lan Thi Hoang
- Applied Biotechnology for Crop Development Research Unit, School of Biotechnology, International University–Vietnam National University HCMC, Ho Chi Minh 700000, Vietnam; (X.L.T.H.); (N.C.N.); (Y.-N.H.N.)
| | - Nguyen Cao Nguyen
- Applied Biotechnology for Crop Development Research Unit, School of Biotechnology, International University–Vietnam National University HCMC, Ho Chi Minh 700000, Vietnam; (X.L.T.H.); (N.C.N.); (Y.-N.H.N.)
| | - Yen-Nhi Hoang Nguyen
- Applied Biotechnology for Crop Development Research Unit, School of Biotechnology, International University–Vietnam National University HCMC, Ho Chi Minh 700000, Vietnam; (X.L.T.H.); (N.C.N.); (Y.-N.H.N.)
| | - Yasuko Watanabe
- Stress Adaptation Research Unit, RIKEN Center for Sustainable Resource Science, 1-7-22, Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan;
| | - Lam-Son Phan Tran
- Stress Adaptation Research Unit, RIKEN Center for Sustainable Resource Science, 1-7-22, Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan;
- Institute of Research and Development, Duy Tan University, 03 Quang Trung, Da Nang 550000, Vietnam
| | - Nguyen Phuong Thao
- Applied Biotechnology for Crop Development Research Unit, School of Biotechnology, International University–Vietnam National University HCMC, Ho Chi Minh 700000, Vietnam; (X.L.T.H.); (N.C.N.); (Y.-N.H.N.)
| |
Collapse
|
29
|
Identification and Expression of NAC Transcription Factors of Vaccinium corymbosum L. in Response to Drought Stress. FORESTS 2019. [DOI: 10.3390/f10121088] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Research Highlights: Phenotypic changes and expression profiles, phylogeny, conserved motifs, and expression correlations of NAC (NAM, ATAF1, ATAF2 and CUC2) transcription factors (TFs) in blueberry genome were detected under drought stress, and the expression patterns and functions of 12 NACs were analyzed. Background and Objectives: Blueberry is an important shrub species with a high level of flavonoids in fruit, which are implicated in a broad range of health benefits. However, the molecular mechanism of this shrub species in response to drought stress still remains elusive. NAC TFs widely participate in stress tolerance in many plant species. The characterization and expression profiles of NAC TFs were analyzed on the basis of genome data in blueberry when subjected to drought stress. Materials and Methods: Combined with the analysis of chlorophyll a fluorescence and endogenous phytohormones, the phenotypic changes of blueberry under drought stress were observed. The phylogenetic tree, conserved motifs, differently expressed genes, and expression correlation were determined by means of multiple bioinformatics analysis. The expression profiles of NACs in different organs were examined and compared through RNA-seq and qRT-PCR assay. Results: The chlorophyll a fluorescence parameters φPo, φEo, φRo, and PIabs of leaves were significantly inhibited under drought stress. ABA (abscisic acid) content noticeably increased over the duration of drought, whereas GA3 (gibberellic acid) and IAA (indole acetic acid) content decreased continuously. A total of 158 NACs were identified in blueberry genome and 62 NACs were differently expressed in leaf and root of blueberry under drought stress. Among them, 14 NACs were significantly correlated with the expression of other NAC genes. Conclusions: Our results revealed the phenotypic changes of this shrub under drought stress and linked them with NAC TFs, which are potentially involved in the process of response to drought stress.
Collapse
|
30
|
Nguyen NC, Hoang XLT, Nguyen QT, Binh NX, Watanabe Y, Thao NP, Tran LSP. Ectopic Expression of Glycine maxGmNAC109 Enhances Drought Tolerance and ABA Sensitivity in Arabidopsis. Biomolecules 2019; 9:E714. [PMID: 31703428 PMCID: PMC6920929 DOI: 10.3390/biom9110714] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 10/28/2019] [Accepted: 11/01/2019] [Indexed: 01/09/2023] Open
Abstract
The NAC (NAM, ATAF1/2, CUC2) transcription factors are widely known for their various functions in plant development and stress tolerance. Previous studies have demonstrated that genetic engineering can be applied to enhance drought tolerance via overexpression/ectopic expression of NAC genes. In the present study, the dehydration- and drought-inducible GmNAC109 from Glycine max was ectopically expressed in Arabidopsis (GmNAC109-EX) plants to study its biological functions in mediating plant adaptation to water deficit conditions. Results revealed an improved drought tolerance in the transgenic plants, which displayed greater recovery rates by 20% to 54% than did the wild-type plants. In support of this finding, GmNAC109-EX plants exhibited lower water loss rates and decreased endogenous hydrogen peroxide production in leaf tissues under drought, as well as higher sensitivity to exogenous abscisic acid (ABA) treatment at germination and early seedling development stages. In addition, analyses of antioxidant enzymes indicated that GmNAC109-EX plants possessed stronger activities of superoxide dismutase and catalase under drought stress. These results together demonstrated that GmNAC109 acts as a positive transcriptional regulator in the ABA-signaling pathway, enabling plants to cope with adverse water deficit conditions.
Collapse
Affiliation(s)
- Nguyen Cao Nguyen
- School of Biotechnology, International University—Vietnam National University HCMC, Ho Chi Minh 700000, Vietnam; (N.C.N.); (X.L.T.H.); (Q.T.N.)
| | - Xuan Lan Thi Hoang
- School of Biotechnology, International University—Vietnam National University HCMC, Ho Chi Minh 700000, Vietnam; (N.C.N.); (X.L.T.H.); (Q.T.N.)
| | - Quang Thien Nguyen
- School of Biotechnology, International University—Vietnam National University HCMC, Ho Chi Minh 700000, Vietnam; (N.C.N.); (X.L.T.H.); (Q.T.N.)
| | - Ngo Xuan Binh
- Faculty of Biotechnology and Food Technology, Thai Nguyen University of Agriculture and Forestry, Thai Nguyen 250000, Vietnam;
| | - Yasuko Watanabe
- Stress Adaptation Research Unit, RIKEN Center for Sustainable Resource Science, 1-7-22, Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan;
| | - Nguyen Phuong Thao
- School of Biotechnology, International University—Vietnam National University HCMC, Ho Chi Minh 700000, Vietnam; (N.C.N.); (X.L.T.H.); (Q.T.N.)
| | - Lam-Son Phan Tran
- Institute of Research and Development, Duy Tan University, 03 Quang Trung, Da Nang, Vietnam; Stress Adaptation Research Unit, RIKEN Center for Sustainable Resource Science, 1-7-22, Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan
| |
Collapse
|
31
|
Identification and Expression Analysis of the NAC Gene Family in Coffea canephora. AGRONOMY-BASEL 2019. [DOI: 10.3390/agronomy9110670] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The NAC gene family is one of the largest families of transcriptional regulators in plants, and it plays important roles in the regulation of growth and development as well as in stress responses. Genome-wide analyses have been performed in diverse plant species, but there is still no systematic analysis of the NAC genes of Coffea canephora Pierre ex A. Froehner. In this study, we identified 63 NAC genes from the genome of C. canephora. The basic features and comparison analysis indicated that the NAC gene members increased via duplication events during the evolution of the plant. Phylogenetic analysis divided the NAC proteins from C. canephora, Arabidopsis and rice into 16 subgroups. Analysis of the expression patterns of CocNACs under cold stress and coffee bean development indicated that 38 CocNACs were differentially expressed under cold stress; six genes may play important roles in the process of cold acclimation, and four genes among 54 CocNACs showing a variety of expression patterns during different developmental stages of coffee beans may be positively related to the bean development. This study can expand our understanding of the functions of the CocNAC gene family in cold responses and bean development, thereby potentially intensifying the molecular breeding programs of Coffea spp. plants.
Collapse
|
32
|
Gu H, Yang Y, Xing M, Yue C, Wei F, Zhang Y, Zhao W, Huang J. Physiological and transcriptome analyses of Opisthopappus taihangensis in response to drought stress. Cell Biosci 2019; 9:56. [PMID: 31312427 PMCID: PMC6611040 DOI: 10.1186/s13578-019-0318-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 06/25/2019] [Indexed: 11/15/2022] Open
Abstract
Background Water scarcity is considered to be a severe environmental constraint to plant survival and productivity. Studies on drought-tolerant plants would definitely promote a better understanding of the regulatory mechanism lying behind the adaptive response of plants to drought. Opisthopappus taihangensis (ling) shih is a typical drought-tolerant perennial plant species endemically distributed across the Taihang Mountains in China, but the underlying mechanism for drought tolerance of this particular species remains elusive. Results To mimic natural drought stress, O. taihangensis plants were treated with two different concentrations (25% and 5%) of polyethylene glycol (PEG6000), which represent the H group (high salinity) and the L group (low salinity), respectively. The physiological characteristics of these two groups of plants, including relative water content maintenance (RWC), proline content and chlorophyll content were assessed and compared with plants in the control group (CK), which had normal irrigation. There was not a significant difference in RWC when comparing plants in the L group with the control group. Proline was accumulated to a higher level, and chlorophyll content was decreased slightly in plants under low drought stress. In plants from the H group, a lower RWC was observed. Proline was accumulated to an even higher level when compared with plants from the L group, and chlorophyll content was further reduced in plants under high drought stress. Transcriptomic analysis was carried out to look for genes that are differentially expressed (DEGs) in O. taihangensis plants coping adaptively with the two levels of drought stress. A total of 23,056 genes are differentially expressed between CK and L, among which 12,180 genes are up-regulated and 10,876 genes are down-regulated. Between H and L, 6182 genes are up-regulated and 1850 genes are down-regulated, which gives a total of 8032 genes. The highest number of genes, that are differentially expressed, was obtained when a comparison was made between CK and H. A total of 43,074 genes were found to be differentially expressed with 26,977 genes up-regulated and 16,097 genes down-regulated. Further analysis of these genes suggests that many of the up-regulated genes are enriched in pathways involved in amino acid metabolism. Besides, 39 transcription factors (TFs) were found to be continuously up-regulated with the increase of drought stress level. Conclusion Taken together, the results indicate that O. taihangensis plants are able to live adaptively under drought stress by responding physiologically and regulating the expression of a substantial number of drought-responsive genes and TFs to avoid adverse effects. Electronic supplementary material The online version of this article (10.1186/s13578-019-0318-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Huihui Gu
- 1School of Chemical Engineering and Energy, Zhengzhou University, Zhengzhou, Henan 450001 People's Republic of China.,2School of Life Sciences, Zhengzhou University, Zhengzhou, Henan 450001 People's Republic of China
| | - Yan Yang
- 2School of Life Sciences, Zhengzhou University, Zhengzhou, Henan 450001 People's Republic of China.,3School of Agricultural Sciences, Zhengzhou University, Zhengzhou, Henan 450001 People's Republic of China
| | - Minghui Xing
- 2School of Life Sciences, Zhengzhou University, Zhengzhou, Henan 450001 People's Republic of China
| | - Caipeng Yue
- 3School of Agricultural Sciences, Zhengzhou University, Zhengzhou, Henan 450001 People's Republic of China
| | - Fang Wei
- 3School of Agricultural Sciences, Zhengzhou University, Zhengzhou, Henan 450001 People's Republic of China
| | - Yanjie Zhang
- 3School of Agricultural Sciences, Zhengzhou University, Zhengzhou, Henan 450001 People's Republic of China
| | - Wenen Zhao
- 1School of Chemical Engineering and Energy, Zhengzhou University, Zhengzhou, Henan 450001 People's Republic of China
| | - Jinyong Huang
- 3School of Agricultural Sciences, Zhengzhou University, Zhengzhou, Henan 450001 People's Republic of China
| |
Collapse
|
33
|
Niu SH, Liu SW, Ma JJ, Han FX, Li Y, Li W. The transcriptional activity of a temperature-sensitive transcription factor module is associated with pollen shedding time in pine. TREE PHYSIOLOGY 2019; 39:1173-1186. [PMID: 31073594 DOI: 10.1093/treephys/tpz023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 02/07/2019] [Accepted: 02/18/2019] [Indexed: 06/09/2023]
Abstract
It has long been known that the pollen shedding time in pine trees is correlated with temperature, but the molecular basis for this has remained largely unknown. To better understand the mechanisms driving temperature response and to identify the hub regulators of pollen shedding time regulation in Pinus tabuliformis Carr., we identified a set of temperature-sensitive genes by carrying out a comparative transcriptome analysis using six early pollen shedding trees (EPs) and six late pollen shedding trees (LPs) during mid-winter and at three consecutive time points in early spring. We carried out a weighted gene co-expression network analysis and constructed a transcription factor (TF) collaborative network, merging the common but differentially expressed TFs of the EPs and LPs into a joint network. We found five hub genes in the core TF module whose expression was rapidly induced by low temperatures. The transcriptional activity of this TF module was strongly associated with pollen shedding time, and likely to produce the fine balance between cold hardiness and growth activity in early spring. We confirmed the key role of temperature in regulating flowering time and identified a transcription factor module associated with pollen shedding time in P. tabuliformis. This suggests that repression of growth activity by repressors is the main mechanism balancing growth and cold hardiness in pine trees in early spring. Our results provide new insights into the molecular mechanisms regulating seasonal flowering time in pines.
Collapse
Affiliation(s)
- Shi-Hui Niu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Forest Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, PR China
| | - Shuang-Wei Liu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Forest Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, PR China
| | - Jing-Jing Ma
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Forest Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, PR China
| | - Fang-Xu Han
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Forest Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, PR China
| | - Yue Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Forest Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, PR China
| | - Wei Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Forest Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, PR China
| |
Collapse
|
34
|
Yang Z, Sheng J, Lv K, Ren L, Zhang D. Y 2SK 2 and SK 3 type dehydrins from Agapanthus praecox can improve plant stress tolerance and act as multifunctional protectants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 284:143-160. [PMID: 31084867 DOI: 10.1016/j.plantsci.2019.03.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 03/14/2019] [Accepted: 03/16/2019] [Indexed: 05/25/2023]
Abstract
Two dehydrins from Agapanthus praecox (ApY2SK2 and ApSK3) show important protective effects under complex stresses. Both ApY2SK2 and ApSK3 contain one intron and consist of a full-length cDNA of 981 bp and 1057 bp encoding 186 and 215 amino acids, respectively. ApY2SK2 and ApSK3 transgenic Arabidopsis thaliana show reduced plasma membrane damage and ROS levels and higher antioxidant activity and photosynthesis capability under salt, osmotic, cold and drought stresses compared with the wild-type. ApY2SK2 and ApSK3 are mainly located in the cytoplasm and cell membrane, and ApY2SK2 can even localize in the nucleus. In vitro tests indicate that ApY2SK2 and ApSK3 can effectively protect enzyme activity during the freeze-thaw process, and ApY2SK2 also exhibits this function during desiccation treatment. Furthermore, ApY2SK2 and ApSK3 can significantly inhibit hydroxyl radical generation. These two dehydrins can bind metal ions with a binding affinity of Co2+> Ni2+> Cu2+> Fe3+; the binding affinity of ApSK3 is higher than that of ApY2SK2. Thus, ApY2SK2 has a better protective effect on enzyme activity, and ApSK3 has stronger metal ion binding function and effect on ROS metabolism. Moreover, plant cryopreservation evaluation tests indicate that ApY2SK2 and ApSK3 transformation can enhance the seedling survival ratio from 23% to 47% and 55%, respectively; the addition of recombinant ApY2SK2 and ApSK3 to plant vitrification solution may increase the survival ratio of wild-type A. thaliana seedlings from 24% to 50% and 46%, respectively. These findings suggest that ApY2SK2 and ApSK3 can effectively improve cell stress tolerance and have great potential for in vivo or in vitro applications.
Collapse
Affiliation(s)
- Zhou Yang
- Department of Landscape Science and Engineering, School of Design, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jiangyuan Sheng
- Department of Landscape Science and Engineering, School of Design, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ke Lv
- Department of Landscape Science and Engineering, School of Design, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Li Ren
- Department of Landscape Science and Engineering, School of Design, Shanghai Jiao Tong University, Shanghai 200240, China; Institute for Agri-Food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Di Zhang
- Department of Landscape Science and Engineering, School of Design, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
35
|
Yong Y, Zhang Y, Lyu Y. A Stress-Responsive NAC Transcription Factor from Tiger Lily (LlNAC2) Interacts with LlDREB1 and LlZHFD4 and Enhances Various Abiotic Stress Tolerance in Arabidopsis. Int J Mol Sci 2019; 20:ijms20133225. [PMID: 31262062 PMCID: PMC6651202 DOI: 10.3390/ijms20133225] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 06/27/2019] [Accepted: 06/27/2019] [Indexed: 11/28/2022] Open
Abstract
Our previous studies have indicated that a partial NAC domain protein gene is strongly up-regulated by cold stress (4 °C) in tiger lily (Lilium lancifolium). In this study, we cloned the full-length of this NAC gene, LlNAC2, to further investigate the function of LlNAC2 in response to various abiotic stresses and the possible involvement in stress tolerance of the tiger lily plant. LlNAC2 was noticeably induced by cold, drought, salt stresses, and abscisic acid (ABA) treatment. Promoter analysis showed that various stress-related cis-acting regulatory elements were located in the promoter of LlNAC2; and the promoter was sufficient to enhance activity of GUS protein under cold, salt stresses and ABA treatment. DREB1 (dehydration-responsive binding protein1) from tiger lily (LlDREB1) was proved to be able to bind to the promoter of LlNAC2 by yeast one-hybrid (Y1H) assay. LlNAC2 was shown to physically interact with LlDREB1 and zinc finger-homeodomain ZFHD4 from the tiger lily (LlZFHD4) by bimolecular fluorescence complementation (BiFC) assay. Overexpressing LlNAC2 in Arabidopsis thaliana showed ABA hypersensitivity and enhanced tolerance to cold, drought, and salt stresses. These findings indicated LlNAC2 is involved in both DREB/CBF-COR and ABA signaling pathways to regulate stress tolerance of the tiger lily.
Collapse
Affiliation(s)
- Yubing Yong
- Beijing Key Laboratory of Ornamental Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, College of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Yue Zhang
- Beijing Key Laboratory of Ornamental Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, College of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Yingmin Lyu
- Beijing Key Laboratory of Ornamental Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, College of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
36
|
Zhu B, Huo DA, Hong XX, Guo J, Peng T, Liu J, Huang XL, Yan HQ, Weng QB, Zhang XC, Du XY. The Salvia miltiorrhiza NAC transcription factor SmNAC1 enhances zinc content in transgenic Arabidopsis. Gene 2019; 688:54-61. [DOI: 10.1016/j.gene.2018.11.076] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 10/29/2018] [Accepted: 11/22/2018] [Indexed: 11/15/2022]
|
37
|
Jan S, Abbas N, Ashraf M, Ahmad P. Roles of potential plant hormones and transcription factors in controlling leaf senescence and drought tolerance. PROTOPLASMA 2019; 256:313-329. [PMID: 30311054 DOI: 10.1007/s00709-018-1310-5] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 09/18/2018] [Indexed: 06/08/2023]
Abstract
Plant leaves offer an exclusive windowpane to uncover the changes in organs, tissues, and cells as they advance towards the process of senescence and death. Drought-induced leaf senescence is an intricate process with remarkably coordinated phases of onset, progression, and completion implicated in an extensive reprogramming of gene expression. Advancing leaf senescence remobilizes nutrients to younger leaves thereby contributing to plant fitness. However, numerous mysteries remain unraveled concerning leaf senescence. We are not still able to correlate leaf senescence and drought stress to endogenous and exogenous environments. Furthermore, we need to decipher how molecular mechanisms of the leaf senescence and levels of drought tolerance are advanced and how is the involvement of SAGs in drought tolerance and plant fitness. This review provides the perspicacity indispensable for facilitating our coordinated point of view pertaining to leaf senescence together with inferences on progression of whole plant aging. The main segments discussed in the review include coordination between hormonal signaling, leaf senescence, drought tolerance, and crosstalk between hormones in leaf senescence regulation.
Collapse
Affiliation(s)
- Sumira Jan
- ICAR- Central Institute of Temperate Horticulture, Rangreth, Air Field, Srinagar, Jammu and Kashmir, India
| | - Nazia Abbas
- Indian Institute of Integrative Medicine, Sanatnagar, Srinagar, Jammu and Kashmir, India
| | | | - Parvaiz Ahmad
- Department of Botany and Microbiology, Faculty of Science, King Saud University, Riyadh, 11451, Saudi Arabia.
- Department of Botany, S.P. College, Srinagar, Jammu and Kashmir, 190001, India.
| |
Collapse
|
38
|
Li P, Yang H, Wang L, Liu H, Huo H, Zhang C, Liu A, Zhu A, Hu J, Lin Y, Liu L. Physiological and Transcriptome Analyses Reveal Short-Term Responses and Formation of Memory Under Drought Stress in Rice. Front Genet 2019; 10:55. [PMID: 30800142 PMCID: PMC6375884 DOI: 10.3389/fgene.2019.00055] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 01/23/2019] [Indexed: 12/30/2022] Open
Abstract
In some plants, exposure to stress can induce a memory response, which appears to play an important role in adaptation to recurrent stress environments. However, whether rice exhibits drought stress memory and the molecular mechanisms that might underlie this process have remained unclear. Here, we ensured that rice drought memory was established after cycles of mild drought and re-watering treatment, and studied gene expression by whole-transcriptome strand-specific RNA sequencing (ssRNA-seq). We detected 6,885 transcripts and 238 lncRNAs involved in the drought memory response, grouped into 16 distinct patterns. Notably, the identified genes of dosage memory generally did not respond to the initial drought treatment. Our results demonstrate that stress memory can be developed in rice under appropriate water deficient stress, and lncRNA, DNA methylation and endogenous phytohormones (especially abscisic acid) participate in rice short-term drought memory, possibly acting as memory factors to activate drought-related memory transcripts in pathways such as photosynthesis and proline biosynthesis, to respond to the subsequent stresses.
Collapse
Affiliation(s)
- Ping Li
- Key Laboratory for Economic Plants and Biotechnology, Germplasm Bank of Wild Species, Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Yunnan Key Laboratory for Wild Plant Resources, Kunming, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hong Yang
- Key Laboratory for Economic Plants and Biotechnology, Germplasm Bank of Wild Species, Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Yunnan Key Laboratory for Wild Plant Resources, Kunming, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lu Wang
- Key Laboratory for Economic Plants and Biotechnology, Germplasm Bank of Wild Species, Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Yunnan Key Laboratory for Wild Plant Resources, Kunming, China
| | - Haoju Liu
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan, China
- Department of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, China
| | - Heqiang Huo
- Mid-Florida Research and Education Center, Department of Environmental Horticulture, University of Florida, Gainesville, FL, United States
| | - Chengjun Zhang
- Key Laboratory for Economic Plants and Biotechnology, Germplasm Bank of Wild Species, Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Yunnan Key Laboratory for Wild Plant Resources, Kunming, China
| | - Aizhong Liu
- Key Laboratory for Economic Plants and Biotechnology, Germplasm Bank of Wild Species, Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Yunnan Key Laboratory for Wild Plant Resources, Kunming, China
| | - Andan Zhu
- Key Laboratory for Economic Plants and Biotechnology, Germplasm Bank of Wild Species, Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Yunnan Key Laboratory for Wild Plant Resources, Kunming, China
| | - Jinyong Hu
- Key Laboratory for Economic Plants and Biotechnology, Germplasm Bank of Wild Species, Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Yunnan Key Laboratory for Wild Plant Resources, Kunming, China
| | - Yongjun Lin
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan, China
| | - Li Liu
- Key Laboratory for Economic Plants and Biotechnology, Germplasm Bank of Wild Species, Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Yunnan Key Laboratory for Wild Plant Resources, Kunming, China
| |
Collapse
|
39
|
Yang X, He K, Chi X, Chai G, Wang Y, Jia C, Zhang H, Zhou G, Hu R. Miscanthus NAC transcription factor MlNAC12 positively mediates abiotic stress tolerance in transgenic Arabidopsis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 277:229-241. [PMID: 30466589 DOI: 10.1016/j.plantsci.2018.09.013] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 08/28/2018] [Accepted: 09/20/2018] [Indexed: 05/07/2023]
Abstract
NAC (NAM, ATAF1/2 and CUC2) transcription factors play critical roles in plant abiotic stress responses. However, knowledge regarding the functional roles of NACs in abiotic stress tolerance and its underlying mechanisms is relatively limited in Miscanthus. In this study, we functionally characterized a novel Miscanthus NAC gene MlNAC12 by ectopic expression in Arabidopsis. MlNAC12 was localized in the nucleus. It could specifically binds to the NAC recognition sequence (NACRS) and has a transactivation activity in the C-terminus. Overexpression of MlNAC12 in Arabidopsis conferred hypersensitivity to exogenous Abscisic acid (ABA) at seed germination and root elongation stages. In addition, MlNAC12 overexpression enhanced germination and root growth under salt (NaCl) stress. Furthermore, MlNAC12 overexpression lines exhibited significantly enhanced drought stress tolerance, which was evidenced by a higher survival rate and a lower water loss rate compared to the wild type (WT). Accordingly, the stomata aperture was remarkably reduced in MlNAC12 overexpression lines in comparison to the WT under drought stress. Furthermore, the accumulation of the reactive oxygen species (ROS) and malondialdehyde (MDA) under abiotic stresses was significantly decreased, accompanied by dramatically enhanced activities of several antioxidant enzymes including superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT) in the transgenic plants. Correspondingly, the expression of six stress-responsive genes was significantly up-regulated in MlNAC12 overexpression lines. Together, our results indicate that MlNAC12 is a positive regulator of drought and salt stress tolerance through activating ROS scavenging enzymes.
Collapse
Affiliation(s)
- Xuanwen Yang
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Kang He
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoyuan Chi
- Shandong Peanut Research Institute, Qingdao, 266100, China
| | - Guohua Chai
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Yiping Wang
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chunlin Jia
- Shandong Institute of Agricultural Sustainable Development, Jinan, 250100, China
| | - Hongpeng Zhang
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Gongke Zhou
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China.
| | - Ruibo Hu
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China.
| |
Collapse
|
40
|
Zhang H, Cui X, Guo Y, Luo C, Zhang L. Picea wilsonii transcription factor NAC2 enhanced plant tolerance to abiotic stress and participated in RFCP1-regulated flowering time. PLANT MOLECULAR BIOLOGY 2018; 98:471-493. [PMID: 30406468 DOI: 10.1007/s11103-018-0792-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 10/14/2018] [Indexed: 05/25/2023]
Abstract
Picea wilsonii transcription factor PwNAC2 enhanced plant tolerance to salt and drought stress through multiple signaling pathway and interacted with PwRFCP1 to participate in flowering regulation. NAC is one of the largest transcription factor families in plants, however, its role is not yet fully understood. Here, we identified a transcription factor PwNAC2 in Picea wilsonii, which localized in nucleus with transcriptional activity in C-terminal region and can form homodimer by itself. Expression analysis by real-time PCR showed that PwNAC2 was induced by multiple abiotic stresses and phytohormones stimuli. PwRFCP1 (Resemble-FCA-contain-PAT1 domain), an interaction protein of PwNAC2 was screened via yeast two hybrid. Luciferase complementation assay confirmed the interaction in vivo and bimolecular fluorescence complementation assay showed the interaction in nucleus. PwNAC2 overexpression retarded Arabidopsis hypocotyls growth which is closely related to light, whereas promotion of hypocotyls growth by PwRFCP1 is independent on light. Under drought or salt treatment, overexpression of PwNAC2 in Arabidopsis showed more vigorous seed germination and significant tolerance for seedlings by ROS scavenging, reducing of membrane damage, slower water loss and increased stomatal closure. ABA or CBF-pathway marker genes were substantially higher in PwNAC2 transgenic Arabidopsis. Overexpression of PwRFCP1 promotes flowering in transgenic Arabidopsis, whereas PwNAC2 delayed flowering by altering the expression of FT, SOC1 and FLC. In addtioin, PwRFCP1 overexpression plants showed no higher tolerance to stress treatment than Col-0. Collectively, our results indicate that PwNAC2 enhanced plant tolerance to abiotic stress through multiple signaling pathways and participated in PwRFCP1-regulated flowering time.
Collapse
Affiliation(s)
- Hehua Zhang
- Key Laboratory of Forest Silviculture and Conservation of the Ministry of Education, Beijing Forestry University, Beijing, 100083, People's Republic of China
| | - Xiaoyue Cui
- Key Laboratory of Forest Silviculture and Conservation of the Ministry of Education, Beijing Forestry University, Beijing, 100083, People's Republic of China
| | - Yuxiao Guo
- Key Laboratory of Forest Silviculture and Conservation of the Ministry of Education, Beijing Forestry University, Beijing, 100083, People's Republic of China
| | - Chaobing Luo
- Key Laboratory of Forest Silviculture and Conservation of the Ministry of Education, Beijing Forestry University, Beijing, 100083, People's Republic of China
| | - Lingyun Zhang
- Key Laboratory of Forest Silviculture and Conservation of the Ministry of Education, Beijing Forestry University, Beijing, 100083, People's Republic of China.
| |
Collapse
|
41
|
Transcription Factor ANAC074 Binds to NRS1, NRS2, or MybSt1 Element in Addition to the NACRS to Regulate Gene Expression. Int J Mol Sci 2018; 19:ijms19103271. [PMID: 30347890 PMCID: PMC6214087 DOI: 10.3390/ijms19103271] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 10/16/2018] [Accepted: 10/17/2018] [Indexed: 12/13/2022] Open
Abstract
NAC (NAM, ATAF1/2, and CUC2) transcription factors play important roles in many biological processes, and mainly bind to the NACRS with core sequences "CACG" or "CATGTG" to regulate gene expression. However, whether NAC proteins can bind to other motifs without these core sequences remains unknown. In this study, we employed a Transcription Factor-Centered Yeast one Hybrid (TF-Centered Y1H) screen to study the motifs recognized by ANAC074. In addition to the NACRS core cis-element, we identified that ANAC074 could bind to MybSt1, NRS1, and NRS2. Y1H and GUS assays showed that ANAC074 could bind the promoters of ethylene responsive genes and stress responsive genes via the NRS1, NRS2, or MybSt1 element. ChIP study further confirmed that the bindings of ANAC074 to MybSt1, NRS1, and NRS2 actually occurred in Arabidopsis. Furthermore, ten NAC proteins from different NAC subfamilies in Arabidopsis thaliana were selected and confirmed to bind to the MybSt1, NRS1, and NRS2 motifs, indicating that they are recognized commonly by NACs. These findings will help us to further reveal the functions of NAC proteins.
Collapse
|
42
|
Mathew IE, Agarwal P. May the Fittest Protein Evolve: Favoring the Plant-Specific Origin and Expansion of NAC Transcription Factors. Bioessays 2018; 40:e1800018. [PMID: 29938806 DOI: 10.1002/bies.201800018] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 05/26/2018] [Indexed: 12/12/2022]
Abstract
Plant-specific NAC transcription factors (TFs) evolve during the transition from aquatic to terrestrial plant life and are amplified to become one of the biggest TF families. This is because they regulate genes involved in water conductance and cell support. They also control flower and fruit formation. The review presented here focuses on various properties, regulatory intricacies, and developmental roles of NAC family members. Processes controlled by NACs depend majorly on their transcriptional properties. NACs can function as both activators and/or repressors. Additionally, their homo/hetero dimerization abilities can also affect DNA binding and activation properties. The active protein levels are dependent on the regulatory cascades. Because NACs regulate both development and stress responses in plants, in-depth knowledge about them has the potential to help guide future crop improvement studies.
Collapse
Affiliation(s)
- Iny Elizebeth Mathew
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi-110067, India
| | - Pinky Agarwal
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi-110067, India
| |
Collapse
|
43
|
Wu D, Sun Y, Wang H, Shi H, Su M, Shan H, Li T, Li Q. The SlNAC8 gene of the halophyte Suaeda liaotungensis enhances drought and salt stress tolerance in transgenic Arabidopsis thaliana. Gene 2018; 662:10-20. [PMID: 29631006 DOI: 10.1016/j.gene.2018.04.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 03/30/2018] [Accepted: 04/05/2018] [Indexed: 11/19/2022]
Abstract
NAC (NAM, ATAF1/2 and CUC) transcription factors play an important role in resisting abiotic stress in plants. In this study, a novel NAC gene, designated SlNAC8 from Suaeda liaotungensis K. was characterized. SlNAC8 protein is localized in the nucleus, and the yeast one-hybrid screening showed that it contains an activation domain in its C-terminus and functions as a transcriptional activator. Gene expression analysis revealed that it is induced by drought and salt stress. Arabidopsis plants overexpressing SlNAC8 demonstrated enhanced tolerance to drought and salt stress, showing significant advantages in seed germination, root growth, shoot growth, and survival rate compared with controls. Moreover, transgenic plants had a significantly higher proline concentration, antioxidant enzyme activity (superoxide dismutase, peroxidase, and catalase), and level of chlorophyll fluorescence than wild-type, and a significantly lower malondialdehyde concentration and electrolyte leakage under drought and salt stress. The overexpression of SlNAC8 in transgenic plants also enhanced the expression of stress-responsive genes such as RD20, GSTF6, COR47, RD29A, RD29B, and NYC1. In summary, SlNAC8, as a transcription factor, may change the physiological-biochemical characteristic of plants by regulating the expression of stress-responsive genes and enhance the drought and salt stress tolerance of plants. SlNAC8 can be utilized for developing drought and salinity tolerance in crop plants through genetic engineering.
Collapse
Affiliation(s)
- Dandan Wu
- College of Life Sciences, Liaoning Normal University; Key Laboratory of Plant Biotechnology of Liaoning Province, Dalian, Liaoning 116081, PR China
| | - Yinghao Sun
- College of Life Sciences, Liaoning Normal University; Key Laboratory of Plant Biotechnology of Liaoning Province, Dalian, Liaoning 116081, PR China
| | - Hongfei Wang
- College of Life Sciences, Liaoning Normal University; Key Laboratory of Plant Biotechnology of Liaoning Province, Dalian, Liaoning 116081, PR China
| | - He Shi
- College of Life Sciences, Liaoning Normal University; Key Laboratory of Plant Biotechnology of Liaoning Province, Dalian, Liaoning 116081, PR China
| | - Mingxing Su
- College of Life Sciences, Liaoning Normal University; Key Laboratory of Plant Biotechnology of Liaoning Province, Dalian, Liaoning 116081, PR China
| | - Hongyan Shan
- College of Life Sciences, Liaoning Normal University; Key Laboratory of Plant Biotechnology of Liaoning Province, Dalian, Liaoning 116081, PR China
| | - Tongtong Li
- College of Life Sciences, Liaoning Normal University; Key Laboratory of Plant Biotechnology of Liaoning Province, Dalian, Liaoning 116081, PR China
| | - Qiuli Li
- College of Life Sciences, Liaoning Normal University; Key Laboratory of Plant Biotechnology of Liaoning Province, Dalian, Liaoning 116081, PR China.
| |
Collapse
|
44
|
Chen D, Chai S, McIntyre CL, Xue GP. Overexpression of a predominantly root-expressed NAC transcription factor in wheat roots enhances root length, biomass and drought tolerance. PLANT CELL REPORTS 2018; 37:225-237. [PMID: 29079898 DOI: 10.1007/s00299-017-2224-y] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Accepted: 10/05/2017] [Indexed: 05/10/2023]
Abstract
TaRNAC1 is a constitutively and predominantly root-expressed NAC transcription factor. TaRNAC1 overexpression in wheat roots confers increased root length, biomass and drought tolerance and improved grain yield under water limitation. A large and deep root system is an important trait for yield sustainability of dryland cereal crops in drought-prone environments. This study investigated the role of a predominantly root-expressed NAC transcription factor from wheat (TaRNAC1) in the root growth. Expression analysis showed that TaRNAC1 was a constitutively expressed gene with high level expression in the roots and was not drought-upregulated. Overexpression of TaRNAC1 in wheat using a predominantly root-expressed promoter resulted in increased root length and biomass observed at the early growth stage and a marked increase in the maturity root biomass with dry root weight of > 70% higher than that of the wild type plants. Analysis of some root growth-related genes revealed that the expression level of GA3-ox2, which encodes GIBBERELLIN 3-OXIDASE catalysing the conversion of inactive gibberellin (GA) to active GA, was elevated in the roots of transgenic wheat. TaRNAC1 overexpressing transgenic wheat showed more dehydration tolerance under polyethylene glycol (PEG) treatment and produced more aboveground biomass and grain under water-limited conditions than the wild type plants. These data suggest that TaRNAC1 may play a role in root growth and be used as a molecular tool for potential enlargement of root system in wheat.
Collapse
Affiliation(s)
- Dandan Chen
- College of Agronomy, Northwest Agriculture and Forestry University, Yangling, Shaanxi, 712100, People's Republic of China
- CSIRO Agriculture and Food, 306 Carmody Rd., St Lucia, QLD, 4067, Australia
| | - Shoucheng Chai
- College of Agronomy, Northwest Agriculture and Forestry University, Yangling, Shaanxi, 712100, People's Republic of China.
| | - C Lynne McIntyre
- CSIRO Agriculture and Food, 306 Carmody Rd., St Lucia, QLD, 4067, Australia
| | - Gang-Ping Xue
- CSIRO Agriculture and Food, 306 Carmody Rd., St Lucia, QLD, 4067, Australia.
| |
Collapse
|
45
|
An JP, Li R, Qu FJ, You CX, Wang XF, Hao YJ. An apple NAC transcription factor negatively regulates cold tolerance via CBF-dependent pathway. JOURNAL OF PLANT PHYSIOLOGY 2018; 221:74-80. [PMID: 29253732 DOI: 10.1016/j.jplph.2017.12.009] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Revised: 12/01/2017] [Accepted: 12/01/2017] [Indexed: 05/19/2023]
Abstract
Cold stress is an adverse stimulus that affects plant growth and development, and the C-repeat binding factor (CBF) cold-regulatory cascade has been regarded as a master regulator in the plant response to cold stress. Here, we showed that a NAC transcription factor modulated low-temperature tolerance. MdNAC029/MdNAP, an apple NAC gene was isolated and its role in regulating cold tolerance was investigated. MdNAC029 was responsive to low-temperature treatment, and over-expression of MdNAC029 reduced cold tolerance in apple calli and Arabidopsis. Furthermore, EMSA assays and transient expression assays demonstrated that MdNAC029 directly repressed the expression of MdCBF1 and MdCBF4 by binding to their promoters. Taken together, our data suggest that MdNAC029 functions as a negative regulator in regulating plant cold tolerance in a CBF-dependent manner, providing a deeper understanding of NAC transcription-factor-mediated cold tolerance.
Collapse
Affiliation(s)
- Jian-Ping An
- State Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Rui Li
- State Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Feng-Jia Qu
- State Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Chun-Xiang You
- State Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Xiao-Fei Wang
- State Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China.
| | - Yu-Jin Hao
- State Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China.
| |
Collapse
|
46
|
Hoang XLT, Nhi DNH, Thu NBA, Thao NP, Tran LSP. Transcription Factors and Their Roles in Signal Transduction in Plants under Abiotic Stresses. Curr Genomics 2017; 18:483-497. [PMID: 29204078 PMCID: PMC5684650 DOI: 10.2174/1389202918666170227150057] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 10/07/2016] [Accepted: 10/15/2016] [Indexed: 12/15/2022] Open
Abstract
In agricultural production, abiotic stresses are known as the main disturbance leading to negative impacts on crop performance. Research on elucidating plant defense mechanisms against the stresses at molecular level has been addressed for years in order to identify the major contributors in boosting the plant tolerance ability. From literature, numerous genes from different species, and from both functional and regulatory gene categories, have been suggested to be on the list of potential candidates for genetic engineering. Noticeably, enhancement of plant stress tolerance by manipulating expression of Transcription Factors (TFs) encoding genes has emerged as a popular approach since most of them are early stress-responsive genes and control the expression of a set of downstream target genes. Consequently, there is a higher chance to generate novel cultivars with better tolerance to either single or multiple stresses. Perhaps, the difficult task when deploying this approach is selecting appropriate gene(s) for manipulation. In this review, on the basis of the current findings from molecular and post-genomic studies, our interest is to highlight the current understanding of the roles of TFs in signal transduction and mediating plant responses towards abiotic stressors. Furthermore, interactions among TFs within the stress-responsive network will be discussed. The last section will be reserved for discussing the potential applications of TFs for stress tolerance improvement in plants.
Collapse
Affiliation(s)
- Xuan Lan Thi Hoang
- School of Biotechnology, International University, Vietnam National University, Ho Chi Minh City, Vietnam
| | - Du Ngoc Hai Nhi
- School of Biotechnology, International University, Vietnam National University, Ho Chi Minh City, Vietnam
| | - Nguyen Binh Anh Thu
- School of Biotechnology, International University, Vietnam National University, Ho Chi Minh City, Vietnam
| | - Nguyen Phuong Thao
- School of Biotechnology, International University, Vietnam National University, Ho Chi Minh City, Vietnam
| | - Lam-Son Phan Tran
- Plant Abiotic Stress Research Group & Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam
- Signaling Pathway Research Unit, RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| |
Collapse
|
47
|
Marques DN, Reis SPD, de Souza CR. Plant NAC transcription factors responsive to abiotic stresses. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.plgene.2017.06.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
48
|
Ma X, Wang G, Zhao W, Yang M, Ma N, Kong F, Dong X, Meng Q. SlCOR413IM1: A novel cold-regulation gene from tomato, enhances drought stress tolerance in tobacco. JOURNAL OF PLANT PHYSIOLOGY 2017; 216:88-99. [PMID: 28582694 DOI: 10.1016/j.jplph.2017.03.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 03/23/2017] [Accepted: 03/24/2017] [Indexed: 05/25/2023]
Abstract
Drought stress adversely affects plant growth, development, and productivity. Genes functioning in plant response to drought stress are essential for drought tolerance. In this study, SlCOR413IM1, a cold-regulated gene isolated from Solanum lycopersium, was transferred to Nicotiana tabacum to investigate its function under drought stress. The subcellular localisation of SlCOR413IM1-GFP fusion protein in Arabidopsis protoplasts suggested that SlCOR413IM1 is a chloroplast protein. Expression analyses revealed that SlCOR413IM1 responded to drought and cold stresses. Under drought stress, transgenic plants maintained the high maximum photochemical efficiency, net photosynthetic rate (Pn) and D1 protein content of photosystem II (PSII). Compared with wild-type (WT) plants, transgenic plants showed higher superoxide dismutase (SOD) and ascorbate peroxidase (APX) activities and proline and soluble sugar content, which reduced reactive oxygen species (ROS) generation. However, the high SOD and APX activities in transgenic plants were independent of their transcription levels. Moreover, the transgenic plants exhibited better seed germination, water status and survival, as well as lower malondialdehyde (MDA) content and relative electrical conductivity (REC) than WT plants under drought stress. Taken together, these data demonstrated that overexpression of SlCOR413IM1 enhanced drought stress tolerance in transgenic tobacco.
Collapse
Affiliation(s)
- Xiaocui Ma
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Guodong Wang
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong 271018, PR China; College of Biological Science, Jining Medical University, Rizhao, Shandong 276800, PR China
| | - Weiyang Zhao
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Minmin Yang
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Nana Ma
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Fanying Kong
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Xinchun Dong
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong 271018, PR China.
| | - Qingwei Meng
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong 271018, PR China.
| |
Collapse
|
49
|
Lu X, Zhou X, Cao Y, Zhou M, McNeil D, Liang S, Yang C. RNA-seq Analysis of Cold and Drought Responsive Transcriptomes of Zea mays ssp. mexicana L. FRONTIERS IN PLANT SCIENCE 2017; 8:136. [PMID: 28223998 PMCID: PMC5293773 DOI: 10.3389/fpls.2017.00136] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 01/23/2017] [Indexed: 05/18/2023]
Abstract
The annual Zea mays ssp. mexicana L. is a member of teosinte, a wild relative of the Zea mays spp. mays L. This subspecies has strong growth and regeneration ability, high tiller numbers, high protein and lysine content as well as resistance to many fungal diseases, and it can be effectively used in maize improvement. In this study, we reported a Zea mays ssp. mexicana L. transcriptome by merging data from untreated control (CK), cold (4°C) and drought (PEG2000, 20%) treated plant samples. A total of 251,145 transcripts (N50 = 1,269 bp) and 184,280 unigenes (N50 = 923 bp) were predicted, which code for homologs of near 47% of the published maize proteome. Under cold conditions, 2,232 and 817 genes were up-regulated and down-regulated, respectively, while fewer genes were up-regulated (532) and down-regulated (82) under drought stress, indicating that Zea mays ssp. mexicana L. is more sensitive to the applied cold rather than to the applied drought stresses. Functional enrichment analyses identified many common or specific biological processes and gene sets in response to drought and cold stresses. The ABA dependent pathway, trehalose synthetic pathway and the ICE1-CBF pathway were up-regulated by both stresses. GA associated genes have been shown to differentially regulate the responses to cold in close subspecies in Zea mays. These findings and the identified functional genes can provide useful clues for improving abiotic stress tolerance of maize.
Collapse
Affiliation(s)
- Xiang Lu
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal UniversityGuangzhou, China
- Tasmanian Institute of Agriculture, University of TasmaniaKings Meadows, TAS, Australia
- College of Pratacultural Science, Gansu Agriculture UniversityLanzhou, China
| | - Xuan Zhou
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal UniversityGuangzhou, China
| | - Yu Cao
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal UniversityGuangzhou, China
| | - Meixue Zhou
- Tasmanian Institute of Agriculture, University of TasmaniaKings Meadows, TAS, Australia
| | - David McNeil
- Tasmanian Institute of Agriculture, University of TasmaniaKings Meadows, TAS, Australia
| | - Shan Liang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal UniversityGuangzhou, China
| | - Chengwei Yang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal UniversityGuangzhou, China
- Dongli Planting and Farming Industrial Co., LTDLianzhou, China
| |
Collapse
|
50
|
Guo Y, Pang C, Jia X, Ma Q, Dou L, Zhao F, Gu L, Wei H, Wang H, Fan S, Su J, Yu S. An NAM Domain Gene, GhNAC79, Improves Resistance to Drought Stress in Upland Cotton. FRONTIERS IN PLANT SCIENCE 2017; 8:1657. [PMID: 28993786 PMCID: PMC5622203 DOI: 10.3389/fpls.2017.01657] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Accepted: 09/08/2017] [Indexed: 05/18/2023]
Abstract
Plant-specific NAC proteins comprise one of the largest transcription factor families in plants and play important roles in plant development and the stress response. Gossypium hirsutum L. is a major source of fiber, but its growth and productivity are limited by many biotic and abiotic stresses. In this study, the NAC domain gene GhNAC79 was functionally characterized in detail, and according to information about the cotton genome sequences, it was located on scaffold42.1, containing three exons and two introns. Promoter analysis indicated that the GhNAC79 promoter contained both basic and stress-related elements, and it was especially expressed in the cotyledon of Arabidopsis. A transactivation assay in yeast demonstrated that GhNAC79 was a transcription activator, and its activation domain was located at its C-terminus. The results of qRT-PCR proved that GhNAC79 was preferentially expressed at later stages of cotyledon and fiber development, and it showed high sensitivity to ethylene and meJA treatments. Overexpression of GhNAC79 resulted in an early flowering phenotype in Arabidopsis, and it also improved drought tolerance in both Arabidopsis and cotton. Furthermore, VIGS-induced silencing of GhNAC79 in cotton led to a drought-sensitive phenotype. In summary, GhNAC79 positively regulates drought stress, and it also responds to ethylene and meJA treatments, making it a candidate gene for stress studies in cotton.
Collapse
Affiliation(s)
- Yaning Guo
- College of Agronomy, Northwest A&F UniversityYangling, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural SciencesAnyang, China
- School of Life Science, Yulin UniversityYulin, China
| | - Chaoyou Pang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural SciencesAnyang, China
| | - Xiaoyun Jia
- College of Agronomy, Northwest A&F UniversityYangling, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural SciencesAnyang, China
| | - Qifeng Ma
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural SciencesAnyang, China
| | - Lingling Dou
- College of Agronomy, Northwest A&F UniversityYangling, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural SciencesAnyang, China
| | - Fengli Zhao
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural SciencesAnyang, China
| | - Lijiao Gu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural SciencesAnyang, China
| | - Hengling Wei
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural SciencesAnyang, China
| | - Hantao Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural SciencesAnyang, China
| | - Shuli Fan
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural SciencesAnyang, China
| | - Junji Su
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural SciencesAnyang, China
| | - Shuxun Yu
- College of Agronomy, Northwest A&F UniversityYangling, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural SciencesAnyang, China
- *Correspondence: Shuxun Yu,
| |
Collapse
|