1
|
Joly A, Thoumas JL, Lambert A, Caillon E, Leulier F, De Vadder F. Protein restriction associated with high fat induces metabolic dysregulation without obesity in juvenile mice. Nutr Metab (Lond) 2024; 21:100. [PMID: 39623461 PMCID: PMC11613590 DOI: 10.1186/s12986-024-00879-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 11/21/2024] [Indexed: 12/06/2024] Open
Abstract
Dysregulation of energy metabolism, including hyperglycemia, insulin resistance and fatty liver have been reported in a substantial proportion of lean children. However, non-obese murine models recapitulating these features are lacking to study the mechanisms underlying the development of metabolic dysregulations in lean children. Here, we develop a model of diet-induced metabolic dysfunction without obesity in juvenile mice by feeding male and female mice a diet reflecting Western nutritional intake combined with protein restriction (mWD) during 5 weeks after weaning. mWD-fed mice (35% fat, 8% protein) do not exhibit significant weight gain and have moderate increase in adiposity compared to control mice (16% fat, 20% protein). After 3 weeks of mWD, juvenile mice have impaired glucose metabolism including hyperglycemia, insulin resistance and glucose intolerance. mWD also triggers hepatic metabolism alterations, as shown by the development of simple liver steatosis. Both male and female mice fed with mWD displayed metabolic dysregulation, which a probiotic treatment with Lactiplantibacillus plantarum WJL failed to improve. Overall, mWD-fed mice appear to be a good preclinical model to study the development of diet-induced metabolic dysfunction without obesity in juveniles.
Collapse
Affiliation(s)
- Amélie Joly
- Institut de Génomique Fonctionnelle de Lyon, École Normale Supérieure de Lyon, CNRS UMR 5242, UCBL Lyon-1, 69007, Lyon, France
| | - Jean-Louis Thoumas
- Institut de Génomique Fonctionnelle de Lyon, École Normale Supérieure de Lyon, CNRS UMR 5242, UCBL Lyon-1, 69007, Lyon, France
| | - Anne Lambert
- Institut de Génomique Fonctionnelle de Lyon, École Normale Supérieure de Lyon, CNRS UMR 5242, UCBL Lyon-1, 69007, Lyon, France
| | - Estelle Caillon
- Institut de Génomique Fonctionnelle de Lyon, École Normale Supérieure de Lyon, CNRS UMR 5242, UCBL Lyon-1, 69007, Lyon, France
| | - François Leulier
- Institut de Génomique Fonctionnelle de Lyon, École Normale Supérieure de Lyon, CNRS UMR 5242, UCBL Lyon-1, 69007, Lyon, France
| | - Filipe De Vadder
- Institut de Génomique Fonctionnelle de Lyon, École Normale Supérieure de Lyon, CNRS UMR 5242, UCBL Lyon-1, 69007, Lyon, France.
| |
Collapse
|
2
|
Niv D, Anavi E, Yaval L, Abbas A, Rytwo G, Gutman R. Sepiolite-Chitosan-Acetic Acid Biocomposite Attenuates the Development of Obesity and Nonalcoholic Fatty Liver Disease in Mice Fed a High-Fat Diet. Nutrients 2024; 16:3958. [PMID: 39599744 PMCID: PMC11597185 DOI: 10.3390/nu16223958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/09/2024] [Accepted: 11/13/2024] [Indexed: 11/29/2024] Open
Abstract
Background; obesity and nonalcoholic fatty liver disease (NAFLD) reduce life expectancy; nonoperative interventions show poor results. Individually, chitosan (1% w/w), acetic acid (AA 0.3-6.5% w/w), and sepiolite clay (5% w/w) attenuate high-fat-diet-induced obesity (DIO) via reduced energy digestibility and increased energy expenditure. Objectives; therefore, we hypothesized that a chitosan-sepiolite biocomposite suspended in AA would attenuate DIO and NAFLD to a greater extent than AA alone via its more substantial adsorption of nonpolar molecules. Methods; we tested this dietary supplement in C57BL/6J mice fed a high-fat diet (HFD) compared to an unsupplemented HFD and an HFD supplemented with a bile acid sequestrant (cholestyramine) or standalone AA. Results; biocomposite supplementation reduced DIO gain by 60% and abolished hepatic liver accumulation, whereas standalone AA showed mild attenuation of DIO gain and did not prevent HFD-induced hepatic fat accumulation. The biocomposite intake was accompanied by a lower digestibility (-4 point %) counterbalanced by increased intake; hence, it did not affect energy absorption. Therefore, DIO attenuation was suggested to be related to higher energy expenditure, a phenomenon not found with AA alone, as supported by calculated energy expenditure using the energy balance method. Conclusions; these results support further investigation of the biocomposite's efficacy in attenuating obesity and NAFLD, specifically when applied with a restricted diet. Future studies are needed to determine this biocomposite's safety, mechanism of action, and efficacy compared to its components given separately or combined with other ingredients.
Collapse
Affiliation(s)
- Dalia Niv
- Laboratory of Integrative Physiology, The Department of Nutrition and Natural Products, MIGAL—Galilee Research Institute, P.O. Box 831, Kiryat Shmona 11016, Israel
| | - Eli Anavi
- Laboratory of Integrative Physiology, The Department of Nutrition and Natural Products, MIGAL—Galilee Research Institute, P.O. Box 831, Kiryat Shmona 11016, Israel
| | - Laris Yaval
- Laboratory of Integrative Physiology, The Department of Nutrition and Natural Products, MIGAL—Galilee Research Institute, P.O. Box 831, Kiryat Shmona 11016, Israel
| | - Atallah Abbas
- Laboratory of Integrative Physiology, The Department of Nutrition and Natural Products, MIGAL—Galilee Research Institute, P.O. Box 831, Kiryat Shmona 11016, Israel
| | - Giora Rytwo
- Environmental Physical Chemistry Laboratory, MIGAL—Galilee Research Institute, P.O. Box 831, Kiryat Shmona 11016, Israel;
- Departments of Environmental and Water Sciences, Faculty of Sciences and Technology, Tel-Hai College, Upper Galilee 12210, Israel
| | - Roee Gutman
- Laboratory of Integrative Physiology, The Department of Nutrition and Natural Products, MIGAL—Galilee Research Institute, P.O. Box 831, Kiryat Shmona 11016, Israel
- Department of Animal Sciences, Faculty of Sciences and Technology, Tel-Hai College, Upper Galilee 12210, Israel
| |
Collapse
|
3
|
Sweetat S, Shabat MB, Theotokis P, Suissa N, Karafoulidou E, Touloumi O, Abu-Fanne R, Abramsky O, Wolf G, Saada A, Lotan A, Grigoriadis N, Rosenmann H. Ovariectomy and High Fat-Sugar-Salt Diet Induced Alzheimer's Disease/Vascular Dementia Features in Mice. Aging Dis 2024; 15:2284-2300. [PMID: 38913044 PMCID: PMC11346392 DOI: 10.14336/ad.2024.03110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 05/21/2024] [Indexed: 06/25/2024] Open
Abstract
While the vast majority of Alzheimer's disease (AD) is non-familial, the animal models of AD that are commonly used for studying disease pathogenesis and development of therapy are mostly of a familial form. We aimed to generate a model reminiscent of the etiologies related to the common late-onset Alzheimer's disease (LOAD) sporadic disease that will recapitulate AD/dementia features. Naïve female mice underwent ovariectomy (OVX) to accelerate aging/menopause and were fed a high fat-sugar-salt diet to expose them to factors associated with increased risk of development of dementia/AD. The OVX mice fed a high fat-sugar-salt diet responded by dysregulation of glucose/insulin, lipid, and liver function homeostasis and increased body weight with slightly increased blood pressure. These mice developed AD-brain pathology (amyloid and tangle pathologies), gliosis (increased burden of astrocytes and activated microglia), impaied blood vessel density and neoangiogenesis, with cognitive impairment. Thus, OVX mice fed on a high fat-sugar-salt diet imitate a non-familial sporadic/environmental form of AD/dementia with vascular damage. This model is reminiscent of the etiologies related to the LOAD sporadic disease that represents a high portion of AD patients, with an added value of presenting concomitantly AD and vascular pathology, which is a common condition in dementia. Our model can, thereby, provide a valuable tool for studying disease pathogenesis and for the development of therapeutic approaches.
Collapse
Affiliation(s)
- Sahar Sweetat
- Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah Hebrew University Medical Center, Jerusalem, Israel
- Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel. Hadassah BrainLabs-National Knowledge Center for Research on Brain Diseases, Hadassah-Hebrew University Medical Center, Jerusalem Israel
| | - Moti Ben Shabat
- Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah Hebrew University Medical Center, Jerusalem, Israel
- Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel. Hadassah BrainLabs-National Knowledge Center for Research on Brain Diseases, Hadassah-Hebrew University Medical Center, Jerusalem Israel
| | - Paschalis Theotokis
- Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, Greece
| | - Nir Suissa
- Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah Hebrew University Medical Center, Jerusalem, Israel
- Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel. Hadassah BrainLabs-National Knowledge Center for Research on Brain Diseases, Hadassah-Hebrew University Medical Center, Jerusalem Israel
| | - Eleni Karafoulidou
- Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, Greece
| | - Olga Touloumi
- Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, Greece
| | - Rami Abu-Fanne
- Department of Clinical Biochemistry, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Oded Abramsky
- Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Gilly Wolf
- Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel. Hadassah BrainLabs-National Knowledge Center for Research on Brain Diseases, Hadassah-Hebrew University Medical Center, Jerusalem Israel
- Biological Psychiatry Laboratory, Hadassah Hebrew University Medical Center, Jerusalem Israel Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
- Department of Psychology, School of Psychology and Social Sciences, Achva Academic College, Be'er Tuvia, Israel
| | - Ann Saada
- Department of Genetics, Hadassah Hebrew University Medical Center, Jerusalem, Israel; Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Amit Lotan
- Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel. Hadassah BrainLabs-National Knowledge Center for Research on Brain Diseases, Hadassah-Hebrew University Medical Center, Jerusalem Israel
- Biological Psychiatry Laboratory, Hadassah Hebrew University Medical Center, Jerusalem Israel Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Nikolaos Grigoriadis
- Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, Greece
| | - Hanna Rosenmann
- Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah Hebrew University Medical Center, Jerusalem, Israel
- Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel. Hadassah BrainLabs-National Knowledge Center for Research on Brain Diseases, Hadassah-Hebrew University Medical Center, Jerusalem Israel
| |
Collapse
|
4
|
Lin HY, Lin CH, Kuo YH, Shih CC. Antidiabetic and Antihyperlipidemic Activities and Molecular Mechanisms of Phyllanthus emblica L. Extract in Mice on a High-Fat Diet. Curr Issues Mol Biol 2024; 46:10492-10529. [PMID: 39329975 PMCID: PMC11430370 DOI: 10.3390/cimb46090623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/09/2024] [Accepted: 09/11/2024] [Indexed: 09/28/2024] Open
Abstract
We planned to explore the protective activities of extract of Phyllanthus emblica L. (EPE) on insulin resistance and metabolic disorders including hyperlipidemia, visceral obesity, and renal dysfunction in high-fat diet (HFD)-progressed T2DM mice. Mice treatments included 7 weeks of HFD induction followed by EPE, fenofibrate (Feno), or metformin (Metf) treatment daily for another 4-week HFD in HFD-fed mice. Finally, we harvested blood to analyze some tests on circulating glycemia and blood lipid levels. Western blotting analysis was performed on target gene expressions in peripheral tissues. The present findings indicated that EPE treatment reversed the HFD-induced increases in blood glucose, glycosylated HbA1C, and insulin levels. Our findings proved that treatment with EPE in HFD mice effectively controls hyperglycemia and hyperinsulinemia. Our results showed that EPE reduced blood lipid levels, including a reduction in blood triglyceride (TG), total cholesterol (TC), and free fatty acid (FFA); moreover, EPE reduced blood leptin levels and enhanced adiponectin concentrations. EPE treatment in HFD mice reduced BUN and creatinine in both blood and urine and lowered albumin levels in urine; moreover, EPE decreased circulating concentrations of inflammatory NLR family pyrin domain containing 3 (NLRP3) and kidney injury molecule-1 (KIM-1). These results indicated that EPE displayed antihyperglycemic and antihyperlipidemic activities but alleviated renal dysfunction in HFD mice. The histology examinations indicated that EPE treatment decreased adipose hypertrophy and hepatic ballooning, thus contributing to amelioration of lipid accumulation. EPE treatment decreased visceral fat amounts and led to improved systemic insulin resistance. For target gene expression levels, EPE enhanced AMP-activated protein kinase (AMPK) phosphorylation expressions both in livers and skeletal muscles and elevated the muscular membrane glucose transporter 4 (GLUT4) expressions. Treatment with EPE reduced hepatic glucose-6-phosphatase (G6Pase) and phosphoenolpyruvate carboxykinase (PEPCK) expressions to suppress glucose production in the livers and decreased phosphorylation of glycogen synthase kinase 3β (GSK3β) expressions to affect hepatic glycogen synthesis, thus convergently contributing to an antidiabetic effect and improving insulin resistance. The mechanism of the antihyperlipidemic activity of EPE involved a decrease in the hepatic phosphorylation of mammalian target of rapamycin complex C1 (mTORC1) and p70 S6 kinase 1 (S6K1) expressions to improve insulin resistance but also a reduction in hepatic sterol regulatory element binding protein (SREBP)-1c expressions, and suppression of ACC activity, thus resulting in the decreased fatty acid synthesis but elevated hepatic peroxisome proliferator-activated receptor (PPAR) α and SREBP-2 expressions, resulting in lowering TG and TC concentrations. Our results demonstrated that EPE improves insulin resistance and ameliorates hyperlipidemia in HFD mice.
Collapse
Affiliation(s)
- Hsing-Yi Lin
- Department of Internal Medicine, Cheng Ching Hospital, No. 139, Pingdeng St., Central District, Taichung City 40045, Taiwan
| | - Cheng-Hsiu Lin
- Department of Internal Medicine, Fengyuan Hospital, Ministry of Health and Welfare, Fengyuan District, Taichung City 42055, Taiwan
| | - Yueh-Hsiung Kuo
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung City 40402, Taiwan
| | - Chun-Ching Shih
- Department of Nursing, College of Nursing, Central Taiwan University of Science and Technology, No. 666 Buzih Road, Beitun District, Taichung City 40601, Taiwan
| |
Collapse
|
5
|
Rotarescu RD, Mathur M, Bejoy AM, Anderson GH, Metherel AH. Serum measures of docosahexaenoic acid (DHA) synthesis underestimates whole body DHA synthesis in male and female mice. J Nutr Biochem 2024; 131:109689. [PMID: 38876393 DOI: 10.1016/j.jnutbio.2024.109689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/06/2024] [Accepted: 06/09/2024] [Indexed: 06/16/2024]
Abstract
Females have higher docosahexaenoic acid (DHA) levels than males, proposed to be a result of higher DHA synthesis rates from α-linolenic acid (ALA). However, DHA synthesis rates are reported to be low, and have not been directly compared between sexes. Here, we apply a new compound specific isotope analysis model to determine n-3 PUFA synthesis rates in male and female mice and assess its potential translation to human populations. Male and female C57BL/6N mice were allocated to one of three 12-week dietary interventions with added ALA, eicosapentaenoic acid (EPA) or DHA. The diets included low carbon-13 (δ13C)-n-3 PUFA for four weeks, followed by high δ13C-n-3 PUFA for eight weeks (n=4 per diet, time point, sex). Following the diet switch, blood and tissues were collected at multiple time points, and fatty acid levels and δ13C were determined and fit to one-phase exponential decay modeling. Hepatic DHA synthesis rates were not different (P>.05) between sexes. However, n-3 docosapentaenoic acid (DPAn-3) synthesis from dietary EPA was 66% higher (P<.05) in males compared to females, suggesting higher synthesis downstream of DPAn-3 in females. Estimates of percent conversion of dietary ALA to serum DHA was 0.2%, in line with previous rodent and human estimates, but severely underestimates percent dietary ALA conversion to whole body DHA of 9.5%. Taken together, our data indicates that reports of low human DHA synthesis rates may be inaccurate, with synthesis being much higher than previously believed. Future animal studies and translation of this model to humans are needed for greater understanding of n-3 PUFA synthesis and metabolism, and whether the higher-than-expected ALA-derived DHA can offset dietary DHA recommendations set by health agencies.
Collapse
Affiliation(s)
- Ruxandra D Rotarescu
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada
| | - Mahima Mathur
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada
| | - Ashley M Bejoy
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada
| | - G Harvey Anderson
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada
| | - Adam H Metherel
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada.
| |
Collapse
|
6
|
Zhu Q, Li F, Wang H, Wang X, Xiang Y, Ding H, Wu H, Xu C, Weng L, Cai J, Xu T, Liang N, Hong X, Xue M, Ge H. Single-cell RNA sequencing reveals the effects of high-fat diet on oocyte and early embryo development in female mice. Reprod Biol Endocrinol 2024; 22:105. [PMID: 39164729 PMCID: PMC11334609 DOI: 10.1186/s12958-024-01279-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 08/12/2024] [Indexed: 08/22/2024] Open
Abstract
BACKGROUND Obesity is a global health issue with detrimental effects on various human organs, including the reproductive system. Observational human data and several lines of animal experimental data suggest that maternal obesity impairs ovarian function and early embryo development, but the precise pathogenesis remains unclear. METHODS We established a high-fat diet (HFD)-induced obese female mouse model to assess systemic metabolism, ovarian morphology, and oocyte function in mice. For the first time, this study employed single-cell RNA sequencing to explore the altered transcriptomic landscape of preimplantation embryos at different stages in HFD-induced obese mice. Differential gene expression analysis, enrichment analysis and protein-protein interactions network analysis were performed. RESULTS HFD-induced obese female mice exhibited impaired glucolipid metabolism and insulin resistance. The ovaries of HFD mice had a reduced total follicle number, an increased proportion of atretic follicles, and irregular granulosa cell arrangement. Furthermore, the maturation rate of embryonic development by in vitro fertilization of oocytes was significantly decreased in HFD mice. Additionally, the transcriptional landscapes of preimplantation embryos at different stages in mice induced by different diets were significantly distinguished. The maternal-to-zygotic transition was also affected by the failure to remove maternal RNAs and to turn off zygotic genome expression. CONCLUSIONS HFD-induced obesity impaired ovarian morphology and oocyte function in female mice and further led to alterations in the transcriptional landscape of preimplantation embryos at different stages of HFD mice.
Collapse
Affiliation(s)
- Qi Zhu
- Reproductive Medicine Centre, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, China
- Graduate School, Nanjing Medical University, Nanjing, China
| | - Feng Li
- Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China
| | - Hao Wang
- Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China
| | - Xia Wang
- Reproductive Medicine Centre, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, China
| | - Yu Xiang
- Reproductive Medicine Centre, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, China
| | - Huimin Ding
- Reproductive Medicine Centre, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, China
| | - Honghui Wu
- Reproductive Medicine Centre, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, China
- Graduate School, Dalian Medical University, Dalian, China
| | - Cen Xu
- Reproductive Medicine Centre, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, China
| | - Linglin Weng
- Reproductive Medicine Centre, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, China
- Graduate School, Nanjing University Of Chinese Medicine, Nanjing, China
| | - Jieyu Cai
- Reproductive Medicine Centre, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, China
- Graduate School, Nanjing University Of Chinese Medicine, Nanjing, China
| | - Tianyue Xu
- Reproductive Medicine Centre, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, China
- Graduate School, Nanjing University Of Chinese Medicine, Nanjing, China
| | - Na Liang
- Reproductive Medicine Centre, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, China
- Graduate School, Dalian Medical University, Dalian, China
| | - Xiaoqi Hong
- Reproductive Medicine Centre, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, China
- Graduate School, Nanjing Medical University, Nanjing, China
| | - Mingrui Xue
- Reproductive Medicine Centre, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, China
- Graduate School, Dalian Medical University, Dalian, China
| | - Hongshan Ge
- Reproductive Medicine Centre, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, China.
- Graduate School, Nanjing Medical University, Nanjing, China.
- Graduate School, Nanjing University Of Chinese Medicine, Nanjing, China.
- Graduate School, Dalian Medical University, Dalian, China.
| |
Collapse
|
7
|
Hernández-Martín M, Garcimartín A, Bocanegra A, Redondo-Castillejo R, Quevedo-Torremocha C, Macho-González A, García Fernández RA, Bastida S, Benedí J, Sánchez-Muniz FJ, López-Oliva ME. Silicon as a Functional Meat Ingredient Improves Jejunal and Hepatic Cholesterol Homeostasis in a Late-Stage Type 2 Diabetes Mellitus Rat Model. Foods 2024; 13:1794. [PMID: 38928736 PMCID: PMC11203255 DOI: 10.3390/foods13121794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/02/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
Silicon included in a restructured meat (RM) matrix (Si-RM) as a functional ingredient has been demonstrated to be a potential bioactive antidiabetic compound. However, the jejunal and hepatic molecular mechanisms by which Si-RM exerts its cholesterol-lowering effects remain unclear. Male Wistar rats fed an RM included in a high-saturated-fat high-cholesterol diet (HSFHCD) combined with a low dose of streptozotocin plus nicotinamide injection were used as late-stage type 2 diabetes mellitus (T2DM) model. Si-RM was included into the HSFHCD as a functional food. An early-stage TD2M group fed a high-saturated-fat diet (HSFD) was taken as reference. Si-RM inhibited the hepatic and intestinal microsomal triglyceride transfer protein (MTP) reducing the apoB-containing lipoprotein assembly and cholesterol absorption. Upregulation of liver X receptor (LXRα/β) by Si-RM turned in a higher low-density lipoprotein receptor (LDLr) and ATP-binding cassette transporters (ABCG5/8, ABCA1) promoting jejunal cholesterol efflux and transintestinal cholesterol excretion (TICE), and facilitating partially reverse cholesterol transport (RCT). Si-RM decreased the jejunal absorptive area and improved mucosal barrier integrity. Consequently, plasma triglycerides and cholesterol levels decreased, as well as the formation of atherogenic lipoprotein particles. Si-RM mitigated the dyslipidemia associated with late-stage T2DM by Improving cholesterol homeostasis. Silicon could be used as an effective nutritional approach in diabetic dyslipidemia management.
Collapse
Affiliation(s)
- Marina Hernández-Martín
- Departmental Section of Physiology, Pharmacy School, Complutense University of Madrid, 28040 Madrid, Spain;
| | - Alba Garcimartín
- Pharmacology, Pharmacognosy and Botany Department, Pharmacy School, Complutense University of Madrid, 28040 Madrid, Spain; (A.G.); (R.R.-C.); (C.Q.-T.); (J.B.)
| | - Aránzazu Bocanegra
- Pharmacology, Pharmacognosy and Botany Department, Pharmacy School, Complutense University of Madrid, 28040 Madrid, Spain; (A.G.); (R.R.-C.); (C.Q.-T.); (J.B.)
| | - Rocío Redondo-Castillejo
- Pharmacology, Pharmacognosy and Botany Department, Pharmacy School, Complutense University of Madrid, 28040 Madrid, Spain; (A.G.); (R.R.-C.); (C.Q.-T.); (J.B.)
| | - Claudia Quevedo-Torremocha
- Pharmacology, Pharmacognosy and Botany Department, Pharmacy School, Complutense University of Madrid, 28040 Madrid, Spain; (A.G.); (R.R.-C.); (C.Q.-T.); (J.B.)
| | - Adrián Macho-González
- Nutrition and Food Science Department, Pharmacy School, Complutense University of Madrid, 28040 Madrid, Spain; (A.M.-G.); (S.B.); (F.J.S.-M.)
| | - Rosa Ana García Fernández
- Animal Medicine and Surgery Department, Veterinary School, Complutense University of Madrid, 28040 Madrid, Spain;
| | - Sara Bastida
- Nutrition and Food Science Department, Pharmacy School, Complutense University of Madrid, 28040 Madrid, Spain; (A.M.-G.); (S.B.); (F.J.S.-M.)
| | - Juana Benedí
- Pharmacology, Pharmacognosy and Botany Department, Pharmacy School, Complutense University of Madrid, 28040 Madrid, Spain; (A.G.); (R.R.-C.); (C.Q.-T.); (J.B.)
| | - Francisco José Sánchez-Muniz
- Nutrition and Food Science Department, Pharmacy School, Complutense University of Madrid, 28040 Madrid, Spain; (A.M.-G.); (S.B.); (F.J.S.-M.)
| | - María Elvira López-Oliva
- Departmental Section of Physiology, Pharmacy School, Complutense University of Madrid, 28040 Madrid, Spain;
| |
Collapse
|
8
|
Dafre AL, Zahid S, Probst JJ, Currais A, Yu J, Schubert D, Maher P. CMS121: a novel approach to mitigate aging-related obesity and metabolic dysfunction. Aging (Albany NY) 2024; 16:4980-4999. [PMID: 38517358 PMCID: PMC11006478 DOI: 10.18632/aging.205673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 02/23/2024] [Indexed: 03/23/2024]
Abstract
BACKGROUND Modulated by differences in genetic and environmental factors, laboratory mice often show progressive weight gain, eventually leading to obesity and metabolic dyshomeostasis. Since the geroneuroprotector CMS121 has a positive effect on energy metabolism in a mouse model of type 2 diabetes, we investigated the potential of CMS121 to counteract the metabolic changes observed during the ageing process of wild type mice. METHODS Control or CMS121-containing diets were supplied ad libitum for 6 months, and mice were sacrificed at the age of 7 months. Blood, adipose tissue, and liver were analyzed for glucose, lipids, and protein markers of energy metabolism. RESULTS The CMS121 diet induced a 40% decrease in body weight gain and improved both glucose and lipid indexes. Lower levels of hepatic caspase 1, caspase 3, and NOX4 were observed with CMS121 indicating a lower liver inflammatory status. Adipose tissue from CMS121-treated mice showed increased levels of the transcription factors Nrf1 and TFAM, as well as markers of mitochondrial electron transport complexes, levels of GLUT4 and a higher resting metabolic rate. Metabolomic analysis revealed elevated plasma concentrations of short chain acylcarnitines and butyrate metabolites in mice treated with CMS121. CONCLUSIONS The diminished de novo lipogenesis, which is associated with increased acetyl-CoA, acylcarnitine, and butyrate metabolite levels, could contribute to safeguarding not only the peripheral system but also the aging brain. By mimicking the effects of ketogenic diets, CMS121 holds promise for metabolic diseases such as obesity and diabetes, since these diets are hard to follow over the long term.
Collapse
Affiliation(s)
- Alcir L. Dafre
- Cellular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
- Department of Biochemistry, Federal University of Santa Catarina, Florianópolis, SC 88040-900, Brazil
| | - Saadia Zahid
- Cellular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
- Neurobiology Research Laboratory, Atta ur Rahman School of Applied Biosciences, National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Jessica Jorge Probst
- Department of Biochemistry, Federal University of Santa Catarina, Florianópolis, SC 88040-900, Brazil
| | - Antonio Currais
- Cellular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Jingting Yu
- The Razavi Newman Integrative Genomics and Bioinformatics Core, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - David Schubert
- Cellular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Pamela Maher
- Cellular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| |
Collapse
|
9
|
Cai W, Li C, Su Z, Cao J, Chen Z, Chen Y, Guo Z, Cai J, Xu F. Profile of the bile acid FXR-FGF15 pathway in the glucolipid metabolism disorder of diabetic mice suffering from chronic stress. PeerJ 2023; 11:e16407. [PMID: 38025699 PMCID: PMC10656902 DOI: 10.7717/peerj.16407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 10/13/2023] [Indexed: 12/01/2023] Open
Abstract
Background Imbalances in bile acid (BA) synthesis and metabolism are involved in the onset of diabetes and depression in humans and rodents. However, the role of BAs and the farnesoid X receptor (FXR)/fibroblast growth factor (FGF) 15 signaling pathway in the development of diabetes and depression is still largely unknown. Therefore, we investigated the potential molecular mechanisms of BAs that may be associated with glucolipid metabolism disorders in diabetic mice subjected to chronic stress. Methods The type 2 diabetes mellitus (T2DM) mouse model was induced by feeding mice a high-fat diet and administering an intraperitoneal injection of streptozotocin (STZ). The chronic unpredictable mild stress (CUMS) procedure was performed by introducing a series of mild stressors. Forty mice were randomly divided into the regular chow feeding group and the high-fat diet feeding group. After two weeks of feeding, the mice were randomly divided into four groups: the Control group, CUMS group, T2DM group, and T2DM+CUMS group. The T2DM group and T2DM+CUMS group received an intraperitoneal injection of STZ to induce the T2DM model. The CUMS and T2DM+CUMS groups were exposed to CUMS to induce depressive-like phenotypes. Blood and tissue samples were obtained for pertinent analysis and detection. Results Compared with the T2DM mice, T2DM+CUMS mice had higher blood glucose and lipid levels, insulin resistance, inflammation of the liver and pancreas, impaired liver function, and increased total bile acids. These changes were accompanied by attenuated FXR signaling. Chronic stress was found to attenuate FXR expression and its downstream target, FGF15, in the ileum when compared with the T2DM group. Conclusion FXR may play a role in the diabetic disorder of glucolipid metabolism when aggravated by chronic stress. FXR and its downstream target, FGF15, may be therapeutic targets for treating comorbid T2DM and depression.
Collapse
Affiliation(s)
- Weijia Cai
- Fengxian Hospital, Southern Medical University, Shanghai, China
- School of Pharmaceutical Science, Southern Medical University, Guangzhou, China
| | - Canye Li
- Fengxian Hospital, Southern Medical University, Shanghai, China
- School of Pharmaceutical Science, Southern Medical University, Guangzhou, China
| | - Zuanjun Su
- Fengxian Hospital, Southern Medical University, Shanghai, China
- School of Pharmaceutical Science, Southern Medical University, Guangzhou, China
| | - Jinming Cao
- Fengxian Hospital, Southern Medical University, Shanghai, China
- School of Pharmaceutical Science, Southern Medical University, Guangzhou, China
| | - Zhicong Chen
- Fengxian Hospital, Southern Medical University, Shanghai, China
- School of Pharmaceutical Science, Southern Medical University, Guangzhou, China
| | - Yitian Chen
- Fengxian Hospital, Southern Medical University, Shanghai, China
- School of Pharmaceutical Science, Southern Medical University, Guangzhou, China
| | - Zhijun Guo
- Heyou Meihe Hospital, Foshan, Guangdong, China
| | - Jian Cai
- Fengxian Mental Health Center, Shanghai, China
| | - Feng Xu
- Fengxian Hospital, Southern Medical University, Shanghai, China
- Sixth People’ s Hospital South Campus, Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
10
|
Nguyen-Phuong T, Seo S, Cho BK, Lee JH, Jang J, Park CG. Determination of progressive stages of type 2 diabetes in a 45% high-fat diet-fed C57BL/6J mouse model is achieved by utilizing both fasting blood glucose levels and a 2-hour oral glucose tolerance test. PLoS One 2023; 18:e0293888. [PMID: 37963172 PMCID: PMC10645328 DOI: 10.1371/journal.pone.0293888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 10/23/2023] [Indexed: 11/16/2023] Open
Abstract
Type 2 diabetes is considered one of the top ten life-threatening diseases worldwide. Following economic growth, obesity and metabolic syndrome became the most common risk factor for type 2 diabetes. In this regard, high-fat diet-fed C57BL/6J mouse model is widely used for type 2 diabetes pathogenesis and novel therapeutics development. However, criteria for classifying type 2 diabetes progressive stages in this mouse model are yet to be determined, led to the difficulty in experimental end-point decision. In this study, we fed C57BL/6J male mice with 45% high-fat diet, which is physiologically close to human high-fat consumption, and evaluated the progression of type 2 diabetes. After consuming high-fat diet for 4 weeks, mice developed metabolic syndrome, including obesity, significant increase of fasting plasma cholesterol level, elevation of both C-peptide and fasting blood glucose levels. By combining both fasting blood glucose test and 2-hour-oral glucose tolerance test, our results illustrated clear progressive stages from metabolic syndrome into pre-diabetes before onset of type 2 diabetes in C57BL/6J mice given a 45% high-fat diet. Besides, among metabolic measurements, accumulating body weight gain > 16.23 g for 12 weeks could be utilized as a potential parameter to predict type 2 diabetes development in C57BL/6J mice. Thus, these results might support future investigations in term of selecting appropriate disease stage in high-fat diet-fed C57BL/6J mouse model for studying early prevention and treatment of type 2 diabetes.
Collapse
Affiliation(s)
- Thuy Nguyen-Phuong
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, South Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea
- BK21Plus Biomedical Science Project, Seoul National University College of Medicine, Seoul, South Korea
| | - Sol Seo
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, South Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea
- BK21Plus Biomedical Science Project, Seoul National University College of Medicine, Seoul, South Korea
| | - Beum-Keun Cho
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, South Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea
- BK21Plus Biomedical Science Project, Seoul National University College of Medicine, Seoul, South Korea
| | - Jung-Ho Lee
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, South Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea
- BK21Plus Biomedical Science Project, Seoul National University College of Medicine, Seoul, South Korea
| | - Jiyun Jang
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, South Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea
- BK21Plus Biomedical Science Project, Seoul National University College of Medicine, Seoul, South Korea
| | - Chung-Gyu Park
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, South Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea
- BK21Plus Biomedical Science Project, Seoul National University College of Medicine, Seoul, South Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, South Korea
- Institute of Endemic Diseases, Seoul National University College of Medicine, Seoul, South Korea
- Biomedical Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| |
Collapse
|
11
|
Sun N, Yang N, Zhou J, He Y, Wang J, Liang Y, Dai R, Bai J, Chen Z. Yiqi Qingre Xiaozheng formula protects against diabetic nephropathy by restoring autophagy in mice. JOURNAL OF TRADITIONAL CHINESE MEDICAL SCIENCES 2023; 10:310-320. [DOI: 10.1016/j.jtcms.2023.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
|
12
|
Mahmood A, Faisal MN, Khan JA, Muzaffar H, Muhammad F, Hussain J, Aslam J, Anwar H. Association of a high-fat diet with I-FABP as a biomarker of intestinal barrier dysfunction driven by metabolic changes in Wistar rats. Lipids Health Dis 2023; 22:68. [PMID: 37237272 DOI: 10.1186/s12944-023-01837-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 05/23/2023] [Indexed: 05/28/2023] Open
Abstract
BACKGROUND The epithelial lining of the gut expresses intestinal fatty-acid binding proteins (I-FABPs), which increase in circulation and in plasma concentration during intestinal damage. From the perspective of obesity, the consumption of a diet rich in fat causes a disruption in the integrity of the gut barrier and an increase in its permeability. HYPOTHESIS There is an association between the expression of I-FABP in the gut and various metabolic changes induced by a high-fat (HF) diet. METHODS Wistar albino rats (n = 90) were divided into three groups (n = 30 per group), viz. One control and two HF diet groups (15 and 30%, respectively) were maintained for 6 weeks. Blood samples were thus collected to evaluate the lipid profile, blood glucose level and other biochemical tests. Tissue sampling was conducted to perform fat staining and immunohistochemistry. RESULTS HF diet-fed rats developed adiposity, insulin resistance, leptin resistance, dyslipidemia, and increased expression of I-FABP in the small intestine compared to the control group. Increased I-FABP expression in the ileal region of the intestine is correlated significantly with higher fat contents in the diet, indicating that higher I-FABP expression occurs due to increased demand of enterocytes to transport lipids, leading to metabolic alterations. CONCLUSION In summary, there is an association between the expression of I-FABP and HF diet-induced metabolic alterations, indicating that I-FABP can be used as a biomarker for intestinal barrier dysfunction.
Collapse
Affiliation(s)
- Aisha Mahmood
- Department of Physiology, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Muhammad Naeem Faisal
- Institute of Physiology and Pharmacology, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Junaid Ali Khan
- Faculty of Veterinary and Animal Sciences, Muhammad Nawaz Shareef University of Agriculture, Multan, Pakistan
| | - Humaira Muzaffar
- Department of Physiology, Government College University, Faisalabad, 38040, Pakistan
| | - Faqir Muhammad
- Faculty of Veterinary Science, Bahaudin Zakariya University, Multan, Pakistan
| | - Jazib Hussain
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Jawad Aslam
- Institute of Physiology and Pharmacology, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Haseeb Anwar
- Department of Physiology, Government College University, Faisalabad, 38040, Pakistan.
| |
Collapse
|
13
|
Kim J, Lee JY, Kim CY. Allium macrostemon whole extract ameliorates obesity-induced inflammation and endoplasmic reticulum stress in adipose tissue of high-fat diet-fed C57BL/6N mice. Food Nutr Res 2023; 67:9256. [PMID: 37223261 PMCID: PMC10202093 DOI: 10.29219/fnr.v67.9256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 03/20/2023] [Accepted: 03/28/2023] [Indexed: 05/25/2023] Open
Abstract
Background Obesity is a major risk factor for metabolic syndrome and a serious health concern worldwide. Various strategies exist to treat and prevent obesity, including dietary approaches using bioactive ingredients from natural sources. Objective This study aimed to investigate the anti-obesity effect of whole-plant Allium macrostemon (also called as long-stamen chive) extract (AME) as a potential new functional food. Design C57BL/6N mice were divided into three groups and fed either a control diet (CD), high-fat diet (HFD), or HFD with AME treatment (200 mg/kg BW daily) for 9 weeks. The mice in the CD and HFD groups were treated with vehicle control. Results AME supplementation reduced HFD-induced body weight gain, fat mass, and adipocyte size. AME suppressed peroxisome proliferator-activated receptor γ and fatty acid synthase mRNA expression, indicating reduced adipogenesis and lipogenesis in adipose tissue. In addition, AME lowered inflammation in adipose tissue, as demonstrated by the lower number of crown-like structures, mRNA, and/or protein expression of macrophage filtration markers, as well as pro-inflammatory cytokines, including F4/80 and IL-6. Endoplasmic reticulum stress was also alleviated by AME administration in adipose tissue. Several phenolic acids known to have anti-obesity effects, including ellagic acid, protocatechuic acid, and catechin, have been identified in AME. Conclusion By suppressing adipose tissue expansion and inflammation, AME is a potential functional food for the prevention and/or treatment of obesity and its complications.
Collapse
Affiliation(s)
- Juhae Kim
- Research Institute of Human Ecology, Yeungnam University, Gyeongsan, Gyeongbuk 38541, South Korea
| | - Joo-Yeon Lee
- Research Institute of Human Ecology, Yeungnam University, Gyeongsan, Gyeongbuk 38541, South Korea
- Department of Food and Nutrition, Yeungnam University, Gyeongsan, Gyeongbuk 38541, South Korea
| | - Choon Young Kim
- Research Institute of Human Ecology, Yeungnam University, Gyeongsan, Gyeongbuk 38541, South Korea
- Department of Food and Nutrition, Yeungnam University, Gyeongsan, Gyeongbuk 38541, South Korea
| |
Collapse
|
14
|
Talarico CHZ, Alves ES, Dos Santos JDM, Sucupira FGS, Araujo LCC, Camporez JP. Progesterone Has No Impact on the Beneficial Effects of Estradiol Treatment in High-Fat-Fed Ovariectomized Mice. Curr Issues Mol Biol 2023; 45:3965-3976. [PMID: 37232722 DOI: 10.3390/cimb45050253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/20/2023] [Accepted: 04/25/2023] [Indexed: 05/27/2023] Open
Abstract
In recent decades, clinical and experimental studies have revealed that estradiol contributes enormously to glycemic homeostasis. However, the same consensus does not exist in women during menopause who undergo replacement with progesterone or conjugated estradiol and progesterone. Since most hormone replacement treatments in menopausal women are performed with estradiol (E2) and progesterone (P4) combined, this work aimed to investigate the effects of progesterone on energy metabolism and insulin resistance in an experimental model of menopause (ovariectomized female mice-OVX mice) fed a high-fat diet (HFD). OVX mice were treated with E2 or P4 (or both combined). OVX mice treated with E2 alone or combined with P4 displayed reduced body weight after six weeks of HFD feeding compared to OVX mice and OVX mice treated with P4 alone. These data were associated with improved glucose tolerance and insulin sensitivity in OVX mice treated with E2 (alone or combined with P4) compared to OVX and P4-treated mice. Additionally, E2 treatment (alone or combined with P4) reduced both hepatic and muscle triglyceride content compared with OVX control mice and OVX + P4 mice. There were no differences between groups regarding hepatic enzymes in plasma and inflammatory markers. Therefore, our results revealed that progesterone replacement alone does not seem to influence glucose homeostasis and ectopic lipid accumulation in OVX mice. These results will help expand knowledge about hormone replacement in postmenopausal women associated with metabolic syndrome and non-alcoholic fatty liver disease.
Collapse
Affiliation(s)
- Carlos H Z Talarico
- Department of Physiology, Ribeirao Preto School of Medicine, University of Sao Paulo, Ribeirão Preto 14049-900, Brazil
| | - Ester S Alves
- Department of Physiology, Ribeirao Preto School of Medicine, University of Sao Paulo, Ribeirão Preto 14049-900, Brazil
| | - Jessica D M Dos Santos
- Department of Physiology, Ribeirao Preto School of Medicine, University of Sao Paulo, Ribeirão Preto 14049-900, Brazil
| | - Felipe G S Sucupira
- Department of Physiology, Ribeirao Preto School of Medicine, University of Sao Paulo, Ribeirão Preto 14049-900, Brazil
| | - Layanne C C Araujo
- Department of Physiology, Ribeirao Preto School of Medicine, University of Sao Paulo, Ribeirão Preto 14049-900, Brazil
| | - João Paulo Camporez
- Department of Physiology, Ribeirao Preto School of Medicine, University of Sao Paulo, Ribeirão Preto 14049-900, Brazil
| |
Collapse
|
15
|
Jakhar DK, Vishwakarma VK, Singh R, Jadhav K, Shah S, Arora T, Verma RK, Yadav HN. Fat fighting liraglutide based nano-formulation to reverse obesity: Design, development and animal trials. Int J Pharm 2023; 634:122585. [PMID: 36621703 DOI: 10.1016/j.ijpharm.2023.122585] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 12/13/2022] [Accepted: 01/03/2023] [Indexed: 01/07/2023]
Abstract
Obesity is a metabolic disease, which is one of the major causes of morbidity and mortality, where therapeutic options are limited. Treatment of obesity is necessary as it is associated with fatal complications like diabetes mellitus, cardiovascular disease, non-alcoholic fatty liver disease, osteoarthritis, and many more. Liraglutide (Lir), a synthetic analogue of Glucagon-like Peptide-1 (GLP-1), is the FDA approved anti-obesity drug, however, its major limitation is its clinical application which needs frequent parenteral injections. To address the issue of regular injection, we have synthesized a fat fighting oral nano-formulation of liraglutide with a sustained release feature, which was evaluated against high fat diet (HFD) induced obesity in mice. Experimental obesity was induced in mice by feeding HFD for 26 weeks. Lir nanoparticles (NP) were fabricated with chitosan via ion-gelation technique and were coated with Eudragit@S100 to protect the drug in harsh gastric conditions. Physiochemical characterization of Eu-Lir-Cs-NP demonstrated a small particle size of 253.1 ± 1.21 nm with ∼ 9.74 % loading and ∼ 72.11 % encapsulation efficiency of the drug. In-vitro studies showed successful cellular uptake of NP in Caco-2 cells and were stable in various enteric fluid pH conditions. Eudragit@S100 coated chitosan NP were able to protect the drug from harsh gastric pH conditions with more than ∼ 74% of recovery. Treatment of two weeks of liraglutide Eu-Lir-Cs-NP (0.1, 0.2 and 0.4 mg/kg, orally; twice daily) moderately reduces obesity in mice as evidenced by a reduction in the body weight, blood glucose, serum total cholesterol, serum triglyceride, serum resistin and serum insulin level of mice. In addition, significant reduction of liver weight, abdominal white adipose tissue, and hepatic oxidative stress were noted. Our results suggest that chitosan-based NP of liraglutide can be an effective and convenient formulation for the management of obesity.
Collapse
Affiliation(s)
- Dheeraj Kumar Jakhar
- Department of Pharmacology, All India Institute of Medical Sciences (AIIMS), New Delhi 110023, India
| | - Vishal Kumar Vishwakarma
- Department of Pharmacology, All India Institute of Medical Sciences (AIIMS), New Delhi 110023, India
| | - Raghuraj Singh
- Institute of Nano Science and Technology (INST), Phase-10, Sector-64, Mohali, Punjab 160062, India
| | - Krishna Jadhav
- Institute of Nano Science and Technology (INST), Phase-10, Sector-64, Mohali, Punjab 160062, India
| | - Sadia Shah
- Department of Pharmacology, All India Institute of Medical Sciences (AIIMS), New Delhi 110023, India
| | - Taruna Arora
- RBMCH, ICMR-Head Quarter's Ansari Nagar, New Delhi 110029, India
| | - Rahul Kumar Verma
- Institute of Nano Science and Technology (INST), Phase-10, Sector-64, Mohali, Punjab 160062, India
| | - Harlokesh Narayan Yadav
- Department of Pharmacology, All India Institute of Medical Sciences (AIIMS), New Delhi 110023, India.
| |
Collapse
|
16
|
(Pro)Renin Receptor Antagonism Attenuates High-Fat-Diet-Induced Hepatic Steatosis. Biomolecules 2023; 13:biom13010142. [PMID: 36671527 PMCID: PMC9855393 DOI: 10.3390/biom13010142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/20/2022] [Accepted: 01/03/2023] [Indexed: 01/12/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) comprises a spectrum of liver damage directly related to diabetes, obesity, and metabolic syndrome. The (pro)renin receptor (PRR) has recently been demonstrated to play a role in glucose and lipid metabolism. Here, we test the hypothesis that the PRR regulates the development of diet-induced hepatic steatosis and fibrosis. C57Bl/6J mice were fed a high-fat diet (HFD) or normal-fat diet (NFD) with matching calories for 6 weeks. An 8-week methionine choline-deficient (MCD) diet was used to induce fibrosis. Two weeks following diet treatment, mice were implanted with a subcutaneous osmotic pump delivering either the peptide PRR antagonist, PRO20, or scrambled peptide for 4 or 6 weeks. Mice fed a 6-week HFD exhibited increased liver lipid accumulation and liver triglyceride content compared with NFD-fed mice. Importantly, PRO20 treatment reduced hepatic lipid accumulation in HFD-fed mice without affecting body weight or blood glucose. Furthermore, PRR antagonism attenuated HFD-induced steatosis, particularly microvesicular steatosis. In the MCD diet model, the percentage of collagen area was reduced in PRO20-treated compared with control mice. PRO20 treatment also significantly decreased levels of liver alanine aminotransferase, an indicator of liver damage, in MCD-fed mice compared with controls. Mechanistically, we found that PRR antagonism prevented HFD-induced increases in PPARγ and glycerol-3-phosphate acyltransferase 3 expression in the liver. Taken together, our findings establish the involvement of the PRR in liver triglyceride synthesis and suggest the therapeutic potential of PRR antagonism for the treatment of liver steatosis and fibrosis in NAFLD.
Collapse
|
17
|
Smits A, Marei WFA, Moorkens K, Bols PEJ, De Neubourg D, Leroy JLMR. Obese outbred mice only partially benefit from diet normalization or calorie restriction as preconception care interventions to improve metabolic health and oocyte quality. Hum Reprod 2022; 37:2867-2884. [PMID: 36342870 DOI: 10.1093/humrep/deac226] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 09/22/2022] [Indexed: 11/09/2022] Open
Abstract
STUDY QUESTION Can diet normalization or a calorie-restricted diet for 2 or 4 weeks be used as a preconception care intervention (PCCI) in Western-type diet-induced obese Swiss mice to restore metabolic health and oocyte quality? SUMMARY ANSWER Metabolic health and oocyte developmental competence was already significantly improved in the calorie-restricted group after 2 weeks, while obese mice that underwent diet normalization showed improved metabolic health after 2 weeks and improved oocyte quality after 4 weeks. WHAT IS KNOWN ALREADY Maternal obesity is linked with reduced metabolic health and oocyte quality; therefore, infertile obese women are advised to lose weight before conception to increase pregnancy chances. However, as there are no univocal guidelines and the specific impact on oocyte quality is not known, strategically designed studies are needed to provide fundamental insights in the importance of the type and duration of the dietary weight loss strategy for preconception metabolic health and oocyte quality. STUDY DESIGN, SIZE, DURATION Outbred female Swiss mice were fed a control (CTRL) or high-fat/high-sugar (HF/HS) diet. After 7 weeks, some of the HF mice were put on two different PCCIs, resulting in four treatment groups: (i) only control diet for up to 11 weeks (CTRL_CTRL), (ii) only HF diet for up to 11 weeks (HF_HF), (iii) switch at 7 weeks from an HF to an ad libitum control diet (HF_CTRL) and (iv) switch at 7 weeks from an HF to a 30% calorie-restricted control diet (HF_CR) for 2 or 4 weeks. Metabolic health and oocyte quality were assessed at 2 and 4 weeks after the start of the intervention (n = 8 mice/treatment/time point). PARTICIPANTS/MATERIALS, SETTING, METHODS Changes in body weight were recorded. To study the impact on metabolic health, serum insulin, glucose, triglycerides, total cholesterol and alanine aminotransferase concentrations were measured, and glucose tolerance and insulin sensitivity were analyzed at PCCI Weeks 2 and 4. The quality of in vivo matured oocytes was evaluated by assessing intracellular lipid droplet content, mitochondrial activity and localization of active mitochondria, mitochondrial ultrastructure, cumulus cell targeted gene expression and oocyte in vitro developmental competence. MAIN RESULTS AND THE ROLE OF CHANCE Significant negative effects of an HF/HS diet on metabolic health and oocyte quality were confirmed (P < 0.05). HF_CTRL mice already showed restored body weight, serum lipid profile and glucose tolerance, similar to the CTRL_CTRL group after only 2 weeks of PCCI (P < 0.05 compared with HF_HF) while insulin sensitivity was not improved. Oocyte lipid droplet volume was reduced at PCCI Week 2 (P < 0.05 compared with HF_HF), while mitochondrial localization and activity were still aberrant. At PCCI Week 4, oocytes from HF_CTRL mice displayed significantly fewer mitochondrial ultrastructural abnormalities and improved mitochondrial activity (P < 0.05), while lipid content was again elevated. The in vitro developmental capacity of the oocytes was improved but did not reach the levels of the CTRL_CTRL mice. HF_CR mice completely restored cholesterol concentrations and insulin sensitivity already after 2 weeks. Other metabolic health parameters were only restored after 4 weeks of intervention with clear signs of fasting hypoglycemia. Although all mitochondrial parameters in HF_CR oocytes stayed aberrant, oocyte developmental competence in vitro was completely restored already after 2 weeks of intervention. LARGE SCALE DATA N/A. LIMITATIONS, REASONS FOR CAUTION In this study, we applied a relevant HF/HS Western-type diet to induce obesity in an outbred mouse model. Nevertheless, physiological differences should be considered when translating these results to the human setting. However, the in-depth study and follow-up of the metabolic health changes together with the strategic implementation of specific PCCI intervals (2 and 4 weeks) related to the duration of the mouse folliculogenesis (3 weeks), should aid in the extrapolation of our findings to the human setting. WIDER IMPLICATIONS OF THE FINDINGS Our study results with a specific focus on oocyte quality provide important fundamental insights to be considered when developing preconception care guidelines for obese metabolically compromised women wishing to become pregnant. STUDY FUNDING/COMPETING INTEREST(S) This study was supported by the Flemish Research Fund (FWO-SB grant 1S25020N and FWO project G038619N). The authors declare there are no conflicts of interest.
Collapse
Affiliation(s)
- A Smits
- Gamete Research Centre, Laboratory for Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| | - W F A Marei
- Gamete Research Centre, Laboratory for Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, Wilrijk, Belgium.,Department of Theriogenology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - K Moorkens
- Gamete Research Centre, Laboratory for Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| | - P E J Bols
- Gamete Research Centre, Laboratory for Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| | - D De Neubourg
- Centre for Reproductive Medicine, Antwerp University Hospital, University of Antwerp, Edegem, Belgium
| | - J L M R Leroy
- Gamete Research Centre, Laboratory for Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| |
Collapse
|
18
|
Effects of Omega-3-Rich Pork Lard on Serum Lipid Profile and Gut Microbiome in C57BL/6NJ Mice. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2022; 2022:9269968. [DOI: 10.1155/2022/9269968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 10/24/2022] [Accepted: 10/29/2022] [Indexed: 11/23/2022]
Abstract
Background and Aims. Hyperlipidemia is a risk factor for cardiovascular diseases. This study is aimed at investigating the effects of consuming omega-3-rich pork lard on the serum lipid profile and gut microbiome of the mice model. Methods and Results. We divided 23 C57BL/6NJ males (16-week-old) into 3 groups, and each group received either a control diet, a high-fat diet of coconut oil (coconut oil), or a high-fat diet of omega-3-rich pork lard (omega lard) for 28 days. Thereafter, fasting serum lipids and fecal microbiomes were analyzed. The serum cholesterol, triglyceride, and LDL levels of the omega lard-treated group were significantly reduced compared to the coconut oil-treated group (
). However, the microbiome analysis revealed a significant increase in the abundance of Lachnospiraceae in the omega lard-treated group compared to the coconut oil-treated group (
). Furthermore, Spearman’s correlation analysis revealed that the increased serum lipid content was positively correlated with the abundance of Bacteroidaceae (
) and negatively correlated with the abundance of Lachnospiraceae (
). Conclusions. These findings suggested that omega-3-rich pork lard altered the serum lipid profile and gut microbiome in the mice model. Practical Application. The excellent protection offered by omega-3-rich pork lard against hyperlipidemia indicated that pork lard could be used as alternative cooking oil for health-conscious individuals. It could also be introduced as a functional ingredient for patients with hyperlipidemia.
Collapse
|
19
|
Pemmari T, Hämäläinen M, Ryyti R, Peltola R, Moilanen E. Dried Bilberry (Vaccinium myrtillus L.) Alleviates the Inflammation and Adverse Metabolic Effects Caused by a High-Fat Diet in a Mouse Model of Obesity. Int J Mol Sci 2022; 23:ijms231911021. [PMID: 36232316 PMCID: PMC9569776 DOI: 10.3390/ijms231911021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 09/12/2022] [Accepted: 09/16/2022] [Indexed: 12/01/2022] Open
Abstract
Obesity is an increasing problem worldwide. It is often associated with co-morbidities such as type II diabetes, atherosclerotic diseases, and non-alcoholic fatty liver disease. The risk of these diseases can be lowered by relieving the systemic low-grade inflammation associated with obesity, even without noticeable weight loss. Bilberry is an anthocyanin-rich wild berry with known antioxidant and anti-inflammatory properties. In the present study, a high-fat-diet-induced mouse model of obesity was used to investigate the effects of air-dried bilberry powder on weight gain, systemic inflammation, lipid and glucose metabolism, and changes in the gene expression in adipose and hepatic tissues. The bilberry supplementation was unable to modify the weight gain, but it prevented the increase in the hepatic injury marker ALT and many inflammatory factors like SAA, MCP1, and CXCL14 induced by the high-fat diet. The bilberry supplementation also partially prevented the increase in serum cholesterol, glucose, and insulin levels. In conclusion, the bilberry supplementation alleviated the systemic and hepatic inflammation and retarded the development of unwanted changes in the lipid and glucose metabolism induced by the high-fat diet. Thus, the bilberry supplementation seemed to support to retain a healthier metabolic phenotype during developing obesity, and that effect might have been contributed to by bilberry anthocyanins.
Collapse
Affiliation(s)
- Toini Pemmari
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, 33014 Tampere, Finland
| | - Mari Hämäläinen
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, 33014 Tampere, Finland
| | - Riitta Ryyti
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, 33014 Tampere, Finland
| | - Rainer Peltola
- Bioeconomy and Environment, Natural Resources Institute Finland, 96100 Rovaniemi, Finland
| | - Eeva Moilanen
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, 33014 Tampere, Finland
- Correspondence:
| |
Collapse
|
20
|
Kakalij RM, Dsouza DL, Boesen EI. Development of High Fat Diet-Induced Hyperinsulinemia in Mice Is Enhanced by Co-treatment With a TLR7 Agonist. Front Physiol 2022; 13:930353. [PMID: 35874527 PMCID: PMC9298857 DOI: 10.3389/fphys.2022.930353] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 06/17/2022] [Indexed: 12/20/2022] Open
Abstract
Metabolic syndrome (MetS) is common in Systemic Lupus Erythematosus (SLE) patients and is associated with increased cardio-renal risk. Toll-like receptor 7 (TLR7) stimulation promotes the development of SLE through mechanisms including activating type I Interferon (IFN) and autoreactive B cells. The current study tested whether combined TLR7 agonist treatment and exposure to a high fat, high sucrose “Western diet” intervention affects the early-stage development of SLE or MetS features. Female C57BL/6 mice were untreated or treated with the TLR7 agonist imiquimod (IMQ) and fed a high-fat diet (HFD; fat 42% kcal, sucrose 34% kcal) or control diet (fat 12.6% kcal, sucrose 34% kcal) for 6 weeks. Supporting early-stage induction of autoimmunity, spleen weights were significantly increased and anti-nuclear antibody (ANA) positivity was detected in IMQ-treated mice. Increased body weight, gonadal fat pad mass, and plasma leptin levels were observed between HFD and control animals for both IMQ and untreated mice. However, the increase in these parameters with HFD was slightly but significantly diminished in IMQ-treated mice. Both the HFD and IMQ treatments significantly increased fasting blood glucose levels. Notably, IMQ treatment affected fasting insulin concentrations in a diet-dependent manner, with hyperinsulinemia observed in IMQ-HFD treated mice. Together, this indicates that the IMQ model of SLE is associated with metabolic alterations, impaired glycemic control, and hyperinsulinemia under HFD conditions. This model may be helpful in further investigating the relationship between MetS and SLE, and supports a role of TLR7 signaling in promoting or accelerating the development of dysglycemia and hyperinsulinemia.
Collapse
Affiliation(s)
- Rahul M Kakalij
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Del L Dsouza
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Erika I Boesen
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, United States
| |
Collapse
|
21
|
Koontanatechanon A, Wongphatcharachai M, Nonthabenjawan N, Jariyahatthakij P, Leksrisompong P, Srichana P, Prasopdee S, Roytrakul S, Sriyakul K, Thitapakorn V, Pawa KK. The Effects of Increasing Dietary Fat on Serum Lipid Profile and Modification of Gut Microbiome in C57BL/6N Mice. J Oleo Sci 2022; 71:1039-1049. [PMID: 35781256 DOI: 10.5650/jos.ess22009] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Hyperlipidemia is a condition where the blood shows an elevated level of lipid, such as cholesterol and triglyceride. It is considered a risk factor for all coronary artery death globally. Association of microbiome with non-communicable diseases (NCDs) including hyperlipidemia has been reportedly associated. In this study, we hypothesize that the change in microbiome is correlated to the change in serum lipid level, which resulted by increasing dietary fat consumption. The 32 male, 14-week-old, C57BL/6N were divided into 4 groups, each group received control diet, 10%, 20%, and 40% kcal fat diet prepared from purified pork lard, respectively for 28 days. Fasting serum lipids and fecal microbiome were then analyzed. The group of animals assigned to 40% kcal fat showed significantly increased serum cholesterol, LDL, and HDL (p < 0.05). Microbiome analysis revealed the abundance of Muribaculaceae and Saccharimonadaceae were significantly decreased (p < 0.05). On the contrary, the abundance of Clostridia_UCG014, Akkermansiaceae, Bacteroidaceae, Oscillospiraceae, and Erysipelotrichaceae were significantly increased (p < 0.05). Spearman correlation indicated that the abundance of Akkermansiaceae and Bacteroidaceae were positively associated with the increased of serum cholesterol and LDL (p < 0.05), while the abundance of Muribaculaceae, Clostridia_UCG-014, and Saccharimonadaceae were negatively associated (p < 0.05). These results suggest that dietary fat have ability to manipulated microbiome with relative to elevation of serum lipid profile.
Collapse
Affiliation(s)
- Anantawat Koontanatechanon
- Chulabhorn International College of Medicine, Thammasat University.,Feed Technology Office, Charoen Pokphand Foods Public Company Limited (CPF)
| | | | | | | | - Pattarin Leksrisompong
- CPF Food Research & Development Center, Charoen Pokphand Foods Public Company Limited (CPF)
| | - Pairat Srichana
- Feed Technology Office, Charoen Pokphand Foods Public Company Limited (CPF)
| | | | - Sittiruk Roytrakul
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency
| | - Kusuma Sriyakul
- Chulabhorn International College of Medicine, Thammasat University
| | | | | |
Collapse
|
22
|
Zhang Z, La Placa D, Gugiu G, Thunen A, Le K, Shively JE. Reversal of obesity development in Ceacam1 -/- male mice by bone marrow transplantation or introduction of the human CEACAM1 gene. Obesity (Silver Spring) 2022; 30:1351-1356. [PMID: 35785480 PMCID: PMC9541698 DOI: 10.1002/oby.23457] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 03/20/2022] [Accepted: 04/08/2022] [Indexed: 11/07/2022]
Abstract
OBJECTIVE Although Ceacam1-/- male mice become obese on normal chow, the effect of bone marrow transplantation or introduction of the carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) gene has not been studied, to the knowledge of the authors. METHODS This study analyzed Ceacam1-/- mice on normal diet or high-fat diet (HFD), including effects of bone marrow transplantation or introduction of the CEACAM1 gene. RESULTS Male Ceacam1-/- mice on normal diet versus HFD for 24 weeks gained significantly more weight than controls, and Ceacam1-/- mice aged up to 2 years had a high frequency of liver cancer. Transplantation of wild-type bone marrow into Ceacam1-/- mice or introduction of the human CEACAM1 gene fully or partially reversed the obesity phenotype. Liver lipidomics on Ceacam1-/- versus wild-type controls on an HFD revealed a significant increase in diacyl glycerides. An increase in fatty acid transporter CD36 levels further suggests that loss of Ceacam1 leads to a major dysregulation of free fatty acid uptake. CONCLUSIONS CEACAM1 expression in both the liver and immune cells regulates obesity and lipid storage pathways in the liver. Bone marrow reconstitution of the immune system or introduction of the human CEACAM1 gene can fully or partially reverse the phenotype.
Collapse
Affiliation(s)
- Zhifang Zhang
- Department of Immunology & TheranosticsArthur Riggs Diabetes and Metabolism Research Institute, City of Hope Cancer CenterDuarteCaliforniaUSA
| | - Deirdre La Placa
- Department of Immunology & TheranosticsArthur Riggs Diabetes and Metabolism Research Institute, City of Hope Cancer CenterDuarteCaliforniaUSA
| | - Gabriel Gugiu
- Department of Immunology & TheranosticsArthur Riggs Diabetes and Metabolism Research Institute, City of Hope Cancer CenterDuarteCaliforniaUSA
| | - Alyssa Thunen
- Department of Immunology & TheranosticsArthur Riggs Diabetes and Metabolism Research Institute, City of Hope Cancer CenterDuarteCaliforniaUSA
- Irell and Manella Graduate School of Biological Sciences, City of Hope Cancer CenterDuarteCaliforniaUSA
| | - Keith Le
- Department of Immunology & TheranosticsArthur Riggs Diabetes and Metabolism Research Institute, City of Hope Cancer CenterDuarteCaliforniaUSA
| | - John E. Shively
- Department of Immunology & TheranosticsArthur Riggs Diabetes and Metabolism Research Institute, City of Hope Cancer CenterDuarteCaliforniaUSA
| |
Collapse
|
23
|
Rodrigues M, Bertoncini-Silva C, Joaquim A, Machado C, Ramalho L, Carlos D, Fassini P, Suen V. Beneficial effects of eugenol supplementation on gut microbiota and hepatic steatosis in high-fat-fed mice. Food Funct 2022; 13:3381-3390. [DOI: 10.1039/d1fo03619j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Due to the increase in the prevalence of obesity, new therapies have emerged and Eugenol has been shown to be beneficial in metabolic changes and gut microbiota. This study aimed...
Collapse
|
24
|
Smits A, Marei WFA, De Neubourg D, Leroy JLMR. Diet normalization or caloric restriction as a preconception care strategy to improve metabolic health and oocyte quality in obese outbred mice. Reprod Biol Endocrinol 2021; 19:166. [PMID: 34736458 PMCID: PMC8567997 DOI: 10.1186/s12958-021-00848-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 10/21/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Maternal metabolic disorders are linked to reduced metabolic health and oocyte quality. Obese women are advised to lose weight before conception to increase pregnancy chances. However, as human studies show no univocal guidelines, more research is necessary to provide fundamental insights in the consequences of dietary weight loss on oocyte quality. Therefore, we investigated the impact of diet normalization or calorie restricted diet for two, four or six weeks, as preconception care intervention (PCCI), in obese mice on metabolic health and oocyte quality. METHODS Outbred female mice were fed a control (CTRL) or high-fat (HF) diet for 7 weeks (7w). Afterwards, HF-mice were put on different PCCIs, resulting in four treatment groups: 1) control diet up to 13w, 2) HF diet up to 13w (HF_HF), switch from a HF (7w) to 3) an ad libitum control diet (HF_CTRL) or 4) 30% calorie restricted control diet (HF_CR) for two, four or six weeks. Body weight, metabolic health, oocyte quality and overall fertility results were assessed. RESULTS Negative effects of HF diet on metabolic health, oocyte quality and pregnancy rates were confirmed. HF_CTRL mice progressively improved insulin sensitivity, glucose tolerance, serum insulin and cholesterol from PCCI w2 to w4. No further improvements in metabolic health were present at PCCI w6. However, PCCI w6 showed best oocyte quality improvements. Mature oocytes still showed elevated lipid droplet volume and mitochondrial activity but a significant reduction in ROS levels and ROS: active mitochondria ratio compared with HF_HF mice. HF_CR mice restored overall insulin sensitivity and glucose tolerance by PCCI w4. However, serum insulin, cholesterol and ALT remained abnormal. At PCCI w6, glucose tolerance was again reduced. However, only at PCCI w6, oocytes displayed reduced ROS levels and restored mitochondrial activity compared with HF_HF mice. In addition, at PCCI w6, both PCCI groups showed decreased mitochondrial ultrastructural abnormalities compared with the HF_HF group and restored pregnancy rates. CONCLUSIONS Diet normalization for 4 weeks showed to be the shortest, most promising intervention to improve metabolic health. Most promising improvements in oocyte quality were seen after 6 weeks of intervention in both PCCI groups. This research provides fundamental insights to be considered in developing substantiated preconception guidelines for obese women planning for pregnancy.
Collapse
Affiliation(s)
- Anouk Smits
- Gamete Research Centre, Laboratory for Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, 2610, Wilrijk, Belgium.
| | - Waleed F A Marei
- Gamete Research Centre, Laboratory for Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, 2610, Wilrijk, Belgium
| | - Diane De Neubourg
- Centre for Reproductive Medicine - Antwerp University Hospital, University of Antwerp, Wilrijkstraat 10, 2650, Edegem, Belgium
| | - Jo L M R Leroy
- Gamete Research Centre, Laboratory for Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, 2610, Wilrijk, Belgium
| |
Collapse
|
25
|
Nyambuya TM, Dludla PV, Mxinwa V, Nkambule BB. The pleotropic effects of fluvastatin on complement-mediated T-cell activation in hypercholesterolemia. Biomed Pharmacother 2021; 143:112224. [PMID: 34649351 DOI: 10.1016/j.biopha.2021.112224] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/06/2021] [Accepted: 09/17/2021] [Indexed: 12/16/2022] Open
Abstract
T-cells orchestrate the inflammatory responses in atherosclerosis, and their function is modified by the lipoprotein milieu and complement activity. We investigated the effects of fluvastatin on the expression of complement decay-accelerating factor (DAF/CD55) antigen, and the levels of transcription factors in circulating T-cells in hypercholesterolemia. The hypercholesterolemic state was associated with the upregulation of DAF expression on circulating T-cells and increased levels nuclear factor kappa B (NF-kB) and interferon regulatory factor 4 (IRF4). Notably, the elevated levels of DAF and NF-kB expression persisted following treatment with fluvastatin. Therefore, the pleiotropic effects of fluvastatin are partially ascribed to its ability to mediate T-cell activation and regulate complement activity. Consequently, enhanced therapeutic interventions that targets complement-induced T-cell activation may be important in mitigating the development of atherosclerosis and major cardiovascular events in individuals with hypercholesterolemia.
Collapse
Affiliation(s)
- Tawanda Maurice Nyambuya
- School of Laboratory Medicine and Medical Sciences (SLMMS), College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa; Department of Health Sciences, Faculty of Health and Applied Sciences, Namibia University of Science and Technology, Windhoek, Namibia.
| | - Phiwayinkosi Vusi Dludla
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg, South Africa.
| | - Vuyolwethu Mxinwa
- School of Laboratory Medicine and Medical Sciences (SLMMS), College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa.
| | - Bongani Brian Nkambule
- School of Laboratory Medicine and Medical Sciences (SLMMS), College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa.
| |
Collapse
|
26
|
Nyandwi JB, Ko YS, Jin H, Yun SP, Park SW, Kim HJ. Rosmarinic Acid Exhibits a Lipid-Lowering Effect by Modulating the Expression of Reverse Cholesterol Transporters and Lipid Metabolism in High-Fat Diet-Fed Mice. Biomolecules 2021; 11:1470. [PMID: 34680102 PMCID: PMC8533102 DOI: 10.3390/biom11101470] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 09/29/2021] [Accepted: 10/01/2021] [Indexed: 12/13/2022] Open
Abstract
Hyperlipidemia is a potent risk factor for the development of cardiovascular diseases. The reverse cholesterol transport (RCT) process has been shown to alleviate hyperlipidemia and protect against cardiovascular diseases. Recently, rosmarinic acid was reported to exhibit lipid-lowering effects. However, the underlying mechanism is still unclear. This study aims to investigate whether rosmarinic acid lowers lipids by modulating the RCT process in high-fat diet (HFD)-induced hyperlipidemic C57BL/6J mice. Our results indicated that rosmarinic acid treatment significantly decreased body weight, blood glucose, and plasma total cholesterol and triglyceride levels in HFD-fed mice. Rosmarinic acid increased the expression levels of cholesterol uptake-associated receptors in liver tissues, including scavenger receptor B type 1 (SR-B1) and low-density lipoprotein receptor (LDL-R). Furthermore, rosmarinic acid treatment notably increased the expression of cholesterol excretion molecules, ATP-binding cassette G5 (ABCG5) and G8 (ABCG8) transporters, and cholesterol 7 alpha-hydroxylase A1 (CYP7A1) as well as markedly reduced cholesterol and triglyceride levels in liver tissues. In addition, rosmarinic acid facilitated fatty acid oxidation through AMP-activated protein kinase (AMPK)-mediated carnitine palmitoyltransferase 1A (CPT1A) induction. In conclusion, rosmarinic acid exhibited a lipid-lowering effect by modulating the expression of RCT-related proteins and lipid metabolism-associated molecules, confirming its potential for the prevention or treatment of hyperlipidemia-derived diseases.
Collapse
Affiliation(s)
- Jean Baptiste Nyandwi
- Department of Pharmacology, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Korea; (J.B.N.); (Y.S.K.); (H.J.); (S.P.Y.); (S.W.P.)
- Department of Convergence Medical Science (BK21 Plus), Gyeongsang National University, Jinju 52727, Korea
- Department of Pharmacy, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Kigali 4285, Rwanda
| | - Young Shin Ko
- Department of Pharmacology, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Korea; (J.B.N.); (Y.S.K.); (H.J.); (S.P.Y.); (S.W.P.)
| | - Hana Jin
- Department of Pharmacology, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Korea; (J.B.N.); (Y.S.K.); (H.J.); (S.P.Y.); (S.W.P.)
| | - Seung Pil Yun
- Department of Pharmacology, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Korea; (J.B.N.); (Y.S.K.); (H.J.); (S.P.Y.); (S.W.P.)
- Department of Convergence Medical Science (BK21 Plus), Gyeongsang National University, Jinju 52727, Korea
| | - Sang Won Park
- Department of Pharmacology, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Korea; (J.B.N.); (Y.S.K.); (H.J.); (S.P.Y.); (S.W.P.)
- Department of Convergence Medical Science (BK21 Plus), Gyeongsang National University, Jinju 52727, Korea
| | - Hye Jung Kim
- Department of Pharmacology, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Korea; (J.B.N.); (Y.S.K.); (H.J.); (S.P.Y.); (S.W.P.)
- Department of Convergence Medical Science (BK21 Plus), Gyeongsang National University, Jinju 52727, Korea
| |
Collapse
|
27
|
Wang S, Sun W, Swallah MS, Amin K, Lyu B, Fan H, Zhang Z, Yu H. Preparation and characterization of soybean insoluble dietary fiber and its prebiotic effect on dyslipidemia and hepatic steatosis in high fat-fed C57BL/6J mice. Food Funct 2021; 12:8760-8773. [PMID: 34369950 DOI: 10.1039/d1fo01050f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The potential benefits of insoluble dietary fiber (IDF) in the regulation of lipid metabolism have been reported in large prospective cohort studies although the molecular regulatory mechanism is still unclear. Okara is a by-product obtained during soybean processing for soy milk and soybean curd (tofu), which is rarely utilized and can be a cheap potential dietary fiber (DF) resource. In this study, the structure and physicochemical properties of insoluble dietary fiber (SIDF) extracted from okara were characterized, and the prebiotic effects on fat metabolism were investigated in vivo. The results showed that the main monosaccharides of SIDF (90.50%) identified were galactose, arabinose, xylose, rhamnose and glucose. Scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), and X-ray diffraction (XRD) analyses suggested that SIDF had a loose and porous structure, polysaccharide functional groups, and a typical crystalline cellulose I structure. In addition, SIDF had ideal oil-adsorption capacity (OAC; 7.95 g g-1) and significantly improved cholesterol adsorption (11.14 mg g-1) at pH 7.0. In vivo, IDF supplementation reduced the serum lipid levels and inhibited hepatic fat accumulation. Additionally, SIDF administration improved hepatic steatosis by stimulating lipolysis via upregulation of PPARα, CYP4a10 and CPT1a. This is the first systematic study on the composition, structure, physicochemical properties, adsorption function and biological effects of SIDF. The above results show that SIDF could be used as an ideal functional ingredient in food processing as well as play a positive role in improving the added value of okara and promoting its comprehensive utilization.
Collapse
Affiliation(s)
- Sainan Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin, 130118, China.
- Division of Soybean Processing, Soybean Research & Development Center, Chinese Agricultural Research System, Changchun, Jilin 130118, China
| | - Wanling Sun
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin, 130118, China.
| | - Mohammed Sharif Swallah
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin, 130118, China.
- Division of Soybean Processing, Soybean Research & Development Center, Chinese Agricultural Research System, Changchun, Jilin 130118, China
| | - Khalid Amin
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin, 130118, China.
- Division of Soybean Processing, Soybean Research & Development Center, Chinese Agricultural Research System, Changchun, Jilin 130118, China
| | - Bo Lyu
- Division of Soybean Processing, Soybean Research & Development Center, Chinese Agricultural Research System, Changchun, Jilin 130118, China
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Hongliang Fan
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin, 130118, China.
- Division of Soybean Processing, Soybean Research & Development Center, Chinese Agricultural Research System, Changchun, Jilin 130118, China
| | - Zhao Zhang
- Shandong Jiahua Health Care Products Co., Ltd., Liaocheng, Shandong, 252000, China
| | - Hansong Yu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin, 130118, China.
- Division of Soybean Processing, Soybean Research & Development Center, Chinese Agricultural Research System, Changchun, Jilin 130118, China
| |
Collapse
|
28
|
Cartwright DM, Oakey LA, Fletcher RS, Doig CL, Heising S, Larner DP, Nasteska D, Berry CE, Heaselgrave SR, Ludwig C, Hodson DJ, Lavery GG, Garten A. Nicotinamide riboside has minimal impact on energy metabolism in mouse models of mild obesity. J Endocrinol 2021; 251:111-123. [PMID: 34370682 PMCID: PMC8494379 DOI: 10.1530/joe-21-0123] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 08/09/2021] [Indexed: 11/15/2022]
Abstract
Supplementation with precursors of NAD has been shown to prevent and reverse insulin resistance, mitochondrial dysfunction, and liver damage in mouse models of diet-induced obesity. We asked whether the beneficial effects of supplementation with the NAD precursor nicotinamide riboside (NR) are dependent on mouse strain. We compared the effects of NR supplementation on whole-body energy metabolism and mitochondrial function in mildly obese C57BL/6N and C57BL/6J mice, two commonly used strains to investigate metabolism. Male C57BL/6N and C57BL/6J mice were fed a high-fat diet (HFD) or standard chow with or without NR supplementation for 8 weeks. Body and organ weights, glucose tolerance, and metabolic parameters as well as mitochondrial O2 flux in liver and muscle fibers were assessed. We found that NR supplementation had no influence on body or organ weight, glucose metabolism or hepatic lipid accumulation, energy expenditure, or metabolic flexibility but increased mitochondrial respiration in soleus muscle in both mouse strains. Strain-dependent differences were detected for body and fat depot weight, fasting blood glucose, hepatic lipid accumulation, and energy expenditure. We conclude that, in mild obesity, NR supplementation does not alter metabolic phenotype in two commonly used laboratory mouse strains.
Collapse
Affiliation(s)
- David M Cartwright
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Lucy A Oakey
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Rachel S Fletcher
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Craig L Doig
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
- School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Silke Heising
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Dean P Larner
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Daniela Nasteska
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Caitlin E Berry
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Sam R Heaselgrave
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Christian Ludwig
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - David J Hodson
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Gareth G Lavery
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Antje Garten
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
- Pediatric Research Center, Hospital for Child and Adolescent Medicine, Leipzig University, Leipzig, Germany
| |
Collapse
|
29
|
Zandani G, Anavi-Cohen S, Tsybina-Shimshilashvili N, Sela N, Nyska A, Madar Z. Broccoli Florets Supplementation Improves Insulin Sensitivity and Alters Gut Microbiome Population-A Steatosis Mice Model Induced by High-Fat Diet. Front Nutr 2021; 8:680241. [PMID: 34395490 PMCID: PMC8355420 DOI: 10.3389/fnut.2021.680241] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 06/22/2021] [Indexed: 12/12/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is linked to obesity, type 2 diabetes, hyperlipidemia, and gut dysbiosis. Gut microbiota profoundly affects the host energy homeostasis, which, in turn, is affected by a high-fat diet (HFD) through the liver-gut axis, among others. Broccoli contains beneficial bioactive compounds and may protect against several diseases. This study aimed to determine the effects of broccoli supplementation to an HFD on metabolic parameters and gut microbiome in mice. Male (7–8 weeks old) C57BL/J6 mice were divided into four groups: normal diet (ND), high-fat diet (HFD), high-fat diet+10% broccoli florets (HFD + F), and high-fat diet + 10% broccoli stalks (HFD + S). Liver histology and serum biochemical factors were evaluated. Alterations in protein and gene expression of the key players in lipid and carbohydrate metabolism as well as in gut microbiota alterations were also investigated. Broccoli florets addition to the HFD significantly reduced serum insulin levels, HOMA-IR index, and upregulated adiponectin receptor expression. Conversely, no significant difference was found in the group supplemented with broccoli stalks. Both broccoli stalks and florets did not affect fat accumulation, carbohydrate, or lipid metabolism-related parameters. Modifications in diversity and in microbial structure of proteobacteria strains, Akermansia muciniphila and Mucispirillum schaedleri were observed in the broccoli-supplemented HFD-fed mice. The present study suggests that dietary broccoli alters parameters related to insulin sensitivity and modulates the intestinal environment. More studies are needed to confirm the results of this study and to investigate the mechanisms underlying these beneficial effects.
Collapse
Affiliation(s)
- Gil Zandani
- The Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | | | | | - Noa Sela
- Department of Plant Pathology and Weed Research, Volcani Center, Rishon LeZion, Israel
| | - Abraham Nyska
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Zecharia Madar
- The Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
30
|
Nyambuya TM, Dludla PV, Nkambule BB. Diet-Induced Obesity Promotes the Upregulation of Fas Expression on T-cells. BIOLOGY 2021; 10:biology10030217. [PMID: 33808960 PMCID: PMC8000544 DOI: 10.3390/biology10030217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/02/2021] [Accepted: 03/05/2021] [Indexed: 11/16/2022]
Abstract
This study was conducted to assess the expression of Fas (CD95) and programmed cell death-1 (PD-1) on circulating T-cells in obesity using a diet-induced obesity mouse model. Furthermore, we aimed to determine if there are any associations between metabolic disorders and the expression of T-cell regulatory markers. A total of 12 male C57BL/6 mice were randomized into either a high-fat diet (HFD) or low-fat diet (LFD) group for 8 weeks (n = 6/group). Changes in body weights were monitored on a weekly basis. The lipid, glucose, and hematological profiles, as well as Fas and PD1 expression on the T-cell immunophenotype, were measured after 8 weeks of feeding. The HFD-fed group had a higher percentage weight gain (29.17%) in comparison with the LFD-fed group (21.74%) after the 8-week period. In addition, the HFD group had increased fasting glucose and glucose excursion following a 2-h postprandial period. The levels of total cholesterol were elevated in the HFD group when compared with the LFD group (p < 0.05). Notably, the absolute white cell count (p = 0.0096), neutrophil count (p = 0.0022, lymphocytes (p = 0.0155), and monocyte count (p = 0.0015) were elevated in the HFD group when compared with the LFD-fed group. However, the platelets (0.0680), red cell counts (0.3575), and their indices (p > 0.05) were comparable between the two groups. Interestingly, HFD feeding was associated with elevated expression of Fas on T-cells (p < 0.0001), which positively correlated with body weights (r = 0.93, p = 0.0333). No associations were found between Fas expression and dyslipidemia or fasting blood glucose levels (p > 0.05). The multivariant regression analysis showed that the association between the levels of Fas on T-cells and body weights (coefficient: -1.00, t-value: 19.27, p = 0.0330) was independent of fasting blood glucose, total cholesterol, and lymphocyte count. Lastly, the expression of PD-1 on T-cells was comparable between the two diet groups (p = 0.1822). In all, immune activation, dyslipidemia, and poor glucose control in the early stages of obesity may drive the pathogenesis of metabolic T-cell disorders. Importantly, T-cell dysfunction in obesity is partially mediated by an upregulation of Fas which is independent of dyslipidemia and hyperglycemia.
Collapse
Affiliation(s)
- Tawanda Maurice Nyambuya
- School of Laboratory Medicine and Medical Sciences (SLMMS), College of Health Sciences, University of KwaZulu-Natal, Durban 4013, South Africa
- Department of Health Sciences, Faculty of Health and Applied Sciences, Namibia University of Science and Technology, Windhoek 10005, Namibia
- Correspondence: (T.M.N.); (B.B.N.); Tel.: +264-61-207-2914 (T.M.N.); +27-(0)31-260-8964 (B.B.N.)
| | - Phiwayinkosi Vusi Dludla
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg 7505, South Africa;
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy
| | - Bongani Brian Nkambule
- School of Laboratory Medicine and Medical Sciences (SLMMS), College of Health Sciences, University of KwaZulu-Natal, Durban 4013, South Africa
- Correspondence: (T.M.N.); (B.B.N.); Tel.: +264-61-207-2914 (T.M.N.); +27-(0)31-260-8964 (B.B.N.)
| |
Collapse
|
31
|
Nissankara Rao LS, Kilari EK, Kola PK. Protective effect of Curcuma amada acetone extract against high-fat and high-sugar diet-induced obesity and memory impairment. Nutr Neurosci 2021; 24:212-225. [PMID: 31149894 DOI: 10.1080/1028415x.2019.1616436] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Objectives: Curcuma amada Roxb. (Mango ginger) was evaluated for anti-obesity, anti-amnesic and neuroprotection using high-fat and high-sugar diet (HFHS)-induced obesity and cognitive impairment in rats. Methods: Animals were exposed to HFHS diet to evaluate lipid parameters and subjected to Y maze test and Pole climbing test to evaluate the memory. In addition, oxidative stress parameters, acetyl cholinesterase activity (AChE), neurochemicals and histopathology were assessed in the brain. Results: HFHS diet led to increased body weight and lipid parameters (total cholesterol, low-density lipoprotein [LDL], and very low-density lipoprotein [VLDL], triglycerides [TG]) but not high-density lipoprotein (HDL). Elevated serum glutamate oxalate transaminase (SGOT) and serum glutamate pyruvate transaminase (SGPT), oxidative biomarker, decreased enzymatic and non-enzymatic antioxidants, Acetylcholinesterase (AChE) activity and reduced percentage of spontaneous alternation behaviour (% SAB in Y-maze test) as well as reduced serotonin and dopamine levels and neurodegeneration were observed in HFHS diet-fed rats. Curcuma amada (CAAE1, 100 mg/kg and CAAE2, 300 mg/kg) treatment to HFHS diet-fed rats (21 days after HFHS diet feeding alone) showed dose-dependent activity and ameliorated the HFHS diet-induced alterations in lipid parameters related to obesity, hepatological parameters, memory, oxidative stress, neurochemicals and neurodegeneration. Furthermore, 300 mg/kg of C. amada (CAAE2) augmented the memory by inhibiting acetylcholinesterase (AChE) activity; it also ameliorated the effect of antioxidants such as glutathione, superoxide dismutase (SOD), and total thiol and mitigated the effect of malondialdehyde (MDA). CAAE2 also controlled the level of dopamine and serotonin and reduced the neurodegeneration in the hippocampus CA1 region. Discussion: The results of the present study indicated that treatment with C. amada 300 mg/kg (CAAE2) attenuated the HFHS diet-induced obesity, memory loss, oxidative stress, and neurodegeneration. These study results indicated that the administration of C. amada offers a potential treatment option for obesity and memory loss, and it requires further preclinical and clinical evaluations.
Collapse
Affiliation(s)
| | - Eswar Kumar Kilari
- Department of Pharmacology, University College of Pharmaceutical Sciences, Andhra University, Visakhapatnam, Andhra Pradesh, India
| | - Phani Kumar Kola
- Department of Pharmacology, University College of Pharmaceutical Sciences, Acharya Nagarjuna University, Guntur, Andhra Pradesh, India
| |
Collapse
|
32
|
Nyambuya TM, Dludla PV, Nkambule BB. The aberrant expression of CD69 on peripheral T-helper cells in diet-induced inflammation is ameliorated by low-dose aspirin and metformin treatment. Cell Immunol 2021; 363:104313. [PMID: 33631404 DOI: 10.1016/j.cellimm.2021.104313] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 12/29/2020] [Accepted: 01/09/2021] [Indexed: 12/11/2022]
Abstract
Chronic inflammation in patients with type 2 diabetes (T2D) is associated with T-cell dysfunction. Using a rodent model, we evaluated changes in metabolic profiles, inflammation status and the expression of T-cell function markers following high-fat diet (HFD)-feeding. In addition, we assessed the modulatory effects of treatment with low-dose aspirin (LDA) and its combination with metformin (LDA + Met) on these parameters. Notably, HFD-feeding induced metabolic disorders and aggravated inflammation. Most importantly, it was associated with decreased expression of CD69 on T-helper cells but had no effect on the expression of programmed cell death 1 (PD-1). Treatment with LDA monotherapy had no effect on metabolic profiles. However, its combination with metformin ameliorated the levels of inflammation and up-regulated the expression of CD69 although it had no therapeutic effect on the levels of PD-1 expression. Therefore, alleviating inflammation and lowering glucose levels in T2D may be an effective strategy to improve T-cell function in these patients.
Collapse
MESH Headings
- Animals
- Antigens, CD/immunology
- Antigens, Differentiation, T-Lymphocyte/immunology
- Aspirin/pharmacology
- Blood Glucose/drug effects
- Blood Glucose/metabolism
- Diabetes Mellitus, Experimental/drug therapy
- Diabetes Mellitus, Experimental/metabolism
- Diet, High-Fat
- Disease Models, Animal
- Gene Expression/drug effects
- Hypoglycemic Agents/therapeutic use
- Inflammation/immunology
- Lectins, C-Type/immunology
- Male
- Metformin/pharmacology
- Mice
- Mice, Inbred C57BL
- T-Lymphocytes, Helper-Inducer/drug effects
- T-Lymphocytes, Helper-Inducer/immunology
- T-Lymphocytes, Helper-Inducer/metabolism
Collapse
Affiliation(s)
- Tawanda Maurice Nyambuya
- School of Laboratory Medicine and Medical Sciences (SLMMS), College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa; Department of Health Sciences, Faculty of Health and Applied Sciences, Namibia University of Science and Technology, Windhoek, Namibia.
| | - Phiwayinkosi Vusi Dludla
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy; Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg, South Africa.
| | - Bongani Brian Nkambule
- School of Laboratory Medicine and Medical Sciences (SLMMS), College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa.
| |
Collapse
|
33
|
Rao A, Satheesh A, Nayak G, Poojary PS, Kumari S, Kalthur SG, Mutalik S, Adiga SK, Kalthur G. High-fat diet leads to elevated lipid accumulation and endoplasmic reticulum stress in oocytes, causing poor embryo development. Reprod Fertil Dev 2020; 32:1169-1179. [PMID: 32998795 DOI: 10.1071/rd20112] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 07/28/2020] [Indexed: 11/23/2022] Open
Abstract
The present study was designed to investigate the effect of diet-induced obesity on endoplasmic reticulum (ER) stress in oocytes. Swiss albino mice (3 weeks old) were fed with a high-fat diet (HFD) for 8 weeks. Oocytes were assessed for lipid droplet accumulation, oxidative stress, ER stress and their developmental potential invitro. High lipid accumulation (P<0.01) and elevated intracellular levels of reactive oxygen species were observed in both germinal vesicle and MII oocytes of HFD-fed mice (P<0.05 and P<0.01 respectively compared with control). Further, expression of the ER stress markers X-box binding protein 1 (XBP1), glucose-regulated protein 78 (GRP78), activating transcription factor 4 (ATF4) and activating transcription factor 6 (ATF6) was significantly (P<0.001) higher in oocytes of the HFD than control group. Oocytes from HFD-fed mice exhibited poor fertilisation and blastocyst rates, a decrease in total cell number and high levels of DNA damage (P<0.01) compared with controls. In conclusion, diet-induced obesity resulted in elevated lipid levels and higher oxidative and ER stress in oocytes, which contributed to the compromised developmental potential of embryos.
Collapse
Affiliation(s)
- Arpitha Rao
- Department of Clinical Embryology, Kasturba Medical College Manipal, Manipal Academy of Higher Education, Manipal 576 104, Karnataka State, India
| | - Aparna Satheesh
- Department of Clinical Embryology, Kasturba Medical College Manipal, Manipal Academy of Higher Education, Manipal 576 104, Karnataka State, India
| | - Guruprasad Nayak
- Department of Clinical Embryology, Kasturba Medical College Manipal, Manipal Academy of Higher Education, Manipal 576 104, Karnataka State, India
| | - Pooja Suresh Poojary
- Department of Clinical Embryology, Kasturba Medical College Manipal, Manipal Academy of Higher Education, Manipal 576 104, Karnataka State, India
| | - Sandhya Kumari
- Department of Clinical Embryology, Kasturba Medical College Manipal, Manipal Academy of Higher Education, Manipal 576 104, Karnataka State, India
| | - Sneha Guruprasad Kalthur
- Department of Anatomy, Kasturba Medical College Manipal, Manipal Academy of Higher Education, Manipal 576 104, Karnataka State, India
| | - Srinivas Mutalik
- Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576 104, Karnataka State, India
| | - Satish Kumar Adiga
- Department of Clinical Embryology, Kasturba Medical College Manipal, Manipal Academy of Higher Education, Manipal 576 104, Karnataka State, India
| | - Guruprasad Kalthur
- Department of Clinical Embryology, Kasturba Medical College Manipal, Manipal Academy of Higher Education, Manipal 576 104, Karnataka State, India; and Corresponding author.
| |
Collapse
|
34
|
Ahn YA, Baek H, Choi M, Park J, Son SJ, Seo HJ, Jung J, Seong JK, Lee J, Kim S. Adipogenic effects of prenatal exposure to bisphenol S (BPS) in adult F1 male mice. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 728:138759. [PMID: 32403013 DOI: 10.1016/j.scitotenv.2020.138759] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 04/13/2020] [Accepted: 04/15/2020] [Indexed: 05/20/2023]
Abstract
Bisphenol S (BPS) has been increasingly used as a substitute for bisphenol A (BPA), a known endocrine disruptor. Early-life exposure to BPA affects fetal development and the risk of obesity in adolescence and adulthood. However, the effects of fetal exposure BPS in later life are unknown. This study aimed to investigate the effects of prenatal BPS exposure on adiposity in adult F1 mice. Pregnant C57BL/6 N mice were exposed to BPS (0, 0.05, 0.5, 5, and 50 mg/kg/d) via drinking water from gestation day 9 until delivery. Thereafter, two groups of offspring (6 weeks old) were either administered a standard diet (STD) or a high-fat diet (HFD) for 4 weeks until euthanasia. The body weight and gonadal white adipose tissue (gWAT) mass were determined, and the energy expenditure for the adiposity phenotype was computed especially for male mice, followed by histological analysis of the gWAT. Thereafter, the expression levels of adipogenic marker genes (Pparg, Cebpa, Fabp4, Lpl, and Adipoq) were analyzed in the gWAT via reverse-transcription PCR analysis. BPS-exposed male mice displayed apparent gWAT hypertrophy, consistent with the significant increase in adipocyte size in the gWAT and upregulation of Pparg and its direct target genes among HFD mice in comparison with the control mice. These results suggest that prenatal BPS exposure potentially increases the susceptibility to HFD-induced adipogenesis in male adult mice.
Collapse
Affiliation(s)
- Young-Ah Ahn
- Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Seoul 08826, Republic of Korea.
| | - Hwayoung Baek
- Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Seoul 08826, Republic of Korea.
| | - Miso Choi
- Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Seoul 08826, Republic of Korea.
| | - Junbo Park
- Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Seoul 08826, Republic of Korea.
| | - Soo Jin Son
- Laboratory of Developmental Biology and Genomics, Research Institute for Veterinary Science, and BK21 Program for Advanced Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea; Korea Mouse Phenotyping Center, Seoul National University, Seoul 08826, Republic of Korea.
| | - Hyun Ju Seo
- Laboratory of Developmental Biology and Genomics, Research Institute for Veterinary Science, and BK21 Program for Advanced Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea; Korea Mouse Phenotyping Center, Seoul National University, Seoul 08826, Republic of Korea.
| | - Jaeyun Jung
- Laboratory of Developmental Biology and Genomics, Research Institute for Veterinary Science, and BK21 Program for Advanced Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea; Korea Mouse Phenotyping Center, Seoul National University, Seoul 08826, Republic of Korea.
| | - Je Kyung Seong
- Laboratory of Developmental Biology and Genomics, Research Institute for Veterinary Science, and BK21 Program for Advanced Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea; Korea Mouse Phenotyping Center, Seoul National University, Seoul 08826, Republic of Korea.
| | - Jaehyouk Lee
- Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Seoul 08826, Republic of Korea.
| | - Sungkyoon Kim
- Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Seoul 08826, Republic of Korea; Institute of Health and Environment, Graduate School of Public Health, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea.
| |
Collapse
|
35
|
Maroni MJ, Capri KM, Arruda NL, Gelineau RR, Deane HV, Concepcion HA, DeCourcey H, Monteiro De Pina IK, Cushman AV, Chasse MH, Logan RW, Seggio JA. Substrain specific behavioral responses in male C57BL/6N and C57BL/6J mice to a shortened 21-hour day and high-fat diet. Chronobiol Int 2020; 37:809-823. [PMID: 32400203 DOI: 10.1080/07420528.2020.1756840] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Altered circadian rhythms have negative consequences on health and behavior. Emerging evidence suggests genetics influences the physiological and behavioral responses to circadian disruption. We investigated the effects of a 21 h day (T = 21 cycle), with high-fat diet consumption, on locomotor activity, explorative behaviors, and health in male C57BL/6J and C57BL/6N mice. Mice were exposed to either a T = 24 or T = 21 cycle and given standard rodent chow (RC) or a 60% high-fat diet (HFD) followed by behavioral assays and physiological measures. We uncovered numerous strain differences within the behavioral and physiological assays, mainly that C57BL/6J mice exhibit reduced susceptibility to the obesogenic effects of (HFD) and anxiety-like behavior as well as increased circadian and novelty-induced locomotor activity compared to C57BL/6N mice. There were also substrain-specific differences in behavioral responses to the T = 21 cycle, including exploratory behaviors and circadian locomotor activity. Under the 21-h day, mice consuming RC displayed entrainment, while mice exposed to HFD exhibited a lengthening of activity rhythms. In the open-field and light-dark box, mice exposed to the T = 21 cycle had increased novelty-induced locomotor activity with no further effects of diet, suggesting daylength may affect mood-related behaviors. These results indicate that different circadian cycles impact metabolic and behavioral responses depending on genetic background, and despite circadian entrainment.
Collapse
Affiliation(s)
- Marissa J Maroni
- Department of Biological Sciences, Bridgewater State University , Bridgewater, Massachusetts, USA.,Perelman School of Medicine, University of Pennsylvania , Philadelphia, Pennsylvania, USA
| | - Kimberly M Capri
- Department of Biological Sciences, Bridgewater State University , Bridgewater, Massachusetts, USA.,Department of Mathematics and Statistics, Boston University , Boston, Massachusetts, USA
| | - Nicole L Arruda
- Department of Biological Sciences, Bridgewater State University , Bridgewater, Massachusetts, USA.,Chapel Hill, Biological and Biomedical Sciences Program, University of North Carolina , Chapel Hill, North Carolina, USA
| | - Rachel R Gelineau
- Department of Biological Sciences, Bridgewater State University , Bridgewater, Massachusetts, USA
| | - Hannah V Deane
- Department of Biological Sciences, Bridgewater State University , Bridgewater, Massachusetts, USA
| | - Holly A Concepcion
- Department of Biological Sciences, Bridgewater State University , Bridgewater, Massachusetts, USA
| | - Holly DeCourcey
- Department of Biological Sciences, Bridgewater State University , Bridgewater, Massachusetts, USA
| | | | - Alexis V Cushman
- Department of Biological Sciences, Bridgewater State University , Bridgewater, Massachusetts, USA
| | - Madison H Chasse
- Department of Biological Sciences, Bridgewater State University , Bridgewater, Massachusetts, USA
| | - Ryan W Logan
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania, USA.,Center for Systems Neurogenetics of Addiction, The Jackson Laboratory , Bar Harbor, Maine, USA
| | - Joseph A Seggio
- Department of Biological Sciences, Bridgewater State University , Bridgewater, Massachusetts, USA
| |
Collapse
|
36
|
Lundberg R, Toft MF, Metzdorff SB, Hansen CHF, Licht TR, Bahl MI, Hansen AK. Human microbiota-transplanted C57BL/6 mice and offspring display reduced establishment of key bacteria and reduced immune stimulation compared to mouse microbiota-transplantation. Sci Rep 2020; 10:7805. [PMID: 32385373 PMCID: PMC7211022 DOI: 10.1038/s41598-020-64703-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 04/20/2020] [Indexed: 02/07/2023] Open
Abstract
Transplantation of germ-free (GF) mice with microbiota from mice or humans stimulates the intestinal immune system in disparate ways. We transplanted a human microbiota into GF C57BL/6 mice and a murine C57BL/6 microbiota into GF C57BL/6 mice and Swiss-Webster (SW) mice. Mice were bred to produce an offspring generation. 56% of the Operational Taxonomic Units (OTUs) present in the human donor microbiota established in the recipient mice, whereas 81% of the C57BL/6 OTUs established in the recipient C57BL/6 and SW mice. Anti-inflammatory bacteria such as Faecalibacterium and Bifidobacterium from humans were not transferred to mice. Expression of immune-related intestinal genes was lower in human microbiota-mice and not different between parent and offspring generation. Expression of intestinal barrier-related genes was slightly higher in human microbiota-mice. Cytokines and chemokines measured in plasma were differentially present in human and mouse microbiota-mice. Minor differences in microbiota and gene expression were found between transplanted mice of different genetics. It is concluded that important immune-regulating bacteria are lost when transplanting microbiota from humans to C57BL/6 mice, and that the established human microbiota is a weak stimulator of the murine immune system. The results are important for study design considerations in microbiota transplantation studies involving immunological parameters.
Collapse
Affiliation(s)
- Randi Lundberg
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1871, Frederiksberg C, Denmark.
- Internal Research and Development, Taconic Biosciences, 4623, Lille Skensved, Denmark.
- Chr. Hansen, 2970, Hoersholm, Denmark.
| | - Martin F Toft
- Internal Research and Development, Taconic Biosciences, 4623, Lille Skensved, Denmark
- QM Diagnostics, 6534, AT Nijmegen, The Netherlands
| | - Stine B Metzdorff
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1871, Frederiksberg C, Denmark
| | - Camilla H F Hansen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1871, Frederiksberg C, Denmark
| | - Tine R Licht
- National Food Institute, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Martin I Bahl
- National Food Institute, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Axel K Hansen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1871, Frederiksberg C, Denmark
| |
Collapse
|
37
|
Beneficial effects of lingonberry (Vaccinium vitis-idaea L.) supplementation on metabolic and inflammatory adverse effects induced by high-fat diet in a mouse model of obesity. PLoS One 2020; 15:e0232605. [PMID: 32379797 PMCID: PMC7205235 DOI: 10.1371/journal.pone.0232605] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 04/18/2020] [Indexed: 12/22/2022] Open
Abstract
Obesity is a constantly increasing health problem worldwide. It is associated with a systemic low-grade inflammation, which contributes to the development of metabolic disorders and comorbidities such as type 2 diabetes. Diet has an important role in the prevention of obesity and its adverse health effects; as a part of healthy diet, polyphenol-rich berries, such as lingonberry (Vaccinium vitis-idaea L.) have been proposed to have health-promoting effects. In the present study, we investigated the effects of lingonberry supplementation on high-fat diet induced metabolic and inflammatory changes in a mouse model of obesity. Thirty male C57BL/6N mice were divided into three groups (n = 10/group) to receive low-fat (LF), high-fat (HF) and lingonberry-supplemented high-fat (HF+LGB) diet for six weeks. Low-fat and high-fat diet contained 10% and 46% of energy from fat, respectively. Lingonberry supplementation prevented the high-fat diet induced adverse changes in blood cholesterol and glucose levels and had a moderate effect on the weight and visceral fat gain, which were 26% and 25% lower, respectively, in the lingonberry group than in the high-fat diet control group. Interestingly, lingonberry supplementation also restrained the high-fat diet induced increases in the circulating levels of the proinflammatory adipocytokine leptin (by 36%) and the inflammatory acute phase reactant serum amyloid A (SAA; by 85%). Similar beneficial effects were discovered in the hepatic expression of the inflammatory factors CXCL-14, S100A10 and SAA by lingonberry supplementation. In conclusion, the present results indicate that lingonberry supplementation significantly prevents high-fat diet induced metabolic and inflammatory changes in a murine model of obesity. The results encourage evaluation of lingonberries as a part of healthy diet against obesity and its comorbidities.
Collapse
|
38
|
Martin GG, Landrock D, McIntosh AL, Milligan S, Landrock KK, Kier AB, Mackie J, Schroeder F. High Glucose and Liver Fatty Acid Binding Protein Gene Ablation Differentially Impact Whole Body and Liver Phenotype in High-Fat Pair-Fed Mice. Lipids 2020; 55:309-327. [PMID: 32314395 DOI: 10.1002/lipd.12238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 03/12/2020] [Accepted: 03/30/2020] [Indexed: 12/14/2022]
Abstract
Ad libitum-fed diets high in fat and carbohydrate (especially fructose) induce weight gain, obesity, and nonalcoholic fatty liver disease (NAFLD) in humans and animal models. However, interpretation is complicated since ad libitum feeding of such diets induces hyperphagia and upregulates expression of liver fatty acid binding protein (L-FABP)-a protein intimately involved in fatty acid and glucose regulation of lipid metabolism. Wild-type (WT) and L-fabp gene ablated (LKO) mice were pair-fed either high-fat diet (HFD) or high-fat/high-glucose diet (HFGD) wherein total carbohydrate was maintained constant but the proportion of glucose was increased at the expense of fructose. In LKO mice, the pair-fed HFD increased body weight and lean tissue mass (LTM) but had no effect on fat tissue mass (FTM) or hepatic fatty vacuolation as compared to pair-fed WT counterparts. These LKO mice exhibited upregulation of hepatic proteins in fatty acid uptake and cytosolic transport (caveolin and sterol carrier protein-2), but lower hepatic fatty acid oxidation (decreased serum β-hydroxybutyrate). LKO mice pair-fed HFGD also exhibited increased body weight; however, these mice had increased FTM, not LTM, and increased hepatic fatty vacuolation as compared to pair-fed WT counterparts. These LKO mice also exhibited upregulation of hepatic proteins in fatty acid uptake and cytosolic transport (caveolin and acyl-CoA binding protein, but not sterol carrier protein-2), but there was no change in hepatic fatty acid oxidation (serum β-hydroxybutyrate) as compared to pair-fed WT counterparts.
Collapse
Affiliation(s)
- Gregory G Martin
- Department of Physiology and Pharmacology, Texas A&M University, TVMC, College Station, TX, 77843, USA
| | - Danilo Landrock
- Department of Pathobiology, Texas A&M University, TVMC, College Station, TX, 77843, USA
| | - Avery L McIntosh
- Department of Physiology and Pharmacology, Texas A&M University, TVMC, College Station, TX, 77843, USA
| | - Sherrelle Milligan
- Department of Pathobiology, Texas A&M University, TVMC, College Station, TX, 77843, USA
| | - Kerstin K Landrock
- Department of Physiology and Pharmacology, Texas A&M University, TVMC, College Station, TX, 77843, USA
| | - Ann B Kier
- Department of Pathobiology, Texas A&M University, TVMC, College Station, TX, 77843, USA
| | - John Mackie
- Department of Pathobiology, Texas A&M University, TVMC, College Station, TX, 77843, USA
| | - Friedhelm Schroeder
- Department of Physiology and Pharmacology, Texas A&M University, TVMC, College Station, TX, 77843, USA
| |
Collapse
|
39
|
da Silva Filomeno CE, Costa-Silva M, Corrêa CL, Neves RH, Mandarim-de-Lacerda CA, Machado-Silva JR. The acute schistosomiasis mansoni ameliorates metabolic syndrome in the C57BL/6 mouse model. Exp Parasitol 2020; 212:107889. [PMID: 32222527 DOI: 10.1016/j.exppara.2020.107889] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 03/17/2020] [Accepted: 03/22/2020] [Indexed: 02/07/2023]
Abstract
Human and experimental studies have shown that chronic schistosomiasis mansoni protects against metabolic disorders through direct and indirect pathways. This study aims to investigate the co-morbidity between the acute schistosomiasis and nonalcoholic fatty liver. To address this, male C57BL/6 mice fed a high-fat chow (60% fat) or standard chow (10% fat) for 13 weeks and later infected with 80 Schistosoma mansoni cercariae. Mice were assigned into four groups: uninfected fed standard (USC), uninfected fed high-fat chow (UHFC), infected fed standard (ISC), and infected fed high-fat chow (IHFC). Blood sample and tissues were obtained at nine weeks post-infection (acute schistosomiasis) by necropsy. UHFC mice showed higher body mass, visceral adiposity, impaired glucose tolerance, total cholesterol (TC), low-density lipoprotein cholesterol (LDL-c), triglyceride (TG), and liver steatosis compared to USC mice. IHFC mice showed lower blood lipid levels, blood glucose, improved glucose tolerance, body mass, and liver steatosis (macro and microvesicular) compared to UHFC mice. IHFC showed more massive histopathological changes (sinusoidal fibrosis, hepatocellular ballooning, and inflammatory infiltrates) compared to ISC. In conclusion, the co-morbidity results in both beneficial (friend) and detrimental (foe) for the host. While the acute schistosomiasis improves some metabolic features of metabolic syndrome, comorbidity worsens the liver injury.
Collapse
Affiliation(s)
- Carlos Eduardo da Silva Filomeno
- Department of Microbiology, Immunology and Parasitology, Faculty of Medical Sciences, Biomedical Center, The University of the State of Rio de Janeiro, Brazil
| | - Michele Costa-Silva
- Department of Microbiology, Immunology and Parasitology, Faculty of Medical Sciences, Biomedical Center, The University of the State of Rio de Janeiro, Brazil; Faculty of Medicine, Estácio de Sá University, Rio de Janeiro, Brazil
| | - Christiane Leal Corrêa
- Department of Pathology and Laboratories, Faculty of Medical Sciences, Biomedical Center, The University of the State of Rio de Janeiro, Brazil; Faculty of Medicine, Estácio de Sá University, Rio de Janeiro, Brazil
| | - Renata Heisler Neves
- Department of Microbiology, Immunology and Parasitology, Faculty of Medical Sciences, Biomedical Center, The University of the State of Rio de Janeiro, Brazil
| | - Carlos Alberto Mandarim-de-Lacerda
- Laboratory of Morphometry, Metabolism and Cardiovascular Diseases, Institute of Biology Roberto Alcantara Gomes, Biomedical Center, The University of the State of Rio de Janeiro, Brazil
| | - José Roberto Machado-Silva
- Department of Microbiology, Immunology and Parasitology, Faculty of Medical Sciences, Biomedical Center, The University of the State of Rio de Janeiro, Brazil.
| |
Collapse
|
40
|
Capri KM, Maroni MJ, Deane HV, Concepcion HA, DeCourcey H, Logan RW, Seggio JA. Male C57BL6/N and C57BL6/J Mice Respond Differently to Constant Light and Running-Wheel Access. Front Behav Neurosci 2019; 13:268. [PMID: 31920578 PMCID: PMC6914853 DOI: 10.3389/fnbeh.2019.00268] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 11/26/2019] [Indexed: 12/22/2022] Open
Abstract
Previous studies have shown that exposure to circadian disruption produces negative effects on overall health and behavior. More recent studies illustrate that strain differences in the behavioral and physiological responses to circadian disruption exist, even if the strains have similar genetic backgrounds. As such, we investigated the effects of constant room-level light (LL) with running-wheel access on the behavior and physiology of male C57BL6/J from Jackson Laboratories and C57BL6/N from Charles River Laboratories mice. Mice were exposed to either a 12:12 light-dark (LD) cycle or LL and given either a standard home cage or a cage with a running-wheel. Following 6 weeks of LD or LL, their response to behavioral assays (open-field, light-dark box, novel object) and measures of metabolism were observed. Under standard LD, C57BL6/J mice exhibited increased locomotor activity and reduced exploratory behavior compared to C57BL6/N mice. In LL, C57BL6/J mice had greater period lengthening and increased anxiety, while C57BL6/N mice exhibited increased weight gain and no change in exploratory behavior. C57BL6/J mice also decreased exploration with running-wheel access while C57BL6/N mice did not. These results further demonstrate that C57BL/6 substrains exhibit different behavioral and physiological responses to circadian disruption and wheel-running access.
Collapse
Affiliation(s)
- Kimberly M Capri
- Department of Biological Sciences, Bridgewater State University, Bridgewater, MA, United States.,Department of Mathematics and Statistics, Boston University, Boston, MA, United States
| | - Marissa J Maroni
- Department of Biological Sciences, Bridgewater State University, Bridgewater, MA, United States.,Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Hannah V Deane
- Department of Biological Sciences, Bridgewater State University, Bridgewater, MA, United States
| | - Holly A Concepcion
- Department of Biological Sciences, Bridgewater State University, Bridgewater, MA, United States
| | - Holly DeCourcey
- Department of Biological Sciences, Bridgewater State University, Bridgewater, MA, United States
| | - Ryan W Logan
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States.,Center for Systems Neurogenetics of Addiction, The Jackson Laboratory, Bar Harbor, ME, United States
| | - Joseph A Seggio
- Department of Biological Sciences, Bridgewater State University, Bridgewater, MA, United States
| |
Collapse
|
41
|
Young A, Gardiner D, Kuksal N, Gill R, O'Brien M, Mailloux RJ. Deletion of the Glutaredoxin-2 Gene Protects Mice from Diet-Induced Weight Gain, Which Correlates with Increased Mitochondrial Respiration and Proton Leaks in Skeletal Muscle. Antioxid Redox Signal 2019; 31:1272-1288. [PMID: 31317766 DOI: 10.1089/ars.2018.7715] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Aims: The aim of this study was to determine whether deleting the gene encoding glutaredoxin-2 (GRX2) could protect mice from diet-induced weight gain. Results: Subjecting wild-type littermates to a high fat diet (HFD) induced a significant increase in overall body mass, white adipose tissue hypertrophy, lipid droplet accumulation in hepatocytes, and higher circulating insulin and triglyceride levels. In contrast, GRX2 heterozygotes (GRX2+/-) fed an HFD had a body mass, white adipose tissue weight, and hepatic and circulating lipid and insulin levels similar to littermates fed a control diet. Examination of the bioenergetics of muscle mitochondria revealed that this protective effect was associated with an increase in respiration and proton leaks. Muscle mitochondria from GRX2+/- mice had a ∼2- to 3-fold increase in state 3 (phosphorylating) respiration when pyruvate/malate or succinate served as substrates and a ∼4-fold increase when palmitoyl-carnitine was being oxidized. Proton leaks were ∼2- to 3-fold higher in GRX2+/- muscle mitochondria. Treatment of mitochondria with either guanosine diphosphate, genipin, or octanoyl-carnitine revealed that the higher rate of O2 consumption under state 4 conditions was associated with increased leaks through uncoupling protein-3 and adenine nucleotide translocase. GRX2+/- mitochondria also had better protection from oxidative distress. Innovation: For the first time, we demonstrate that deleting the Grx2 gene can protect from diet-induced weight gain and the development of obesity-related disorders. Conclusions: Deleting the Grx2 gene protects mice from diet-induced weight gain. This effect was related to an increase in muscle fuel combustion, mitochondrial respiration, proton leaks, and reactive oxygen species handling. Antioxid. Redox Signal. 31, 1272-1288.
Collapse
Affiliation(s)
- Adrian Young
- Department of Biochemistry, Faculty of Science, Memorial University of Newfoundland, St. John's, Canada
| | - Danielle Gardiner
- Department of Biochemistry, Faculty of Science, Memorial University of Newfoundland, St. John's, Canada
| | - Nidhi Kuksal
- Department of Biochemistry, Faculty of Science, Memorial University of Newfoundland, St. John's, Canada
| | - Robert Gill
- Department of Biochemistry, Faculty of Science, Memorial University of Newfoundland, St. John's, Canada
| | - Marisa O'Brien
- Department of Biochemistry, Faculty of Science, Memorial University of Newfoundland, St. John's, Canada
| | - Ryan J Mailloux
- Department of Biochemistry, Faculty of Science, Memorial University of Newfoundland, St. John's, Canada
| |
Collapse
|
42
|
McIntosh AL, Atshaves BP, Martin GG, Landrock D, Milligan S, Landrock KK, Huang H, Storey SM, Mackie J, Schroeder F, Kier AB. Effect of liver fatty acid binding protein (L-FABP) gene ablation on lipid metabolism in high glucose diet (HGD) pair-fed mice. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1864:985-1004. [PMID: 30910689 PMCID: PMC6482111 DOI: 10.1016/j.bbalip.2019.03.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 03/02/2019] [Accepted: 03/21/2019] [Indexed: 01/06/2023]
Abstract
Liver fatty acid binding protein (L-FABP) is the major fatty acid binding/"chaperone" protein in hepatic cytosol. Although fatty acids can be derived from the breakdown of dietary fat and glucose, relatively little is known regarding the impact of L-FABP on phenotype in the context of high dietary glucose. Potential impact was examined in wild-type (WT) and Lfabp gene ablated (LKO) female mice fed either a control or pair-fed high glucose diet (HGD). WT mice fed HGD alone exhibited decreased whole body weight gain and weight gain/kcal food consumed-both as reduced lean tissue mass (LTM) and fat tissue mass (FTM). Conversely, LKO alone increased weight gain, lean tissue mass, and fat tissue mass while decreasing serum β-hydroxybutyrate (indicative of hepatic fatty acid oxidation)-regardless of diet. Both LKO alone and HGD alone significantly altered the serum lipoprotein profile and increased triacylglycerol (TG), but in HGD mice the LKO did not further exacerbate serum TG content. HGD had little effect on hepatic lipid composition in WT mice, but prevented the LKO-induced selective increase in hepatic phospholipid, free-cholesterol and cholesteryl-ester. Taken together, these findings suggest that high glucose diet diminished the effects of LKO on the whole body and lipid phenotype of these mice.
Collapse
Affiliation(s)
- Avery L McIntosh
- Department of Physiology and Pharmacology, Texas A&M University, TVMC, College Station, TX 77843, United States of America
| | - Barbara P Atshaves
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI 48824, United States of America
| | - Gregory G Martin
- Department of Physiology and Pharmacology, Texas A&M University, TVMC, College Station, TX 77843, United States of America
| | - Danilo Landrock
- Department of Pathobiology, Texas A&M University, TVMC, College Station, TX 77843, United States of America
| | - Sherrelle Milligan
- Department of Pathobiology, Texas A&M University, TVMC, College Station, TX 77843, United States of America
| | - Kerstin K Landrock
- Department of Physiology and Pharmacology, Texas A&M University, TVMC, College Station, TX 77843, United States of America
| | - Huan Huang
- Department of Physiology and Pharmacology, Texas A&M University, TVMC, College Station, TX 77843, United States of America
| | - Stephen M Storey
- Department of Physiology and Pharmacology, Texas A&M University, TVMC, College Station, TX 77843, United States of America
| | - John Mackie
- Department of Pathobiology, Texas A&M University, TVMC, College Station, TX 77843, United States of America
| | - Friedhelm Schroeder
- Department of Physiology and Pharmacology, Texas A&M University, TVMC, College Station, TX 77843, United States of America
| | - Ann B Kier
- Department of Pathobiology, Texas A&M University, TVMC, College Station, TX 77843, United States of America.
| |
Collapse
|
43
|
Lu HF, Lai YH, Huang HC, Lee IJ, Lin LC, Liu HK, Tien HH, Huang C. Ginseng-plus-Bai-Hu-Tang ameliorates diet-induced obesity, hepatic steatosis, and insulin resistance in mice. J Ginseng Res 2018; 44:238-246. [PMID: 32148405 PMCID: PMC7031743 DOI: 10.1016/j.jgr.2018.10.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 08/17/2018] [Accepted: 10/22/2018] [Indexed: 12/28/2022] Open
Abstract
Background Dietary fat has been suggested to be the cause of various health issues. Obesity, hypertension, cardiovascular disease, diabetes, dyslipidemia, and kidney disease are known to be associated with a high-fat diet (HFD). Obesity and associated conditions, such as type 2 diabetes mellitus and nonalcoholic fatty liver disease (NAFLD), are currently a worldwide health problem. Few prospective pharmaceutical therapies that directly target NAFLD are available at present. A Traditional Chinese Medicine, ginseng-plus-Bai-Hu-Tang (GBHT), is widely used by diabetic patients to control glucose level or thirst. However, whether it has therapeutic effects on fat-induced hepatic steatosis and metabolic syndrome remains unclear. Methods This study was conducted to examine the therapeutic effect of GBHT on fat-induced obesity, hepatic steatosis, and insulin resistance in mice. Results GBHT protected mice against HFD-induced body weight gain, hyperlipidemia, and hyperglycemia compared with mice that were not treated. GBHT inhibited the expansion of adipose tissue and adipocyte hypertrophy. No ectopic fat deposition was found in the livers of HFD mice treated with GBHT. In addition, glucose intolerance and insulin sensitivity in HFD mice was also improved by GBHT. Conclusion GBHT prevents changes in lipid and carbohydrate metabolism in a HFD mouse model. Our findings provide evidence for the traditional use of GBHT as therapy for the management of metabolic syndrome.
Collapse
Affiliation(s)
- Hsu-Feng Lu
- Departments of Clinical Pathology, Cheng Hsin General Hospital, Taipei, Taiwan.,Department of Restaurant, Hotel and Institutional Management, Fu-Jen Catholic University, New Taipei, Taiwan
| | - Yu-Heng Lai
- Department of Chemistry, Chinese Culture University, Taipei, Taiwan
| | - Hsiu-Chen Huang
- Department of Applied Science, National Tsing Hua University South Campus, Hsinchu, Taiwan
| | - I-Jung Lee
- Department of Kampo Medicine, Yokohama University of Pharmacy, Kanagawa, Japan
| | - Lie-Chwen Lin
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei, Taiwan
| | - Hui-Kang Liu
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei, Taiwan.,Ph.D. Program in Clinical Drug Development of Chinese Herbal Medicine, Taipei Medical University, Taipei, Taiwan
| | - Hsiao-Hsuan Tien
- Department of Biotechnology and Laboratory Science in Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Cheng Huang
- Department of Biotechnology and Laboratory Science in Medicine, National Yang-Ming University, Taipei, Taiwan.,Department of Earth and Life Sciences, University of Taipei, Taipei, Taiwan
| |
Collapse
|
44
|
Effect of Low-Fat Diet in Obese Mice Lacking Toll-like Receptors. Nutrients 2018; 10:nu10101464. [PMID: 30304787 PMCID: PMC6213519 DOI: 10.3390/nu10101464] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 09/28/2018] [Accepted: 10/02/2018] [Indexed: 12/11/2022] Open
Abstract
Background: This study aimed at assessing the effect of a low-fat diet (LFD) in obese mice lacking toll–like receptors (Tlr) and understanding the expression and regulation of microRNAs during weight reduction. Methods: C57BL/6, Tlr5−/−, Tlr2−/− and Tlr4−/− mice were used in this study. A group of mice were fed with a high-fat diet (HFD) (58% kcal) for 12 weeks to induce obesity (diet-induced obesity, DIO). Another group that had been fed with HFD for eight weeks (obese mice) were switched to a low-fat diet (LFD) (10.5% kcal) for the next four weeks to reduce their body weight. The control mice were fed with a standard AIN-76A diet for the entire 12 weeks. The body weight of the mice was measured weekly. At the end of the experiment, epididymal fat weight and adipocyte size were measured. The differentially expressed miRNAs in the fat tissue was determined by next-generation sequencing with real-time quantitative reverse transcription polymerase chain reaction (RT–qPCR). Target prediction and functional annotation of miRNAs were performed using miRSystem database. Results: Switching to LFD significantly reduced the body weight and epididymal fat mass in the HFD-fed C57BL/6 and Tlr5−/− mice but not in Tlr2−/− and Tlr4−/− mice. Weight reduction significantly decreased the size of adipocytes in C57BL/6 but not in the Tlr knockout mice. In Tlr2−/− and Tlr4−/− mice, feeding with HFD and the subsequent weight reduction resulted in an aberrant miRNA expression in the epididymal fat tissue unlike in C57BL/6 and Tlr5−/−. However, target prediction and functional annotation by miRSystem database revealed that all the top 10 Kyoto Encyclopedia of Genes and Genomes (KEGG) database pathways of the dysregulated miRNAs during weight reduction in the C57BL/6 mice were also found in the regulated pathways of Tlr5−/−, Tlr2−/−, and Tlr4−/− strains. However, among these pathways, gene sets involved in arginine and proline metabolism and glutathione metabolism were mainly involved in the Tlr knockout mice but not in the C57BL/6 mice. Conclusions: In this study, we demonstrated that feeding of LFD leads to significant body weight reduction in C57BL/6 and Tlr5−/− mice, but not in Tlr2−/− and Tlr4−/− mice. Significant reduction in the size of adipocytes of epididymal fat was only found in C57BL/6, but not in Tlr5−/−, Tlr2−/−, and Tlr4−/− mice. The dysregulated miRNAs in Tlr2−/− and Tlr4−/− mice were different from those in C57BL/6 and Tlr5−/− strains. Among those miRNA-regulated pathways, arginine and proline metabolism as well as glutathione metabolism may have important roles in the Tlr knockout mice rather than in C57BL/6 mice.
Collapse
|
45
|
Cyrus C, Ismail MH, Chathoth S, Vatte C, Hasen M, Al Ali A. Analysis of the Impact of Common Polymorphisms of theFTOandMC4RGenes with the Risk of Severe Obesity in Saudi Arabian Population. Genet Test Mol Biomarkers 2018; 22:170-177. [DOI: 10.1089/gtmb.2017.0218] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Affiliation(s)
- Cyril Cyrus
- Department of Genetic Research, Institute for Research and Medical Consultation, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Mona H. Ismail
- Department of Internal Medicine, King Fahd Hospital of the University, Imam Abdulrahman Bin Faisal University, Al-Khobar, Saudi Arabia
| | - Shahanas Chathoth
- Department of Genetic Research, Institute for Research and Medical Consultation, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Chittibabu Vatte
- Department of Genetic Research, Institute for Research and Medical Consultation, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Majd Hasen
- Department of Internal Medicine, King Fahd Hospital of the University, Imam Abdulrahman Bin Faisal University, Al-Khobar, Saudi Arabia
| | - Amein Al Ali
- Department of Biochemistry, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| |
Collapse
|
46
|
Fructuoso M, Rachdi L, Philippe E, Denis RG, Magnan C, Le Stunff H, Janel N, Dierssen M. Increased levels of inflammatory plasma markers and obesity risk in a mouse model of Down syndrome. Free Radic Biol Med 2018; 114:122-130. [PMID: 28958596 DOI: 10.1016/j.freeradbiomed.2017.09.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 09/20/2017] [Accepted: 09/24/2017] [Indexed: 12/27/2022]
Abstract
Down syndrome (DS) is caused by the trisomy of human chromosome 21 and is the most common genetic cause of intellectual disability. In addition to the intellectual deficiencies and physical anomalies, DS individuals present a higher prevalence of obesity and subsequent metabolic disorders than healthy adults. There is increasing evidence from both clinical and experimental studies indicating the association of visceral obesity with a pro-inflammatory status and recent studies have reported that obese people with DS suffer from low-grade systemic inflammation. However, the link between adiposity and inflammation has not been explored in DS. Here we used Ts65Dn mice, a validated DS mouse model, for the study of obesity-related inflammatory markers. Ts65Dn mice presented increased energy intake, and a positive energy balance leading to increased adiposity (fat mass per body weight), but did not show overweight, which only was apparent upon high fat diet induced obesity. Trisomic mice also had fasting hyperglycemia and hypoinsulinemia, and normal incretin levels. Those trisomy-associated changes were accompanied by reduced ghrelin plasma levels and slightly but not significantly increased leptin levels. Upon a glucose load, Ts65Dn mice showed normal increase of incretins accompanied by over-responses of leptin and resistin, while maintaining the hyperglycemic and hypoinsulinemic phenotype. These changes in the adipoinsular axis were accompanied by increased plasma levels of inflammatory biomarkers previously correlated with obesity galectin-3 and HSP72, and reduced IL-6. Taken together, these results suggest that increased adiposity, and pro-inflammatory adipokines leading to low-grade inflammation are important players in the propensity to obesity in DS. We conclude that DS would be a case of impaired metabolic-inflammatory axis.
Collapse
Affiliation(s)
- M Fructuoso
- Cellular & Systems Neurobiology, Systems Biology Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - L Rachdi
- INSERM U1016, Cochin Institute, Paris, France; CNRS UMR 8104, Paris, France; University of Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - E Philippe
- Université Paris Diderot, Sorbonne Paris Cité, Unité Biologie Fonctionnelle et Adaptative - CNRS UMR 8251, Paris, France
| | - R G Denis
- Université Paris Diderot, Sorbonne Paris Cité, Unité Biologie Fonctionnelle et Adaptative - CNRS UMR 8251, Paris, France
| | - C Magnan
- Université Paris Diderot, Sorbonne Paris Cité, Unité Biologie Fonctionnelle et Adaptative - CNRS UMR 8251, Paris, France
| | - H Le Stunff
- Université Paris Diderot, Sorbonne Paris Cité, Unité Biologie Fonctionnelle et Adaptative - CNRS UMR 8251, Paris, France; Université Paris Sud, France
| | - N Janel
- Université Paris Diderot, Sorbonne Paris Cité, Unité Biologie Fonctionnelle et Adaptative - CNRS UMR 8251, Paris, France
| | - M Dierssen
- Cellular & Systems Neurobiology, Systems Biology Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Spain.
| |
Collapse
|
47
|
Santos CDS, Balbo SL, Guimarães ATB, Sagae SC, Negretti F, Grassiolli S. Life-long Maternal Cafeteria Diet Promotes Tissue-Specific Morphological Changes in Male Offspring Adult Rats. AN ACAD BRAS CIENC 2017; 89:2887-2900. [PMID: 29267799 DOI: 10.1590/0001-3765201720170316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 08/29/2017] [Indexed: 11/22/2022] Open
Abstract
Here, we evaluated whether the exposure of rats to a cafeteria diet pre- and/or post-weaning, alters histological characteristics in the White Adipose Tissue (WAT), Brown Adipose Tissue (BAT), and liver of adult male offspring. Female Wistar rats were divided into Control (CTL; fed on standard rodent chow) and Cafeteria (CAF; fed with the cafeteria diet throughout life, including pregnancy and lactation). After birth, only male offspring (F1) were maintained and received the CTL or CAF diets; originating four experimental groups: CTL-CTLF1; CTL-CAFF1; CAF-CTLF1; CAF-CAFF1. Data of biometrics, metabolic parameters, liver, BAT and WAT histology were assessed and integrated using the Principal Component Analysis (PCA). According to PCA analysis worse metabolic and biometric characteristics in adulthood are associated with the post-weaning CAF diet compared to pre and post weaning CAF diet. Thus, the CTL-CAFF1 group showed obesity, higher deposition of fat in the liver and BAT and high fasting plasma levels of glucose, triglycerides and cholesterol. Interestingly, the association between pre and post-weaning CAF diet attenuated the obesity and improved the plasma levels of glucose and triglycerides compared to CTL-CAFF1 without avoiding the higher lipid accumulation in BAT and in liver, suggesting that the impact of maternal CAF diet is tissue-specific.
Collapse
Affiliation(s)
- Carolyne D S Santos
- Laboratório de Fisiologia Endócrina e Metabolismo/LAFEM, Centro de Ciências Biológicas e da Saúde/CCBS, Universidade Estadual do Oeste do Paraná/UNIOESTE, Rua Universitária, 2069, Jardim Universitário, 85819-110 Cascavel, PR, Brazil
| | - Sandra L Balbo
- Laboratório de Fisiologia Endócrina e Metabolismo/LAFEM, Centro de Ciências Biológicas e da Saúde/CCBS, Universidade Estadual do Oeste do Paraná/UNIOESTE, Rua Universitária, 2069, Jardim Universitário, 85819-110 Cascavel, PR, Brazil
| | - Ana T B Guimarães
- Laboratório de Fisiologia Endócrina e Metabolismo/LAFEM, Centro de Ciências Biológicas e da Saúde/CCBS, Universidade Estadual do Oeste do Paraná/UNIOESTE, Rua Universitária, 2069, Jardim Universitário, 85819-110 Cascavel, PR, Brazil
| | - Sara C Sagae
- Laboratório de Fisiologia Endócrina e Metabolismo/LAFEM, Centro de Ciências Biológicas e da Saúde/CCBS, Universidade Estadual do Oeste do Paraná/UNIOESTE, Rua Universitária, 2069, Jardim Universitário, 85819-110 Cascavel, PR, Brazil
| | - Fábio Negretti
- Laboratório de Fisiologia Endócrina e Metabolismo/LAFEM, Centro de Ciências Médicas e Farmacêuticas/CCMF, Universidade Estadual do Oeste do Paraná/UNIOESTE, Rua Universitária, 2069, Jardim Universitário, 85819-110 Cascavel, PR, Brazil
| | - Sabrina Grassiolli
- Laboratório de Fisiologia Endócrina e Metabolismo/LAFEM, Centro de Ciências Biológicas e da Saúde/CCBS, Universidade Estadual do Oeste do Paraná/UNIOESTE, Rua Universitária, 2069, Jardim Universitário, 85819-110 Cascavel, PR, Brazil
| |
Collapse
|
48
|
Martin GG, Landrock D, Chung S, Dangott LJ, McIntosh AL, Mackie JT, Kier AB, Schroeder F. Loss of fatty acid binding protein-1 alters the hepatic endocannabinoid system response to a high-fat diet. J Lipid Res 2017; 58:2114-2126. [PMID: 28972119 DOI: 10.1194/jlr.m077891] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 09/08/2017] [Indexed: 12/31/2022] Open
Abstract
Upregulation of the hepatic endocannabinoid (EC) receptor [cannabinoid receptor-1 (CB1)] and arachidonoylethanolamide (AEA) is associated with nonalcoholic fatty liver disease (NAFLD). Male mice fed high-fat diet (HFD) ad libitum also exhibit NAFLD, increased hepatic AEA, and obesity. But, preference for HFD complicates interpretation and almost nothing is known about these effects in females. These issues were addressed by pair-feeding HFD. Similarly to ad libitum-fed HFD, pair-fed HFD also increased WT male and female mouse fat tissue mass (FTM), but preferentially at the expense of lean tissue mass. In contrast, pair-fed HFD did not elicit NAFLD in WT mice regardless of sex. Concomitantly, pair-fed HFD oppositely impacted hepatic AEA, 2-arachidonoyl glycerol, and/or CB1 in WT males versus females. In pair-fed HFD mice, liver FA binding protein-1 (Fabp1) gene ablation (LKO): i) exacerbated FTM in both sexes; ii) did not elicit liver neutral lipid accumulation in males and only slightly in females; iii) increased liver AEA in males, but decreased it in females; and iv) decreased CB1 only in males. Thus, pair-fed HFD selectively impacted hepatic ECs more in females, but did not elicit NAFLD in either sex. These effects were modified by LKO consistent with FABP1's ability to impact EC and FA metabolism.
Collapse
Affiliation(s)
- Gregory G Martin
- Departments of Physiology and Pharmacology Texas A&M University, College Station, TX 77843
| | - Danilo Landrock
- Pathobiology, Texas A&M University, College Station, TX 77843
| | - Sarah Chung
- Pathobiology, Texas A&M University, College Station, TX 77843
| | - Lawrence J Dangott
- Protein Chemistry Laboratory, Texas A&M University, College Station, TX 77843
| | - Avery L McIntosh
- Departments of Physiology and Pharmacology Texas A&M University, College Station, TX 77843
| | - John T Mackie
- Pathobiology, Texas A&M University, College Station, TX 77843
| | - Ann B Kier
- Pathobiology, Texas A&M University, College Station, TX 77843
| | - Friedhelm Schroeder
- Departments of Physiology and Pharmacology Texas A&M University, College Station, TX 77843
| |
Collapse
|
49
|
Millar P, Pathak N, Parthsarathy V, Bjourson AJ, O'Kane M, Pathak V, Moffett RC, Flatt PR, Gault VA. Metabolic and neuroprotective effects of dapagliflozin and liraglutide in diabetic mice. J Endocrinol 2017; 234:255-267. [PMID: 28611211 DOI: 10.1530/joe-17-0263] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 06/13/2017] [Indexed: 12/24/2022]
Abstract
This study assessed the metabolic and neuroprotective actions of the sodium glucose cotransporter-2 inhibitor dapagliflozin in combination with the GLP-1 agonist liraglutide in dietary-induced diabetic mice. Mice administered low-dose streptozotocin (STZ) on a high-fat diet received dapagliflozin, liraglutide, dapagliflozin-plus-liraglutide (DAPA-Lira) or vehicle once-daily over 28 days. Energy intake, body weight, glucose and insulin concentrations were measured at regular intervals. Glucose tolerance, insulin sensitivity, hormone and biochemical analysis, dual-energy X-ray absorptiometry densitometry, novel object recognition, islet and brain histology were examined. Once-daily administration of DAPA-Lira resulted in significant decreases in body weight, fat mass, glucose and insulin concentrations, despite no change in energy intake. Similar beneficial metabolic improvements were observed regarding glucose tolerance, insulin sensitivity, HOMA-IR, HOMA-β, HbA1c and triglycerides. Plasma glucagon, GLP-1 and IL-6 levels were increased and corticosterone concentrations decreased. DAPA-Lira treatment decreased alpha cell area and increased insulin content compared to dapagliflozin monotherapy. Recognition memory was significantly improved in all treatment groups. Brain histology demonstrated increased staining for doublecortin (number of immature neurons) in dentate gyrus and synaptophysin (synaptic density) in stratum oriens and stratum pyramidale. These data demonstrate that combination therapy of dapagliflozin and liraglutide exerts beneficial metabolic and neuroprotective effects in diet-induced diabetic mice. Our results highlight important personalised approach in utilising liraglutide in combination with dapagliflozin, instead of either agent alone, for further clinical evaluation in treatment of diabetes and associated neurodegenerative disorders.
Collapse
Affiliation(s)
- Paul Millar
- SAAD Centre for Pharmacy and DiabetesSchool of Biomedical Sciences, University of Ulster, Northern Ireland, UK
| | - Nupur Pathak
- SAAD Centre for Pharmacy and DiabetesSchool of Biomedical Sciences, University of Ulster, Northern Ireland, UK
| | - Vadivel Parthsarathy
- SAAD Centre for Pharmacy and DiabetesSchool of Biomedical Sciences, University of Ulster, Northern Ireland, UK
| | - Anthony J Bjourson
- Northern Ireland Centre for Stratified MedicineUniversity of Ulster, C-TRIC Building, Altnagelvin Hospital, Northern Ireland, UK
| | - Maurice O'Kane
- Northern Ireland Centre for Stratified MedicineUniversity of Ulster, C-TRIC Building, Altnagelvin Hospital, Northern Ireland, UK
- Clinical Chemistry LaboratoryWestern Health and Social Care Trust, Altnagelvin Hospital, Northern Ireland, UK
| | - Varun Pathak
- SAAD Centre for Pharmacy and DiabetesSchool of Biomedical Sciences, University of Ulster, Northern Ireland, UK
| | - R Charlotte Moffett
- SAAD Centre for Pharmacy and DiabetesSchool of Biomedical Sciences, University of Ulster, Northern Ireland, UK
| | - Peter R Flatt
- SAAD Centre for Pharmacy and DiabetesSchool of Biomedical Sciences, University of Ulster, Northern Ireland, UK
| | - Victor A Gault
- SAAD Centre for Pharmacy and DiabetesSchool of Biomedical Sciences, University of Ulster, Northern Ireland, UK
| |
Collapse
|
50
|
Al-Gareeb AI, Aljubory KD, Alkuraishy HM. Niclosamide as an anti-obesity drug: an experimental study. Eat Weight Disord 2017; 22:339-344. [PMID: 28271456 DOI: 10.1007/s40519-017-0373-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 02/21/2017] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Niclosamide is a well-known anthelminthic drug that exert its effects at least in part through induction of mitochondrial uncoupling. The cycling of mitochondrial proton plays an essential role in regulation of basal metabolic rate, so modulation of mitochondrial uncoupling may be helpful approach to fight obesity. OBJECTIVE To assess the anti-obesity effects of niclosamide on mice with induced obesity. MATERIALS AND METHODS Thirty male Albino mice, 8-10 weeks old, were divided randomly and equally in to three groups; Group 1 fed with standard diet, whereas both Groups 2 and 3 were fed with high fat diet (HFD). At 10 weeks, the studied groups continue in the same type of diet as before for another 4 weeks, but additionally both of Group1 and 2 received placebo treatment as normal control and high fat diet control respectively, whereas Group 3 received oral niclosamide (140 mg/kg/day) as treatment group. The anti-obesity effects of niclosamide were evaluated by testing its effects on food intake, bodyweight, glycemic indices, and lipid profile. RESULT It was found that administration of niclosamide 140 mg/kg/day to HFD fed mice (Group3) for 4 weeks resulted in significant (P < 0.05) decline in the food intake and bodyweight of this group as compared with HFD control. Furthermore, niclosamide also resulted in significant (P < 0.05) lowering of the fasting blood glucose, fasting plasma insulin and improve insulin resistance. Likewise, niclosamide ameliorates the harmful effects of HFD on lipid profile by significant lowering of cholesterol, triglycerides, and LDL (P < 0.05). CONCLUSION Niclosamide has promising effects as an anti-obesity drug. It not just lowers bodyweight in mice, but, at the same time, it reverses metabolic disturbance induced by obesity.
Collapse
Affiliation(s)
- Ali I Al-Gareeb
- Clinical Pharmacology and Therapeutics, Department of Clinical Pharmacology and Therapeutics, College of Medicine, Al-Mustansiriya University, P.O. Box 14132, Baghdad, Iraq.
| | | | - Hayder M Alkuraishy
- Clinical Pharmacology and Therapeutics, College of Medicine, Al-Mustansiriya University, Baghdad, Iraq
| |
Collapse
|