1
|
Pronounced differences in heart rate and metabolism distinguish daily torpor and short-term hibernation in two bat species. Sci Rep 2022; 12:21721. [PMID: 36522368 PMCID: PMC9755216 DOI: 10.1038/s41598-022-25590-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 12/01/2022] [Indexed: 12/23/2022] Open
Abstract
Torpor, and its differential expression, is essential to the survival of many mammals and birds. Physiological characteristics of torpor appear to vary between those species that express strict daily heterothermy and those capable of multiday hibernation, but comparisons are complicated by the temperature-dependence of variables. Previous reviews have compared these different torpor strategies by measuring the depth and duration of torpor in multiple species. However, direct comparison of multiple physiological parameters under similar thermal conditions are lacking. Here, we quantified three physiological variables; body temperature, metabolic rate (MR) and heart rate (HR) of two small heterothermic bats (daily heterotherm Syconycteris australis, and hibernator Nyctophilus gouldi) under comparable thermal conditions and torpor bout durations. When normothermic and resting both MR and HR were similar for the two species. However, during torpor the minimum HR was more than fivefold higher, and minimum MR was 6.5-fold higher for the daily heterotherm than for the hibernator at the same subcutaneous Tb (16 ± 0.5 °C). The data show that the degree of heterothermy defined using Tb is not necessarily a precise proxy for physiological capacity during torpor in these bats and is unlikely to reveal accurate energy budgets. Our study provides evidence supporting a distinction between daily torpor in a daily heterotherm and short term torpor in a hibernator, at least within the Chiroptera with regard to these physiological variables. This exists even when individuals display the same degree of Tb reduction, which has clear implications for the modelling of their energy expenditure.
Collapse
|
2
|
Barratt AE, Gonsalves L, Turbill C. Winter torpor and activity patterns of a fishing bat ( Myotis macropus) in a mild climate. J Mammal 2022. [DOI: 10.1093/jmammal/gyac061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Abstract
Small insectivorous bats often enter a state of torpor, a controlled, reversible decrease in body temperature and metabolic rate. Torpor provides substantial energy savings and is used more extensively during periods of low temperature and reduced prey availability. We studied torpor use and activity of a small (10.1 ± 0.4 g) fishing bat, Myotis macropus, during winter in a mild climate in Australia. We predicted that the thermal stability of water would make foraging opportunities in winter more productive and consistent in a riparian habitat compared to a woodland habitat, and therefore, fishing bats would use torpor less than expected during winter compared to other bats. Using temperature-sensitive radio transmitters, we recorded the skin temperature of 12 adult (6 M, 6 F) bats over 161 bat-days (13.4 ± 5.4 days per bat) during Austral winter (late May to August), when daily air temperature averaged 6.2–18.2°C. Bats used torpor every day, with bouts lasting a median of 21.3 h and up to 144.6 h. Multiday torpor bouts were more common in females than males. Arousals occurred just after sunset and lasted 3.5 ± 2.9 h. Arousals tended to be longer in males than females and to occur on warmer evenings, suggesting some winter foraging and perhaps male harem territoriality or other mating-related activity was occurring. The extensive use of torpor by M. macropus during relatively mild winter conditions when food is likely available suggests torpor might function to minimize the risks of mortality caused by activity and to increase body condition for the upcoming breeding season.
Collapse
Affiliation(s)
- Alice E Barratt
- Hawkesbury Institute for the Environment and School of Science, Western Sydney University, Hawkesbury Campus , Richmond, New South Wales 2753 , Australia
| | - Leroy Gonsalves
- Forest Science Unit, New South Wales Department of Primary Industries , Parramatta, New South Wales 2150 , Australia
| | - Christopher Turbill
- Hawkesbury Institute for the Environment and School of Science, Western Sydney University, Hawkesbury Campus , Richmond, New South Wales 2753 , Australia
| |
Collapse
|
3
|
Ramos Pereira MJ, Stefanski Chaves T, Bobrowiec PE, Selbach Hofmann G. How aerial insectivore bats of different sizes respond to nightly temperature shifts. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2022; 66:601-612. [PMID: 34817674 DOI: 10.1007/s00484-021-02222-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 10/14/2021] [Accepted: 11/10/2021] [Indexed: 06/13/2023]
Abstract
Small, volant and nocturnal, bats face strong challenges to avoid heat loss. Among aerial insectivores, body mass varies by two orders of magnitude between the smallest and the largest species. At low temperatures, physiological constraints should be harsher for smaller bats, as they lose more heat through their body surface than larger species. So, temperature variations should lead to distinct behavioural responses by bats of different body masses. Also, because they feed on arthropods, dependent on ambient temperature, aerial insectivores should halt feeding at low temperatures. Using ultrasound detectors and temperature and humidity sensors, we investigated how aerial insectivores of the coldest region in austral Brazil respond to nightly temperature variations and compared those responses between guilds of distinct body masses. We predict that smaller bats reduce their activity faster than larger bats, but that foraging should reduce simultaneously in the two guilds, as they depend on ectothermic prey. Bat activity reduced significantly below 12 °C. Larger bats maintained their activity at temperatures where the activity of smaller bats had already halted. However, larger bats foraged mostly during the first half of the night, at higher temperatures than those chosen by smaller bats to forage. We associate these differential responses to the thermal convection process, which may increase prey availability at higher altitudes, where larger molossids are known to forage. Smaller species, mostly edge-space hunters, probably take advantage of less variable prey availability during the night, resulting in a more regular behavioural pattern of navigation and foraging.
Collapse
Affiliation(s)
- Maria João Ramos Pereira
- Bird and Mammal Evolution, Systematics and Ecology Lab, Departamento de Zoologia, Instituto de Biociências, Universidade Federal Do Rio Grande Do Sul, Campus do Vale - Agronomia, Porto Alegre, RS, 90650-001, Brasil.
- CESAM, Universidade de Aveiro, Aveiro, Portugal.
| | - Thais Stefanski Chaves
- Bird and Mammal Evolution, Systematics and Ecology Lab, Departamento de Zoologia, Instituto de Biociências, Universidade Federal Do Rio Grande Do Sul, Campus do Vale - Agronomia, Porto Alegre, RS, 90650-001, Brasil
| | - Paulo Estefano Bobrowiec
- Programa de Pós-Graduação Em Ecologia, Instituto Nacional de Pesquisas da Amazônia, Manaus, Brasil
| | - Gabriel Selbach Hofmann
- Laboratório de Geoprocessamento, Centro de Ecologia, Instituto de Biociências, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brasil
| |
Collapse
|
4
|
Chenery M, Geiser F, Stawski C. OUP accepted manuscript. J Mammal 2022; 103:826-834. [PMID: 36110387 PMCID: PMC9469929 DOI: 10.1093/jmammal/gyac022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 02/08/2022] [Indexed: 11/14/2022] Open
Abstract
Insectivorous bats are particularly susceptible to heat loss due to their relatively large surface area to volume ratio. Therefore, to maintain a high normothermic body temperature, bats require large amounts of energy for thermoregulation. This can be energetically challenging for small bats during cold periods as heat loss is augmented and insect prey is reduced. To conserve energy many bats enter a state of torpor characterized by a controlled reduction of metabolism and body temperature in combination with selecting roosts based upon thermal properties. Our study aimed to quantify torpor patterns and roost preferences of free-ranging little forest bats (Vespadelus vulturnus) during winter to identify physiological and behavioral mechanisms used by this species for survival of the cold season. All bats captured were male (body mass 4.9 ± 0.7 g, n = 6) and used torpor on every day monitored, with bouts lasting up to 187.58 h (mean = 35.5 ± 36.7 h, n = 6, total number of samples [N] = 61). Torpor bout duration was significantly correlated with daily minimum and maximum ambient temperature, mean skin temperature, insect mass, and body mass of individuals and the multiday torpor bouts recorded in the cold qualify as hibernation. The lowest skin temperature recorded was 5.2°C, which corresponded to the lowest ambient temperature measurement of −5.8°C. Most bats chose tall, large, live Eucalyptus trees for roosting and to leave their roost for foraging on warmer days. Many individuals often switched roosts (every 3–5 days) and movements increased as spring approached (every 1–2 days). Our data suggest that V. vulturnus are capable of using the environmental temperature to gauge potential foraging opportunities and as a cue to reenter torpor when conditions are unsuitable. Importantly, frequent use of torpor and appropriate roost selection form key roles in the winter survival of these tiny bats.
Collapse
Affiliation(s)
- Melissa Chenery
- Centre for Behavioural and Physiological Ecology, Zoology, University of New England, Armidale, NSW 2351, Australia
| | - Fritz Geiser
- Centre for Behavioural and Physiological Ecology, Zoology, University of New England, Armidale, NSW 2351, Australia
| | | |
Collapse
|
5
|
Feasting, not fasting: winter diets of cave hibernating bats in the United States. Front Zool 2021; 18:48. [PMID: 34556122 PMCID: PMC8461964 DOI: 10.1186/s12983-021-00434-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 09/09/2021] [Indexed: 11/29/2022] Open
Abstract
Temperate bat species use extended torpor to conserve energy when ambient temperatures are low and food resources are scarce. Previous research suggests that migratory bat species and species known to roost in thermally unstable locations, such as those that roost in trees, are more likely to remain active during winter. However, hibernating colonies of cave roosting bats in the southeastern United States may also be active and emerge from caves throughout the hibernation period. We report what bats are eating during these bouts of winter activity. We captured 2,044 bats of 10 species that emerged from six hibernacula over the course of 5 winters (October–April 2012/2013, 2013/2014, 2015/2016, 2016/2017, and 2017/2018). Using Next Generation sequencing of DNA from 284 fecal samples, we determined bats consumed at least 14 Orders of insect prey while active. Dietary composition did not vary among bat species; however, we did record variation in the dominant prey items represented in species’ diets. We recorded Lepidoptera in the diet of 72.2% of individual Corynorhinus rafinesquii and 67.4% of individual Lasiurus borealis. Diptera were recorded in 32.4% of Myotis leibii, 37.4% of M. lucifugus, 35.5% of M. sodalis and 68.8% of Perimyotis subflavus. Our study is the first to use molecular genetic techniques to identify the winter diet of North American hibernating bats. The information from this study is integral to managing the landscape around bat hibernacula for insect prey, particularly in areas where hibernating bat populations are threatened by white-nose syndrome.
Collapse
|
6
|
Newman BA, Loeb SC, Jachowski DS. Winter roosting ecology of tricolored bats ( Perimyotis subflavus) in trees and bridges. J Mammal 2021. [DOI: 10.1093/jmammal/gyab080] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Abstract
Tricolored bats (Perimyotis subflavus) that roost in subterranean hibernacula have experienced precipitous declines from white-nose syndrome (WNS); however, understudied populations also use during winter non-subterranean roosts such as tree cavities, bridges, and foliage. Our objectives were to determine winter roost use by tricolored bats in an area devoid of subterranean roosts, determine roost microclimates to relate them to growth requirements of the fungal causal agent of WNS, and determine habitat factors influencing winter tree selection. From November to March 2017–2019, we used radiotelemetry to track 15 bats to their day roosts in the upper Coastal Plain of South Carolina and recorded microclimates in accessible tree cavities and bridges. We also characterized habitat and tree characteristics of 24 used trees and 153 random, available trees and used discrete choice models to determine selection. Roost structures included I-beam bridges, cavities in live trees, and foliage. Bridges were warmer and less humid than cavities. Roost temperatures often were amenable to fungal growth (< 19.5°C) but fluctuated widely depending on ambient temperatures. Bats used bridges on colder days (8.7°C ± 5.0 SD) and trees on warmer days (11.3°C ± 5.4). Bats selected low-decay trees closer to streams in areas with high canopy closure and cavity abundance. Bats also appeared to favor hardwood forests and avoid pine forests. Our results suggest that access to multiple roost microclimates might be important for tricolored bats during winter, and forest management practices that retain live trees near streams and foster cavity formation in hardwood forests likely will benefit this species. Our results also suggest tricolored bats using bridge and tree roosts might be less susceptible to WNS than bats using subterranean hibernaculum roosts. Thus, forests in areas without subterranean hibernacula in the southeastern United States that support bats during winter might represent important refugia from WNS for multiple species.
Collapse
Affiliation(s)
- Blaise A Newman
- Department of Forestry and Environmental Conservation, 261 Lehotsky Hall, Clemson University, Clemson, SC, USA (BAN, DSJ)
| | - Susan C Loeb
- United States Department of Agriculture Forest Service, Southern Research Station, 233 Lehotsky Hall, Clemson University, Clemson, SC, USA (SCL)
| | - David S Jachowski
- Department of Forestry and Environmental Conservation, 261 Lehotsky Hall, Clemson University, Clemson, SC, USA (BAN, DSJ)
| |
Collapse
|
7
|
Williams CL, Hindle AG. Field Physiology: Studying Organismal Function in the Natural Environment. Compr Physiol 2021; 11:1979-2015. [PMID: 34190338 DOI: 10.1002/cphy.c200005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Continuous physiological measurements collected in field settings are essential to understand baseline, free-ranging physiology, physiological range and variability, and the physiological responses of organisms to disturbances. This article presents a current summary of the available technologies to continuously measure the direct physiological parameters in the field at high-resolution/instantaneous timescales from freely behaving animals. There is a particular focus on advantages versus disadvantages of available methods as well as emerging technologies "on the horizon" that may have been validated in captive or laboratory-based scenarios but have yet to be applied in the wild. Systems to record physiological variables from free-ranging animals are reviewed, including radio (VHF/UFH) telemetry, acoustic telemetry, and dataloggers. Physiological parameters that have been continuously measured in the field are addressed in seven sections including heart rate and electrocardiography (ECG); electromyography (EMG); electroencephalography (EEG); body temperature; respiratory, blood, and muscle oxygen; gastric pH and motility; and blood pressure and flow. The primary focal sections are heart rate and temperature as these can be, and have been, extensively studied in free-ranging organisms. Predicted aspects of future innovation in physiological monitoring are also discussed. The article concludes with an overview of best practices and points to consider regarding experimental designs, cautions, and effects on animals. © 2021 American Physiological Society. Compr Physiol 11:1979-2015, 2021.
Collapse
Affiliation(s)
- Cassondra L Williams
- National Marine Mammal Foundation, San Diego, California, USA.,Department of Ecology and Evolutionary Biology, School of Biological Science, University of California Irvine, Irvine, California, USA
| | - Allyson G Hindle
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, Nevada, USA
| |
Collapse
|
8
|
Stevens RD, Garcia CJ, Madden MA, Gregory BB, Perry RW. Seasonal Changes in the Active Bat Community of the Kisatchie National Forest, Louisiana. SOUTHEAST NAT 2020. [DOI: 10.1656/058.019.0308] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Richard D. Stevens
- Department of Natural Resources Management, Texas Tech University, Lubbock, TX 79409
| | - Carlos J. Garcia
- Department of Natural Resources Management, Texas Tech University, Lubbock, TX 79409
| | - Macy A. Madden
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409
| | - Beau B. Gregory
- Louisiana Natural Heritage Program, Louisiana Department of Wildlife and Fisheries, 1213 N. Lakeshore Drive, Lake Charles, LA 70601
| | - Roger W. Perry
- Southern Research Station, United States Forest Service, PO Box 1270, Hot Springs, AR 71902
| |
Collapse
|
9
|
Contrasting effects of climate change on seasonal survival of a hibernating mammal. Proc Natl Acad Sci U S A 2020; 117:18119-18126. [PMID: 32631981 DOI: 10.1073/pnas.1918584117] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Seasonal environmental conditions shape the behavior and life history of virtually all organisms. Climate change is modifying these seasonal environmental conditions, which threatens to disrupt population dynamics. It is conceivable that climatic changes may be beneficial in one season but result in detrimental conditions in another because life-history strategies vary between these time periods. We analyzed the temporal trends in seasonal survival of yellow-bellied marmots (Marmota flaviventer) and explored the environmental drivers using a 40-y dataset from the Colorado Rocky Mountains (USA). Trends in survival revealed divergent seasonal patterns, which were similar across age-classes. Marmot survival declined during winter but generally increased during summer. Interestingly, different environmental factors appeared to drive survival trends across age-classes. Winter survival was largely driven by conditions during the preceding summer and the effect of continued climate change was likely to be mainly negative, whereas the likely outcome of continued climate change on summer survival was generally positive. This study illustrates that seasonal demographic responses need disentangling to accurately forecast the impacts of climate change on animal population dynamics.
Collapse
|
10
|
Nowack J, Levesque DL, Reher S, Dausmann KH. Variable Climates Lead to Varying Phenotypes: “Weird” Mammalian Torpor and Lessons From Non-Holarctic Species. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.00060] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
11
|
Turbill C, Welbergen JA. Anticipating white-nose syndrome in the Southern Hemisphere: Widespread conditions favourable to Pseudogymnoascus destructans
pose a serious risk to Australia's bat fauna. AUSTRAL ECOL 2019. [DOI: 10.1111/aec.12832] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Christopher Turbill
- Hawkesbury Institute for the Environment; Western Sydney University; Hawkesbury Campus Richmond New South Wales 2753 Australia
| | - Justin A. Welbergen
- Hawkesbury Institute for the Environment; Western Sydney University; Hawkesbury Campus Richmond New South Wales 2753 Australia
| |
Collapse
|
12
|
Geiser F, Bondarenco A, Currie SE, Doty AC, Körtner G, Law BS, Pavey CR, Riek A, Stawski C, Turbill C, Willis CKR, Brigham RM. Hibernation and daily torpor in Australian and New Zealand bats: does the climate zone matter? AUST J ZOOL 2019. [DOI: 10.1071/zo20025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We aim to summarise what is known about torpor use and patterns in Australian and New Zealand (ANZ) bats from temperate, tropical/subtropical and arid/semiarid regions and to identify whether and how they differ. ANZ bats comprise ~90 species from 10 families. Members of at least nine of these are known to use torpor, but detailed knowledge is currently restricted to the pteropodids, molossids, mystacinids, and vespertilionids. In temperate areas, several species can hibernate (use a sequence of multiday torpor bouts) in trees or caves mostly during winter and continue to use short bouts of torpor for the rest of the year, including while reproducing. Subtropical vespertilionids also use multiday torpor in winter and brief bouts of torpor in summer, which permit a reduction in foraging, probably in part to avoid predators. Like temperate-zone vespertilionids they show little or no seasonal change in thermal energetics during torpor, and observed changes in torpor patterns in the wild appear largely due to temperature effects. In contrast, subtropical blossom-bats (pteropodids) exhibit more pronounced daily torpor in summer than winter related to nectar availability, and this involves a seasonal change in physiology. Even in tropical areas, vespertilionids express short bouts of torpor lasting ~5 h in winter; summer data are not available. In the arid zone, molossids and vespertilionids use torpor throughout the year, including during desert heat waves. Given the same thermal conditions, torpor bouts in desert bats are longer in summer than in winter, probably to minimise water loss. Thus, torpor in ANZ bats is used by members of all or most families over the entire region, its regional and seasonal expression is often not pronounced or as expected, and it plays a key role in energy and water balance and other crucial biological functions that enhance long-term survival by individuals.
Collapse
|
13
|
Lazzeroni ME, Burbrink FT, Simmons NB. Hibernation in bats (Mammalia: Chiroptera) did not evolve through positive selection of leptin. Ecol Evol 2018; 8:12576-12596. [PMID: 30619566 PMCID: PMC6308895 DOI: 10.1002/ece3.4674] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 09/10/2018] [Accepted: 09/14/2018] [Indexed: 01/25/2023] Open
Abstract
Temperature regulation is an indispensable physiological activity critical for animal survival. However, relatively little is known about the origin of thermoregulatory regimes in a phylogenetic context, or the genetic mechanisms driving the evolution of these regimes. Using bats as a study system, we examined the evolution of three thermoregulatory regimes (hibernation, daily heterothermy, and homeothermy) in relation to the evolution of leptin, a protein implicated in regulation of torpor bouts in mammals, including bats. A threshold model was used to test for a correlation between lineages with positively selected lep, the gene encoding leptin, and the thermoregulatory regimes of those lineages. Although evidence for episodic positive selection of lep was found, positive selection was not correlated with lineages of heterothermic bats, a finding that contradicts results from previous studies. Evidence from our ancestral state reconstructions suggests that the most recent common ancestor of bats used daily heterothermy and that the presence of hibernation is highly unlikely at this node. Hibernation likely evolved independently at least four times in bats-once in the common ancestor of Vespertilionidae and Molossidae, once in the clade containing Rhinolophidae and Rhinopomatidae, and again independently in the lineages leading to Taphozous melanopogon and Mystacina tuberculata. Our reconstructions revealed that thermoregulatory regimes never transitioned directly from hibernation to homeothermy, or the reverse, in the evolutionary history of bats. This, in addition to recent evidence that heterothermy is best described along a continuum, suggests that thermoregulatory regimes in mammals are best represented as an ordered continuous trait (homeothermy ← → daily torpor ← → hibernation) rather than as the three discrete regimes that evolve in an unordered fashion. These results have important implications for methodological approaches in future physiological and evolutionary research.
Collapse
Affiliation(s)
| | - Frank T. Burbrink
- Division of Vertebrate Zoology, Department of HerpetologyAmerican Museum of Natural HistoryNew YorkNew York
| | - Nancy B. Simmons
- Division of Vertebrate Zoology, Department of MammalogyAmerican Museum of Natural HistoryNew YorkNew York
| |
Collapse
|
14
|
Czenze ZJ, Brigham RM, Hickey AJR, Parsons S. Winter climate affects torpor patterns and roost choice in New Zealand lesser short‐tailed bats. J Zool (1987) 2017. [DOI: 10.1111/jzo.12486] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Z. J. Czenze
- School of Biological Sciences University of Auckland Auckland New Zealand
| | - R. M. Brigham
- Department of Biology University of Regina Regina SK Canada
| | - A. J. R. Hickey
- School of Biological Sciences University of Auckland Auckland New Zealand
| | - S. Parsons
- School of Biological Sciences University of Auckland Auckland New Zealand
| |
Collapse
|
15
|
Black or white? Physiological implications of roost colour and choice in a microbat. J Therm Biol 2016; 60:162-70. [PMID: 27503729 DOI: 10.1016/j.jtherbio.2016.07.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 07/15/2016] [Indexed: 12/16/2022]
Abstract
Although roost choice in bats has been studied previously, little is known about how opposing roost colours affect the expression of torpor quantitatively. We quantified roost selection and thermoregulation in a captive Australian insectivorous bat, Nyctophilus gouldi (n=12) in winter when roosting in black and white coloured boxes using temperature-telemetry. We quantified how roost choice influences torpor expression when food was provided ad libitum or restricted in bats housed together in an outdoor aviary exposed to natural fluctuations of ambient temperature. Black box temperatures averaged 5.1°C (maximum 7.5°C) warmer than white boxes at their maximum daytime temperature. Bats fed ad libitum chose black boxes on most nights (92.9%) and on 100% of nights when food-restricted. All bats used torpor on all study days. However, bats fed ad libitum and roosting in black boxes used shorter torpor and spent more time normothermic/active at night than food-restricted bats and bats roosting in white boxes. Bats roosting in black boxes also rewarmed passively more often and to a higher skin temperature than those in white boxes. Our study suggests that N. gouldi fed ad libitum select warmer roosts in order to passively rewarm to a higher skin temperature and thus save energy required for active midday rewarming as well as to maintain a normothermic body temperature for longer periods at night. This study shows that colour should be considered when deploying bat boxes; black boxes are preferable for those bats that use passive rewarming, even in winter when food availability is reduced.
Collapse
|
16
|
Ruf T, Geiser F. Daily torpor and hibernation in birds and mammals. Biol Rev Camb Philos Soc 2015; 90:891-926. [PMID: 25123049 PMCID: PMC4351926 DOI: 10.1111/brv.12137] [Citation(s) in RCA: 501] [Impact Index Per Article: 55.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 07/16/2014] [Accepted: 07/16/2014] [Indexed: 12/11/2022]
Abstract
Many birds and mammals drastically reduce their energy expenditure during times of cold exposure, food shortage, or drought, by temporarily abandoning euthermia, i.e. the maintenance of high body temperatures. Traditionally, two different types of heterothermy, i.e. hypometabolic states associated with low body temperature (torpor), have been distinguished: daily torpor, which lasts less than 24 h and is accompanied by continued foraging, versus hibernation, with torpor bouts lasting consecutive days to several weeks in animals that usually do not forage but rely on energy stores, either food caches or body energy reserves. This classification of torpor types has been challenged, suggesting that these phenotypes may merely represent extremes in a continuum of traits. Here, we investigate whether variables of torpor in 214 species (43 birds and 171 mammals) form a continuum or a bimodal distribution. We use Gaussian-mixture cluster analysis as well as phylogenetically informed regressions to quantitatively assess the distinction between hibernation and daily torpor and to evaluate the impact of body mass and geographical distribution of species on torpor traits. Cluster analysis clearly confirmed the classical distinction between daily torpor and hibernation. Overall, heterothermic endotherms tend to be small; hibernators are significantly heavier than daily heterotherms and also are distributed at higher average latitudes (∼35°) than daily heterotherms (∼25°). Variables of torpor for an average 30 g heterotherm differed significantly between daily heterotherms and hibernators. Average maximum torpor bout duration was >30-fold longer, and mean torpor bout duration >25-fold longer in hibernators. Mean minimum body temperature differed by ∼13°C, and the mean minimum torpor metabolic rate was ∼35% of the basal metabolic rate (BMR) in daily heterotherms but only 6% of BMR in hibernators. Consequently, our analysis strongly supports the view that hibernators and daily heterotherms are functionally distinct groups that probably have been subject to disruptive selection. Arguably, the primary physiological difference between daily torpor and hibernation, which leads to a variety of derived further distinct characteristics, is the temporal control of entry into and arousal from torpor, which is governed by the circadian clock in daily heterotherms, but apparently not in hibernators.
Collapse
Affiliation(s)
- Thomas Ruf
- Department of Integrative Biology and Evolution, Research Institute of Wildlife Ecology, University of Veterinary Medicine, Vienna, Savoyenstraße 1, A-1160 Vienna, Austria
- Centre for Behavioural and Physiological Ecology, Zoology, University of New England, Armidale, New South Wales 2351, Australia
| | - Fritz Geiser
- Centre for Behavioural and Physiological Ecology, Zoology, University of New England, Armidale, New South Wales 2351, Australia
| |
Collapse
|
17
|
Salinas R. VB, Herrera M. LG, Flores-Martínez JJ, Johnston DS. Winter and Summer Torpor in a Free-Ranging Subtropical Desert Bat: The Fishing Myotis (Myotis vivesi). ACTA CHIROPTEROLOGICA 2014. [DOI: 10.3161/150811014x687288] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
18
|
Currie SE, Noy K, Geiser F. Passive rewarming from torpor in hibernating bats: minimizing metabolic costs and cardiac demands. Am J Physiol Regul Integr Comp Physiol 2014; 308:R34-41. [PMID: 25411363 DOI: 10.1152/ajpregu.00341.2014] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Endothermic arousal from torpor is an energetically costly process and imposes enormous demands on the cardiovascular system, particularly during early stage arousal from low body temperature (Tb). To minimize these costs many bats and other heterothermic endotherms rewarm passively from torpor using solar radiation or fluctuating ambient temperature (Ta). Because the heart plays a critical role in the arousal process in terms of blood distribution and as a source of heat production, it is desirable to understand how the function of this organ responds to passive rewarming and how this relates to changes in metabolism and Tb. We investigated heart rate (HR) in hibernating long-eared bats (Nyctophilus gouldi) and its relationship to oxygen consumption (V̇o₂) and subcutaneous temperature (Tsub) during exposure to increasing Ta compared with endogenous arousals at constant low Ta. During passive rewarming, HR and V̇o₂ remained low over a large Tsub range and increased concurrently with increasing Ta (Q₁₀ 2.4 and 2.5, respectively). Absolute values were higher than during steady-state torpor but below those measured during torpor entry. During active arousals, mean HR and V̇o₂ were substantially higher than during passive rewarming at corresponding Tsub. In addition, partial passive rewarming reduced the cost of arousal from torpor by 53% compared with entirely active arousal. Our data show that passive rewarming considerably reduces arousal costs and arousal time; we suggest this may also contribute to minimizing exposure to oxidative stresses as well as demands on the cardiovascular system.
Collapse
Affiliation(s)
- Shannon E Currie
- Centre for Behavioral and Physiological Ecology, Zoology, University of New England, Armidale, Australia
| | - Kodie Noy
- Centre for Behavioral and Physiological Ecology, Zoology, University of New England, Armidale, Australia
| | - Fritz Geiser
- Centre for Behavioral and Physiological Ecology, Zoology, University of New England, Armidale, Australia
| |
Collapse
|
19
|
Vuarin P, Henry PY. Field evidence for a proximate role of food shortage in the regulation of hibernation and daily torpor: a review. J Comp Physiol B 2014; 184:683-97. [DOI: 10.1007/s00360-014-0833-0] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 04/30/2014] [Indexed: 02/06/2023]
|
20
|
O'Mara MT, Wikelski M, Dechmann DK. 50 years of bat tracking: device attachment and future directions. Methods Ecol Evol 2014. [DOI: 10.1111/2041-210x.12172] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- M. Teague O'Mara
- Department of Migration and Immuno-Ecology; Max Planck Institute for Ornithology; Radolfzell Baden-Württemberg Germany
- Department of Biology; University of Konstanz; Konstanz Germany
- Smithsonian Tropical Research Institute; Ancón Balboa Panama
| | - Martin Wikelski
- Department of Migration and Immuno-Ecology; Max Planck Institute for Ornithology; Radolfzell Baden-Württemberg Germany
- Department of Biology; University of Konstanz; Konstanz Germany
- Smithsonian Tropical Research Institute; Ancón Balboa Panama
| | - Dina K.N. Dechmann
- Department of Migration and Immuno-Ecology; Max Planck Institute for Ornithology; Radolfzell Baden-Württemberg Germany
- Department of Biology; University of Konstanz; Konstanz Germany
- Smithsonian Tropical Research Institute; Ancón Balboa Panama
| |
Collapse
|
21
|
Affiliation(s)
- C. Stawski
- Institute of Environmental Sciences; Jagiellonian University; Kraków Poland
- Centre for Behavioural and Physiological Ecology, Zoology; University of New England; Armidale NSW Australia
| | - C. K. R. Willis
- Department of Biology and Centre for Forest Interdisciplinary Research; University of Winnipeg; Winnipeg Canada
| | - F. Geiser
- Centre for Behavioural and Physiological Ecology, Zoology; University of New England; Armidale NSW Australia
| |
Collapse
|
22
|
Drury RL, Geiser F. Activity patterns and roosting of the eastern blossom-bat (Syconycteris australis). AUSTRALIAN MAMMALOGY 2014. [DOI: 10.1071/am13025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
We quantified activity patterns, foraging times and roost selection in the eastern blossom-bat (Syconycteris australis) (body mass 17.6 g) in coastal northern New South Wales in winter using radio-telemetry. Bats roosted either in rainforest near their foraging site of flowering coast banksia (Banksia integrifolia) and commuted only 0.3 ± 0.1 km (n = 8), whereas others roosted 2.0 ± 0.2 km (n = 4) away in wet sclerophyll forest. Most bats roosted in rainforest foliage, but in the wet sclerophyll forest cabbage palm leaves (Livistonia australis) were preferred roosts, which likely reflects behavioural thermoregulation by bats. Foraging commenced 44 ± 22 min after sunset in rainforest-roosting bats, whereas bats that roosted further away and likely flew over canopies/open ground to reach their foraging site left later, especially a female roosting with her likely young (~4 h after sunset). Bats returned to their roosts 64 ± 12 min before sunrise. Our study shows that S. australis is capable of commuting considerable distances between appropriate roost and foraging sites when nectar is abundant. Bats appear to vary foraging times appropriately to minimise exposure to predators and to undertake parental care.
Collapse
|
23
|
Kronfeld-Schor N, Dayan T. Thermal Ecology, Environments, Communities, and Global Change: Energy Intake and Expenditure in Endotherms. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2013. [DOI: 10.1146/annurev-ecolsys-110512-135917] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
To survive, animals must maintain a balance between energy acquisition (foraging) and energy expenditure. This challenge is particularly great for endotherm vertebrates that require high amounts of energy to maintain homeothermy. Many of these endotherms use hibernation or daily torpor as a mechanism to reduce energy expenditure during anticipated or stochastic periods of stress. Although ecological researchers have focused extensively on energy acquisition, physiologists have largely studied thermal ecology and the mechanisms allowing endotherms to regulate energy expenditure, with little research explicitly linking ecology and thermal biology. Nevertheless, theoretical considerations and research conducted so far point to a significant ecological role for torpor in endotherms. Moreover, global-change challenges facing vertebrate endotherms are also considered in view of their ability to regulate their energy expenditure. We review the thermal ecology of endothermic vertebrates and some of its ecological and evolutionary implications.
Collapse
Affiliation(s)
| | - Tamar Dayan
- Department of Zoology, Tel Aviv University, Tel Aviv 69978, Israel;,
| |
Collapse
|
24
|
Cory Toussaint D, Brigham RM, McKechnie AE. Thermoregulation in free-ranging Nycteris thebaica (Nycteridae) during winter: No evidence of torpor. Mamm Biol 2013. [DOI: 10.1016/j.mambio.2012.10.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
25
|
Some like it cold: summer torpor by freetail bats in the Australian arid zone. J Comp Physiol B 2013; 183:1113-22. [PMID: 23989287 DOI: 10.1007/s00360-013-0779-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Revised: 08/07/2013] [Accepted: 08/16/2013] [Indexed: 10/26/2022]
Abstract
Bats are among the most successful groups of Australian arid-zone mammals and, therefore, must cope with pronounced seasonal fluctuations in ambient temperature (T a), food availability and unpredictable weather patterns. As knowledge about the energy conserving strategies in desert bats is scant, we used temperature-telemetry to quantify the thermal physiology of tree-roosting inland freetail bats (Mormopterus species 3, 8.5 g, n = 8) at Sturt National Park over two summers (2010-2012), when T a was high and insects were relatively abundant. Torpor use and activity were affected by T a. Bats remained normothermic on the warmest days; they employed one "morning" torpor bout on most days and typically exhibited two torpor bouts on the coolest days. Overall, animals employed torpor on 67.9 % of bat-days and torpor bout duration ranged from 0.5 to 39.3 h. At any given T a, torpor bouts were longer in Mormopterus than in bats from temperate and subtropical habitats. Furthermore, unlike bats from other climatic regions that used only partial passive rewarming, Mormopterus aroused from torpor using either almost entirely passive (68.9 % of all arousals) or active rewarming (31.1 %). We provide the first quantitative data on torpor in a free-ranging arid-zone molossid during summer. They demonstrate that this desert bat uses torpor extensively in summer and often rewarms passively from torpor to maximise energy and water conservation.
Collapse
|
26
|
Hayman DTS, Bowen RA, Cryan PM, McCracken GF, O'Shea TJ, Peel AJ, Gilbert A, Webb CT, Wood JLN. Ecology of zoonotic infectious diseases in bats: current knowledge and future directions. Zoonoses Public Health 2013; 60:2-21. [PMID: 22958281 PMCID: PMC3600532 DOI: 10.1111/zph.12000] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Indexed: 01/05/2023]
Abstract
Bats are hosts to a range of zoonotic and potentially zoonotic pathogens. Human activities that increase exposure to bats will likely increase the opportunity for infections to spill over in the future. Ecological drivers of pathogen spillover and emergence in novel hosts, including humans, involve a complex mixture of processes, and understanding these complexities may aid in predicting spillover. In particular, only once the pathogen and host ecologies are known can the impacts of anthropogenic changes be fully appreciated. Cross-disciplinary approaches are required to understand how host and pathogen ecology interact. Bats differ from other sylvatic disease reservoirs because of their unique and diverse lifestyles, including their ability to fly, often highly gregarious social structures, long lifespans and low fecundity rates. We highlight how these traits may affect infection dynamics and how both host and pathogen traits may interact to affect infection dynamics. We identify key questions relating to the ecology of infectious diseases in bats and propose that a combination of field and laboratory studies are needed to create data-driven mechanistic models to elucidate those aspects of bat ecology that are most critical to the dynamics of emerging bat viruses. If commonalities can be found, then predicting the dynamics of newly emerging diseases may be possible. This modelling approach will be particularly important in scenarios when population surveillance data are unavailable and when it is unclear which aspects of host ecology are driving infection dynamics.
Collapse
Affiliation(s)
- D T S Hayman
- Disease Dynamics Unit, Department of Veterinary Medicine, University of Cambridge, Cambridge, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Jonasson KA, Willis CKR. Hibernation energetics of free-ranging little brown bats. ACTA ACUST UNITED AC 2012; 215:2141-9. [PMID: 22623203 DOI: 10.1242/jeb.066514] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Hibernation physiology and energy expenditure have been relatively well studied in large captive hibernators, especially rodents, but data from smaller, free-ranging hibernators are sparse. We examined variation in the hibernation patterns of free-ranging little brown bats (Myotis lucifugus) using temperature-sensitive radio-transmitters. First, we aimed to test the hypothesis that age, sex and body condition affect expression of torpor and energy expenditure during hibernation. Second, we examined skin temperature to assess whether qualitative differences in the thermal properties of the hibernacula of bats, compared with the burrows of hibernating rodents, might lead to different patterns of torpor and arousal for bats. We also evaluated the impact of carrying transmitters on body condition to help determine the potential impact of telemetry studies. We observed large variation in the duration of torpor bouts within and between individuals but detected no effect of age, sex or body condition on torpor expression or estimates of energy expenditure. We observed the use of shallow torpor in the midst of periodic arousals, which may represent a unique adaptation of bats for conservation of energy during the most costly phase of hibernation. There was no difference in the body condition of hibernating bats outfitted with transmitters compared with that of control bats captured from the same hibernaculum at the same time. This study provides new information on the energetics of hibernation in an under-represented taxon and baseline data important for understanding how white-nose syndrome, a new disease devastating populations of hibernating bats in North America, may alter the expression of hibernation in affected bats.
Collapse
Affiliation(s)
- Kristin A Jonasson
- Department of Biology and Centre for Forest Inter-disciplinary Research, University of Winnipeg, 515 Portage Avenue, Winnipeg, MB, Canada R3B 2E9
| | | |
Collapse
|
28
|
Stawski C, Geiser F. Will temperature effects or phenotypic plasticity determine the thermal response of a heterothermic tropical bat to climate change? PLoS One 2012; 7:e40278. [PMID: 22802959 PMCID: PMC3389006 DOI: 10.1371/journal.pone.0040278] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Accepted: 06/04/2012] [Indexed: 11/28/2022] Open
Abstract
The proportion of organisms exposed to warm conditions is predicted to increase during global warming. To better understand how bats might respond to climate change, we aimed to obtain the first data on how use of torpor, a crucial survival strategy of small bats, is affected by temperature in the tropics. Over two mild winters, tropical free-ranging bats (Nyctophilus bifax, 10 g, n = 13) used torpor on 95% of study days and were torpid for 33.5±18.8% of 113 days measured. Torpor duration was temperature-dependent and an increase in ambient temperature by the predicted 2°C for the 21st century would decrease the time in torpor to 21.8%. However, comparisons among Nyctophilus populations show that regional phenotypic plasticity attenuates temperature effects on torpor patterns. Our data suggest that heterothermy is important for energy budgeting of bats even under warm conditions and that flexible torpor use will enhance bats’ chance of survival during climate change.
Collapse
Affiliation(s)
- Clare Stawski
- Centre for Behavioural and Physiological Ecology, Zoology, University of New England, Armidale, New South Wales, Australia.
| | | |
Collapse
|
29
|
Halsall AL, Boyles JG, Whitaker JO. Body temperature patterns of big brown bats during winter in a building hibernaculum. J Mammal 2012. [DOI: 10.1644/11-mamm-a-262.1] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
30
|
Liu JN, Karasov WH. Metabolism during winter in a subtropical hibernating bat, the Formosan leaf-nosed bat (Hipposideros terasensis). J Mammal 2012. [DOI: 10.1644/11-mamm-a-144.1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
31
|
Seasonal changes in thermogenesis of a free-ranging afrotherian small mammal, the Western rock elephant shrew (Elephantulus rupestris). J Comp Physiol B 2012; 182:715-27. [PMID: 22349624 DOI: 10.1007/s00360-012-0647-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2011] [Revised: 01/15/2012] [Accepted: 01/26/2012] [Indexed: 01/04/2023]
Abstract
We report on the seasonal metabolic adjustments of a small-sized member of the phylogenetically ancient Afrotheria, the Western rock elephant shrew (Elephantulus rupestris). We recorded body temperature (T (b)) patterns and compared the capacity for adrenergically induced nonshivering thermogenesis (NST) in E. rupestris captured in the wild in summer and winter. Noradrenaline (NA) treatment (0.4-0.5 mg/kg, s.c.) induced a pronounced elevation in oxygen consumption compared to controls (saline), and the increase in oxygen consumption following injection of NA was 1.8-fold higher in winter compared to summer. This suggests that the smaller members of Afrotheria possess functional brown adipose tissue, which changes in thermogenic capacity depending on the season. Torpor was recorded in both seasons, but in winter the incidence of torpor was higher (n = 205 out of 448 observations) and minimal T (b) during torpor was lower (T (b)min: 11.9°C) than in summer (n = 24 out of 674 observations; T (b)min: 26°C). In addition to cold, high air humidity emerged as a likely predictor for torpor entry. Overall, E. rupestris showed a high degree of thermoregulatory plasticity, which was mainly reflected in a variable timing of torpor entry and arousal. We conclude that E. rupestris exhibits seasonal metabolic adjustments comparable to what has been long known for many Holarctic rodents.
Collapse
|
32
|
Dechmann DKN, Ehret S, Gaub A, Kranstauber B, Wikelski M. Low metabolism in a tropical bat from lowland Panama measured using heart rate telemetry: an unexpected life in the slow lane. ACTA ACUST UNITED AC 2012; 214:3605-12. [PMID: 21993789 DOI: 10.1242/jeb.056010] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Animals must optimize their daily energy budgets, particularly if energy expenditures are as high as they are in flying animals. However, energy budgets of free-ranging tropical animals are poorly known. Newly miniaturized heart rate transmitters enabled this to be addressed this in the small, energetically limited, neotropical bat Molossus molossus. High-resolution 48 h energy budgets showed that this species significantly lowers its metabolism on a daily basis, even though ambient temperatures remain high. Mean roosting heart rate was 144 beats min(-1), much lower than expected for a 10 g bat. Low roosting heart rates combined with short nightly foraging times (37 min night(-1)) resulted in an estimated energy consumption of 4.08 kJ day(-1), less than one-quarter of the predicted field metabolic rate. Our results indicate that future research may reveal this as a more common pattern than currently assumed in tropical animals, which may have implications in the context of the effect of even small temperature changes on tropical species.
Collapse
Affiliation(s)
- Dina K N Dechmann
- University of Konstanz, Department of Biology, 78457 Konstanz, Germany.
| | | | | | | | | |
Collapse
|
33
|
Warming up for dinner: torpor and arousal in hibernating Natterer's bats (Myotis nattereri) studied by radio telemetry. J Comp Physiol B 2011; 182:569-78. [PMID: 22124860 DOI: 10.1007/s00360-011-0631-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Revised: 11/03/2011] [Accepted: 11/09/2011] [Indexed: 10/15/2022]
Abstract
The frequency and function of arousals during hibernation in free-living mammals are little known. We used temperature-sensitive radio transmitters to measure patterns of torpor, arousal and activity in wild Natterer's bats Myotis nattereri during hibernation. Duration of torpor bouts ranged from 0.06 to 20.4 days with individual means ranging from 0.9 to 8.9 days. Arousals from torpor occurred most commonly coincident with the time (relative to sunset) typical for bats emerging from summer roosts to forage. Bats with lower body condition indices had a shorter average duration of their torpor bouts. We found a non-linear relationship between duration of torpor bout and ambient temperature: the longest average torpor bouts were at temperatures between 2 and 4°C with shorter bouts at lower and higher ambient temperatures. One individual was radio-tracked for ten nights, remained active for an average of 297 min each night and was active for longer on warmer nights. Our results suggest that vespertilionid bats use relatively short torpor bouts during hibernation in a location with a maritime climate. We hypothesise that Natterer's bats time arousals to maximise opportunities for potential foraging during winter although winter feeding is not the sole determinant of arousal as bats still arouse at times when foraging is unlikely.
Collapse
|
34
|
Turner JM, Warnecke L, Körtner G, Geiser F. Opportunistic hibernation by a free-ranging marsupial. J Zool (1987) 2011. [DOI: 10.1111/j.1469-7998.2011.00877.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- J. M. Turner
- Department of Zoology; Centre for Behavioural and Physiological Ecology; University of New England; Armidale; NSW; Australia
| | - L. Warnecke
- Department of Zoology; Centre for Behavioural and Physiological Ecology; University of New England; Armidale; NSW; Australia
| | - G. Körtner
- Department of Zoology; Centre for Behavioural and Physiological Ecology; University of New England; Armidale; NSW; Australia
| | - F. Geiser
- Department of Zoology; Centre for Behavioural and Physiological Ecology; University of New England; Armidale; NSW; Australia
| |
Collapse
|
35
|
Geiser F, Stawski C. Hibernation and torpor in tropical and subtropical bats in relation to energetics, extinctions, and the evolution of endothermy. Integr Comp Biol 2011; 51:337-48. [PMID: 21700575 DOI: 10.1093/icb/icr042] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Torpor, the most effective means of energy conservation available to endotherms, is still widely viewed as a specific adaptation in a few high-latitude, cold-climate endotherms with no adaptive function in warm regions. Nevertheless, a growing number of diverse terrestrial mammals and birds from low latitudes (0-30°), including species from tropical and subtropical regions, are heterothermic and employ torpor. Use of torpor is especially important for bats because they are small, expend large amounts of energy when active, rely on a fluctuating food supply, and have only a limited capacity for storage of fat. Patterns of torpor in tropical/subtropical bats are highly variable, but short bouts of torpor with relatively high body temperatures (T(b)) are most common. Hibernation (a sequence of multiday bouts of torpor) has been reported for free-ranging subtropical tree-dwelling vespertilionids, cave-dwelling hipposiderids, and house-dwelling molossids. The observed range of minimum T(b) is ∼6-30 °C, and the reduction of energy expenditure through the use of torpor, in comparison to normothermic values, ranges from 50 to 99%. Overall, torpor in the tropics/subtropics has been reported for 10 out of the currently recognized 18 bat families, which contain 1079 species, or 96.7% of all bats. Although it is unlikely that all of these are heterothermic, the large majority probably will be. Frequent use of torpor, including hibernation in diverse groups of tropical/subtropical bats, suggests that heterothermy is an ancestral chiropteran trait. Although data especially from the field are still scarce, it is likely that torpor, highly effective in reducing requirements for energy and water even under warm conditions, plays a crucial role in the long-term survival of the majority of small tropical and subtropical bats. Discovering how bats achieve this provides numerous opportunities for exiting new research.
Collapse
Affiliation(s)
- Fritz Geiser
- Centre for Behavioural and Physiological Ecology, Zoology, University of New England, Armidale NSW 2351, Australia.
| | | |
Collapse
|
36
|
Lovegrove BG. The evolution of endothermy in Cenozoic mammals: a plesiomorphic-apomorphic continuum. Biol Rev Camb Philos Soc 2011; 87:128-62. [DOI: 10.1111/j.1469-185x.2011.00188.x] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
37
|
Stawski C, Geiser F. Do season and distribution affect thermal energetics of a hibernating bat endemic to the tropics and subtropics? Am J Physiol Regul Integr Comp Physiol 2011; 301:R542-7. [PMID: 21632847 DOI: 10.1152/ajpregu.00792.2010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Although many tropical and subtropical areas experience pronounced seasonal changes in weather and food availability, few studies have examined and none have compared the thermal physiology and energetics of a hibernating mammal that is restricted to these regions. We quantified thermal energetics of northern long-eared bats (Nyctophilus bifax; body mass ∼10 g) during summer, winter, and spring from a subtropical habitat, and also during winter from a tropical habitat, to determine how N. bifax cope with climate and seasonal changes in weather. We captured bats in the wild and measured metabolic rates via open-flow respirometry. The basal metabolic rate of subtropical bats at an ambient temperature (T(a)) of 32.6 ± 0.7°C was 1.28 ± 0.06 ml O(2)·g(-1)·h(-1) during both summer and winter, similar to other species of Nyctophilus. Resting metabolic rates below the thermoneutral zone increased similarly with decreasing T(a) during all seasons and in both regions. All individuals showed a high proclivity to enter torpor at T(a) values below the thermoneutral zone. Metabolic rates in torpid thermoconforming bats fell with T(a) and body temperature, and mean minimum metabolic rates during torpor were similar during all seasons and in both regions and as predicted from body mass in temperate zone hibernators. At very low T(a), torpid N. bifax thermoregulated, and this threshold T(a) differed significantly between subtropical (T(a) = 3.5 ± 0.3°C) and tropical (T(a) = 6.7 ± 0.7°C) individuals, but not between seasons. Our data show that thermal energetics of N. bifax do not vary seasonally and in many aspects are similar in tropical and subtropical bats; however, torpid individuals from the subtropics allow body temperature to fall to significantly lower values than those from the tropics.
Collapse
Affiliation(s)
- Clare Stawski
- Center for Behavioural and Physiological Ecology, Zoology, University of New England, Armidale, New South Wales, Australia.
| | | |
Collapse
|
38
|
Geiser F, Mzilikazi N. Does torpor of elephant shrews differ from that of other heterothermic mammals? J Mammal 2011. [DOI: 10.1644/10-mamm-a-097.1] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
39
|
Geiser F, Stawski C, Bondarenco A, Pavey CR. Torpor and activity in a free-ranging tropical bat: implications for the distribution and conservation of mammals? Naturwissenschaften 2011; 98:447-52. [DOI: 10.1007/s00114-011-0779-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2010] [Revised: 02/22/2011] [Accepted: 02/24/2011] [Indexed: 11/29/2022]
|
40
|
Heterothermy in the southern African hedgehog, Atelerix frontalis. J Comp Physiol B 2010; 181:437-45. [PMID: 21082184 DOI: 10.1007/s00360-010-0531-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2010] [Revised: 10/20/2010] [Accepted: 10/29/2010] [Indexed: 10/18/2022]
Abstract
Most research on mammalian heterothermic responses in southern Africa tends to be laboratory based and biased towards rodents and smaller members of the Afrotheria. In this study, we continuously measured body temperature of southern African hedgehogs (Atelerix frontalis) between April and August 2009 (-10°C < T (a) < 43°C), kept under semi-captive conditions. A. frontalis showed a high propensity for torpor with animals spending up to 84% of the measurement period torpid. During this study, A. frontalis displayed the lowest T (b min) (ca 1°C) yet recorded in an Afrotropical placental heterotherm. Bout lengths of between 0.7 h (40 min) and 116.3 h (4.8 days) were recorded. Differences in bout length were observed between lighter individuals compared with an individual exhibiting a higher body mass at the onset of winter, with low M (b) individuals exhibiting daily torpor whereas a heavier individual exhibited torpor bouts that were indicative of hibernation. Our results suggest that heterothermic responses are an important feature in the energy balance equation of this species and that body mass at the onset of winter may determine the patterns of heterothermy utilised in this species.
Collapse
|
41
|
Heterothermy in free-ranging male Egyptian Free-tailed bats (Tadarida aegyptiaca) in a subtropical climate. Mamm Biol 2010. [DOI: 10.1016/j.mambio.2009.06.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
42
|
Hibernation in warm hibernacula by free-ranging Formosan leaf-nosed bats, Hipposideros terasensis, in subtropical Taiwan. J Comp Physiol B 2010; 181:125-35. [DOI: 10.1007/s00360-010-0509-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2010] [Revised: 07/31/2010] [Accepted: 08/04/2010] [Indexed: 10/19/2022]
|
43
|
Riek A, Körtner G, Geiser F. Thermobiology, energetics and activity patterns of the Eastern tube-nosed bat (Nyctimene robinsoni) in the Australian tropics: effect of temperature and lunar cycle. J Exp Biol 2010; 213:2557-64. [DOI: 10.1242/jeb.043182] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
Currently, there are no data on the thermal biology of free-ranging pteropodid bats (Chiroptera). Therefore, our aim was to investigate physiological and behavioural strategies employed by the fruit bat Nyctimene robinsoni (body mass ∼50 g) in winter in tropical Northern Queensland in relation to ambient temperature (Ta) and the lunar cycle. Daily body temperature (Tb) fluctuations in free-ranging bats were measured via radio-telemetry and metabolic rate was measured in captivity via open-flow respirometry (Ta, 15–30°C). Free-ranging bats showed a significant 24 h circadian cycle in Tb, with the lowest Tb at the end of the rest phase just after sunset and the highest Tb at the end of the activity phase just before sunrise. Average daily core Tb ranged from 34.7±0.6 to 37.3±0.8°C (mean ± s.d.) over an average daily Ta range of 17.1±1.1 to 23.5±1.8°C. Tb never fell below 30°C but Tb was significantly reduced during the full moon period compared with that during the new moon period. Tb was correlated with Ta during the second half of the rest phase (P<0.001) but not during the active phase. Resting metabolic rate of bats was significantly affected by Ta (P<0.001, R2=0.856). Our results show that tube-nosed bats exhibit reduced Tb on moonlit nights when they reduce foraging activity, but during our study torpor was not expressed. The energy constraints experienced here by tube-nosed bats with relatively moderate Ta fluctuations, short commuting distances between roosting and feeding locations, and high availability of food were probably not substantial enough to require use of torpor.
Collapse
Affiliation(s)
- Alexander Riek
- Centre for Behavioural and Physiological Ecology, Zoology, University of New England, Armidale, NSW 2351, Australia
- Department of Animal Sciences, University of Göttingen, Albrecht-Thaer-Weg 3, 37075 Göttingen, Germany
| | - Gerhard Körtner
- Centre for Behavioural and Physiological Ecology, Zoology, University of New England, Armidale, NSW 2351, Australia
| | - Fritz Geiser
- Centre for Behavioural and Physiological Ecology, Zoology, University of New England, Armidale, NSW 2351, Australia
| |
Collapse
|
44
|
Stawski C, Geiser F. Seasonality of torpor patterns and physiological variables of a free-ranging subtropical bat. ACTA ACUST UNITED AC 2010; 213:393-9. [PMID: 20086123 DOI: 10.1242/jeb.038224] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Seasonal changes in weather and food availability differ vastly between temperate and subtropical climates, yet knowledge on how free-ranging subtropical insectivorous bats cope with such changes is limited. We quantified ambient temperatures, torpor patterns and thermal physiology of subtropical insectivorous northern long-eared bats, Nyctophilus bifax, during summer (n=13) and winter (n=8) by temperature telemetry. As predicted, ambient conditions varied significantly between seasons, with warmer weather during summer. All bats used torpor on 85% of observation days during summer in comparison to 100% during winter. During summer, patterns of torpor varied and the duration of torpor bouts was not significantly affected by ambient temperature, whereas during winter torpor bout duration was negatively correlated with mean ambient temperature. Mean torpor bout duration in summer was 3.2+/-1.3 h and in winter was 26.8+/-11.3 h. Mean arousal time during summer was in the early afternoon and during winter in the late afternoon, and throughout both seasons arousals for possible foraging periods occurred near sunset. Skin temperature was positively correlated with ambient temperatures in both seasons, but the relationship differed between seasons. We show that torpor is used regularly throughout the year in a free-ranging subtropical bat and provide the first evidence demonstrating that torpor patterns and thermal physiology change with season.
Collapse
Affiliation(s)
- C Stawski
- Centre for Behavioural and Physiological Ecology, Zoology, University of New England, Armidale, New South Wales 2351, Australia.
| | | |
Collapse
|
45
|
Abstract
Aestivation, which in the context of this paper refers to avian and mammalian torpor in summer/at high ambient temperatures (T (a)), does not appear to differ functionally from other forms of torpor, and to a large extent reflects the higher body temperatures (T (b)) caused by high T (a). However, from an ecological point of view, aestivation results in different challenges and requirements than does torpor use in winter, because heat can cause reduced food and water availability in many regions, but without the access to low T (a) for a substantial reduction of T (b). Aestivation is used by a diversity of adult mammals and birds both in the field and laboratory, as well as by growing young to reduce thermoregulatory energy expenditure. Torpor occurs at high T (a) including the thermo-neutral zone and even under these conditions the reduction in energy expenditure and water requirements or water loss is substantial. Although data from the laboratory and, especially, from the field are limited, they show that torpor at high T (a) is an effective survival strategy and suggest that it is employed by many mammals and birds in a diversity of habitats.
Collapse
|
46
|
The energetics of basking behaviour and torpor in a small marsupial exposed to simulated natural conditions. J Comp Physiol B 2009; 180:437-45. [DOI: 10.1007/s00360-009-0417-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2009] [Revised: 10/08/2009] [Accepted: 10/13/2009] [Indexed: 11/27/2022]
|
47
|
Stawski C, Geiser F. Fat and fed: frequent use of summer torpor in a subtropical bat. Naturwissenschaften 2009; 97:29-35. [DOI: 10.1007/s00114-009-0606-x] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2009] [Revised: 08/20/2009] [Accepted: 08/23/2009] [Indexed: 10/20/2022]
|
48
|
Kobbe S, Dausmann KH. Hibernation in Malagasy mouse lemurs as a strategy to counter environmental challenge. Naturwissenschaften 2009; 96:1221-7. [PMID: 19618156 DOI: 10.1007/s00114-009-0580-3] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2009] [Revised: 06/15/2009] [Accepted: 06/15/2009] [Indexed: 11/26/2022]
Abstract
The spiny forest of southwestern Madagascar is the driest and most unpredictable region of the island. It is characterized by a pronounced seasonality with high fluctuations in ambient temperature, low availability of food, and a lack of water during the cool dry season and, additionally, by changes in environmental conditions between years. One of the few mammalian species that manages to inhabit this challenging habitat is the reddish-gray mouse lemur (Microcebus griseorufus). The aim of our study was to determine whether this small primate uses continuous hibernation as an energy saving strategy, and if so, to characterize its physiological properties. We measured skin temperature of 16 free-ranging individuals continuously over 3 months during the cool dry season using collar temperature data loggers. Prolonged hibernation was found in three mouse lemurs and was not sex dependent (one male, two females). Skin temperature of hibernating individuals tracked ambient temperature passively with a minimum skin temperature of 6.5 degrees C and fluctuated strongly each day (up to 20 degrees C), depending on the insulation capacity of the hibernacula. Individuals remained in continuous hibernation even at an ambient temperature of 37 degrees C. The animals hibernated continuously during the dry season, and hibernation bouts were only interrupted by short spontaneous arousals. The study emphasizes that hibernation is an important measure to counter environmental challenge for more tropical species than previously thought, including primates. It furthermore provides evidence that tropical hibernation is functionally similar among tropical species.
Collapse
Affiliation(s)
- Susanne Kobbe
- Department of Animal Ecology and Conservation, Hamburg University, Biozentrum Grindel, Martin-Luther-King Platz 3, Hamburg, Germany.
| | | |
Collapse
|
49
|
Hibernation and daily torpor minimize mammalian extinctions. Naturwissenschaften 2009; 96:1235-40. [DOI: 10.1007/s00114-009-0583-0] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2009] [Revised: 06/15/2009] [Accepted: 06/19/2009] [Indexed: 11/27/2022]
|