1
|
Guo LM, Li J, Qi PP, Wang JB, Ghanem H, Qing L, Zhang HM. The TATA-box binding protein-associated factor TAF12b facilitates the degradation of type B response regulators to negatively regulate cytokinin signaling. PLANT COMMUNICATIONS 2024; 5:101076. [PMID: 39228128 PMCID: PMC11671765 DOI: 10.1016/j.xplc.2024.101076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 07/26/2024] [Accepted: 08/29/2024] [Indexed: 09/05/2024]
Abstract
Cytokinins (CKs) are one of the important classes of plant hormones essential for plant growth and development. TATA-box binding protein-associated factor 12b (TAF12b) is involved in CK signaling, but its molecular and biochemical mechanisms are not fully understood. In this study, TAF12b of Nicotiana benthamiana (NbTAF12b) was found to mediate the CK response by directly interacting with type B response regulators (B-RRs), positive regulators of CK signaling, and inhibiting their transcriptional activities. As a transcriptional co-factor, TAF12b specifically facilitated the proteasomal degradation of non-phosphorylated B-RRs by recruiting the KISS ME DEADLY family of F-box proteins. Such interactions between TAF12b and B-RRs also occur in other plant species. Genetic transformation experiments showed that overexpression of NbTAF12b attenuates the CK-hypersensitive phenotype conferred by NbRR1 overexpression. Taken together, these results suggest a conserved mechanism in which TAF12b negatively regulates CK responses by promoting 26S proteasome-mediated B-RR degradation in multiple plant species, providing novel insights into the regulatory network of CK signaling in plants.
Collapse
Affiliation(s)
- Liu-Ming Guo
- Chongqing Key Laboratory of Plant Disease Biology, College of Plant Protection, Southwest University, Chongqing 400716, China; Laboratory of Virology, Innovation Center of Chinese Medicine Crops, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Jing Li
- Laboratory of Virology, Innovation Center of Chinese Medicine Crops, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Pan-Pan Qi
- Laboratory of Virology, Innovation Center of Chinese Medicine Crops, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Jie-Bing Wang
- Laboratory of Virology, Innovation Center of Chinese Medicine Crops, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Hussein Ghanem
- Chongqing Key Laboratory of Plant Disease Biology, College of Plant Protection, Southwest University, Chongqing 400716, China
| | - Ling Qing
- Chongqing Key Laboratory of Plant Disease Biology, College of Plant Protection, Southwest University, Chongqing 400716, China; Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing 400716, China; National Citrus Engineering Research Center, Southwest University, Chongqing 400712, China.
| | - Heng-Mu Zhang
- Laboratory of Virology, Innovation Center of Chinese Medicine Crops, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| |
Collapse
|
2
|
Sun P, Zhao H, Cao L, Zhang T, Zhang H, Yang T, Zhao B, Jiang Y, Dong J, Chen T, Jiang B, Li Z, Shen J. A DUF21 domain-containing protein regulates plant dwarfing in watermelon. PLANT PHYSIOLOGY 2024; 196:3091-3104. [PMID: 39268875 DOI: 10.1093/plphys/kiae486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 07/23/2024] [Indexed: 09/15/2024]
Abstract
Dwarf or semidwarf plant structures are well suited for intensive farming, maximizing yield, and minimizing labor costs. Watermelon (Citrullus lanatus) is classified as an annual vine plant with elongated internodes, yet the mechanism governing watermelon dwarfing remains unclear. In this study, a compact watermelon mutant dwarf, induced by the insertion of transferred DNA (T-DNA), was discovered. Through resequencing, a gene named domain of unknown function 21 (ClDUF21), located downstream of the T-DNA insertion site, was identified as the candidate gene for the dwarf mutant, and its functionality was subsequently confirmed. Watermelon mutants generated through CRISPR/Cas9-mediated knockout of ClDUF21 revealed that homozygous mutants displayed a pronounced dwarfing phenotype, and protein-protein interaction analysis confirmed the direct interaction between ClDUF21 and ClDWF1. Subsequently, we employed CRISPR/Cas9 technology to precisely modify the homologous gene CsDUF21 in cucumber (Cucumis sativus) and performed protein interaction validation between CsDUF21 and CsDWF1, thereby demonstrating that the CsDUF21 gene also exhibits analogous functionality in plant dwarfing. These findings demonstrate that ClDUF21 governs plant dwarfism by modulating the brassinosteroid synthesis pathway via ClDWF1.
Collapse
Affiliation(s)
- Piaoyun Sun
- College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong 510640, China
| | - Hongjiao Zhao
- College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Lihong Cao
- College of Horticulture, Shanxi Agricultural University, Taigu 030801, China
| | - Tian Zhang
- College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Helong Zhang
- College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Tongwen Yang
- College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Bosi Zhao
- College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yanxin Jiang
- College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Junyang Dong
- College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Tianrui Chen
- College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Biao Jiang
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong 510640, China
| | - Zheng Li
- College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Junjun Shen
- College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| |
Collapse
|
3
|
Mu Q, Wei J, Longest HK, Liu H, Char SN, Hinrichsen JT, Tibbs‐Cortes LE, Schoenbaum GR, Yang B, Li X, Yu J. A MYB transcription factor underlying plant height in sorghum qHT7.1 and maize Brachytic 1 loci. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:2172-2192. [PMID: 39485941 PMCID: PMC11629742 DOI: 10.1111/tpj.17111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/12/2024] [Accepted: 10/03/2024] [Indexed: 11/03/2024]
Abstract
Manipulating plant height is an essential component of crop improvement. Plant height was generally reduced through breeding in wheat, rice, and sorghum to resist lodging and increase grain yield but kept high for bioenergy crops. Here, we positionally cloned a plant height quantitative trait locus (QTL) qHT7.1 as a MYB transcription factor controlling internode elongation, cell proliferation, and cell morphology in sorghum. A 740 bp transposable element insertion in the intronic region caused a partial mis-splicing event, generating a novel transcript that included an additional exon and a premature stop codon, leading to short plant height. The dominant allele had an overall higher expression than the recessive allele across development and internode position, while both alleles' expressions peaked at 46 days after planting and progressively decreased from the top to lower internodes. The orthologue of qHT7.1 was identified to underlie the brachytic1 (br1) locus in maize. A large insertion in exon 3 and a 160 bp insertion at the promoter region were identified in the br1 mutant, while an 18 bp promoter insertion was found to be associated with reduced plant height in a natural recessive allele. CRISPR/Cas9-induced gene knockout of br1 in two maize inbred lines showed significant plant height reduction. These findings revealed functional connections across natural, mutant, and edited alleles of this MYB transcription factor in sorghum and maize. This enriched our understanding of plant height regulation and enhanced our toolbox for fine-tuning plant height for crop improvement.
Collapse
Affiliation(s)
- Qi Mu
- Department of AgronomyIowa State UniversityAmes50011IowaUSA
- Department of Plant and Soil SciencesUniversity of DelawareNewark19716DelawareUSA
| | - Jialu Wei
- Department of AgronomyIowa State UniversityAmes50011IowaUSA
| | | | - Hua Liu
- Division of Plant Science and TechnologyBond Life Sciences Center, University of MissouriColumbia65211MissouriUSA
| | - Si Nian Char
- Division of Plant Science and TechnologyBond Life Sciences Center, University of MissouriColumbia65211MissouriUSA
| | | | - Laura E. Tibbs‐Cortes
- Department of AgronomyIowa State UniversityAmes50011IowaUSA
- USDA‐ARS, Wheat HealthGenetics & Quality ResearchPullman99164WashingtonUSA
- USDA‐ARSCorn Insects and Crop Genetics Research UnitAmes50011IowaUSA
| | | | - Bing Yang
- Division of Plant Science and TechnologyBond Life Sciences Center, University of MissouriColumbia65211MissouriUSA
- Donald Danforth Plant Science CenterSt. Louis63132MissouriUSA
| | - Xianran Li
- USDA‐ARS, Wheat HealthGenetics & Quality ResearchPullman99164WashingtonUSA
| | - Jianming Yu
- Department of AgronomyIowa State UniversityAmes50011IowaUSA
| |
Collapse
|
4
|
Lin Q, Wang J, Gong J, Meng Z, Jin Y, Zhang L, Zhang Z, Sun J, Kai L, Qi S. Tomato SlARF5 participate in the flower organ initiation process and control plant height. BMC PLANT BIOLOGY 2024; 24:993. [PMID: 39438786 PMCID: PMC11515655 DOI: 10.1186/s12870-024-05707-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 10/15/2024] [Indexed: 10/25/2024]
Abstract
Plant height is a critical agronomic trait closely linked to yield, primarily regulated by Gibberellins (GA) and auxins, which interact in complex ways. However, the mechanism underlying their interactions remain incompletely understood. In this study, we identified a tomato mutant exhibiting significantly reduced plant height. Through gene cloning and bulked segregant analysis (BSA) sequencing, we found that the mutant gene corresponds to the tomato auxin response factor gene SlARF5/MP. Here, we show that overexpression of SlARF5/MP significantly enhances plant height. Additionally, treatment with GA3 restored the plant height of the mutant to wild-type (WT) levels, indicating that GA content is a key factor influencing plant height. We also observed significant upregulation of GA-biosynthesis genes, including GA2-oxidases GA20ox3 and GA20ox4, as well as the GA3 biosynthesis gene GA3ox1, in SlARF5-overexpressing plants. Furthermore, we demonstrated that SlARF5 directly binds to SlGA2ox3, which mediates the conversion of GA3 to inactive GA, therebyregulating its expression. Our findings suggest that SlARF5 modulates GA3 metabolism by regulating GA synthesis genes, ultimately leading to alterations in plant height.
Collapse
Affiliation(s)
- Qingfang Lin
- School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, China
| | - Jianyong Wang
- School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, China
| | - Jiaxin Gong
- School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, China
| | - ZiZi Meng
- School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, China
| | - Yuting Jin
- School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, China
| | - Lei Zhang
- School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, China
| | - Zhiliang Zhang
- Institute of Genetic and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jing Sun
- School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, China
| | - Lei Kai
- School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, China.
| | - Shilian Qi
- School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, China.
| |
Collapse
|
5
|
Zhao L, Xie W, Huang L, Long S, Wang P. Characterization of the gibberellic oxidase gene SdGA20ox1 in Sophora davidii (Franch.) skeels and interaction protein screening. FRONTIERS IN PLANT SCIENCE 2024; 15:1478854. [PMID: 39479549 PMCID: PMC11521860 DOI: 10.3389/fpls.2024.1478854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 09/30/2024] [Indexed: 11/02/2024]
Abstract
Gibberellin 20-oxidases (GA20oxs) are multifunctional enzymes involved in regulating gibberellin (GA) biosynthesis and controlling plant growth. We identified and characterized the GA20ox1 gene in a plant height mutant of Sophora davidii, referred to as SdGA20ox1. This gene was expressed in root, stem, and leaf tissues of the adult S. davidii plant height mutant, with the highest expression observed in the stem. The expression of SdGA20ox1 was regulated by various exogenous hormones. Overexpression of SdGA20ox1 in Arabidopsis resulted in significant elongation of hypocotyl and root length in seedlings, earlier flowering, smaller leaves, reduced leaf chlorophyll content, lighter leaf color, a significant increase in adult plant height, and other phenotypes. Additionally, transgenic plants exhibited a substantial increase in biologically active endogenous GAs (GA1, GA3, and GA4) content, indicating that overexpression of SdGA20ox1 accelerates plant growth and development. Using a yeast two-hybrid (Y2H) screen, we identified two SdGA20ox1-interacting proteins: the ethylene receptor EIN4 (11430582) and the rbcS (11416005) protein. These interactions suggest a potential regulatory mechanism for S. davidii growth. Our findings provide new insights into the role of SdGA20ox1 and its interacting proteins in regulating the growth and development of S. davidii.
Collapse
Affiliation(s)
- Lili Zhao
- College of Animal Science, Guizhou University, Guiyang, China
| | - Wenhui Xie
- College of Animal Science, Guizhou University, Guiyang, China
| | - Lei Huang
- College of Animal Science, Guizhou University, Guiyang, China
| | - Sisi Long
- College of Animal Science, Guizhou University, Guiyang, China
| | - Puchang Wang
- School of Life Sciences, Guizhou Normal University, Guiyang, China
| |
Collapse
|
6
|
Li C, Huang L, Huang Y, Kuang M, Wu Y, Ma Z, Fu X. Fine-mapping of a major QTL controlling plant height by BSA-seq and transcriptome sequencing in cotton. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:217. [PMID: 39249496 DOI: 10.1007/s00122-024-04714-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 08/04/2024] [Indexed: 09/10/2024]
Abstract
KEY MESSAGE GhSOT (GH_D05G3950) plays a negative role in regulating plant height development by modulating the GA signaling. Plant height is an important indicator affecting mechanical harvesting for cotton. Therefore, understanding the genes associated with the plant height is crucial for cotton breeding and production. In this study, we used bulk segregant analysis sequencing to identify a new quantitative trait locu (QTL) called qPH5.1, which is linked to plant height. Local QTL mapping using seven kompetitive allele-specific PCR (KASP) markers and linkage analysis successfully narrowed down qPH5.1 to ~ 0.34 Mb region harbored five candidate genes. Subsequently, RNA sequencing (RNA-seq) analysis and examination of expression patterns revealed that GhSOT exhibited the highest likelihood of being the candidate gene responsible for the plant height at this locus. Seven SNP site variations were identified in the GhSOT promoter between the two parents, and Luciferase experiments confirmed that the promoter of GhSOT from cz3 enhances downstream gene expression more effectively. Additionally, suppression of GhSOT in cz3 resulted in the restoration of plant height, further emphasizing the functional significance of this gene. Application of exogenous gibberellin acid (GA) significantly restored plant height in cz3, as demonstrated by RNA-seq analysis and exogenous hormone treatment, which revealed alterations in genes associated with GA signaling pathways. These results reveal GhSOT is a key gene controlling plant height, which may affect plant height by regulating GA signaling.
Collapse
Affiliation(s)
- Chao Li
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory for Crop Germplasm Resources of Hebei, Hebei Agricultural University, Baoding, 071000, China
| | - Longyu Huang
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, 572024, China
- Hainan Seed Industry Laboratory, Sanya, 572025, China
| | - Yiwen Huang
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Meng Kuang
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Yuzhen Wu
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Zhiying Ma
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory for Crop Germplasm Resources of Hebei, Hebei Agricultural University, Baoding, 071000, China.
| | - Xiaoqiong Fu
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China.
| |
Collapse
|
7
|
Li B, Zhou X, Yao W, Lin J, Ding X, Chen Q, Huang H, Chen W, Huang X, Pan S, Xiao Y, Liu J, Liu X, Liu J. NADP-malic Enzyme OsNADP-ME2 Modulates Plant Height Involving in Gibberellin Signaling in Rice. RICE (NEW YORK, N.Y.) 2024; 17:52. [PMID: 39152344 PMCID: PMC11329442 DOI: 10.1186/s12284-024-00729-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 08/06/2024] [Indexed: 08/19/2024]
Abstract
Plants NADP-malic enzymes (NADP-MEs) act as a class of oxidative decarboxylase to mediate malic acid metabolism in organisms. Despite NADP-MEs have been demonstrated to play pivotal roles in regulating diverse biological processes, the role of NADP-MEs involving in plant growth and development remains rarely known. Here, we characterized the function of rice cytosolic OsNADP-ME2 in regulating plant height. The results showed that RNAi silencing and knock-out of OsNADP-ME2 in rice results in a dwarf plant structure, associating with significant expression inhibition of genes involving in phytohormone Gibberellin (GA) biosynthesis and signaling transduction, but with up-regulation for the expression of GA signaling suppressor SLR1. The accumulation of major bioactive GA1, GA4 and GA7 are evidently altered in RNAi lines, and exogenous GA treatment compromises the dwarf phenotype of OsNADP-ME2 RNAi lines. RNAi silencing of OsNADP-ME2 also causes the reduction of NADP-ME activity associating with decreased production of pyruvate. Thus, our data revealed a novel function of plant NADP-MEs in modulation of rice plant height through regulating bioactive GAs accumulation and GA signaling, and provided a valuable gene resource for rice plant architecture improvement.
Collapse
Affiliation(s)
- Bing Li
- Hunan Provincial Key Laboratory of Crop Gene Engineering, College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
| | - Xiaolong Zhou
- Hunan Provincial Key Laboratory of Crop Gene Engineering, College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
| | - Wei Yao
- Hunan Provincial Key Laboratory of Crop Gene Engineering, College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
| | - Jinjun Lin
- Hunan Provincial Key Laboratory of Crop Gene Engineering, College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
| | - Xiaowen Ding
- Hunan Provincial Key Laboratory of Crop Gene Engineering, College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
| | - Qianru Chen
- Hunan Provincial Key Laboratory of Crop Gene Engineering, College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
| | - Hao Huang
- Hunan Provincial Key Laboratory of Crop Gene Engineering, College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
| | - Wenfeng Chen
- Hunan Provincial Key Laboratory of Crop Gene Engineering, College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
| | - Xilai Huang
- Hunan Provincial Key Laboratory of Crop Gene Engineering, College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
| | - Sujun Pan
- Hunan Provincial Key Laboratory of Crop Gene Engineering, College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
| | - Yinghui Xiao
- Hunan Provincial Key Laboratory of Crop Gene Engineering, College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
| | - Jianfeng Liu
- Hunan Provincial Key Laboratory of Crop Gene Engineering, College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
| | - Xionglun Liu
- Hunan Provincial Key Laboratory of Crop Gene Engineering, College of Agronomy, Hunan Agricultural University, Changsha, 410128, China.
| | - Jinling Liu
- Hunan Provincial Key Laboratory of Crop Gene Engineering, College of Agronomy, Hunan Agricultural University, Changsha, 410128, China.
| |
Collapse
|
8
|
Pereira LM, Maciel GM, Siquieroli ACS, Luz JMQ, Ribeiro ALA, de Oliveira CS, Pinto FG, Ikehara BRM. Introgression of the Self-Pruning Gene into Dwarf Tomatoes to Obtain Salad-Type Determinate Growth Lines. PLANTS (BASEL, SWITZERLAND) 2024; 13:1522. [PMID: 38891329 PMCID: PMC11174706 DOI: 10.3390/plants13111522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/25/2024] [Accepted: 04/25/2024] [Indexed: 06/21/2024]
Abstract
The use of dwarf plants in tomato breeding has provided several advantages. However, there are no identified dwarf plants (dd) containing the self-pruning habit (spsp). The aim of this work was to obtain future generations, characterize the germplasm, and select potential dwarf plants with a determinate growth habit to obtain Salad-type lines. The work was started by carrying out hybridization, followed by the first, second, and third backcrosses. Once F2BC3 seeds became available, the introgression of the self-pruning gene (spsp) into dwarf plants (dd) began. Three strains of normal architecture and a determinate growth habit were hybridized with two strains of dwarf size and an indeterminate growth habit, thus yielding four hybrids. Additionally, donor genotype UFU MC TOM1, the commercial cultivar Santa Clara, and the wild accession Solanum pennellii were used in the experiment. Agronomic traits, fruit quality, metabolomics, and acylsugars content were evaluated, and dwarf plants with a determinate growth habit were selected. Hybrid 3 exhibited the highest yields. Visual differences between determinate and indeterminate dwarf plant seedlings were observed. It is suggested to carry out five self-pollinations of the best dwarf plant determined and subsequent hybridization with homozygous lines of normal plant architecture and determinate growth habit to obtain hybrids.
Collapse
Affiliation(s)
- Lucas Medeiros Pereira
- Postgraduate Program in Agronomy, Institute of Agrarian Sciences, Federal University of Uberlândia, Uberlândia 38410-337, Brazil; (L.M.P.); (A.L.A.R.)
| | | | | | - José Magno Queiroz Luz
- Institute of Agrarian Sciences, Federal University of Uberlândia, Uberlândia 38410-337, Brazil;
| | - Ana Luisa Alves Ribeiro
- Postgraduate Program in Agronomy, Institute of Agrarian Sciences, Federal University of Uberlândia, Uberlândia 38410-337, Brazil; (L.M.P.); (A.L.A.R.)
| | | | - Frederico Garcia Pinto
- Institute of Exact Sciences, Federal University of Viçosa, Rio Paranaíba 38810-000, Brazil; (F.G.P.); (B.R.M.I.)
| | - Brena Rodrigues Mota Ikehara
- Institute of Exact Sciences, Federal University of Viçosa, Rio Paranaíba 38810-000, Brazil; (F.G.P.); (B.R.M.I.)
| |
Collapse
|
9
|
Teng Y, Wang Y, Zhang Y, Xie Q, Zeng Q, Cai M, Chen T. Genome-Wide Identification and Expression Analysis of ent-kaurene synthase-like Gene Family Associated with Abiotic Stress in Rice. Int J Mol Sci 2024; 25:5513. [PMID: 38791550 PMCID: PMC11121893 DOI: 10.3390/ijms25105513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/09/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024] Open
Abstract
Rice (Oryza sativa) is one of the most important crops for humans. The homologs of ent-kaurene synthase (KS) in rice, which are responsible for the biosynthesis of gibberellins and various phytoalexins, are identified by their distinct biochemical functions. However, the KS-Like (KSL) family's potential functions related to hormone and abiotic stress in rice remain uncertain. Here, we identified the KSL family of 19 species by domain analysis and grouped 97 KSL family proteins into three categories. Collinearity analysis of KSLs among Poaceae indicated that the KSL gene may independently evolve and OsKSL1 and OsKSL4 likely play a significant role in the evolutionary process. Tissue expression analysis showed that two-thirds of OsKSLs were expressed in various tissues, whereas OsKSL3 and OsKSL5 were specifically expressed in the root and OsKSL4 in the leaf. Based on the fact that OsKSL2 participates in the biosynthesis of gibberellins and promoter analysis, we detected the gene expression profiles of OsKSLs under hormone treatments (GA, PAC, and ABA) and abiotic stresses (darkness and submergence). The qRT-PCR results demonstrated that OsKSL1, OsKSL3, and OsKSL4 responded to all of the treatments, meaning that these three genes can be candidate genes for abiotic stress. Our results provide new insights into the function of the KSL family in rice growth and resistance to abiotic stress.
Collapse
Affiliation(s)
- Yantong Teng
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- College of Life Sciences, Inner Mongolia University, Hohhot 010021, China
| | - Yingwei Wang
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, College of Life and Environmental Science, Hangzhou Normal University, Hangzhou 311121, China
| | - Yutong Zhang
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, College of Life and Environmental Science, Hangzhou Normal University, Hangzhou 311121, China
| | - Qinyu Xie
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, College of Life and Environmental Science, Hangzhou Normal University, Hangzhou 311121, China
| | - Qinzong Zeng
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, College of Life and Environmental Science, Hangzhou Normal University, Hangzhou 311121, China
| | - Maohong Cai
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, College of Life and Environmental Science, Hangzhou Normal University, Hangzhou 311121, China
| | - Tao Chen
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, College of Life and Environmental Science, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|
10
|
Zheng Z, Li W, Ding Y, Wu Y, Jiang Q, Wang Y. Integrative transcriptome analysis uncovers common components containing CPS2 regulated by maize lncRNA GARR2 in gibberellin response. PLANTA 2024; 259:146. [PMID: 38713242 DOI: 10.1007/s00425-024-04425-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 04/26/2024] [Indexed: 05/08/2024]
Abstract
MAIN CONCLUSION The combined transcriptome outcome provides an important clue to the regulatory cascade centering on lncRNA GARR2 and CPS2 gene in GA response. Long non-coding RNAs (lncRNAs) serve as regulatory components in transcriptional hierarchy governing multiple aspects of biological processes. Dissecting regulatory mechanisms underpinning tetracyclic diterpenoid gibberellin (GA) cascade holds both theoretical and applied significance. However, roles of lncRNAs in transcriptional modulation of GA pathway remain largely elusive. Gypsy retrotransposon-derived GIBBERELLIN RESPONSIVE lncRNA2 (GARR2) has been reported as GA-responsive maize lncRNA. Here a novel GARR2-edited line garr2-1 was identified, characteristic of GA-induced phenotype of increased seedling height and elongated leaf sheath. Transcriptome analysis indicated that transcriptional abundance of five genes [ent-copalyl diphosphate synthase2 (CPS2), ent-kaurene synthase4 (KS4), ent-kaurene synthase6 (KS6), ent-kaurene oxidase2 (KO2), and ent-kaurenoic acid oxidase1/Dwarf3 (KAO1/D3)] was elevated in garr2-1 for early steps of GA biosynthesis. Five GA biosynthetic genes as hub regulators were interlaced to shape regulatory network of GA response. Different transcriptome resources were integrated to discover common differentially expressed genes (DEGs) in the independent GARR2-edited lines GARR2KO and garr2-1. A total of 320 common DEGs were retrieved. These common DEGs were enriched in diterpenoid biosynthetic pathway. Integrative transcriptome analysis revealed the common CPS2 encoding the CPS enzyme that catalyzes the conversion of the precursor trans-geranylgeranyl diphosphate to ent-copalyl diphosphate. The up-regulated CPS2 supported the GA-induced phenotype of slender seedlings observed in the independent GARR2-edited lines GARR2KO and garr2-1. Our integrative transcriptome analysis uncovers common components of the GA pathway regulated by lncRNA GARR2. These common components, especially for the GA biosynthetic gene CPS2, provide a valuable resource for further delineating the underlying mechanisms of lncRNA GARR2 in GA response.
Collapse
Affiliation(s)
- Zhongtian Zheng
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou, 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
| | - Wei Li
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou, 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
| | - Yuhang Ding
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou, 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
| | - Yinting Wu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou, 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
| | - Qinyue Jiang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou, 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
| | - Yijun Wang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou, 225009, China.
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
11
|
Cong L, Shi YK, Gao XY, Zhao XF, Zhang HQ, Zhou FL, Zhang HJ, Ma BQ, Zhai R, Yang CQ, Wang ZG, Ma FW, Xu LF. Transcription factor PbNAC71 regulates xylem and vessel development to control plant height. PLANT PHYSIOLOGY 2024; 195:395-409. [PMID: 38198215 DOI: 10.1093/plphys/kiae011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/13/2023] [Accepted: 12/08/2023] [Indexed: 01/12/2024]
Abstract
Dwarfism is an important agronomic trait in fruit breeding programs. However, the germplasm resources required to generate dwarf pear (Pyrus spp.) varieties are limited. Moreover, the mechanisms underlying dwarfism remain unclear. In this study, "Yunnan" quince (Cydonia oblonga Mill.) had a dwarfing effect on "Zaosu" pear. Additionally, the dwarfism-related NAC transcription factor gene PbNAC71 was isolated from pear trees comprising "Zaosu" (scion) grafted onto "Yunnan" quince (rootstock). Transgenic Nicotiana benthamiana and pear OHF-333 (Pyrus communis) plants overexpressing PbNAC71 exhibited dwarfism, with a substantially smaller xylem and vessel area relative to the wild-type controls. Yeast one-hybrid, dual-luciferase, chromatin immunoprecipitation-qPCR, and electrophoretic mobility shift assays indicated that PbNAC71 downregulates PbWalls are thin 1 expression by binding to NAC-binding elements in its promoter. Yeast two-hybrid assays showed that PbNAC71 interacts with the E3 ubiquitin ligase PbRING finger protein 217 (PbRNF217). Furthermore, PbRNF217 promotes the ubiquitin-mediated degradation of PbNAC71 by the 26S proteasome, thereby regulating plant height as well as xylem and vessel development. Our findings reveal a mechanism underlying pear dwarfism and expand our understanding of the molecular basis of dwarfism in woody plants.
Collapse
Affiliation(s)
- Liu Cong
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Yi-Ke Shi
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Xin-Yi Gao
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Xiao-Fei Zhao
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Hai-Qi Zhang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Feng-Li Zhou
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Hong-Juan Zhang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Bai-Quan Ma
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Rui Zhai
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Cheng-Quan Yang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Zhi-Gang Wang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Feng-Wang Ma
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Ling-Fei Xu
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| |
Collapse
|
12
|
Jing F, Shi S, Kang W, Guan J, Lu B, Wu B, Wang W. The Physiological Basis of Alfalfa Plant Height Establishment. PLANTS (BASEL, SWITZERLAND) 2024; 13:679. [PMID: 38475525 DOI: 10.3390/plants13050679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/12/2024] [Accepted: 02/13/2024] [Indexed: 03/14/2024]
Abstract
Plant height plays an important role in crop yield, product quality, and cultivation management. However, the physiological mechanisms that regulate the establishment of plant height in alfalfa plants remain unclear. Herein, we measured plant height traits, leaf characteristics, photosynthetic physiology, cell wall composition, and endogenous hormone contents of tall- and short-stalked alfalfa materials at different reproductive periods. We analyzed the physiology responsible for differences in plant height. The results demonstrated that the number of internodes in tall- and short-stalked alfalfa materials tended to converge with the advancement of the fertility period. Meanwhile, the average internode length (IL) of tall-stalked materials was significantly higher than that of short-stalked materials at different fertility periods, with internode length identified as the main trait determining the differences in alfalfa plant height. Leaf characteristics, which are closely related to photosynthetic capacity, are crucial energy sources supporting the expression of plant height traits, and we found that an increase in the number of leaves contributed to a proportional increase in plant height. Additionally, a significant positive correlation was observed between plant height and leaf dry weight per plant during the branching and early flowering stages of alfalfa. The leaves of alfalfa affect plant height through photosynthesis, with the budding stage identified as the key period for efficient light energy utilization. Plant height at the budding stage showed a significant positive correlation with soluble sugar (SS) content and a significant negative correlation with intercellular CO2 concentration. Moreover, we found that alfalfa plant height was significantly correlated with the contents of indole-3-acetic acid in stem tips (SIAA), gibberellin A3 in leaves (LGA3), zeatin in stem tips (SZT), and abscisic acid in leaves (LABA). Further investigation revealed that SS, SIAA, and LGA3 contents were important physiological indicators affecting alfalfa plant height. This study provides a theoretical basis for understanding the formation of alfalfa plant height traits and for genetic improvement studies.
Collapse
Affiliation(s)
- Fang Jing
- Key Laboratory of Grassland Ecosystem of Ministry of Education, College of Pratacultural Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Shangli Shi
- Key Laboratory of Grassland Ecosystem of Ministry of Education, College of Pratacultural Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Wenjuan Kang
- Key Laboratory of Grassland Ecosystem of Ministry of Education, College of Pratacultural Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Jian Guan
- Key Laboratory of Grassland Ecosystem of Ministry of Education, College of Pratacultural Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Baofu Lu
- Key Laboratory of Grassland Ecosystem of Ministry of Education, College of Pratacultural Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Bei Wu
- Key Laboratory of Grassland Ecosystem of Ministry of Education, College of Pratacultural Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Wenjuan Wang
- Key Laboratory of Grassland Ecosystem of Ministry of Education, College of Pratacultural Science, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
13
|
Yao Q, Feng Y, Wang J, Zhang Y, Yi F, Li Z, Zhang M. Integrated Metabolome and Transcriptome Analysis of Gibberellins Mediated the Circadian Rhythm of Leaf Elongation by Regulating Lignin Synthesis in Maize. Int J Mol Sci 2024; 25:2705. [PMID: 38473951 DOI: 10.3390/ijms25052705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 02/08/2024] [Accepted: 02/24/2024] [Indexed: 03/14/2024] Open
Abstract
Plant growth exhibits rhythmic characteristics, and gibberellins (GAs) are involved in regulating cell growth, but it is still unclear how GAs crosstalk with circadian rhythm to regulate cell elongation. The study analyzed growth characteristics of wild-type (WT), zmga3ox and zmga3ox with GA3 seedlings. We integrated metabolomes and transcriptomes to study the interaction between GAs and circadian rhythm in mediating leaf elongation. The rates of leaf growth were higher in WT than zmga3ox, and zmga3ox cell length was shorter when proliferated in darkness than light, and GA3 restored zmga3ox leaf growth. The differentially expressed genes (DEGs) between WT and zmga3ox were mainly enriched in hormone signaling and cell wall synthesis, while DEGs in zmga3ox were restored to WT by GA3. Moreover, the number of circadian DEGs that reached the peak expression in darkness was more than light, and the upregulated circadian DEGs were mainly enriched in cell wall synthesis. The differentially accumulated metabolites (DAMs) were mainly attributed to flavonoids and phenolic acid. Twenty-two DAMs showed rhythmic accumulation, especially enriched in lignin synthesis. The circadian DEGs ZmMYBr41/87 and ZmHB34/70 were identified as regulators of ZmHCT8 and ZmBM1, which were enzymes in lignin synthesis. Furthermore, GAs regulated ZmMYBr41/87 and ZmHB34/70 to modulate lignin biosynthesis for mediating leaf rhythmic growth.
Collapse
Affiliation(s)
- Qingqing Yao
- State Key Laboratory of Plant Environmental Resilience, Engineering Research Center of Plant Growth Regulator, Ministry of Education, College of Agronomy and Biotechnology, China Agricultural University, No 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China
| | - Ying Feng
- State Key Laboratory of Plant Environmental Resilience, Engineering Research Center of Plant Growth Regulator, Ministry of Education, College of Agronomy and Biotechnology, China Agricultural University, No 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China
| | - Jiajie Wang
- State Key Laboratory of Plant Environmental Resilience, Engineering Research Center of Plant Growth Regulator, Ministry of Education, College of Agronomy and Biotechnology, China Agricultural University, No 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China
| | - Yushi Zhang
- State Key Laboratory of Plant Environmental Resilience, Engineering Research Center of Plant Growth Regulator, Ministry of Education, College of Agronomy and Biotechnology, China Agricultural University, No 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China
| | - Fei Yi
- State Key Laboratory of Plant Environmental Resilience, Engineering Research Center of Plant Growth Regulator, Ministry of Education, College of Agronomy and Biotechnology, China Agricultural University, No 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China
| | - Zhaohu Li
- State Key Laboratory of Plant Environmental Resilience, Engineering Research Center of Plant Growth Regulator, Ministry of Education, College of Agronomy and Biotechnology, China Agricultural University, No 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China
| | - Mingcai Zhang
- State Key Laboratory of Plant Environmental Resilience, Engineering Research Center of Plant Growth Regulator, Ministry of Education, College of Agronomy and Biotechnology, China Agricultural University, No 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China
| |
Collapse
|
14
|
Wang T, Jin Y, Deng L, Li F, Wang Z, Zhu Y, Wu Y, Qu H, Zhang S, Liu Y, Mei H, Luo L, Yan M, Gu M, Xu G. The transcription factor MYB110 regulates plant height, lodging resistance, and grain yield in rice. THE PLANT CELL 2024; 36:298-323. [PMID: 37847093 PMCID: PMC10827323 DOI: 10.1093/plcell/koad268] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 08/04/2023] [Accepted: 09/25/2023] [Indexed: 10/18/2023]
Abstract
The high-yielding Green Revolution varieties of cereal crops are characterized by a semidwarf architecture and lodging resistance. Plant height is tightly regulated by the availability of phosphate (Pi), yet the underlying mechanism remains obscure. Here, we report that rice (Oryza sativa) R2R3-type Myeloblastosis (MYB) transcription factor MYB110 is a Pi-dependent negative regulator of plant height. MYB110 is a direct target of PHOSPHATE STARVATION RESPONSE 2 (OsPHR2) and regulates OsPHR2-mediated inhibition of rice height. Inactivation of MYB110 increased culm diameter and bending resistance, leading to enhanced lodging resistance despite increased plant height. Strikingly, the grain yield of myb110 mutants was elevated under both high- and low-Pi regimes. Two divergent haplotypes based on single nucleotide polymorphisms in the putative promoter of MYB110 corresponded with its transcript levels and plant height in response to Pi availability. Thus, fine-tuning MYB110 expression may be a potent strategy for further increasing the yield of Green Revolution cereal crop varieties.
Collapse
Affiliation(s)
- Tingting Wang
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Yi Jin
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Lixiao Deng
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Feng Li
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhiyuan Wang
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Yuanyuan Zhu
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Yufeng Wu
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Hongye Qu
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Shunan Zhang
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Ying Liu
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Hanwei Mei
- MOA Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Shanghai Agrobiological Gene Center, Shanghai 201106, China
| | - Lijun Luo
- MOA Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Shanghai Agrobiological Gene Center, Shanghai 201106, China
| | - Ming Yan
- MOA Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Shanghai Agrobiological Gene Center, Shanghai 201106, China
| | - Mian Gu
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
- MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing 210095, China
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing 210095, China
| | - Guohua Xu
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
- MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing 210095, China
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing 210095, China
| |
Collapse
|
15
|
Zhang H, Liu Z, Wang Y, Mu S, Yue H, Luo Y, Zhang Z, Li Y, Chen P. A mutation in CsDWF7 gene encoding a delta7 sterol C-5(6) desaturase leads to the phenotype of super compact in cucumber (Cucumis sativus L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:20. [PMID: 38221593 DOI: 10.1007/s00122-023-04518-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 12/07/2023] [Indexed: 01/16/2024]
Abstract
KEY MESSAGE A novel super compact mutant, scp-3, was identified using map-based cloning in cucumber. The CsDWF7 gene encoding a delta7 sterol C-5(6) desaturase was the candidate gene of scp-3. Mining dwarf genes is important in understanding stem growth in crops. However, only a small number of dwarf genes have been cloned or characterized. Here, we characterized a cucumber (Cucumis sativus L.) dwarf mutant, super compact 3 (scp-3), which displays shortened internodes and dark green leaves with a wrinkled appearance. The photosynthetic rate of scp-3 is significantly lower than that of the wild type. The dwarf phenotype of scp-3 mutant can be partially rescued by the exogenous brassinolide (BL) application, and the endogenous brassinosteroids (BRs) levels in the scp-3 mutant were significantly lower compared to the wild type. Microscopic examination revealed that the reduced internode length in scp-3 resulted from a decrease in cell size. Genetic analysis showed that the dwarf phenotype of scp-3 was controlled by a single recessive gene. Combined with bulked segregant analysis and map-based cloning strategy, we delimited scp-3 locus into an 82.5 kb region harboring five putative genes, but only one non-synonymous mutation (A to T) was discovered between the mutant and its wild type in this region. This mutation occurred within the second exon of the CsGy4G017510 gene, leading to an amino acid alteration from Leu156 to His156. This gene encodes the CsDWF7 protein, an analog of the Arabidopsis DWF7 protein, which is known to be involved in the biosynthesis of BRs. The CsDWF7 protein was targeted to the cell membrane. In comparison to the wild type, scp-3 exhibited reduced CsDWF7 expression in different tissues. These findings imply that CsDWF7 is essential for both BR biosynthesis as well as growth and development of cucumber plants.
Collapse
Affiliation(s)
- Haiqiang Zhang
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Zichen Liu
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yunxiao Wang
- College of Life Science, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Siyu Mu
- College of Life Science, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Hongzhong Yue
- Vegetable Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou, 730070, Gansu, China
| | - Yanjie Luo
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Zhengao Zhang
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yuhong Li
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Peng Chen
- College of Life Science, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
16
|
Cheng HY, Wang W, Wang W, Yang MY, Zhou YY. Interkingdom Hormonal Regulations between Plants and Animals Provide New Insight into Food Safety. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:4-26. [PMID: 38156955 DOI: 10.1021/acs.jafc.3c04712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Food safety has become an attractive topic among consumers. Raw material production for food is also a focus of social attention. As hormones are widely used in agriculture and human disease control, consumers' concerns about the safety of hormone agents have never disappeared. The present review focuses on the interkingdom regulations of exogenous animal hormones in plants and phytohormones in animals, including physiology and stress resistance. We summarize these interactions to give the public, researchers, and policymakers some guidance and suggestions. Accumulated evidence demonstrates comprehensive hormonal regulation across plants and animals. Animal hormones, interacting with phytohormones, help regulate plant development and enhance environmental resistance. Correspondingly, phytohormones may also cause damage to the reproductive and urinary systems of animals. Notably, the disease-resistant role of phytohormones is revealed against neurodegenerative diseases, cardiovascular disease, cancer, and diabetes. These resistances derive from the control for abnormal cell cycle, energy balance, and activity of enzymes. Further exploration of these cross-kingdom mechanisms would surely be of greater benefit to human health and agriculture development.
Collapse
Affiliation(s)
- Hang-Yuan Cheng
- State Key Laboratory of Plant Environmental Resilience, Engineering Research Center of Plant Growth Regulator, Ministry of Education & College of Agronomy and Biotechnology, China Agricultural University, No. 2 Yuanmingyuan Xi Lu, Haidian District, Beijing 100193, China
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- College of Advanced Agricultural Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Wen Wang
- Human Development Family Studies, Iowa State University, 2330 Palmer Building, Ames, Iowa 50010, United States
| | - Wei Wang
- State Key Laboratory of Plant Environmental Resilience, Engineering Research Center of Plant Growth Regulator, Ministry of Education & College of Agronomy and Biotechnology, China Agricultural University, No. 2 Yuanmingyuan Xi Lu, Haidian District, Beijing 100193, China
| | - Mu-Yu Yang
- State Key Laboratory of Plant Environmental Resilience, Engineering Research Center of Plant Growth Regulator, Ministry of Education & College of Agronomy and Biotechnology, China Agricultural University, No. 2 Yuanmingyuan Xi Lu, Haidian District, Beijing 100193, China
| | - Yu-Yi Zhou
- State Key Laboratory of Plant Environmental Resilience, Engineering Research Center of Plant Growth Regulator, Ministry of Education & College of Agronomy and Biotechnology, China Agricultural University, No. 2 Yuanmingyuan Xi Lu, Haidian District, Beijing 100193, China
| |
Collapse
|
17
|
Huang C, Jin X, Lin H, He J, Chen Y. Comparative Transcriptome Sequencing and Endogenous Phytohormone Content of Annual Grafted Branches of Zelkova schneideriana and Its Dwarf Variety HenTianGao. Int J Mol Sci 2023; 24:16902. [PMID: 38069226 PMCID: PMC10706849 DOI: 10.3390/ijms242316902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/12/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023] Open
Abstract
Zelkova schneideriana is a fast-growing tree species endemic to China. Recent surveys and reports have highlighted a continued decline in its natural populations; therefore, it is included in the Red List of Threatened Species by The International Union for Conservation of Nature. A new variety "HenTianGao" (H) has been developed with smaller plant height, slow growth, and lower branching points. In this study, we attempted to understand the differences in plant height of Z. schneideriana (J) and its dwarf variety H. We determined the endogenous hormone content in the annual grafted branches of both J and H. J exhibited higher gibberellic acid (GA)-19 and trans-Zeatin (tZ) levels, whereas H had higher levels of indole-3-acetic acid (IAA) catabolite 2-oxindole-3-acetic acid (OxIAA), IAA-Glu conjugate, and jasmonic acid (JA) (and its conjugate JA-Ile). The transcriptome comparison showed differential regulation of 20,944 genes enriched in growth and development, signaling, and metabolism-related pathways. The results show that the differential phytohormone level (IAA, JA, tZ, and GA) was consistent with the expression of the genes associated with their biosynthesis. The differences in relative OxIAA, IAA-Glu, GA19, trans-Zeatin, JA, and JA-Ile levels were linked to changes in respective signaling-related genes. We also observed significant differences in the expression of cell size, number, proliferation, cell wall biosynthesis, and remodeling-related genes in J and H. The differences in relative endogenous hormone levels, expression of biosynthesis, and signaling genes provide a theoretical basis for understanding the plant height differences in Z. schneideriana.
Collapse
Affiliation(s)
- Chenfei Huang
- College of Landscape Architecture, Central South University of Forestry and Technology, Changsha 410004, China; (C.H.); (J.H.)
- Hunan Big Data Engineering Technology Research Center of Natural Protected Areas Landscape Resources, Changsha 410004, China
| | - Xiaoling Jin
- College of Landscape Architecture, Central South University of Forestry and Technology, Changsha 410004, China; (C.H.); (J.H.)
- Hunan Big Data Engineering Technology Research Center of Natural Protected Areas Landscape Resources, Changsha 410004, China
| | - Haiyan Lin
- College of Horticulture, Hunan Agricultural University, Changsha 410128, China
| | - Jinsong He
- College of Landscape Architecture, Central South University of Forestry and Technology, Changsha 410004, China; (C.H.); (J.H.)
- Hunan Big Data Engineering Technology Research Center of Natural Protected Areas Landscape Resources, Changsha 410004, China
| | - Yan Chen
- College of Landscape Architecture, Central South University of Forestry and Technology, Changsha 410004, China; (C.H.); (J.H.)
- Hunan Big Data Engineering Technology Research Center of Natural Protected Areas Landscape Resources, Changsha 410004, China
| |
Collapse
|
18
|
Park JR, Jang YH, Kim EG, Hur SS, Kim KM. Quantitative Trait Loci Mapping Identified Candidate Genes Involved in Plant Height Regulation in Rice. Int J Mol Sci 2023; 24:16895. [PMID: 38069217 PMCID: PMC10706376 DOI: 10.3390/ijms242316895] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 11/24/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
Rice plant height is an agricultural trait closely related to biomass, lodging tolerance, and yield. Identifying quantitative trait loci (QTL) regions related to plant height regulation and developing strategies to screen potential candidate genes can improve agricultural traits in rice. In this study, a double haploid population (CNDH), derived by crossing 'Cheongcheong' and 'Nagdong' individuals, was used, and a genetic map was constructed with 222 single-sequence repeat markers. In the RM3482-RM212 region on chromosome 1, qPh1, qPh1-1, qPh1-3, qPh1-5, and qPh1-6 were identified for five consecutive years. The phenotypic variance explained ranged from 9.3% to 13.1%, and the LOD score ranged between 3.6 and 17.6. OsPHq1, a candidate gene related to plant height regulation, was screened in RM3482-RM212. OsPHq1 is an ortholog of gibberellin 20 oxidase 2, and its haplotype was distinguished by nine SNPs. Plants were divided into two groups based on their height, and tall and short plants were distinguished and clustered according to the expression level of OsPHq1. QTLs and candidate genes related to plant height regulation, and thus, biomass regulation, were screened and identified in this study, but the molecular mechanism of the regulation remains poorly known. The information obtained in this study will help develop molecular markers for marker-assisted selection and breeding through rice plant height control.
Collapse
Affiliation(s)
- Jae-Ryoung Park
- Crop Breeding Division, National Institute of Crop Science, Rural Development Administration, Wanju 55365, Republic of Korea;
- Coastal Agriculture Research Institute, Kyungpook National University, Daegu 41566, Republic of Korea;
| | - Yoon-Hee Jang
- Coastal Agriculture Research Institute, Kyungpook National University, Daegu 41566, Republic of Korea;
| | - Eun-Gyeong Kim
- Coastal Agriculture Research Institute, Kyungpook National University, Daegu 41566, Republic of Korea;
| | - Sang-Sun Hur
- Division of Health and Welfare, Department of BioFood Science, Joongbu University, Geunmsan 32713, Republic of Korea;
| | - Kyung-Min Kim
- Coastal Agriculture Research Institute, Kyungpook National University, Daegu 41566, Republic of Korea;
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
19
|
Zhou M, Li Y, Cheng Z, Zheng X, Cai C, Wang H, Lu K, Zhu C, Ding Y. Important Factors Controlling Gibberellin Homeostasis in Plant Height Regulation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:15895-15907. [PMID: 37862148 DOI: 10.1021/acs.jafc.3c03560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2023]
Abstract
Plant height is an important agronomic trait that is closely associated with crop yield and quality. Gibberellins (GAs), a class of highly efficient plant growth regulators, play key roles in regulating plant height. Increasing reports indicate that transcriptional regulation is a major point of regulation of the GA pathways. Although substantial knowledge has been gained regarding GA biosynthetic and signaling pathways, important factors contributing to the regulatory mechanisms homeostatically controlling GA levels remain to be elucidated. Here, we provide an overview of current knowledge regarding the regulatory network involving transcription factors, noncoding RNAs, and histone modifications involved in GA pathways. We also discuss the mechanisms of interaction between GAs and other hormones in plant height development. Finally, future directions for applying knowledge of the GA hormone in crop breeding are described.
Collapse
Affiliation(s)
- Mei Zhou
- Key Laboratory of Specialty Agri-Product Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Yakun Li
- Key Laboratory of Specialty Agri-Product Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Zhuowei Cheng
- Key Laboratory of Specialty Agri-Product Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Xinyu Zheng
- Key Laboratory of Specialty Agri-Product Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Chong Cai
- Key Laboratory of Specialty Agri-Product Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Huizhen Wang
- Huangshan Institute of Product Quality Inspection, Huangshan 242700, China
| | - Kaixing Lu
- Ningbo Key Laboratory of Agricultural Germplasm Resources Mining and Environmental Regulation, College of Science and Technology, Ningbo University, Ningbo 315000, China
| | - Cheng Zhu
- Key Laboratory of Specialty Agri-Product Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Yanfei Ding
- Key Laboratory of Specialty Agri-Product Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| |
Collapse
|
20
|
Sun J, Zheng Y, Guo J, Zhang Y, Liu Y, Tao Y, Wang M, Liu T, Liu Y, Li X, Zhang X, Zhao L. GmGAMYB-BINDING PROTEIN 1 promotes small auxin-up RNA gene transcription to modulate soybean maturity and height. PLANT PHYSIOLOGY 2023; 193:775-791. [PMID: 37204820 DOI: 10.1093/plphys/kiad293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 04/13/2023] [Accepted: 04/26/2023] [Indexed: 05/20/2023]
Abstract
Flowering time, maturity, and plant height are crucial agronomic traits controlled by photoperiod that affect soybean (Glycine max [L.] Merr.) yield and regional adaptability. It is important to cultivate soybean cultivars of earlier maturity that adapt to high latitudes. GAMYB-binding protein 1 (GmGBP1), a member of the SNW/SKIP family of transcriptional coregulators in soybean, is induced by short days and interacts with transcription factor GAMYB (GmGAMYB) during photoperiod control of flowering time and maturity. In the present study, GmGBP1:GmGBP1 soybean showed the phenotypes of earlier maturity and higher plant height. Chromatin immunoprecipitation sequencing (ChIP-seq) assays of GmGBP1-binding sites and RNA sequencing (RNA-seq) of differentially expressed transcripts in GmGBP1:GmGBP1 further identified potential targets of GmGBP1, including small auxin-up RNA (GmSAUR). GmSAUR:GmSAUR soybean also showed earlier maturity and higher plant height. GmGBP1 interacted with GmGAMYB, bound to the promoter of GmSAUR and promoted the expression of FLOWER LOCUS T homologs 2a (GmFT2a) and FLOWERING LOCUS D LIKE 19 (GmFDL19). Flowering repressors such as GmFT4 were negatively regulated, resulting in earlier flowering and maturity. Furthermore, the interaction of GmGBP1 with GmGAMYB increased the gibberellin (GA) signal to promote height and hypocotyl elongation by activating GmSAUR and GmSAUR bound to the promoter of the GA-positive activating regulator gibberellic acid-stimulated Arabidopsis 32 (GmGASA32). These results suggested a photoperiod regulatory pathway in which the interaction of GmGBP1 with GmGAMYB directly activated GmSAUR to promote earlier maturity and plant height in soybean.
Collapse
Affiliation(s)
- Jingzhe Sun
- Key Laboratory of Soybean Biology of Ministry of Education China, Northeast Agricultural University, Harbin 150030, China
| | - Yuhong Zheng
- Key Laboratory of Soybean Biology of Ministry of Education China, Northeast Agricultural University, Harbin 150030, China
| | - Jinpeng Guo
- Key Laboratory of Soybean Biology of Ministry of Education China, Northeast Agricultural University, Harbin 150030, China
| | - Yuntong Zhang
- Key Laboratory of Soybean Biology of Ministry of Education China, Northeast Agricultural University, Harbin 150030, China
| | - Ying Liu
- Key Laboratory of Soybean Biology of Ministry of Education China, Northeast Agricultural University, Harbin 150030, China
| | - Yahan Tao
- Key Laboratory of Soybean Biology of Ministry of Education China, Northeast Agricultural University, Harbin 150030, China
| | - Mengyuan Wang
- Key Laboratory of Soybean Biology of Ministry of Education China, Northeast Agricultural University, Harbin 150030, China
| | - Tianmeng Liu
- Key Laboratory of Soybean Biology of Ministry of Education China, Northeast Agricultural University, Harbin 150030, China
| | - Yangyang Liu
- Key Laboratory of Soybean Biology of Ministry of Education China, Northeast Agricultural University, Harbin 150030, China
| | - Xin Li
- Key Laboratory of Soybean Biology of Ministry of Education China, Northeast Agricultural University, Harbin 150030, China
| | | | - Lin Zhao
- Key Laboratory of Soybean Biology of Ministry of Education China, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
21
|
Liu Y, Liu Y, He Y, Yan Y, Yu X, Ali M, Pan C, Lu G. Cytokinin-inducible response regulator SlRR6 controls plant height through gibberellin and auxin pathways in tomato. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:4471-4488. [PMID: 37115725 DOI: 10.1093/jxb/erad159] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 04/27/2023] [Indexed: 06/19/2023]
Abstract
Plant height is a key agronomic trait regulated by several phytohormones such as gibberellins (GAs) and auxin. However, little is known about how cytokinin (CK) participates in this process. Here, we report that SlRR6, a type-A response regulator in the CK signaling pathway, positively regulates plant height in tomato. SlRR6 was induced by exogenous kinetin and GA3, but inhibited by indole-3-acetic acid (IAA). Knock out of SlRR6 reduced tomato plant height through shortening internode length, while overexpression of SlRR6 caused taller plants due to increased internode number. Cytological observation of longitudinal stems showed that both knock out and overexpression of SlRR6 generated larger cells, but significantly reduced cell numbers in each internode. Further studies demonstrated that overexpression of SlRR6 enhanced GA accumulation and lowered IAA content, along with expression changes in GA- and IAA-related genes. Exogenous paclobutrazol and IAA treatments restored the increased plant height phenotype in SlRR6-overexpressing lines. Yeast two-hybrid, bimolecular fluorescence complementation, and co-immunoprecipitation assays showed that SlRR6 interacts with a small auxin up RNA protein, SlSAUR58. Moreover, SlSAUR58-overexpressing plants were dwarf with decreased internode length. Overall, our findings establish SlRR6 as a vital component in the CK signaling, GA, and IAA regulatory network that controls plant height.
Collapse
Affiliation(s)
- Yue Liu
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Yichen Liu
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Yanjun He
- Institute of Vegetable Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310022, China
| | - Yanqiu Yan
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Xiaolin Yu
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Muhammad Ali
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Changtian Pan
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Gang Lu
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agricultural, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
22
|
Wang Y, Li J, Guo P, Liu Q, Ren S, Juan L, He J, Tan X, Yan J. Ectopic expression of Camellia oleifera Abel. gibberellin 20-oxidase gene increased plant height and promoted secondary cell walls deposition in Arabidopsis. PLANTA 2023; 258:65. [PMID: 37566145 DOI: 10.1007/s00425-023-04222-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 08/02/2023] [Indexed: 08/12/2023]
Abstract
MAIN CONCLUSION Ectopic expression of Camellia oleifera Abel. gibberellin 20-oxidase 1 caused a taller phenotype, promoted secondary cell wall deposition, leaf enlargement, and early flowering, and reduced chlorophyll and anthocyanin accumulation and seed enlargement phenotype in Arabidopsis. Plant height and secondary cell wall (SCW) deposition are important plant traits. Gibberellins (GAs) play important roles in regulating plant height and SCWs deposition. Gibberellin 20-oxidase (GA20ox) is an important enzyme involved in GA biosynthesis. In the present study, we identified a GA synthesis gene in Camellia oleifera. The total length of the CoGA20ox1 gene sequence was 1146 bp, encoding 381 amino acids. Transgenic plants with CoGA20ox1 had a taller phenotype; a seed enlargement phenotype; promoted SCWs deposition, leaf enlargement, and early flowering; and reduced chlorophyll and anthocyanin accumulation. Genetic analysis showed that the mutant ga20ox1-3 Arabidopsis partially rescued the phenotype of CoGA20ox1 overexpression plants. The results showed that CoGA20ox1 participates in the growth and development of C. oleifera. The morphological changes in CoGA20ox1 overexpressed plants provide a theoretical basis for further exploration of GA biosynthesis and analysis of the molecular mechanism in C. oleifera.
Collapse
Affiliation(s)
- Ying Wang
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees of Ministry of Education and the Key Laboratory of Non-Wood Forest Products of Forestry Ministry, Central South University of Forestry and Technology, Changsha, 410004, China
- Engineering Technology Research Center of Southern Hilly and Mountainous Ecological Non-Wood Forest Industry of Hunan Province, Changsha, 410004, China
- Yuelu Mountain Laboratory Non-Wood Forests Variety Innovation Center, Changsha, 410004, China
- Key Laboratory of Breeding and Cultivation of Economic Forest, State Forestry and Grassland Administration, Changsha, 410004, China
| | - Jian'an Li
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees of Ministry of Education and the Key Laboratory of Non-Wood Forest Products of Forestry Ministry, Central South University of Forestry and Technology, Changsha, 410004, China.
- Engineering Technology Research Center of Southern Hilly and Mountainous Ecological Non-Wood Forest Industry of Hunan Province, Changsha, 410004, China.
- Yuelu Mountain Laboratory Non-Wood Forests Variety Innovation Center, Changsha, 410004, China.
- Key Laboratory of Breeding and Cultivation of Economic Forest, State Forestry and Grassland Administration, Changsha, 410004, China.
| | - Purui Guo
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees of Ministry of Education and the Key Laboratory of Non-Wood Forest Products of Forestry Ministry, Central South University of Forestry and Technology, Changsha, 410004, China
- Engineering Technology Research Center of Southern Hilly and Mountainous Ecological Non-Wood Forest Industry of Hunan Province, Changsha, 410004, China
- Yuelu Mountain Laboratory Non-Wood Forests Variety Innovation Center, Changsha, 410004, China
- Key Laboratory of Breeding and Cultivation of Economic Forest, State Forestry and Grassland Administration, Changsha, 410004, China
| | - Qian Liu
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees of Ministry of Education and the Key Laboratory of Non-Wood Forest Products of Forestry Ministry, Central South University of Forestry and Technology, Changsha, 410004, China
- Engineering Technology Research Center of Southern Hilly and Mountainous Ecological Non-Wood Forest Industry of Hunan Province, Changsha, 410004, China
- Yuelu Mountain Laboratory Non-Wood Forests Variety Innovation Center, Changsha, 410004, China
- Key Laboratory of Breeding and Cultivation of Economic Forest, State Forestry and Grassland Administration, Changsha, 410004, China
| | - Shuangshuang Ren
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees of Ministry of Education and the Key Laboratory of Non-Wood Forest Products of Forestry Ministry, Central South University of Forestry and Technology, Changsha, 410004, China
- Engineering Technology Research Center of Southern Hilly and Mountainous Ecological Non-Wood Forest Industry of Hunan Province, Changsha, 410004, China
- Yuelu Mountain Laboratory Non-Wood Forests Variety Innovation Center, Changsha, 410004, China
- Key Laboratory of Breeding and Cultivation of Economic Forest, State Forestry and Grassland Administration, Changsha, 410004, China
| | - Lemei Juan
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees of Ministry of Education and the Key Laboratory of Non-Wood Forest Products of Forestry Ministry, Central South University of Forestry and Technology, Changsha, 410004, China
- Engineering Technology Research Center of Southern Hilly and Mountainous Ecological Non-Wood Forest Industry of Hunan Province, Changsha, 410004, China
- Yuelu Mountain Laboratory Non-Wood Forests Variety Innovation Center, Changsha, 410004, China
- Key Laboratory of Breeding and Cultivation of Economic Forest, State Forestry and Grassland Administration, Changsha, 410004, China
| | - Jiacheng He
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees of Ministry of Education and the Key Laboratory of Non-Wood Forest Products of Forestry Ministry, Central South University of Forestry and Technology, Changsha, 410004, China
- Engineering Technology Research Center of Southern Hilly and Mountainous Ecological Non-Wood Forest Industry of Hunan Province, Changsha, 410004, China
- Yuelu Mountain Laboratory Non-Wood Forests Variety Innovation Center, Changsha, 410004, China
- Key Laboratory of Breeding and Cultivation of Economic Forest, State Forestry and Grassland Administration, Changsha, 410004, China
| | - Xiaofeng Tan
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees of Ministry of Education and the Key Laboratory of Non-Wood Forest Products of Forestry Ministry, Central South University of Forestry and Technology, Changsha, 410004, China.
- Engineering Technology Research Center of Southern Hilly and Mountainous Ecological Non-Wood Forest Industry of Hunan Province, Changsha, 410004, China.
- Yuelu Mountain Laboratory Non-Wood Forests Variety Innovation Center, Changsha, 410004, China.
- Key Laboratory of Breeding and Cultivation of Economic Forest, State Forestry and Grassland Administration, Changsha, 410004, China.
| | - Jindong Yan
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees of Ministry of Education and the Key Laboratory of Non-Wood Forest Products of Forestry Ministry, Central South University of Forestry and Technology, Changsha, 410004, China.
- Engineering Technology Research Center of Southern Hilly and Mountainous Ecological Non-Wood Forest Industry of Hunan Province, Changsha, 410004, China.
- Yuelu Mountain Laboratory Non-Wood Forests Variety Innovation Center, Changsha, 410004, China.
- Key Laboratory of Breeding and Cultivation of Economic Forest, State Forestry and Grassland Administration, Changsha, 410004, China.
| |
Collapse
|
23
|
Malécange M, Sergheraert R, Teulat B, Mounier E, Lothier J, Sakr S. Biostimulant Properties of Protein Hydrolysates: Recent Advances and Future Challenges. Int J Mol Sci 2023; 24:ijms24119714. [PMID: 37298664 DOI: 10.3390/ijms24119714] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/26/2023] [Accepted: 05/28/2023] [Indexed: 06/12/2023] Open
Abstract
Over the past decade, plant biostimulants have been increasingly used in agriculture as environment-friendly tools that improve the sustainability and resilience of crop production systems under environmental stresses. Protein hydrolysates (PHs) are a main category of biostimulants produced by chemical or enzymatic hydrolysis of proteins from animal or plant sources. Mostly composed of amino acids and peptides, PHs have a beneficial effect on multiple physiological processes, including photosynthetic activity, nutrient assimilation and translocation, and also quality parameters. They also seem to have hormone-like activities. Moreover, PHs enhance tolerance to abiotic stresses, notably through the stimulation of protective processes such as cell antioxidant activity and osmotic adjustment. Knowledge on their mode of action, however, is still piecemeal. The aims of this review are as follows: (i) Giving a comprehensive overview of current findings about the hypothetical mechanisms of action of PHs; (ii) Emphasizing the knowledge gaps that deserve to be urgently addressed with a view to efficiently improve the benefits of biostimulants for different plant crops in the context of climate change.
Collapse
Affiliation(s)
- Marthe Malécange
- Institut Agro, Univ Angers, INRAE, IRHS, SFR QuaSaV, 49000 Angers, France
- BCF Life Sciences, Boisel, 56140 Pleucadeuc, France
| | | | - Béatrice Teulat
- Institut Agro, Univ Angers, INRAE, IRHS, SFR QuaSaV, 49000 Angers, France
| | | | - Jérémy Lothier
- Institut Agro, Univ Angers, INRAE, IRHS, SFR QuaSaV, 49000 Angers, France
| | - Soulaiman Sakr
- Institut Agro, Univ Angers, INRAE, IRHS, SFR QuaSaV, 49000 Angers, France
| |
Collapse
|
24
|
Jia P, Sharif R, Li Y, Sun T, Li S, Zhang X, Dong Q, Luan H, Guo S, Ren X, Qi G. The BELL1-like homeobox gene MdBLH14 from apple controls flowering and plant height via repression of MdGA20ox3. Int J Biol Macromol 2023; 242:124790. [PMID: 37169049 DOI: 10.1016/j.ijbiomac.2023.124790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 05/04/2023] [Accepted: 05/05/2023] [Indexed: 05/13/2023]
Abstract
Apple growth and yield are largely dependent on plant height and flowering characteristics. The BELL1-like homeobox (BLH) transcription factors regulate extensive plant biological processes. However, the BLH-mediated regulation of plant height and flowering in apple remains elusive. In the current study, 19 members of the MdBLH family were identified in the apple genome. Segmental duplication and purifying selection are the main reasons for the evolution of the MdBLH genes. A BLH1-like gene, MdBLH14, was isolated and functionally characterized. The MdBLH14 was preferentially expressed in flower buds, and downregulated during the floral induction period. The subcellular localization in tobacco leaves indicated that MdBLH14 is a nuclear protein. Overexpression of MdBLH14 in Arabidopsis led to a significant dwarfing and late-flowering phenotype by hindering active GA accumulation. Additionally, MdKNOX19, another member of the TALE superfamily, physically interacts with MdBLH14 and synergistically inhibits the expression of MdGA20ox3. This is the first report on the function of the MdBLH14 from apple, and its mechanism involving plant flower induction and growth. The data presented here provide a theoretical basis for genetically breeding new apple varieties.
Collapse
Affiliation(s)
- Peng Jia
- College of Forestry, Hebei Agricultural University, Baoding 071000, China; College of Horticulture, Northwest Agriculture and Forestry University, Yangling, Shaanxi 712100, China.
| | - Rahat Sharif
- Department of Horticulture, School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Youmei Li
- College of Horticulture, Northwest Agriculture and Forestry University, Yangling, Shaanxi 712100, China; Department of Horticulture, School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Tianbo Sun
- College of Forestry, Hebei Agricultural University, Baoding 071000, China
| | - Shikui Li
- College of Forestry, Hebei Agricultural University, Baoding 071000, China
| | - Xuemei Zhang
- College of Forestry, Hebei Agricultural University, Baoding 071000, China
| | - Qinglong Dong
- College of Forestry, Hebei Agricultural University, Baoding 071000, China
| | - Haoan Luan
- College of Forestry, Hebei Agricultural University, Baoding 071000, China
| | - Suping Guo
- College of Forestry, Hebei Agricultural University, Baoding 071000, China
| | - Xiaolin Ren
- College of Horticulture, Northwest Agriculture and Forestry University, Yangling, Shaanxi 712100, China.
| | - Guohui Qi
- College of Forestry, Hebei Agricultural University, Baoding 071000, China.
| |
Collapse
|
25
|
Jin X, Zhang Y, Li X, Huang J. OsNF-YA3 regulates plant growth and osmotic stress tolerance by interacting with SLR1 and SAPK9 in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 114:914-933. [PMID: 36906910 DOI: 10.1111/tpj.16183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 02/27/2023] [Accepted: 03/07/2023] [Indexed: 05/27/2023]
Abstract
The antagonism between gibberellin (GA) and abscisic acid (ABA) signaling pathways is vital to balance plant growth and stress response. Nevertheless, the mechanism by which plants determine the balance remains to be elucidated. Here, we report that rice NUCLEAR FACTOR-Y A3 (OsNF-YA3) modulates GA- and ABA-mediated balance between plant growth and osmotic stress tolerance. OsNF-YA3 loss-of-function mutants exhibit stunted growth, compromised GA biosynthetic gene expression, and decreased GA levels, while its overexpression lines have promoted growth and enhanced GA content. Chromatin immunoprecipitation-quantitative polymerase chain reaction analysis and transient transcriptional regulation assays demonstrate that OsNF-YA3 activates GA biosynthetic gene OsGA20ox1 expression. Furthermore, the DELLA protein SLENDER RICE1 (SLR1) physically interacts with OsNF-YA3 and thus inhibits its transcriptional activity. On the other side, OsNF-YA3 negatively regulates plant osmotic stress tolerance by repressing ABA response. OsNF-YA3 reduces ABA levels by transcriptionally regulating ABA catabolic genes OsABA8ox1 and OsABA8ox3 by binding to their promoters. Furthermore, OSMOTIC STRESS/ABA-ACTIVATED PROTEIN KINASE 9 (SAPK9), the positive component in ABA signaling, interacts with OsNF-YA3 and mediates OsNF-YA3 phosphorylation, resulting in its degradation in plants. Collectively, our findings establish OsNF-YA3 as an important transcription factor that positively modulates GA-regulated plant growth and negatively controls ABA-mediated water-deficit and salt tolerance. These findings shed light on the molecular mechanism underlying the balance between the growth and stress response of the plant.
Collapse
Affiliation(s)
- Xinkai Jin
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Bioengineering College, Chongqing University, Chongqing, 400044, China
| | - Yifan Zhang
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Bioengineering College, Chongqing University, Chongqing, 400044, China
| | - Xingxing Li
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Bioengineering College, Chongqing University, Chongqing, 400044, China
| | - Junli Huang
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Bioengineering College, Chongqing University, Chongqing, 400044, China
| |
Collapse
|
26
|
Sheng C, Song S, Zhou W, Dossou SSK, Zhou R, Zhang Y, Li D, You J, Wang L. Integrating transcriptome and phytohormones analysis provided insights into plant height development in sesame. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 198:107695. [PMID: 37058966 DOI: 10.1016/j.plaphy.2023.107695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/12/2023] [Accepted: 04/04/2023] [Indexed: 05/07/2023]
Abstract
Plant height is a key agronomic trait influencing crops yield. The height of sesame plants is important for yield performance, lodging resistance and plant architecture. Although plant height is significantly distinct among sesame varieties, the genetic basis of plant height remains largely unknown. In this study, in order to tackle genetic insights into the sesame plant height development, a comprehensive transcriptome analysis was conducted using the stem tips from two sesame varieties with distinct plant height, Zhongzhi13 and ZZM2748, at five time points by BGI MGIseq2000 sequencing platform. A total of 16,952 genes were differentially expressed between Zhongzhi13 and ZZM2748 at five time points. KEGG and MapMan enrichment analyses and quantitative analysis of phytohormones indicated that hormones biosynthesis and signaling pathways were associated with sesame plant height development. Plenty of candidate genes involved in biosynthesis and signaling of brassinosteroid (BR), cytokinin (CK) and gibberellin (GA) which were major differential hormones between two varieties were identified, suggesting their critical roles in plant height regulation. WGCNA revealed a module which was significantly positively associated with the plant height trait and founded SiSCL9 was the hub gene involved in plant height development in our network. Further overexpression in transgenic Arabidopsis validated the function of SiSCL9 in the increase of plant height by 26.86%. Collectively, these results increase our understanding of the regulatory network controlling the development of plant height and provide a valuable genetic resource for improvement of plant architecture in sesame.
Collapse
Affiliation(s)
- Chen Sheng
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China; National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shengnan Song
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Wangyi Zhou
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Senouwa Segla Koffi Dossou
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Rong Zhou
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Yanxin Zhang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Donghua Li
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Jun You
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China.
| | - Linhai Wang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China.
| |
Collapse
|
27
|
Zhao Y, Huang Y, Gao Y, Wang Y, Wu H, Zhu H, Lu X, Ma Q. An EMS-induced allele of the brachytic2 gene can reduce plant height in maize. PLANT CELL REPORTS 2023; 42:749-761. [PMID: 36754893 DOI: 10.1007/s00299-023-02990-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
D129 is an EMS-induced mutant with dwarf phenotype, which has important breeding potential to cultivate new varieties suitable for high-density planting in maize Plant height is one of the important agronomic traits that affecting maize planting density, identification of superior dwarf mutants can provide important genetic materials for breeding new varieties suitable for high-density planting. In this study, we identified a dwarf mutant, d129, from maize EMS-induced mutant population. Gene mapping indicated that a G-to-A transition in the second exon of the br2 gene was responsible for the dwarf phenotype of the d129 mutant using MutMap method, which was further validated through allelism testing. Compared with WT plants, the average plant height and ear height of d129 were reduced by 26.67% and 39.43%, respectively, mainly due to a decrease in internode length. Furthermore, the d129 mutant exhibited increased internode diameter, which is important for increasing planting density due to the lodging resistance may be enhanced. Endogenous hormone measurement demonstrated that the contents of IAA and GA3 in the internode of the mutant were significantly lower than that of WT plants. RNA-seq analysis indicated that at least fifteen auxin-responsive and signaling-related genes exhibited differential expression, and some genes involved in cell development and other types of hormone signaling pathways, were also identified from the differential expressed genes. These genes may be related to the reduced hormone contents and decreased elongation of internode cells of the d129 mutant. Our study provided a novel dwarf mutant which can be applied in maize breeding to cultivate new varieties suitable for high-density planting.
Collapse
Affiliation(s)
- Yang Zhao
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
- Key Laboratory of Breeding Engineering of Anhui Province, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Yuanxiang Huang
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
- Key Laboratory of Breeding Engineering of Anhui Province, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Yajie Gao
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
- Key Laboratory of Breeding Engineering of Anhui Province, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Yixiao Wang
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
- Key Laboratory of Breeding Engineering of Anhui Province, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Hongying Wu
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
- Key Laboratory of Breeding Engineering of Anhui Province, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Hongjia Zhu
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
- Key Laboratory of Breeding Engineering of Anhui Province, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Xiaoduo Lu
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Qing Ma
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China.
- Key Laboratory of Breeding Engineering of Anhui Province, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
28
|
Luo J, Tang Y, Chu Z, Peng Y, Chen J, Yu H, Shi C, Jafar J, Chen R, Tang Y, Lu Y, Ye Z, Li Y, Ouyang B. SlZF3 regulates tomato plant height by directly repressing SlGA20ox4 in the gibberellic acid biosynthesis pathway. HORTICULTURE RESEARCH 2023; 10:uhad025. [PMID: 37090098 PMCID: PMC10116951 DOI: 10.1093/hr/uhad025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 02/15/2023] [Indexed: 05/03/2023]
Abstract
Plant height is an important target trait for crop genetic improvement. Our previous work has identified a salt-tolerant C2H2 zinc finger, SlZF3, and its overexpression lines also showed a semi-dwarf phenotype, but the molecular mechanism remains to be elucidated. Here, we characterized the dwarf phenotype in detail. The dwarfism is caused by a decrease in stem internode cell elongation and deficiency of bioactive gibberellic acids (GAs), and can be rescued by exogenous GA3 treatment. Gene expression assays detected reduced expression of genes in the GA biosynthesis pathway of the overexpression lines, including SlGA20ox4. Several protein-DNA interaction methods confirmed that SlZF3 can directly bind to the SlGA20ox4 promoter and inhibit its expression, and the interaction can also occur for SlKS and SlKO. Overexpression of SlGA20ox4 in the SlZF3-overexpressing line can recover the dwarf phenotype. Therefore, SlZF3 regulates plant height by directly repressing genes in the tomato GA biosynthesis pathway.
Collapse
Affiliation(s)
- Jinying Luo
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Yunfei Tang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhuannan Chu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Yuxin Peng
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiawei Chen
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Huiyang Yu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Chunmei Shi
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Jahanzeb Jafar
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Rong Chen
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Yaping Tang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Yongen Lu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhibiao Ye
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Ying Li
- Corresponding authors. E-mail: ;
| | | |
Collapse
|
29
|
Dynamic Changes of Endogenous Hormones in Different Seasons of Idesia polycarpa Maxim. Life (Basel) 2023; 13:life13030788. [PMID: 36983943 PMCID: PMC10053573 DOI: 10.3390/life13030788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 03/05/2023] [Accepted: 03/11/2023] [Indexed: 03/17/2023] Open
Abstract
Idesia polycarpa Maxim is a native dioecious tree from East Asia cultivated for its fruits and as an ornamental plant throughout temperate regions. Given the economic potential, comparative studies on cultivated genotypes are of current interest. This study aims to discover the dynamic changes and potential functions of endogenous hormones in I. polycarpa, as well as the differences in endogenous hormone contents in different growth stages among different I. polycarpa provenances. We used High-Performance Liquid Chromatography (HPLC) to measure and compare the levels of abscisic acid (ABA), indole-3-acetic acid (IAA), gibberellin A3 (GA3), and trans-Zeatin-riboside (tZR) in the leaves, flowers, and fruits of I. polycarpa from various provenances between April and October. Our findings indicated that changes in the ABA and GA3 content of plants from Jiyuan and Tokyo were minimal from April to October. However, the levels of these two hormones in Chengdu plants vary greatly at different stages of development. The peak of IAA content in the three plant materials occurred primarily during the early fruit stage and the fruit expansion stage. The concentration of tZR in the three plant materials varies greatly. Furthermore, we discovered that the contents of endogenous hormones in I. polycarpa leaves, flowers, and fruits from Chengdu provenances were slightly higher than those from Tokyo and Jiyuan provenances. The content of IAA was higher in male flowers than in female flowers, and the content of ABA, GA3, and tZR was higher in female flowers than in male flowers. According to the findings, the contents of these four endogenous hormones in I. polycarpa are primarily determined by the genetic characteristics of the trees and are less affected by cultivation conditions. The gender of I. polycarpa had a great influence on these four endogenous hormones. The findings of this study will provide a theoretical foundation and practical guidance for artificially regulating the flowering and fruiting of I. polycarpa.
Collapse
|
30
|
Li B, Liu X, Guo Y, Deng L, Qu L, Yan M, Li M, Wang T. BnaC01.BIN2, a GSK3-like kinase, modulates plant height and yield potential in Brassica napus. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:29. [PMID: 36867248 DOI: 10.1007/s00122-023-04325-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
Using map-based cloning and transgenic transformation, we revealed that glycogen kinase synthase 3-like kinase, BnaC01.BIN2, modulates plant height and yield in rapeseed. The modification of plant height is one of the most important goals in rapeseed breeding. Although several genes that regulate rapeseed plant height have been identified, the genetics mechanisms underlying rapeseed plant height regulation remain poorly understood, and desirable genetic resources for rapeseed ideotype breeding are scarce. Here, we map-based cloned and functionally verified that the rapeseed semi-dominant gene, BnDF4, greatly affects rapeseed plant height. Specifically, BnDF4 encodes brassinosteroid (BR)-insensitive 2, a glycogen synthase kinase 3 primarily expressed in the lower internodes to modulate rapeseed plant height by blocking basal internode-cell elongation. Transcriptome data showed that several cell expansion-related genes involving auxin and BRs pathways were significantly downregulated in the semi-dwarf mutant. Heterozygosity in the BnDF4 allele results in small stature with no marked differences in other agronomic traits. Using BnDF4 in the heterozygous condition, the hybrid displayed strong yield heterosis through optimum intermediate plant height. Our results provide a desirable genetic resource for breeding semi-dwarf rapeseed phenotypes and support an effective strategy for breeding rapeseed hybrid varieties with strong yield heterosis.
Collapse
Affiliation(s)
- Bao Li
- Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha, 410125, China
- Hunan Hybrid Rapeseed Engineering and Technology Research Center, Changsha, 410125, China
| | - Xinhong Liu
- Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha, 410125, China
- Hunan Hybrid Rapeseed Engineering and Technology Research Center, Changsha, 410125, China
| | - Yiming Guo
- Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha, 410125, China
- Hunan Hybrid Rapeseed Engineering and Technology Research Center, Changsha, 410125, China
| | - Lichao Deng
- Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha, 410125, China
- Hunan Hybrid Rapeseed Engineering and Technology Research Center, Changsha, 410125, China
| | - Liang Qu
- Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha, 410125, China
- Hunan Hybrid Rapeseed Engineering and Technology Research Center, Changsha, 410125, China
| | - Mingli Yan
- Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha, 410125, China
- Hunan Hybrid Rapeseed Engineering and Technology Research Center, Changsha, 410125, China
| | - Mei Li
- Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha, 410125, China.
- Hunan Hybrid Rapeseed Engineering and Technology Research Center, Changsha, 410125, China.
| | - Tonghua Wang
- Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha, 410125, China.
- Hunan Hybrid Rapeseed Engineering and Technology Research Center, Changsha, 410125, China.
| |
Collapse
|
31
|
Li L, Chen X. Auxin regulation on crop: from mechanisms to opportunities in soybean breeding. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2023; 43:16. [PMID: 37313296 PMCID: PMC10248601 DOI: 10.1007/s11032-023-01361-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 02/10/2023] [Indexed: 06/15/2023]
Abstract
Breeding crop varieties with high yield and ideal plant architecture is a desirable goal of agricultural science. The success of "Green Revolution" in cereal crops provides opportunities to incorporate phytohormones in crop breeding. Auxin is a critical phytohormone to determine nearly all the aspects of plant development. Despite the current knowledge regarding auxin biosynthesis, auxin transport and auxin signaling have been well characterized in model Arabidopsis (Arabidopsis thaliana) plants, how auxin regulates crop architecture is far from being understood, and the introduction of auxin biology in crop breeding stays in the theoretical stage. Here, we give an overview on molecular mechanisms of auxin biology in Arabidopsis, and mainly summarize auxin contributions for crop plant development. Furthermore, we propose potential opportunities to integrate auxin biology in soybean (Glycine max) breeding.
Collapse
Affiliation(s)
- Linfang Li
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002 Fujian China
- Haixia Institute of Science and Technology, Horticultural Plant Biology and Metabolomics Center, Fujian Agriculture and Forestry University, Fuzhou, 350002 Fujian China
| | - Xu Chen
- Haixia Institute of Science and Technology, Horticultural Plant Biology and Metabolomics Center, Fujian Agriculture and Forestry University, Fuzhou, 350002 Fujian China
| |
Collapse
|
32
|
Zhao L, Zou M, Jiang S, Dong X, Deng K, Na T, Wang J, Xia Z, Wang F. Insights into the Genetic Determination of the Autotetraploid Potato Plant Height. Genes (Basel) 2023; 14:507. [PMID: 36833433 PMCID: PMC9957462 DOI: 10.3390/genes14020507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 02/08/2023] [Accepted: 02/15/2023] [Indexed: 02/19/2023] Open
Abstract
Plant height is an important characteristic, the modification of which can improve the ability of stress adaptation as well as the yield. In this study, genome-wide association analysis was performed for plant height traits in 370 potato cultivars using the tetraploid potato genome as a reference. A total of 92 significant single nucleotide polymorphism (SNP) loci for plant height were obtained, which were particularly significant in haplotypes A3 and A4 on chromosome 1 and A1, A2, and A4 on chromosome 5. Thirty-five candidate genes were identified that were mainly involved in the gibberellin and brassinolide signal transduction pathways, including the FAR1 gene, methyltransferase, ethylene response factor, and ubiquitin protein ligase. Among them, PIF3 and GID1a were only present on chromosome 1, with PIF3 in all four haplotypes and GID1a in haplotype A3. This could lead to more effective genetic loci for molecular marker-assisted selection breeding as well as more precise localization and cloning of genes for plant height traits in potatoes.
Collapse
Affiliation(s)
- Long Zhao
- Academy of Agriculture and Forestry Sciences, Qinghai University, Xining 810016, China
- National Key Laboratory of Sanjiangyuan Ecology and Plateau Agriculture and Animal Husbandry, Qinghai University, Xining 810016, China
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute, College of Tropical Crops, Hainan University, Sanya 572025, China
| | - Meiling Zou
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute, College of Tropical Crops, Hainan University, Sanya 572025, China
| | - Sirong Jiang
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute, College of Tropical Crops, Hainan University, Sanya 572025, China
| | - Xiaorui Dong
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute, College of Tropical Crops, Hainan University, Sanya 572025, China
| | - Ke Deng
- Academy of Agriculture and Forestry Sciences, Qinghai University, Xining 810016, China
- National Key Laboratory of Sanjiangyuan Ecology and Plateau Agriculture and Animal Husbandry, Qinghai University, Xining 810016, China
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute, College of Tropical Crops, Hainan University, Sanya 572025, China
| | - Tiancang Na
- Academy of Agriculture and Forestry Sciences, Qinghai University, Xining 810016, China
- National Key Laboratory of Sanjiangyuan Ecology and Plateau Agriculture and Animal Husbandry, Qinghai University, Xining 810016, China
| | - Jian Wang
- Academy of Agriculture and Forestry Sciences, Qinghai University, Xining 810016, China
- National Key Laboratory of Sanjiangyuan Ecology and Plateau Agriculture and Animal Husbandry, Qinghai University, Xining 810016, China
| | - Zhiqiang Xia
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute, College of Tropical Crops, Hainan University, Sanya 572025, China
| | - Fang Wang
- Academy of Agriculture and Forestry Sciences, Qinghai University, Xining 810016, China
- National Key Laboratory of Sanjiangyuan Ecology and Plateau Agriculture and Animal Husbandry, Qinghai University, Xining 810016, China
| |
Collapse
|
33
|
Zhang X, Ding L, Song A, Li S, Liu J, Zhao W, Jia D, Guan Y, Zhao K, Chen S, Jiang J, Chen F. DWARF AND ROBUST PLANT regulates plant height via modulating gibberellin biosynthesis in chrysanthemum. PLANT PHYSIOLOGY 2022; 190:2484-2500. [PMID: 36214637 PMCID: PMC9706434 DOI: 10.1093/plphys/kiac437] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 08/03/2022] [Indexed: 05/09/2023]
Abstract
YABBY (YAB) genes are specifically expressed in abaxial cells of lateral organs and determine abaxial cell fate. However, most studies have focused on few model plants, and the molecular mechanisms of YAB genes are not well understood. Here, we identified a YAB transcription factor in chrysanthemum (Chrysanthemum morifolium), Dwarf and Robust Plant (CmDRP), that belongs to a distinct FILAMENTOUS FLOWER (FlL)/YAB3 sub-clade lost in Brassicaceae. CmDRP was expressed in various tissues but did not show any polar distribution in chrysanthemum. Overexpression of CmDRP resulted in a semi-dwarf phenotype with a significantly decreased active GA3 content, while reduced expression generated the opposite phenotype. Furthermore, plant height of transgenic plants was partially rescued through the exogenous application of GA3 and Paclobutrazol, and expression of the GA biosynthesis gene CmGA3ox1 was significantly altered in transgenic plants. Yeast one-hybrid, luciferase, and chromatin immunoprecipitation-qPCR analyses showed that CmDRP could directly bind to the CmGA3ox1 promoter and suppress its expression. Our research reveals a nonpolar expression pattern of a YAB family gene in dicots and demonstrates it regulates plant height through the GA pathway, which will deepen the understanding of the genetic and molecular mechanisms of YAB genes.
Collapse
Affiliation(s)
- Xue Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Lian Ding
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Aiping Song
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Song Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiayou Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Wenqian Zhao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Diwen Jia
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Yunxiao Guan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Kunkun Zhao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Sumei Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiafu Jiang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Fadi Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
34
|
Liu L, Gan Y, Luo J, Li J, Zheng X, Gong H, Liu X, Deng L, Zhao G, Wu H. QTL mapping reveals candidate genes for main agronomic traits in Luffa based on a high-resolution genetic map. FRONTIERS IN PLANT SCIENCE 2022; 13:1069618. [PMID: 36466279 PMCID: PMC9716215 DOI: 10.3389/fpls.2022.1069618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 11/02/2022] [Indexed: 06/17/2023]
Abstract
Luffa is an important medicinal and edible vegetable crop of Cucurbitaceae. Strong heterosis effects and strikingly complementary characteristics were found between the two domesticated Luffa cultivars, Luffa acutangula and Luffa cylindrica. To explore the genetic basis underlying their important agronomic traits, we constructed the first interspecific high-density genetic linkage map using a BC1 population of 110 lines derived from a cross between S1174 (Luffa acutangula) and P93075 (Luffa cylindrica). The map spanned a total of 2246.74 cM with an average distance of 0.48 cM between adjacent markers. Thereafter, a large-scale field-based quantitative trait loci (QTLs) mapping was conducted for 25 important agronomic traits and 40 significant genetic loci distributed across 11 chromosomes were detected. Notably, a vital QTL (qID2) located on chromosome 9 with a minimum distance of 23 kb was identified to be responsible for the internode diameter and explained 11% of the phenotypic variation. Lac09g006860 (LacCRWN3), encoding a nuclear lamina protein involved in the control of nuclear morphology, was the only gene harbored in qID2. Sequence alignment showed completely different promoter sequences between the two parental alleles of LacCRWN3 except for some nonsynonymous single nucleotide polymorphisms (SNPs) in exons, and the expression level in thick-stem P93075 was distinctively higher than that in thin-stem S1174. According to the natural variation analysis of a population of 183 inbred lines, two main haplotypes were found for LacCRWN3: the P93075-like and S1174-like, with the former haplotype lines exhibiting significantly thicker internode diameters than those of the latter haplotype lines. It showed that LacCRWN3, as the only CRWN3 gene in Cucurbitaceae, was the most likely candidate gene regulating the internode diameter of Luffa. Our findings will be beneficial for deciphering the molecular mechanism of key phenotypic traits and promoting maker-assisted breeding in Luffa.
Collapse
Affiliation(s)
- Lili Liu
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Yaqin Gan
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| | - Jianning Luo
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Junxing Li
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Xiaoming Zheng
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Hao Gong
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Xiaoxi Liu
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Liting Deng
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Gangjun Zhao
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Haibin Wu
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| |
Collapse
|
35
|
Wang Y, Tang Q, Kang Y, Wang X, Zhang H, Li X. Analysis of the Utilization and Prospects of CRISPR-Cas Technology in the Annotation of Gene Function and Creation New Germplasm in Maize Based on Patent Data. Cells 2022; 11:cells11213471. [PMID: 36359866 PMCID: PMC9657720 DOI: 10.3390/cells11213471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/30/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022] Open
Abstract
Maize (Zea mays L.) is a food crop with the largest planting area and the highest yield in the world, and it plays a vital role in ensuring global food security. Conventional breeding methods are costly, time-consuming, and ineffective in maize breeding. In recent years, CRISPR-Cas editing technology has been used to quickly generate new varieties with high yield and improved grain quality and stress resistance by precisely modifying key genes involved in specific traits, thus becoming a new engine for promoting crop breeding and the competitiveness of seed industries. Using CRISPR-Cas, a range of new maize materials with high yield, improved grain quality, ideal plant type and flowering period, male sterility, and stress resistance have been created. Moreover, many patents have been filed worldwide, reflecting the huge practical application prospects and commercial value. Based on the existing patent data, we analyzed the development process, current status, and prospects of CRISPR-Cas technology in dissecting gene function and creating new germplasm in maize, providing information for future basic research and commercial production.
Collapse
Affiliation(s)
- Youhua Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Qiaoling Tang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yuli Kang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xujing Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Haiwen Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Correspondence: (H.Z.); (X.L.)
| | - Xinhai Li
- Institute of Crop Sciences, National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Correspondence: (H.Z.); (X.L.)
| |
Collapse
|
36
|
Castro-Camba R, Sánchez C, Vidal N, Vielba JM. Plant Development and Crop Yield: The Role of Gibberellins. PLANTS (BASEL, SWITZERLAND) 2022; 11:2650. [PMID: 36235516 PMCID: PMC9571322 DOI: 10.3390/plants11192650] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 09/29/2022] [Accepted: 10/03/2022] [Indexed: 06/12/2023]
Abstract
Gibberellins have been classically related to a few key developmental processes, thus being essential for the accurate unfolding of plant genetic programs. After more than a century of research, over one hundred different gibberellins have been described. There is a continuously increasing interest in gibberellins research because of their relevant role in the so-called "Green Revolution", as well as their current and possible applications in crop improvement. The functions attributed to gibberellins have been traditionally restricted to the regulation of plant stature, seed germination, and flowering. Nonetheless, research in the last years has shown that these functions extend to many other relevant processes. In this review, the current knowledge on gibberellins homeostasis and mode of action is briefly outlined, while specific attention is focused on the many different responses in which gibberellins take part. Thus, those genes and proteins identified as being involved in the regulation of gibberellin responses in model and non-model species are highlighted. The present review aims to provide a comprehensive picture of the state-of-the-art perception of gibberellins molecular biology and its effects on plant development. This picture might be helpful to enhance our current understanding of gibberellins biology and provide the know-how for the development of more accurate research and breeding programs.
Collapse
Affiliation(s)
| | | | | | - Jesús Mª Vielba
- Misión Biológica de Galicia, Consejo Superior de Investigaciones Científicas, 15780 Santiago de Compostela, Spain
| |
Collapse
|
37
|
Wang S, Wang Y. Harnessing hormone gibberellin knowledge for plant height regulation. PLANT CELL REPORTS 2022; 41:1945-1953. [PMID: 35857075 DOI: 10.1007/s00299-022-02904-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
Harnessing hormone GA knowledge is a potential means to develop plant height ideotypes. Plant height holds significance for natural beauty and agricultural revolution. The increased grain productivity during the Green Revolution of the 1960s is partly attributed to the reshaping of plant stature, which is conferred by changes in phytohormone gibberellin (GA) metabolism or signaling. GA fine-tunes multiple aspects of biological events and plays a pivotal role in plant height determinant. Harnessing hormone GA knowledge is a potential means to develop ideal plant height to meet the future demand. Here, we present an overview of characterized GA pathway genes for plant height regulation. Novel alleles of Green Revolution genes sd1 and Rht are specially delineated. Through interactome analysis, we uncover GA20ox and GA3ox family members as central hub modulators of GA pathway. Empowered by GA knowledge, we suggest ways towards design breeding of plant height ideotypes through harnessing the alterations of GA cascade. We highlight the utility of genome editing to generate weak alleles to circumvent side effects of GA pathway perturbation.
Collapse
Affiliation(s)
- Shanshan Wang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/ Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou, 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
| | - Yijun Wang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/ Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou, 225009, China.
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
38
|
Xu Z, Wang R, Kong K, Begum N, Almakas A, Liu J, Li H, Liu B, Zhao T, Zhao T. An APETALA2/ethylene responsive factor transcription factor GmCRF4a regulates plant height and auxin biosynthesis in soybean. FRONTIERS IN PLANT SCIENCE 2022; 13:983650. [PMID: 36147224 PMCID: PMC9485679 DOI: 10.3389/fpls.2022.983650] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/17/2022] [Indexed: 06/01/2023]
Abstract
Plant height is one of the key agronomic traits affecting soybean yield. The cytokinin response factors (CRFs), as a branch of the APETALA2/ethylene responsive factor (AP2/ERF) super gene family, have been reported to play important roles in regulating plant growth and development. However, their functions in soybean remain unknown. This study characterized a soybean CRF gene named GmCRF4a by comparing the performance of the homozygous Gmcrf4a-1 mutant, GmCRF4a overexpression (OX) and co-silencing (CS) lines. Phenotypic analysis showed that overexpression of GmCRF4a resulted in taller hypocotyls and epicotyls, more main stem nodes, and higher plant height. While down-regulation of GmCRF4a conferred shorter hypocotyls and epicotyls, as well as a reduction in plant height. The histological analysis results demonstrated that GmCRF4a promotes epicotyl elongation primarily by increasing cell length. Furthermore, GmCRF4a is required for the expression of GmYUCs genes to elevate endogenous auxin levels, which may subsequently enhance stem elongation. Taken together, these observations describe a novel regulatory mechanism in soybean, and provide the basis for elucidating the function of GmCRF4a in auxin biosynthesis pathway and plant heigh regulation in plants.
Collapse
Affiliation(s)
- Zhiyong Xu
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ruikai Wang
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Keke Kong
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Naheeda Begum
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Aisha Almakas
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Jun Liu
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hongyu Li
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Bin Liu
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Tuanjie Zhao
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Tao Zhao
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
39
|
Xu Y, Zhang L, Wang J, Liang D, Xia H, Lv X, Deng Q, Wang X, Luo X, Liao M, Lin L. Gibberellic acid promotes selenium accumulation in Cyphomandra betacea under selenium stress. FRONTIERS IN PLANT SCIENCE 2022; 13:968768. [PMID: 36119579 PMCID: PMC9478473 DOI: 10.3389/fpls.2022.968768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/18/2022] [Indexed: 06/15/2023]
Abstract
The selenium (Se) deficiency is threatening the human health, and the increase of Se content in food can prevent the Se deficiency of human body. To increase the Se content in fruit trees and alleviate the Se stress to fruit trees, the effects of gibberellic acid (GA) on the growth and Se accumulation in Cyphomandra betacea under Se stress were studied. Although GA increased the biomass of C. betacea, it did not significantly affect the root/shoot ratio. The root and shoot biomass had a quadratic polynomial regression relationship with the GA concentration. Furthermore, GA increased the photosynthetic pigment content, photosynthetic parameters, and antioxidant enzyme activity of C. betacea. GA also increased the Se content in C. betacea, peaking at 300 mg/L GA. For instance, GA (300 mg/L) increased the Se contents in roots and shoots of C. betacea by 70.31 and 22.02%, respectively, compared with the control. Moreover, the root Se and shoot Se contents had a quadratic polynomial regression relationship with the GA concentration. Correlation and gray relational analyses showed that the carotenoid, chlorophyll a, and chlorophyll b contents were closely related to the Se uptake in C. betacea under the GA application. These results show that GA (300 mg/L) can promote the growth and Se uptake of C. betacea under Se stress.
Collapse
Affiliation(s)
- Yaxin Xu
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, China
| | - Lu Zhang
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, China
| | - Jin Wang
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, China
| | - Dong Liang
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, China
| | - Hui Xia
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, China
| | - Xiulan Lv
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, China
| | - Qunxian Deng
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Xun Wang
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, China
| | - Xian Luo
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Ming’an Liao
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Lijin Lin
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
40
|
Liu M, Huang L, Zhang Y, Yan Z, Wang N. Overexpression of PdeGATA3 results in a dwarf phenotype in poplar by promoting the expression of PdeSTM and altering the content of gibberellins. TREE PHYSIOLOGY 2022; 42:tpac086. [PMID: 35980326 DOI: 10.1093/treephys/tpac086] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 06/09/2022] [Accepted: 07/12/2022] [Indexed: 06/15/2023]
Abstract
In previous studies, GA20 oxidase (GA20ox) has been identified to be an important enzyme in the biosynthesis of GA, and SHOOTMERISTEMLESS (STM) can repress the expression of GA20ox. In this study, the GATA transcription factor PdeGATA3 was identified in the poplar line NL895, and its overexpression (OE) transgenic lines showed a dwarf phenotype. RNA sequencing (RNA-Seq) analysis suggested that OE PdeGATA3 could promote the expression of PdeSTM and repress the expression of PdeGA20ox. Therefore, we hypothesized that PdeGATA3 would directly promote the expression of PdeSTM and that PdeSTM would repress the expression of PdeGA20ox. Four experiments, a dual-luciferase reporter assay, GUS transient coexpression assay, yeast one-hybrid assay and electrophoretic mobility shift assay, were conducted and verified that PdeGATA3 could promote the expression of PdeSTM by binding GATA-Boxes in its promoter. OE PdeSTM in poplar resulted in a dwarf phenotype and repressed the expression of PdeGA20ox. GA measurement of the OE PdeSTM and PdeGATA3 lines showed that GA3 and GA4 contents were significantly lower than those in the wild type (WT). Accordingly, we put forward a regulation model involving plant height regulation by PdeGATA3, PdeSTM and PdeGA20ox.
Collapse
Affiliation(s)
- Meifeng Liu
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Liyu Huang
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Yan Zhang
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhaogui Yan
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Nian Wang
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Engineering Technology Research Center for Forestry Information, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
41
|
Li W, Chen Y, Wang Y, Zhao J, Wang Y. Gypsy retrotransposon-derived maize lncRNA GARR2 modulates gibberellin response. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 110:1433-1446. [PMID: 35368126 DOI: 10.1111/tpj.15748] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 03/15/2022] [Accepted: 03/22/2022] [Indexed: 05/09/2023]
Abstract
Long non-coding RNAs (lncRNAs) mediate diverse biological events mainly through the modulation of transcriptional hierarchy. The phytohormone gibberellin (GA) is essential for various aspects of plant growth and development. However, the roles of lncRNAs in the regulation of the GA response remain largely unknown. Through sequencing multiple strand-specific and ribosomal-depleted RNA libraries, we delineated the landscape of lncRNAs in maize (Zea mays). Out of identified lncRNAs, 445 GIBBERELLIN-RESPONSIVE lncRNAs (GARRs) were differentially expressed upon GA application. By the intersection of GARRs from normal-height and dwarf plants from an advanced backcross population, four shared GARRs (GARR1 to GARR4) were identified. Out of these four shared GARRs, GARR2 was derived from a Gypsy LTR retrotransposon. GA-responsive element P-boxes were identified upstream of GARR2. GARR2-edited lines exhibited a GA-induced phenotype. Editing of GARR2 resulted in changes in the transcriptional abundance of GA pathway components and endogenous GA contents. Besides GA, GARR2 affected the primary auxin response. An RNA pull-down assay revealed the HECT ubiquitin-protein ligase family member ZmUPL1 as a potential interaction target of GARR2. GARR2 influenced the abundance of ZmUPL1 in the GA response. Our study uncovers lncRNA players involved in the modulation of the GA response and guides the development of plant height ideotype driven by knowledge of the phytohormone GA.
Collapse
Affiliation(s)
- Wei Li
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou, 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
| | - Yudong Chen
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou, 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
| | - Yali Wang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou, 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
| | - Jia Zhao
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou, 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
| | - Yijun Wang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou, 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
| |
Collapse
|
42
|
Paciorek T, Chiapelli BJ, Wang JY, Paciorek M, Yang H, Sant A, Val DL, Boddu J, Liu K, Gu C, Brzostowski LF, Wang H, Allen EM, Dietrich CR, Gillespie KM, Edwards J, Goldshmidt A, Neelam A, Slewinski TL. Targeted suppression of gibberellin biosynthetic genes ZmGA20ox3 and ZmGA20ox5 produces a short stature maize ideotype. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:1140-1153. [PMID: 35244326 PMCID: PMC9129074 DOI: 10.1111/pbi.13797] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 01/11/2022] [Accepted: 02/15/2022] [Indexed: 06/12/2023]
Abstract
Maize is one of the world's most widely cultivated crops. As future demands for maize will continue to rise, fields will face ever more frequent and extreme weather patterns that directly affect crop productivity. Development of environmentally resilient crops with improved standability in the field, like wheat and rice, was enabled by shifting the architecture of plants to a short stature ideotype. However, such architectural change has not been implemented in maize due to the unique interactions between gibberellin (GA) and floral morphology which limited the use of the same type of mutations as in rice and wheat. Here, we report the development of a short stature maize ideotype in commercial hybrid germplasm, which was generated by targeted suppression of the biosynthetic pathway for GA. To accomplish this, we utilized a dominant, miRNA-based construct expressed in a hemizygous state to selectively reduce expression of the ZmGA20ox3 and ZmGA20ox5 genes that control GA biosynthesis primarily in vegetative tissues. Suppression of both genes resulted in the reduction of GA levels leading to inhibition of cell elongation in internodal tissues, which reduced plant height. Expression of the miRNA did not alter GA levels in reproductive tissues, and thus, the reproductive potential of the plants remained unchanged. As a result, we developed a dominant, short-stature maize ideotype that is conducive for the commercial production of hybrid maize. We expect that the new maize ideotype would enable more efficient and more sustainable maize farming for a growing world population.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Kang Liu
- Bayer Crop ScienceChesterfieldMOUSA
| | - Chiyu Gu
- Bayer Crop ScienceChesterfieldMOUSA
| | | | | | | | | | | | | | - Alexander Goldshmidt
- Bayer Crop ScienceChesterfieldMOUSA
- Present address:
Department of Field Crops ScienceInstitute of Plant ScienceAgricultural Research OrganizationThe Volcani CenterP.O. Box 15159Rishon Lezion7528809Israel
| | | | | |
Collapse
|
43
|
Cui C, Lu Q, Zhao Z, Lu S, Duan S, Yang Y, Qiao Y, Chen L, Hu YG. The fine mapping of dwarf gene Rht5 in bread wheat and its effects on plant height and main agronomic traits. PLANTA 2022; 255:114. [PMID: 35507093 DOI: 10.1007/s00425-022-03888-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 03/29/2022] [Indexed: 06/14/2023]
Abstract
Rht5 was narrowed to an approximately 1 Mb interval and had pleiotropic effects on plant height, spike length and grain size. TraesCS3B02G025600 was predicted as the possible candidate gene. Plant height is an important component related to plant architecture, lodging resistance, and yield performance. The utilization of dwarf genes has made great contributions to wheat breeding and production. In this study, two F2 populations derived from the crosses of Jinmai47 and Ningchun45 with Marfed M were employed to identify the genetic region of reduce plant height 5 (Rht5), and their derived lines were used to evaluate its effects on plant height and main agronomic traits. Rht5 was fine-mapped between markers Kasp-25 and Kasp-23, in approximately 1 Mb region on chromosome 3BS, which harbored 17 high-confidence annotated genes based on the reference genome of Chinese Spring (IWGSC RefSeq v1.1). TraesCS3B02G025600 were predicted as the possible candidate gene based on its differential expression and sequence variation between dwarf and tall lines and parents. The results of phenotypic evaluation showed that Rht5 had pleiotropic effects on plant height, spike length, culm diameter, grain size and grain yield. The plant height of Rht5 dwarf lines was reduced by an average of 32.67% (32.53 cm) and 27.84% (33.62 cm) in the Jinmai47 and Ningchun45 population, respectively. While Rht5 showed significant and negative pleiotropic effects on culm diameter, aboveground biomass, grain yield, spike length, spikelet number, grain number per spike, grain size, grain weight and filling degree of basal second internode. The culm lodging resistance index (CLRI) of dwarf lines was significantly higher than that of tall lines in the two population. In conclusion, these results lay a foundation for understanding the dwarfing mechanism of Rht5.
Collapse
Affiliation(s)
- Chunge Cui
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Qiumei Lu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Zhangchen Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Shan Lu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Shan Duan
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Yang Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Yue Qiao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Liang Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China.
| | - Yin-Gang Hu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China.
- Institute of Water Saving Agriculture in Arid Regions of China, Northwest A&F University, Yangling, Shaanxi, China.
| |
Collapse
|
44
|
Ji Y, Chen Z, Cheng Q, Liu R, Li M, Yan X, Li G, Wang D, Fu L, Ma Y, Jin X, Zong X, Yang T. Estimation of plant height and yield based on UAV imagery in faba bean (Vicia faba L.). PLANT METHODS 2022; 18:26. [PMID: 35246179 PMCID: PMC8897926 DOI: 10.1186/s13007-022-00861-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 02/20/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Faba bean is an important legume crop in the world. Plant height and yield are important traits for crop improvement. The traditional plant height and yield measurement are labor intensive and time consuming. Therefore, it is essential to estimate these two parameters rapidly and efficiently. The purpose of this study was to provide an alternative way to accurately identify and evaluate faba bean germplasm and breeding materials. RESULTS The results showed that 80% of the maximum plant height extracted from two-dimensional red-green-blue (2D-RGB) images had the best fitting degree with the ground measured values, with the coefficient of determination (R2), root-mean-square error (RMSE), and normalized root-mean-square error (NRMSE) were 0.9915, 1.4411 cm and 5.02%, respectively. In terms of yield estimation, support vector machines (SVM) showed the best performance (R2 = 0.7238, RMSE = 823.54 kg ha-1, NRMSE = 18.38%), followed by random forests (RF) and decision trees (DT). CONCLUSION The results of this study indicated that it is feasible to monitor the plant height of faba bean during the whole growth period based on UAV imagery. Furthermore, the machine learning algorithms can estimate the yield of faba bean reasonably with the multiple time points data of plant height.
Collapse
Affiliation(s)
- Yishan Ji
- National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Haidian District, Beijing, 100081, China
| | - Zhen Chen
- Institute of Farmland Irrigation, Chinese Academy of Agricultural Sciences, Xinxiang, 453002, China
| | - Qian Cheng
- Institute of Farmland Irrigation, Chinese Academy of Agricultural Sciences, Xinxiang, 453002, China
| | - Rong Liu
- National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Haidian District, Beijing, 100081, China
| | - Mengwei Li
- National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Haidian District, Beijing, 100081, China
| | - Xin Yan
- National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Haidian District, Beijing, 100081, China
| | - Guan Li
- National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Haidian District, Beijing, 100081, China
| | - Dong Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Haidian District, Beijing, 100081, China
| | - Li Fu
- National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Haidian District, Beijing, 100081, China
| | - Yu Ma
- Department of Horticulture, Washington State University, Pullman, WA, 99164, USA
| | - Xiuliang Jin
- National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Haidian District, Beijing, 100081, China.
| | - Xuxiao Zong
- National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Haidian District, Beijing, 100081, China.
| | - Tao Yang
- National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Haidian District, Beijing, 100081, China.
| |
Collapse
|
45
|
Basnet P, Um T, Roy NS, Cho WS, Park SC, Park KC, Choi IY. Identification and Characterization of Key Genes Responsible for Weedy and Cultivar Growth Types in Soybean. Front Genet 2022; 13:805347. [PMID: 35281824 PMCID: PMC8907156 DOI: 10.3389/fgene.2022.805347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 01/17/2022] [Indexed: 11/13/2022] Open
Abstract
In cultivated plants, shoot morphology is an important factor that influences crop economic value. However, the effects of gene expression patterns on shoot morphology are not clearly understood. In this study, the molecular mechanism behind shoot morphology (including leaf, stem, and node) was analyzed using RNA sequencing to compare weedy (creeper) and cultivar (stand) growth types obtained in F7 derived from a cross of wild and cultivated soybeans. A total of 12,513 (in leaves), 14,255 (in stems), and 11,850 (in nodes) differentially expressed genes were identified among weedy and cultivar soybeans. Comparative transcriptome and expression analyses revealed 22 phytohormone-responsive genes. We found that GIBBERELLIN 2-OXIDASE 8 (GA2ox), SPINDLY (SPY), FERONIA (FER), AUXIN RESPONSE FACTOR 8 (ARF8), CYTOKININ DEHYDROGENASE-1 (CKX1), and ARABIDOPSIS HISTIDINE KINASE-3 (AHK3), which are crucial phytohormone response genes, were mainly regulated in the shoot of weedy and cultivar types. These results indicate that interactions between phytohormone signaling genes regulate shoot morphology in weedy and cultivar growth type plants. Our study provides insights that are useful for breeding and improving crops to generate high-yield soybean varieties.
Collapse
Affiliation(s)
- Prakash Basnet
- Department of Agriculture and Life Industry, Kangwon National University, Chuncheon, South Korea
| | - Taeyoung Um
- Department of Agriculture and Life Industry, Kangwon National University, Chuncheon, South Korea
| | - Neha Samir Roy
- Department of Agriculture and Life Industry, Kangwon National University, Chuncheon, South Korea
| | - Woo Suk Cho
- Department of Agricultural Biotechnology/National Academy of Agricultural Science, Rural Development Administration, Jeonju, South Korea
| | - Soo Chul Park
- Department of Agricultural Biotechnology/National Academy of Agricultural Science, Rural Development Administration, Jeonju, South Korea
| | - Kyong-Cheul Park
- Department of Agriculture and Life Industry, Kangwon National University, Chuncheon, South Korea
| | - Ik-Young Choi
- Department of Agriculture and Life Industry, Kangwon National University, Chuncheon, South Korea
- *Correspondence: Ik-Young Choi,
| |
Collapse
|
46
|
Borovsky Y, Raz A, Doron-Faigenboim A, Zemach H, Karavani E, Paran I. Pepper Fruit Elongation Is Controlled by Capsicum annuum Ovate Family Protein 20. FRONTIERS IN PLANT SCIENCE 2022; 12:815589. [PMID: 35058962 PMCID: PMC8763684 DOI: 10.3389/fpls.2021.815589] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 12/02/2021] [Indexed: 05/28/2023]
Abstract
Fruit shape is one of the most important quality traits of pepper (Capsicum spp.) and is used as a major attribute for the classification of fruit types. Wide natural variation in fruit shape exists among the major cultivated species Capsicum annuum, allowing the identification of several QTLs controlling the trait. However, to date, no genes underlying fruit shape QTLs have been conclusively identified, nor has their function been verified in pepper. We constructed a mapping population from a cross of round- and elongated-fruited C. annuum parents and identified a single major QTL on chromosome 10, termed fs10, explaining 68 and 70% of the phenotypic variation for fruit shape index and for distal fruit end angle, respectively. The QTL was mapped in several generations and was localized to a 5 Mbp region containing the ortholog of SlOFP20 that suppresses fruit elongation in tomato. Virus-induced gene silencing of the pepper ortholog CaOFP20 resulted in increased fruit elongation on two independent backgrounds. Furthermore, CaOFP20 exhibited differential expression in fs10 near-isogenic lines, as well as in an association panel of elongated- and round-fruited accessions. A 42-bp deletion in the upstream region of CaOFP20 was most strongly associated with fruit shape variation within the locus. Histological observations in ovaries and fruit pericarps indicated that fs10 exerts its effect on fruit elongation by controlling cell expansion and replication. Our results indicate that CaOFP20 functions as a suppressor of fruit elongation in C. annuum and is the most likely candidate gene underlying fs10.
Collapse
|
47
|
Bai Y, Zhao X, Yao X, Yao Y, An L, Li X, Wang Y, Gao X, Jia Y, Guan L, Li M, Wu K, Wang Z. Genome wide association study of plant height and tiller number in hulless barley. PLoS One 2021; 16:e0260723. [PMID: 34855842 PMCID: PMC8639095 DOI: 10.1371/journal.pone.0260723] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 11/15/2021] [Indexed: 11/18/2022] Open
Abstract
Hulless barley (Hordeum vulgare L. var. nudum), also called naked barley, is a unique variety of cultivated barley. The genome-wide specific length amplified fragment sequencing (SLAF-seq) method is a rapid deep sequencing technology that is used for the selection and identification of genetic loci or markers. In this study, we collected 300 hulless barley accessions and used the SLAF-seq method to identify candidate genes involved in plant height (PH) and tiller number (TN). We obtained a total of 1407 M paired-end reads, and 228,227 SLAF tags were developed. After filtering using an integrity threshold of >0.8 and a minor allele frequency of >0.05, 14,504,892 single-nucleotide polymorphisms (SNP) loci were screened out. The remaining SNPs were used for the construction of a neighbour-joining phylogenetic tree, and the three subcluster members showed no obvious differentiation among regional varieties. We used a genome wide association study approach to identify 1006 and 113 SNPs associated with TN and PH, respectively. Based on best linear unbiased predictors (BLUP), 41 and 29 SNPs associated with TN and PH, respectively. Thus, several of genes, including Hd3a and CKX5, may be useful candidates for the future genetic breeding of hulless barley. Taken together, our results provide insight into the molecular mechanisms controlling barley architecture, which is important for breeding and yield.
Collapse
Affiliation(s)
- Yixiong Bai
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
- Qinghai University, Qinghai Academy of Agricultural and Forestry Sciences, Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, Xining, Qinghai Province, China
| | - Xiaohong Zhao
- Qinghai University, Qinghai Academy of Agricultural and Forestry Sciences, Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, Xining, Qinghai Province, China
- Good Agricultural Practices Research Center of Traditional, Chongqing Institute of Medicinal Plant Cultivation, Chongqing, China
| | - Xiaohua Yao
- Qinghai University, Qinghai Academy of Agricultural and Forestry Sciences, Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, Xining, Qinghai Province, China
| | - Youhua Yao
- Qinghai University, Qinghai Academy of Agricultural and Forestry Sciences, Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, Xining, Qinghai Province, China
| | - Likun An
- Qinghai University, Qinghai Academy of Agricultural and Forestry Sciences, Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, Xining, Qinghai Province, China
| | - Xin Li
- Qinghai University, Qinghai Academy of Agricultural and Forestry Sciences, Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, Xining, Qinghai Province, China
| | - Yong Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Xin Gao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Yatao Jia
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Lulu Guan
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Man Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Kunlun Wu
- Qinghai University, Qinghai Academy of Agricultural and Forestry Sciences, Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, Xining, Qinghai Province, China
- * E-mail: (KW); (ZW)
| | - Zhonghua Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
- * E-mail: (KW); (ZW)
| |
Collapse
|
48
|
Xin Z, Wang M, Cuevas HE, Chen J, Harrison M, Pugh NA, Morris G. Sorghum genetic, genomic, and breeding resources. PLANTA 2021; 254:114. [PMID: 34739592 PMCID: PMC8571242 DOI: 10.1007/s00425-021-03742-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 09/28/2021] [Indexed: 05/24/2023]
Abstract
Sorghum research has entered an exciting and fruitful era due to the genetic, genomic, and breeding resources that are now available to researchers and plant breeders. As the world faces the challenges of a rising population and a changing global climate, new agricultural solutions will need to be developed to address the food and fiber needs of the future. To that end, sorghum will be an invaluable crop species as it is a stress-resistant C4 plant that is well adapted for semi-arid and arid regions. Sorghum has already remained as a staple food crop in many parts of Africa and Asia and is critically important for animal feed and niche culinary applications in other regions, such as the United States. In addition, sorghum has begun to be developed into a promising feedstock for forage and bioenergy production. Due to this increasing demand for sorghum and its potential to address these needs, the continuous development of powerful community resources is required. These resources include vast collections of sorghum germplasm, high-quality reference genome sequences, sorghum association panels for genome-wide association studies of traits involved in food and bioenergy production, mutant populations for rapid discovery of causative genes for phenotypes relevant to sorghum improvement, gene expression atlas, and online databases that integrate all resources and provide the sorghum community with tools that can be used in breeding and genomic studies. Used in tandem, these valuable resources will ensure that the rate, quality, and collaborative potential of ongoing sorghum improvement efforts is able to rival that of other major crops.
Collapse
Affiliation(s)
- Zhanguo Xin
- Plant Stress and Germplasm Development Unit, Crop Systems Research Laboratory, USDA-ARS, 3810, 4th Street, Lubbock, TX, 79424, USA.
| | - Mingli Wang
- Plant Genetic Resources Conservation Unit, USDA-ARS, Griffin, GA, 30223, USA
| | - Hugo E Cuevas
- Tropical Agriculture Research Station, USDA-ARS, Mayagüez, 00680, Puerto Rico
| | - Junping Chen
- Plant Stress and Germplasm Development Unit, Crop Systems Research Laboratory, USDA-ARS, 3810, 4th Street, Lubbock, TX, 79424, USA
| | - Melanie Harrison
- Plant Genetic Resources Conservation Unit, USDA-ARS, Griffin, GA, 30223, USA
| | - N Ace Pugh
- Plant Stress and Germplasm Development Unit, Crop Systems Research Laboratory, USDA-ARS, 3810, 4th Street, Lubbock, TX, 79424, USA
| | - Geoffrey Morris
- Crop Quantitative Genomics, Soil and Crop Sciences, Colorado State University, Plant Sciences Building, Fort Collins, CO, 80523, USA
| |
Collapse
|
49
|
Wang KL, Zhang Y, Zhang HM, Lin XC, Xia R, Song L, Wu AM. MicroRNAs play important roles in regulating the rapid growth of the Phyllostachys edulis culm internode. THE NEW PHYTOLOGIST 2021; 231:2215-2230. [PMID: 34101835 DOI: 10.1111/nph.17542] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 05/29/2021] [Indexed: 06/12/2023]
Abstract
Moso bamboo (Phyllostachys edulis) is a fast-growing species with uneven growth and lignification from lower to upper segments within one internode. MicroRNAs (miRNAs) play a vital role in post-transcriptional regulation in plants. However, how miRNAs regulate fast growth in bamboo internodes is poorly understood. In this study, one moso bamboo internode was divided during early rapid growth into four segments called F4 (bottom) to F1 (upper) and these were then analysed for transcriptomes, miRNAs and degradomes. The F4 segment had a higher number of actively dividing cells as well as a higher content of auxin (IAA), cytokinin (CK) and gibberellin (GA) compared with the F1 segment. RNA-seq analysis showed DNA replication and cell division-associated genes highly expressed in F4 rather than in F1. In total, 63 miRNAs (DEMs) were identified as differentially expressed between F4 and F1. The degradome and the transcriptome indicated that many downstream transcription factors and hormonal responses genes were modulated by DEMs. Several miR-target interactions were further validated by tobacco co-infiltration. Our findings give new insights into miRNA-mediated regulatory pathways in bamboo, and will contribute to a comprehensive understanding of the molecular mechanisms governing rapid growth.
Collapse
Affiliation(s)
- Kai-Li Wang
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architectures, South China Agricultural University, Guangzhou, 510642, China
| | - Yuanyuan Zhang
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architectures, South China Agricultural University, Guangzhou, 510642, China
| | - Heng-Mu Zhang
- Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Xin-Chun Lin
- The State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Lin'an, 311300, China
| | - Rui Xia
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Lili Song
- The State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Lin'an, 311300, China
| | - Ai-Min Wu
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architectures, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangzhou, 510642, China
| |
Collapse
|
50
|
Yan H, Yu K, Xu Y, Zhou P, Zhao J, Li Y, Liu X, Ren C, Peng Y. Position Validation of the Dwarfing Gene Dw6 in Oat ( Avena sativa L.) and Its Correlated Effects on Agronomic Traits. FRONTIERS IN PLANT SCIENCE 2021; 12:668847. [PMID: 34093626 PMCID: PMC8172587 DOI: 10.3389/fpls.2021.668847] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 04/26/2021] [Indexed: 06/12/2023]
Abstract
An F6 : 8 recombinant inbred line (RIL) population derived from the cross between WAOAT2132 (Dw6) and Caracas along with the two parents were used to evaluate the genetic effects of Dw6 dwarfing gene on plant height and other agronomic traits in oat (Avena sativa L.) across three environments, and develop closely linked markers for marker-assisted selection (MAS) for Dw6. The two parents differed in all investigated agronomic traits except for the number of whorls. The RIL lines showed a bimodal distribution for plant height in all three tested environments, supporting the height of this population was controlled by a single gene. Dw6 significantly reduced plant height (37.66∼44.29%) and panicle length (13.99∼22.10%) but without compromising the coleoptile length which was often positively associated with the reduced stature caused by dwarfing genes. Dw6 has also strong negative effects on hundred kernel weight (14.00∼29.55%), and kernel length (4.21∼9.47%), whereas the effects of Dw6 on the kernel width were not uniform across three environments. By contrast, lines with Dw6 produced more productive tillers (10.11∼10.53%) than lines without Dw6. All these together suggested the potential yield penalty associated with Dw6 might be partially due to the decrease of kernel weight which is attributed largely to the reduction of kernel length. Eighty-one simple sequence repeat (SSR) primer pairs from chromosome 6D were tested, five of them were polymorphic in two parents and in two contrasting bulks, confirming the 6D location of Dw6. By using the five polymorphic markers, Dw6 was mapped to an interval of 1.0 cM flanked by markers SSR83 and SSR120. Caution should be applied in using this information since maker order conflicts were observed. The close linkages of these two markers to Dw6 were further validated in a range of oat lines. The newly developed markers will provide a solid basis for future efforts both in the identification of Dw6 in oat germplasm and in the determination of the nature of the gene through positional cloning.
Collapse
Affiliation(s)
- Honghai Yan
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Kaiquan Yu
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yinghong Xu
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Pingping Zhou
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Jun Zhao
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Ying Li
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Xiaomeng Liu
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Changzhong Ren
- Baicheng Academy of Agricultural Sciences, Baicheng, China
| | - Yuanying Peng
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|