1
|
Lowe JWE. Humanising and dehumanising pigs in genomic and transplantation research. HISTORY AND PHILOSOPHY OF THE LIFE SCIENCES 2022; 44:66. [PMID: 36417007 PMCID: PMC9684229 DOI: 10.1007/s40656-022-00545-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 10/16/2022] [Indexed: 06/16/2023]
Abstract
Biologists who work on the pig (Sus scrofa) take advantage of its similarity to humans by constructing the inferential and material means to traffic data, information and knowledge across the species barrier. Their research has been funded due to its perceived value for agriculture and medicine. Improving selective breeding practices, for instance, has been a driver of genomics research. The pig is also an animal model for biomedical research and practice, and is proposed as a source of organs for cross-species transplantation: xenotransplantation. Genomics research has informed transplantation biology, which has itself motivated developments in genomics. Both have generated models of correspondences between the genomes of pigs and humans. Concerning genomics, I detail how researchers traverse species boundaries to develop representations of the pig genome, alongside ensuring that such representations are sufficiently porcine. In transplantation biology, the representations of the genomes of humans and pigs are used to detect and investigate immunologically-pertinent differences between the two species. These key differences can then be removed, to 'humanise' donor pigs so that they can become a safe and effective source of organs. In both of these endeavours, there is a tension between practices that 'humanise' the pig (or representations thereof) through using resources from human genomics, and the need to 'dehumanise' the pig to maintain distinctions for legal, ethical and scientific reasons. This paper assesses the ways in which this tension has been managed, observing the differences between its realisations across comparative pig genomics and transplantation biology, and considering the consequences of this.
Collapse
Affiliation(s)
- James W E Lowe
- Science, Technology and Innovation Studies, University of Edinburgh, Old Surgeons' Hall, High School Yards, Edinburgh, EH1 1LZ, UK.
| |
Collapse
|
2
|
Kim JE, Bauer MM, Mendoza KM, Reed KM, Coulombe RA. Comparative genomics identifies new alpha class genes within the avian glutathione S-transferase gene cluster. Gene 2010; 452:45-53. [DOI: 10.1016/j.gene.2009.11.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2009] [Revised: 11/02/2009] [Accepted: 11/03/2009] [Indexed: 11/29/2022]
|
3
|
Amplification Studies of MET and Cdk6 in a Rat Endometrial Tumor Model and Their Correlation to Human Type I Endometrial Carcinoma Tumors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 617:511-7. [DOI: 10.1007/978-0-387-69080-3_51] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
|
4
|
Cogburn LA, Porter TE, Duclos MJ, Simon J, Burgess SC, Zhu JJ, Cheng HH, Dodgson JB, Burnside J. Functional genomics of the chicken--a model organism. Poult Sci 2007; 86:2059-94. [PMID: 17878436 DOI: 10.1093/ps/86.10.2059] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Since the sequencing of the genome and the development of high-throughput tools for the exploration of functional elements of the genome, the chicken has reached model organism status. Functional genomics focuses on understanding the function and regulation of genes and gene products on a global or genome-wide scale. Systems biology attempts to integrate functional information derived from multiple high-content data sets into a holistic view of all biological processes within a cell or organism. Generation of a large collection ( approximately 600K) of chicken expressed sequence tags, representing most tissues and developmental stages, has enabled the construction of high-density microarrays for transcriptional profiling. Comprehensive analysis of this large expressed sequence tag collection and a set of approximately 20K full-length cDNA sequences indicate that the transcriptome of the chicken represents approximately 20,000 genes. Furthermore, comparative analyses of these sequences have facilitated functional annotation of the genome and the creation of several bioinformatic resources for the chicken. Recently, about 20 papers have been published on transcriptional profiling with DNA microarrays in chicken tissues under various conditions. Proteomics is another powerful high-throughput tool currently used for examining the dynamics of protein expression in chicken tissues and fluids. Computational analyses of the chicken genome are providing new insight into the evolution of gene families in birds and other organisms. Abundant functional genomic resources now support large-scale analyses in the chicken and will facilitate identification of transcriptional mechanisms, gene networks, and metabolic or regulatory pathways that will ultimately determine the phenotype of the bird. New technologies such as marker-assisted selection, transgenics, and RNA interference offer the opportunity to modify the phenotype of the chicken to fit defined production goals. This review focuses on functional genomics in the chicken and provides a road map for large-scale exploration of the chicken genome.
Collapse
Affiliation(s)
- L A Cogburn
- Department of Animal and Food Sciences, University of Delaware, Newark 19717, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Musilova P, Kubickova S, Zrnova E, Horin P, Vahala J, Rubes J. Karyotypic relationships among Equus grevyi, Equus burchelli and domestic horse defined using horse chromosome arm-specific probes. Chromosome Res 2007; 15:807-13. [PMID: 17874215 DOI: 10.1007/s10577-007-1164-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2007] [Revised: 06/26/2007] [Accepted: 06/26/2007] [Indexed: 01/16/2023]
Abstract
Using laser microdissection we prepared a set of horse chromosome arm-specific probes. Most of the probes were generated from horse chromosomes, some of them were derived from Equus zebra hartmannae. The set of probes were hybridized onto E. grevyi chromosomes in order to establish a genome-wide chromosomal correspondence between this zebra and horse. The use of arm-specific probes provided us with more information on the mutual arrangement of the genomes than we could obtain by means of whole-chromosome paints generated by flow sorting, even if we used reciprocal painting with probe sets from both species. By comparison of our results and results of comparative mapping in E. burchelli, we also established the chromosomal correspondence between E. grevyi and E. burchelli, providing evidence for a very close karyotypic relationship between these two zebra species. Establishment of the comparative map for E. grevyi contributes to the knowledge of the karyotypic phylogeny in the Equidae family.
Collapse
Affiliation(s)
- P Musilova
- Department of Genetics and Reproduction, Veterinary Research Institute, Brno, Czech Republic.
| | | | | | | | | | | |
Collapse
|
6
|
Zimao Li, Lusheng Wang, Kaizhong Zhang. Algorithmic approaches for genome rearrangement: a review. ACTA ACUST UNITED AC 2006. [DOI: 10.1109/tsmcc.2005.855522] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
7
|
Yu Z, Li Y, Meng Q, Yuan J, Zhao Z, Li W, Hu X, Yan B, Fan B, Yu S, Li N. Comparative analysis of the pig BAC sequence involved in the regulation of myostatin gene. ACTA ACUST UNITED AC 2005; 48:168-80. [PMID: 15986890 DOI: 10.1007/bf02879670] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Myostatin (GDF8, MSTN) is a member of the transforming growth factor beta superfamily that is essential for proper regulation of skeletal muscle mass. In order to study its expression and regulatory mechanism deeply, we have presented a comparative analysis of about 170-kb pig BAC sequence containing the myostatin gene among pig, human and mouse. The genomic region is characterized by high interspersed repeats and low G+C content. As for the myostatin gene, a higher sequence similarity is found between human and pig than between these species and the mouse. One striking feature is that the structure of two TATA-boxes in the nearby downstream of CCAAT-box is identified in the promoter. Further analysis reveals that the TATA-box1 is responsible for the transcription in pig and human, but the TATA-box2 acts on the transcription in mouse. The other interesting feature is that two polyadenylation signal sequences (AATAAA) exist in 3'UTR of the pig myostatin gene. Moreover, a large number of potential transcription factor-binding sites are also identified in evolutionary conserved regions (ECRs), which may be associated with the regulation of myostatin. Many putative transcription factors play an important role in the muscle development, and the complex interaction between myostatin and these factors may be required for proper muscle development.
Collapse
Affiliation(s)
- Zhengquan Yu
- State Key Laboratory for Agrobiotechnology, China Agricultural University, Beijing 100094, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Alsop AE, Miethke P, Rofe R, Koina E, Sankovic N, Deakin JE, Haines H, Rapkins RW, Marshall Graves JA. Characterizing the chromosomes of the Australian model marsupial Macropus eugenii (tammar wallaby). Chromosome Res 2005; 13:627-36. [PMID: 16170627 DOI: 10.1007/s10577-005-0989-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2005] [Accepted: 07/05/2005] [Indexed: 11/26/2022]
Abstract
Marsupials occupy a phylogenetic middle ground that is very valuable in genome comparisons of mammal and other vertebrate species. For this reason, whole genome sequencing is being undertaken for two distantly related marsupial species, including the model kangaroo species Macropus eugenii (the tammar wallaby). As a first step towards the molecular characterization of the tammar genome, we present a detailed description of the tammar karyotype, report the development of a set of molecular anchor markers and summarize the comparative mapping data for this species.
Collapse
Affiliation(s)
- Amber E Alsop
- ARC Centre for Kangaroo Genomics, Research School of Biological Sciences, The Australian National University, Canberra, ACT 2601, Australia.
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Jiang Z, Wu XL, Garcia MD, Griffin KB, Michal JJ, Ott TL, Gaskins CT, Wright RW. Comparative gene-based in silico analysis of transcriptomes in different bovine tissues and (or) organs. Genome 2005; 47:1164-72. [PMID: 15644975 DOI: 10.1139/g04-084] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A gene-based approach was used to annotate 322,168 cattle expressed sequence tags (ESTs) based on human genes in order to census the transcriptomes, analyze their expression similarities, and identify genes preferentially expressed in different bovine tissues and (or) organs. Of the 34,157 human coding genes used in a standalone BLAST search, 14,928 could be matched with provisional orthologous sequences in a total of 230,135 bovine ESTs. The remaining 92,033 bovine ESTs were estimated to represent an additional 5970 genes in cattle. On average, approximately 8600 genes were estimated to be expressed in a single tissue and (or) organ and 13,000 in a pooled tissue library. On the basis of the estimated numbers of genes, no more than 3% of genes would be missed when approximately 34,000 ESTs were sequenced from a single tissue and (or) organ library and approximately 40,000 ESTs from a pooled source, respectively. Cluster analyses of the gene expression patterns among 12 single tissues and (or) organs in cattle revealed that their expression similarities would depend on physiological functions. In addition, a total of 1502 genes were identified as preferentially expressed genes in these 12 single tissues and (or) organs with LOD (logarithm of the odds, base 10) > or = 3.0. Therefore, our study provides some insights for further investigating the developmental and functional relations of various tissues and organs in mammals.
Collapse
Affiliation(s)
- Zhihua Jiang
- Department of Animal Sciences, Washington State University, Pullman, WA 99164, USA.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Kohn M, Kehrer-Sawatzki H, Vogel W, Graves JAM, Hameister H. Wide genome comparisons reveal the origins of the human X chromosome. Trends Genet 2004; 20:598-603. [PMID: 15522454 DOI: 10.1016/j.tig.2004.09.008] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The eutherian X chromosome has one of the most conserved gene arrangements in mammals. Although earlier comparisons with distantly related mammalian groups pointed towards separate origins for the short and long arms, much deeper comparisons are now possible using draft sequences of the chicken genome, in combination with genome sequences from pufferfish and zebrafish. This enables surprising new insights into the origins of the mammalian X chromosome.
Collapse
Affiliation(s)
- Matthias Kohn
- Department of Human Genetics, University of Ulm, D-89070 Ulm, Germany
| | | | | | | | | |
Collapse
|
11
|
Breen M, Hitte C, Lorentzen TD, Thomas R, Cadieu E, Sabacan L, Scott A, Evanno G, Parker HG, Kirkness EF, Hudson R, Guyon R, Mahairas GG, Gelfenbeyn B, Fraser CM, André C, Galibert F, Ostrander EA. An integrated 4249 marker FISH/RH map of the canine genome. BMC Genomics 2004; 5:65. [PMID: 15363096 PMCID: PMC520820 DOI: 10.1186/1471-2164-5-65] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2004] [Accepted: 09/13/2004] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The 156 breeds of dog recognized by the American Kennel Club offer a unique opportunity to map genes important in genetic variation. Each breed features a defining constellation of morphological and behavioral traits, often generated by deliberate crossing of closely related individuals, leading to a high rate of genetic disease in many breeds. Understanding the genetic basis of both phenotypic variation and disease susceptibility in the dog provides new ways in which to dissect the genetics of human health and biology. RESULTS To facilitate both genetic mapping and cloning efforts, we have constructed an integrated canine genome map that is both dense and accurate. The resulting resource encompasses 4249 markers, and was constructed using the RHDF5000-2 whole genome radiation hybrid panel. The radiation hybrid (RH) map features a density of one marker every 900 Kb and contains 1760 bacterial artificial chromosome clones (BACs) localized to 1423 unique positions, 851 of which have also been mapped by fluorescence in situ hybridization (FISH). The two data sets show excellent concordance. Excluding the Y chromosome, the map features an RH/FISH mapped BAC every 3.5 Mb and an RH mapped BAC-end, on average, every 2 Mb. For 2233 markers, the orthologous human genes have been established, allowing the identification of 79 conserved segments (CS) between the dog and human genomes, dramatically extending the length of most previously described CS. CONCLUSIONS These results provide a necessary resource for the canine genome mapping community to undertake positional cloning experiments and provide new insights into the comparative canine-human genome maps.
Collapse
Affiliation(s)
- Matthew Breen
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, 4700 Hillsborough Street, Raleigh, NC 27606, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Premzl M, Gready JE, Jermiin LS, Simonic T, Marshall Graves JA. Evolution of vertebrate genes related to prion and Shadoo proteins--clues from comparative genomic analysis. Mol Biol Evol 2004; 21:2210-31. [PMID: 15342797 DOI: 10.1093/molbev/msh245] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Recent findings of new genes in fish related to the prion protein (PrP) gene PRNP, including our recent report of SPRN coding for Shadoo (Sho) protein found also in mammals, raise issues of their function and evolution. Here we report additional novel fish genes found in public databases, including a duplicated SPRN gene, SPRNB, in Fugu, Tetraodon, carp, and zebrafish encoding the Sho2 protein, and we use comparative genomic analysis to analyze the evolutionary relationships and to infer evolutionary trajectories of the complete data set. Phylogenetic footprinting performed on aligned human, mouse, and Fugu SPRN genes to define candidate regulatory promoter regions, detected 16 conserved motifs, three of which are known transcription factor-binding sites for a receptor and transcription factors specific to or associated with expression in brain. This result and other homology-based (VISTA global genomic alignment; protein sequence alignment and phylogenetics) and context-dependent (genomic context; relative gene order and orientation) criteria indicate fish and mammalian SPRN genes are orthologous and suggest a strongly conserved basic function in brain. Whereas tetrapod PRNPs share context with the analogous stPrP-2-coding gene in fish, their sequences are diverged, suggesting that the tetrapod and fish genes are likely to have significantly different functions. Phylogenetic analysis predicts the SPRN/SPRNB duplication occurred before divergence of fish from tetrapods, whereas that of stPrP-1 and stPrP-2 occurred in fish. Whereas Sho appears to have a conserved function in vertebrate brain, PrP seems to have an adaptive role fine-tuned in a lineage-specific fashion. An evolutionary model consistent with our findings and literature knowledge is proposed that has an ancestral prevertebrate SPRN-like gene leading to all vertebrate PrP-related and Sho-related genes. This provides a new framework for exploring the evolution of this unusual family of proteins and for searching for members in other fish branches and intermediate vertebrate groups.
Collapse
Affiliation(s)
- Marko Premzl
- Computational Proteomics Group, John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | | | | | | | | |
Collapse
|
13
|
Abstract
A random survey of a microsporidian genome has revealed some striking features. Although the genomes of microsporidians are among the smallest known for eukaryotes, their organisation appears to be well conserved.
Collapse
Affiliation(s)
- Alexandra Stechmann
- Department of Biochemistry and Molecular Biology, Dalhousie University, Sir Charles Tupper Building, College Street 5850, Halifax, Canada B3H 1X5.
| |
Collapse
|
14
|
Liu Z, Womack JE, Antoniou E. A high-resolution comparative RH map of the telomeric end of bovine chromosome 2 with human chromosomes 1 and 2. Cytogenet Genome Res 2004; 103:89-93. [PMID: 15004470 DOI: 10.1159/000076295] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2003] [Accepted: 09/01/2003] [Indexed: 11/19/2022] Open
Abstract
High density livestock to human comparative maps are necessary for the implementation of comparative positional candidate gene cloning. We have constructed a high-density comparative radiation hybrid (RH) map of the telomeric end of bovine chromosome 2 (BTA2) using a 12,000-rad whole genome cattle-hamster radiation hybrid (WGRH) panel. Eighteen bovine EST markers with orthologues on human chromosomes 1 and 2 (HSA1 and HSA2), together with nine microsatellite markers, were typed against the 180 cell lines of the WGRH panel. Twenty-one markers were included in the multi-point framework map at LOD =3.0. The comparative analysis reveals a new segment of highly conserved synteny between HSA2 and BTA2.
Collapse
Affiliation(s)
- Z Liu
- Department of Animal Science, University of Missouri-Columbia, Columbia, Missouri, USA
| | | | | |
Collapse
|
15
|
Power DM, Ingleton PM, Clark MS. Application of comparative genomics in fish endocrinology. INTERNATIONAL REVIEW OF CYTOLOGY 2003; 221:149-90. [PMID: 12455748 DOI: 10.1016/s0074-7696(02)21012-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
Abstract
This review discusses the ways in which comparative genomics can contribute to the study of fish endocrinology. First, the phylogenetic position of fish and an overview of their specific endocrine systems are presented. The emphasis will be on teleosts because they are the most abundant fishes and because most data are available for this group. Second, the complexity of fish genomics is reviewed. With the vast array of genome sizes and ploidy levels, assignment of gene orthology is more difficult in fish, but this is an absolute prerequisite in functional analysis and it is important to be aware of such genome plasticity when cloning genes. The ease with which a gene is cloned at the genomic level is directly related to genome size and complexity, a factor that is not known in the majority of fish species. Finally, the methodology is presented along with specific examples of parathyroid hormone-related protein (PTHrP) (a previously unidentified hormone in fish), calcium-sensing receptor, and calcitonin (with a duplication of this particular ligand in Fugu rubripes). Preliminary data also suggest that there are further duplicated genes in the calcium regulatory system. Comparative genomics has provided a valuable approach for isolating and characterizing a range of fish genes involved in calcium regulation. However, for understanding the physiology and endocrine regulation of this system, particularly with regard to gene duplication, an alternative approach is required in which conventional endocrinology techniques will play a significant role.
Collapse
Affiliation(s)
- Deborah M Power
- CCMAR, Centre of Marine Sciences, Universidade do Algarve, Campus de Gambelas, 8000-810 Faro, Portugal
| | | | | |
Collapse
|
16
|
Hampson S, McLysaght A, Gaut B, Baldi P. LineUp: statistical detection of chromosomal homology with application to plant comparative genomics. Genome Res 2003; 13:999-1010. [PMID: 12695327 PMCID: PMC430881 DOI: 10.1101/gr.814403] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The identification of homologous regions between chromosomes forms the basis for studies of genome organization, comparative genomics, and evolutionary genomics. Identification of these regions can be based on either synteny or colinearity, but there are few methods to test statistically for significant evidence of homology. In the present study, we improve a preexisting method that used colinearity as the basis for statistical tests. Improvements include computational efficiency and a relaxation of the colinearity assumption. Two algorithms perform the method: FullPermutation, which searches exhaustively for runs of markers, and FastRuns, which trades faster run times for exhaustive searches. The algorithms described here are available in the LineUp package (http://www.igb.uci.edu/ approximately baldig/lineup). We explore the performance of both algorithms on simulated data and also on genetic map data from maize (Zea mays ssp. mays). The method has reasonable power to detect a homologous region; for example, in >90% of simulations, both algorithms detect a homologous region of 10 markers buried in a random background, even when the homologous regions have diverged by numerous inversion events. The methods were applied to four maize molecular maps. All maps indicate that the maize genome contains extensive regions of genomic duplication and multiplication. Nonetheless, maps differ substantially in the location of homologous regions, probably reflecting the incomplete nature of genetic map data. The variation among maps has important implications for evolutionary inference from genetic map data.
Collapse
Affiliation(s)
- Steve Hampson
- Institute for Genomics and Bioinformatics, Department of Information and Computer Science and Department of Ecology and Evolutionary Biology, and Department of Biological Chemistry, University of California at Irvine, Irvine, California 92697, USA
| | | | | | | |
Collapse
|
17
|
Guyon R, Lorentzen TD, Hitte C, Kim L, Cadieu E, Parker HG, Quignon P, Lowe JK, Renier C, Gelfenbeyn B, Vignaux F, DeFrance HB, Gloux S, Mahairas GG, André C, Galibert F, Ostrander EA. A 1-Mb resolution radiation hybrid map of the canine genome. Proc Natl Acad Sci U S A 2003; 100:5296-301. [PMID: 12700351 PMCID: PMC154339 DOI: 10.1073/pnas.0831002100] [Citation(s) in RCA: 178] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2002] [Accepted: 02/19/2003] [Indexed: 11/18/2022] Open
Abstract
The purebred dog population consists of >300 partially inbred genetic isolates or breeds. Restriction of gene flow between breeds, together with strong selection for traits, has led to the establishment of a unique resource for dissecting the genetic basis of simple and complex mammalian traits. Toward this end, we present a comprehensive radiation hybrid map of the canine genome composed of 3,270 markers including 1,596 microsatellite-based markers, 900 cloned gene sequences and ESTs, 668 canine-specific bacterial artificial chromosome (BAC) ends, and 106 sequence-tagged sites. The map was constructed by using the RHDF5000-2 whole-genome radiation hybrid panel and computed by using MULTIMAP and TSP/CONCORDE. The 3,270 markers map to 3,021 unique positions and define an average intermarker distance corresponding to 1 Mb. We also define a minimal screening set of 325 highly informative well spaced markers, to be used in the initiation of genome-wide scans. The well defined synteny between the dog and human genomes, established in part as a function of this work by the identification of 85 conserved fragments, will allow follow-up of initial findings of linkage by selection of candidate genes from the human genome sequence. This work continues to define the canine system as the method of choice in the pursuit of the genes causing mammalian variation and disease.
Collapse
Affiliation(s)
- Richard Guyon
- Unité Mixte de Recherche 6061, Centre National de la Recherche Scientifique, Génétique et Développement, Faculté de Médecine, 35043 Rennes Cédex, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
The origin of avian microchromosomes has long been the subject of much speculation and debate. Microchromosomes are a universal characteristic of all avian species and many reptilian karyotypes. The typical avian karyotype contains about 40 pairs of chromosomes and usually 30 pairs of small to tiny microchromosomes. This characteristic karyotype probably evolved 100-250 million years ago. Once the microchromosomes were thought to be a non-essential component of the avian genome. Recent work has shown that even though these chromosomes represent only 25% of the genome; they encode 50% of the genes. Contrary to popular belief, microchromosomes are present in a wide range of vertebrate classes, spanning 400-450 million years of evolutionary history. In this paper, comparative gene mapping between the genomes of chicken, human, mouse and zebrafish, has been used to investigate the origin and evolution of avian microchromosomes during this period. This analysis reveals evidence for four ancient syntenies conserved in fish, birds and mammals for over 400 million years. More than half, if not all, microchromosomes may represent ancestral syntenies and at least ten avian microchromosomes are the product of chromosome fission. Birds have one of the smallest genomes of any terrestrial vertebrate. This is likely to be the product of an evolutionary process that minimizes the DNA content (mostly through the number of repeats) and maximizes the recombination rate of microchromosomes. Through this process the properties (GC content, DNA and repeat content, gene density and recombination rate) of microchromosomes and macrochromosomes have diverged to create distinct chromosome types. An ancestral genome for birds likely had a small genome, low in repeats and a karyotype with microchromosomes. A "Fission-Fusion Model" of microchromosome evolution based on chromosome rearrangement and minimization of repeat content is discussed.
Collapse
Affiliation(s)
- D W Burt
- Department of Genomics and Bioinformatics, Roslin Institute, Roslin, Midlothian, United Kingdom.
| |
Collapse
|
19
|
Guyon R, Kirkness EF, Lorentzen TD, Hitte C, Comstock KE, Quignon P, Derrien T, André C, Fraser CM, Galibert F, Ostrander EA. Building comparative maps using 1.5x sequence coverage: human chromosome 1p and the canine genome. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2003; 68:171-7. [PMID: 15338615 DOI: 10.1101/sqb.2003.68.171] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2023]
Affiliation(s)
- R Guyon
- UMR 6061 CNRS, Génétique et Développement, Faculté de Médecine, 35043 Rennes Cedex, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Grützner F, Roest Crollius H, Lütjens G, Jaillon O, Weissenbach J, Ropers HH, Haaf T. Four-hundred million years of conserved synteny of human Xp and Xq genes on three Tetraodon chromosomes. Genome Res 2002; 12:1316-22. [PMID: 12213768 PMCID: PMC186653 DOI: 10.1101/gr.222402] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The freshwater pufferfish Tetraodon nigroviridis (TNI) has become highly attractive as a compact reference vertebrate genome for gene finding and validation. We have mapped genes, which are more or less evenly spaced on the human chromosomes 9 and X, on Tetraodon chromosomes using fluorescence in situ hybridization (FISH), to establish syntenic relationships between Tetraodon and other key vertebrate genomes. PufferFISH revealed that the human X is an orthologous mosaic of three Tetraodon chromosomes. More than 350 million years ago, an ancestral vertebrate autosome shared orthologous Xp and Xq genes with Tetraodon chromosomes 1 and 7. The shuffled order of Xp and Xq orthologs on their syntenic Tetraodon chromosomes can be explained by the prevalence of evolutionary inversions. The Tetraodon 2 orthologous genes are clustered in human Xp11 and represent a recent addition to the eutherian X sex chromosome. The human chromosome 9 and the avian Z sex chromosome show a much lower degree of synteny conservation in the pufferfish than the human X chromosome. We propose that a special selection process during vertebrate evolution has shaped a highly conserved array(s) of X-linked genes long before the X was used as a mammalian sex chromosome and many X chromosomal genes were recruited for reproduction and/or the development of cognitive abilities. [Sequence data reported in this paper have been deposited in GenBank and assigned the following accession no: AJ308098.]
Collapse
Affiliation(s)
- Frank Grützner
- Comparative Genomics Group, Research School of Biological Sciences, Australian National University, Canberra, ACT 2601, Australia
| | | | | | | | | | | | | |
Collapse
|
21
|
Jiang Z, Melville JS, Cao H, Kumar S, Filipski A, Gibbins AMV. Measuring conservation of contiguous sets of autosomal markers on bovine and porcine genomes in relation to the map of the human genome. Genome 2002; 45:769-76. [PMID: 12175081 DOI: 10.1139/g02-038] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Based on published information, we have identified 991 genes and gene-family clusters for cattle and 764 for pigs that have orthologues in the human genome. The relative linear locations of these genes on human sequence maps were used as "rulers" to annotate bovine and porcine genomes based on a CSAM (contiguous sets of autosomal markers) approach. A CSAM is an uninterrupted set of markers in one genome (primary genome; the human genome in this study) that is syntenic in the other genome (secondary genome; the bovine and porcine genomes in this study). The analysis revealed 81 conserved syntenies and 161 CSAMs between human and bovine autosomes and 50 conserved syntenies and 95 CSAMs between human and porcine autosomes. Using the human sequence map as a reference, these 991 and 764 markers could correlate 72 and 74% of the human genome with the bovine and porcine genomes, respectively. Based on the number of contiguous markers in each CSAM, we classified these CSAMs into five size groups as follows: singletons (one marker only), small (2-4 markers), medium (5-10 markers), large (11-20 markers), and very large (> 20 markers). Several bovine and porcine chromosomes appear to be represented as di-CSAM repeats in a tandem or dispersed way on human chromosomes. The number of potential CSAMs for which no markers are currently available were estimated to be 63 between human and bovine genomes and 18 between human and porcine genomes. These results provide basic guidelines for further gene and QTL mapping of the bovine and porcine genomes, as well as insight into the evolution of mammalian genomes.
Collapse
Affiliation(s)
- Zhihua Jiang
- Department of Animal and Poultry Science, University of Guelph, ON, Canada.
| | | | | | | | | | | |
Collapse
|
22
|
Slate J, Van Stijn TC, Anderson RM, McEwan KM, Maqbool NJ, Mathias HC, Bixley MJ, Stevens DR, Molenaar AJ, Beever JE, Galloway SM, Tate ML. A deer (subfamily Cervinae) genetic linkage map and the evolution of ruminant genomes. Genetics 2002; 160:1587-97. [PMID: 11973312 PMCID: PMC1462045 DOI: 10.1093/genetics/160.4.1587] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Comparative maps between ruminant species and humans are increasingly important tools for the discovery of genes underlying economically important traits. In this article we present a primary linkage map of the deer genome derived from an interspecies hybrid between red deer (Cervus elaphus) and Père David's deer (Elaphurus davidianus). The map is approximately 2500 cM long and contains >600 markers including both evolutionary conserved type I markers and highly polymorphic type II markers (microsatellites). Comparative mapping by annotation and sequence similarity (COMPASS) was demonstrated to be a useful tool for mapping bovine and ovine ESTs in deer. Using marker order as a phylogenetic character and comparative map information from human, mouse, deer, cattle, and sheep, we reconstructed the karyotype of the ancestral Pecoran mammal and identified the chromosome rearrangements that have occurred in the sheep, cattle, and deer lineages. The deer map and interspecies hybrid pedigrees described here are a valuable resource for (1) predicting the location of orthologs to human genes in ruminants, (2) mapping QTL in farmed and wild deer populations, and (3) ruminant phylogenetic studies.
Collapse
Affiliation(s)
- Jon Slate
- AgResearch, Invermay Agricultural Centre, Mosgiel, New Zealand.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Bosetti F, Seemann R, Bell JM, Zahorchak R, Friedman E, Rapoport SI, Manickam P. Analysis of gene expression with cDNA microarrays in rat brain after 7 and 42 days of oral lithium administration. Brain Res Bull 2002; 57:205-9. [PMID: 11849827 DOI: 10.1016/s0361-9230(01)00744-4] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The gene expression profile in rat brain was examined using microarrays in rats fed lithium chloride for 7 days (subacute) or 42 days (chronic). Brain lithium concentrations were 0.39 mM and 0.79 mM (therapeutically relevant), at 7 and 42 days, respectively. Of the 4132 genes represented in the microarrays, 25 genes were downregulated by at least twofold and none was upregulated after 7 days of treatment. Expression of 50 genes was downregulated by at least two-fold at 42 days, without any being upregulated. Lithium treatment for 7 days did not affect at a measurable extent expression of 37 of the 50 genes that were downregulated at 42 days. Genes whose expression was changed at 42 days coded for a number of receptors, protein kinases, transcription and translation factors, markers of energy metabolism, and signal transduction. Thus, chronic lithium at a therapeutically relevant concentration reduced expression of a large number of genes involved in multiple signaling and other pathways, without increasing expression at a comparable extent.
Collapse
Affiliation(s)
- Francesca Bosetti
- Brain Physiology and Metabolism Section, National Institute on Aging, National Institutes of Health, 9000 Rockville Pike, Building 10, Room 6N202, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | |
Collapse
|
24
|
Schalkwyk LC, Cusack B, Dunkel I, Hopp M, Kramer M, Palczewski S, Piefke J, Scheel S, Weiher M, Wenske G, Lehrach H, Himmelbauer H. Advanced integrated mouse YAC map including BAC framework. Genome Res 2001; 11:2142-50. [PMID: 11731506 PMCID: PMC311217 DOI: 10.1101/gr.176201] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Functional characterization of the mouse genome requires the availability of a comprehensive physical map to obtain molecular access to chromosomal regions of interest. Positional cloning remains a crucial way of linking phenotype with particular genes. A key step and frequent stumbling block in positional cloning is making a contig of a genetically defined candidate region. The most efficient first step is isolating YAC (Yeast Artificial Chromosome) clones. A robust, detailed YAC contig map is thus an important tool. Employing Interspersed Repetitive Sequence (IRS)-PCR genomics, we have generated an advanced second-generation YAC contig map of the mouse genome that doubles both the depth of clones and the density of markers available. In addition to the primarily YAC-based map, we located 1942 BAC (Bacterial Artificial Chromosome) clones. This allows us to present for the first time a dense framework of BACs spanning the genome of the mouse, which, for instance, can serve as a nucleus for genomic sequencing. Four large-insert mouse YAC libraries from three different strains are included in our data, and our analysis incorporates the data of Hunter et al. and Nusbaum et al. There is a total of 20,205 markers on the final map, 12,033 from our own data, and a total of 56,093 YACs, of which 44,401 are positive for more than one marker.
Collapse
Affiliation(s)
- L C Schalkwyk
- Max-Planck-Institute of Molecular Genetics, Ihnestrasse 73, D-14195 Berlin, Germany.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Zechner U, Wilda M, Kehrer-Sawatzki H, Vogel W, Fundele R, Hameister H. A high density of X-linked genes for general cognitive ability: a run-away process shaping human evolution? Trends Genet 2001; 17:697-701. [PMID: 11718922 DOI: 10.1016/s0168-9525(01)02446-5] [Citation(s) in RCA: 175] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The incidence of mental disability is 30% higher in males than in females. We have examined entries in the OMIM database that are associated with mental disability and for several other common defects. Our findings indicate that compared with the autosomes, the X chromosome contains a significantly higher number of genes that, when mutated, cause mental impairment. We propose that these genes are involved in the development of cognitive abilities and thus exert a large X-chromosome effect on general intelligence in humans. We discuss these conclusions with regard to the conservation of the vertebrate X-chromosomal linkage group and to human evolution.
Collapse
Affiliation(s)
- U Zechner
- Dept Internal Medicine I, University Ulm, D-89081, Ulm, Germany
| | | | | | | | | | | |
Collapse
|
26
|
Takasuga A, Hirotsune S, Itoh R, Jitohzono A, Suzuki H, Aso H, Sugimoto Y. Establishment of a high throughput EST sequencing system using poly(A) tail-removed cDNA libraries and determination of 36,000 bovine ESTs. Nucleic Acids Res 2001; 29:E108. [PMID: 11713328 PMCID: PMC92572 DOI: 10.1093/nar/29.22.e108] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
We determined 36,310 bovine expressed sequence tag (EST) sequences using 10 different cDNA libraries. For massive EST sequencing, we devised a new system with two major features. First, we constructed cDNA libraries in which the poly(A) tails were removed using nested deletion at the 3'-ends. This permitted high quality reading of sequences from the 3'-end of the cDNA, which is otherwise difficult to do. Second, we increased throughput by sequencing directly on templates generated by colony PCR. Using this system, we determined 600 cDNA sequences per day. The read-out length was >450 bases in >90% of the sequences. Furthermore, we established a data management system for analyses, storage and manipulation of the sequence data. Finally, 16,358 non-redundant ESTs were derived from approximately 6900 independent genes. These data will facilitate construction of a precise comparative map across mammalian species and isolate the functional genes that govern economic traits. This system is applicable to other organisms, including livestock, for which EST data are limited.
Collapse
Affiliation(s)
- A Takasuga
- Shirakawa Institute of Animal Genetics, Odakura, Nishigo, Nishishirakawa, Fukushima 961-8061, Japan
| | | | | | | | | | | | | |
Collapse
|
27
|
Kwitek AE, Tonellato PJ, Chen D, Gullings-Handley J, Cheng YS, Twigger S, Scheetz TE, Casavant TL, Stoll M, Nobrega MA, Shiozawa M, Soares MB, Sheffield VC, Jacob HJ. Automated construction of high-density comparative maps between rat, human, and mouse. Genome Res 2001; 11:1935-43. [PMID: 11691858 PMCID: PMC311144 DOI: 10.1101/gr.173701] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Animal models have been used primarily as surrogates for humans, having similar disease-based phenotypes. Genomic organization also tends to be conserved between species, leading to the generation of comparative genome maps. The emergence of radiation hybrid (RH) maps, coupled with the large numbers of available Expressed Sequence Tags (ESTs), has revolutionized the way comparative maps can be built. We used publicly available rat, mouse, and human data to identify genes and ESTs with interspecies sequence identity (homology), identified their UniGene relationships, and incorporated their RH map positions to build integrated comparative maps with >2100 homologous UniGenes mapped in more than one species (approximately 6% of all mammalian genes). The generation of these maps is iterative and labor intensive; therefore, we developed a series of computer tools (not described here) based on our algorithm that identifies anchors between species and produces printable and on-line clickable comparative maps that link to a wide variety of useful tools and databases. The maps were constructed using sequence-based comparisons, thus creating "hooks" for further sequence-based annotation of human, mouse, and rat sequences. Currently, this map enables investigators to link the physiology of the rat with the genetics of the mouse and the clinical significance of the human.
Collapse
Affiliation(s)
- A E Kwitek
- Human and Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Crooijmans RP, Dijkhof RJ, Veenendaal T, van der Poel JJ, Nicholls RD, Bovenhuis H, Groenen MA. The gene orders on human chromosome 15 and chicken chromosome 10 reveal multiple inter- and intrachromosomal rearrangements. Mol Biol Evol 2001; 18:2102-9. [PMID: 11606706 DOI: 10.1093/oxfordjournals.molbev.a003751] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Comparative mapping between the human and chicken genomes has revealed a striking conservation of synteny between the genomes of these two species, but the results have been based on low-resolution comparative maps. To address this conserved synteny in much more detail, a high-resolution human-chicken comparative map was constructed from human chromosome 15. Mapping, sequencing, and ordering of specific chicken bacterial artificial chromosomes has improved the comparative map of chromosome 15 (Hsa15) and the homologous regions in chicken with almost 100 new genes and/or expressed sequence tags. A comparison of Hsa15 with chicken identified seven conserved chromosomal segments between the two species. In chicken, these were on chromosome 1 (Gga1; two segments), Gga5 (two segments), and Gga10 (three segments). Although four conserved segments were also observed between Hsa15 and mouse, only one of the underlying rearrangement breakpoints was located at the same position as in chicken, indicating that the rearrangements generating the other three breakpoints occurred after the divergence of the rodent and the primate lineages. A high-resolution comparison of Gga10 with Hsa15 identified 19 conserved blocks, indicating the presence of at least 16 intrachromosomal rearrangement breakpoints in the bird lineage after the separation of birds and mammals. These results improve our knowledge of the evolution and dynamics of the vertebrate genomes and will aid in the clarification of the mechanisms that underlie the differentiation between the vertebrate species.
Collapse
Affiliation(s)
- R P Crooijmans
- Animal Breeding and Genetics Group, Wageningen Institute of Animal Sciences, Wageningen, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
29
|
Gray TA, Azama K, Whitmore K, Min A, Abe S, Nicholls RD. Phylogenetic conservation of the makorin-2 gene, encoding a multiple zinc-finger protein, antisense to the RAF1 proto-oncogene. Genomics 2001; 77:119-26. [PMID: 11597136 DOI: 10.1006/geno.2001.6627] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Natural endogenous antisense RNAs have been reported in multiple loci, with evidence in some cases supporting a regulatory role for the antisense transcript. Here, we describe a novel gene, makorin RING zinc finger-2 (MKRN2), that overlaps and is antisense to the gene RAF1 in mammals. Phylogenetic analysis of the 3' untranslated region of RAF1 orthologues suggests that this relationship may have existed for up to 450 million years. We have also identified MKRN2 orthologues in two species of fish. This places the gene duplication event that created this locus from an ancestral MKRN1 gene early in vertebrate evolution, over 450 million years ago. Northern blot analyses show that human MKRN2 and RAF1 are co-expressed in tissues and cell lines, raising the possibility of mRNA duplex formation. The encoded makorin-2 protein is likely a ribonucleoprotein of unknown function, but its conservation suggests an important cellular role. The data presented here describe a conserved vertebrate MKRN2 gene that is closely associated with the RAF1 locus.
Collapse
Affiliation(s)
- T A Gray
- Department of Genetics, Case Western Reserve University, 2109 Adelbert Rd., BRB 739, Cleveland, Ohio 44106, USA.
| | | | | | | | | | | |
Collapse
|
30
|
Brown GR, Kadel EE, Bassoni DL, Kiehne KL, Temesgen B, van Buijtenen JP, Sewell MM, Marshall KA, Neale DB. Anchored reference loci in loblolly pine (Pinus taeda L.) for integrating pine genomics. Genetics 2001; 159:799-809. [PMID: 11606554 PMCID: PMC1461821 DOI: 10.1093/genetics/159.2.799] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Anchored reference loci provide a framework for comparative mapping. They are landmarks to denote conserved chromosomal segments, allowing the synthesis of genetic maps from multiple sources. We evaluated 90 expressed sequence tag polymorphisms (ESTPs) from loblolly pine (Pinus taeda L.) for this function. Primer sets were assayed for amplification and polymorphism in six pedigrees, representing two subgenera of Pinus and a distant member of the Pinaceae, Douglas-fir (Pseudotsuga menziesii [Mirb.] Franco). On average, 89% of primer sets amplified in four species of subgenus Pinus, 49% in one species of subgenus Strobus, and 22% in Douglas-fir. Polymorphisms were detected for 37-61% of the ESTPs within each pedigree. Comparative mapping in loblolly and slash pine (P. elliottii Englm.) revealed that ESTPs mapped to the same location. Disrupted synteny or significant disruptions in colinearity were not detected. Thirty-five ESTPs met criteria established for anchor loci. The majority of those that did not meet these criteria were excluded when map location was known in only a single species. Anchor loci provide a unifying tool for the community, facilitating the creation of a "generic" pine map and serving as a foundation for studies on genome organization and evolution.
Collapse
Affiliation(s)
- G R Brown
- Institute of Forest Genetics, Pacific Southwest Research Station, U.S. Department of Agriculture Forest Service, Davis, California 95616, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Rattink AP, Jungerius BJ, Faivre M, Chardon P, Harlizius B, Groenen MA. Improving the comparative map of SSC2p-q13 by sample sequencing of BAC clones. Anim Genet 2001; 32:274-80. [PMID: 11683714 DOI: 10.1046/j.1365-2052.2001.00788.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
To improve the comparative map for pig chromosome 2 and increase the gene density on this chromosome, a porcine bacterial artificial chromosome (BAC) library was screened with 17 microsatellite markers and 18 genes previously assigned to pig chromosome 2. Fifty-one BAC clones located in the region of a maternally imprinted quantitative trait locus for backfat thickness (BFT) were identified. From these BACs 372 kb were sample sequenced. The average read length of a subclone was 442 basepair (bp). Contig assembly analysis showed that every bp was sequenced 1.28 times. Subsequently, sequences were compared with sequences in the nucleotide databases to identify homology with other mammalian sequences. Sequence identity was observed with sequences derived from 35 BACs. The average percentage identity with human sequences was 87.6%, with an average length of 143 bp. In total, sample sequencing of all BACs resulted in sequence identity with 29 human genes, 13 human expressed sequence tags (ESTs), 17 human genomic clones, one rat gene, one porcine gene and nine porcine ESTs. Eighteen genes located on human chromosome 11 and 19, and seven genes from other human locations, one rat gene and one porcine gene were assigned to pig chromosome 2 for the first time. The new genes were added to the radiation hybrid map at the same position as the locus from which the BAC that was sequenced was derived. In total 57 genes were placed on the radiation hybrid map of SSC2p-q13.
Collapse
Affiliation(s)
- A P Rattink
- Animal Breeding and Genetics Group, Wageningen Institute of Animal Sciences, Wageningen University, Wageningen, the Netherlands.
| | | | | | | | | | | |
Collapse
|
32
|
Ford JJ, Wise TH, Lunstra DD, Rohrer GA. Interrelationships of porcine X and Y chromosomes with pituitary gonadotropins and testicular size. Biol Reprod 2001; 65:906-12. [PMID: 11514357 DOI: 10.1095/biolreprod65.3.906] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Endocrine and testicular responses to unilateral castration on 1, 10, 56, or 112 days of age were characterized in 132 Chinese Meishan (MS) x White composite (WC) crossbred boars in which testicular size associates with a quantitative trait locus (QTL) on X chromosome. At 220 days of age, testicles of boars unilaterally castrated on Day 1 or 10 weighed more and had greater total daily sperm production (DSP) than one testicle of bilaterally intact boars (P < 0.05); compensation did not double these two responses. Boars with MS alleles at the X chromosome QTL had smaller testicles, darker colored parenchyma, and lower total DSP than boars with WC alleles (P < 0.05). The MS alleles engendered greater (P < 0.05) plasma FSH and LH during puberty than WC alleles. Plasma FSH increased (P < 0.05) within 48 h of unilateral castration on Days 1, 10, and 56. Subsequent increases occurred earlier during puberty (P < 0.05) after unilateral castration at younger ages than after unilateral castration at older ages. Pubertal increases in plasma FSH and LH were greater (P < 0.05) in boars with MS alleles than in those with WC alleles for the X chromosome QTL. Breed of Y chromosome had no effect on testicular traits, FSH, testosterone, or estrone. For LH, boars with an MS Y chromosome had greater (P < 0.01) plasma LH across all ages than boars with a WC Y chromosome. We conclude that a gene or groups of genes that reside on the porcine X chromosome regulate testicular development and pubertal gonadotropin concentrations.
Collapse
Affiliation(s)
- J J Ford
- USDA, ARS, RLH U.S. Meat Animal Research Center, State Spur 18D, Clay Center, Nebraska 68933, USA.
| | | | | | | |
Collapse
|
33
|
Morizot DC, Nairn RS, Walter RB, Kazianis S. The Linkage Map of Xiphophorus Fishes. ILAR J 2001; 39:237-248. [PMID: 11528083 DOI: 10.1093/ilar.39.2-3.237] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Donald C. Morizot
- University of Texas, M.D. Anderson Cancer Center, Science Park, Research Division, Smithville, Texas, USA
| | | | | | | |
Collapse
|
34
|
Abstract
Comparative genomics---the cross-referencing of information on genome organization between species---provides an additional dimension to the Human Genome Project and can derive much information from it for the benefit of animal health and animal breeding. Arrangements of genes and other DNA sequences may be determined by a variety of genetic and physical techniques, at resolutions from the gross cytological level to the level of the single base pair. Gross arrangements and rearrangements can also be charted by comparative chromosome painting. Genome organization may then be compared across mammal---and other vertebrate---species. Genetic mapping is well advanced in several livestock species as well as rodent model species, and outline maps are available for at least 30 mammal species in eight orders. At the time of this writing, maps are being rapidly constructed for chicken and fish species. Comparisons, even over vast evolutionary time scales, show that the mammal genome---indeed, the vertebrate genome---has been highly conserved. Thus, information about location and function of genes is directly transferable across species and should greatly accelerate the search for genes that specify inherited diseases in domestic mammals and humans as well as genes that specify economically important traits.
Collapse
|
35
|
Affiliation(s)
- David W. Burt
- Division of Molecular Biology, Roslin Institute of Edinburgh, Midlothian, United Kingdom
| | | |
Collapse
|
36
|
|
37
|
Affiliation(s)
- Johannes Wienberg
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom and Human Genetics and Anthropology at the Institute of Anthropology and Human Genetics, München, Germany
| | | |
Collapse
|
38
|
Affiliation(s)
- Jeffrey Rogers
- Department of Genetics, Southwest Foundation for Biomedical Research, San Antonio, Texas, USA
| | | |
Collapse
|
39
|
Affiliation(s)
- Paul B. Samollow
- Department of Genetics, Southwest Foundation for Biomedical Research, San Antonio, Texas, USA
| |
Collapse
|
40
|
Mariat D, Oustry-Vaiman A, Cribiu EP, Raudsepp T, Chowdhary BP, Guérin G. Isolation, characterization and FISH assignments of horse BAC clones containing type I and II markers. CYTOGENETICS AND CELL GENETICS 2001; 92:144-8. [PMID: 11306814 DOI: 10.1159/000056886] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In order to increase the number of markers on the horse cytogenetic map and expand the integration with the linkage map, an equine BAC library was screened for genes and for microsatellites. Eighty-nine intra-exon primers were designed from consensus gene sequences in documented species. After PCR screening, 38 clones containing identified genes were isolated and FISH mapped. These data allowed us to refine the available Zoo-FISH results, to define ten new conserved cytogenetic segments and expand two others, thus leading to the identification of a total of 26 conserved segments between horse and human. Interestingly, a new homeology segment was detected between ECA6p and HSA2q. Screening BAC clones for dinucleotide repeats led to the isolation of 33 microsatellites. Ten of the clones each contained at least a polymorphic microsatellite and one specific gene. The success of the approach in the production of integrative anchor loci and their potential use in localization and analysis of traits of interest by the candidate gene and positional cloning approach, are discussed.
Collapse
Affiliation(s)
- D Mariat
- INRA Centre de Recherche de Jouy, Laboratoire de Génétique biochimique et de Cytogénétique, Département de Génétique animale, Jouy-en-Josas, France
| | | | | | | | | | | |
Collapse
|
41
|
Rogers J, Mahaney MC, Almasy L, Comuzzie AG, Blangero J. Quantitative trait linkage mapping in anthropology. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2001; Suppl 29:127-51. [PMID: 10601985 DOI: 10.1002/(sici)1096-8644(1999)110:29+<127::aid-ajpa5>3.0.co;2-t] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Recent years have seen rapid progress in several areas of both biomedical and anthropological genetics. While genetic analyses have come to play a significant role in biological anthropology, there has been little use of modern methods for linkage mapping of quantitative trait loci (QTLs). It is now feasible to design research studies to investigate the quantitative genetics of complex phenotypes that are of primary importance to traditional questions in biological anthropology. Complex traits such as functionally significant morphological features, physiological characteristics or aspects of behavior can be examined to estimate the influence of genetic variation on within-species phenotypic variation. In addition, new methods for mapping quantitative trait loci provide opportunities to identify the regions within chromosomes that contain the functional genes of interest. This review summarizes molecular genetic and statistical genetic approaches to QTL mapping, and presents examples of how this approach can expand the scope of anthropological genetics to include mapping and identifying individual genes that influence complex phenotypic traits relevant to fundamental questions in biological anthropology.
Collapse
Affiliation(s)
- J Rogers
- Department of Genetics, Southwest Foundation for Biomedical Research, San Antonio, Texas 78245, USA
| | | | | | | | | |
Collapse
|
42
|
Graves JA, Disteche CM, Toder R. Gene dosage in the evolution and function of mammalian sex chromosomes. CYTOGENETICS AND CELL GENETICS 2000; 80:94-103. [PMID: 9678341 DOI: 10.1159/000014963] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Ohno's early suggestions about the origin of sex chromosomes and the consequences of alterations of dosage of X and Y genes have provided an important framework for understanding sex chromosome organization, function and evolution. Here we review evidence that heteromorphic sex chromosomes evolved from an autosomal pair, and that one of the consequences of X-Y differentiation is the evolution of dosage compensation by X inactivation and upregulation of the active X, which in turn, has selected for a highly conserved X chromosome.
Collapse
Affiliation(s)
- J A Graves
- School of Genetics and Human Variation, La Trobe University, Melbourne, Victoria, Australia.
| | | | | |
Collapse
|
43
|
Hoekstra R, Visser A, Otsen M, Tibben J, Lenstra JA, Roos MH. EST sequencing of the parasitic nematode Haemonchus contortus suggests a shift in gene expression during transition to the parasitic stages. Mol Biochem Parasitol 2000; 110:53-68. [PMID: 10989145 DOI: 10.1016/s0166-6851(00)00255-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Expressed sequence tags from the parasitic nematode Haemonchus contortus were generated in order to identify anchor loci for comparative mapping between nematode genomes and candidate targets for future control measures. In total, 370 SL1 trans-spliced cDNAs from different developmental stages representing 195 different genes were partially sequenced. From these expressed sequence tags 50% were similar to genes with a known or predicted function and 19% were similar to nematode sequences with no ascribed function. From the first, free-living L1 and L3 stages relatively many cDNAs matched to housekeeping genes, and 11% (L1) or 23% (L3) of the encoded proteins were predicted to contain signal peptides. In contrast, no function could be ascribed to most of the cDNAs from the early L5 and adult parasitic stages, but for 30% (L5) or 55% (adult) of the encoded proteins a signal sequence was predicted. This limited analysis suggests that during the transition from the free-living to parasitic stages gene expression shifts towards the synthesis of less conserved extracellular proteins. These proteins offer the best perspectives for vaccine development and the development of anthelmintic drugs. In contrast, cDNAs from the first larval stages may be most suitable for comparative mapping with the free-living nematode Caenorhabditis elegans.
Collapse
Affiliation(s)
- R Hoekstra
- Department of Molecular Recognition, Institute for Animal Science and Health (ID-Lelystad), Lelystad, The Netherlands.
| | | | | | | | | | | |
Collapse
|
44
|
Best RG, Diamond D, Crawford E, Grass FS, Janish C, Lear TL, Soenksen D, Szalay AA, Moore CM. Baboon/human homologies examined by spectral karyotyping (SKY): a visual comparison. CYTOGENETICS AND CELL GENETICS 2000; 82:83-7. [PMID: 9763666 DOI: 10.1159/000015070] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Baboon (Papio hamadryas) metaphase chromosomes were analyzed using spectral karyotyping (SKY), a technique combining fluorescence microscopy, CCD-imaging, and Fourier spectroscopy. Results from a comparison of SKY analyses using probes derived from human chromosomes on baboon metaphases were consistent with the majority of comparative gene mapping data between the two species. These data were also compatible with earlier studies comparing macaque and human chromosomes. Human (HSA) chromosome 2 was homologous to baboon (PHA) chromosomes 12 (HSA 2q) and 13 (HSA 2p), whereas three baboon chromosomes corresponded to two different human chromosomes: PHA 3 to HSA 7 and HSA 21, PHA 7 to HSA 14 and HSA 15, and PHA 10 to HSA 20 and HSA 22. These results support the retained synteny between the Hominidae and Cercopithecidae genomes.
Collapse
Affiliation(s)
- R G Best
- University of South Carolina School of Medicine, Columbia, SC, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Iannuzzi L, Di Meo GP, Perucatti A, Bardaro T. ZOO-FISH and R-banding reveal extensive conservation of human chromosome regions in euchromatic regions of river buffalo chromosomes. CYTOGENETICS AND CELL GENETICS 2000; 82:210-4. [PMID: 9858819 DOI: 10.1159/000015102] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Commercially available human chromosome (HSA) painting probes were hybridized on river buffalo (Bubalus bubalis, 2n = 50) chromosomes by using FISH and R-banding techniques. Clear hybridization FITC-signals revealed extensive conservation of human chromosome regions in this species and demonstrated that human chromosome probes primarily paint euchromatic regions (R-bands). The present results are discussed in the light of previous gene mapping data obtained in river buffalo and ZOO-FISH data in cattle, and in relation to the standard bovine chromosome nomenclatures. In particular, HSA 8, HSA 10, HSA 11, and HSA 16+7 paint, respectively, BBU 1p, BBU 4p, BBU 5p, and BBU 24, which are homoeologous, respectively, to cattle chromosomes 25, 28, 29 and 27. Thus, these river buffalo chromosome arms can serve as markers to resolve discrepancies in the nomenclature of cattle and related species.
Collapse
Affiliation(s)
- L Iannuzzi
- National Research Council (CNR), I.A.B.B.A.M., Naples (Italy).
| | | | | | | |
Collapse
|
46
|
Nanda I, Zend-Ajusch E, Shan Z, Grützner F, Schartl M, Burt DW, Koehler M, Fowler VM, Goodwin G, Schneider WJ, Mizuno S, Dechant G, Haaf T, Schmid M. Conserved synteny between the chicken Z sex chromosome and human chromosome 9 includes the male regulatory gene DMRT1: a comparative (re)view on avian sex determination. CYTOGENETICS AND CELL GENETICS 2000; 89:67-78. [PMID: 10894941 DOI: 10.1159/000015567] [Citation(s) in RCA: 123] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Sex-determination mechanisms in birds and mammals evolved independently for more than 300 million years. Unlike mammals, sex determination in birds operates through a ZZ/ZW sex chromosome system, in which the female is the heterogametic sex. However, the molecular mechanism remains to be elucidated. Comparative gene mapping revealed that several genes on human chromosome 9 (HSA 9) have homologs on the chicken Z chromosome (GGA Z), indicating the common ancestry of large parts of GGA Z and HSA 9. Based on chromosome homology maps, we isolated a Z-linked chicken ortholog of DMRT1, which has been implicated in XY sex reversal in humans. Its location on the avian Z and within the sex-reversal region on HSA 9p suggests that DMRT1 represents an ancestral dosage-sensitive gene for vertebrate sex-determination. Z dosage may be crucial for male sexual differentiation/determination in birds.
Collapse
Affiliation(s)
- I Nanda
- Department of Human Genetics, Biocenter, University of Würzburg, Würzburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Rogers J, Mahaney MC, Witte SM, Nair S, Newman D, Wedel S, Rodriguez LA, Rice KS, Slifer SH, Perelygin A, Slifer M, Palladino-Negro P, Newman T, Chambers K, Joslyn G, Parry P, Morin PA. A genetic linkage map of the baboon (Papio hamadryas) genome based on human microsatellite polymorphisms. Genomics 2000; 67:237-47. [PMID: 10936045 DOI: 10.1006/geno.2000.6245] [Citation(s) in RCA: 131] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A first-generation genetic linkage map of the baboon (Papio hamadryas) genome was developed for use in biomedical and evolutionary genetics. Pedigreed baboons (n = 694) were selected from the breeding colony maintained by the Southwest Foundation for Biomedical Research. To facilitate comparison with the human genome, the baboon linkage map consists primarily of human microsatellite loci amplified using published human PCR primers. Genotypes for 325 human microsatellites and 6 novel baboon microsatellites were used in linkage analyses performed with the MultiMap expert system. The resulting sex-averaged meiotic recombination map covers all 20 baboon autosomes, with average spacing among loci of 7.2 cM. Direct comparison among homologous (orthologous) loci reveals that, for 7 human autosomes, locus order is conserved between humans and baboons. For the other 15 autosomes, one or more rearrangements distinguish the two genomes. The total centimorgan distances among homologous markers are 28.0% longer in the human genome than in the baboon, suggesting that rates of recombination may be higher in humans. This baboon linkage map is the first reported for any nonhuman primate species and creates opportunities for mapping quantitative trait loci in baboons, as well as for comparative evolutionary analyses of genome structure.
Collapse
Affiliation(s)
- J Rogers
- Department of Genetics, Southwest Foundation for Biomedical Research, San Antonio, Texas 78245, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Murphy WJ, Sun S, Chen Z, Yuhki N, Hirschmann D, Menotti-Raymond M, O'Brien SJ. A radiation hybrid map of the cat genome: implications for comparative mapping. Genome Res 2000; 10:691-702. [PMID: 10810092 PMCID: PMC310870 DOI: 10.1101/gr.10.5.691] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Ordered gene maps of mammalian species are becoming increasingly valued in assigning gene variants to function in human and animal models, as well as recapitulating the natural history of genome organization. To extend this power to the domestic cat, a radiation hybrid (RH) map of the cat was constructed integrating 424 Type I-coding genes with 176 microsatellite markers, providing coverage over all 20 feline chromosomes. Alignment of parallel RH maps of human and cat reveal 100 conserved segments ordered (CSOs) between the species, nearly three times the number observed with reciprocal chromosome painting analyses. The observed number is equivalent to theoretical predictions of the number of conserved segments to be found between cat and human, implying that 300-400 Type I gene markers is sufficient to reveal nearly all conserved segments for species that exhibit the most frequently observed "slow" rate of genome reorganization. The cat-human RH map comparisons provide a new genomic tool for comparative gene mapping in the cat and related Felidae, and provide confirmation that the cat genome organization is remarkably conserved compared with human. These data demonstrate that ordered RH-based gene maps provide the most precise assessment of comparing genomes, short of contig construction or full-sequence determination.
Collapse
Affiliation(s)
- W J Murphy
- Laboratory of Genomic Diversity, National Cancer Institute, Frederick Cancer Research and Development Center, Frederick, Maryland 21702-1201 USA.
| | | | | | | | | | | | | |
Collapse
|
49
|
Millon LV, Skow LC, Honeycutt D, Murray JD, Bowling AT. Synteny and regional marker order assignment of 26 type I and microsatellite markers to the horse X- and Y-chromosomes. Chromosome Res 2000; 8:45-55. [PMID: 10730588 DOI: 10.1023/a:1009275102977] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The hypothesis that the conservation of sex-chromosome-linked genes among placental mammals could be extended to the horse genome was tested using the UCDavis horse-mouse somatic cell hybrid (SCH) panel. By exploiting the fluorescence in-situ hybridization (FISH) technique to localize an anchor locus, X-inactivation-specific transcript (XIST) on the horse X chromosome, together with the fragmentation and translocation of the X- and Y-chromosome fragments in a somatic cell hybrid panel, we regionally assigned 13 type I and 13 type II (microsatellite) markers to the horse X- and Y-chromosomes. The synteny groups that correspond to horse X- and Y-chromosomes were identified by synteny mapping of sex-specific loci zinc finger protein X-linked (ZFX), zinc finger protein Y-linked (ZFY) and sex-determining region Y (SRY) on the SCH panel. A non-pseudoautosomal gene in the human steroid sulfatase (STS) was identified in both X- and Y-chromosome-containing clones. The regional order of the X-linked type I markers examined in this study, from Xp- to Xq-distal, was [STS-X, the voltage-gated chloride channel 4 (CLCN4)], [ZFX, delta-aminolevulinate synthase 2 (ALAS2)], XIST, coagulation factor IX (F9) and [biglycan (BGN), equine F18, glucose-6-phosphate dehydrogenase (G6PD)] (precise marker order could not be determined for genes within the same brackets). The order of the Y-linked type I markers was STS-Y, SRY and ZFY These orders are the same arrangements as reported for the human X- and Y-chromosomes, supporting the conservation of genomic organization between the human and the horse sex chromosomes. Regional ordering of X-linked type I and microsatellite markers provides the first integration of type I and type II markers in the horse X chromosome.
Collapse
|
50
|
Ozawa A, Band MR, Larson JH, Donovan J, Green CA, Womack JE, Lewin HA. Comparative organization of cattle chromosome 5 revealed by comparative mapping by annotation and sequence similarity and radiation hybrid mapping. Proc Natl Acad Sci U S A 2000; 97:4150-5. [PMID: 10737760 PMCID: PMC34555 DOI: 10.1073/pnas.050007097] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A whole genome cattle-hamster radiation hybrid cell panel was used to construct a map of 54 markers located on bovine chromosome 5 (BTA5). Of the 54 markers, 34 are microsatellites selected from the cattle linkage map and 20 are genes. Among the 20 mapped genes, 10 are new assignments that were made by using the comparative mapping by annotation and sequence similarity strategy. A LOD-3 radiation hybrid framework map consisting of 21 markers was constructed. The relatively low retention frequency of markers on this chromosome (19%) prevented unambiguous ordering of the other 33 markers. The length of the map is 398.7 cR, corresponding to a ratio of approximately 2.8 cR(5,000)/cM. Type I genes were binned for comparison of gene order among cattle, humans, and mice. Multiple internal rearrangements within conserved syntenic groups were apparent upon comparison of gene order on BTA5 and HSA12 and HSA22. A similarly high number of rearrangements were observed between BTA5 and MMU6, MMU10, and MMU15. The detailed comparative map of BTA5 should facilitate identification of genes affecting economically important traits that have been mapped to this chromosome and should contribute to our understanding of mammalian chromosome evolution.
Collapse
Affiliation(s)
- A Ozawa
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | | | | | | | | | | | |
Collapse
|