1
|
Nagaja SA, John RS, G S, Kumar SP, Krishnan M. Injectable Platelet-Rich Fibrin and Hyaluronic Acid Mesotherapy for Management of Actinic Elastosis of Lower Eyelids: A Case Series. Cureus 2024; 16:e68429. [PMID: 39360098 PMCID: PMC11445689 DOI: 10.7759/cureus.68429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 08/31/2024] [Indexed: 10/04/2024] Open
Abstract
Rejuvenating the skin on the lower eyelids is often complicated. Treatment alternatives that have been practiced in the past had several complications. Additionally, they were not completely effective in addressing skin aging or actinic elastosis symptoms such as dark circles under the eyes. A minimally invasive therapy approach that improves the above-mentioned issues in a desirable way has been discussed in this case series. The patients selected were of the age group between 20-40 years who had actinic elastosis of the lower eyelid. The patients were injected twice at one-month intervals with a combination of injectable platelet-rich fibrin (iPRF) and hyaluronic acid. The patients were examined on the day of treatment and one month after the second injection. A progressive improvement in the esthetic outcome and a high level of patient satisfaction were observed. Apart from the predicted visible swelling right away following the iPRF injection. The outcomes have shown that a series of iPRF with hyaluronic acid injections in the lower eyelid region is a safe, proficient, pain-free, simple and rapid treatment option for actinic elastosis.
Collapse
Affiliation(s)
- Sharanika A Nagaja
- Oral and Maxillofacial Surgery, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Rubin S John
- Oral and Maxillofacial Surgery, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Swetha G
- Oral and Maxillofacial Surgery, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Santhosh P Kumar
- Oral and Maxillofacial Surgery, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Murugesan Krishnan
- Oral and Maxillofacial Surgery, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| |
Collapse
|
2
|
Levy M, Arfi Levy E, Marianayagam NJ, Frolov V, Maimon S, Salomon O. Distinctive patterns of sequential platelet counts following blunt traumatic brain injury predict outcomes. Brain Inj 2024; 38:818-826. [PMID: 38679938 DOI: 10.1080/02699052.2024.2347571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 04/22/2024] [Indexed: 05/01/2024]
Abstract
OBJECTIVE To determine the role of platelet counts in the context of the decision to treat patients with non-compounded, non-surgically-treated blunt traumatic brain injury (NCNS-bTBI) with anticoagulants/antiaggregants. METHODS A retrospective analysis of 141 anticoagulants/antiaggregants-naïve patients with NCNS-bTBI. Changes in PT-INR and prolonged aPTT were examined and correlated with Marshall and Rotterdam scores, clinical and neuroradiological outcomes. RESULTS Three groups of platelet counts were identified. Group 1 (83% of patients) had normal platelet counts (150,000-450,000 platelets/mm3) from admission to discharge. Group 2 (13%) developed transient thrombocytopenia (<150,000 platelets/mm3) 2-3 days post-trauma. Group 3 (4%) developed extreme thrombocytosis > 1,000,000/mm3 platelets 6-9 days post-trauma. Neither acute coagulopathy of trauma nor progressive hemorrhagic insults followed NCNS-bTBI. Moreover, while patients with thrombocytosis/extreme thrombocytosis presented with a worse Glasgow coma score (GCS) on admission (8.8 ± 2.9 vs. 13 ± 2, p < 0.01) and had longer hospitalization (13.5 ± 10.4 vs. 4.5 ± 2.1 days), their improvement at discharge was the highest (delta GCS, 4 ± 2.8 vs. 1.2 ± 2.1, p = 0.05). Traumatic subarachnoid hemorrhage was associated with isolated thrombocytosis and 'best improvement.' No thromboembolic or hemorrhagic complications occurred. CONCLUSION NCNS-bTBI, thrombocytosis was correlated with better outcomes and was not associated with an increased risk for developing thromboembolism or hemorrhage, precluding the immediate need for any additional antiaggregates.
Collapse
Affiliation(s)
- Mikael Levy
- Department of Neurosurgery, Rabin Medical Center, Tel Aviv, Israel
- Functional Neurosurgery Unit, Assuta Medical Centers, Tel Aviv, Israel
| | - Esther Arfi Levy
- Department of Pediatric Cardiac Surgery, Schneider Medical Center, Petach Tikva, Israel
| | | | - Vladimir Frolov
- Interventional Neuroradiology Unit, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Shimon Maimon
- Interventional Neuroradiology Unit, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Ophira Salomon
- Thrombosis and Hemostasis Unit, Sheba Medical Center, Ramat Gan, Israel
| |
Collapse
|
3
|
Prakash S, Sahu A, Mishra D, Datta N, Mukherjee S. Determinants of Variable Total Platelet Count in Healthy Plateletpheresis Donor. Indian J Hematol Blood Transfus 2024; 40:448-453. [PMID: 39011268 PMCID: PMC11246351 DOI: 10.1007/s12288-023-01721-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 11/30/2023] [Indexed: 07/17/2024] Open
Abstract
The platelet count in a healthy individual varies between 150 and 450 × 109/L. This study explores the factors affecting this variation in platelet count in healthy blood donors selected for platelet donation. This retrospective study comprises an analysis of platelet donor data between the year 2016-2022. The pre-recorded donor details such as age, gender, blood group, body mass index (BMI), and complete blood counts were collected and analyzed using the software 'R' (version 4.1.0). The statistical analysis consists of a test of normalcy followed by descriptive details and advanced statistics such as correlation and regression analysis to predict the variables affecting platelet count. The p-value of less than 0.05 was taken as significant. The median (IQR) of hemoglobin, platelet count, and total leucocyte count (TLC) was 142(135-150) g/L, 239(204-285) × 109/L, and 7.6(6.4-8.8) × 109/L, respectively. The platelet count was positively correlated with TLC (p = 0.000) and negatively with the age of the platelet donor (p = 0.001). The Kruskal-Wallis test detected significant differences in the platelet count among the ABO blood group (p = 0.008). Further, regression analysis confirms the independent positive association of total platelet count with the total leucocyte count (p = 0.000) and the negative association of platelet count with age (p = 0.004). This study concludes the strong dependency of total platelet count with total leucocyte count, age, and blood group.
Collapse
Affiliation(s)
- Satya Prakash
- Department of Transfusion Medicine, All India Institute of Medical Sciences, Bhubaneswar, Odisha India
| | - Ansuman Sahu
- Department of Transfusion Medicine, All India Institute of Medical Sciences, Bhubaneswar, Odisha India
| | - Debasish Mishra
- Department of Transfusion Medicine, All India Institute of Medical Sciences, Bhubaneswar, Odisha India
| | - Namrata Datta
- Department of Transfusion Medicine, All India Institute of Medical Sciences, Bhubaneswar, Odisha India
| | - Somnath Mukherjee
- Department of Transfusion Medicine, All India Institute of Medical Sciences, Bhubaneswar, Odisha India
| |
Collapse
|
4
|
Mantadaki AE, Linardakis M, Tsakiri M, Baliou S, Fragkiadaki P, Vakonaki E, Tzatzarakis MN, Tsatsakis A, Symvoulakis EK. Benefits of Quercetin on Glycated Hemoglobin, Blood Pressure, PiKo-6 Readings, Night-Time Sleep, Anxiety, and Quality of Life in Patients with Type 2 Diabetes Mellitus: A Randomized Controlled Trial. J Clin Med 2024; 13:3504. [PMID: 38930033 PMCID: PMC11205103 DOI: 10.3390/jcm13123504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 06/09/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
Background: Diabetes is a rapidly growing global morbidity issue with high prevalence, and the associated dysglycemia leads to complications. Patients with type 2 diabetes mellitus (T2DM) often experience elevated anxiety levels, affecting their quality of life and diabetes management. This study investigated quercetin, a nutraceutical and potential senolytic with antioxidant activity, to detect its possible positive effect on the bio-clinical measurements and routine health of patients with T2DM. Methods: This prospective randomized controlled trial (RCT) investigated the clinical usefulness of quercetin in patients with T2DM receiving non-insulin medications. One hundred participants were stratified by age and sex (1:1) and randomized to control (n = 50) or intervention (n = 50) groups. The control received standard care only, while the intervention received 500 mg quercetin daily for 12 weeks, followed by an 8-week washout and a final consecutive 12-week supplementation period (total: 32 weeks), as adjunct to their usual care. Comprehensive health assessments, including blood analyses, were conducted at baseline and study termination. Quality of life and anxiety were assessed using the 36-item Short Form Health Survey (SF-36) and Short Anxiety Screening Test (SAST-10). Results: Eighty-eight patients with T2DM concluded the trial. Compared with the control, glycated hemoglobin (HbA1c) levels showed a significant decrease (Δ%-change: -4.0% vs. 0.1%, p = 0.011). Quercetin also significantly improved PiKo-6 readings (FEV1: 5.6% vs. -1.5%, p = 0.002), systolic blood pressure (-5.0% vs. -0.2%, p = 0.029), night-time sleep (11.6% vs. -7.3%, p < 0.001), anxiety levels (SAST-10) (-26.2% vs. 3.3%, p < 0.001), and quality of life (SF-36) (both physical and mental components, p < 0.001). Conclusions: Based on the current open-label study, quercetin appears to be a promising supplement for T2DM, providing lifestyle and care support. Further research is warranted to shift this potential from clinical usefulness and feasibility to multidisciplinary evidence.
Collapse
Affiliation(s)
- Aikaterini E. Mantadaki
- Clinic of Social and Family Medicine, Department of Social Medicine, School of Medicine, University of Crete, 70013 Heraklion, Greece; (M.L.); (E.K.S.)
| | - Manolis Linardakis
- Clinic of Social and Family Medicine, Department of Social Medicine, School of Medicine, University of Crete, 70013 Heraklion, Greece; (M.L.); (E.K.S.)
| | - Maria Tsakiri
- Iatrica, Local Unit of Lab Analysis and Diagnostics Network, 71303 Heraklion, Greece;
| | - Stella Baliou
- Laboratory of Toxicology, Medical School, University of Crete, 71003 Heraklion, Greece or (S.B.); (P.F.); (E.V.); (M.N.T.); (A.T.)
| | - Persefoni Fragkiadaki
- Laboratory of Toxicology, Medical School, University of Crete, 71003 Heraklion, Greece or (S.B.); (P.F.); (E.V.); (M.N.T.); (A.T.)
| | - Elena Vakonaki
- Laboratory of Toxicology, Medical School, University of Crete, 71003 Heraklion, Greece or (S.B.); (P.F.); (E.V.); (M.N.T.); (A.T.)
| | - Manolis N. Tzatzarakis
- Laboratory of Toxicology, Medical School, University of Crete, 71003 Heraklion, Greece or (S.B.); (P.F.); (E.V.); (M.N.T.); (A.T.)
| | - Aristidis Tsatsakis
- Laboratory of Toxicology, Medical School, University of Crete, 71003 Heraklion, Greece or (S.B.); (P.F.); (E.V.); (M.N.T.); (A.T.)
| | - Emmanouil K. Symvoulakis
- Clinic of Social and Family Medicine, Department of Social Medicine, School of Medicine, University of Crete, 70013 Heraklion, Greece; (M.L.); (E.K.S.)
| |
Collapse
|
5
|
Scalise A, Aggarwal A, Sangwan N, Hamer A, Guntupalli S, Park HE, Aleman JO, Cameron SJ. A Divergent Platelet Transcriptome in Patients with Lipedema and Lymphedema. Genes (Basel) 2024; 15:737. [PMID: 38927673 PMCID: PMC11202821 DOI: 10.3390/genes15060737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024] Open
Abstract
Lipedema and lymphedema are physically similar yet distinct diseases that are commonly misdiagnosed. We previously reported that lipedema and lymphedema are associated with increased risk for venous thromboembolism (VTE). The underlying etiology of the prothrombotic profile observed in lipedema and lymphedema is unclear, but may be related to alterations in platelets. Our objective was to analyze the platelet transcriptome to identify biological pathways that may provide insight into platelet activation and thrombosis. The platelet transcriptome was evaluated in patients with lymphedema and lipedema, then compared to control subjects with obesity. Patients with lipedema were found to have a divergent transcriptome from patients with lymphedema. The platelet transcriptome and impacted biological pathways in lipedema were surprisingly similar to weight-matched comparators, yet different when compared to overweight individuals with a lower body mass index (BMI). Differences in the platelet transcriptome for patients with lipedema and lymphedema were found in biological pathways required for protein synthesis and degradation, as well as metabolism. Key differences in the platelet transcriptome for patients with lipedema compared to BMI-matched subjects involved metabolism and glycosaminoglycan processing. These inherent differences in the platelet transcriptome warrant further investigation, and may contribute to the increased risk of thrombosis in patients with lipedema and lymphedema.
Collapse
Affiliation(s)
- Alliefair Scalise
- Heart Vascular and Thoracic Institute, Department of Cardiovascular Medicine, Section of Vascular Medicine, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | - Anu Aggarwal
- Lerner Research Institute, Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | - Naseer Sangwan
- Lerner Research Institute, Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | - Annelise Hamer
- Heart Vascular and Thoracic Institute, Department of Cardiovascular Medicine, Section of Vascular Medicine, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | - Suman Guntupalli
- Lerner Research Institute, Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | - Huijun Edelyn Park
- Lerner Research Institute, Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | - Jose O. Aleman
- Holman Division of Endocrinology, New York University, New York, NY 10012, USA;
| | - Scott J. Cameron
- Heart Vascular and Thoracic Institute, Department of Cardiovascular Medicine, Section of Vascular Medicine, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
- Lerner Research Institute, Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
- Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44195, USA
- Department of Hematology, Taussig Cancer Center, Cleveland, OH 44195, USA
| |
Collapse
|
6
|
Chen PY, Shen M, Cai SQ, Tang ZW. Association Between Atopic Dermatitis and Aging: Clinical Observations and Underlying Mechanisms. J Inflamm Res 2024; 17:3433-3448. [PMID: 38828054 PMCID: PMC11144009 DOI: 10.2147/jir.s467099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 05/17/2024] [Indexed: 06/05/2024] Open
Abstract
As one of the most prevalent chronic inflammatory skin diseases, atopic dermatitis (AD) increasingly affects the aging population. Amid the ongoing global aging trend, it's essential to recognize the intricate relationship between AD and aging. This paper reviews existing knowledge, summarizing clinical observations of associations between AD and aging-related diseases in various systems, including endocrine, cardiovascular, and neurological. Additionally, it discusses major theories explaining the correlation, encompassing skin-mucosal barriers, systemic inflammation and stress, genes, signal transduction, and environmental and behavioral factors. The association between AD and aging holds significant importance, both in population and basic perspectives. While further research is warranted, this paper aims to inspire deeper exploration of inflammation/allergy-aging dynamics and the timely management of elderly patients with AD.
Collapse
Affiliation(s)
- Peng-Yu Chen
- Department of Dermatology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, People’s Republic of China
| | - Minxue Shen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
- Hunan Engineering Research Center of Skin Health and Disease; Hunan Key Laboratory of Skin Cancer and Psoriasis (Xiangya Hospital), Changsha, 410008, People’s Republic of China
- Department of Social Medicine and Health Management, Xiangya School of Public Health, Central South University, Changsha, 410078, People’s Republic of China
| | - Sui-Qing Cai
- Department of Dermatology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, People’s Republic of China
| | - Zhen-Wei Tang
- Department of Dermatology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, People’s Republic of China
| |
Collapse
|
7
|
Kim JH, Lee SJ, Cha JJ, Park JH, Hong SJ, Ahn TH, Kim BK, Chang K, Park Y, Song YB, Ahn SG, Suh JW, Lee SY, Cho JR, Her AY, Jeong YH, Kim HS, Kim MH, Shin ES, Lim DS. Prognostic Impact of CYP2C19 Genotypes on Long-Term Clinical Outcomes in Older Patients After Percutaneous Coronary Intervention. J Am Heart Assoc 2024; 13:e032248. [PMID: 38761068 PMCID: PMC11179831 DOI: 10.1161/jaha.123.032248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 04/17/2024] [Indexed: 05/20/2024]
Abstract
BACKGROUND Carriers of CYP2C19 loss-of-function alleles have increased adverse events after percutaneous coronary intervention, but limited data are available for older patients. We aimed to evaluate the prognostic impact of CYP2C19 genotypes on clinical outcomes in older patients after percutaneous coronary intervention. METHODS AND RESULTS The study included 1201 older patients (aged ≥75 years) who underwent percutaneous coronary intervention and received clopidogrel-based dual antiplatelet therapy in South Korea. Patients were grouped on the basis of CYP2C19 genotypes. The primary outcome was 3-year major adverse cardiac events, defined as a composite of cardiac death, myocardial infarction, and stent thrombosis. Older patients were grouped into 3 groups: normal metabolizer (36.6%), intermediate metabolizer (48.1%), and poor metabolizer (15.2%). The occurrence of the primary outcome was significantly different among the groups (3.1, 7.0, and 6.2% in the normal metabolizer, intermediate metabolizer, and poor metabolizer groups, respectively; P=0.02). The incidence rate of all-cause death at 3 years was greater in the intermediate metabolizer and poor metabolizer groups (8.1% and 9.2%, respectively) compared with that in the normal metabolizer group (3.5%, P=0.03) without significant differences in major bleeding. In the multivariable analysis, the intermediate metabolizer and poor metabolizer groups were independent predictors of 3-year clinical outcomes. CONCLUSIONS In older patients, the presence of any CYP2C19 loss-of-function allele was found to be predictive of a higher incidence of major adverse cardiac events within 3 years following percutaneous coronary intervention. This finding suggests a need for further investigation into an optimal antiplatelet strategy for older patients. REGISTRATION URL: https://clinicaltrials.gov. Identifier: NCT04734028.
Collapse
Affiliation(s)
- Ju Hyeon Kim
- Department of Cardiology, Cardiovascular Center Korea University Anam Hospital, Korea University College of Medicine Seoul South Korea
| | | | - Jung-Joon Cha
- Department of Cardiology, Cardiovascular Center Korea University Anam Hospital, Korea University College of Medicine Seoul South Korea
| | - Jae Hyoung Park
- Department of Cardiology, Cardiovascular Center Korea University Anam Hospital, Korea University College of Medicine Seoul South Korea
| | - Soon Jun Hong
- Department of Cardiology, Cardiovascular Center Korea University Anam Hospital, Korea University College of Medicine Seoul South Korea
| | - Tae Hoon Ahn
- Department of Cardiology Heart and Brain Institute, Chung-Ang University Gwang-Myeong Hospital, Chung-Ang University College of Medicine Gwangmyeong-si South Korea
| | | | - Kiyuk Chang
- Division of Cardiology, Department of Internal Medicine College of Medicine, Catholic University of Korea Seoul South Korea
| | - Yongwhi Park
- Department of Internal Medicine Gyeongsang National University School of Medicine and Cardiovascular Center, Gyeongsang National University Changwon Hospital Changwon South Korea
| | - Young Bin Song
- Division of Cardiology, Department of Medicine, Samsung Medical Center Sungkyunkwan University School of Medicine Seoul South Korea
| | - Sung Gyun Ahn
- Department of Cardiology Yonsei University Wonju Severance Christian Hospital Wonju South Korea
| | - Jung-Won Suh
- Department of Cardiology, Department of Internal Medicine Seoul National University Bundang Hospital, Seoul National University College of Medicine Seoul South Korea
| | - Sang Yeub Lee
- Department of Cardiology Heart and Brain Institute, Chung-Ang University Gwang-Myeong Hospital, Chung-Ang University College of Medicine Gwangmyeong-si South Korea
| | - Jung Rae Cho
- Cardiology Division, Department of Internal Medicine, Kangnam Sacred Heart Hospital Hallym University College of Medicine Seoul South Korea
| | - Ae-Young Her
- Division of Cardiology, Department of Internal Medicine Kangwon National University School of Medicine Chuncheon South Korea
| | - Young-Hoon Jeong
- Department of Cardiology Heart and Brain Institute, Chung-Ang University Gwang-Myeong Hospital, Chung-Ang University College of Medicine Gwangmyeong-si South Korea
| | - Hyo-Soo Kim
- Cardiovascular Center, Department of Internal Medicine Seoul National University Hospital Seoul South Korea
| | - Moo Hyun Kim
- Department of Cardiology Dong-A University Hospital Busan South Korea
| | - Eun-Seok Shin
- Division of Cardiology Ulsan University Hospital, University of Ulsan College of Medicine Ulsan South Korea
| | - Do-Sun Lim
- Department of Cardiology, Cardiovascular Center Korea University Anam Hospital, Korea University College of Medicine Seoul South Korea
| |
Collapse
|
8
|
Babur O, Emili A, Aslan JE. Platelet proteomics emerges from the womb: mass spectrometry insights into neonatal platelet biology. J Thromb Haemost 2024; 22:1313-1315. [PMID: 38670684 DOI: 10.1016/j.jtha.2024.01.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 01/27/2024] [Indexed: 04/28/2024]
Affiliation(s)
- Ozgun Babur
- Department of Computer Science, University of Massachusetts, Boston, Massachusetts, USA
| | - Andrew Emili
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon, USA; Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - Joseph E Aslan
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon, USA; Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon, USA; Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, Oregon, USA.
| |
Collapse
|
9
|
Shin E, Park C, Park T, Chung H, Hwang H, Bak SH, Chung KS, Yoon SR, Kim TD, Choi I, Lee CH, Jung H, Noh JY. Deficiency of thioredoxin-interacting protein results in age-related thrombocytopenia due to megakaryocyte oxidative stress. J Thromb Haemost 2024; 22:834-850. [PMID: 38072375 DOI: 10.1016/j.jtha.2023.11.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 01/06/2024]
Abstract
BACKGROUND Platelets are generated from megakaryocytes (MKs), mainly located in the bone marrow (BM). Megakaryopoiesis can be affected by genetic disorders, metabolic diseases, and aging. The molecular mechanisms underlying platelet count regulation have not been fully elucidated. OBJECTIVES In the present study, we investigated the role of thioredoxin-interacting protein (TXNIP), a protein that regulates cellular metabolism in megakaryopoiesis, using a Txnip-/- mouse model. METHODS Wild-type (WT) and Txnip-/- mice (2-27-month-old) were studied. BM-derived MKs were analyzed to investigate the role of TXNIP in megakaryopoiesis with age. The global transcriptome of BM-derived CD41+ megakaryocyte precursors (MkPs) of WT and Txnip-/- mice were compared. The CD34+ hematopoietic stem cells isolated from human cord blood were differentiated into MKs. RESULTS Txnip-/- mice developed thrombocytopenia at 4 to 5 months that worsened with age. During ex vivo megakaryopoiesis, Txnip-/- MkPs remained small, with decreased levels of MK-specific markers. Critically, Txnip-/- MkPs exhibited reduced mitochondrial reactive oxygen species, which was related to AKT activity. Txnip-/- MkPs also showed elevated glycolysis alongside increased glucose uptake for ATP production. Total RNA sequencing revealed enrichment for oxidative stress- and apoptosis-related genes in differentially expressed genes between Txnip-/- and WT MkPs. The effects of TXNIP on MKs were recapitulated during the differentiation of human cord blood-derived CD34+ hematopoietic stem cells. CONCLUSION We provide evidence that the megakaryopoiesis pathway becomes exhausted with age in Txnip-/- mice with a decrease in terminal, mature MKs that response to thrombocytopenic challenge. Overall, this study demonstrates the role of TXNIP in megakaryopoiesis, regulating mitochondrial metabolism.
Collapse
Affiliation(s)
- Eunju Shin
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Yuseong-gu, Daejeon, Korea; College of Pharmacy, Chungnam National University, Yuseong-gu, Daejeon, Korea
| | - Charny Park
- Bioinformatics Team, Research Institute, National Cancer Center, Ilsandong-gu, Gyeonggi-do, Korea
| | - Taeho Park
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Yuseong-gu, Daejeon, Korea; Department of Functional Genomics, Korea University of Science and Technology, Yuseong-gu, Daejeon, Korea
| | - Hyunmin Chung
- College of Pharmacy, Chungnam National University, Yuseong-gu, Daejeon, Korea; Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Yuseong-gu, Daejeon, Korea
| | - Hyeyeong Hwang
- Bioinformatics Team, Research Institute, National Cancer Center, Ilsandong-gu, Gyeonggi-do, Korea
| | - Seong Ho Bak
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Yuseong-gu, Daejeon, Korea; Department of Functional Genomics, Korea University of Science and Technology, Yuseong-gu, Daejeon, Korea
| | - Kyung-Sook Chung
- Department of Functional Genomics, Korea University of Science and Technology, Yuseong-gu, Daejeon, Korea; Stem Cell Convergence Research Center and Biomedical Translational Research Center, Korea Research Institute of Bioscience and Biotechnology, Yuseong-gu, Daejeon, Korea
| | - Suk Ran Yoon
- Department of Functional Genomics, Korea University of Science and Technology, Yuseong-gu, Daejeon, Korea; Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Yuseong-gu, Daejeon, Korea
| | - Tae-Don Kim
- Department of Functional Genomics, Korea University of Science and Technology, Yuseong-gu, Daejeon, Korea; Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Yuseong-gu, Daejeon, Korea
| | - Inpyo Choi
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Yuseong-gu, Daejeon, Korea
| | - Chang Hoon Lee
- R&D Center, SCBIO Co, Ltd, Munji-ro, Yuseong-gu, Daejeon, Korea; Therapeutics and Biotechnology Division, Drug Discovery Platform Research Center, Korea Research Institute of Chemical Technology, Yuseong-gu, Daejeon, Korea
| | - Haiyoung Jung
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Yuseong-gu, Daejeon, Korea; Department of Functional Genomics, Korea University of Science and Technology, Yuseong-gu, Daejeon, Korea
| | - Ji-Yoon Noh
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Yuseong-gu, Daejeon, Korea; Department of Functional Genomics, Korea University of Science and Technology, Yuseong-gu, Daejeon, Korea.
| |
Collapse
|
10
|
Kullaya VI, Temba GS, Vadaq N, Njau J, Boahen CK, Nkambule BB, Thibord F, Chen MH, Pecht T, Lyamuya F, Kumar V, Netea MG, Mmbaga BT, van der Ven A, Johnson AD, de Mast Q. Genetic and nongenetic drivers of platelet reactivity in healthy Tanzanian individuals. J Thromb Haemost 2024; 22:805-817. [PMID: 38029856 DOI: 10.1016/j.jtha.2023.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 11/14/2023] [Accepted: 11/16/2023] [Indexed: 12/01/2023]
Abstract
BACKGROUND Platelets play a key role in hemostasis, inflammation, and cardiovascular diseases. Platelet reactivity is highly variable between individuals. The drivers of this variability in populations from Sub-Saharan Africa remain largely unknown. OBJECTIVES We aimed to investigate the nongenetic and genetic determinants of platelet reactivity in healthy adults living in a rapidly urbanizing area in Northern Tanzania. METHODS Platelet activation and reactivity were measured by platelet P-selectin expression and the binding of fibrinogen in unstimulated blood and after ex vivo stimulation with adenosine diphosphate and PAR-1 and PAR-4 ligands. We then analyzed the associations of platelet parameters with host genetic and nongenetic factors, environmental factors, plasma inflammatory markers, and plasma metabolites. RESULTS Only a few associations were found between platelet reactivity parameters and plasma inflammatory markers and nongenetic host and environmental factors. In contrast, untargeted plasma metabolomics revealed a large number of associations with food-derived metabolites, including phytochemicals that were previously reported to inhibit platelet reactivity. Genome-wide single-nucleotide polymorphism genotyping identified 2 novel single-nucleotide polymorphisms (rs903650 and rs4789332) that were associated with platelet reactivity at the genome-wide level (P < 5 × 10-8) as well as a number of variants in the PAR4 gene (F2RL3) that were associated with PAR4-induced reactivity. CONCLUSION Our study uncovered factors that determine variation in platelet reactivity in a population in East Africa that is rapidly transitioning to an urban lifestyle, including the importance of genetic ancestry and the gradual abandoning of the traditional East African diet.
Collapse
Affiliation(s)
- Vesla I Kullaya
- Kilimanjaro Clinical Research Institute, Kilimanjaro Christian Medical Center, Moshi, Tanzania; Department of Medical Biochemistry and Molecular Biology, Kilimanjaro Christian Medical University College, Moshi, Tanzania
| | - Godfrey S Temba
- Department of Medical Biochemistry and Molecular Biology, Kilimanjaro Christian Medical University College, Moshi, Tanzania; Department of Internal Medicine, Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Nadira Vadaq
- Department of Internal Medicine, Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Judith Njau
- Kilimanjaro Clinical Research Institute, Kilimanjaro Christian Medical Center, Moshi, Tanzania
| | - Collins K Boahen
- Department of Internal Medicine, Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Bongani B Nkambule
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Florian Thibord
- National Heart, Lung, and Blood Institute, Population Sciences Branch, Framingham, Massachusetts, USA
| | - Ming-Huei Chen
- National Heart, Lung, and Blood Institute, Population Sciences Branch, Framingham, Massachusetts, USA
| | - Tal Pecht
- Department for Genomics and Immunoregulation, Life and Medical Sciences Institute, University of Bonn, Bonn, Germany
| | - Furaha Lyamuya
- Kilimanjaro Clinical Research Institute, Kilimanjaro Christian Medical Center, Moshi, Tanzania
| | - Vinod Kumar
- Department of Internal Medicine, Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands; Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Mihai G Netea
- Department of Internal Medicine, Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands; Department for Immunology and Metabolism, Life and Medical Sciences Institute, University of Bonn, Bonn, Germany
| | - Blandina T Mmbaga
- Kilimanjaro Clinical Research Institute, Kilimanjaro Christian Medical Center, Moshi, Tanzania; Department of Pediatrics, Kilimanjaro Christian Medical University College, Moshi, Tanzania
| | - Andre van der Ven
- Department of Internal Medicine, Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Andrew D Johnson
- National Heart, Lung, and Blood Institute, Population Sciences Branch, Framingham, Massachusetts, USA
| | - Quirijn de Mast
- Department of Internal Medicine, Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands.
| |
Collapse
|
11
|
Patel S, Patel S, Kotadiya A, Patel S, Shrimali B, Joshi N, Patel T, Trivedi H, Patel J, Joharapurkar A, Jain M. Age-related changes in hematological and biochemical profiles of Wistar rats. Lab Anim Res 2024; 40:7. [PMID: 38409070 PMCID: PMC10895735 DOI: 10.1186/s42826-024-00194-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 02/06/2024] [Accepted: 02/13/2024] [Indexed: 02/28/2024] Open
Abstract
BACKGROUND Wistar rats are extensively used as the model for assessing toxicity and efficacy in preclinical research. Hematological and biochemical laboratory data are essential for evaluating specific variations in the physiological and functional profile of a laboratory animal. Establishing hematological and biochemical reference values for Wistar (han) rats at various age intervals was the goal of this work. Male and female Wistar rats (n = 660) of ages 6-8 weeks, 10-14 weeks and > 6 months were used in the experiment. Blood and serum were collected from these rats under fasting conditions. RESULTS We observed that the majority of hematological and biochemical parameters were significantly influenced by sex and age. Hematological changes were significantly correlated to aging were increased red blood cells, hemoglobin, hematocrit, neutrophils, monocytes and eosinophils in both sexes, as well as decreased platelet, mean corpuscular volume, mean corpuscular hemoglobin and lymphocytes in both sexes. White blood cells of male rats were considerably higher than those of female rats in all age ranges. For biochemistry, increase in glucose, total protein and creatinine were seen in both sexes, along with increases in urea in females and alanine aminotransferase in males. Age was significantly associated with decreased alkaline phosphatase in both sexes. CONCLUSIONS When using Wistar rats as a model, these reference values may be useful in evaluating the results.
Collapse
Affiliation(s)
- Suresh Patel
- Animal Research Facility, Zydus Research Centre, Zydus Lifesciences Ltd., Ahmedabad, India.
| | - Satish Patel
- Animal Research Facility, Zydus Research Centre, Zydus Lifesciences Ltd., Ahmedabad, India
| | - Ashvin Kotadiya
- Animal Research Facility, Zydus Research Centre, Zydus Lifesciences Ltd., Ahmedabad, India
| | - Samir Patel
- Animal Research Facility, Zydus Research Centre, Zydus Lifesciences Ltd., Ahmedabad, India
| | - Bhavesh Shrimali
- Animal Research Facility, Zydus Research Centre, Zydus Lifesciences Ltd., Ahmedabad, India
| | - Nikita Joshi
- Department of Pharmacology and Toxicology, Zydus Research Centre, Zydus Lifesciences Ltd., Ahmedabad, India
| | - Tushar Patel
- Department of Pharmacology and Toxicology, Zydus Research Centre, Zydus Lifesciences Ltd., Ahmedabad, India
| | - Harshida Trivedi
- Department of Pharmacology and Toxicology, Zydus Research Centre, Zydus Lifesciences Ltd., Ahmedabad, India
| | - Jitendra Patel
- Department of Pharmacology and Toxicology, Zydus Research Centre, Zydus Lifesciences Ltd., Ahmedabad, India
| | - Amit Joharapurkar
- Department of Pharmacology and Toxicology, Zydus Research Centre, Zydus Lifesciences Ltd., Ahmedabad, India
| | - Mukul Jain
- Department of Pharmacology and Toxicology, Zydus Research Centre, Zydus Lifesciences Ltd., Ahmedabad, India
| |
Collapse
|
12
|
Chen N, Wang H, Shao Y, Yang J, Song G. A Comparative Study on Platelet-Rich Plasma From Elderly Individuals and Young Adults to Treat Pressure Ulcers in Mice. J Surg Res 2024; 294:198-210. [PMID: 37913727 DOI: 10.1016/j.jss.2023.08.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 07/25/2023] [Accepted: 08/28/2023] [Indexed: 11/03/2023]
Abstract
OBJECTIVE The aim of the present study was to compare the therapeutic effects of activated platelet-rich plasma (PRP) prepared from elderly individuals and young adults to treat pressure ulcers (PUs), and to accumulate a theoretical basis for allogeneic PRP treatment of PUs in elderly patients. MATERIALS AND METHODS Whole blood was extracted from elderly individuals aged >65 y and young adult volunteers for PRP preparation, and platelet concentrations in whole blood and PRP were compared. Growth factors released from activated PRP were assayed using the enzyme-linked immunosorbent assay. C57BL/6 mice were divided into three groups: the control saline, elderly-PRP (Group A), and young adult-PRP (Group B). Ischemia-reperfusion injury-induced PUs were established on the backs of mice. PUs were photographed on days 0, 5, and 10 to assess their sizes. Specimens were collected on day 10 and subjected to hematoxylin and eosin and Masson's staining. Immunohistochemical staining for CD31 was conducted to evaluate vascular formation, and cell invasion was assessed using a Transwell assay. The action of PRP on transforming growth factor-beta (TGF-β)-dependent fibroblast activity and epithelial-mesenchymal transition was analyzed using immunofluorescence and Western blotting in vitro. RESULTS The platelet concentrations in whole blood and PRP of young adults were significantly higher than that in elderly individuals. The two PRP treatment groups had similar platelet enrichment coefficients of PRP. After activation, PRP from young adults produced significantly higher levels of platelet-derived growth factor, TGF-β, and vascular endothelial growth factor than PRP from elderly individuals (P < 0.05). The concentrations of platelet-derived growth factor, TGF-β, and vascular endothelial growth factor were positively correlated with the platelet concentrations in whole blood and PRP. The effects of PRP in regulating the expressions of TGF-β, α-smooth muscle actin, vimentin, and E-cadherin were observed in vivo and in vitro. The two PRP treatment groups exhibited better wound healing than the control group, as evidenced by more re-epithelialization, higher collagen content, skin fibrosis, and more blood vessel formation over time. Group B exhibited better wound healing than Group A (P < 0.05). CONCLUSION PRP exhibits potent wound healing ability in PU therapy, and PRP from young adults is seemingly superior to that from elderly individuals because of a higher concentration of platelets and increased production of growth factors.
Collapse
Affiliation(s)
- Ningjie Chen
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China; Department of Burns and Plastic Surgery, Weihai Municipal Hospital, Shandong University, Weihai, Shandong, China
| | - Haitao Wang
- Department of Burns and Plastic Surgery, Weihai Municipal Hospital, Shandong University, Weihai, Shandong, China
| | - Yang Shao
- Department of Burns and Orthopedic Surgery, Jinan Central Hospital, Shandong University, Jinan, Shandong, China
| | - Jincun Yang
- Department of Burns and Plastic Surgery, Weihai Municipal Hospital, Shandong University, Weihai, Shandong, China
| | - Guodong Song
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China; Department of Burns and Orthopedic Surgery, Jinan Central Hospital, Shandong University, Jinan, Shandong, China.
| |
Collapse
|
13
|
Bartold M, Ivanovski S. Biological processes and factors involved in soft and hard tissue healing. Periodontol 2000 2024. [PMID: 38243683 DOI: 10.1111/prd.12546] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/12/2023] [Accepted: 11/23/2023] [Indexed: 01/21/2024]
Abstract
Wound healing is a complex and iterative process involving myriad cellular and biologic processes that are highly regulated to allow satisfactory repair and regeneration of damaged tissues. This review is intended to be an introductory chapter in a volume focusing on the use of platelet concentrates for tissue regeneration. In order to fully appreciate the clinical utility of these preparations, a sound understanding of the processes and factors involved in soft and hard tissue healing. This encompasses an appreciation of the cellular and biological mediators of both soft and hard tissues in general as well as specific consideration of the periodontal tissues. In light of good advances in this basic knowledge, there have been improvements in clinical strategies and therapeutic management of wound repair and regeneration. The use of platelet concentrates for tissue regeneration offers one such strategy and is based on the principles of cellular and biologic principles of wound repair discussed in this review.
Collapse
Affiliation(s)
- Mark Bartold
- University of Queensland, Brisbane, Queensland, Australia
| | - Saso Ivanovski
- University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
14
|
Sarıyer RM, Gill K, Needs SH, Hodge D, Reis NM, Jones CI, Edwards AD. Time- and distance-resolved robotic imaging of fluid flow in vertical microfluidic strips: a new technique for quantitative, multiparameter measurement of global haemostasis. SENSORS & DIAGNOSTICS 2023; 2:1623-1637. [PMID: 38013763 PMCID: PMC10633108 DOI: 10.1039/d3sd00162h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 09/26/2023] [Indexed: 11/29/2023]
Abstract
Measuring the complex processes of blood coagulation, haemostasis and thrombosis that are central to cardiovascular health and disease typically requires a choice between high-resolution low-throughput laboratory assays, or simpler less quantitative tests. We propose combining mass-produced microfluidic devices with open-source robotic instrumentation to enable rapid development of affordable and portable, yet high-throughput and performance haematological testing. A time- and distance-resolved fluid flow analysis by Raspberry Pi imaging integrated with controlled sample addition and illumination, enabled simultaneous tracking of capillary rise in 120 individual capillaries (∼160, 200 or 270 μm internal diameter), in 12 parallel disposable devices. We found time-resolved tracking of capillary rise in each individual microcapillary provides quantitative information about fluid properties and most importantly enables quantitation of dynamic changes in these properties following stimulation. Fluid properties were derived from flow kinetics using a pressure balance model validated with glycerol-water mixtures and blood components. Time-resolved imaging revealed fluid properties that were harder to determine from a single endpoint image or equilibrium analysis alone. Surprisingly, instantaneous superficial fluid velocity during capillary rise was found to be largely independent of capillary diameter at initial time points. We tested if blood function could be measured dynamically by stimulating blood with thrombin to trigger activation of global haemostasis. Thrombin stimulation slowed vertical fluid velocity consistent with a dynamic increase in viscosity. The dynamics were concentration-dependent, with highest doses reducing flow velocity faster (within 10 s) than lower doses (10-30 s). This open-source imaging instrumentation expands the capability of affordable microfluidic devices for haematological testing, towards high-throughput multi-parameter blood analysis needed to understand and improve cardiovascular health.
Collapse
Affiliation(s)
- Rüya Meltem Sarıyer
- Reading School of Pharmacy, University of Reading Whiteknights Reading RG6 6UB UK +44 (0)118 378 4253
| | - Kirandeep Gill
- Reading School of Pharmacy, University of Reading Whiteknights Reading RG6 6UB UK +44 (0)118 378 4253
- Department of Chemical Engineering and Centre for Biosensors, Bioelectronics and Biodevices (CBio), University of Bath Bath BA2 7AY UK
| | - Sarah H Needs
- Reading School of Pharmacy, University of Reading Whiteknights Reading RG6 6UB UK +44 (0)118 378 4253
| | - Daniel Hodge
- Reading School of Biological Sciences, University of Reading Whiteknights Reading UK
| | - Nuno M Reis
- Department of Chemical Engineering and Centre for Biosensors, Bioelectronics and Biodevices (CBio), University of Bath Bath BA2 7AY UK
| | - Chris I Jones
- Reading School of Biological Sciences, University of Reading Whiteknights Reading UK
| | - Alexander D Edwards
- Reading School of Pharmacy, University of Reading Whiteknights Reading RG6 6UB UK +44 (0)118 378 4253
- School of Electronics and Computer Science, University of Southampton Highfield Southampton SO17 1BJ UK
| |
Collapse
|
15
|
Xiao S, Jiang F, Chen Y, Gong X. Development and validation of a prediction tool for intraoperative blood transfusion in brain tumor resection surgery: a retrospective analysis. Sci Rep 2023; 13:17428. [PMID: 37833334 PMCID: PMC10575918 DOI: 10.1038/s41598-023-44549-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 10/10/2023] [Indexed: 10/15/2023] Open
Abstract
Early identification of a patient with a high risk of blood transfusion during brain tumor resection surgery is difficult but critical for implementing preoperative blood-saving strategies. This study aims to develop and validate a machine learning prediction tool for intraoperative blood transfusion in brain tumor resection surgery. A total of 541 patients who underwent brain tumor resection surgery in our hospital from January 2019 to December 2021 were retrospectively enrolled in this study. We incorporated demographics, preoperative comorbidities, and laboratory risk factors. Features were selected using the least absolute shrinkage and selection operator (LASSO). Eight machine learning algorithms were benchmarked to identify the best model to predict intraoperative blood transfusion. The prediction tool was established based on the best algorithm and evaluated with discriminative ability. The data were randomly split into training and test groups at a ratio of 7:3. LASSO identified seven preoperative relevant factors in the training group: hemoglobin, diameter, prothrombin time, white blood cell count (WBC), age, physical status of the American Society of Anesthesiologists (ASA) classification, and heart function. Logistic regression, linear discriminant analysis, supporter vector machine, and ranger all performed better in the eight machine learning algorithms with classification errors of 0.185, 0.193, 0.199, and 0.196, respectively. A nomogram was then established, and the model showed a better discrimination ability [0.817, 95% CI (0.739, 0.895)] than hemoglobin [0.663, 95% CI (0.557, 0.770)] alone in the test group (P = 0.000). Hemoglobin, diameter, prothrombin time, WBC, age, ASA status, and heart function are risk factors of intraoperative blood transfusion in brain tumor resection surgery. The prediction tool established using the logistic regression algorithm showed a good discriminative ability than hemoglobin alone for predicting intraoperative blood transfusion in brain tumor resection surgery.
Collapse
Affiliation(s)
- Shugen Xiao
- Institution of Brain Disease and Neuroscience, Department of Anesthesiology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, China
| | - Fei Jiang
- Institution of Brain Disease and Neuroscience, Department of Anesthesiology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, China
| | - Yongmei Chen
- Department of Laboratory, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, China.
| | - Xingrui Gong
- Institution of Brain Disease and Neuroscience, Department of Anesthesiology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, China.
| |
Collapse
|
16
|
Taneva SG, Todinova S, Andreeva T. Morphometric and Nanomechanical Screening of Peripheral Blood Cells with Atomic Force Microscopy for Label-Free Assessment of Alzheimer's Disease, Parkinson's Disease, and Amyotrophic Lateral Sclerosis. Int J Mol Sci 2023; 24:14296. [PMID: 37762599 PMCID: PMC10531602 DOI: 10.3390/ijms241814296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/09/2023] [Accepted: 09/16/2023] [Indexed: 09/29/2023] Open
Abstract
Neurodegenerative disorders (NDDs) are complex, multifactorial disorders with significant social and economic impact in today's society. NDDs are predicted to become the second-most common cause of death in the next few decades due to an increase in life expectancy but also to a lack of early diagnosis and mainly symptomatic treatment. Despite recent advances in diagnostic and therapeutic methods, there are yet no reliable biomarkers identifying the complex pathways contributing to these pathologies. The development of new approaches for early diagnosis and new therapies, together with the identification of non-invasive and more cost-effective diagnostic biomarkers, is one of the main trends in NDD biomedical research. Here we summarize data on peripheral biomarkers, biofluids (cerebrospinal fluid and blood plasma), and peripheral blood cells (platelets (PLTs) and red blood cells (RBCs)), reported so far for the three most common NDDs-Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS). PLTs and RBCs, beyond their primary physiological functions, are increasingly recognized as valuable sources of biomarkers for NDDs. Special attention is given to the morphological and nanomechanical signatures of PLTs and RBCs as biophysical markers for the three pathologies. Modifications of the surface nanostructure and morphometric and nanomechanical signatures of PLTs and RBCs from patients with AD, PD, and ALS have been revealed by atomic force microscopy (AFM). AFM is currently experiencing rapid and widespread adoption in biomedicine and clinical medicine, in particular for early diagnostics of various medical conditions. AFM is a unique instrument without an analog, allowing the generation of three-dimensional cell images with extremely high spatial resolution at near-atomic scale, which are complemented by insights into the mechanical properties of cells and subcellular structures. Data demonstrate that AFM can distinguish between the three pathologies and the normal, healthy state. The specific PLT and RBC signatures can serve as biomarkers in combination with the currently used diagnostic tools. We highlight the strong correlation of the morphological and nanomechanical signatures between RBCs and PLTs in PD, ALS, and AD.
Collapse
Affiliation(s)
- Stefka G. Taneva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, “Acad. G. Bontchev” Str. 21, 1113 Sofia, Bulgaria; (S.T.); (T.A.)
| | - Svetla Todinova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, “Acad. G. Bontchev” Str. 21, 1113 Sofia, Bulgaria; (S.T.); (T.A.)
| | - Tonya Andreeva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, “Acad. G. Bontchev” Str. 21, 1113 Sofia, Bulgaria; (S.T.); (T.A.)
- Faculty of Life Sciences, Reutlingen University, Alteburgstraße 150, D-72762 Reutlingen, Germany
| |
Collapse
|
17
|
Kunapaisal T, Phuong J, Liu Z, Stansbury LG, Vavilala MS, Lele AV, Tsang HC, Hess JR. Age, admission platelet count, and mortality in severe isolated traumatic brain injury: A retrospective cohort study. Transfusion 2023; 63:1472-1480. [PMID: 37515367 DOI: 10.1111/trf.17476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 06/12/2023] [Indexed: 07/30/2023]
Abstract
BACKGROUND We asked whether patients >50 years of age with acute traumatic brain injury (TBI) present with lower platelet counts and whether lower platelet counts are independently associated with mortality. METHODS We combined trauma registry and laboratory data on a retrospective cohort of all patients ≥18 years of age admitted to our Level 1 US regional trauma center 2015-2021 with severe (Head Abbreviated Injury Score [AIS] ≥3), isolated (all other AIS <3) TBI who had a first platelet count within 1 h of arrival. Age and platelet count were assessed continuously and as groups (age 18-50 vs. >50, platelet normals, and at conventional transfusion thresholds). Outcomes such as mean admission platelet counts and in-hospital mortality were assessed categorically and with logistic regression. RESULTS Of 44,056 patients, 1298 (3%, median age: 52 [IQR 33,68], 76.1% male) met all inclusion criteria with no differences between younger and older age groups for (ISS; 18 [14,26] vs. 17 [14,26], p = .22), New ISS (NISS; 29 [19,50] vs. 28 [17,50], p = .36), or AIS-Head (4 [3,5] vs. 4 [3,5]; p = .87). Patients aged >50 had lower admission platelet counts (219,000 ± 93,000 vs. 242,000 ± 76,000/μL; p < .001) and greater in-hospital mortality (24.5% vs. 15.6%, p < .001) than those 18-50. In multivariable regression, firearms injuries (OR9.08), increasing age (OR1.004), NISS (OR1.007), and AIS-Head (OR1.05), and decreasing admission platelet counts (OR0.998) were independently associated with mortality (p < .001-.041). Platelet transfusion in the first 4 h of care was more frequent among older patients (p < .001). CONCLUSIONS Older patients with TBI had lower admission platelet counts, which were independently associated with greater mortality.
Collapse
Affiliation(s)
- Thitikan Kunapaisal
- Department of Anesthesiology and Pain Medicine, University of Washington (UW) School of Medicine (SOM), Seattle, Washington, USA
- Department of Anesthesiology, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
- Harborview Injury Prevention and Research Center, Harborview Medical Center, Seattle, Washington, USA
| | - Jim Phuong
- Harborview Injury Prevention and Research Center, Harborview Medical Center, Seattle, Washington, USA
| | - Zhinan Liu
- Harborview Injury Prevention and Research Center, Harborview Medical Center, Seattle, Washington, USA
- Transfusion Service, Harborview Medical Center, Seattle, Washington, USA
| | - Lynn G Stansbury
- Department of Anesthesiology and Pain Medicine, University of Washington (UW) School of Medicine (SOM), Seattle, Washington, USA
- Harborview Injury Prevention and Research Center, Harborview Medical Center, Seattle, Washington, USA
| | - Monica S Vavilala
- Department of Anesthesiology and Pain Medicine, University of Washington (UW) School of Medicine (SOM), Seattle, Washington, USA
- Harborview Injury Prevention and Research Center, Harborview Medical Center, Seattle, Washington, USA
- Department of Pediatrics, UW SOM, Seattle, Washington, USA
| | - Abhijit V Lele
- Department of Anesthesiology and Pain Medicine, University of Washington (UW) School of Medicine (SOM), Seattle, Washington, USA
- Harborview Injury Prevention and Research Center, Harborview Medical Center, Seattle, Washington, USA
| | - Hamilton C Tsang
- Harborview Injury Prevention and Research Center, Harborview Medical Center, Seattle, Washington, USA
- Transfusion Service, Harborview Medical Center, Seattle, Washington, USA
- Department of Laboratory Medicine and Pathology, UW SOM, Seattle, Washington, USA
| | - John R Hess
- Harborview Injury Prevention and Research Center, Harborview Medical Center, Seattle, Washington, USA
- Transfusion Service, Harborview Medical Center, Seattle, Washington, USA
- Department of Laboratory Medicine and Pathology, UW SOM, Seattle, Washington, USA
| |
Collapse
|
18
|
Wong RJ, Ge J, Boike J, German M, Morelli G, Spengler E, Said A, Desai A, Couri T, Paul S, Frenette C, Verna EC, Goel A, Fallon M, Thornburg B, VanWagner L, Lai JC, Kolli KP. Change in Platelet Count after Transjugular Intrahepatic Portosystemic Shunt Creation: An Advancing Liver Therapeutic Approaches (ALTA) Group Study. J Vasc Interv Radiol 2023; 34:1364-1371. [PMID: 37100199 PMCID: PMC10998695 DOI: 10.1016/j.jvir.2023.04.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 04/02/2023] [Accepted: 04/18/2023] [Indexed: 04/28/2023] Open
Abstract
PURPOSE To evaluate recovery of platelet count after transjugular intrahepatic portosystemic shunt (TIPS) creation and patient factors predicting platelet recovery after TIPS creation. MATERIALS AND METHODS Adults with cirrhosis who underwent TIPS creation at 9 U.S. hospitals from 2010 to 2015 were included in this retrospective analysis. Change in platelets from before TIPS to 4 months after TIPS creation was characterized. Logistic regression was used to assess factors associated with top quartile percentage platelet increase after TIPS. Subgroup analyses were performed among patients with a pre-TIPS platelet count of ≤50 ×109/L. RESULTS A total of 601 patients were included. The median absolute change in platelets was 1 × 109/L (-26 × 109/L to 25 × 109/L). Patients with top quartile percent platelet increase experienced ≥32% platelet increase. In multivariable analysis, pre-TIPS platelet counts (odds ratio [OR], 0.97 per 109/L; 95% CI, 0.97-0.98), age (OR, 1.24 per 5 years; 95% CI, 1.10-1.39), and pre-TIPS model for end-stage liver disease (MELD) scores (OR, 1.06 per point; 95% CI, 1.02-1.09) were associated with top quartile (≥32%) platelet increase. Ninety-four (16%) patients had a platelet count of ≤50 × 109/L before TIPS. The median absolute platelet change was 14 × 109/L (2 × 109/L to 34 × 109/L). Fifty-four percent of patients in this subgroup were in the top quartile for platelet increase. In multivariable logistic regression, age (OR, 1.50 per 5 years; 95% CI, 1.11-2.02) was the only factor associated with top quartile platelet increase in this subgroup. CONCLUSIONS TIPS creation did not result in significant platelet increase, except among patients with a platelet count of ≤50 × 109/L before TIPS. Lower pre-TIPS platelet counts, older age, and higher pre-TIPS MELD scores were associated with top quartile (≥32%) platelet increase in the entire cohort, whereas only older age was associated with this outcome in the patient subset with a pre-TIPS platelet count of ≤50 × 109/L.
Collapse
Affiliation(s)
- Randi J Wong
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of California San Francisco, San Francisco, California
| | - Jin Ge
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of California San Francisco, San Francisco, California
| | - Justin Boike
- Division of Gastroenterology and Hepatology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Margarita German
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Giuseppe Morelli
- Division of Gastroenterology, Hepatology, Department of Medicine, and Nutrition, University of Florida Health, Gainesville, Florida
| | - Erin Spengler
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Adnan Said
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Archita Desai
- Division of Gastroenterology and Hepatology, Indiana University, Indianapolis, Indiana
| | - Thomas Couri
- Section of Gastroenterology, Hepatology & Nutrition, Department of Medicine, The University of Chicago Pritzker School of Medicine, Chicago, Illinois
| | - Sonali Paul
- Section of Gastroenterology, Hepatology & Nutrition, Department of Medicine, The University of Chicago Pritzker School of Medicine, Chicago, Illinois
| | - Catherine Frenette
- Department for Organ and Cell Transplantation, The Scripps Clinic, La Jolla, California
| | - Elizabeth C Verna
- Department of Medicine, Center for Liver Disease and Transplantation, Columbia University College of Physicians & Surgeons, New York, New York
| | - Aparna Goel
- Department of Internal Medicine, Banner University Medical Center, University of Arizona College of Medicine-Phoenix, Phoenix, Arizona
| | - Michael Fallon
- Department of Internal Medicine, Banner University Medical Center, University of Arizona College of Medicine-Phoenix, Phoenix, Arizona
| | - Bartley Thornburg
- Division of Vascular Interventional Radiology, Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Lisa VanWagner
- Division of Gastroenterology and Hepatology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Jennifer C Lai
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of California San Francisco, San Francisco, California
| | - K Pallav Kolli
- Division of Interventional Radiology, Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California.
| |
Collapse
|
19
|
Affaticati F, Bartholomeus E, Mullan K, Damme PV, Beutels P, Ogunjimi B, Laukens K, Meysman P. Multi-View Learning to Unravel the Different Levels Underlying Hepatitis B Vaccine Response. Vaccines (Basel) 2023; 11:1236. [PMID: 37515051 PMCID: PMC10384938 DOI: 10.3390/vaccines11071236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/03/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
The immune system acts as an intricate apparatus that is dedicated to mounting a defense and ensures host survival from microbial threats. To engage this faceted immune response and provide protection against infectious diseases, vaccinations are a critical tool to be developed. However, vaccine responses are governed by levels that, when interrogated, separately only explain a fraction of the immune reaction. To address this knowledge gap, we conducted a feasibility study to determine if multi-view modeling could aid in gaining actionable insights on response markers shared across populations, capture the immune system's diversity, and disentangle confounders. We thus sought to assess this multi-view modeling capacity on the responsiveness to the Hepatitis B virus (HBV) vaccination. Seroconversion to vaccine-induced antibodies against the HBV surface antigen (anti-HBs) in early converters (n = 21; <2 months) and late converters (n = 9; <6 months) and was defined based on the anti-HBs titers (>10IU/L). The multi-view data encompassed bulk RNA-seq, CD4+ T-cell parameters (including T-cell receptor data), flow cytometry data, and clinical metadata (including age and gender). The modeling included testing single-view and multi-view joint dimensionality reductions. Multi-view joint dimensionality reduction outperformed single-view methods in terms of the area under the curve and balanced accuracy, confirming the increase in predictive power to be gained. The interpretation of these findings showed that age, gender, inflammation-related gene sets, and pre-existing vaccine-specific T-cells could be associated with vaccination responsiveness. This multi-view dimensionality reduction approach complements clinical seroconversion and all single modalities. Importantly, this modeling could identify what features could predict HBV vaccine response. This methodology could be extended to other vaccination trials to identify the key features regulating responsiveness.
Collapse
Affiliation(s)
- Fabio Affaticati
- Adrem Data Lab, Department of Computer Science, University of Antwerp, 2020 Antwerp, Belgium
- Antwerp Unit for Data Analysis and Computation in Immunology and Sequencing (AUDACIS), University of Antwerp, 2020 Antwerp, Belgium
| | - Esther Bartholomeus
- Antwerp Unit for Data Analysis and Computation in Immunology and Sequencing (AUDACIS), University of Antwerp, 2020 Antwerp, Belgium
- Centre for Health Economics Research & Modeling Infectious Diseases (CHERMID), Vaccine & Infectious Disease Institute (VAXINFECTIO), University of Antwerp, 2610 Antwerp, Belgium
- Antwerp Center for Translational Immunology and Virology (ACTIV), Vaccine and Infectious Disease Institute, University of Antwerp (VAXINFECTIO), 2610 Antwerp, Belgium
| | - Kerry Mullan
- Adrem Data Lab, Department of Computer Science, University of Antwerp, 2020 Antwerp, Belgium
- Antwerp Unit for Data Analysis and Computation in Immunology and Sequencing (AUDACIS), University of Antwerp, 2020 Antwerp, Belgium
| | - Pierre Van Damme
- Antwerp Unit for Data Analysis and Computation in Immunology and Sequencing (AUDACIS), University of Antwerp, 2020 Antwerp, Belgium
- Centre for the Evaluation of Vaccination (CEV), Vaccine and Infectious Disease Institute, University of Antwerp, 2610 Antwerp, Belgium
| | - Philippe Beutels
- Antwerp Unit for Data Analysis and Computation in Immunology and Sequencing (AUDACIS), University of Antwerp, 2020 Antwerp, Belgium
- Centre for Health Economics Research & Modeling Infectious Diseases (CHERMID), Vaccine & Infectious Disease Institute (VAXINFECTIO), University of Antwerp, 2610 Antwerp, Belgium
| | - Benson Ogunjimi
- Antwerp Unit for Data Analysis and Computation in Immunology and Sequencing (AUDACIS), University of Antwerp, 2020 Antwerp, Belgium
- Centre for Health Economics Research & Modeling Infectious Diseases (CHERMID), Vaccine & Infectious Disease Institute (VAXINFECTIO), University of Antwerp, 2610 Antwerp, Belgium
- Antwerp Center for Translational Immunology and Virology (ACTIV), Vaccine and Infectious Disease Institute, University of Antwerp (VAXINFECTIO), 2610 Antwerp, Belgium
- Department of Paediatrics, Antwerp University Hospital, 2650 Edegem, Belgium
| | - Kris Laukens
- Adrem Data Lab, Department of Computer Science, University of Antwerp, 2020 Antwerp, Belgium
- Antwerp Unit for Data Analysis and Computation in Immunology and Sequencing (AUDACIS), University of Antwerp, 2020 Antwerp, Belgium
| | - Pieter Meysman
- Adrem Data Lab, Department of Computer Science, University of Antwerp, 2020 Antwerp, Belgium
- Antwerp Unit for Data Analysis and Computation in Immunology and Sequencing (AUDACIS), University of Antwerp, 2020 Antwerp, Belgium
| |
Collapse
|
20
|
Korpershoek JV, Vonk LA, Filardo G, Kester EC, van Egmond N, Saris DB, Custers RJ. Effect of Autologous Conditioned Plasma Injections in Patients With Knee Osteoarthritis. Orthop J Sports Med 2023; 11:23259671231184848. [PMID: 37529531 PMCID: PMC10387782 DOI: 10.1177/23259671231184848] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 04/13/2023] [Indexed: 08/03/2023] Open
Abstract
Background Autologous conditioned plasma (ACP) is a commercially available platelet concentrate with promising results from clinical trials. Purpose To evaluate the clinical outcome after 3 consecutive injections of ACP in patients with knee osteoarthritis (OA) and study the influence of ACP composition and different patient factors as predictors of treatment effect. Study Design Case series; Level of evidence, 4. Methods This prospective case series included 260 patients (307 knees) who received ACP treatment for knee OA. The mean patient age was 51 ± 10 years. Improvement up to 12 months' follow-up was measured using the Knee injury and Osteoarthritis Outcome Score (KOOS). ACP composition was analyzed in 100 patients. The predictive value of age, sex, history of knee trauma, Kellgren-Lawrence OA grade, body mass index, and ACP composition was evaluated using generalized estimating equations. Results The mean overall KOOS improved from 38 ± 14 at baseline to 45 ± 18 at 3 months, 45 ± 18 at 6 months, and 43 ± 18 at 12 months (all P < .05); 40% of patients achieved an improvement above the minimal clinically important difference (MCID) of 8 after 6 months and 33% after 12 months. The variation in ACP composition did not correlate with KOOS (P > .05). Older age led to a greater clinical benefit (β = 0.27; P = .05), whereas bilateral treatment predicted worse outcomes (β = -5.6; P < .05). Conclusion The improvement in KOOS after treatment with ACP did not reach the MCID in most study patients. Older age was a predictor for better outcomes. The composition of ACP varied between patients but did not predict outcomes within the evaluated range. The study findings show the limited benefit of ACP treatment for knee OA and call for caution with routine use in clinical practice.
Collapse
Affiliation(s)
| | - Lucienne A. Vonk
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Giuseppe Filardo
- Service of Orthopaedics and Traumatology, Department of Surgery, EOC, Lugano, Switzerland
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland
| | - Esmee C. Kester
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Nienke van Egmond
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Daniël B.F. Saris
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht, the Netherlands
- Department of Orthopedic Surgery and Sports Medicine, Mayo Clinic, Rochester, Minnesota, USA
- Department of Reconstructive Medicine, University of Twente, Enschede, the Netherlands
| | - Roel J.H. Custers
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht, the Netherlands
| |
Collapse
|
21
|
Bao H, Cao J, Chen M, Chen M, Chen W, Chen X, Chen Y, Chen Y, Chen Y, Chen Z, Chhetri JK, Ding Y, Feng J, Guo J, Guo M, He C, Jia Y, Jiang H, Jing Y, Li D, Li J, Li J, Liang Q, Liang R, Liu F, Liu X, Liu Z, Luo OJ, Lv J, Ma J, Mao K, Nie J, Qiao X, Sun X, Tang X, Wang J, Wang Q, Wang S, Wang X, Wang Y, Wang Y, Wu R, Xia K, Xiao FH, Xu L, Xu Y, Yan H, Yang L, Yang R, Yang Y, Ying Y, Zhang L, Zhang W, Zhang W, Zhang X, Zhang Z, Zhou M, Zhou R, Zhu Q, Zhu Z, Cao F, Cao Z, Chan P, Chen C, Chen G, Chen HZ, Chen J, Ci W, Ding BS, Ding Q, Gao F, Han JDJ, Huang K, Ju Z, Kong QP, Li J, Li J, Li X, Liu B, Liu F, Liu L, Liu Q, Liu Q, Liu X, Liu Y, Luo X, Ma S, Ma X, Mao Z, Nie J, Peng Y, Qu J, Ren J, Ren R, Song M, Songyang Z, Sun YE, Sun Y, Tian M, Wang S, Wang S, Wang X, Wang X, Wang YJ, Wang Y, Wong CCL, Xiang AP, Xiao Y, Xie Z, Xu D, Ye J, Yue R, Zhang C, Zhang H, Zhang L, Zhang W, Zhang Y, Zhang YW, Zhang Z, Zhao T, Zhao Y, Zhu D, Zou W, Pei G, Liu GH. Biomarkers of aging. SCIENCE CHINA. LIFE SCIENCES 2023; 66:893-1066. [PMID: 37076725 PMCID: PMC10115486 DOI: 10.1007/s11427-023-2305-0] [Citation(s) in RCA: 99] [Impact Index Per Article: 99.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 02/27/2023] [Indexed: 04/21/2023]
Abstract
Aging biomarkers are a combination of biological parameters to (i) assess age-related changes, (ii) track the physiological aging process, and (iii) predict the transition into a pathological status. Although a broad spectrum of aging biomarkers has been developed, their potential uses and limitations remain poorly characterized. An immediate goal of biomarkers is to help us answer the following three fundamental questions in aging research: How old are we? Why do we get old? And how can we age slower? This review aims to address this need. Here, we summarize our current knowledge of biomarkers developed for cellular, organ, and organismal levels of aging, comprising six pillars: physiological characteristics, medical imaging, histological features, cellular alterations, molecular changes, and secretory factors. To fulfill all these requisites, we propose that aging biomarkers should qualify for being specific, systemic, and clinically relevant.
Collapse
Affiliation(s)
- Hainan Bao
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
| | - Jiani Cao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Mengting Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Min Chen
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Clinical Research Center of Metabolic and Cardiovascular Disease, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Metabolic Abnormalities and Vascular Aging, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Wei Chen
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | - Xiao Chen
- Department of Nuclear Medicine, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
| | - Yanhao Chen
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yu Chen
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Yutian Chen
- The Department of Endovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Zhiyang Chen
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Ageing and Regenerative Medicine, Jinan University, Guangzhou, 510632, China
| | - Jagadish K Chhetri
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Yingjie Ding
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Junlin Feng
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Jun Guo
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China
| | - Mengmeng Guo
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China
| | - Chuting He
- University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Yujuan Jia
- Department of Neurology, First Affiliated Hospital, Shanxi Medical University, Taiyuan, 030001, China
| | - Haiping Jiang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Ying Jing
- Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China
| | - Dingfeng Li
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230036, China
| | - Jiaming Li
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jingyi Li
- University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Qinhao Liang
- College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430072, China
| | - Rui Liang
- Research Institute of Transplant Medicine, Organ Transplant Center, NHC Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, Nankai University, Tianjin, 300384, China
| | - Feng Liu
- MOE Key Laboratory of Gene Function and Regulation, Guangzhou Key Laboratory of Healthy Aging Research, School of Life Sciences, Institute of Healthy Aging Research, Sun Yat-sen University, Guangzhou, 510275, China
| | - Xiaoqian Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Zuojun Liu
- School of Life Sciences, Hainan University, Haikou, 570228, China
| | - Oscar Junhong Luo
- Department of Systems Biomedical Sciences, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Jianwei Lv
- School of Life Sciences, Xiamen University, Xiamen, 361102, China
| | - Jingyi Ma
- The State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Kehang Mao
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Center for Quantitative Biology (CQB), Peking University, Beijing, 100871, China
| | - Jiawei Nie
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, National Research Center for Translational Medicine (Shanghai), International Center for Aging and Cancer, Collaborative Innovation Center of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xinhua Qiao
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xinpei Sun
- Peking University International Cancer Institute, Health Science Center, Peking University, Beijing, 100101, China
| | - Xiaoqiang Tang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Jianfang Wang
- Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Qiaoran Wang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Siyuan Wang
- Clinical Research Institute, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, 100730, China
| | - Xuan Wang
- Hepatobiliary and Pancreatic Center, Medical Research Center, Beijing Tsinghua Changgung Hospital, Beijing, 102218, China
| | - Yaning Wang
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yuhan Wang
- University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Rimo Wu
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China
| | - Kai Xia
- Center for Stem Cell Biologyand Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, 510080, China
- National-Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Fu-Hui Xiao
- CAS Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China
- State Key Laboratory of Genetic Resources and Evolution, Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Key Laboratory of Healthy Aging Study, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Lingyan Xu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Yingying Xu
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
| | - Haoteng Yan
- Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China
| | - Liang Yang
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China
| | - Ruici Yang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yuanxin Yang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 201210, China
| | - Yilin Ying
- Department of Geriatrics, Medical Center on Aging of Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- International Laboratory in Hematology and Cancer, Shanghai Jiao Tong University School of Medicine/Ruijin Hospital, Shanghai, 200025, China
| | - Le Zhang
- Gerontology Center of Hubei Province, Wuhan, 430000, China
- Institute of Gerontology, Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Weiwei Zhang
- Department of Cardiology, The Second Medical Centre, Chinese PLA General Hospital, National Clinical Research Center for Geriatric Diseases, Beijing, 100853, China
| | - Wenwan Zhang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Xing Zhang
- Key Laboratory of Ministry of Education, School of Aerospace Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Zhuo Zhang
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
- Research Unit of New Techniques for Live-cell Metabolic Imaging, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Min Zhou
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, 410008, China
| | - Rui Zhou
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Qingchen Zhu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Zhengmao Zhu
- Department of Genetics and Cell Biology, College of Life Science, Nankai University, Tianjin, 300071, China
- Haihe Laboratory of Cell Ecosystem, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Feng Cao
- Department of Cardiology, The Second Medical Centre, Chinese PLA General Hospital, National Clinical Research Center for Geriatric Diseases, Beijing, 100853, China.
| | - Zhongwei Cao
- State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, 610041, China.
| | - Piu Chan
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
| | - Chang Chen
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Guobing Chen
- Department of Microbiology and Immunology, School of Medicine, Jinan University, Guangzhou, 510632, China.
- Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, Guangzhou, 510000, China.
| | - Hou-Zao Chen
- Department of Biochemistryand Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China.
| | - Jun Chen
- Peking University Research Center on Aging, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, Department of Integration of Chinese and Western Medicine, School of Basic Medical Science, Peking University, Beijing, 100191, China.
| | - Weimin Ci
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China.
| | - Bi-Sen Ding
- State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, 610041, China.
| | - Qiurong Ding
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Feng Gao
- Key Laboratory of Ministry of Education, School of Aerospace Medicine, Fourth Military Medical University, Xi'an, 710032, China.
| | - Jing-Dong J Han
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Center for Quantitative Biology (CQB), Peking University, Beijing, 100871, China.
| | - Kai Huang
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Clinical Research Center of Metabolic and Cardiovascular Disease, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Key Laboratory of Metabolic Abnormalities and Vascular Aging, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Zhenyu Ju
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Ageing and Regenerative Medicine, Jinan University, Guangzhou, 510632, China.
| | - Qing-Peng Kong
- CAS Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China.
- State Key Laboratory of Genetic Resources and Evolution, Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Key Laboratory of Healthy Aging Study, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.
| | - Ji Li
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.
| | - Jian Li
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China.
| | - Xin Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Baohua Liu
- School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen, 518060, China.
| | - Feng Liu
- Metabolic Syndrome Research Center, The Second Xiangya Hospital, Central South Unversity, Changsha, 410011, China.
| | - Lin Liu
- Department of Genetics and Cell Biology, College of Life Science, Nankai University, Tianjin, 300071, China.
- Haihe Laboratory of Cell Ecosystem, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China.
- Institute of Translational Medicine, Tianjin Union Medical Center, Nankai University, Tianjin, 300000, China.
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300350, China.
| | - Qiang Liu
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230036, China.
| | - Qiang Liu
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China.
- Tianjin Institute of Immunology, Tianjin Medical University, Tianjin, 300070, China.
| | - Xingguo Liu
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China.
| | - Yong Liu
- College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430072, China.
| | - Xianghang Luo
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, 410008, China.
| | - Shuai Ma
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Xinran Ma
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| | - Zhiyong Mao
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.
| | - Jing Nie
- The State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Yaojin Peng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Jing Qu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Jie Ren
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Ruibao Ren
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, National Research Center for Translational Medicine (Shanghai), International Center for Aging and Cancer, Collaborative Innovation Center of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- International Center for Aging and Cancer, Hainan Medical University, Haikou, 571199, China.
| | - Moshi Song
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Zhou Songyang
- MOE Key Laboratory of Gene Function and Regulation, Guangzhou Key Laboratory of Healthy Aging Research, School of Life Sciences, Institute of Healthy Aging Research, Sun Yat-sen University, Guangzhou, 510275, China.
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China.
| | - Yi Eve Sun
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China.
| | - Yu Sun
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China.
- Department of Medicine and VAPSHCS, University of Washington, Seattle, WA, 98195, USA.
| | - Mei Tian
- Human Phenome Institute, Fudan University, Shanghai, 201203, China.
| | - Shusen Wang
- Research Institute of Transplant Medicine, Organ Transplant Center, NHC Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, Nankai University, Tianjin, 300384, China.
| | - Si Wang
- Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
- Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
- Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China.
| | - Xia Wang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China.
| | - Xiaoning Wang
- Institute of Geriatrics, The second Medical Center, Beijing Key Laboratory of Aging and Geriatrics, National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, 100853, China.
| | - Yan-Jiang Wang
- Department of Neurology and Center for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, 400042, China.
| | - Yunfang Wang
- Hepatobiliary and Pancreatic Center, Medical Research Center, Beijing Tsinghua Changgung Hospital, Beijing, 102218, China.
| | - Catherine C L Wong
- Clinical Research Institute, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, 100730, China.
| | - Andy Peng Xiang
- Center for Stem Cell Biologyand Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, 510080, China.
- National-Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.
| | - Yichuan Xiao
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Zhengwei Xie
- Peking University International Cancer Institute, Health Science Center, Peking University, Beijing, 100101, China.
- Beijing & Qingdao Langu Pharmaceutical R&D Platform, Beijing Gigaceuticals Tech. Co. Ltd., Beijing, 100101, China.
| | - Daichao Xu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 201210, China.
| | - Jing Ye
- Department of Geriatrics, Medical Center on Aging of Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- International Laboratory in Hematology and Cancer, Shanghai Jiao Tong University School of Medicine/Ruijin Hospital, Shanghai, 200025, China.
| | - Rui Yue
- Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.
| | - Cuntai Zhang
- Gerontology Center of Hubei Province, Wuhan, 430000, China.
- Institute of Gerontology, Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Hongbo Zhang
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.
| | - Liang Zhang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Weiqi Zhang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Yong Zhang
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China.
- The State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China.
| | - Yun-Wu Zhang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, 361102, China.
| | - Zhuohua Zhang
- Key Laboratory of Molecular Precision Medicine of Hunan Province and Center for Medical Genetics, Institute of Molecular Precision Medicine, Xiangya Hospital, Central South University, Changsha, 410078, China.
- Department of Neurosciences, Hengyang Medical School, University of South China, Hengyang, 421001, China.
| | - Tongbiao Zhao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Yuzheng Zhao
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China.
- Research Unit of New Techniques for Live-cell Metabolic Imaging, Chinese Academy of Medical Sciences, Beijing, 100730, China.
| | - Dahai Zhu
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China.
- The State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China.
| | - Weiguo Zou
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Gang Pei
- Shanghai Key Laboratory of Signaling and Disease Research, Laboratory of Receptor-Based Biomedicine, The Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, Shanghai, 200070, China.
| | - Guang-Hui Liu
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
- Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China.
| |
Collapse
|
22
|
Farag CM, Antar R, Akosman S, Ng M, Whalen MJ. What is hemoglobin, albumin, lymphocyte, platelet (HALP) score? A comprehensive literature review of HALP's prognostic ability in different cancer types. Oncotarget 2023; 14:153-172. [PMID: 36848404 PMCID: PMC9970084 DOI: 10.18632/oncotarget.28367] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023] Open
Abstract
Since its inception, the Hemoglobin, Albumin, Lymphocyte, Platelet Score (HALP) has gained attention as a new prognostic biomarker to predict several clinical outcomes in a multitude of cancers. In our review, we searched PubMed for articles between the first paper on HALP in 2015 through September 2022, yielding 32 studies in total that evaluated HALP's association with various cancers, including Gastric, Colorectal, Bladder, Prostate, Kidney, Esophageal, Pharyngeal, Lung, Breast, and Cervical cancers, among others. This review highlights the collective association HALP has with demographic factors such as age and sex in addition to TNM staging, grade, and tumor size. Furthermore, this review summarizes HALP's prognostic ability to predict overall survival, progression-free survival, recurrence-free survival, among other outcomes. In some studies, HALP has also been able to predict response to immunotherapy and chemotherapy. This review article also aims to serve as a comprehensive and encyclopedic report on the literature that has evaluated HALP as a biomarker in various cancers, highlighting the heterogeneity surrounding HALP's utilization. Because HALP requires only a complete blood count and albumin - already routinely collected for cancer patients - HALP shows potential as a cost-effective biomarker to aid clinicians in improving outcomes for immuno-nutritionally deficient patients.
Collapse
Affiliation(s)
- Christian Mark Farag
- Department of Urology, George Washington University School of Medicine, Washington, DC 20052, USA
| | - Ryan Antar
- Department of Urology, George Washington University School of Medicine, Washington, DC 20052, USA
| | - Sinan Akosman
- Department of Urology, George Washington University School of Medicine, Washington, DC 20052, USA
| | - Matthew Ng
- Department of Surgery, George Washington University School of Medicine, Washington, DC 20052, USA
| | - Michael J Whalen
- Department of Urology, George Washington University School of Medicine, Washington, DC 20052, USA
| |
Collapse
|
23
|
Platelet P2Y 1 receptor exhibits constitutive G protein signaling and β-arrestin 2 recruitment. BMC Biol 2023; 21:14. [PMID: 36721118 PMCID: PMC9890698 DOI: 10.1186/s12915-023-01528-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 01/25/2023] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Purinergic P2Y1 and P2Y12 receptors (P2Y1-R and P2Y12-R) are G protein-coupled receptors (GPCR) activated by adenosine diphosphate (ADP) to mediate platelet activation, thereby playing a pivotal role in hemostasis and thrombosis. While P2Y12-R is the major target of antiplatelet drugs, no P2Y1-R antagonist has yet been developed for clinical use. However, accumulating data suggest that P2Y1-R inhibition would ensure efficient platelet inhibition with minimal effects on bleeding. In this context, an accurate characterization of P2Y1-R antagonists constitutes an important preliminary step. RESULTS Here, we investigated the pharmacology of P2Y1-R signaling through Gq and β-arrestin pathways in HEK293T cells and in mouse and human platelets using highly sensitive resonance energy transfer-based technologies (BRET/HTRF). We demonstrated that at basal state, in the absence of agonist ligand, P2Y1-R activates Gq protein signaling in HEK293T cells and in mouse and human platelets, indicating that P2Y1-R is constitutively active in physiological conditions. We showed that P2Y1-R also promotes constitutive recruitment of β-arrestin 2 in HEK293T cells. Moreover, the P2Y1-R antagonists MRS2179, MRS2279 and MRS2500 abolished the receptor dependent-constitutive activation, thus behaving as inverse agonists. CONCLUSIONS This study sheds new light on P2Y1-R pharmacology, highlighting for the first time the existence of a constitutively active P2Y1-R population in human platelets. Given the recent interest of P2Y12-R constitutive activity in patients with diabetes, this study suggests that modification of constitutive P2Y1-R signaling might be involved in pathological conditions, including bleeding syndrome or high susceptibility to thrombotic risk. Thus, targeting platelet P2Y1-R constitutive activation might be a promising and powerful strategy for future antiplatelet therapy.
Collapse
|
24
|
Teo YV, Hinthorn SJ, Webb AE, Neretti N. Single-cell transcriptomics of peripheral blood in the aging mouse. Aging (Albany NY) 2023; 15:6-20. [PMID: 36622281 PMCID: PMC9876630 DOI: 10.18632/aging.204471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 12/29/2022] [Indexed: 01/09/2023]
Abstract
Compositional and transcriptional changes in the hematopoietic system have been used as biomarkers of immunosenescence and aging. Here, we use single-cell RNA-sequencing to study the aging peripheral blood in mice and characterize the changes in cell-type composition and transcriptional profiles associated with age. We identified 17 clusters from a total of 14,588 single cells. We detected a general upregulation of antigen processing and presentation and chemokine signaling pathways and a downregulation of genes involved in ribosome pathways with age. In old peripheral blood, we also observed an increased percentage of cells expressing senescence markers (Cdkn1a, and Cdkn2a). In addition, we detected a cluster of activated T cells exclusively found in old blood, with lower expression of Cd28 and higher expression of Bcl2 and Cdkn2a, suggesting that the cells are senescent and resistant to apoptosis.
Collapse
Affiliation(s)
- Yee Voan Teo
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02903, USA
| | - Samuel J. Hinthorn
- Center for Computational Molecular Biology, Brown University, Providence, RI 02912, USA
| | - Ashley E. Webb
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02903, USA
- Center on the Biology of Aging, Brown University, Providence, RI 02903, USA
| | - Nicola Neretti
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02903, USA
- Center for Computational Molecular Biology, Brown University, Providence, RI 02912, USA
- Center on the Biology of Aging, Brown University, Providence, RI 02903, USA
| |
Collapse
|
25
|
Nagao M, Sasaki J, Sugihara H, Tanimura-Inagaki K, Harada T, Sakuma I, Oikawa S. Efficacy and safety of sitagliptin treatment in older adults with moderately controlled type 2 diabetes: the STREAM study. Sci Rep 2023; 13:134. [PMID: 36599895 DOI: 10.1038/s41598-022-27301-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 12/29/2022] [Indexed: 01/06/2023] Open
Abstract
Sitagliptin has been suggested as a treatment option for older adults with type 2 diabetes (T2D). However, no randomized controlled trial has been performed to evaluate the efficacy and safety of sitagliptin treatment in older Japanese patients with T2D. The STREAM study was a multicenter, open-label, randomized controlled trial. T2D outpatients aged 65-80 years with moderately controlled glycemic levels (HbA1c 7.4-10.4%) under lifestyle interventions without or with oral anti-diabetic drugs excluding DPP4 inhibitors or GLP-1 receptor agonists were recruited (n = 176). The participants were randomized into sitagliptin group (n = 88) who received sitagliptin as an initial or an additive anti-diabetic drug and control group (n = 88) who did not. The treatment goal was HbA1c level < 7.4%. Efficacy and safety during 12-month treatment period were investigated. The mean (± SD) ages were 70.6 ± 3.9 and 71.9 ± 4.4 years old in sitagliptin and control groups, respectively. According to a mixed-effects model analysis, average changes from baseline over the treatment period in fasting plasma glucose (FPG), HbA1c, and glycated albumin (GA) were - 27.2 mg/dL, - 0.61%, and - 2.39%, respectively, in sitagliptin group, and 0.50 mg/dL, - 0.29%, and - 0.93%, respectively, in control group. The reductions in FPG, HbA1c, and GA were significantly greater in sitagliptin group (P < 0.0001, P < 0.01, and P < 0.0001, respectively). There were no differences in the incidence of adverse effects, except for cystatin C elevation and platelet count reduction in sitagliptin group. Sitagliptin treatment effectively improved the glycemic profile without any serious adverse effects in older T2D patients.Trial registration number: UMIN000010376.
Collapse
Affiliation(s)
- Mototsugu Nagao
- Department of Endocrinology, Metabolism and Nephrology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Jun Sasaki
- International University of Health and Welfare, Fukuoka, Japan
| | - Hitoshi Sugihara
- Department of Endocrinology, Metabolism and Nephrology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Kyoko Tanimura-Inagaki
- Department of Endocrinology, Metabolism and Nephrology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Taro Harada
- Department of Endocrinology, Metabolism and Nephrology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Ichiro Sakuma
- Caress Sapporo Hokko Memorial Clinic, Hokkaido, Japan
| | - Shinichi Oikawa
- Department of Endocrinology, Metabolism and Nephrology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan. .,Diabetes and Lifestyle-Related Disease Center, Fukujuji Hospital, Japan Anti-Tuberculosis Association (JATA), 3-1-24 Matsuyama, Kiyose, Tokyo, 204-8522, Japan.
| | | |
Collapse
|
26
|
Karolczak K, Konieczna L, Soltysik B, Kostka T, Witas PJ, Kostanek J, Baczek T, Watala C. Plasma Concentration of Cortisol Negatively Associates with Platelet Reactivity in Older Subjects. Int J Mol Sci 2022; 24:ijms24010717. [PMID: 36614157 PMCID: PMC9820908 DOI: 10.3390/ijms24010717] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/06/2022] [Accepted: 12/06/2022] [Indexed: 01/03/2023] Open
Abstract
The interaction of platelets with steroid hormones is poorly investigated. Age is one of the factors that increase the risk of pathological platelet reactivity and thrombosis. The aim of this study was to assess whether there were associations between platelet reactivity and plasma cortisol levels in volunteers aged 60-65 years. For this purpose, impedance aggregometry in whole blood measured after arachidonic acid, collagen, or ADP stimulation was used to estimate platelet reactivity and mass spectrometry was used to measure peripheral plasma cortisol concentration. Statistically significant negative correlations were observed between cortisol concentration and platelet reactivity in response to arachidonic acid and ADP, but not to collagen. The presented results suggest for the very first time that cortisol is a new endogenous modulator of platelet reactivity in the elderly population.
Collapse
Affiliation(s)
- Kamil Karolczak
- Department of Haemostatic Disorders, Medical University of Lodz, ul. Mazowiecka 6/8, 92-215 Lodz, Poland
- Correspondence:
| | - Lucyna Konieczna
- Department of Pharmaceutical Chemistry, Medical University of Gdańsk, ul. Hallera 107, 80-416 Gdańsk, Poland
| | - Bartlomiej Soltysik
- Department of Geriatrics, Healthy Aging Research Center (HARC), Medical University of Lodz, pl. Hallera 1, 90-647 Lodz, Poland
| | - Tomasz Kostka
- Department of Geriatrics, Healthy Aging Research Center (HARC), Medical University of Lodz, pl. Hallera 1, 90-647 Lodz, Poland
| | - Piotr Jakub Witas
- Department of Haemostatic Disorders, Medical University of Lodz, ul. Mazowiecka 6/8, 92-215 Lodz, Poland
| | - Joanna Kostanek
- Department of Haemostatic Disorders, Medical University of Lodz, ul. Mazowiecka 6/8, 92-215 Lodz, Poland
| | - Tomasz Baczek
- Department of Pharmaceutical Chemistry, Medical University of Gdańsk, ul. Hallera 107, 80-416 Gdańsk, Poland
| | - Cezary Watala
- Department of Haemostatic Disorders, Medical University of Lodz, ul. Mazowiecka 6/8, 92-215 Lodz, Poland
| |
Collapse
|
27
|
Sethi A, Melamud E. Joint inference of physiological network and survival analysis identifies factors associated with aging rate. CELL REPORTS METHODS 2022; 2:100356. [PMID: 36590696 PMCID: PMC9795372 DOI: 10.1016/j.crmeth.2022.100356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 07/11/2022] [Accepted: 11/10/2022] [Indexed: 12/04/2022]
Abstract
We describe methodology for joint reconstruction of physiological-survival networks from observational data capable of identifying key survival-associated variables, inferring a minimal physiological network structure, and bridging this network to the Gompertzian survival layer. Using synthetic network structures, we show that the method is capable of identifying aging variables in cohorts as small as 5,000 participants. Applying the methodology to the observational human cohort, we find that interleukin-6, vascular calcification, and red-blood distribution width are strong predictors of baseline fitness. More important, we find that red blood cell counts, kidney function, and phosphate level are directly linked to the Gompertzian aging rate. Our model therefore enables discovery of processes directly linked to the aging rate of our species. We further show that this epidemiological framework can be applied as a causal inference engine to simulate the effects of interventions on physiology and longevity.
Collapse
Affiliation(s)
- Anurag Sethi
- Calico Life Sciences LLC, 1170 Veterans Blvd., South San Francisco, CA 94080, USA
| | - Eugene Melamud
- Calico Life Sciences LLC, 1170 Veterans Blvd., South San Francisco, CA 94080, USA
| |
Collapse
|
28
|
Bontekoe IJ, van der Meer PF, Tanis BC, de Korte D, Verhoeven AJ, Raat NJH, Specht PAC, Mik EG, Klei TRL. Donor variation in stored platelets: Higher metabolic rates of platelets are associated with mean platelet volume, activation and donor health. Transfusion 2022; 62:2609-2620. [PMID: 36278429 DOI: 10.1111/trf.17160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/16/2022] [Accepted: 09/06/2022] [Indexed: 12/13/2022]
Abstract
BACKGROUND Platelets (PLTs) differ in glycolytic activity, resulting in rapid acidification of 'poor' storing PLT concentrates (PCs) in plasma, or depletion of glucose when stored in PLT additive solution (PAS). We aimed to understand why PLT glycolysis rates vary between donors and how this affects storage performance. STUDY DESIGN AND METHODS Buffy coats from donors <45, 45-70 and >70 years were selected and single-donor PCs in plasma or PAS-E were prepared. PCs were stored for 8 days at 22 ± 2°C and sampled regularly for analysis. Mitochondrial activity was analyzed with an Oroboros oxygraph. Age groups, or subgroups divided into quartiles based on glucose consumption, were analyzed with ANOVA. RESULTS In each comparison, PCs of the different groups were not different in volume and cellular composition. PLTs with the highest glucose consumption had a higher initial mean platelet volume (MPV) and developed higher CD62P expression and Annexin A5 binding during storage. Higher glycolytic activity in these PLTs was not a compensation for lower mitochondrial ATP production, because mitochondrial ATP-linked respiration of fresh PLTs correlated positively with MPV (R2 = 0.71). Donors of high glucose-consuming PLTs had more health-related issues. Storage properties of PCs from donors over 70 were not significantly different compared to PCs from donors younger than 45 years. CONCLUSIONS High glucose-consuming PCs developing higher activation levels, not only displayed enhanced mitochondrial activity but were also found to contain larger PLTs, as determined by MPV. Storage performance of PLTs was found to be associated with donor health, but not with donor age.
Collapse
Affiliation(s)
- Ido J Bontekoe
- Department of Product and Process Development, Sanquin Blood Bank, Amsterdam, the Netherlands
| | - Pieter F van der Meer
- Department of Product and Process Development, Sanquin Blood Bank, Amsterdam, the Netherlands.,Department of Hematology, Haga Teaching Hospital, the Hague, the Netherlands
| | - Bea C Tanis
- Department of Medical Donor Affairs, Sanquin Blood Bank, Amsterdam, the Netherlands
| | - Dirk de Korte
- Department of Product and Process Development, Sanquin Blood Bank, Amsterdam, the Netherlands.,Department Blood Cell Research, Sanquin Research, Amsterdam, the Netherlands
| | - Arthur J Verhoeven
- Tytgat Institute, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Nicolaas J H Raat
- Department of Anesthesiology, Laboratory of Experimental Anesthesiology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Patricia A C Specht
- Department of Anesthesiology, Laboratory of Experimental Anesthesiology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Egbert G Mik
- Department of Anesthesiology, Laboratory of Experimental Anesthesiology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Thomas R L Klei
- Department of Product and Process Development, Sanquin Blood Bank, Amsterdam, the Netherlands
| |
Collapse
|
29
|
He M, Chen T, Lv Y, Song P, Deng B, Guo X, Rui S, Boey J, Armstrong DG, Ma Y, Deng W. The role of allogeneic platelet-rich plasma in patients with diabetic foot ulcer: Current perspectives and future challenges. Front Bioeng Biotechnol 2022; 10:993436. [PMID: 36246379 PMCID: PMC9557159 DOI: 10.3389/fbioe.2022.993436] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 09/16/2022] [Indexed: 02/05/2023] Open
Abstract
The frequency of chronic cutaneous wounds are sharply increasing in aging populations. Patients with age-related diseases, such as diabetes, tumors, renal failure and stroke are prone to soft tissue and skin injury, compounded by slowed healing in aging. Imbalance of wound inflammation, loss of growth factor secretion, and impairment of tissue repair abilities are all possible reasons for failed healing. Therefore, it is vital to explore novel approaches to accelerate wound healing. Platelet-rich plasma (PRP) as a cell therapy has been widely applied for tissue repair and regeneration. PRP promotes wound healing by releasing antimicrobial peptides, growth factors and micro-RNAs. Medical evidence indicates that autologous platelet-rich plasma (au-PRP) can promote wound healing effectively, safely and rapidly. However, its clinical application is usually restricted to patients with chronic cutaneous wounds, generally because of other severe complications and poor clinical comorbidities. Allogeneic platelet-rich plasma (al-PRP), with abundant sources, has demonstrated its superiority in the field of chronic wound treatment. Al-PRP could overcome the limitations of au-PRP and has promising prospects in clinical applications. The aim of this review is to summarize the current status and future challenges of al-PRP in chronic cutaneous wound management. We also summarized clinical cases to further describe the application of al-PRP for chronic wounds in clinical practice.
Collapse
Affiliation(s)
- Min He
- Department of Endocrinology, Chongqing Emergency Medical Center, Chongqing University Central Hospital, School of Medicine, Chongqing University, Chongqing, China
- General Practice Department, Chongqing Southwest Hospital, Chongqing, China
| | - Tianyi Chen
- Department of Endocrinology, Chongqing Emergency Medical Center, Chongqing University Central Hospital, School of Medicine, Chongqing University, Chongqing, China
| | - Yuhuan Lv
- Department of Endocrinology, Chongqing Emergency Medical Center, Chongqing University Central Hospital, School of Medicine, Chongqing University, Chongqing, China
| | - Peiyang Song
- Department of Endocrinology, Chongqing Emergency Medical Center, Chongqing University Central Hospital, School of Medicine, Chongqing University, Chongqing, China
| | - Bo Deng
- Department of Endocrinology, Chongqing Emergency Medical Center, Chongqing University Central Hospital, School of Medicine, Chongqing University, Chongqing, China
| | - Xuewen Guo
- Department of Endocrinology, Chongqing Emergency Medical Center, Chongqing University Central Hospital, School of Medicine, Chongqing University, Chongqing, China
| | - Shunli Rui
- Department of Endocrinology, Chongqing Emergency Medical Center, Chongqing University Central Hospital, School of Medicine, Chongqing University, Chongqing, China
| | - Johnson Boey
- Department of Podiatry, National University Hospital, Singapore, Singapore
| | - David G. Armstrong
- Department of Surgery, Keck School of Medicine of University of Southern California, Los Angeles, CA, United States
| | - Yu Ma
- Department of Endocrinology, Chongqing Emergency Medical Center, Chongqing University Central Hospital, School of Medicine, Chongqing University, Chongqing, China
| | - Wuquan Deng
- Department of Endocrinology, Chongqing Emergency Medical Center, Chongqing University Central Hospital, School of Medicine, Chongqing University, Chongqing, China
| |
Collapse
|
30
|
Platelets’ Nanomechanics and Morphology in Neurodegenerative Pathologies. Biomedicines 2022; 10:biomedicines10092239. [PMID: 36140340 PMCID: PMC9496241 DOI: 10.3390/biomedicines10092239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/26/2022] [Accepted: 08/30/2022] [Indexed: 11/17/2022] Open
Abstract
The imaging and force–distance curve modes of atomic force microscopy (AFM) are explored to compare the morphological and mechanical signatures of platelets from patients diagnosed with classical neurodegenerative diseases (NDDs) and healthy individuals. Our data demonstrate the potential of AFM to distinguish between the three NDDs—Parkinson’s disease (PD), amyotrophic lateral sclerosis (ALS) and Alzheimer’s disease (AD), and normal healthy platelets. The common features of platelets in the three pathologies are reduced membrane surface roughness, area and height, and enhanced nanomechanics in comparison with healthy cells. These changes might be related to general phenomena associated with reorganization in the platelet membrane morphology and cytoskeleton, a key factor for all platelets’ functions. Importantly, the platelets’ signatures are modified to a different extent in the three pathologies, most significant in ALS, less pronounced in PD and the least in AD platelets, which shows the specificity associated with each pathology. Moreover, different degree of activation, distinct pseudopodia and nanocluster formation characterize ALS, PD and AD platelets. The strongest alterations in the biophysical properties correlate with the highest activation of ALS platelets, which reflect the most significant changes in their nanoarchitecture. The specific platelet signatures that mark each of the studied pathologies can be added as novel biomarkers to the currently used diagnostic tools.
Collapse
|
31
|
Nätynki A, Leisti P, Tuusa J, Varpuluoma O, Huilaja L, Izumi K, Herukka SK, Ukkola O, Junttila J, Kokkonen N, Tasanen K. Use of gliptins reduces levels of SDF-1/CXCL12 in bullous pemphigoid and type 2 diabetes, but does not increase autoantibodies against BP180 in diabetic patients. Front Immunol 2022; 13:942131. [PMID: 35958564 PMCID: PMC9357937 DOI: 10.3389/fimmu.2022.942131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 06/27/2022] [Indexed: 11/15/2022] Open
Abstract
The use of dipeptidyl peptidase 4 (DPP4) inhibitors, (also known as gliptins), is associated with an increased risk of bullous pemphigoid (BP), an autoimmune blistering skin disease. To explore the mechanism behind gliptin-associated BP we investigated circulating autoantibodies against the major BP autoantigen BP180 in serum samples from patients with type 2 diabetes (T2D) with preceding gliptin medication (n = 136) or without (n = 136). Sitagliptin was the most frequently prescribed gliptin (125/136 patients). Using an ELISA assay, we showed that IgG autoantibodies against the immunodominant NC16A domain of BP180 were found in 5.9% of gliptin treated and in 6.6% of non-gliptin treated T2D patients. We found that 28% of gliptin treated patients had IgG autoantibodies recognizing the native full-length BP180 in ELISA, but among non-gliptin treated the seropositivity was even higher, at 32%. Further ELISA analysis of additional serum samples (n = 57) found no major changes in the seropositivity against BP180 during a follow-up period of about nine years. In immunoblotting, full-length BP180 was recognized by 71% of gliptin treated and 89% of non-gliptin treated T2D patients, but only by 46% of the age-and sex-matched controls. The chemokine stromal derived factor-1(SDF-1/CXCL12) is one of the major substrates of DPP4. Immunostainings showed that the expression of SDF-1 was markedly increased in the skin of BP patients, but not affected by prior gliptin treatment. We found that the use of gliptins decreased the serum level of SDF-1α in both BP and T2D patients. Our results indicate that the autoantibodies against the linear full-length BP180 are common in patients with T2D, but seropositivity is unaffected by the use of sitagliptin.
Collapse
Affiliation(s)
- Antti Nätynki
- Department of Dermatology, PEDEGO Research Unit, Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Päivi Leisti
- Department of Dermatology, PEDEGO Research Unit, Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Jussi Tuusa
- Department of Dermatology, PEDEGO Research Unit, Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Outi Varpuluoma
- Department of Dermatology, PEDEGO Research Unit, Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Laura Huilaja
- Department of Dermatology, PEDEGO Research Unit, Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Kentaro Izumi
- Department of Dermatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Sanna-Kaisa Herukka
- Institute of Clinical Medicine - Neurology, University of Eastern Finland and Department of Neurology, Kuopio University Hospital, Kuopio, Finland
| | - Olavi Ukkola
- Department of Internal Medicine, Research Unit of Internal Medicine, Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Juhani Junttila
- Department of Internal Medicine, Research Unit of Internal Medicine, Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Nina Kokkonen
- Department of Dermatology, PEDEGO Research Unit, Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Kaisa Tasanen
- Department of Dermatology, PEDEGO Research Unit, Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
- *Correspondence: Kaisa Tasanen,
| |
Collapse
|
32
|
POINT-OF-CARE AND STANDARD LABORATORY REFERENCE INTERVALS FOR COAGULATION VALUES IN ASIAN ELEPHANTS ( ELEPHAS MAXIMUS): VARIATION BY AGE CLASS, SEX, AND TIME TO CENTRIFUGATION. J Zoo Wildl Med 2022; 53:291-301. [PMID: 35758571 DOI: 10.1638/2021-0057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/24/2021] [Indexed: 11/21/2022] Open
Abstract
In Asian elephants (Elephas maximus), elephant endotheliotropic herpesvirus causes significant calf mortality. Coagulation testing may aid veterinarians in early identification and management of hemostatic disorders. This study sought to establish reference intervals for select coagulation and platelet values. Blood was collected from clinically healthy Asian elephants (n = 63) in juvenile (≤15 yr old, n = 9), adult (>15 to ≤50 yr old, n = 41), and geriatric (>50 yr old, n = 13) age classes at seven institutions in Kanchanaburi Province, Thailand. Activated clotting time (ACT) was immediately assessed with a handheld analyzer, whereas remaining blood was stored at 5°C in sodium citrate and potassium EDTA collection tubes and transported to a central laboratory. Coagulation values were assessed on an automated blood coagulation analyzer, and platelet values were assessed on a hematology analyzer. Reference intervals were established for ACT, prothrombin time, activated partial thromboplastin time, thrombin time, fibrinogen, platelet count, mean platelet volume, platelet distribution width, and plateletcrit according to the American Society for Veterinary Clinical Pathology guidelines. No significant differences were observed for any value when comparing sex and time to centrifugation. Plasma fibrinogen (P = 0.002) and platelets (P = 0.003) varied significantly by age class, with adults displaying the highest fibrinogen concentrations and geriatric individuals displaying the lowest platelet counts. The ACT kaolin cartridges resulted in high success rates (84.3% feasibility) compared with celite cartridges (4.8% feasibility). Further studies are warranted to stratify reference intervals in accordance with age class trends.
Collapse
|
33
|
Abstract
BACKGROUND Blood platelets, due to shared biochemical and functional properties with presynaptic serotonergic neurons, constituted, over the years, an attractive peripheral biomarker of neuronal activity. Therefore, the literature strongly focused on the investigation of eventual structural and functional platelet abnormalities in neuropsychiatric disorders, particularly in depressive disorder. Given their impact in biological psychiatry, the goal of the present paper was to review and critically analyze studies exploring platelet activity, functionality, and morpho-structure in subjects with depressive disorder. METHODS According to the PRISMA guidelines, we performed a systematic review through the PubMed database up to March 2020 with the search terms: (1) platelets in depression [Title/Abstract]"; (2) "(platelets[Title]) AND depressive disorder[Title/Abstract]"; (3) "(Platelet[Title]) AND major depressive disorder[Title]"; (4) (platelets[Title]) AND depressed[Title]"; (5) (platelets[Title]) AND depressive episode[Title]"; (6) (platelets[Title]) AND major depression[Title]"; (7) platelet activation in depression[All fields]"; and (8) platelet reactivity in depression[All fields]." RESULTS After a detailed screening analysis and the application of specific selection criteria, we included in our review a total of 106 for qualitative synthesis. The studies were classified into various subparagraphs according to platelet characteristics analyzed: serotonergic system (5-HT2A receptors, SERT activity, and 5-HT content), adrenergic system, MAO activity, biomarkers of activation, responsivity, morphological changes, and other molecular pathways. CONCLUSIONS Despite the large amount of the literature examined, nonunivocal and, occasionally, conflicting results emerged. However, the findings on structural and metabolic alterations, modifications in the expression of specific proteins, changes in the aggregability, or in the responsivity to different pro-activating stimuli, may be suggestive of potential platelet dysfunctions in depressed subjects, which would result in a kind of hyperreactive state. This condition could potentially lead to an increased cardiovascular risk. In line with this hypothesis, we speculated that antidepressant treatments would seem to reduce this hyperreactivity while representing a potential tool for reducing cardiovascular risk in depressed patients and, maybe, in other neuropsychiatric conditions. However, the problem of the specificity of platelet biomarkers is still at issue and would deserve to be deepened in future studies.
Collapse
|
34
|
Wrona D, Majkutewicz I, Świątek G, Dunacka J, Grembecka B, Glac W. Dimethyl Fumarate as the Peripheral Blood Inflammatory Mediators Inhibitor in Prevention of Streptozotocin-Induced Neuroinflammation in Aged Rats. J Inflamm Res 2022; 15:33-52. [PMID: 35027835 PMCID: PMC8749052 DOI: 10.2147/jir.s342280] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 11/23/2021] [Indexed: 12/17/2022] Open
Abstract
Purpose Intracerebroventricular-(ICV)-streptozotocin-(STZ)-induced neuroinflammation is a model of Alzheimer’s disease (AD) compatible with the inflammation hypothesis of ageing (“inflammaging” state). Previously, we observed age-dependent (young vs aged) dimethyl fumarate (DMF)-induced anti-inflammatory and neuroprotective effects in the brain along with improvement in cognitive functions in rats with the ICV-STZ-induced model of AD. To evaluate whether DMF reduces neuroinflammation based on the peripheral inflammatory response inhibition, we determined peripheral inflammatory mediators in young and aged rats with the ICV-STZ-induced AD pathology following DMF therapy. Materials and Methods Young (4-month-old) and aged (22-month-old) rats were fed with 0.4% DMF rat chow for 21 consecutive days after ICV-STZ (3 mg/ventricle) injections. After behavioral testing, blood and spleens were collected to determine the numbers of leukocytes (WBC), lymphocytes and their subpopulations, haematological parameters, the concanavalin (Con)-A-induced production and plasma concentration of interferon (IFN)-γ, interleukin (IL)-6, IL-10 and corticosterone (COR). Results Age-dependent anti-inflammatory effect of the DMF treatment in rats with ICV-STZ injections manifested as decreased peripheral WBC and lymphocyte numbers, including TCD3+CD4+CD8−, TCD3+CD4−CD8+, B (CD45RA+) and NK (161a+), in aged rats. Furthermore, DMF lowered the blood and spleen lymphocyte production of pro-inflammatory IFN-γ and IL-6 in young and aged rats, whereas it enhanced the plasma level of anti-inflammatory IL-10 and lymphocyte’s ability to produce it in aged rats only. In parallel to changes in peripheral WBC numbers in the model of AD, DMF decreased the red blood cell number, haemoglobin concentration, haematocrit and mean platelet volume in aged, but not young, rats. In contrast to controls, DMF did not influence the COR response in STZ groups. Conclusion Besides preventing neuroinflammation, DMF acts on the pro-/anti-inflammatory balance in the periphery and causes an anti-inflammatory shift in T lymphocytes which could contribute to DMF’s therapeutic effects in the ICV-STZ-induced model of AD, in particular, in aged rats.
Collapse
Affiliation(s)
- Danuta Wrona
- Department of Animal and Human Physiology, Faculty of Biology, University of Gdansk, Gdansk, 80-308, Poland
| | - Irena Majkutewicz
- Department of Animal and Human Physiology, Faculty of Biology, University of Gdansk, Gdansk, 80-308, Poland
| | - Grzegorz Świątek
- Department of Animal and Human Physiology, Faculty of Biology, University of Gdansk, Gdansk, 80-308, Poland
| | - Joanna Dunacka
- Department of Animal and Human Physiology, Faculty of Biology, University of Gdansk, Gdansk, 80-308, Poland
| | - Beata Grembecka
- Department of Animal and Human Physiology, Faculty of Biology, University of Gdansk, Gdansk, 80-308, Poland
| | - Wojciech Glac
- Department of Animal and Human Physiology, Faculty of Biology, University of Gdansk, Gdansk, 80-308, Poland
| |
Collapse
|
35
|
Healing of Chronic Wounds with Platelet-Derived Growth Factors from Single Donor Platelet-Rich Plasma following One Freeze-Thaw Cycle. A Cross-Sectional Study. J Clin Med 2021; 10:jcm10245762. [PMID: 34945062 PMCID: PMC8705371 DOI: 10.3390/jcm10245762] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/03/2021] [Accepted: 12/07/2021] [Indexed: 12/29/2022] Open
Abstract
Chronic non-healing wounds (CNHWs) may be associated with trauma or idiopathic in nature and are difficult to treat. Our objective was to assess the use of platelet-derived growth factor (PDGF) from single-donor platelets (al-PRP), using one freeze-thaw cycle, for treating CNHWs. We conducted a cross-sectional study. A total of 23 CNHWs being treated with al-PRP. The al-PRP treatment can be considered successful in well over half (n = 13, 56.5%) of the wounds. We found that all the wounds treated for up to 7 weeks showed partial or complete healing, while those treated for between 8 and 12 weeks did not show healing, healing again being successful in cases in which treatment was extended to more than 13 weeks (85.7%). Using chi-square tests, this relationship was found to be highly significant (p < 0.001, chi2 = 19.51; p value = 0.00006). Notably, Cramer's V coefficient was very high (0.921), indicating that the effect size of PRP treatment duration on healing is very large (84.8%). We could suggest that the use of al-PRP in the healing of CNHWs is a promising approach. Further studies with larger sample sizes and long follow-ups are needed to obtain multivariate models to explain which factors favour the healing of ulcers treated with PRP.
Collapse
|
36
|
Carbone MG, Pagni G, Tagliarini C, Imbimbo BP, Pomara N. Can platelet activation result in increased plasma Aβ levels and contribute to the pathogenesis of Alzheimer's disease? Ageing Res Rev 2021; 71:101420. [PMID: 34371202 DOI: 10.1016/j.arr.2021.101420] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 07/18/2021] [Accepted: 08/02/2021] [Indexed: 12/12/2022]
Abstract
One of the central lesions in the brain of subjects with Alzheimer's disease (AD) is represented by aggregates of β-amyloid (Aβ), a peptide of 40-42 amino acids derived from the amyloid precursor protein (APP). The reasons why Aβ accumulates in the brain of individuals with sporadic forms of AD are unknown. Platelets are the primary source of circulating APP and, upon activation, can secrete significant amounts of Aβ into the blood which can be actively transported to the brain across the blood-brain barrier and promote amyloid deposition. Increased platelet activity can stimulate platelet adhesion to endothelial cells, trigger the recruitment of leukocytes into the vascular wall and cause perivascular inflammation, which can spread inflammation in the brain. Neuroinflammation is fueled by activated microglial cells and reactive astrocytes that release neurotoxic cytokines and chemokines. Platelet activation is also associated with the progression of carotid artery disease resulting in an increased risk of cerebral hypoperfusion which may also contribute to the AD neurodegenerative process. Platelet activation may thus be a pathophysiological mechanism of AD and for the strong link between AD and cerebrovascular diseases. Interfering with platelet activation may represent a promising potential adjunct therapeutic approach for AD.
Collapse
Affiliation(s)
- Manuel Glauco Carbone
- Department of Medicine and Surgery, Division of Psychiatry, University of Insubria, Viale Luigi Borri 57, 21100, Varese, Italy; Pisa-School of Experimental and Clinical Psychiatry, University of Pisa, Via Roma 57, 56100, Pisa, Italy.
| | - Giovanni Pagni
- Pisa-School of Experimental and Clinical Psychiatry, University of Pisa, Via Roma 57, 56100, Pisa, Italy.
| | - Claudia Tagliarini
- Pisa-School of Experimental and Clinical Psychiatry, University of Pisa, Via Roma 57, 56100, Pisa, Italy.
| | | | - Nunzio Pomara
- Geriatric Psychiatry Department, Nathan Kline Institute, and Departments of Psychiatry and Pathology, NYU Grossman School of Medicine, 140 Old Orangeburg Road Orangeburg, New York, 10962, United States.
| |
Collapse
|
37
|
Aiello A, Accardi G, Aprile S, Caldarella R, Carru C, Ciaccio M, De Vivo I, Gambino CM, Ligotti ME, Vasto S, Zinellu A, Caruso C, Bono F, Candore G. Age and Gender-related Variations of Molecular and Phenotypic Parameters in A Cohort of Sicilian Population: from Young to Centenarians. Aging Dis 2021; 12:1773-1793. [PMID: 34631220 PMCID: PMC8460304 DOI: 10.14336/ad.2021.0226] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 02/26/2021] [Indexed: 12/11/2022] Open
Abstract
People are living longer, but lifespan increase does not coincide with a boost in health-span. Thus, improving the quality of life of older people is a priority. Centenarians reach extreme longevity in a relatively good health status, escaping or delaying fatal or strongly invalidating diseases. Therefore, studying processes involved in longevity is important to explain the biological mechanisms of health and well-being, since knowledge born from this approach can provide valuable information on how to slow aging. We performed the present study in a well characterized very homogeneous sample of 173 people from Western Sicily, to update existing literature on some phenotypic aspects of aging and longevity and to propose a range of values for older people. We classified 5 age groups, from young adults to centenarians, to understand the age and gender-related variations of the different parameters under study. We collected anamnestic data and performed anthropometric, bioimpedance, molecular, haematological, oxidative, and hematochemical tests, adopting a multidimensional analysis approach. An important evidence of the present study is that there are differences related to both age and gender in several biomarkers. Indeed, gender differences seem to be still poorly considered and inadequately investigated in aging as well as in other medical studies. Moreover, we often observed comparable parameters between young and centenarians rather than non-agenarians and centenarians, hypothesizing a sort of slowdown, almost followed by a reversal trend, in the decay of systemic deterioration. The study of centenarians provides important indications on how to slow aging, with benefits for those who are more vulnerable to disease and disability. The identification of the factors that predispose to a long and healthy life is of enormous interest for translational medicine in an aging world.
Collapse
Affiliation(s)
- Anna Aiello
- 1Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neuroscience and Advanced Diagnostic, University of Palermo, Palermo, Italy
| | - Giulia Accardi
- 1Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neuroscience and Advanced Diagnostic, University of Palermo, Palermo, Italy
| | - Stefano Aprile
- 1Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neuroscience and Advanced Diagnostic, University of Palermo, Palermo, Italy.,2Unit of Transfusion Medicine, San Giovanni di Dio Hospital, Agrigento, Italy
| | - Rosalia Caldarella
- 3Department of Laboratory Medicine, "P. Giaccone" University Hospital, Palermo, Italy
| | - Ciriaco Carru
- 4Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Marcello Ciaccio
- 3Department of Laboratory Medicine, "P. Giaccone" University Hospital, Palermo, Italy.,5Unit of Clinical Biochemistry, Clinical Molecular Medicine, and Laboratory Medicine, Department of Biomedicine, Neuroscience and Advanced Diagnostic, University of Palermo, Palermo, Italy
| | - Immaculata De Vivo
- 6Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Caterina Maria Gambino
- 5Unit of Clinical Biochemistry, Clinical Molecular Medicine, and Laboratory Medicine, Department of Biomedicine, Neuroscience and Advanced Diagnostic, University of Palermo, Palermo, Italy
| | - Mattia Emanuela Ligotti
- 1Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neuroscience and Advanced Diagnostic, University of Palermo, Palermo, Italy
| | - Sonya Vasto
- 7Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo, Italy
| | - Angelo Zinellu
- 4Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Calogero Caruso
- 1Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neuroscience and Advanced Diagnostic, University of Palermo, Palermo, Italy
| | - Filippa Bono
- 8Department of Economics, Business and Statistics, University of Palermo, Palermo, Italy
| | - Giuseppina Candore
- 1Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neuroscience and Advanced Diagnostic, University of Palermo, Palermo, Italy
| |
Collapse
|
38
|
Hsu CH, Chen YL, Hsieh CH, Liang YJ, Liu SH, Pei D. Hemogram-based decision tree for predicting the metabolic syndrome and cardiovascular diseases in the elderly. QJM 2021; 114:363-373. [PMID: 32573729 DOI: 10.1093/qjmed/hcaa205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 05/17/2020] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND This study aimed to build a hemogram-based decision tree to evaluate the association between current probability of metabolic syndrome (MetS) and prediction of future hypertension, type 2 diabetes and cardiovascular diseases (CVD) risk. METHODS A total of 40 395 elder participants (≥60 years) were enrolled in a standard health examination program in Taiwan from January 1999 to December 2014. A decision tree classification of the presence or absence of MetS at baseline, using age, sex and hemogram (white blood cell, hemoglobin and platelet) as independent variables, was conducted for the randomly assigned training (70%) and validation (30%) groups. Participants without MetS at baseline (n = 25 643) were followed up to observe whether they developed MetS, hypertension, type 2 diabetes or CVD in the future. RESULTS Modest accuracy of the decision tree in the training and validation groups with area under the curves of 0.653 and 0.652, respectively, indicated an acceptable generalizability of results. The predicted probability of baseline MetS was obtained from decision tree analysis. Participants without MetS at baseline were categorized into three equally sized groups according to the predicted probability. Participants in the third tertile had significantly higher risks of future MetS (hazard ratio 1.40, 95% confidence interval 1.25-1.58); type 2 diabetes (1.46, 1.17-1.83); hypertension (1.14, 1.01-1.28); and CVD (1.21, 1.01-1.44), compared with those in the first tertile. CONCLUSIONS Execution of hemogram-based decision tree analysis can assist in early identification and prompt management of elderly patients at a high risk of future hypertension, type 2 diabetes and CVD.
Collapse
Affiliation(s)
- C-H Hsu
- From the Department of Family Medicine
- Department of Geriatric Medicine, Center for Geriatrics and Gerontology, Shin Kong Wu Ho-Su Memorial Hospital, No. 95, Wenchang Rd., Shilin Dist., Taipei City 111, Taiwan
- Department of Family Medicine, Cardinal Tien Hospital, No.362, Zhongzheng Rd., Xindian Dist., New Taipei City 231, Taiwan
- School of Medicine, College of Medicine, Fu Jen Catholic University, 510 Zhongzheng Rd., Xinzhuang Dist., New Taipei City 242, Taiwan
| | - Y-L Chen
- School of Medicine, College of Medicine, Fu Jen Catholic University, 510 Zhongzheng Rd., Xinzhuang Dist., New Taipei City 242, Taiwan
- Department of Pathology, Cardinal Tien Hospital, No.362, Zhongzheng Rd., Xindian Dist., New Taipei City 231, Taiwan
| | - C-H Hsieh
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, No. 325, Sec. 2, Chenggong Rd., Neihu Dist., Taipei City 114, Taiwan
| | - Y-J Liang
- Department of Life Science, Graduate Institute of Applied Science and Engineering, College of Science and Engineering, Fu Jen Catholic University, 510 Zhongzheng Rd., Xinzhuang Dist., New Taipei City 242, Taiwan
| | - S-H Liu
- School of Nursing, College of Nursing, National Taipei University of Nursing and Health Science, No. 365, Mingde Rd., Beitou Dist., Taipei City 112, Taiwan
| | - D Pei
- School of Medicine, College of Medicine, Fu Jen Catholic University, 510 Zhongzheng Rd., Xinzhuang Dist., New Taipei City 242, Taiwan
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Fu Jen Catholic University Hospital, No. 69, Guizi Rd., Taishan Dist., New Taipei City 243, Taiwan
- Department of Internal Medicine, Cardinal Tien Hospital, No.362, Zhongzheng Rd., Xindian Dist., New Taipei City 231, Taiwan
| |
Collapse
|
39
|
He M, Guo X, Li T, Jiang X, Chen Y, Yuan Y, Chen B, Yang G, Fan Y, Liang Z, Armstrong DG, Deng W. Comparison of Allogeneic Platelet-rich Plasma With Autologous Platelet-rich Plasma for the Treatment of Diabetic Lower Extremity Ulcers. Cell Transplant 2021; 29:963689720931428. [PMID: 32510240 PMCID: PMC7563928 DOI: 10.1177/0963689720931428] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Autologous platelet-rich plasma (au-PRP) has been widely used for the management of refractory chronic wounds. However, patients with diabetic lower extremity ulcers (DLEUs) usually have complicated clinical conditions, and the utility of au-PRP is limited. In this study, the feasibility, effectiveness, and safety of allogeneic platelet-rich plasma (al-PRP) and au-PRP were investigated and compared in the treatment of DLEUs. A total of 75 in-patients with type 2 diabetes were assigned to the al-PRP group (n = 20), au-PRP group (n = 25), and conventional wound therapeutic (CWT) group (n = 30) matched by the ankle brachial index and ulcer size from December 2015 to August 2018. Based on metabolic and nutritional regulation, infective control, and topical wound management, al-PRP, au-PRP, and CWT were administered to each group, respectively. Evaluation of treatment outcomes was determined by the parameters of wound healing and adverse reactions. The therapeutic times and average concentration of platelets were not significantly different between the au-PRP and al-PRP groups. The wound healing times of the al-PRP group (56.9 ± 29.22 d) and au-PRP group (55.6 ± 33.8 d) were significantly shorter than those of the CWT group (88.0 ± 43.4 d) (P < 0.01), but there was no significant difference between the groups with PRP treatment. Although there was no significant difference in the daily healing area among all groups (P > 0.05), the trend of the healing rate in the al-PRP group (16.77 ± 12.85 mm2), au-PRP group (14.31 ± 18.28 mm2), and CWT group (9.90 ± 8.51 mm2) gradually decreased. No obvious adverse reactions (fever, edema, pain, skin itching, rash, or other sensory abnormalities) were observed in either the au-PRP or the al-PRP groups. Both al-PRP and au-PRP could effectively and safely promote wound healing in patients with DLEUs. Alternatively, al-PRP could be used for DLEUs as an off-the-shelf solution when au-PRP is limited.
Collapse
Affiliation(s)
- Min He
- Department of Endocrinology and Nephrology, Chongqing University Central Hospital, Chongqing Emergency Medical Center, China.,Department of Endocrinology, Chongqing Southwest Hospital, China.,These authors contributed equally to this article
| | - Xuewen Guo
- Department of Endocrinology and Nephrology, Chongqing University Central Hospital, Chongqing Emergency Medical Center, China.,Department of Endocrinology, The Second Affiliated Hospital, Chongqing Medical University, China.,These authors contributed equally to this article
| | - Tao Li
- Department of Endocrinology and Nephrology, Chongqing University Central Hospital, Chongqing Emergency Medical Center, China.,Department of Endocrinology, Chongqing Southwest Hospital, China.,These authors contributed equally to this article
| | - Xiaoyan Jiang
- Department of Endocrinology and Nephrology, Chongqing University Central Hospital, Chongqing Emergency Medical Center, China
| | - Yan Chen
- Department of Endocrinology and Nephrology, Chongqing University Central Hospital, Chongqing Emergency Medical Center, China
| | - Yi Yuan
- Department of Endocrinology and Nephrology, Chongqing University Central Hospital, Chongqing Emergency Medical Center, China
| | - Bing Chen
- Department of Endocrinology, Chongqing Southwest Hospital, China
| | - Gangyi Yang
- Department of Endocrinology, The Second Affiliated Hospital, Chongqing Medical University, China
| | - Yahan Fan
- Department of Blood Transfusion, Southwest Hospital, Chongqing, China
| | - Ziwen Liang
- Department of Endocrinology, Chongqing Southwest Hospital, China
| | - David G Armstrong
- Department of Surgery, Keck School of Medicine of University of Southern California, Los Angeles, USA
| | - Wuquan Deng
- Department of Endocrinology and Nephrology, Chongqing University Central Hospital, Chongqing Emergency Medical Center, China
| |
Collapse
|
40
|
Incidence and Prognosis of Clonal Hematopoiesis in patients with Chronic Idiopathic Neutropenia. Blood 2021; 138:1249-1257. [PMID: 34166485 DOI: 10.1182/blood.2021010815] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 06/05/2021] [Indexed: 11/20/2022] Open
Abstract
The incidence and prognosis of clonal hematopoiesis in patients with isolated neutropenia among patients with idiopathic cytopenia of undetermined significance (ICUS), known as ICUS-N or chronic idiopathic neutropenia (CIN) patients, is poorly defined. In the present study we sought to investigate the frequency and clinical significance of mutations of genes implicated in myeloid malignancies using next generation sequencing, in CIN patients (n=185) with a long follow-up. We found that 21/185 patients (11.35%) carried totally 25 somatic mutations in 6 genes with median variant allele frequency (VAF) 12.75%. The most frequently mutated genes were DNMT3A and TET2 involving more than 80% of patients followed by IDH1/2, SRSF2 and ZRSR2. The frequency of transformation to a myeloid malignancy was low in the total group of patients (5/185 patients; 2.70%). However, from the transformed patients four belonged to the clonal (4/21; 19.05%) and one to the non-clonal (1/164; 0.61%) group, indicating that the presence of mutation(s) confers a relative risk for transformation 31.24 (P = 0.0017). The VAF of the mutant clones in the transformed patients was higher than 10% in all cases and the genes most frequently associated with malignant transformation were the SRSF2 and IDH1. No significant differences were identified between clonal and non-clonal groups in the severity of neutropenia. Patients with clonal disease were older compared to non-clonal patients. These data contribute to the better understanding of the heterogeneous entities underlying ICUS and highlight the importance of the mutation analysis for the diagnosis and prognosis of patients with unexplained neutropenias.
Collapse
|
41
|
Bian FC, Cheng XK, An YS. Preoperative risk factors for postoperative blood transfusion after hip fracture surgery: establishment of a nomogram. J Orthop Surg Res 2021; 16:406. [PMID: 34162408 PMCID: PMC8220667 DOI: 10.1186/s13018-021-02557-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 06/11/2021] [Indexed: 11/10/2022] Open
Abstract
Background This study aimed to explore the preoperative risk factors related to blood transfusion after hip fracture operations and to establish a nomogram prediction model. The application of this model will likely reduce unnecessary transfusions and avoid wasting blood products. Methods This was a retrospective analysis of all patients undergoing hip fracture surgery from January 2013 to January 2020. Univariate and multivariate logistic regression analyses were used to evaluate the association between preoperative risk factors and blood transfusion after hip fracture operations. Finally, the risk factors obtained from the multivariate regression analysis were used to establish the nomogram model. The validation of the nomogram was assessed by the concordance index (C-index), the receiver operating characteristic (ROC) curve, decision curve analysis (DCA), and calibration curves. Results A total of 820 patients were included in the present study for evaluation. Multivariate logistic regression analysis demonstrated that low preoperative hemoglobin (Hb), general anesthesia (GA), non-use of tranexamic acid (TXA), and older age were independent risk factors for blood transfusion after hip fracture operation. The C-index of this model was 0.86 (95% CI, 0.83–0.89). Internal validation proved the nomogram model’s adequacy and accuracy, and the results showed that the predicted value agreed well with the actual values. Conclusions A nomogram model was developed based on independent risk factors for blood transfusion after hip fracture surgery. Preoperative intervention can effectively reduce the incidence of blood transfusion after hip fracture operations.
Collapse
Affiliation(s)
- Fu Cheng Bian
- Chengde Medical University, Chengde, 067000, Hebei, China.,Department of Minimally Invasive Spine Surgery, Chengde Medical University Affiliated Hospital, Chengde, 067000, Hebei, China
| | - Xiao Kang Cheng
- Chengde Medical University, Chengde, 067000, Hebei, China.,Department of Minimally Invasive Spine Surgery, Chengde Medical University Affiliated Hospital, Chengde, 067000, Hebei, China
| | - Yong Sheng An
- Department of Minimally Invasive Spine Surgery, Chengde Medical University Affiliated Hospital, Chengde, 067000, Hebei, China.
| |
Collapse
|
42
|
Castro-Herrera VM, Lown M, Fisk HL, Owen-Jones E, Lau M, Lowe R, Hood K, Gillespie D, Hobbs FDR, Little P, Butler CC, Miles EA, Calder PC. Relationships Between Age, Frailty, Length of Care Home Residence and Biomarkers of Immunity and Inflammation in Older Care Home Residents in the United Kingdom. FRONTIERS IN AGING 2021; 2:599084. [PMID: 35821989 PMCID: PMC9261419 DOI: 10.3389/fragi.2021.599084] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 02/03/2021] [Indexed: 01/16/2023]
Abstract
Aging is associated with changes to the immune system, collectively termed immunosenescence and inflammageing. However, the relationships among age, frailty, and immune parameters in older people resident in care homes are not well described. We assessed immune and inflammatory parameters in 184 United Kingdom care home residents aged over 65 years and how they relate to age, frailty index, and length of care home residence. Linear regression was used to identify the independent contribution of age, frailty, and length of care home residence to the various immune parameters as dependent variables. Participants had a mean age (±SD) of 85.3 ± 7.5 years, had been residing in the care home for a mean (±SD) of 1.9 ± 2.2 years at the time of study commencement, and 40.7% were severely frail. Length of care home residence and frailty index were correlated but age and frailty index and age and length of care home residence were not significantly correlated. All components of the full blood count, apart from total lymphocytes, were within the reference range; 31% of participants had blood lymphocyte numbers below the lower value of the reference range. Among the components of the full blood count, platelet numbers were positively associated with frailty index. Amongst plasma inflammatory markers, C-reactive protein (CRP), interleukin-1 receptor antagonist (IL-1ra), soluble E-selectin and interferon gamma-induced protein 10 (IP-10) were positively associated with frailty. Plasma soluble vascular cell adhesion molecule 1 (sVCAM-1), IP-10 and tumor necrosis factor receptor II (TNFRII) were positively associated with age. Plasma monocyte chemoattractant protein 1 was positively associated with length of care home residence. Frailty was an independent predictor of platelet numbers, plasma CRP, IL-1ra, IP-10, and sE-selectin. Age was an independent predictor of activated monocytes and plasma IP-10, TNFRII and sVCAM-1. Length of care home residence was an independent predictor of plasma MCP-1. This study concludes that there are independent links between increased frailty and inflammation and between increased age and inflammation amongst older people resident in care homes in the United Kingdom. Since, inflammation is known to contribute to morbidity and mortality in older people, the causes and consequences of inflammation in this population should be further explored.
Collapse
Affiliation(s)
- Vivian M. Castro-Herrera
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
- *Correspondence: Vivian M. Castro-Herrera,
| | - Mark Lown
- School of Primary Care and Population Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Helena L. Fisk
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Eleri Owen-Jones
- Centre for Trials Research, Cardiff University, Cardiff, United Kingdom
| | - Mandy Lau
- Centre for Trials Research, Cardiff University, Cardiff, United Kingdom
| | - Rachel Lowe
- Centre for Trials Research, Cardiff University, Cardiff, United Kingdom
| | - Kerenza Hood
- Centre for Trials Research, Cardiff University, Cardiff, United Kingdom
| | - David Gillespie
- Centre for Trials Research, Cardiff University, Cardiff, United Kingdom
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, United Kingdom
| | - F. D. Richard Hobbs
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, United Kingdom
| | - Paul Little
- School of Primary Care and Population Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Christopher C. Butler
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, United Kingdom
| | - Elizabeth A. Miles
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Philip C. Calder
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust and University of Southampton, Southampton, United Kingdom
| |
Collapse
|
43
|
Cha JJ, Park JH, Joo HJ, Hong SJ, Ahn TH, Kim BK, Shin W, Ahn SG, Yoon J, Kim YH, Cho YH, Kang WC, Kim W, Lim YH, Gwon HC, Choi WG, Lim DS. Impact of genetic variants on clinical outcome after percutaneous coronary intervention in elderly patients. Aging (Albany NY) 2021; 13:6506-6524. [PMID: 33707344 PMCID: PMC7993709 DOI: 10.18632/aging.202799] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 02/16/2021] [Indexed: 12/02/2022]
Abstract
Elderly patients treated with percutaneous coronary intervention (PCI) have a higher risk of both ischemic and bleeding complications than younger patients. However, few studies have reported how genetic information of elderly patients treated with PCI affects clinical outcomes. We investigated the impact of genetic variants on clinical outcomes in elderly patients. Correlations between single-nucleotide polymorphisms (CYP2C19 and P2Y12 receptor gene G52T polymorphism) and clinical outcomes were analyzed in 811 elderly patients (≥75 years of age) from a prospective multicenter registry. The primary endpoint was a composite of myocardial infarction and death. Secondary endpoints were an individual event of death, cardiac death, myocardial infarction, stent thrombosis, target lesion revascularization, stroke, and major bleeding (Bleeding Academic Research Consortium ≥3). Regarding CYP2C19, patients with poor metabolizers had a significantly higher risk for the primary endpoint (hazard ratio [HR] 2.43; 95% confidence interval [95% CI] 1.12–5.24; p=0.024) and secondary endpoints (death and cardiac death). Regarding P2Y12 G52T, the TT group had a significantly higher occurrence of major bleeding than the other groups (HR 3.87; 95% CI 1.41–10.68; p=0.009). In conclusion, poor metabolizers of CYP2C19 and TT groups of P2Y12 G52T may be significant predictors of poor clinical outcomes in elderly patients.
Collapse
Affiliation(s)
- Jung-Joon Cha
- Department of Cardiology, Cardiovascular Center, Korea University Anam Hospital, Korea University College of Medicine, Seoul, South Korea
| | - Jae Hyoung Park
- Department of Cardiology, Cardiovascular Center, Korea University Anam Hospital, Korea University College of Medicine, Seoul, South Korea
| | - Hyung Joon Joo
- Department of Cardiology, Cardiovascular Center, Korea University Anam Hospital, Korea University College of Medicine, Seoul, South Korea
| | - Soon Jun Hong
- Department of Cardiology, Cardiovascular Center, Korea University Anam Hospital, Korea University College of Medicine, Seoul, South Korea
| | - Tae Hoon Ahn
- Department of Cardiology, Cardiovascular Center, Korea University Anam Hospital, Korea University College of Medicine, Seoul, South Korea
| | - Byeong-Keuk Kim
- Division of Cardiology, Severance Cardiovascular Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - WonYong Shin
- Division of Cardiology, Department of Internal Medicine, Soonchunhyang University Cheonan Hospital, Cheonan, South Korea
| | - Sung Gyun Ahn
- Department of Cardiology, Yonsei University Wonju Severance Christian Hospital, Wonju, South Korea
| | - JungHan Yoon
- Department of Cardiology, Yonsei University Wonju Severance Christian Hospital, Wonju, South Korea
| | - Yong Hoon Kim
- Division of Cardiology, Department of Internal Medicine, Kangwon National University School of Medicine, Chuncheon, South Korea
| | - Yun-Hyeong Cho
- Department of Internal Medicine, Hanyang University Myongji Hospital, Goyang, South Korea
| | - Woong Chol Kang
- Department of Cardiology, Gachon University Gil Medical Center, Incheon, South Korea
| | - Weon Kim
- Department of Internal Medicine, Division of Cardiology, Kyung Hee University Hospital, Kyung Hee University School of Medicine, Seoul, South Korea
| | - Young-Hyo Lim
- Division of Cardiology, Department of Internal Medicine, Hanyang University College of Medicine, Seoul, South Korea
| | - Hyeon Cheol Gwon
- Division of Cardiology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Woong Gil Choi
- Department of Cardiology, Cardiovascular Center, Korea University Anam Hospital, Korea University College of Medicine, Seoul, South Korea
| | - Do-Sun Lim
- Department of Cardiology, Cardiovascular Center, Korea University Anam Hospital, Korea University College of Medicine, Seoul, South Korea
| |
Collapse
|
44
|
Toledano-Fonseca M, Cano MT, Inga E, Gómez-España A, Guil-Luna S, García-Ortiz MV, Mena-Osuna R, De la Haba-Rodriguez JR, Rodríguez-Ariza A, Aranda E. The Combination of Neutrophil-Lymphocyte Ratio and Platelet-Lymphocyte Ratio with Liquid Biopsy Biomarkers Improves Prognosis Prediction in Metastatic Pancreatic Cancer. Cancers (Basel) 2021; 13:cancers13061210. [PMID: 33802006 PMCID: PMC7998484 DOI: 10.3390/cancers13061210] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/04/2021] [Accepted: 03/05/2021] [Indexed: 12/12/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive cancer with a highly inflammatory microenvironment and liquid biopsy has emerged as a promising tool for the noninvasive analysis of this tumor. In this study, plasma was obtained from 58 metastatic PDAC patients, and neutrophil-lymphocyte ratio (NLR), platelet-lymphocyte ratio (PLR), circulating cell-free DNA (cfDNA) concentration, and circulating RAS mutation were determined. We found that NLR was significantly associated with both overall survival (OS) and progression-free survival. Remarkably, NLR was an independent risk factor for poor OS. Moreover, NLR and PLR positively correlated, and combination of both inflammatory markers significantly improved the prognostic stratification of metastatic PDAC patients. NLR also showed a positive correlation with cfDNA levels and RAS mutant allelic fraction (MAF). Besides, we found that neutrophil activation contributed to cfDNA content in the plasma of metastatic PDAC patients. Finally, a multi-parameter prognosis model was designed by combining NLR, PLR, cfDNA levels, RAS mutation, RAS MAF, and CA19-9, which performs as a promising tool to predict the prognosis of metastatic PDAC patients. In conclusion, our study supports the idea that the use of systemic inflammatory markers along with circulating tumor-specific markers may constitute a valuable tool for the clinical management of metastatic PDAC patients.
Collapse
Affiliation(s)
- Marta Toledano-Fonseca
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004 Córdoba, Spain; (M.T.-F.); (S.G.-L.); (M.V.G.-O.); (R.M.-O.); (J.R.D.l.H.-R.); (E.A.)
- Cancer Network Biomedical Research Centre (CIBERONC), 28029 Madrid, Spain
- Andalusia-Roche Network Mixed Alliance in Precision Medical Oncology, 41092 Sevilla, Spain; (M.T.C.); (E.I.); (A.G.-E.)
| | - M. Teresa Cano
- Andalusia-Roche Network Mixed Alliance in Precision Medical Oncology, 41092 Sevilla, Spain; (M.T.C.); (E.I.); (A.G.-E.)
- Medical Oncology Department, Reina Sofía University Hospital, 14004 Córdoba, Spain
| | - Elizabeth Inga
- Andalusia-Roche Network Mixed Alliance in Precision Medical Oncology, 41092 Sevilla, Spain; (M.T.C.); (E.I.); (A.G.-E.)
- Medical Oncology Department, Reina Sofía University Hospital, 14004 Córdoba, Spain
| | - Auxiliadora Gómez-España
- Andalusia-Roche Network Mixed Alliance in Precision Medical Oncology, 41092 Sevilla, Spain; (M.T.C.); (E.I.); (A.G.-E.)
- Medical Oncology Department, Reina Sofía University Hospital, 14004 Córdoba, Spain
| | - Silvia Guil-Luna
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004 Córdoba, Spain; (M.T.-F.); (S.G.-L.); (M.V.G.-O.); (R.M.-O.); (J.R.D.l.H.-R.); (E.A.)
- Cancer Network Biomedical Research Centre (CIBERONC), 28029 Madrid, Spain
- Andalusia-Roche Network Mixed Alliance in Precision Medical Oncology, 41092 Sevilla, Spain; (M.T.C.); (E.I.); (A.G.-E.)
| | - María Victoria García-Ortiz
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004 Córdoba, Spain; (M.T.-F.); (S.G.-L.); (M.V.G.-O.); (R.M.-O.); (J.R.D.l.H.-R.); (E.A.)
- Andalusia-Roche Network Mixed Alliance in Precision Medical Oncology, 41092 Sevilla, Spain; (M.T.C.); (E.I.); (A.G.-E.)
| | - Rafael Mena-Osuna
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004 Córdoba, Spain; (M.T.-F.); (S.G.-L.); (M.V.G.-O.); (R.M.-O.); (J.R.D.l.H.-R.); (E.A.)
- Andalusia-Roche Network Mixed Alliance in Precision Medical Oncology, 41092 Sevilla, Spain; (M.T.C.); (E.I.); (A.G.-E.)
| | - Juan R. De la Haba-Rodriguez
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004 Córdoba, Spain; (M.T.-F.); (S.G.-L.); (M.V.G.-O.); (R.M.-O.); (J.R.D.l.H.-R.); (E.A.)
- Cancer Network Biomedical Research Centre (CIBERONC), 28029 Madrid, Spain
- Andalusia-Roche Network Mixed Alliance in Precision Medical Oncology, 41092 Sevilla, Spain; (M.T.C.); (E.I.); (A.G.-E.)
- Medical Oncology Department, Reina Sofía University Hospital, 14004 Córdoba, Spain
- Department of Medicine, Faculty of Medicine, University of Córdoba, 14004 Córdoba, Spain
| | - Antonio Rodríguez-Ariza
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004 Córdoba, Spain; (M.T.-F.); (S.G.-L.); (M.V.G.-O.); (R.M.-O.); (J.R.D.l.H.-R.); (E.A.)
- Cancer Network Biomedical Research Centre (CIBERONC), 28029 Madrid, Spain
- Andalusia-Roche Network Mixed Alliance in Precision Medical Oncology, 41092 Sevilla, Spain; (M.T.C.); (E.I.); (A.G.-E.)
- Medical Oncology Department, Reina Sofía University Hospital, 14004 Córdoba, Spain
- Correspondence:
| | - Enrique Aranda
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004 Córdoba, Spain; (M.T.-F.); (S.G.-L.); (M.V.G.-O.); (R.M.-O.); (J.R.D.l.H.-R.); (E.A.)
- Cancer Network Biomedical Research Centre (CIBERONC), 28029 Madrid, Spain
- Andalusia-Roche Network Mixed Alliance in Precision Medical Oncology, 41092 Sevilla, Spain; (M.T.C.); (E.I.); (A.G.-E.)
- Medical Oncology Department, Reina Sofía University Hospital, 14004 Córdoba, Spain
- Department of Medicine, Faculty of Medicine, University of Córdoba, 14004 Córdoba, Spain
| |
Collapse
|
45
|
Dillinger JG, Laine M, Bouajila S, Paganelli F, Henry P, Bonello L. Antithrombotic strategies in elderly patients with acute coronary syndrome. Arch Cardiovasc Dis 2021; 114:232-245. [PMID: 33632631 DOI: 10.1016/j.acvd.2020.12.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 12/21/2020] [Accepted: 12/21/2020] [Indexed: 12/22/2022]
Abstract
Elderly patients represent a growing proportion of the acute coronary syndrome population in Western countries. However, their frequent atypical symptoms at presentation often lead to delays in management and to misdiagnosis. Furthermore, their prognosis is poorer than that of younger patients because of physiological changes in platelet function, haemostasis and fibrinolysis, but also a higher proportion of comorbidities and frailty, both of which increase the risk of recurrent thrombotic and bleeding events. This complex situation, with ischaemic and haemorrhagic risk factors often being intertwined, may lead to confusion about the required treatment strategy, sometimes resulting in inadequate management or even to therapeutic nihilism. It is therefore critical to provide a comprehensive overview of our understanding of the pathophysiological processes underlying acute coronary syndrome in elderly patients, and to summarise the results from the latest clinical trials to help decision making for these high-risk patients.
Collapse
Affiliation(s)
- Jean-Guillaume Dillinger
- Department of cardiology, Hôpital Lariboisière, AP-HP, Inserm U-942, Université de Paris, 2, rue Ambroise-Paré, 75010 Paris, France.
| | - Marc Laine
- Mediterranean Association for research and studies in cardiology (MARS cardio), Centre for cardiovascular and nutrition research, AP-HM, Aix-Marseille University, INSERM 1263, INRA 1260, 13015 Marseille, France; Cardiology department, Hôpital Nord, 13015 Marseille, France; Mediterranean Association for research and studies in cardiology (MARS cardio), 13015 Marseille, France
| | - Sara Bouajila
- Department of cardiology, Hôpital Lariboisière, AP-HP, Inserm U-942, Université de Paris, 2, rue Ambroise-Paré, 75010 Paris, France
| | - Franck Paganelli
- Mediterranean Association for research and studies in cardiology (MARS cardio), Centre for cardiovascular and nutrition research, AP-HM, Aix-Marseille University, INSERM 1263, INRA 1260, 13015 Marseille, France; Cardiology department, Hôpital Nord, 13015 Marseille, France
| | - Patrick Henry
- Department of cardiology, Hôpital Lariboisière, AP-HP, Inserm U-942, Université de Paris, 2, rue Ambroise-Paré, 75010 Paris, France
| | - Laurent Bonello
- Mediterranean Association for research and studies in cardiology (MARS cardio), Centre for cardiovascular and nutrition research, AP-HM, Aix-Marseille University, INSERM 1263, INRA 1260, 13015 Marseille, France; Cardiology department, Hôpital Nord, 13015 Marseille, France; Mediterranean Association for research and studies in cardiology (MARS cardio), 13015 Marseille, France
| |
Collapse
|
46
|
Kovacevic KD, Greisenegger S, Langer A, Gelbenegger G, Buchtele N, Pabinger I, Petroczi K, Zhu S, Gilbert JC, Jilma B. The aptamer BT200 blocks von Willebrand factor and platelet function in blood of stroke patients. Sci Rep 2021; 11:3092. [PMID: 33542410 PMCID: PMC7862663 DOI: 10.1038/s41598-021-82747-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 01/25/2021] [Indexed: 12/15/2022] Open
Abstract
The effect of conventional anti-platelet agents is limited in secondary stroke prevention, and their effects are blunted under high shear stress in the presence of increased levels of circulating von Willebrand factor (VWF). VWF is critically involved in thrombus formation at sites of stenotic extracranial/intracranial arteries. A third generation anti-VWF aptamer (BT200) has been generated which could be useful for secondary stroke prevention. To characterize the effects of BT200 in blood of patients with large artery atherosclerosis stroke (LAA). Blood samples were obtained from 33 patients with acute stroke or transient ischemic attack to measure inhibition of VWF activity and VWF-dependent platelet function. Patients who received clopidogrel or dual antiplatelet therapy did not differ in VWF dependent platelet function tests from aspirin treated patients. Of 18 patients receiving clopidogrel with or without aspirin, only 3 had a prolonged collagen adenosine diphosphate closure time, and none of the patients had ristocetin induced aggregation in the target range. BT200 concentration-dependently reduced median VWF activity from 178 to < 3%, ristocetin induced platelet aggregation from 40U to < 10U and prolonged collagen adenosine diphosphate closure times from 93 s to > 300 s. Baseline VWF activity correlated (r = 0.86, p < 0.001) with concentrations needed to reduce VWF activity to < 20% of normal, indicating that BT200 acts in a target concentration-dependent manner. Together with a long half-life supporting once weekly administration, the safety and tolerability observed in an ongoing phase I trial, and the existence of a reversal agent, BT200 is an interesting drug candidate.
Collapse
Affiliation(s)
- Katarina D Kovacevic
- Department of Clinical Pharmacology, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria.
| | | | - Agnes Langer
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Georg Gelbenegger
- Department of Clinical Pharmacology, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Nina Buchtele
- Department of Internal Medicine I, Medical University of Vienna, Vienna, Austria
| | - Ingrid Pabinger
- Division of Hematology, Department of Internal Medicine I, Medical University of Vienna, Vienna, Austria
| | - Karin Petroczi
- Department of Clinical Pharmacology, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Shuhao Zhu
- Guardian Therapeutics, Lexington, MA, USA
| | | | - Bernd Jilma
- Department of Clinical Pharmacology, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| |
Collapse
|
47
|
Liu T, Gatto NM, Chen Z, Qiu H, Lee G, Duerksen-Hughes P, Fraser G, Wang C. Vegetarian diets, circulating miRNA expression and healthspan in subjects living in the Blue Zone. PRECISION CLINICAL MEDICINE 2021; 3:245-259. [PMID: 33391847 PMCID: PMC7757436 DOI: 10.1093/pcmedi/pbaa037] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 10/11/2020] [Accepted: 10/18/2020] [Indexed: 12/21/2022] Open
Abstract
A long-term vegetarian diet plays a role in the longevity and maintenance of the healthspan, but the underlying mechanisms for these observations are largely unknown. Particularly, it is not known whether a long-term vegetarian dietary pattern may affect the circulating miRNA expression in such a way as to modulate the healthspan. The Adventist Health Study-2 (AHS-2) cohort includes a large number of older adults who primarily follow vegetarian dietary patterns and reside in Loma Linda, California, one of five “Blue Zones” in the world in which a higher proportion of the population enjoys a longer than average lifespan. We performed miRNA-seq in 96 subjects selected from the AHS-2 cohort with different dietary patterns. We identified several differentially expressed miRNAs between vegetarians and non-vegetarians, which are involved in immune response and cytokine signaling, cell growth and proliferation as well as age-related diseases such as cardiovascular diseases and neurodegenerative diseases. Overall, our study showed that a vegetarian diet modulates aging-associated circulating miRNAs in a sex-dependent manner of differential expression for certain miRNAs, which may be related in a beneficial manner to the healthspan. Further investigation is needed to validate these miRNAs as potential biomarkers for diet-modulated longevity in humans.
Collapse
Affiliation(s)
- Tiantian Liu
- Center for Genomics, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA
| | - Nicole M Gatto
- School of Community and Global Health, Claremont Graduate University, Claremont, CA 91711, USA
| | - Zhong Chen
- Center for Genomics, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA
| | - Hongyu Qiu
- Center of Molecular and Translational Medicine, Institution of Biomedical Science, Georgia State University, Atlanta, GA 30303, USA
| | - Grace Lee
- Department of Psychology, School of Behavioral Health, Loma Linda University, Loma Linda, CA 92350, USA
| | - Penelope Duerksen-Hughes
- Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA
| | - Gary Fraser
- School of Public Health, Loma Linda University, Loma Linda, CA 92350, USA
| | - Charles Wang
- Center for Genomics, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA
| |
Collapse
|
48
|
The Clot Thickens: Recent Clues on Hematopoietic Stem Cell Contribution to Age-Related Platelet Biology Open New Questions. ADVANCES IN GERIATRIC MEDICINE AND RESEARCH 2021; 3. [PMID: 35037001 PMCID: PMC8759758 DOI: 10.20900/agmr20210019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Platelets provide life-saving functions by halting external and internal bleeding. There is also a dark side to platelet biology, however. Recent reports provide evidence for increased platelet reactivity during aging of mice and humans, making platelets main suspects in the most prevalent aging-related human pathologies, including cardiovascular diseases, stroke, and cancer. What drives this platelet hyperreactivity during aging? Here, we discuss how hematopoietic stem cell differentiation pathways into the platelet lineage offer avenues to understand the fundamental differences between young and old platelets. Recent advances begin to unravel how the cellular and molecular regulation of the parent hematopoietic stem and progenitor cells likely imbue aging characteristics on the resulting Plt progeny. The resulting mechanistic insights into intrinsic platelet reactivity will provide strategies for selectively targeting age-related pathways. This brief viewpoint focuses on current concepts on aging hematopoiesis and the implications for platelet hyperactivity during aging.
Collapse
|
49
|
Sheriff J, Malone LE, Avila C, Zigomalas A, Bluestein D, Bahou WF. Shear-Induced Platelet Activation is Sensitive to Age and Calcium Availability: A Comparison of Adult and Cord Blood. Cell Mol Bioeng 2020; 13:575-590. [PMID: 33281988 PMCID: PMC7704822 DOI: 10.1007/s12195-020-00628-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 06/16/2020] [Indexed: 10/24/2022] Open
Abstract
INTRODUCTION Antiplatelet therapy for neonates and infants is often extrapolated from the adult experience, based on limited observation of agonist-induced neonatal platelet hypoactivity and poor understanding of flow shear-mediated platelet activation. Therefore, thrombotic events due to device-associated disturbed flow are inadequately mitigated in critically ill neonates with indwelling umbilical catheters and infants receiving cardiovascular implants. METHODS Whole blood (WB), platelet-rich plasma (PRP), and gel-filtered platelets (GFP) were prepared from umbilical cord and adult blood, and exposed to biochemical agonists or pathological shear stress of 70 dyne/cm2. We evaluated α-granule release, phosphatidylserine (PS) scrambling, and procoagulant response using P-selectin expression, Annexin V binding, and thrombin generation (PAS), respectively. Activation modulation due to depletion of intracellular and extracellular calcium, requisite second messengers, was also examined. RESULTS Similar P-selectin expression was observed for sheared adult and cord platelets, with concordant inhibition due to intracellular and extracellular calcium depletion. Sheared cord platelet Annexin V binding and PAS activity was similar to adult values in GFP, but lower in PRP and WB. Annexin V on sheared cord platelets was calcium-independent, with PAS slightly reduced by intracellular calcium depletion. CONCLUSIONS Increased PS activity on purified sheared cord platelets suggest that their intrinsic function under pathological flow conditions is suppressed by cell-cell or plasmatic components. Although secretory functions of adult and cord platelets retain comparable calcium-dependence, PS exposure in sheared cord platelets is uniquely calcium-independent and distinct from adults. Identification of calcium-regulated developmental disparities in shear-mediated platelet function may provide novel targets for age-specific antiplatelet therapy.
Collapse
Affiliation(s)
- Jawaad Sheriff
- Department of Biomedical Engineering, T08-50 Health Sciences Center, Stony Brook University, Stony Brook, NY 11794-8084 USA
| | - Lisa E. Malone
- Division of Hematology and Oncology, Department of Medicine, Stony Brook University, Stony Brook, NY 11794 USA
| | - Cecilia Avila
- Department of Obstetrics, Gynecology and Reproductive Medicine, Stony Brook University, Stony Brook, NY 11794 USA
| | - Amanda Zigomalas
- Department of Biomedical Engineering, T08-50 Health Sciences Center, Stony Brook University, Stony Brook, NY 11794-8084 USA
| | - Danny Bluestein
- Department of Biomedical Engineering, T08-50 Health Sciences Center, Stony Brook University, Stony Brook, NY 11794-8084 USA
| | - Wadie F. Bahou
- Division of Hematology and Oncology, Department of Medicine, Stony Brook University, Stony Brook, NY 11794 USA
| |
Collapse
|
50
|
van Oosterom N, Barras M, Bird R, Nusem I, Cottrell N. A Narrative Review of Aspirin Resistance in VTE Prophylaxis for Orthopaedic Surgery. Drugs 2020; 80:1889-1899. [DOI: 10.1007/s40265-020-01413-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|