1
|
Olawade DB, Wada OJ, David-Olawade AC, Kunonga E, Abaire O, Ling J. Using artificial intelligence to improve public health: a narrative review. Front Public Health 2023; 11:1196397. [PMID: 37954052 PMCID: PMC10637620 DOI: 10.3389/fpubh.2023.1196397] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 09/26/2023] [Indexed: 11/14/2023] Open
Abstract
Artificial intelligence (AI) is a rapidly evolving tool revolutionizing many aspects of healthcare. AI has been predominantly employed in medicine and healthcare administration. However, in public health, the widespread employment of AI only began recently, with the advent of COVID-19. This review examines the advances of AI in public health and the potential challenges that lie ahead. Some of the ways AI has aided public health delivery are via spatial modeling, risk prediction, misinformation control, public health surveillance, disease forecasting, pandemic/epidemic modeling, and health diagnosis. However, the implementation of AI in public health is not universal due to factors including limited infrastructure, lack of technical understanding, data paucity, and ethical/privacy issues.
Collapse
Affiliation(s)
- David B. Olawade
- Department of Allied and Public Health, School of Health, Sport and Bioscience, University of East London, London, United Kingdom
| | - Ojima J. Wada
- Division of Sustainable Development, Qatar Foundation, College of Science and Engineering, Hamad Bin Khalifa University, Doha, Qatar
| | | | - Edward Kunonga
- School of Health and Life Sciences, Teesside University, Middlesbrough, United Kingdom
| | - Olawale Abaire
- Department of Biochemistry, Adekunle Ajasin University, Akungba-Akoko, Nigeria
| | - Jonathan Ling
- Independent Researcher, Stockton-on-Tees, United Kingdom
| |
Collapse
|
2
|
Chu WT, Reza SMS, Anibal JT, Landa A, Crozier I, Bağci U, Wood BJ, Solomon J. Artificial Intelligence and Infectious Disease Imaging. J Infect Dis 2023; 228:S322-S336. [PMID: 37788501 PMCID: PMC10547369 DOI: 10.1093/infdis/jiad158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 05/06/2023] [Indexed: 10/05/2023] Open
Abstract
The mass production of the graphics processing unit and the coronavirus disease 2019 (COVID-19) pandemic have provided the means and the motivation, respectively, for rapid developments in artificial intelligence (AI) and medical imaging techniques. This has led to new opportunities to improve patient care but also new challenges that must be overcome before these techniques are put into practice. In particular, early AI models reported high performances but failed to perform as well on new data. However, these mistakes motivated further innovation focused on developing models that were not only accurate but also stable and generalizable to new data. The recent developments in AI in response to the COVID-19 pandemic will reap future dividends by facilitating, expediting, and informing other medical AI applications and educating the broad academic audience on the topic. Furthermore, AI research on imaging animal models of infectious diseases offers a unique problem space that can fill in evidence gaps that exist in clinical infectious disease research. Here, we aim to provide a focused assessment of the AI techniques leveraged in the infectious disease imaging research space, highlight the unique challenges, and discuss burgeoning solutions.
Collapse
Affiliation(s)
- Winston T Chu
- Center for Infectious Disease Imaging, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
- Integrated Research Facility at Fort Detrick, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, Maryland, USA
| | - Syed M S Reza
- Center for Infectious Disease Imaging, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - James T Anibal
- Center for Interventional Oncology, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Adam Landa
- Center for Interventional Oncology, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Ian Crozier
- Clinical Monitoring Research Program Directorate, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, Maryland, USA
| | - Ulaş Bağci
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Bradford J Wood
- Center for Interventional Oncology, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
- Center for Interventional Oncology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Jeffrey Solomon
- Clinical Monitoring Research Program Directorate, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, Maryland, USA
| |
Collapse
|
3
|
Khattab R, Abdelmaksoud IR, Abdelrazek S. Deep Convolutional Neural Networks for Detecting COVID-19 Using Medical Images: A Survey. NEW GENERATION COMPUTING 2023; 41:343-400. [PMID: 37229176 PMCID: PMC10071474 DOI: 10.1007/s00354-023-00213-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 02/23/2023] [Indexed: 05/27/2023]
Abstract
Coronavirus Disease 2019 (COVID-19), which is caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-COV-2), surprised the world in December 2019 and has threatened the lives of millions of people. Countries all over the world closed worship places and shops, prevented gatherings, and implemented curfews to stand against the spread of COVID-19. Deep Learning (DL) and Artificial Intelligence (AI) can have a great role in detecting and fighting this disease. Deep learning can be used to detect COVID-19 symptoms and signs from different imaging modalities, such as X-Ray, Computed Tomography (CT), and Ultrasound Images (US). This could help in identifying COVID-19 cases as a first step to curing them. In this paper, we reviewed the research studies conducted from January 2020 to September 2022 about deep learning models that were used in COVID-19 detection. This paper clarified the three most common imaging modalities (X-Ray, CT, and US) in addition to the DL approaches that are used in this detection and compared these approaches. This paper also provided the future directions of this field to fight COVID-19 disease.
Collapse
Affiliation(s)
- Rana Khattab
- Information Systems Department, Faculty of Computers and Information, Mansoura University, Mansoura, Egypt
| | - Islam R. Abdelmaksoud
- Information Systems Department, Faculty of Computers and Information, Mansoura University, Mansoura, Egypt
| | - Samir Abdelrazek
- Information Systems Department, Faculty of Computers and Information, Mansoura University, Mansoura, Egypt
| |
Collapse
|
4
|
Nakashima M, Uchiyama Y, Minami H, Kasai S. Prediction of COVID-19 patients in danger of death using radiomic features of portable chest radiographs. J Med Radiat Sci 2023; 70:13-20. [PMID: 36334033 PMCID: PMC9877603 DOI: 10.1002/jmrs.631] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 10/14/2022] [Indexed: 11/06/2022] Open
Abstract
INTRODUCTION Computer-aided diagnostic systems have been developed for the detection and differential diagnosis of coronavirus disease 2019 (COVID-19) pneumonia using imaging studies to characterise a patient's current condition. In this radiomic study, we propose a system for predicting COVID-19 patients in danger of death using portable chest X-ray images. METHODS In this retrospective study, we selected 100 patients, including ten that died and 90 that recovered from the COVID-19-AR database of the Cancer Imaging Archive. Since it can be difficult to analyse portable chest X-ray images of patients with COVID-19 because bone components overlap with the abnormal patterns of this disease, we employed a bone-suppression technique during pre-processing. A total of 620 radiomic features were measured in the left and right lung regions, and four radiomic features were selected using the least absolute shrinkage and selection operator technique. We distinguished death from recovery cases using a linear discriminant analysis (LDA) and a support vector machine (SVM). The leave-one-out method was used to train and test the classifiers, and the area under the receiver-operating characteristic curve (AUC) was used to evaluate discriminative performance. RESULTS The AUCs for LDA and SVM were 0.756 and 0.959, respectively. The discriminative performance was improved when the bone-suppression technique was employed. When the SVM was used, the sensitivity for predicting disease severity was 90.9% (9/10), and the specificity was 95.6% (86/90). CONCLUSIONS We believe that the radiomic features of portable chest X-ray images can predict COVID-19 patients in danger of death.
Collapse
Affiliation(s)
- Maoko Nakashima
- Graduate School of Health SciencesKumamoto UniversityKumamotoJapan
| | - Yoshikazu Uchiyama
- Department of Medical Image Sciences, Faculty of Life SciencesKumamoto UniversityKumamotoJapan
| | | | - Satoshi Kasai
- Department of Radiological TechnologyNiigata University of Health and WelfareNiigataJapan
| |
Collapse
|
5
|
Screening of COVID-19 Based on GLCM Features from CT Images Using Machine Learning Classifiers. SN COMPUTER SCIENCE 2023; 4:133. [PMID: 36593973 PMCID: PMC9798374 DOI: 10.1007/s42979-022-01583-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 12/16/2022] [Indexed: 12/30/2022]
Abstract
In healthcare, the decision-making process is crucial, including COVID-19 prevention methods should include fast diagnostic methods. Computed tomography (CT) is used to diagnose COVID patients' conditions. There is inherent variation in the texture of a CT image of COVID, much like the texture of a CT image of pneumonia. The process of diagnosing COVID images manually is difficult and challenging. Using low-resolution images and a small COVID dataset, the extraction of discriminant characteristics and fine-tuning of hyperparameters in classifiers provide challenges for computer-assisted diagnosis. In radiomics, quantitative image analysis is frequently used to evaluate the prognosis and diagnose diseases. This research tests an ML model built on GLCM features collected from chest CT images to screen for COVID-19. In this study, Support Vector Machines, K-nearest neighbors, Random Forest, and XGBoost classifiers are used together with LBGM. Tuning tests were used to regulate the hyperparameters of the model. With cross-validation, tenfold results were obtained. Random Forest and SVM were the best classification methods for GLCM features with an overall accuracy of 99.94%. The network's performance was assessed in terms of sensitivity, accuracy, and specificity.
Collapse
|
6
|
Karpiel I, Starcevic A, Urzeniczok M. Database and AI Diagnostic Tools Improve Understanding of Lung Damage, Correlation of Pulmonary Disease and Brain Damage in COVID-19. SENSORS (BASEL, SWITZERLAND) 2022; 22:s22166312. [PMID: 36016071 PMCID: PMC9414394 DOI: 10.3390/s22166312] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 05/02/2023]
Abstract
The COVID-19 pandemic caused a sharp increase in the interest in artificial intelligence (AI) as a tool supporting the work of doctors in difficult conditions and providing early detection of the implications of the disease. Recent studies have shown that AI has been successfully applied in the healthcare sector. The objective of this paper is to perform a systematic review to summarize the electroencephalogram (EEG) findings in patients with coronavirus disease (COVID-19) and databases and tools used in artificial intelligence algorithms, supporting the diagnosis and correlation between lung disease and brain damage, and lung damage. Available search tools containing scientific publications, such as PubMed and Google Scholar, were comprehensively evaluated and searched with open databases and tools used in AI algorithms. This work aimed to collect papers from the period of January 2019-May 2022 including in their resources the database from which data necessary for further development of algorithms supporting the diagnosis of the respiratory system can be downloaded and the correlation between lung disease and brain damage can be evaluated. The 10 articles which show the most interesting AI algorithms, trained by using open databases and associated with lung diseases, were included for review with 12 articles related to EEGs, which have/or may be related with lung diseases.
Collapse
Affiliation(s)
- Ilona Karpiel
- Łukasiewicz Research Network—Institute of Medical Technology and Equipment, 41-800 Zabrze, Poland
- Correspondence:
| | - Ana Starcevic
- Laboratory for Multimodal Neuroimaging, Institute of Anatomy, Medical Faculty, University of Belgrade, 11000 Belgrade, Serbia
| | - Mirella Urzeniczok
- Łukasiewicz Research Network—Institute of Medical Technology and Equipment, 41-800 Zabrze, Poland
| |
Collapse
|
7
|
Jia LL, Zhao JX, Pan NN, Shi LY, Zhao LP, Tian JH, Huang G. Artificial intelligence model on chest imaging to diagnose COVID-19 and other pneumonias: A systematic review and meta-analysis. Eur J Radiol Open 2022; 9:100438. [PMID: 35996746 PMCID: PMC9385733 DOI: 10.1016/j.ejro.2022.100438] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 08/16/2022] [Indexed: 11/29/2022] Open
Abstract
Objectives When diagnosing Coronavirus disease 2019(COVID-19), radiologists cannot make an accurate judgments because the image characteristics of COVID-19 and other pneumonia are similar. As machine learning advances, artificial intelligence(AI) models show promise in diagnosing COVID-19 and other pneumonias. We performed a systematic review and meta-analysis to assess the diagnostic accuracy and methodological quality of the models. Methods We searched PubMed, Cochrane Library, Web of Science, and Embase, preprints from medRxiv and bioRxiv to locate studies published before December 2021, with no language restrictions. And a quality assessment (QUADAS-2), Radiomics Quality Score (RQS) tools and CLAIM checklist were used to assess the quality of each study. We used random-effects models to calculate pooled sensitivity and specificity, I2 values to assess heterogeneity, and Deeks' test to assess publication bias. Results We screened 32 studies from the 2001 retrieved articles for inclusion in the meta-analysis. We included 6737 participants in the test or validation group. The meta-analysis revealed that AI models based on chest imaging distinguishes COVID-19 from other pneumonias: pooled area under the curve (AUC) 0.96 (95 % CI, 0.94-0.98), sensitivity 0.92 (95 % CI, 0.88-0.94), pooled specificity 0.91 (95 % CI, 0.87-0.93). The average RQS score of 13 studies using radiomics was 7.8, accounting for 22 % of the total score. The 19 studies using deep learning methods had an average CLAIM score of 20, slightly less than half (48.24 %) the ideal score of 42.00. Conclusions The AI model for chest imaging could well diagnose COVID-19 and other pneumonias. However, it has not been implemented as a clinical decision-making tool. Future researchers should pay more attention to the quality of research methodology and further improve the generalizability of the developed predictive models.
Collapse
Key Words
- 2D, two-dimensional
- 3D, three-dimensional
- AI, artificial intelligence
- AUC, area under the curve
- Artificial Intelligence
- CNN, Convolutional neural network
- COVID-19
- COVID-19, Coronavirus disease 2019
- CRP, C-reactive protein
- CT, Computed tomography
- CXR, Chest X-Ray
- Diagnostic Imaging
- GGO, ground-glass opacities
- KNN, K-nearest neighbor
- LASSO, least absolute shrinkage and selection operator
- MEERS-COV, Middle East respiratory syndrome coronavirus
- ML, machine learning
- Machine learning
- PLR, negative likelihood ratio
- PLR, positive likelihood ratio
- Pneumonia
- ROI, regions of interest
- RT-PCR, Reverse transcriptase polymerase chain reaction
- SARS, severe acute respiratory syndrome
- SARS-CoV-2, severe acute respiratory syndrome coronavirus 2
- SROC, summary receiver operating characteristic
- SVM, Support vector machine
Collapse
Affiliation(s)
- Lu-Lu Jia
- First Clinical School of Medicine, Gansu University of Chinese Medicine, Lanzhou 73000, China
| | - Jian-Xin Zhao
- First Clinical School of Medicine, Gansu University of Chinese Medicine, Lanzhou 73000, China
| | - Ni-Ni Pan
- First Clinical School of Medicine, Gansu University of Chinese Medicine, Lanzhou 73000, China
| | - Liu-Yan Shi
- First Clinical School of Medicine, Gansu University of Chinese Medicine, Lanzhou 73000, China
| | - Lian-Ping Zhao
- Department of Radiology, Gansu Provincial Hospital, Lanzhou 730000, China
| | - Jin-Hui Tian
- Evidence-Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Gang Huang
- Department of Radiology, Gansu Provincial Hospital, Lanzhou 730000, China
| |
Collapse
|
8
|
Mohammed MA, Al-Khateeb B, Yousif M, Mostafa SA, Kadry S, Abdulkareem KH, Garcia-Zapirain B. Novel Crow Swarm Optimization Algorithm and Selection Approach for Optimal Deep Learning COVID-19 Diagnostic Model. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2022; 2022:1307944. [PMID: 35996653 PMCID: PMC9392599 DOI: 10.1155/2022/1307944] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 03/16/2022] [Accepted: 07/19/2022] [Indexed: 02/07/2023]
Abstract
Due to the COVID-19 pandemic, computerized COVID-19 diagnosis studies are proliferating. The diversity of COVID-19 models raises the questions of which COVID-19 diagnostic model should be selected and which decision-makers of healthcare organizations should consider performance criteria. Because of this, a selection scheme is necessary to address all the above issues. This study proposes an integrated method for selecting the optimal deep learning model based on a novel crow swarm optimization algorithm for COVID-19 diagnosis. The crow swarm optimization is employed to find an optimal set of coefficients using a designed fitness function for evaluating the performance of the deep learning models. The crow swarm optimization is modified to obtain a good selected coefficient distribution by considering the best average fitness. We have utilized two datasets: the first dataset includes 746 computed tomography images, 349 of them are of confirmed COVID-19 cases and the other 397 are of healthy individuals, and the second dataset are composed of unimproved computed tomography images of the lung for 632 positive cases of COVID-19 with 15 trained and pretrained deep learning models with nine evaluation metrics are used to evaluate the developed methodology. Among the pretrained CNN and deep models using the first dataset, ResNet50 has an accuracy of 91.46% and a F1-score of 90.49%. For the first dataset, the ResNet50 algorithm is the optimal deep learning model selected as the ideal identification approach for COVID-19 with the closeness overall fitness value of 5715.988 for COVID-19 computed tomography lung images case considered differential advancement. In contrast, the VGG16 algorithm is the optimal deep learning model is selected as the ideal identification approach for COVID-19 with the closeness overall fitness value of 5758.791 for the second dataset. Overall, InceptionV3 had the lowest performance for both datasets. The proposed evaluation methodology is a helpful tool to assist healthcare managers in selecting and evaluating the optimal COVID-19 diagnosis models based on deep learning.
Collapse
Affiliation(s)
- Mazin Abed Mohammed
- College of Computer Science and Information Technology, University of Anbar, Ramadi 31001, Anbar, Iraq
| | - Belal Al-Khateeb
- College of Computer Science and Information Technology, University of Anbar, Ramadi 31001, Anbar, Iraq
| | - Mohammed Yousif
- Directorate of Regions and Governorates Affairs, Ministry of Youth & Sport, Ramadi 31065, Anbar, Iraq
| | - Salama A. Mostafa
- Faculty of Computer Science and Information Technology, Universiti Tun Hussein Onn Malaysia, Johor 86400, Malaysia
| | - Seifedine Kadry
- Department of Applied Data Science, Noroff University College, Kristiansand 4608, Norway
| | - Karrar Hameed Abdulkareem
- College of Agriculture, Al-Muthanna University, Samawah 66001, Iraq
- College of Engineering, University of Warith Al-Anbiyaa, Karbala, Iraq
| | | |
Collapse
|
9
|
Sajid MI, Ahmed S, Waqar U, Tariq J, Chundrigarh M, Balouch SS, Abaidullah S. SARS-CoV-2: Has artificial intelligence stood the test of time. Chin Med J (Engl) 2022; 135:1792-1802. [PMID: 36195992 PMCID: PMC9521771 DOI: 10.1097/cm9.0000000000002058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Indexed: 02/04/2023] Open
Abstract
ABSTRACT Artificial intelligence (AI) has proven time and time again to be a game-changer innovation in every walk of life, including medicine. Introduced by Dr. Gunn in 1976 to accurately diagnose acute abdominal pain and list potential differentials, AI has since come a long way. In particular, AI has been aiding in radiological diagnoses with good sensitivity and specificity by using machine learning algorithms. With the coronavirus disease 2019 pandemic, AI has proven to be more than just a tool to facilitate healthcare workers in decision making and limiting physician-patient contact during the pandemic. It has guided governments and key policymakers in formulating and implementing laws, such as lockdowns and travel restrictions, to curb the spread of this viral disease. This has been made possible by the use of social media to map severe acute respiratory syndrome coronavirus 2 hotspots, laying the basis of the "smart lockdown" strategy that has been adopted globally. However, these benefits might be accompanied with concerns regarding privacy and unconsented surveillance, necessitating authorities to develop sincere and ethical government-public relations.
Collapse
Affiliation(s)
- Mir Ibrahim Sajid
- Medical College, Aga Khan University, Stadium Road, Karachi, Pakistan
| | - Shaheer Ahmed
- Medlcal College, Islamabad Medical and Dental College, Main Murree Road, Islamabad, Pakistan
| | - Usama Waqar
- Medical College, Aga Khan University, Stadium Road, Karachi, Pakistan
| | - Javeria Tariq
- Medical College, Aga Khan University, Stadium Road, Karachi, Pakistan
| | | | - Samira Shabbir Balouch
- Oral and Maxillofacial Surgery, King Edward Medical University, Neela Gumbad, Lahore, Pakistan
| | - Sajid Abaidullah
- King Edward Medical University, Neela Gumbad, Lahore, Pakistan
- North Medical Ward, Mayo Hospital, Neela Gumbad, Lahore, Pakistan
| |
Collapse
|
10
|
Sajid MI, Ahmed S, Waqar U, Tariq J, Chundrigarh M, Balouch SS, Abaidullah S. Application in medicine: Has artificial intelligence stood the test of time. Chin Med J (Engl) 2022; Publish Ahead of Print:00029330-990000000-00090. [PMID: 35899989 DOI: 10.1097/cm9.00000000000020s8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Indexed: 11/26/2022] Open
Abstract
ABSTRACT Artificial intelligence (AI) has proven time and time again to be a game-changer innovation in every walk of life, including medicine. Introduced by Dr. Gunn in 1976 to accurately diagnose acute abdominal pain and list potential differentials, AI has since come a long way. In particular, AI has been aiding in radiological diagnoses with good sensitivity and specificity by using machine learning algorithms. With the coronavirus disease 2019 pandemic, AI has proven to be more than just a tool to facilitate healthcare workers in decision making and limiting physician-patient contact during the pandemic. It has guided governments and key policymakers in formulating and implementing laws, such as lockdowns and travel restrictions, to curb the spread of this viral disease. This has been made possible by the use of social media to map severe acute respiratory syndrome coronavirus 2 hotspots, laying the basis of the "smart lockdown" strategy that has been adopted globally. However, these benefits might be accompanied with concerns regarding privacy and unconsented surveillance, necessitating authorities to develop sincere and ethical government-public relations.
Collapse
Affiliation(s)
- Mir Ibrahim Sajid
- Medical College, Aga Khan University, Stadium Road, Karachi, Pakistan
| | - Shaheer Ahmed
- Medlcal College, Islamabad Medical and Dental College, Main Murree Road, Islamabad, Pakistan
| | - Usama Waqar
- Medical College, Aga Khan University, Stadium Road, Karachi, Pakistan
| | - Javeria Tariq
- Medical College, Aga Khan University, Stadium Road, Karachi, Pakistan
| | | | - Samira Shabbir Balouch
- Oral and Maxillofacial Surgery, King Edward Medical University, Neela Gumbad, Lahore, Pakistan
| | - Sajid Abaidullah
- King Edward Medical University, Neela Gumbad, Lahore, Pakistan
- North Medical Ward, Mayo Hospital, Neela Gumbad, Lahore, Pakistan
| |
Collapse
|
11
|
Al-Areqi F, Konyar MZ. Effectiveness evaluation of different feature extraction methods for classification of covid-19 from computed tomography images: A high accuracy classification study. Biomed Signal Process Control 2022; 76:103662. [PMID: 35350595 PMCID: PMC8947946 DOI: 10.1016/j.bspc.2022.103662] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 02/18/2022] [Accepted: 03/19/2022] [Indexed: 01/16/2023]
Abstract
Rapid diagnosis of the Covid-19 disease is the best way to prevent infection. In this paper, it is proposed to use machine learning methods to aid diagnoses quickly Covid-19 and focused on effect of several features on classification accuracy. In the proposed method 746 axial computed tomography (CT) images of the lung; 349 Covid-19 (positives) and 397 non-Covid-19 (negative) are used. Gray-level texture, shape and first order statistical features were extracted from the images. The feature vector for model training is constructed with one feature group or combination of more than one group. We then classified with Support Vector Machine, Random Forest, k-nearest neighbor and XGBoost classifier models. The hyperparameter of the models were controlled by the tuning test. Experimental results obtained with 10-fold cross-validation. The results of cross-validation verified with the additionally independent test. The best overall accuracy was 98.65% with first order statistics features classified with XGBoost. In the gray level features, the best individual results given by GLSZM as 81.25%, and the best combination result is with GLDM, GLRLM and GLSZM features as 85.52%. An important finding of this paper is that, for Covid-19 classification, the shape and first order statistics features are more valuable than gray level features. The proposed results compared with the literature studies under some Covid-19 dataset for accuracy, precision, sensitivity and F1-score metrics. Also, the literature studies which used the different Covid-19 dataset were compared with the proposed study. Our results have the significant superiority when compared with the literature studies.
Collapse
Affiliation(s)
- Farid Al-Areqi
- Department of Biomedical Engineering, Kocaeli University, 41001 Kocaeli, Turkey
| | - Mehmet Zeki Konyar
- Department of Software Engineering, Kocaeli University, 41001 Kocaeli, Turkey
| |
Collapse
|
12
|
Meraihi Y, Gabis AB, Mirjalili S, Ramdane-Cherif A, Alsaadi FE. Machine Learning-Based Research for COVID-19 Detection, Diagnosis, and Prediction: A Survey. SN COMPUTER SCIENCE 2022; 3:286. [PMID: 35578678 PMCID: PMC9096341 DOI: 10.1007/s42979-022-01184-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 04/30/2022] [Indexed: 12/12/2022]
Abstract
The year 2020 experienced an unprecedented pandemic called COVID-19, which impacted the whole world. The absence of treatment has motivated research in all fields to deal with it. In Computer Science, contributions mainly include the development of methods for the diagnosis, detection, and prediction of COVID-19 cases. Data science and Machine Learning (ML) are the most widely used techniques in this area. This paper presents an overview of more than 160 ML-based approaches developed to combat COVID-19. They come from various sources like Elsevier, Springer, ArXiv, MedRxiv, and IEEE Xplore. They are analyzed and classified into two categories: Supervised Learning-based approaches and Deep Learning-based ones. In each category, the employed ML algorithm is specified and a number of used parameters is given. The parameters set for each of the algorithms are gathered in different tables. They include the type of the addressed problem (detection, diagnosis, or detection), the type of the analyzed data (Text data, X-ray images, CT images, Time series, Clinical data,...) and the evaluated metrics (accuracy, precision, sensitivity, specificity, F1-Score, and AUC). The study discusses the collected information and provides a number of statistics drawing a picture about the state of the art. Results show that Deep Learning is used in 79% of cases where 65% of them are based on the Convolutional Neural Network (CNN) and 17% use Specialized CNN. On his side, supervised learning is found in only 16% of the reviewed approaches and only Random Forest, Support Vector Machine (SVM) and Regression algorithms are employed.
Collapse
Affiliation(s)
- Yassine Meraihi
- LIST Laboratory, University of M’Hamed Bougara Boumerdes, Avenue of Independence, 35000 Boumerdes, Algeria
| | - Asma Benmessaoud Gabis
- Ecole nationale Supérieure d’Informatique, Laboratoire des Méthodes de Conception des Systèmes, BP 68 M, 16309 Oued-Smar, Alger Algeria
| | - Seyedali Mirjalili
- Centre for Artificial Intelligence Research and Optimisation, Torrens University Australia, Fortitude Valley, Brisbane, QLD 4006 Australia
- Yonsei Frontier Lab, Yonsei University, Seoul, Korea
| | - Amar Ramdane-Cherif
- LISV Laboratory, University of Versailles St-Quentin-en-Yvelines, 10-12 Avenue of Europe, 78140 Velizy, France
| | - Fawaz E. Alsaadi
- Information Technology Department, Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
13
|
Farahat IS, Sharafeldeen A, Elsharkawy M, Soliman A, Mahmoud A, Ghazal M, Taher F, Bilal M, Abdel Razek AAK, Aladrousy W, Elmougy S, Tolba AE, El-Melegy M, El-Baz A. The Role of 3D CT Imaging in the Accurate Diagnosis of Lung Function in Coronavirus Patients. Diagnostics (Basel) 2022; 12:696. [PMID: 35328249 PMCID: PMC8947065 DOI: 10.3390/diagnostics12030696] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 02/25/2022] [Accepted: 03/08/2022] [Indexed: 12/04/2022] Open
Abstract
Early grading of coronavirus disease 2019 (COVID-19), as well as ventilator support machines, are prime ways to help the world fight this virus and reduce the mortality rate. To reduce the burden on physicians, we developed an automatic Computer-Aided Diagnostic (CAD) system to grade COVID-19 from Computed Tomography (CT) images. This system segments the lung region from chest CT scans using an unsupervised approach based on an appearance model, followed by 3D rotation invariant Markov-Gibbs Random Field (MGRF)-based morphological constraints. This system analyzes the segmented lung and generates precise, analytical imaging markers by estimating the MGRF-based analytical potentials. Three Gibbs energy markers were extracted from each CT scan by tuning the MGRF parameters on each lesion separately. The latter were healthy/mild, moderate, and severe lesions. To represent these markers more reliably, a Cumulative Distribution Function (CDF) was generated, then statistical markers were extracted from it, namely, 10th through 90th CDF percentiles with 10% increments. Subsequently, the three extracted markers were combined together and fed into a backpropagation neural network to make the diagnosis. The developed system was assessed on 76 COVID-19-infected patients using two metrics, namely, accuracy and Kappa. In this paper, the proposed system was trained and tested by three approaches. In the first approach, the MGRF model was trained and tested on the lungs. This approach achieved 95.83% accuracy and 93.39% kappa. In the second approach, we trained the MGRF model on the lesions and tested it on the lungs. This approach achieved 91.67% accuracy and 86.67% kappa. Finally, we trained and tested the MGRF model on lesions. It achieved 100% accuracy and 100% kappa. The results reported in this paper show the ability of the developed system to accurately grade COVID-19 lesions compared to other machine learning classifiers, such as k-Nearest Neighbor (KNN), decision tree, naïve Bayes, and random forest.
Collapse
Affiliation(s)
- Ibrahim Shawky Farahat
- BioImaging Laboratory, Department of Bioengineering, University of Louisville, Louisville, KY 40292, USA; (I.S.F.); (A.S.); (M.E.); (A.S.); (A.M.)
| | - Ahmed Sharafeldeen
- BioImaging Laboratory, Department of Bioengineering, University of Louisville, Louisville, KY 40292, USA; (I.S.F.); (A.S.); (M.E.); (A.S.); (A.M.)
| | - Mohamed Elsharkawy
- BioImaging Laboratory, Department of Bioengineering, University of Louisville, Louisville, KY 40292, USA; (I.S.F.); (A.S.); (M.E.); (A.S.); (A.M.)
| | - Ahmed Soliman
- BioImaging Laboratory, Department of Bioengineering, University of Louisville, Louisville, KY 40292, USA; (I.S.F.); (A.S.); (M.E.); (A.S.); (A.M.)
| | - Ali Mahmoud
- BioImaging Laboratory, Department of Bioengineering, University of Louisville, Louisville, KY 40292, USA; (I.S.F.); (A.S.); (M.E.); (A.S.); (A.M.)
| | - Mohammed Ghazal
- Electrical, Computer, and Biomedical Engineering Department, College of Engineering, Abu Dhabi University, Abu Dhabi 59911, United Arab Emirates;
| | - Fatma Taher
- College of Technological Innovation, Zayed University, Dubai 19282, United Arab Emirates;
| | - Maha Bilal
- Department of Diagnostic Radiology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt; (M.B.); (A.A.K.A.R.)
| | - Ahmed Abdel Khalek Abdel Razek
- Department of Diagnostic Radiology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt; (M.B.); (A.A.K.A.R.)
| | - Waleed Aladrousy
- Computer Science Department, Faculty of Computers and Information, Mansoura University, Mansoura 35516, Egypt; (W.A.); (S.E.); (A.E.T.)
| | - Samir Elmougy
- Computer Science Department, Faculty of Computers and Information, Mansoura University, Mansoura 35516, Egypt; (W.A.); (S.E.); (A.E.T.)
| | - Ahmed Elsaid Tolba
- Computer Science Department, Faculty of Computers and Information, Mansoura University, Mansoura 35516, Egypt; (W.A.); (S.E.); (A.E.T.)
- The Higher Institute of Engineering and Automotive Technology and Energy, New Heliopolis 11829, Cairo, Egypt
| | - Moumen El-Melegy
- Department of Electrical Engineering, Assiut University, Assiut 71511, Egypt;
| | - Ayman El-Baz
- BioImaging Laboratory, Department of Bioengineering, University of Louisville, Louisville, KY 40292, USA; (I.S.F.); (A.S.); (M.E.); (A.S.); (A.M.)
| |
Collapse
|
14
|
Clinical Characteristics of COVID-19 Patients and Application to an Artificial Intelligence System for Disease Surveillance. J Clin Med 2022; 11:jcm11051437. [PMID: 35268531 PMCID: PMC8911292 DOI: 10.3390/jcm11051437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/28/2022] [Accepted: 03/03/2022] [Indexed: 01/08/2023] Open
Abstract
During the coronavirus disease (COVID-19) pandemic, we admitted suspected or confirmed COVID-19 patients to our isolation wards between 2 March 2020 and 4 May 2020, following a well-designed and efficient assessment protocol. We included 217 patients suspected of COVID-19, of which 27 had confirmed COVID-19. The clinical characteristics of these patients were used to train artificial intelligence (AI) models such as support vector machine (SVM), decision tree, random forest, and artificial neural network for diagnosing COVID-19. When analyzing the performance of the models, SVM showed the highest sensitivity (SVM vs. decision tree vs. random forest vs. artificial neural network: 100% vs. 42.86% vs. 28.57% vs. 71.43%), while decision tree and random forest had the highest specificity (SVM vs. decision tree vs. random forest vs. artificial neural network: 88.37% vs. 100% vs. 100% vs. 94.74%) in the diagnosis of COVID-19. With the aid of AI models, physicians may identify COVID-19 patients earlier, even with few baseline data available, and segregate infected patients earlier to avoid hospital cluster infections and to ensure the safety of medical professionals and ordinary patients in the hospital.
Collapse
|
15
|
Nivetha S, Inbarani HH. Neighborhood Rough Neural Network Approach for COVID-19 Image Classification. Neural Process Lett 2022; 54:1919-1941. [PMID: 35079228 PMCID: PMC8776386 DOI: 10.1007/s11063-021-10712-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/30/2021] [Indexed: 12/05/2022]
Abstract
The rapid spread of the new Coronavirus, COVID-19, causes serious symptoms in humans and can lead to fatality. A COVID-19 infected person can experience a dry cough, muscle pain, headache, fever, sore throat, and mild to moderate respiratory illness, according to a clinical report. A chest X-ray (also known as radiography) or a chest CT scan are more effective imaging techniques for diagnosing lung cancer. Computed Tomography (CT) scan images allow for fast and precise COVID-19 screening. In this paper, a novel hybridized approach based on the Neighborhood Rough Set Classification method (NRSC) and Backpropagation Neural Network (BPN) is proposed to classify COVID and NON-COVID images. The proposed novel classification algorithm is compared with other existing benchmark approaches such as Neighborhood Rough Set, Backpropagation Neural Network, Decision Tree, Random Forest Classifier, Naive Bayes Classifier, K- Nearest Neighbor, and Support Vector Machine. Various classification accuracy measures are used to assess the efficacy of the classification algorithms.
Collapse
Affiliation(s)
- S. Nivetha
- Department of Computer Science, Periyar University, Salem, Tamil Nadu India
| | - H. Hannah Inbarani
- Department of Computer Science, Periyar University, Salem, Tamil Nadu India
| |
Collapse
|
16
|
Čolaković A, Avdagić-Golub E, Begović M, Memić B, Hasković-Džubur A. Application of machine learning in the fight against the COVID-19 pandemic: A review. ACTA FACULTATIS MEDICAE NAISSENSIS 2022. [DOI: 10.5937/afmnai39-38354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Introduction: Machine learning (ML) plays a significant role in the fight against the COVID-19 (officially known as SARS-CoV-2) pandemic. ML techniques enable the rapid detection of patterns and trends in large datasets. Therefore, ML provides efficient methods to generate knowledge from structured and unstructured data. This potential is particularly significant when the pandemic affects all aspects of human life. It is necessary to collect a large amount of data to identify methods to prevent the spread of infection, early detection, reduction of consequences, and finding appropriate medicine. Modern information and communication technologies (ICT) such as the Internet of Things (IoT) allow the collection of large amounts of data from various sources. Thus, we can create predictive ML-based models for assessments, predictions, and decisions. Methods: This is a review article based on previous studies and scientifically proven knowledge. In this paper, bibliometric data from authoritative databases of research publications (Web of Science, Scopus, PubMed) are combined for bibliometric analyses in the context of ML applications for COVID-19. Aim: This paper reviews some ML-based applications used for mitigating COVID-19. We aimed to identify and review ML potentials and solutions for mitigating the COVID-19 pandemic as well as to present some of the most commonly used ML techniques, algorithms, and datasets applied in the context of COVID-19. Also, we provided some insights into specific emerging ideas and open issues to facilitate future research. Conclusion: ML is an effective tool for diagnosing and early detection of symptoms, predicting the spread of a pandemic, developing medicines and vaccines, etc.
Collapse
|
17
|
Naseer A, Tamoor M, Azhar A. Computer-aided COVID-19 diagnosis and a comparison of deep learners using augmented CXRs. JOURNAL OF X-RAY SCIENCE AND TECHNOLOGY 2022; 30:89-109. [PMID: 34842222 PMCID: PMC8842762 DOI: 10.3233/xst-211047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/26/2021] [Accepted: 11/09/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Coronavirus Disease 2019 (COVID-19) is contagious, producing respiratory tract infection, caused by a newly discovered coronavirus. Its death toll is too high, and early diagnosis is the main problem nowadays. Infected people show a variety of symptoms such as fatigue, fever, tastelessness, dry cough, etc. Some other symptoms may also be manifested by radiographic visual identification. Therefore, Chest X-Rays (CXR) play a key role in the diagnosis of COVID-19. METHODS In this study, we use Chest X-Rays images to develop a computer-aided diagnosis (CAD) of the disease. These images are used to train two deep networks, the Convolution Neural Network (CNN), and the Long Short-Term Memory Network (LSTM) which is an artificial Recurrent Neural Network (RNN). The proposed study involves three phases. First, the CNN model is trained on raw CXR images. Next, it is trained on pre-processed CXR images and finally enhanced CXR images are used for deep network CNN training. Geometric transformations, color transformations, image enhancement, and noise injection techniques are used for augmentation. From augmentation, we get 3,220 augmented CXRs as training datasets. In the final phase, CNN is used to extract the features of CXR imagery that are fed to the LSTM model. The performance of the four trained models is evaluated by the evaluation techniques of different models, including accuracy, specificity, sensitivity, false-positive rate, and receiver operating characteristic (ROC) curve. RESULTS We compare our results with other benchmark CNN models. Our proposed CNN-LSTM model gives superior accuracy (99.02%) than the other state-of-the-art models. Our method to get improved input, helped the CNN model to produce a very high true positive rate (TPR 1) and no false-negative result whereas false negative was a major problem while using Raw CXR images. CONCLUSIONS We conclude after performing different experiments that some image pre-processing and augmentation, remarkably improves the results of CNN-based models. It will help a better early detection of the disease that will eventually reduce the mortality rate of COVID.
Collapse
Affiliation(s)
- Asma Naseer
- National University of Computer and Emerging Sciences, Lahore, Pakistan
| | | | | |
Collapse
|
18
|
Bhargava A, Bansal A, Goyal V. Machine learning-based automatic detection of novel coronavirus (COVID-19) disease. MULTIMEDIA TOOLS AND APPLICATIONS 2022; 81:13731-13750. [PMID: 35221781 PMCID: PMC8864211 DOI: 10.1007/s11042-022-12508-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 09/06/2021] [Accepted: 01/25/2022] [Indexed: 05/03/2023]
Abstract
The pandemic was announced by the world health organization coronavirus (COVID-19) universal health dilemma. Any scientific appliance which contributes expeditious detection of coronavirus with a huge recognition rate may be excessively fruitful to doctors. In this environment, innovative automation like deep learning, machine learning, image processing and medical image like chest radiography (CXR), computed tomography (CT) has been refined promising solution contrary to COVID-19. Currently, a reverse transcription-polymerase chain reaction (RT-PCR) test has been used to detect the coronavirus. Due to the moratorium period is high on results tested and huge false negative estimates, substitute solutions are desired. Thus, an automated machine learning-based algorithm is proposed for the detection of COVID-19 and the grading of nine different datasets. This research impacts the grant of image processing and machine learning to expeditious and definite coronavirus detection using CXR and CT medical imaging. This results in early detection, diagnosis, and cure for the accomplishment of COVID-19 as early as possible. Firstly, images are preprocessed by normalization to enhance the quality of the image and removing of noise. Secondly, segmentation of images is done by fuzzy c-means clustering. Then various features namely, statistical, textural, histogram of gradients, and discrete wavelet transform are extracted (92) and selected from the feature vector by principle component analysis. Lastly, k-NN, SRC, ANN, and SVM are used to make decisions for normal, pneumonia, COVID-19 positive patients. The performance of the system has been validated by the k (5) fold cross-validation technique. The proposed algorithm achieves 91.70% (k-Nearest Neighbor), 94.40% (Sparse Representation Classifier), 96.16% (Artificial Neural Network), and 99.14% (Support Vector Machine) for COVID detection. The proposed results show feature combination and selection improves the performance in 14.34 s with machine learning and image processing techniques. Among k-NN, SRC, ANN, and SVM classifiers, SVM shows more efficient results that are promising and comparable with the literature. The proposed approach results in an improved recognition rate as compared to the literature review. Therefore, the algorithm proposed shows immense potential to benefit the radiologist for their findings. Also, fruitful in prior virus diagnosis and discriminate pneumonia between COVID-19 and other pandemics.
Collapse
|
19
|
Application of intelligence-based computational techniques for classification and early differential diagnosis of COVID-19 disease. DATA SCIENCE AND MANAGEMENT 2021. [PMCID: PMC8654459 DOI: 10.1016/j.dsm.2021.12.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Clinical methods are used for diagnosing COVID-19 infected patients, but reports posit that, several people who were initially tested positive of COVID-19, and who had some underlying diseases, turned out having negative results after further tests. Therefore, the performance of clinical methods is not always guaranteed. Moreover, chest X-ray image data of COVID-19 infected patients are mostly used in the computational models for COVID-19 diagnosis, while the use of common symptoms, such as fever, cough, fatigue, muscle aches, headache, etc. in computational models is not yet reported. In this study, we employed seven classification algorithms to empirically test and verify their efficacy when applied to diagnose COVID-19 using the aforementioned symptoms. We experimented with Logistic Regression (LR), Support Vector Machine (SVM), Naïve Byes (NB), Decision Tree (DT), Multilayer Perceptron (MLP), Fuzzy Cognitive Map (FCM) and Deep Neural Network (DNN) algorithms. The techniques were subjected to random undersampling and oversampling. Our results showed that with class imbalance, MLP and DNN outperform others. However, without class imbalance, MLP, FCM and DNN outperform others with the use of random undersampling, but DNN has the best performance by utilizing random oversampling. This study identified MLP, FCM and DNN as better classifiers over LR, NB, DT and SVM, so that healthcare software system developers can adopt them to develop intelligence-based expert systems which both medical personnel and patients can use for differential diagnosis of COVID-19 based on the aforementioned symptoms. However, the test of performance must not be limited to the traditional performance metrics.
Collapse
|
20
|
Gudigar A, Raghavendra U, Nayak S, Ooi CP, Chan WY, Gangavarapu MR, Dharmik C, Samanth J, Kadri NA, Hasikin K, Barua PD, Chakraborty S, Ciaccio EJ, Acharya UR. Role of Artificial Intelligence in COVID-19 Detection. SENSORS (BASEL, SWITZERLAND) 2021; 21:8045. [PMID: 34884045 PMCID: PMC8659534 DOI: 10.3390/s21238045] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 11/26/2021] [Accepted: 11/26/2021] [Indexed: 12/15/2022]
Abstract
The global pandemic of coronavirus disease (COVID-19) has caused millions of deaths and affected the livelihood of many more people. Early and rapid detection of COVID-19 is a challenging task for the medical community, but it is also crucial in stopping the spread of the SARS-CoV-2 virus. Prior substantiation of artificial intelligence (AI) in various fields of science has encouraged researchers to further address this problem. Various medical imaging modalities including X-ray, computed tomography (CT) and ultrasound (US) using AI techniques have greatly helped to curb the COVID-19 outbreak by assisting with early diagnosis. We carried out a systematic review on state-of-the-art AI techniques applied with X-ray, CT, and US images to detect COVID-19. In this paper, we discuss approaches used by various authors and the significance of these research efforts, the potential challenges, and future trends related to the implementation of an AI system for disease detection during the COVID-19 pandemic.
Collapse
Affiliation(s)
- Anjan Gudigar
- Department of Instrumentation and Control Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, India; (A.G.); (S.N.); (M.R.G.); (C.D.)
| | - U Raghavendra
- Department of Instrumentation and Control Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, India; (A.G.); (S.N.); (M.R.G.); (C.D.)
| | - Sneha Nayak
- Department of Instrumentation and Control Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, India; (A.G.); (S.N.); (M.R.G.); (C.D.)
| | - Chui Ping Ooi
- School of Science and Technology, Singapore University of Social Sciences, Singapore 599494, Singapore;
| | - Wai Yee Chan
- Department of Biomedical Imaging, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia;
| | - Mokshagna Rohit Gangavarapu
- Department of Instrumentation and Control Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, India; (A.G.); (S.N.); (M.R.G.); (C.D.)
| | - Chinmay Dharmik
- Department of Instrumentation and Control Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, India; (A.G.); (S.N.); (M.R.G.); (C.D.)
| | - Jyothi Samanth
- Department of Cardiovascular Technology, Manipal College of Health Professions, Manipal Academy of Higher Education, Manipal 576104, India;
| | - Nahrizul Adib Kadri
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia; (N.A.K.); (K.H.)
| | - Khairunnisa Hasikin
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia; (N.A.K.); (K.H.)
| | - Prabal Datta Barua
- Cogninet Brain Team, Cogninet Australia, Sydney, NSW 2010, Australia;
- School of Business (Information Systems), Faculty of Business, Education, Law & Arts, University of Southern Queensland, Toowoomba, QLD 4350, Australia
- Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, NSW 2007, Australia;
| | - Subrata Chakraborty
- Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, NSW 2007, Australia;
- Faculty of Science, Agriculture, Business and Law, University of New England, Armidale, NSW 2351, Australia
| | - Edward J. Ciaccio
- Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA;
| | - U. Rajendra Acharya
- School of Engineering, Ngee Ann Polytechnic, Singapore 599489, Singapore;
- Department of Biomedical Informatics and Medical Engineering, Asia University, Taichung 41354, Taiwan
- International Research Organization for Advanced Science and Technology (IROAST), Kumamoto University, Kumamoto 860-8555, Japan
| |
Collapse
|
21
|
Winder M, Owczarek AJ, Chudek J, Pilch-Kowalczyk J, Baron J. Are We Overdoing It? Changes in Diagnostic Imaging Workload during the Years 2010-2020 including the Impact of the SARS-CoV-2 Pandemic. Healthcare (Basel) 2021; 9:healthcare9111557. [PMID: 34828603 PMCID: PMC8621920 DOI: 10.3390/healthcare9111557] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 12/30/2022] Open
Abstract
Since the 1990s, there has been a significant increase in the number of imaging examinations as well as a related increase in the healthcare expenditure and the exposure of the population to X-rays. This study aimed to analyze the workload trends in radiology during the last decade, including the impact of COVID-19 in a single university hospital in Poland and to identify possible solutions to the challenges that radiology could face in the future. We compared the annual amount of computed tomography (CT), radiography (X-ray), and ultrasound (US) examinations performed between the years 2010 and 2020 and analyzed the changes in the number of practicing radiologists in Poland. The mean number of patients treated in our hospital was 60,727 per year. During the last decade, the number of CT and US examinations nearly doubled (from 87.4 to 155.7 and from 52.1 to 86.5 per 1000 patients in 2010 and 2020 respectively), while X-ray examinations decreased from 115.1 to 96.9 per 1000 patients. The SARS-CoV-2 pandemic did not change the workload trends as more chest examinations were performed. AI, which contributed to the COVID-19 diagnosis, could aid radiologists in the future with the growing workload by increasing the efficiency of radiology departments as well as by potentially minimizing the related costs.
Collapse
Affiliation(s)
- Mateusz Winder
- Department of Radiology and Nuclear Medicine, Medical University of Silesia, 40-055 Katowice, Poland; (J.P.-K.); (J.B.)
- Correspondence: ; Tel.: +48-32-789-47-51
| | - Aleksander Jerzy Owczarek
- Health Promotion and Obesity Management Unit, Department of Pathophysiology, Medical University of Silesia, 40-055 Katowice, Poland;
| | - Jerzy Chudek
- Department of Internal Medicine and Oncological Chemotherapy, Medical University of Silesia, 40-055 Katowice, Poland;
| | - Joanna Pilch-Kowalczyk
- Department of Radiology and Nuclear Medicine, Medical University of Silesia, 40-055 Katowice, Poland; (J.P.-K.); (J.B.)
| | - Jan Baron
- Department of Radiology and Nuclear Medicine, Medical University of Silesia, 40-055 Katowice, Poland; (J.P.-K.); (J.B.)
| |
Collapse
|
22
|
Qi S, Xu C, Li C, Tian B, Xia S, Ren J, Yang L, Wang H, Yu H. DR-MIL: deep represented multiple instance learning distinguishes COVID-19 from community-acquired pneumonia in CT images. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2021; 211:106406. [PMID: 34536634 PMCID: PMC8426140 DOI: 10.1016/j.cmpb.2021.106406] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 09/02/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND AND OBJECTIVE Given that the novel coronavirus disease 2019 (COVID-19) has become a pandemic, a method to accurately distinguish COVID-19 from community-acquired pneumonia (CAP) is urgently needed. However, the spatial uncertainty and morphological diversity of COVID-19 lesions in the lungs, and subtle differences with respect to CAP, make differential diagnosis non-trivial. METHODS We propose a deep represented multiple instance learning (DR-MIL) method to fulfill this task. A 3D volumetric CT scan of one patient is treated as one bag and ten CT slices are selected as the initial instances. For each instance, deep features are extracted from the pre-trained ResNet-50 with fine-tuning and represented as one deep represented instance score (DRIS). Each bag with a DRIS for each initial instance is then input into a citation k-nearest neighbor search to generate the final prediction. A total of 141 COVID-19 and 100 CAP CT scans were used. The performance of DR-MIL is compared with other potential strategies and state-of-the-art models. RESULTS DR-MIL displayed an accuracy of 95% and an area under curve of 0.943, which were superior to those observed for comparable methods. COVID-19 and CAP exhibited significant differences in both the DRIS and the spatial pattern of lesions (p<0.001). As a means of content-based image retrieval, DR-MIL can identify images used as key instances, references, and citers for visual interpretation. CONCLUSIONS DR-MIL can effectively represent the deep characteristics of COVID-19 lesions in CT images and accurately distinguish COVID-19 from CAP in a weakly supervised manner. The resulting DRIS is a useful supplement to visual interpretation of the spatial pattern of lesions when screening for COVID-19.
Collapse
Affiliation(s)
- Shouliang Qi
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China; Key Laboratory of Intelligent Computing in Medical Image, Ministry of Education, Northeastern University, Shenyang, China
| | - Caiwen Xu
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China
| | - Chen Li
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China
| | - Bin Tian
- Department of Radiology, The Second People's Hospital of Guiyang, Guiyang, China
| | - Shuyue Xia
- Department of Respiratory Medicine, Central Hospital Affiliated to Shenyang Medical College, Shenyang, China
| | - Jigang Ren
- Department of Radiology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Liming Yang
- Department of Radiology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Hanlin Wang
- Department of Radiology, General Hospital of the Yangtze River Shipping, Wuhan, China.
| | - Hui Yu
- Department of Radiology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China.
| |
Collapse
|
23
|
Fischer G, De Silvestro A, Müller M, Frauenfelder T, Martini K. Computer-Aided Detection of Seven Chest Pathologies on Standard Posteroanterior Chest X-Rays Compared to Radiologists Reading Dual-Energy Subtracted Radiographs. Acad Radiol 2021; 29:e139-e148. [PMID: 34706849 DOI: 10.1016/j.acra.2021.09.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/06/2021] [Accepted: 09/21/2021] [Indexed: 11/01/2022]
Abstract
RATIONALE AND OBJECTIVES Retrospective performance evaluation of a computer-aided detection (CAD) system on standard posteroanterior (PA) chest radiographs (PA-CXR) in detection of pulmonary nodules, infectious consolidation, pneumothorax, pleural effusion, aortic calcification, cardiomegaly and rib fractures compared to radiologists analyzing PA-CXR including dual-energy subtraction radiography (further termed as DESR). MATERIALS AND METHODS PA-CXR/DESR images of 197 patients were included. All patients underwent chest CT (gold standard) within a short interval (mean 28 hours). All images were evaluated by three blinded readers for the presence of pulmonary nodules, infectious consolidation, pneumothorax, pleural effusion, aortic calcification, cardiomegaly, and rib fractures. Meanwhile PA-CXR were analyzed by a CAD software. CAD results were compared to the majority result of the three readers. Sensitivity and specificity were calculated. McNemar's test was applied to test for significant differences. Interobserver agreement was defined using Cohen's kappa (κ). RESULTS Sensitivity of the CAD software was significantly higher (p < 0.05) for detection of infectious consolidation and pulmonary nodules (67.9% vs 26.8% and 54% vs 35.6%, respectively; p < 0.001) compared to radiologists analyzing DESR images. For the residual evaluated pathologies no statistical significant differences could be found. Overall, mean inter observer agreement between the three radiologists was moderate (k = 0.534). The best interobserver agreement could be reached for pneumothorax (k = 0.708) and pleural effusion (k = 0.699), while the worst was obtained for rib fractures (k = 0.412). CONCLUSION The CAD system has the potential to improve the detection of infectious consolidation and pulmonary nodules on CXR images.
Collapse
|
24
|
Wang L, Zhang Y, Wang D, Tong X, Liu T, Zhang S, Huang J, Zhang L, Chen L, Fan H, Clarke M. Artificial Intelligence for COVID-19: A Systematic Review. Front Med (Lausanne) 2021; 8:704256. [PMID: 34660623 PMCID: PMC8514781 DOI: 10.3389/fmed.2021.704256] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 08/09/2021] [Indexed: 02/05/2023] Open
Abstract
Background: Recently, Coronavirus Disease 2019 (COVID-19), caused by severe acute respiratory syndrome virus 2 (SARS-CoV-2), has affected more than 200 countries and lead to enormous losses. This study systematically reviews the application of Artificial Intelligence (AI) techniques in COVID-19, especially for diagnosis, estimation of epidemic trends, prognosis, and exploration of effective and safe drugs and vaccines; and discusses the potential limitations. Methods: We report this systematic review following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. We searched PubMed, Embase and the Cochrane Library from inception to 19 September 2020 for published studies of AI applications in COVID-19. We used PROBAST (prediction model risk of bias assessment tool) to assess the quality of literature related to the diagnosis and prognosis of COVID-19. We registered the protocol (PROSPERO CRD42020211555). Results: We included 78 studies: 46 articles discussed AI-assisted diagnosis for COVID-19 with total accuracy of 70.00 to 99.92%, sensitivity of 73.00 to 100.00%, specificity of 25 to 100.00%, and area under the curve of 0.732 to 1.000. Fourteen articles evaluated prognosis based on clinical characteristics at hospital admission, such as clinical, laboratory and radiological characteristics, reaching accuracy of 74.4 to 95.20%, sensitivity of 72.8 to 98.00%, specificity of 55 to 96.87% and AUC of 0.66 to 0.997 in predicting critical COVID-19. Nine articles used AI models to predict the epidemic of the COVID-19, such as epidemic peak, infection rate, number of infected cases, transmission laws, and development trend. Eight articles used AI to explore potential effective drugs, primarily through drug repurposing and drug development. Finally, 1 article predicted vaccine targets that have the potential to develop COVID-19 vaccines. Conclusions: In this review, we have shown that AI achieved high performance in diagnosis, prognosis evaluation, epidemic prediction and drug discovery for COVID-19. AI has the potential to enhance significantly existing medical and healthcare system efficiency during the COVID-19 pandemic.
Collapse
Affiliation(s)
- Lian Wang
- Department of Respiratory and Critical Care Medicine, West China Hospital/West China School of Medicine, Sichuan University, Chengdu, China
| | - Yonggang Zhang
- Department of Periodical Press and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China.,Chinese Evidence-Based Medicine Center, West China Hospital, Sichuan University, Chengdu, China
| | - Dongguang Wang
- Department of Respiratory and Critical Care Medicine, West China Hospital/West China School of Medicine, Sichuan University, Chengdu, China
| | - Xiang Tong
- Department of Respiratory and Critical Care Medicine, West China Hospital/West China School of Medicine, Sichuan University, Chengdu, China
| | - Tao Liu
- Department of Respiratory and Critical Care Medicine, West China Hospital/West China School of Medicine, Sichuan University, Chengdu, China
| | - Shijie Zhang
- Department of Respiratory and Critical Care Medicine, West China Hospital/West China School of Medicine, Sichuan University, Chengdu, China
| | - Jizhen Huang
- Department of Respiratory and Critical Care Medicine, West China Hospital/West China School of Medicine, Sichuan University, Chengdu, China
| | - Li Zhang
- Department of Respiratory and Critical Care Medicine, West China Hospital/West China School of Medicine, Sichuan University, Chengdu, China
| | - Lingmin Chen
- Department of Anesthesiology and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University and The Research Units of West China, Chinese Academy of Medical Sciences, Chengdu, China
| | - Hong Fan
- Department of Respiratory and Critical Care Medicine, West China Hospital/West China School of Medicine, Sichuan University, Chengdu, China
| | - Mike Clarke
- Northern Ireland Methodology Hub, Queen's University Belfast, Belfast, United Kingdom
| |
Collapse
|
25
|
Ardakani AA, Kwee RM, Mirza-Aghazadeh-Attari M, Castro HM, Kuzan TY, Altintoprak KM, Besutti G, Monelli F, Faeghi F, Acharya UR, Mohammadi A. A practical artificial intelligence system to diagnose COVID-19 using computed tomography: A multinational external validation study. Pattern Recognit Lett 2021; 152:42-49. [PMID: 34580550 PMCID: PMC8457921 DOI: 10.1016/j.patrec.2021.09.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 08/14/2021] [Accepted: 09/16/2021] [Indexed: 01/27/2023]
Abstract
Computed tomography has gained an important role in the early diagnosis of COVID-19 pneumonia. However, the ever-increasing number of patients has overwhelmed radiology departments and has caused a reduction in quality of services. Artificial intelligence (AI) systems are the remedy to the current situation. However, the lack of application in real-world conditions has limited their consideration in clinical settings. This study validated a clinical AI system, COVIDiag, to aid radiologists in accurate and rapid evaluation of COVID-19 cases. 50 COVID-19 and 50 non-COVID-19 pneumonia cases were included from each of five centers: Argentina, Turkey, Iran, Netherlands, and Italy. The Dutch database included only 50 COVID-19 cases. The performance parameters namely sensitivity, specificity, accuracy, and area under the ROC curve (AUC) were computed for each database using COVIDiag model. The most common pattern of involvement among COVID-19 cases in all databases were bilateral involvement of upper and lower lobes with ground-glass opacities. The best sensitivity of 92.0% was recorded for the Italian database. The system achieved an AUC of 0.983, 0.914, 0.910, and 0.882 for Argentina, Turkey, Iran, and Italy, respectively. The model obtained a sensitivity of 86.0% for the Dutch database. COVIDiag model could diagnose COVID-19 pneumonia in all of cohorts with AUC of 0.921 (sensitivity, specificity, and accuracy of 88.8%, 87.0%, and 88.0%, respectively). Our study confirmed the accuracy of our proposed AI model (COVIDiag) in the diagnosis of COVID-19 cases. Furthermore, the system demonstrated consistent optimal diagnostic performance on multinational databases, which is critical to determine the generalizability and objectivity of the proposed COVIDiag model. Our results are significant as they provide real-world evidence regarding the applicability of AI systems in clinical medicine.
Collapse
Affiliation(s)
- Ali Abbasian Ardakani
- Radiology Technology Department, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Robert M Kwee
- Department of Radiology, Zuyderland Medical Center, Heerlen/Sittard-Geleen, the Netherlands
| | | | | | - Taha Yusuf Kuzan
- Department of Radiology, Sancaktepe Sehit Prof. Dr. Ilhan Varank Training and Research Hospital, Istanbul, Turkey
| | - Kübra Murzoğlu Altintoprak
- Department of Radiology, Sancaktepe Sehit Prof. Dr. Ilhan Varank Training and Research Hospital, Istanbul, Turkey
| | - Giulia Besutti
- Radiology Department, Azienda USL - IRCCS di Reggio Emilia, Reggio Emilia, Italy.,Clinical and Experimental Medicine PhD program, University of Modena and Reggio Emilia, Modena, Italy
| | - Filippo Monelli
- Radiology Department, Azienda USL - IRCCS di Reggio Emilia, Reggio Emilia, Italy.,Clinical and Experimental Medicine PhD program, University of Modena and Reggio Emilia, Modena, Italy
| | - Fariborz Faeghi
- Radiology Technology Department, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - U Rajendra Acharya
- Ngee Ann Polytechnic, Department of Electronics and Computer Engineering, 599489, Singapore.,Department of Biomedical Engineering, School of Science and Technology, SUSS University, Singapore.,Department of Biomedical Informatics and Medical Engineering, Asia University, Taichung, Taiwan
| | - Afshin Mohammadi
- Department of Radiology, Faculty of Medicine, Urmia University of Medical Science, Urmia, Iran
| |
Collapse
|
26
|
Pathan S, Siddalingaswamy PC, Kumar P, Pai M M M, Ali T, Acharya UR. Novel ensemble of optimized CNN and dynamic selection techniques for accurate Covid-19 screening using chest CT images. Comput Biol Med 2021; 137:104835. [PMID: 34508976 PMCID: PMC8418990 DOI: 10.1016/j.compbiomed.2021.104835] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 08/30/2021] [Accepted: 09/01/2021] [Indexed: 01/20/2023]
Abstract
The world is significantly affected by infectious coronavirus disease (covid-19). Timely prognosis and treatment are important to control the spread of this infection. Unreliable screening systems and limited number of clinical facilities are the major hurdles in controlling the spread of covid-19. Nowadays, many automated detection systems based on deep learning techniques using computed tomography (CT) images have been proposed to detect covid-19. However, these systems have the following drawbacks: (i) limited data problem poses a major hindrance to train the deep neural network model to provide accurate diagnosis, (ii) random choice of hyperparameters of Convolutional Neural Network (CNN) significantly affects the classification performance, since the hyperparameters have to be application dependent and, (iii) the generalization ability using CNN classification is usually not validated. To address the aforementioned issues, we propose two models: (i) based on a transfer learning approach, and (ii) using novel strategy to optimize the CNN hyperparameters using Whale optimization-based BAT algorithm + AdaBoost classifier built using dynamic ensemble selection techniques. According to our second method depending on the characteristics of test sample, the classifier is chosen, thereby reducing the risk of overfitting and simultaneously produced promising results. Our proposed methodologies are developed using 746 CT images. Our method obtained a sensitivity, specificity, accuracy, F-1 score, and precision of 0.98, 0.97, 0.98, 0.98, and 0.98, respectively with five-fold cross-validation strategy. Our developed prototype is ready to be tested with huge chest CT images database before its real-world application.
Collapse
Affiliation(s)
- Sameena Pathan
- Department of Information and Communication Technology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, India.
| | - P C Siddalingaswamy
- Department of Computer Science and Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, India.
| | - Preetham Kumar
- Department of Information and Communication Technology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, India.
| | - Manohara Pai M M
- Department of Information and Communication Technology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, India.
| | - Tanweer Ali
- Department of Electronics and Communication Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, India.
| | - U Rajendra Acharya
- Dept. of Electronics and Computer Engineering, Ngee Ann Polytechnic, Singapore; Ngee Ann Polytechnic, Department of Electronics and Computer Engineering, 599489, Singapore; Department of Biomedical Engineering, School of Science and Technology, SUSS University, Singapore; Department of Biomedical Informatics and Medical Engineering, Asia University, Taichung, Taiwan.
| |
Collapse
|
27
|
Laino ME, Ammirabile A, Posa A, Cancian P, Shalaby S, Savevski V, Neri E. The Applications of Artificial Intelligence in Chest Imaging of COVID-19 Patients: A Literature Review. Diagnostics (Basel) 2021; 11:1317. [PMID: 34441252 PMCID: PMC8394327 DOI: 10.3390/diagnostics11081317] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/02/2021] [Accepted: 07/09/2021] [Indexed: 12/23/2022] Open
Abstract
Diagnostic imaging is regarded as fundamental in the clinical work-up of patients with a suspected or confirmed COVID-19 infection. Recent progress has been made in diagnostic imaging with the integration of artificial intelligence (AI) and machine learning (ML) algorisms leading to an increase in the accuracy of exam interpretation and to the extraction of prognostic information useful in the decision-making process. Considering the ever expanding imaging data generated amid this pandemic, COVID-19 has catalyzed the rapid expansion in the application of AI to combat disease. In this context, many recent studies have explored the role of AI in each of the presumed applications for COVID-19 infection chest imaging, suggesting that implementing AI applications for chest imaging can be a great asset for fast and precise disease screening, identification and characterization. However, various biases should be overcome in the development of further ML-based algorithms to give them sufficient robustness and reproducibility for their integration into clinical practice. As a result, in this literature review, we will focus on the application of AI in chest imaging, in particular, deep learning, radiomics and advanced imaging as quantitative CT.
Collapse
Affiliation(s)
- Maria Elena Laino
- Artificial Intelligence Center, IRCCS Humanitas Research Hospital, via Manzoni 56, Rozzano, 20089 Milan, Italy; (P.C.); (V.S.)
| | - Angela Ammirabile
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20072 Milan, Italy;
- Department of Radiology, IRCCS Humanitas Research Hospital, via Manzoni 56, Rozzano, 20089 Milan, Italy
| | - Alessandro Posa
- Department of Diagnostic Imaging, Oncological Radiotherapy and Hematology, Fondazione Policlinico Universitario Agostino Gemelli—IRCCS, 00168 Rome, Italy;
| | - Pierandrea Cancian
- Artificial Intelligence Center, IRCCS Humanitas Research Hospital, via Manzoni 56, Rozzano, 20089 Milan, Italy; (P.C.); (V.S.)
| | - Sherif Shalaby
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma 67, 56126 Pisa, Italy; (S.S.); (E.N.)
| | - Victor Savevski
- Artificial Intelligence Center, IRCCS Humanitas Research Hospital, via Manzoni 56, Rozzano, 20089 Milan, Italy; (P.C.); (V.S.)
| | - Emanuele Neri
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma 67, 56126 Pisa, Italy; (S.S.); (E.N.)
- Italian Society of Medical and Interventional Radiology, SIRM Foundation, Via della Signora 2, 20122 Milano, Italy
| |
Collapse
|
28
|
Saygılı A. A new approach for computer-aided detection of coronavirus (COVID-19) from CT and X-ray images using machine learning methods. Appl Soft Comput 2021; 105:107323. [PMID: 33746657 PMCID: PMC7968176 DOI: 10.1016/j.asoc.2021.107323] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/09/2021] [Accepted: 03/11/2021] [Indexed: 12/24/2022]
Abstract
The COVID-19 outbreak has been causing a global health crisis since December 2019. Due to this virus declared by the World Health Organization as a pandemic, the health authorities of the countries are constantly trying to reduce the spread rate of the virus by emphasizing the rules of masks, social distance, and hygiene. COVID-19 is highly contagious and spreads rapidly globally and early detection is of paramount importance. Any technological tool that can provide rapid detection of COVID-19 infection with high accuracy can be very useful to medical professionals. The disease findings on COVID-19 images, such as computed tomography (CT) and X-rays, are similar to other lung infections, making it difficult for medical professionals to distinguish COVID-19. Therefore, computer-aided diagnostic solutions are being developed to facilitate the identification of positive COVID-19 cases. The method currently used as a gold standard in detecting the virus is the Reverse Transcription Polymerase Chain Reaction (RT-PCR) test. Due to the high false-negative rate of this test and the delays in the test results, alternative solutions are sought. This study was conducted to investigate the contribution of machine learning and image processing to the rapid and accurate detection of COVID-19 from two of the most widely used different medical imaging modes, chest X-ray and CT images. The main purpose of this study is to support early diagnosis and treatment to end the coronavirus epidemic as soon as possible. One of the primary aims of the study is to provide support to medical professionals who are most worn out and working under intense stress during COVID-19 through smart learning methods and image classification models. The proposed approach was applied to three different public COVID-19 data sets and consists of five basic steps: data set acquisition, pre-processing, feature extraction, dimension reduction, and classification stages. Each stage has its sub-operations. The proposed model performs in considerable levels of COVID-19 detection for dataset-1 (CT), dataset-2 (X-ray) and dataset-3 (CT) with the accuracy of 89.41%, 99.02%, 98.11%, respectively. On the other hand, in the X-ray data set, an accuracy of 85.96% was obtained for COVID-19 (+), COVID-19 (-), and those with Pneumonia but not COVID-19 classes. As a result of the study, it has been shown that COVID-19 can be detected with a high success rate in about less than one minute with image processing and classical learning methods. In the light of the findings, it is possible to say that the proposed system will help radiologists in their decisions, will be useful in the early diagnosis of the virus, and can distinguish pneumonia caused by the COVID-19 virus from the pneumonia of other diseases.
Collapse
Affiliation(s)
- Ahmet Saygılı
- Department of Computer Engineering, Çorlu Faculty of Engineering, Tekirdağ Namık Kemal University, Tekirdağ, Turkey
| |
Collapse
|
29
|
Singh VK, Kolekar MH. Deep learning empowered COVID-19 diagnosis using chest CT scan images for collaborative edge-cloud computing platform. MULTIMEDIA TOOLS AND APPLICATIONS 2021; 81:3-30. [PMID: 34220289 PMCID: PMC8236565 DOI: 10.1007/s11042-021-11158-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 05/01/2021] [Accepted: 06/07/2021] [Indexed: 05/04/2023]
Abstract
The novel coronavirus outbreak has spread worldwide, causing respiratory infections in humans, leading to a huge global pandemic COVID-19. According to World Health Organization, the only way to curb this spread is by increasing the testing and isolating the infected. Meanwhile, the clinical testing currently being followed is not easily accessible and requires much time to give the results. In this scenario, remote diagnostic systems could become a handy solution. Some existing studies leverage the deep learning approach to provide an effective alternative to clinical diagnostic techniques. However, it is difficult to use such complex networks in resource constraint environments. To address this problem, we developed a fine-tuned deep learning model inspired by the architecture of the MobileNet V2 model. Moreover, the developed model is further optimized in terms of its size and complexity to make it compatible with mobile and edge devices. The results of extensive experimentation performed on a real-world dataset consisting of 2482 chest Computerized Tomography scan images strongly suggest the superiority of the developed fine-tuned deep learning model in terms of high accuracy and faster diagnosis time. The proposed model achieved a classification accuracy of 96.40%, with approximately ten times shorter response time than prevailing deep learning models. Further, McNemar's statistical test results also prove the efficacy of the proposed model.
Collapse
Affiliation(s)
- Vipul Kumar Singh
- Department of Electrical Engineering, Indian Institute of Technology, Patna, India
| | | |
Collapse
|
30
|
Rasheed J, Jamil A, Hameed AA, Al-Turjman F, Rasheed A. COVID-19 in the Age of Artificial Intelligence: A Comprehensive Review. Interdiscip Sci 2021; 13:153-175. [PMID: 33886097 PMCID: PMC8060789 DOI: 10.1007/s12539-021-00431-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 04/03/2021] [Accepted: 04/09/2021] [Indexed: 12/23/2022]
Abstract
The recent COVID-19 pandemic, which broke at the end of the year 2019 in Wuhan, China, has infected more than 98.52 million people by today (January 23, 2021) with over 2.11 million deaths across the globe. To combat the growing pandemic on urgent basis, there is need to design effective solutions using new techniques that could exploit recent technology, such as machine learning, deep learning, big data, artificial intelligence, Internet of Things, for identification and tracking of COVID-19 cases in near real time. These technologies have offered inexpensive and rapid solution for proper screening, analyzing, prediction and tracking of COVID-19 positive cases. In this paper, a detailed review of the role of AI as a decisive tool for prognosis, analyze, and tracking the COVID-19 cases is performed. We searched various databases including Google Scholar, IEEE Library, Scopus and Web of Science using a combination of different keywords consisting of COVID-19 and AI. We have identified various applications, where AI can help healthcare practitioners in the process of identification and monitoring of COVID-19 cases. A compact summary of the corona virus cases are first highlighted, followed by the application of AI. Finally, we conclude the paper by highlighting new research directions and discuss the research challenges. Even though scientists and researchers have gathered and exchanged sufficient knowledge over last couple of months, but this structured review also examined technological perspectives while encompassing the medical aspect to help the healthcare practitioners, policymakers, decision makers, policymakers, AI scientists and virologists to quell this infectious COVID-19 pandemic outbreak.
Collapse
Affiliation(s)
- Jawad Rasheed
- Department of Computer Engineering, Istanbul Aydin University, Istanbul, 34295, Turkey.
| | - Akhtar Jamil
- Department of Computer Engineering, Istanbul Sabahattin Zaim University, Istanbul, 34303, Turkey
| | - Alaa Ali Hameed
- Department of Computer Engineering, Istanbul Sabahattin Zaim University, Istanbul, 34303, Turkey
| | - Fadi Al-Turjman
- Artificial Intelligence Engineering Department, Research Center for AI and IoT, Near East University, Nicosia, Mersin 10, Turkey
| | - Ahmad Rasheed
- Department of Electrical and Electronics Engineering, Eastern Mediterranean University, Famagusta, Mersin 10, Turkey
| |
Collapse
|
31
|
Jahmunah V, Sudarshan VK, Oh SL, Gururajan R, Gururajan R, Zhou X, Tao X, Faust O, Ciaccio EJ, Ng KH, Acharya UR. Future IoT tools for COVID-19 contact tracing and prediction: A review of the state-of-the-science. INTERNATIONAL JOURNAL OF IMAGING SYSTEMS AND TECHNOLOGY 2021; 31:455-471. [PMID: 33821093 PMCID: PMC8013643 DOI: 10.1002/ima.22552] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 12/13/2020] [Accepted: 01/04/2021] [Indexed: 05/17/2023]
Abstract
In 2020 the world is facing unprecedented challenges due to COVID-19. To address these challenges, many digital tools are being explored and developed to contain the spread of the disease. With the lack of availability of vaccines, there is an urgent need to avert resurgence of infections by putting some measures, such as contact tracing, in place. While digital tools, such as phone applications are advantageous, they also pose challenges and have limitations (eg, wireless coverage could be an issue in some cases). On the other hand, wearable devices, when coupled with the Internet of Things (IoT), are expected to influence lifestyle and healthcare directly, and they may be useful for health monitoring during the global pandemic and beyond. In this work, we conduct a literature review of contact tracing methods and applications. Based on the literature review, we found limitations in gathering health data, such as insufficient network coverage. To address these shortcomings, we propose a novel intelligent tool that will be useful for contact tracing and prediction of COVID-19 clusters. The solution comprises a phone application combined with a wearable device, infused with unique intelligent IoT features (complex data analysis and intelligent data visualization) embedded within the system to aid in COVID-19 analysis. Contact tracing applications must establish data collection and data interpretation. Intelligent data interpretation can assist epidemiological scientists in anticipating clusters, and can enable them to take necessary action in improving public health management. Our proposed tool could also be used to curb disease incidence in future global health crises.
Collapse
Affiliation(s)
| | - Vidya K. Sudarshan
- Biomedical EngineeringSchool of Social Science and Technology, Singapore University of Social SciencesSingaporeSingapore
| | - Shu Lih Oh
- School of EngineeringNgee Ann PolytechnicSingaporeSingapore
| | - Raj Gururajan
- School of Management and EnterpriseUniversity of Southern QueenslandToowoombaQueenslandAustralia
| | | | - Xujuan Zhou
- School of Management and EnterpriseUniversity of Southern QueenslandToowoombaQueenslandAustralia
| | - Xiaohui Tao
- Faculty of Health, Engineering and SciencesUniversity of QueenslandBrisbaneAustralia
| | - Oliver Faust
- Department of Engineering and MathematicsSheffield Hallam UniversitySheffieldUnited Kingdom
| | - Edward J. Ciaccio
- Department of Medicine – CardiologyColumbia UniversityNew YorkNew YorkUSA
| | - Kwan Hoong Ng
- Department of Biomedical ImagingUniversity of MalayaKuala LumpurMalaysia
- Department of Medical Imaging and Radiological SciencesCollege of Health Sciences, Kaohsiung Medical UniversityKaohsiungTaiwan
| | - U. Rajendra Acharya
- School of EngineeringNgee Ann PolytechnicSingaporeSingapore
- Biomedical EngineeringSchool of Social Science and Technology, Singapore University of Social SciencesSingaporeSingapore
- School of Management and EnterpriseUniversity of Southern QueenslandToowoombaQueenslandAustralia
- International Research Organization for Advanced Science and Technology (IROAST)Kumamoto UniversityKumamotoJapan
- Department Bioinformatics and Medical EngineeringAsia UniversityWufengTaiwan
| |
Collapse
|
32
|
Gong K, Wu D, Arru CD, Homayounieh F, Neumark N, Guan J, Buch V, Kim K, Bizzo BC, Ren H, Tak WY, Park SY, Lee YR, Kang MK, Park JG, Carriero A, Saba L, Masjedi M, Talari H, Babaei R, Mobin HK, Ebrahimian S, Guo N, Digumarthy SR, Dayan I, Kalra MK, Li Q. A multi-center study of COVID-19 patient prognosis using deep learning-based CT image analysis and electronic health records. Eur J Radiol 2021; 139:109583. [PMID: 33846041 PMCID: PMC7863774 DOI: 10.1016/j.ejrad.2021.109583] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 01/28/2021] [Accepted: 02/01/2021] [Indexed: 12/31/2022]
Abstract
PURPOSE As of August 30th, there were in total 25.1 million confirmed cases and 845 thousand deaths caused by coronavirus disease of 2019 (COVID-19) worldwide. With overwhelming demands on medical resources, patient stratification based on their risks is essential. In this multi-center study, we built prognosis models to predict severity outcomes, combining patients' electronic health records (EHR), which included vital signs and laboratory data, with deep learning- and CT-based severity prediction. METHOD We first developed a CT segmentation network using datasets from multiple institutions worldwide. Two biomarkers were extracted from the CT images: total opacity ratio (TOR) and consolidation ratio (CR). After obtaining TOR and CR, further prognosis analysis was conducted on datasets from INSTITUTE-1, INSTITUTE-2 and INSTITUTE-3. For each data cohort, generalized linear model (GLM) was applied for prognosis prediction. RESULTS For the deep learning model, the correlation coefficient of the network prediction and manual segmentation was 0.755, 0.919, and 0.824 for the three cohorts, respectively. The AUC (95 % CI) of the final prognosis models was 0.85(0.77,0.92), 0.93(0.87,0.98), and 0.86(0.75,0.94) for INSTITUTE-1, INSTITUTE-2 and INSTITUTE-3 cohorts, respectively. Either TOR or CR exist in all three final prognosis models. Age, white blood cell (WBC), and platelet (PLT) were chosen predictors in two cohorts. Oxygen saturation (SpO2) was a chosen predictor in one cohort. CONCLUSION The developed deep learning method can segment lung infection regions. Prognosis results indicated that age, SpO2, CT biomarkers, PLT, and WBC were the most important prognostic predictors of COVID-19 in our prognosis model.
Collapse
Affiliation(s)
- Kuang Gong
- Department of Radiology, Massachusetts General Hospital, Boston, United States
| | - Dufan Wu
- Department of Radiology, Massachusetts General Hospital, Boston, United States
| | - Chiara Daniela Arru
- Department of Radiology, Massachusetts General Hospital, Boston, United States
| | - Fatemeh Homayounieh
- Department of Radiology, Massachusetts General Hospital, Boston, United States
| | - Nir Neumark
- MGH & BWH Center for Clinical Data Science, Boston, United States
| | | | - Varun Buch
- MGH & BWH Center for Clinical Data Science, Boston, United States
| | - Kyungsang Kim
- Department of Radiology, Massachusetts General Hospital, Boston, United States
| | | | - Hui Ren
- Department of Radiology, Massachusetts General Hospital, Boston, United States
| | - Won Young Tak
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Soo Young Park
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Yu Rim Lee
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Min Kyu Kang
- Department of Internal Medicine, Yeungnam University College of Medicine, Daegu, South Korea
| | - Jung Gil Park
- Department of Internal Medicine, Yeungnam University College of Medicine, Daegu, South Korea
| | - Alessandro Carriero
- Radiologia, Azienda Ospedaliera Universitaria Maggiore della Carità, Novara, Italy
| | - Luca Saba
- Radiologia, Azienda Ospedaliera Universitaria Policlinico di Monserrato, Italy
| | - Mahsa Masjedi
- Department of Radiology, Kashan University of Medical Sciences, Kashan, Iran
| | - Hamidreza Talari
- Department of Radiology, Kashan University of Medical Sciences, Kashan, Iran
| | - Rosa Babaei
- Department of Radiology, Firoozgar Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Hadi Karimi Mobin
- Department of Radiology, Firoozgar Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Shadi Ebrahimian
- Department of Radiology, Massachusetts General Hospital, Boston, United States
| | - Ning Guo
- Department of Radiology, Massachusetts General Hospital, Boston, United States
| | - Subba R Digumarthy
- Department of Radiology, Massachusetts General Hospital, Boston, United States
| | - Ittai Dayan
- MGH & BWH Center for Clinical Data Science, Boston, United States
| | - Mannudeep K Kalra
- Department of Radiology, Massachusetts General Hospital, Boston, United States.
| | - Quanzheng Li
- Department of Radiology, Massachusetts General Hospital, Boston, United States.
| |
Collapse
|
33
|
COVID-19 Detection Empowered with Machine Learning and Deep Learning Techniques: A Systematic Review. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11083414] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
COVID-19 has infected 223 countries and caused 2.8 million deaths worldwide (at the time of writing this article), and the death rate is increasing continuously. Early diagnosis of COVID patients is a critical challenge for medical practitioners, governments, organizations, and countries to overcome the rapid spread of the deadly virus in any geographical area. In this situation, the previous epidemic evidence on Machine Learning (ML) and Deep Learning (DL) techniques encouraged the researchers to play a significant role in detecting COVID-19. Similarly, the rising scope of ML/DL methodologies in the medical domain also advocates its significant role in COVID-19 detection. This systematic review presents ML and DL techniques practiced in this era to predict, diagnose, classify, and detect the coronavirus. In this study, the data was retrieved from three prevalent full-text archives, i.e., Science Direct, Web of Science, and PubMed, using the search code strategy on 16 March 2021. Using professional assessment, among 961 articles retrieved by an initial query, only 40 articles focusing on ML/DL-based COVID-19 detection schemes were selected. Findings have been presented as a country-wise distribution of publications, article frequency, various data collection, analyzed datasets, sample sizes, and applied ML/DL techniques. Precisely, this study reveals that ML/DL technique accuracy lay between 80% to 100% when detecting COVID-19. The RT-PCR-based model with Support Vector Machine (SVM) exhibited the lowest accuracy (80%), whereas the X-ray-based model achieved the highest accuracy (99.7%) using a deep convolutional neural network. However, current studies have shown that an anal swab test is super accurate to detect the virus. Moreover, this review addresses the limitations of COVID-19 detection along with the detailed discussion of the prevailing challenges and future research directions, which eventually highlight outstanding issues.
Collapse
|
34
|
Xie H, Li Q, Hu PF, Zhu SH, Zhang JF, Zhou HD, Zhou HB. Helping Roles of Artificial Intelligence (AI) in the Screening and Evaluation of COVID-19 Based on the CT Images. J Inflamm Res 2021; 14:1165-1172. [PMID: 33814922 PMCID: PMC8009533 DOI: 10.2147/jir.s301866] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 03/03/2021] [Indexed: 12/21/2022] Open
Abstract
Objective The aim of this study was to explore the role of the AI system which was designed and developed based on the characteristics of COVID-19 CT images in the screening and evaluation of COVID-19. Methods The research team adopted an improved U-shaped neural network to segment lungs and pneumonia lesions in CT images through multilayer convolution iterations. Then the appropriate 159 cases were selected to establish and train the model, and Dice loss function and Adam optimizer were used for network training with the initial learning rate of 0.001. Finally, 39 cases (29 positive and 10 negative) were selected for the comparative test. Experimental group: an attending physician a and an associate chief physician a read the CT images to diagnose COVID-19 with the help of the AI system. Control group: an attending physician b and an associate chief physician b did the diagnosis only by their experience, without the help of the AI system. The time spent by each doctor in the diagnosis and their diagnostic results were recorded. Paired t-test, univariate ANOVA, chi-squared test, receiver operating characteristic curves, and logistic regression analysis were used for the statistical analysis. Results There was statistical significance in the time spent in the diagnosis of different groups (P<0.05). For the group with the optimal diagnostic results, univariate and multivariate analyses both suggested no significant correlation for all variables, and thus it might be the assistance of the AI system, the epidemiological history and other factors that played an important role. Conclusion The AI system developed by us, which was created due to COVID-19, had certain clinical practicability and was worth popularizing.
Collapse
Affiliation(s)
- Hui Xie
- Department of Radiation Oncology, Affiliated Hospital (Clinical College) of Xiangnan University, Chenzhou, 423000, People's Republic of China.,Key Laboratory of Medical Imaging and Artificial Intelligence of Hunan Province, Chenzhou, 423000, People's Republic of China
| | - Qing Li
- Key Laboratory of Medical Imaging and Artificial Intelligence of Hunan Province, Chenzhou, 423000, People's Republic of China.,Department of Interventional Vascular Surgery, Affiliated Hospital (Clinical College) of Xiangnan University, Chenzhou, 423000, People's Republic of China
| | - Ping-Feng Hu
- Department of Radiology, The Second People's Hospital of Chenzhou City, Chenzhou, 423000, People's Republic of China
| | - Sen-Hua Zhu
- Beijing Linking Medical Technology Co., Ltd, Beijing, 100085, People's Republic of China
| | - Jian-Fang Zhang
- Department of Physical Examination, Disease Control and Prevention of Chenzhou, Chenzhou, 423000, People's Republic of China
| | - Hong-Da Zhou
- Department of Radiation Oncology, Affiliated Hospital (Clinical College) of Xiangnan University, Chenzhou, 423000, People's Republic of China
| | - Hai-Bo Zhou
- Department of Radiology, The Second People's Hospital of Chenzhou City, Chenzhou, 423000, People's Republic of China
| |
Collapse
|
35
|
Mohammad-Rahimi H, Nadimi M, Ghalyanchi-Langeroudi A, Taheri M, Ghafouri-Fard S. Application of Machine Learning in Diagnosis of COVID-19 Through X-Ray and CT Images: A Scoping Review. Front Cardiovasc Med 2021; 8:638011. [PMID: 33842563 PMCID: PMC8027078 DOI: 10.3389/fcvm.2021.638011] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 02/23/2021] [Indexed: 12/15/2022] Open
Abstract
Coronavirus disease, first detected in late 2019 (COVID-19), has spread fast throughout the world, leading to high mortality. This condition can be diagnosed using RT-PCR technique on nasopharyngeal and throat swabs with sensitivity values ranging from 30 to 70%. However, chest CT scans and X-ray images have been reported to have sensitivity values of 98 and 69%, respectively. The application of machine learning methods on CT and X-ray images has facilitated the accurate diagnosis of COVID-19. In this study, we reviewed studies which used machine and deep learning methods on chest X-ray images and CT scans for COVID-19 diagnosis and compared their performance. The accuracy of these methods ranged from 76% to more than 99%, indicating the applicability of machine and deep learning methods in the clinical diagnosis of COVID-19.
Collapse
Affiliation(s)
- Hossein Mohammad-Rahimi
- Dental Research Center, Research Institute of Dental Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohadeseh Nadimi
- Department of Medical Physics and Biomedical Engineering, Tehran University of Medical Sciences (TUMS), Tehran, Iran
- Research Center for Biomedical Technologies and Robotics (RCBTR), Tehran, Iran
| | - Azadeh Ghalyanchi-Langeroudi
- Department of Medical Physics and Biomedical Engineering, Tehran University of Medical Sciences (TUMS), Tehran, Iran
- Research Center for Biomedical Technologies and Robotics (RCBTR), Tehran, Iran
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
36
|
Yao JC, Wang T, Hou GH, Ou D, Li W, Zhu QD, Chen WC, Yang C, Wang LJ, Wang LP, Fan LY, Shi KY, Zhang J, Xu D, Li YQ. AI detection of mild COVID-19 pneumonia from chest CT scans. Eur Radiol 2021; 31:7192-7201. [PMID: 33738595 PMCID: PMC7971359 DOI: 10.1007/s00330-021-07797-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/11/2021] [Accepted: 02/16/2021] [Indexed: 11/12/2022]
Abstract
Objectives An artificial intelligence model was adopted to identify mild COVID-19 pneumonia from computed tomography (CT) volumes, and its diagnostic performance was then evaluated. Methods In this retrospective multicenter study, an atrous convolution-based deep learning model was established for the computer-assisted diagnosis of mild COVID-19 pneumonia. The dataset included 2087 chest CT exams collected from four hospitals between 1 January 2019 and 31 May 2020. The true positive rate, true negative rate, receiver operating characteristic curve, area under the curve (AUC) and convolutional feature map were used to evaluate the model. Results The proposed deep learning model was trained on 1538 patients and tested on an independent testing cohort of 549 patients. The overall sensitivity was 91.5% (195/213; p < 0.001, 95% CI: 89.2–93.9%), the overall specificity was 90.5% (304/336; p < 0.001, 95% CI: 88.0–92.9%) and the general AUC value was 0.955 (p < 0.001). Conclusions A deep learning model can accurately detect COVID-19 and serve as an important supplement to the COVID-19 reverse transcription–polymerase chain reaction (RT-PCR) test. Key Points • The implementation of a deep learning model to identify mild COVID-19 pneumonia was confirmed to be effective and feasible. • The strategy of using a binary code instead of the region of interest label to identify mild COVID-19 pneumonia was verified. • This AI model can assist in the early screening of COVID-19 without interfering with normal clinical examinations. Supplementary Information The online version contains supplementary material available at 10.1007/s00330-021-07797-x.
Collapse
Affiliation(s)
- Jin-Cao Yao
- Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), No. 1 of East Banshan Road, Hangzhou, Zhejiang Province, China.,Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Tao Wang
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guang-Hua Hou
- Department of Infection Medicine, Huangpi People's Hospital of Jianghan University, Wuhan, China
| | - Di Ou
- Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), No. 1 of East Banshan Road, Hangzhou, Zhejiang Province, China.,Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Wei Li
- Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), No. 1 of East Banshan Road, Hangzhou, Zhejiang Province, China.,Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Qiao-Dan Zhu
- Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), No. 1 of East Banshan Road, Hangzhou, Zhejiang Province, China.,Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Wen-Cong Chen
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, USA
| | - Chen Yang
- Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), No. 1 of East Banshan Road, Hangzhou, Zhejiang Province, China.,Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Li-Jing Wang
- Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), No. 1 of East Banshan Road, Hangzhou, Zhejiang Province, China.,Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Li-Ping Wang
- Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), No. 1 of East Banshan Road, Hangzhou, Zhejiang Province, China.,Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Lin-Yin Fan
- Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), No. 1 of East Banshan Road, Hangzhou, Zhejiang Province, China.,Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Kai-Yuan Shi
- Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), No. 1 of East Banshan Road, Hangzhou, Zhejiang Province, China.,Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Jie Zhang
- Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), No. 1 of East Banshan Road, Hangzhou, Zhejiang Province, China.,Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Dong Xu
- Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), No. 1 of East Banshan Road, Hangzhou, Zhejiang Province, China. .,Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China.
| | - Ya-Qing Li
- Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), No. 1 of East Banshan Road, Hangzhou, Zhejiang Province, China. .,Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China. .,Department of Respiratory Medicine, Zhejiang Provincial People's Hospital, Hangzhou, China.
| |
Collapse
|
37
|
Liu Q, Pang B, Li H, Zhang B, Liu Y, Lai L, Le W, Li J, Xia T, Zhang X, Ou C, Ma J, Li S, Guo X, Zhang S, Zhang Q, Jiang M, Zeng Q. Machine learning models for predicting critical illness risk in hospitalized patients with COVID-19 pneumonia. J Thorac Dis 2021; 13:1215-1229. [PMID: 33717594 PMCID: PMC7947498 DOI: 10.21037/jtd-20-2580] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Background To develop machine learning classifiers at admission for predicting which patients with coronavirus disease 2019 (COVID-19) who will progress to critical illness. Methods A total of 158 patients with laboratory-confirmed COVID-19 admitted to three designated hospitals between December 31, 2019 and March 31, 2020 were retrospectively collected. 27 clinical and laboratory variables of COVID-19 patients were collected from the medical records. A total of 201 quantitative CT features of COVID-19 pneumonia were extracted by using an artificial intelligence software. The critically ill cases were defined according to the COVID-19 guidelines. The least absolute shrinkage and selection operator (LASSO) logistic regression was used to select the predictors of critical illness from clinical and radiological features, respectively. Accordingly, we developed clinical and radiological models using the following machine learning classifiers, including naive bayes (NB), linear regression (LR), random forest (RF), extreme gradient boosting (XGBoost), adaptive boosting (AdaBoost), K-nearest neighbor (KNN), kernel support vector machine (k-SVM), and back propagation neural networks (BPNN). The combined model incorporating the selected clinical and radiological factors was also developed using the eight above-mentioned classifiers. The predictive efficiency of the models is validated using a 5-fold cross-validation method. The performance of the models was compared by the area under the receiver operating characteristic curve (AUC). Results The mean age of all patients was 58.9±13.9 years and 89 (56.3%) were males. 35 (22.2%) patients deteriorated to critical illness. After LASSO analysis, four clinical features including lymphocyte percentage, lactic dehydrogenase, neutrophil count, and D-dimer and four quantitative CT features were selected. The XGBoost-based clinical model yielded the highest AUC of 0.960 [95% confidence interval (CI): 0.913–1.000)]. The XGBoost-based radiological model achieved an AUC of 0.890 (95% CI: 0.757–1.000). However, the predictive efficacy of XGBoost-based combined model was very close to that of the XGBoost-based clinical model, with an AUC of 0.955 (95% CI: 0.906–1.000). Conclusions A XGBoost-based based clinical model on admission might be used as an effective tool to identify patients at high risk of critical illness.
Collapse
Affiliation(s)
- Qin Liu
- Department of Radiology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Baoguo Pang
- Department of Radiology, Huangpi District Hospital of Traditional Chinese Medicine, Wuhan, China
| | - Haijun Li
- Department of Radiology, Hankou Hospital of Wuhan, Wuhan, China
| | - Bin Zhang
- Department of Radiology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Yumei Liu
- Department of Respiratory, Hankou Hospital of Wuhan, Wuhan, China
| | - Lihua Lai
- Department of Radiology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wenjun Le
- Department of Respiratory, First Affiliated Hospital of Guangxi University of Science and Technology, Liuzhou, China
| | - Jianyu Li
- Department of Radiology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Tingting Xia
- Department of Radiology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiaoxian Zhang
- Pulmonary and Critical Care Medicine, Guangzhou Institute of Respiratory Health, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, State Key Laboratory of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Changxing Ou
- Pulmonary and Critical Care Medicine, Guangzhou Institute of Respiratory Health, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, State Key Laboratory of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jianjuan Ma
- Department of Pediatric Hematology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Shenghao Li
- Department of Radiology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiumei Guo
- Department of Radiology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Shuixing Zhang
- Department of Radiology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Qingling Zhang
- Pulmonary and Critical Care Medicine, Guangzhou Institute of Respiratory Health, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, State Key Laboratory of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Min Jiang
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Qingsi Zeng
- Department of Radiology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
38
|
Chaddad A, Hassan L, Desrosiers C. Deep CNN models for predicting COVID-19 in CT and x-ray images. J Med Imaging (Bellingham) 2021; 8:014502. [PMID: 33912622 PMCID: PMC8071782 DOI: 10.1117/1.jmi.8.s1.014502] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 03/26/2021] [Indexed: 01/12/2023] Open
Abstract
Purpose: Coronavirus disease 2019 (COVID-19) is a new infection that has spread worldwide and with no automatic model to reliably detect its presence from images. We aim to investigate the potential of deep transfer learning to predict COVID-19 infection using chest computed tomography (CT) and x-ray images. Approach: Regions of interest (ROI) corresponding to ground-glass opacities (GGO), consolidations, and pleural effusions were labeled in 100 axial lung CT images from 60 COVID-19-infected subjects. These segmented regions were then employed as an additional input to six deep convolutional neural network (CNN) architectures (AlexNet, DenseNet, GoogleNet, NASNet-Mobile, ResNet18, and DarkNet), pretrained on natural images, to differentiate between COVID-19 and normal CT images. We also explored the model's ability to classify x-ray images as COVID-19, non-COVID-19 pneumonia, or normal. Performance on test images was measured with global accuracy and area under the receiver operating characteristic curve (AUC). Results: When using raw CT images as input to the tested models, the highest accuracy of 82% and AUC of 88.16% is achieved. Incorporating the three ROIs as an additional model inputs further boosts performance to an accuracy of 82.30% and an AUC of 90.10% (DarkNet). For x-ray images, we obtained an outstanding AUC of 97% for classifying COVID-19 versus normal versus other. Combing chest CT and x-ray images, DarkNet architecture achieves the highest accuracy of 99.09% and AUC of 99.89% in classifying COVID-19 from non-COVID-19. Our results confirm the ability of deep CNNs with transfer learning to predict COVID-19 in both chest CT and x-ray images. Conclusions: The proposed method could help radiologists increase the accuracy of their diagnosis and increase efficiency in COVID-19 management.
Collapse
Affiliation(s)
- Ahmad Chaddad
- Guilin University of Electronic Technology, School of Artificial Intelligence, Guilin, China
| | - Lama Hassan
- Guilin University of Electronic Technology, School of Artificial Intelligence, Guilin, China
| | | |
Collapse
|
39
|
Li Y, Shang K, Bian W, He L, Fan Y, Ren T, Zhang J. Prediction of disease progression in patients with COVID-19 by artificial intelligence assisted lesion quantification. Sci Rep 2020; 10:22083. [PMID: 33328512 PMCID: PMC7745019 DOI: 10.1038/s41598-020-79097-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 11/27/2020] [Indexed: 01/08/2023] Open
Abstract
To investigate the value of artificial intelligence (AI) assisted quantification on initial chest CT for prediction of disease progression and clinical outcome in patients with coronavirus disease 2019 (COVID-19). Patients with confirmed COVID-19 infection and initially of non-severe type were retrospectively included. The initial CT scan on admission was used for imaging analysis. The presence of ground glass opacity (GGO), consolidation and other findings were visually evaluated. CT severity score was calculated according to the extent of lesion involvement. In addition, AI based quantification of GGO and consolidation volume were also performed. 123 patients (mean age: 64.43 ± 14.02; 62 males) were included. GGO + consolidation was more frequently revealed in progress-to-severe group whereas pure GGO was more likely to be found in non-severe group. Compared to non-severe group, patients in progress-to-severe group had larger GGO volume (167.33 ± 167.88 cm3 versus 101.12 ± 127 cm3, p = 0.013) as well as consolidation volume (40.85 ± 60.4 cm3 versus 6.63 ± 14.91 cm3, p < 0.001). Among imaging parameters, consolidation volume had the largest area under curve (AUC) in discriminating non-severe from progress-to-severe group (AUC = 0.796, p < 0.001) and patients with or without critical events (AUC = 0.754, p < 0.001). According to multivariate regression, consolidation volume and age were two strongest predictors for disease progression (hazard ratio: 1.053 and 1.071, p: 0.006 and 0.008) whereas age and diabetes were predictors for unfavorable outcome. Consolidation volume quantified on initial chest CT was the strongest predictor for disease severity progression and larger consolidation volume was associated with unfavorable clinical outcome.
Collapse
Affiliation(s)
- Yuehua Li
- Institute of Diagnostic and Interventional Radiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, #600, Yishan Rd, Shanghai, 200233, China
| | - Kai Shang
- Institute of Diagnostic and Interventional Radiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, #600, Yishan Rd, Shanghai, 200233, China
| | - Wei Bian
- Department of Respiratory Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, #600, Yishan Rd, Shanghai, China
| | - Li He
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, #600, Yishan Rd, Shanghai, China
| | - Ying Fan
- Department of Respiratory Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, #600, Yishan Rd, Shanghai, China
| | - Tao Ren
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, #600, Yishan Rd, Shanghai, China
| | - Jiayin Zhang
- Institute of Diagnostic and Interventional Radiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, #600, Yishan Rd, Shanghai, 200233, China.
| |
Collapse
|
40
|
Rasheed J, Jamil A, Hameed AA, Aftab U, Aftab J, Shah SA, Draheim D. A survey on artificial intelligence approaches in supporting frontline workers and decision makers for the COVID-19 pandemic. CHAOS, SOLITONS, AND FRACTALS 2020; 141:110337. [PMID: 33071481 PMCID: PMC7547637 DOI: 10.1016/j.chaos.2020.110337] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 10/01/2020] [Indexed: 05/04/2023]
Abstract
While the world has experience with many different types of infectious diseases, the current crisis related to the spread of COVID-19 has challenged epidemiologists and public health experts alike, leading to a rapid search for, and development of, new and innovative solutions to combat its spread. The transmission of this virus has infected more than 18.92 million people as of August 6, 2020, with over half a million deaths across the globe; the World Health Organization (WHO) has declared this a global pandemic. A multidisciplinary approach needs to be followed for diagnosis, treatment and tracking, especially between medical and computer sciences, so, a common ground is available to facilitate the research work at a faster pace. With this in mind, this survey paper aimed to explore and understand how and which different technological tools and techniques have been used within the context of COVID-19. The primary contribution of this paper is in its collation of the current state-of-the-art technological approaches applied to the context of COVID-19, and doing this in a holistic way, covering multiple disciplines and different perspectives. The analysis is widened by investigating Artificial Intelligence (AI) approaches for the diagnosis, anticipate infection and mortality rate by tracing contacts and targeted drug designing. Moreover, the impact of different kinds of medical data used in diagnosis, prognosis and pandemic analysis is also provided. This review paper covers both medical and technological perspectives to facilitate the virologists, AI researchers and policymakers while in combating the COVID-19 outbreak.
Collapse
Affiliation(s)
- Jawad Rasheed
- Department of Computer Engineering, Istanbul Sabahattin Zaim University, Istanbul 34303, Turkey
| | - Akhtar Jamil
- Department of Computer Engineering, Istanbul Sabahattin Zaim University, Istanbul 34303, Turkey
| | - Alaa Ali Hameed
- Department of Computer Engineering, Istanbul Sabahattin Zaim University, Istanbul 34303, Turkey
| | - Usman Aftab
- Department of Pharmacology, University of Health Sciences, Lahore 54700, Pakistan
| | - Javaria Aftab
- Department of Chemistry, Istanbul Technical University, Istanbul 34467, Turkey
| | - Syed Attique Shah
- Department of IT, Balochistan University of Information Technology, Engineering and Management Sciences, Quetta 87300, Pakistan
| | - Dirk Draheim
- Information Systems Group, Tallinn University of Technology, Akadeemia tee 15a, 12618, Tallinn, Estonia
| |
Collapse
|
41
|
Giraudo C. Special Issue "COVID-19: Diagnostic Imaging and Beyond". J Clin Med 2020; 9:E2721. [PMID: 32846885 PMCID: PMC7565391 DOI: 10.3390/jcm9092721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 08/20/2020] [Indexed: 12/02/2022] Open
Abstract
Since the beginning of the severe acute respiratory syndrome coronavirus 2 (SARS-COV2) outbreak in China at the end of 2019, clinicians relied on diagnostic imaging to characterize the disease's extension and severity [...].
Collapse
Affiliation(s)
- Chiara Giraudo
- Institute of Radiology, Department of Medicine-DIMED, University of Padova, 35122 Padova, Italy
| |
Collapse
|