1
|
Chaturvedi P, Pierides I, López‐Hidalgo C, Garg V, Zhang S, Barmukh R, Bellaire A, Li J, Bachmann G, Valledor L, Varshney RK, Ghatak A, Weckwerth W. Natural variation in the chickpea metabolome under drought stress. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:3278-3294. [PMID: 39411896 PMCID: PMC11606430 DOI: 10.1111/pbi.14447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 06/01/2024] [Accepted: 07/26/2024] [Indexed: 11/27/2024]
Abstract
Chickpea is the world's fourth largest grown legume crop, which significantly contributes to food security by providing calories and dietary protein globally. However, the increased frequency of drought stress has significantly reduced chickpea production in recent years. Here, we have performed a field experiment with 36 diverse chickpea genotypes to evaluate grain yield, photosynthetic activities and molecular traits related to drought stress. For metabolomics analysis, leaf tissue was collected at three time points representing different pod-filling stages. We identified L-threonic acid, fructose and sugar alcohols involved in chickpea adaptive drought response within the mid-pod-filling stage. A stress susceptibility index for each genotype was calculated to identify tolerance capacity under drought, distributing the 36 genotypes into four categories from best to worst performance. To understand how biochemical mechanisms control different traits for genetic improvement, we performed a differential Jacobian analysis, which unveiled the interplay between various metabolic pathways across three time points, including higher flux towards inositol interconversions, glycolysis for high-performing genotypes, fumarate to malate conversion, and carbon and nitrogen metabolism perturbations. Metabolic GWAS (mGWAS) analysis uncovered gene candidates involved in glycolysis and MEP pathway corroborating with the differential biochemical Jacobian results. Accordingly, this proposed data analysis strategy bridges the gap from pure statistical association to causal biochemical relations by exploiting natural variation. Our study offers new perspectives on the genetic and metabolic understanding of drought tolerance-associated diversity in the chickpea metabolome and led to the identification of metabolic control points that can be also tested in other legume crops.
Collapse
Affiliation(s)
- Palak Chaturvedi
- Molecular Systems Biology Lab (MOSYS), Department of Functional and Evolutionary EcologyUniversity of ViennaViennaAustria
| | - Iro Pierides
- Molecular Systems Biology Lab (MOSYS), Department of Functional and Evolutionary EcologyUniversity of ViennaViennaAustria
| | - Cristina López‐Hidalgo
- Plant Physiology, Department of Organisms and Systems BiologyFaculty of Biology, and Biotechnology Institute of Asturias, University of OviedoOviedoSpain
| | - Vanika Garg
- WA State Agricultural Biotechnology Centre, Centre for Crop & Food InnovationFood Futures Institute, Murdoch UniversityMurdochWAAustralia
| | - Shuang Zhang
- Molecular Systems Biology Lab (MOSYS), Department of Functional and Evolutionary EcologyUniversity of ViennaViennaAustria
| | - Rutwik Barmukh
- WA State Agricultural Biotechnology Centre, Centre for Crop & Food InnovationFood Futures Institute, Murdoch UniversityMurdochWAAustralia
| | - Anke Bellaire
- Structural and Functional Botany, Department of Botany and Biodiversity ResearchUniversity of ViennaViennaAustria
| | - Jiahang Li
- Molecular Systems Biology Lab (MOSYS), Department of Functional and Evolutionary EcologyUniversity of ViennaViennaAustria
| | - Gert Bachmann
- Molecular Systems Biology Lab (MOSYS), Department of Functional and Evolutionary EcologyUniversity of ViennaViennaAustria
| | - Luis Valledor
- Plant Physiology, Department of Organisms and Systems BiologyFaculty of Biology, and Biotechnology Institute of Asturias, University of OviedoOviedoSpain
| | - Rajeev K. Varshney
- WA State Agricultural Biotechnology Centre, Centre for Crop & Food InnovationFood Futures Institute, Murdoch UniversityMurdochWAAustralia
| | - Arindam Ghatak
- Molecular Systems Biology Lab (MOSYS), Department of Functional and Evolutionary EcologyUniversity of ViennaViennaAustria
- Vienna Metabolomics Center (VIME)University of ViennaViennaAustria
| | - Wolfram Weckwerth
- Molecular Systems Biology Lab (MOSYS), Department of Functional and Evolutionary EcologyUniversity of ViennaViennaAustria
- Vienna Metabolomics Center (VIME)University of ViennaViennaAustria
| |
Collapse
|
2
|
Aggarwal PR, Mehanathan M, Choudhary P. Exploring genetics and genomics trends to understand the link between secondary metabolic genes and agronomic traits in cereals under stress. JOURNAL OF PLANT PHYSIOLOGY 2024; 303:154379. [PMID: 39549316 DOI: 10.1016/j.jplph.2024.154379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 11/05/2024] [Accepted: 11/08/2024] [Indexed: 11/18/2024]
Abstract
The plant metabolome is considered an important interface between the genome and its phenome, where it plays a significant role in regulating plant growth in response to various environmental cues. A wide array of specialized metabolites is produced by plants, which are essential for mediating environmental interactions and their adaptation. Notably, enhanced accumulation of these specialized metabolites, particularly plant secondary metabolites (PSMs), is a part of the chemical defense response that is directly linked to improved stress tolerance. Therefore, exploring the genetic diversity underlying the immense variation of the secondary metabolite pool could unravel the adaptation mechanisms in plants against different environmental stresses. The post-genomic profiling platforms have enabled the exploration of the link between metabolic diversity and important agronomic traits. The current review focuses on the major achievements and future challenges associated with plant secondary metabolite (PSM) research in graminaceous crops using advanced omics approaches. Given this, we briefly summarize different strategies adopted to explore the genetic diversity and evolution of PSMs in cereal crops. Further, we have discussed the recent technological advancements to integrate multi-omics approaches linking the metabolome diversity with the genome, transcriptome, and proteome of these crops under stress. Combining these data with phenomics (the omics of phenotypes) provides a holistic view of how plants respond to stress. Next, we outlined the genetic manipulation studies performed so far in cereals to engineer secondary metabolic pathways for enhanced stress tolerance. In summary, our review provides new insight into developing genetic and genomic trends in exploring the secondary metabolite diversity in graminaceous crops and discusses how this information can be utilized in designing strategies to generate future stress-resilient crops.
Collapse
Affiliation(s)
- Pooja R Aggarwal
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - Muthamilarasan Mehanathan
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - Pooja Choudhary
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, Uttar Pradesh, India.
| |
Collapse
|
3
|
Coker HR, Lin HA, Shackelford CEB, Tfaily MM, Smith AP, Howe JA. Drought stimulates root exudation of organic nitrogen in cotton ( Gossypium hirsutem). FRONTIERS IN PLANT SCIENCE 2024; 15:1431004. [PMID: 39628529 PMCID: PMC11611595 DOI: 10.3389/fpls.2024.1431004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 10/21/2024] [Indexed: 12/06/2024]
Abstract
Root exudation of N is a plant input to the soil environment and may be differentially regulated by the plant during drought. Organic N released by root systems has important implications in rhizosphere biogeochemical cycling considering the intimate coupling of C and N dynamics by microbial communities. Besides amino acids, diverse molecules exuded by root systems constitute a significant fraction of root exudate organic N but have yet to receive a metabolomic and quantitative investigation during drought. To observe root exudation of N during drought, mature cotton plants received progressive drought and recovery treatments in an aeroponic system throughout their reproductive stage and were compared to control plants receiving full irrigation. Root exudates were nondestructively sampled from the same plants at 9 timepoints over 18 days. Total organic C and N were quantified by combustion, inorganic N with spectrophotometric methods, free amino acids by high performance liquid chromatography (HPLC), and untargeted metabolomics by Fourier-transform ion cyclotron resonance-mass spectrometry (FT-ICR-MS). Results indicate that organic N molecules in root exudates were by far the greatest component of root exudate total N, which accounted for 20-30% of root exudate mass. Drought increased root exudation of organic N (62%), organic C (6%), and free amino acid-N (562%), yet free amino acids were <5% of the N balance. Drought stress significantly increased root exudation of serine, aspartic acid, asparagine, glutamic acid, tryptophan, glutamine, phenylalanine, and lysine compared to the control. There was a total of 3,985 molecules detected across root exudate samples, of which 41% contained N in their molecular formula. There were additionally 349 N-containing molecules unique to drought treatment and 172 unique to control. Drought increased the relative abundance and redistributed the molecular weights of low molecular weight N-containing molecules. Time-series analysis revealed root exudation of organic N was stimulated by drought and was sensitive to the degree of drought stress.
Collapse
Affiliation(s)
- Harrison R. Coker
- Department of Soil and Crop Sciences, Texas A&M University and Texas A&M AgriLife, College Station, TX, United States
| | - Heng-An Lin
- Department of Soil and Crop Sciences, Texas A&M University and Texas A&M AgriLife, College Station, TX, United States
| | - Caleb E. B. Shackelford
- Department of Soil and Crop Sciences, Texas A&M University and Texas A&M AgriLife, College Station, TX, United States
| | - Malak M. Tfaily
- Department of Environmental Sciences, University of Arizona, Tucson, AZ, United States
| | - A. Peyton Smith
- Department of Soil and Crop Sciences, Texas A&M University and Texas A&M AgriLife, College Station, TX, United States
| | - Julie A. Howe
- Department of Soil and Crop Sciences, Texas A&M University and Texas A&M AgriLife, College Station, TX, United States
| |
Collapse
|
4
|
Kumar S, Sindhu SS. Drought stress mitigation through bioengineering of microbes and crop varieties for sustainable agriculture and food security. CURRENT RESEARCH IN MICROBIAL SCIENCES 2024; 7:100285. [PMID: 39512260 PMCID: PMC11542684 DOI: 10.1016/j.crmicr.2024.100285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024] Open
Abstract
Climate change and agriculture are intrinsically connected and sudden changes in climatic conditions adversely impact global food production and security. The climate change-linked abiotic stressors like drought and high temperatures are resulting in crop failure. The most severe abiotic stress drought significantly affect the stomatal closure, production of reactive oxygen species, transpiration, photosynthesis or other physiological processes and plant morphology, and adversely affect plant growth and crop yield. Therefore, there is an exigent need for cost effective and eco-friendly modern technologies to induce drought tolerance in crop plants leading to climate-adapted sustainable agricultural practices for sustained food production. Among many options being pursued in this regard, the use of plant growth promoting microbes (PGPMs) is the most sustainable approach to promote drought stress resilience in crop plants leading to better plant growth and crop productivity. These PGPMs confer drought resistance via various direct or indirect mechanisms including production of antioxidants, enzymes, exopolysaccharides, modulation of phytohormones level, osmotic adjustment by inducing the accumulation of sugars, along with increases in nutrients, water uptake and photosynthetic pigments. However, several technological and ecological challenges limit their use in agriculture and sometimes treatment with plant beneficial microbes fails to produce desired results under field conditions. Thus, development of synthetic microbial communities or host mediated microbiome engineering or development of transgenic plants with the capacity to express desired traits may promote plant survival and growth under drought stress conditions. The present review critically assesses research evidence on the plant growth and stress resilience promoting potentials of PGPMs and their genes as an approach to develop drought resilient plants leading to increased crop productivity. Effective collaboration among scientific communities, policymakers and regulatory agencies is needed to create strong frameworks that both promote and regulate the utilization of synthetic microbial communities and transgenic plants in agriculture.
Collapse
Affiliation(s)
- Satish Kumar
- Department of Microbiology, CCS Haryana Agricultural University, Hisar, 125004, India
| | - Satyavir Singh Sindhu
- Department of Microbiology, CCS Haryana Agricultural University, Hisar, 125004, India
| |
Collapse
|
5
|
Gholizadeh S, Nemati I, Vestergård M, Barnes CJ, Kudjordjie EN, Nicolaisen M. Harnessing root-soil-microbiota interactions for drought-resilient cereals. Microbiol Res 2024; 283:127698. [PMID: 38537330 DOI: 10.1016/j.micres.2024.127698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/14/2024] [Accepted: 03/17/2024] [Indexed: 04/17/2024]
Abstract
Cereal plants form complex networks with their associated microbiome in the soil environment. A complex system including variations of numerous parameters of soil properties and host traits shapes the dynamics of cereal microbiota under drought. These multifaceted interactions can greatly affect carbon and nutrient cycling in soil and offer the potential to increase plant growth and fitness under drought conditions. Despite growing recognition of the importance of plant microbiota to agroecosystem functioning, harnessing the cereal root microbiota remains a significant challenge due to interacting and synergistic effects between root traits, soil properties, agricultural practices, and drought-related features. A better mechanistic understanding of root-soil-microbiota associations could lead to the development of novel strategies to improve cereal production under drought. In this review, we discuss the root-soil-microbiota interactions for improving the soil environment and host fitness under drought and suggest a roadmap for harnessing the benefits of these interactions for drought-resilient cereals. These methods include conservative trait-based approaches for the selection and breeding of plant genetic resources and manipulation of the soil environments.
Collapse
Affiliation(s)
- Somayeh Gholizadeh
- Faculty of Technical Sciences, Department of Agroecology, Aarhus University, Forsøgsvej 1, Slagelse 4200, Denmark
| | - Iman Nemati
- Department of Plant Production and Genetics Engineering, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Mette Vestergård
- Faculty of Technical Sciences, Department of Agroecology, Aarhus University, Forsøgsvej 1, Slagelse 4200, Denmark
| | - Christopher James Barnes
- Faculty of Technical Sciences, Department of Agroecology, Aarhus University, Forsøgsvej 1, Slagelse 4200, Denmark
| | - Enoch Narh Kudjordjie
- Faculty of Technical Sciences, Department of Agroecology, Aarhus University, Forsøgsvej 1, Slagelse 4200, Denmark
| | - Mogens Nicolaisen
- Faculty of Technical Sciences, Department of Agroecology, Aarhus University, Forsøgsvej 1, Slagelse 4200, Denmark.
| |
Collapse
|
6
|
Zhang S, Ghatak A, Mohammadi Bazargani M, Kramml H, Zang F, Gao S, Ramšak Ž, Gruden K, Varshney RK, Jiang D, Chaturvedi P, Weckwerth W. Cell-type proteomic and metabolomic resolution of early and late grain filling stages of wheat endosperm. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:555-571. [PMID: 38050335 DOI: 10.1111/pbi.14203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 08/21/2023] [Accepted: 10/03/2023] [Indexed: 12/06/2023]
Abstract
The nutritional value of wheat grains, particularly their protein and metabolite composition, is a result of the grain-filling process, especially in the endosperm. Here, we employ laser microdissection (LMD) combined with shotgun proteomics and metabolomics to generate a cell type-specific proteome and metabolome inventory of developing wheat endosperm at the early (15 DAA) and late (26 DAA) grain-filling stages. We identified 1803 proteins and 41 metabolites from four different cell types (aleurone (AL), sub-aleurone (SA), starchy endosperm (SE) and endosperm transfer cells (ETCs). Differentially expressed proteins were detected, 67 in the AL, 31 in the SA, 27 in the SE and 50 in the ETCs between these two-time points. Cell-type accumulation of specific SUT and GLUT transporters, sucrose converting and starch biosynthesis enzymes correlate well with the respective sugar metabolites, suggesting sugar upload and starch accumulation via nucellar projection and ETC at 15 DAA in contrast to the later stage at 26 DAA. Changes in various protein levels between AL, SA and ETC support this metabolic switch from 15 to 26 DAA. The distinct spatial and temporal abundances of proteins and metabolites revealed a contrasting activity of nitrogen assimilation pathways, e.g. for GOGAT, GDH and glutamic acid, in the different cell types from 15 to 26 DAA, which can be correlated with specific protein accumulation in the endosperm. The integration of cell-type specific proteome and metabolome data revealed a complex metabolic interplay of the different cell types and a functional switch during grain development and grain-filling processes.
Collapse
Affiliation(s)
- Shuang Zhang
- Molecular Systems Biology Lab (MOSYS), Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
- National Technique Innovation Center for Regional Wheat Production/Key Laboratory of Crop Ecophysiology, Ministry of Agriculture/Nanjing Agricultural University, Nanjing, China
| | - Arindam Ghatak
- Molecular Systems Biology Lab (MOSYS), Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
- Vienna Metabolomics Center (VIME), University of Vienna, Vienna, Austria
| | | | - Hannes Kramml
- Molecular Systems Biology Lab (MOSYS), Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
| | - Fujuan Zang
- National Technique Innovation Center for Regional Wheat Production/Key Laboratory of Crop Ecophysiology, Ministry of Agriculture/Nanjing Agricultural University, Nanjing, China
| | - Shuang Gao
- National Technique Innovation Center for Regional Wheat Production/Key Laboratory of Crop Ecophysiology, Ministry of Agriculture/Nanjing Agricultural University, Nanjing, China
| | - Živa Ramšak
- Department of Systems Biology and Biotechnology, National Institute of Biology, Ljubljana, Slovenia
| | - Kristina Gruden
- Department of Systems Biology and Biotechnology, National Institute of Biology, Ljubljana, Slovenia
| | - Rajeev K Varshney
- State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University, Murdoch, WA, Australia
| | - Dong Jiang
- National Technique Innovation Center for Regional Wheat Production/Key Laboratory of Crop Ecophysiology, Ministry of Agriculture/Nanjing Agricultural University, Nanjing, China
| | - Palak Chaturvedi
- Molecular Systems Biology Lab (MOSYS), Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
| | - Wolfram Weckwerth
- Molecular Systems Biology Lab (MOSYS), Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
- Vienna Metabolomics Center (VIME), University of Vienna, Vienna, Austria
| |
Collapse
|
7
|
Bachmann G, Hadacek F. Physiotyping of Plants and Modeling the Soil Plant Atmospheric Continuum (SPAC). Methods Mol Biol 2024; 2787:69-80. [PMID: 38656482 DOI: 10.1007/978-1-0716-3778-4_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
This chapter presents a holistic and quantitative approach to the carbon cycle in plant systems biology. It includes (rapid) phenotyping and monitoring of physiological key interactions of plants with its respective soil and atmospheric environment (soil plant atmospheric continuum-SPAC). The approach aims at qualifying and quantifying key components of this microhabitat as influenced by a single plant or a local group of plants in order to contribute to a flux-based modelling approach. The toolset consists of plant biometry, gas exchange, metabolomics, ionomics, root exudate characterization as well as soil biological and physical-chemical characterization. The results are presented as a basic interaction and input-output model aka conceptual system model employing H. T. Odum-style plots based on empirical data.
Collapse
Affiliation(s)
- Gert Bachmann
- Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria.
| | - Franz Hadacek
- Albrecht-von-Haller-Institute for Plant Sciences, Department for Plant Biochemistry, Georg August Universität Göttingen, Göttingen, Germany
| |
Collapse
|
8
|
Kitashova A, Brodsky V, Chaturvedi P, Pierides I, Ghatak A, Weckwerth W, Nägele T. Quantifying the impact of dynamic plant-environment interactions on metabolic regulation. JOURNAL OF PLANT PHYSIOLOGY 2023; 290:154116. [PMID: 37839392 DOI: 10.1016/j.jplph.2023.154116] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/03/2023] [Accepted: 10/06/2023] [Indexed: 10/17/2023]
Abstract
A plant's genome encodes enzymes, transporters and many other proteins which constitute metabolism. Interactions of plants with their environment shape their growth, development and resilience towards adverse conditions. Although genome sequencing technologies and applications have experienced triumphantly rapid development during the last decades, enabling nowadays a fast and cheap sequencing of full genomes, prediction of metabolic phenotypes from genotype × environment interactions remains, at best, very incomplete. The main reasons are a lack of understanding of how different levels of molecular organisation depend on each other, and how they are constituted and expressed within a setup of growth conditions. Phenotypic plasticity, e.g., of the genetic model plant Arabidopsis thaliana, has provided important insights into plant-environment interactions and the resulting genotype x phenotype relationships. Here, we summarize previous and current findings about plant development in a changing environment and how this might be shaped and reflected in metabolism and its regulation. We identify current challenges in the study of plant development and metabolic regulation and provide an outlook of how methodological workflows might support the application of findings made in model systems to crops and their cultivation.
Collapse
Affiliation(s)
- Anastasia Kitashova
- LMU Munich, Faculty of Biology, Plant Evolutionary Cell Biology, 82152, Planegg, Germany.
| | - Vladimir Brodsky
- LMU Munich, Faculty of Biology, Plant Evolutionary Cell Biology, 82152, Planegg, Germany.
| | - Palak Chaturvedi
- University of Vienna, Molecular Systems Biology Lab (MOSYS), Department of Functional and Evolutionary Ecology, Faculty of Life Sciences, Djerassiplatz 1, 1030, Vienna, Austria.
| | - Iro Pierides
- University of Vienna, Molecular Systems Biology Lab (MOSYS), Department of Functional and Evolutionary Ecology, Faculty of Life Sciences, Djerassiplatz 1, 1030, Vienna, Austria.
| | - Arindam Ghatak
- University of Vienna, Molecular Systems Biology Lab (MOSYS), Department of Functional and Evolutionary Ecology, Faculty of Life Sciences, Djerassiplatz 1, 1030, Vienna, Austria; Vienna Metabolomics Center, University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria.
| | - Wolfram Weckwerth
- University of Vienna, Molecular Systems Biology Lab (MOSYS), Department of Functional and Evolutionary Ecology, Faculty of Life Sciences, Djerassiplatz 1, 1030, Vienna, Austria; Vienna Metabolomics Center, University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria.
| | - Thomas Nägele
- LMU Munich, Faculty of Biology, Plant Evolutionary Cell Biology, 82152, Planegg, Germany.
| |
Collapse
|
9
|
Lin HA, Coker HR, Howe JA, Tfaily MM, Nagy EM, Antony-Babu S, Hague S, Smith AP. Progressive drought alters the root exudate metabolome and differentially activates metabolic pathways in cotton ( Gossypium hirsutum). FRONTIERS IN PLANT SCIENCE 2023; 14:1244591. [PMID: 37711297 PMCID: PMC10499043 DOI: 10.3389/fpls.2023.1244591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 08/14/2023] [Indexed: 09/16/2023]
Abstract
Root exudates comprise various primary and secondary metabolites that are responsive to plant stressors, including drought. As increasing drought episodes are predicted with climate change, identifying shifts in the metabolome profile of drought-induced root exudation is necessary to understand the molecular interactions that govern the relationships between plants, microbiomes, and the environment, which will ultimately aid in developing strategies for sustainable agriculture management. This study utilized an aeroponic system to simulate progressive drought and recovery while non-destructively collecting cotton (Gossypium hirsutum) root exudates. The molecular composition of the collected root exudates was characterized by untargeted metabolomics using Fourier-Transform Ion Cyclotron Resonance Mass Spectrometry (FT-ICR MS) and mapped to the Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. Over 700 unique drought-induced metabolites were identified throughout the water-deficit phase. Potential KEGG pathways and KEGG modules associated with the biosynthesis of flavonoid compounds, plant hormones (abscisic acid and jasmonic acid), and other secondary metabolites were highly induced under severe drought, but not at the wilting point. Additionally, the associated precursors of these metabolites, such as amino acids (phenylalanine and tyrosine), phenylpropanoids, and carotenoids, were also mapped. The potential biochemical transformations were further calculated using the data generated by FT-ICR MS. Under severe drought stress, the highest number of potential biochemical transformations, including methylation, ethyl addition, and oxidation/hydroxylation, were identified, many of which are known reactions in some of the mapped pathways. With the application of FT-ICR MS, we revealed the dynamics of drought-induced secondary metabolites in root exudates in response to drought, providing valuable information for drought-tolerance strategies in cotton.
Collapse
Affiliation(s)
- Heng-An Lin
- Department of Soil and Crop Sciences, Texas A&M University and Texas A&M AgriLife Research, College Station, TX, United States
| | - Harrison R. Coker
- Department of Soil and Crop Sciences, Texas A&M University and Texas A&M AgriLife Research, College Station, TX, United States
| | - Julie A. Howe
- Department of Soil and Crop Sciences, Texas A&M University and Texas A&M AgriLife Research, College Station, TX, United States
| | - Malak M. Tfaily
- Department of Environmental Science, University of Arizona, Tucson, AZ, United States
| | - Elek M. Nagy
- Department of Plant Pathology and Microbiology, Texas A&M University and Texas A&M AgriLife Research, College Station, TX, United States
| | - Sanjay Antony-Babu
- Department of Plant Pathology and Microbiology, Texas A&M University and Texas A&M AgriLife Research, College Station, TX, United States
| | - Steve Hague
- Department of Soil and Crop Sciences, Texas A&M University and Texas A&M AgriLife Research, College Station, TX, United States
| | - A. Peyton Smith
- Department of Soil and Crop Sciences, Texas A&M University and Texas A&M AgriLife Research, College Station, TX, United States
| |
Collapse
|
10
|
Vega-Mas I, Ascencio-Medina E, Bozal-Leorri A, González-Murua C, Marino D, González-Moro MB. Will crops with biological nitrification inhibition capacity be favored under future atmospheric CO 2? FRONTIERS IN PLANT SCIENCE 2023; 14:1245427. [PMID: 37692431 PMCID: PMC10484480 DOI: 10.3389/fpls.2023.1245427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 08/03/2023] [Indexed: 09/12/2023]
Affiliation(s)
- Izargi Vega-Mas
- *Correspondence: Izargi Vega-Mas, ; María Begoña González-Moro,
| | | | | | | | | | | |
Collapse
|
11
|
Petroli CD, Subbarao GV, Burgueño JA, Yoshihashi T, Li H, Franco Duran J, Pixley KV. Genetic variation among elite inbred lines suggests potential to breed for BNI-capacity in maize. Sci Rep 2023; 13:13422. [PMID: 37591891 PMCID: PMC10435450 DOI: 10.1038/s41598-023-39720-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 07/29/2023] [Indexed: 08/19/2023] Open
Abstract
Biological nitrification inhibition (BNI) is a plant function where root systems release antibiotic compounds (BNIs) specifically aimed at suppressing nitrifiers to limit soil-nitrate formation in the root zone. Little is known about BNI-activity in maize (Zea mays L.), the most important food, feed, and energy crop. Two categories of BNIs are released from maize roots; hydrophobic and hydrophilic BNIs, that determine BNI-capacity in root systems. Zeanone is a recently discovered hydrophobic compound with BNI-activity, released from maize roots. The objectives of this study were to understand/quantify the relationship between zeanone activity and hydrophobic BNI-capacity. We assessed genetic variability among 250 CIMMYT maize lines (CMLs) characterized for hydrophobic BNI-capacity and zeanone activity, towards developing genetic markers linked to this trait in maize. CMLs with high BNI-capacity and ability to release zeanone from roots were identified. GWAS was performed using 27,085 SNPs (with unique positions on the B73v.4 reference genome, and false discovery rate = 10), and phenotypic information for BNI-capacity and zeanone production from root systems. Eighteen significant markers were identified; three associated with specific BNI-activity (SBNI), four with BNI-activity per plant (BNIPP), another ten were common between SBNI and BNIPP, and one with zeanone release. Further, 30 annotated genes were associated with the significant SNPs; most of these genes are involved in pathways of "biological process", and one (AMT5) in ammonium regulation in maize roots. Although the inbred lines in this study were not developed for BNI-traits, the identification of markers associated with BNI-capacity suggests the possibility of using these genomic tools in marker-assisted selection to improve hydrophobic BNI-capacity in maize.
Collapse
Affiliation(s)
- César D Petroli
- International Maize and Wheat Improvement Center (CIMMYT), Carretera México-Veracruz, Km. 45, El Batán, Texcoco, C.P. 56237, Mexico.
| | - Guntur V Subbarao
- Japan International Research Center for Agricultural Science, 1-1 Ohwashi, Tsukuba, Ibaraki, 305-8686, Japan
| | - Juan A Burgueño
- International Maize and Wheat Improvement Center (CIMMYT), Carretera México-Veracruz, Km. 45, El Batán, Texcoco, C.P. 56237, Mexico
| | - Tadashi Yoshihashi
- Japan International Research Center for Agricultural Science, 1-1 Ohwashi, Tsukuba, Ibaraki, 305-8686, Japan
| | - Huihui Li
- International Maize and Wheat Improvement Center (CIMMYT), Carretera México-Veracruz, Km. 45, El Batán, Texcoco, C.P. 56237, Mexico
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), No 12 Zhongguancun South Street, Beijing, 10081, China
| | - Jorge Franco Duran
- Departamento de Biometría y Estadística, Facultad de Agronomía, Universidad de la República, Ruta 3, Km 363, C.P. 60000, Paysandú, Uruguay
| | - Kevin V Pixley
- International Maize and Wheat Improvement Center (CIMMYT), Carretera México-Veracruz, Km. 45, El Batán, Texcoco, C.P. 56237, Mexico
| |
Collapse
|
12
|
Wang G, Zhang L, Guo Z, Shi D, Zhai H, Yao Y, Yang T, Xin S, Cui H, Li J, Ma J, Sun W. Benefits of biological nitrification inhibition of Leymus chinensis under alkaline stress: the regulatory function of ammonium-N exceeds its nutritional function. FRONTIERS IN PLANT SCIENCE 2023; 14:1145830. [PMID: 37255563 PMCID: PMC10225694 DOI: 10.3389/fpls.2023.1145830] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 04/17/2023] [Indexed: 06/01/2023]
Abstract
Introduction The production of root exudates with biological nitrification inhibition (BNI) effects is a strategy adopted by ammonium-N (NH4+-N) tolerant plant species that occur in N-limited environments. Most knowledge on BNI comes from plant species that occur in acidic soils. Methods Here, combining field sampling and laboratory culture, we assessed the BNI-capacity of Leymus chinensis, a dominant grass species in alkaline grasslands in eastern Asia, and explored why L. chinensis has BNI ability. Results and discussion The results showed that L. chinensis has strong BNI-capacity. At a concentration of 1 mg mL-1, L. chinensis' root exudates inhibited nitrification in soils influenced by Puccinellia tenuiflora by 72.44%, while DCD only inhibited it by 68.29%. The nitrification potential of the soil of L. chinensis community was only 53% of the P. tenuiflora or 41% of the Suaeda salsa community. We also showed that the supply of NH4+-N driven by L. chinensis' BNI can meet its requirements . In addition, NH4+-N can enhance plant adaptation to alkaline stress by regulating pH, and in turn, the uptake of nitrate-N (NO3--N). We further demonstrated that the regulatory function of NH4+-N is greater than its nutritional function in alkaline environment. The results offer novel insights into how L. chinensis adapts to high pH and nutrient deficiency stress by secreting BNIs, and reveal, for the first time, differences in the functional roles of NH4+-N and NO3--N in growth and adaptation under alkaline conditions in a grass species.
Collapse
Affiliation(s)
- Gui Wang
- Institute of Grassland Science, Key Laboratory of Vegetation Ecology of the Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Northeast Normal University, Changchun, China
- School of Life Sciences, Changchun Normal University, Changchun, Jilin, China
| | - Lihui Zhang
- School of Life Sciences, Changchun Normal University, Changchun, Jilin, China
| | - Zihan Guo
- Institute of Grassland Science, Key Laboratory of Vegetation Ecology of the Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Northeast Normal University, Changchun, China
| | - Dongfang Shi
- Analysis and Testing Center, Changchun Normal University, Changchun, Jilin, China
| | - Huiliang Zhai
- Institute of Grassland Science, Key Laboratory of Vegetation Ecology of the Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Northeast Normal University, Changchun, China
| | - Yuan Yao
- Institute of Grassland Science, Key Laboratory of Vegetation Ecology of the Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Northeast Normal University, Changchun, China
| | - Tianxue Yang
- Institute of Grassland Science, Key Laboratory of Vegetation Ecology of the Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Northeast Normal University, Changchun, China
| | - Shuquan Xin
- School of Life Sciences, Changchun Normal University, Changchun, Jilin, China
| | - Haiying Cui
- Institute of Grassland Science, Key Laboratory of Vegetation Ecology of the Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Northeast Normal University, Changchun, China
| | - Junqin Li
- Institute of Grassland Science, Key Laboratory of Vegetation Ecology of the Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Northeast Normal University, Changchun, China
| | - Jianying Ma
- Key Laboratory of Geographical Processes and Ecological Security in Changbai Mountains, Ministry of Education, School of Geographical Sciences, Northeast Normal University, Changchun, China
| | - Wei Sun
- Institute of Grassland Science, Key Laboratory of Vegetation Ecology of the Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Northeast Normal University, Changchun, China
| |
Collapse
|
13
|
Jáuregui I, Vega-Mas I, Delaplace P, Vanderschuren H, Thonar C. An optimized hydroponic pipeline for large-scale identification of wheat genotypes with resilient biological nitrification inhibition activity. THE NEW PHYTOLOGIST 2023; 238:1711-1721. [PMID: 36764923 DOI: 10.1111/nph.18807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
Several plant species have been reported to inhibit nitrification via their root exudates, the so-called biological nitrification inhibition (BNI). Given the potential of BNI-producing plants to sustainably mitigate N losses in agrosystems, identification of BNI activity in existing germplasms is of paramount importance. A hydroponic system was combined with an optimized Nitrosomonas europaea-based bioassay to determine the BNI activity of root exudates. The pipeline allows collecting and processing hundreds of root exudates simultaneously. An additional assay was established to assess the potential bactericide effect of the root exudates. The pipeline was used to unravel the impact of developmental stage, temperature and osmotic stress on the BNI trait in selected wheat genotypes. Biological nitrification inhibition activity appeared consistently higher in wheat at the pretillering stage as compared to the tillering stage. While low-temperatures did not alter BNI activities in root exudates, osmotic stress appeared to change the BNI activity in a genotype-dependent manner. Further analysis of Nitrosomonas culture after pre-exposure to root exudates suggested that BNI activity has no or limited bactericide effects. The present pipeline will be instrumental to further investigating the dynamics of BNI activity and to uncover the diversity of the BNI trait in plant species.
Collapse
Affiliation(s)
- Iván Jáuregui
- Plant Genetics and Rhizosphere Processes laboratory, Gembloux Agro-Bio Tech, TERRA Teaching and Research Centre, University of Liège, B-5030, Gembloux, Belgium
| | - Izargi Vega-Mas
- Plant Genetics and Rhizosphere Processes laboratory, Gembloux Agro-Bio Tech, TERRA Teaching and Research Centre, University of Liège, B-5030, Gembloux, Belgium
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), 48940, Bilbao, Spain
| | - Pierre Delaplace
- Plant Genetics and Rhizosphere Processes laboratory, Gembloux Agro-Bio Tech, TERRA Teaching and Research Centre, University of Liège, B-5030, Gembloux, Belgium
| | - Hervé Vanderschuren
- Plant Genetics and Rhizosphere Processes laboratory, Gembloux Agro-Bio Tech, TERRA Teaching and Research Centre, University of Liège, B-5030, Gembloux, Belgium
- Tropical Crop Improvement Laboratory, Biosystems Department, KU Leuven, B-3001, Leuven, Belgium
| | - Cécile Thonar
- Plant Genetics and Rhizosphere Processes laboratory, Gembloux Agro-Bio Tech, TERRA Teaching and Research Centre, University of Liège, B-5030, Gembloux, Belgium
- Agroecology Lab, Université Libre de Bruxelles (ULB), B-1050, Brussels, Belgium
| |
Collapse
|
14
|
Li G, Wang K, Qin Q, Li Q, Mo F, Nangia V, Liu Y. Integrated Microbiome and Metabolomic Analysis Reveal Responses of Rhizosphere Bacterial Communities and Root exudate Composition to Drought and Genotype in Rice (Oryza sativa L.). RICE (NEW YORK, N.Y.) 2023; 16:19. [PMID: 37039929 PMCID: PMC10090257 DOI: 10.1186/s12284-023-00636-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 04/04/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND As climate change events become more frequent, drought is an increasing threat to agricultural production and food security. Crop rhizosphere microbiome and root exudates are critical regulators for drought adaptation, yet our understanding on the rhizosphere bacterial communities and root exudate composition as affected by drought stress is far from complete. In this study, we performed 16S rRNA gene amplicon sequencing and widely targeted metabolomic analysis of rhizosphere soil and root exudates from two contrasting rice genotypes (Nipponbare and Luodao 998) exposed to drought stress. RESULTS A reduction in plant phenotypes was observed under drought, and the inhibition was greater for roots than for shoots. Additionally, drought exerted a negligible effect on the alpha diversity of rhizosphere bacterial communities, but obviously altered their composition. In particular, drought led to a significant enrichment of Actinobacteria but a decrease in Firmicutes. We also found that abscisic acid in root exudates was clearly higher under drought, whereas lower jasmonic acid and L-cystine concentrations. As for plant genotypes, variations in plant traits of the drought-tolerant genotype Luodao 998 after drought were smaller than those of Nipponbare. Interestingly, drought triggered an increase in Bacillus, as well as an upregulation of most organic acids and a downregulation of all amino acids in Luodao 998. Notably, both Procrustes analysis and Mantel test demonstrated that rhizosphere microbiome and root exudate metabolomic profiles were highly correlated. A number of differentially abundant genera responded to drought and genotype, including Streptomyces, Bacillus and some members of Actinobacteria, were significantly associated with organic acid and amino acid contents in root exudates. Further soil incubation experiments showed that Streptomyces was regulated by abscisic acid and jasmonic acid under drought. CONCLUSIONS Our results reveal that both drought and genotype drive changes in the compositions of rice rhizosphere bacterial communities and root exudates under the greenhouse condition, and that organic acid exudation and suppression of amino acid exudation to select specific rhizosphere bacterial communities may be an important strategy for rice to cope with drought. These findings have important implications for improving the adaptability of rice to drought from the perspective of plant-microbe interactions.
Collapse
Affiliation(s)
- Gege Li
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Kexin Wang
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Qun Qin
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Qi Li
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Fei Mo
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Vinay Nangia
- International Center for Agricultural Research in the Dry Areas, 999055, Rabat, Morocco
| | - Yang Liu
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
15
|
Retzer K, Weckwerth W. Recent insights into metabolic and signalling events of directional root growth regulation and its implications for sustainable crop production systems. FRONTIERS IN PLANT SCIENCE 2023; 14:1154088. [PMID: 37008498 PMCID: PMC10060999 DOI: 10.3389/fpls.2023.1154088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 03/06/2023] [Indexed: 06/19/2023]
Abstract
Roots are sensors evolved to simultaneously respond to manifold signals, which allow the plant to survive. Root growth responses, including the modulation of directional root growth, were shown to be differently regulated when the root is exposed to a combination of exogenous stimuli compared to an individual stress trigger. Several studies pointed especially to the impact of the negative phototropic response of roots, which interferes with the adaptation of directional root growth upon additional gravitropic, halotropic or mechanical triggers. This review will provide a general overview of known cellular, molecular and signalling mechanisms involved in directional root growth regulation upon exogenous stimuli. Furthermore, we summarise recent experimental approaches to dissect which root growth responses are regulated upon which individual trigger. Finally, we provide a general overview of how to implement the knowledge gained to improve plant breeding.
Collapse
Affiliation(s)
- Katarzyna Retzer
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany, Czech Academy of Sciences, Prague, Czechia
| | - Wolfram Weckwerth
- Department of Functional and Evolutionary Ecology, Faculty of Life Sciences, Molecular Systems Biology (MoSys), University of Vienna, Wien, Austria
- Vienna Metabolomics Center (VIME), University of Vienna, Wien, Austria
| |
Collapse
|
16
|
Chaturvedi P, Govindaraj M, Sehgal D, Weckwerth W. Editorial: Sorghum and pearl millet as climate resilient crops for food and nutrition security, volume II. FRONTIERS IN PLANT SCIENCE 2023; 14:1170103. [PMID: 36968384 PMCID: PMC10031092 DOI: 10.3389/fpls.2023.1170103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Affiliation(s)
- Palak Chaturvedi
- Molecular Systems Biology Lab (MOSYS), Department of Functional and Evolutionary Ecology, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Mahalingam Govindaraj
- HarvestPlus, Alliance of Bioversity International and the International Center for Tropical Agriculture (CIAT), Cali, Colombia
| | - Deepmala Sehgal
- Syngenta, Jealott’s Hill International Research Centre, Bracknell, United Kingdom
| | - Wolfram Weckwerth
- Molecular Systems Biology Lab (MOSYS), Department of Functional and Evolutionary Ecology, Faculty of Life Sciences, University of Vienna, Vienna, Austria
- Vienna Metabolomics Center, University of Vienna, Vienna, Austria
| |
Collapse
|
17
|
Nicolas-Espinosa J, Garcia-Ibañez P, Lopez-Zaplana A, Yepes-Molina L, Albaladejo-Marico L, Carvajal M. Confronting Secondary Metabolites with Water Uptake and Transport in Plants under Abiotic Stress. Int J Mol Sci 2023; 24:ijms24032826. [PMID: 36769147 PMCID: PMC9917477 DOI: 10.3390/ijms24032826] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/23/2023] [Accepted: 01/28/2023] [Indexed: 02/05/2023] Open
Abstract
Phenolic compounds and glucosinolates are secondary plant metabolites that play fundamental roles in plant resistance to abiotic stress. These compounds have been found to increase in stress situations related to plant adaptive capacity. This review assesses the functions of phenolic compounds and glucosinolates in plant interactions involving abiotic stresses such as drought, salinity, high temperature, metals toxicity, and mineral deficiency or excess. Furthermore, their relation with water uptake and transport mediated through aquaporins is reviewed. In this way, the increases of phenolic compounds and glucosinolate synthesis have been related to primary responses to abiotic stress and induction of resistance. Thus, their metabolic pathways, root exudation, and external application are related to internal cell and tissue movement, with a lack of information in this latter aspect.
Collapse
|
18
|
Ghatak A, Chaturvedi P, Waldherr S, Subbarao GV, Weckwerth W. PANOMICS at the interface of root-soil microbiome and BNI. TRENDS IN PLANT SCIENCE 2023; 28:106-122. [PMID: 36229336 DOI: 10.1016/j.tplants.2022.08.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 08/10/2022] [Accepted: 08/19/2022] [Indexed: 06/16/2023]
Abstract
Nitrification and denitrification are soil biological processes responsible for large nitrogen losses from agricultural soils and generation of the greenhouse gas (GHG) N2O. Increased use of nitrogen fertilizer and the resulting decline in nitrogen use efficiency (NUE) are a major concern in agroecosystems. This nitrogen cycle in the rhizosphere is influenced by an intimate soil microbiome-root exudate interaction and biological nitrification inhibition (BNI). A PANOMICS approach can dissect these processes. We review breakthroughs in this area, including identification and characterization of root exudates by metabolomics and proteomics, which facilitate better understanding of belowground chemical communications and help identify new biological nitrification inhibitors (BNIs). We also address challenges for advancing the understanding of the role root exudates play in biotic and abiotic stresses.
Collapse
Affiliation(s)
- Arindam Ghatak
- Molecular Systems Biology Lab (MOSYS), Department of Functional and Evolutionary Ecology, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
| | - Palak Chaturvedi
- Molecular Systems Biology Lab (MOSYS), Department of Functional and Evolutionary Ecology, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria.
| | - Steffen Waldherr
- Molecular Systems Biology Lab (MOSYS), Department of Functional and Evolutionary Ecology, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
| | - Guntur Venkata Subbarao
- Crop, Livestock and Environment Division, Japan International Research Center for Agricultural Sciences (JIRCAS), Ibaraki 305-8686, Japan
| | - Wolfram Weckwerth
- Molecular Systems Biology Lab (MOSYS), Department of Functional and Evolutionary Ecology, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria; Vienna Metabolomics Center (VIME), University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria.
| |
Collapse
|
19
|
Lyu D, Smith DL. The root signals in rhizospheric inter-organismal communications. FRONTIERS IN PLANT SCIENCE 2022; 13:1064058. [PMID: 36618624 PMCID: PMC9811129 DOI: 10.3389/fpls.2022.1064058] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
Root exudates play a key role in mediating plant-plant and plant-rhizomicrobiome interactions, including regulating biochemical/physiological aspects of plant-associated microorganisms, to enhance host plant growth and resilience. Root exudates can act as signals to reduce the competition from neighboring plants and recruiting/choreographing a wide range of diverse rhizomicrobiome members to make the host plant a good fit with its immediate environment. Root exudate production is a dynamic and key process, but there is a limited understanding of the metabolites or metabolic pathways involved in the inter-organismal communications facilitated by them. Given the well-known symbiotic relationships between plants and associated rhizomicrobiome members, adding root exudates to microbial isolation media may allow some of the large segments of rhizomicrobiome members that are not currently culturable to be grown in vitro. This will provide new insights into how root signals orchestrate associated microbes, will benefit agricultural production in the face of challenges posed by climate change, and will help to sustainably provide food for a growing global human population.
Collapse
|
20
|
Oburger E, Schmidt H, Staudinger C. Harnessing belowground processes for sustainable intensification of agricultural systems. PLANT AND SOIL 2022; 478:177-209. [PMID: 36277079 PMCID: PMC9579094 DOI: 10.1007/s11104-022-05508-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 05/18/2022] [Indexed: 06/16/2023]
Abstract
Increasing food demand coupled with climate change pose a great challenge to agricultural systems. In this review we summarize recent advances in our knowledge of how plants, together with their associated microbiota, shape rhizosphere processes. We address (molecular) mechanisms operating at the plant-microbe-soil interface and aim to link this knowledge with actual and potential avenues for intensifying agricultural systems, while at the same time reducing irrigation water, fertilizer inputs and pesticide use. Combining in-depth knowledge about above and belowground plant traits will not only significantly advance our mechanistic understanding of involved processes but also allow for more informed decisions regarding agricultural practices and plant breeding. Including belowground plant-soil-microbe interactions in our breeding efforts will help to select crops resilient to abiotic and biotic environmental stresses and ultimately enable us to produce sufficient food in a more sustainable agriculture in the upcoming decades.
Collapse
Affiliation(s)
- Eva Oburger
- Department of Forest and Soil Science, Institute of Soil Research, University of Natural Resources and Life Sciences, Konrad Lorenzstrasse 24, 3430 Tulln an der Donau, Austria
| | - Hannes Schmidt
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
| | - Christiana Staudinger
- Department of Forest and Soil Science, Institute of Soil Research, University of Natural Resources and Life Sciences, Konrad Lorenzstrasse 24, 3430 Tulln an der Donau, Austria
- Graduate School of Integrated Sciences for Life, Hiroshima University, Kagamiyama 1-7-1, Higashi-Hiroshima, Japan
| |
Collapse
|
21
|
Kubicova L, Bachmann G, Weckwerth W, Chobot V. (±)-Catechin-A Mass-Spectrometry-Based Exploration Coordination Complex Formation with Fe II and Fe III. Cells 2022; 11:958. [PMID: 35326409 PMCID: PMC8946835 DOI: 10.3390/cells11060958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 03/03/2022] [Accepted: 03/07/2022] [Indexed: 02/06/2023] Open
Abstract
Catechin is an extensively investigated plant flavan-3-ol with a beneficial impact on human health that is often associated with antioxidant activities and iron coordination complex formation. The aim of this study was to explore these properties with FeII and FeIII using a combination of nanoelectrospray-mass spectrometry, differential pulse voltammetry, site-specific deoxyribose degradation assay, FeII autoxidation assay, and brine shrimp mortality assay. Catechin primarily favored coordination complex formation with Fe ions of the stoichiometry catechin:Fe in the ratio of 1:1 or 2:1. In the detected Fe-catechin coordination complexes, FeII prevailed. Differential pulse voltammetry, the site-specific deoxyribose degradation, and FeII autoxidation assays proved that coordination complex formation affected catechin's antioxidant effects. In situ formed Fe-catechin coordination complexes showed no toxic activities in the brine shrimp mortality assay. In summary, catechin has properties for the possible treatment of pathological processes associated with ageing and degeneration, such as Alzheimer's and Parkinson's diseases.
Collapse
Affiliation(s)
- Lenka Kubicova
- Division of Molecular Systems Biology, Department of Functional and Evolutionary Ecology, Faculty of Life Sciences, University of Vienna, Djerassiplatz 1, A-1030 Vienna, Austria; (L.K.); (G.B.); (W.W.)
| | - Gert Bachmann
- Division of Molecular Systems Biology, Department of Functional and Evolutionary Ecology, Faculty of Life Sciences, University of Vienna, Djerassiplatz 1, A-1030 Vienna, Austria; (L.K.); (G.B.); (W.W.)
| | - Wolfram Weckwerth
- Division of Molecular Systems Biology, Department of Functional and Evolutionary Ecology, Faculty of Life Sciences, University of Vienna, Djerassiplatz 1, A-1030 Vienna, Austria; (L.K.); (G.B.); (W.W.)
- Vienna Metabolomics Center (VIME), University of Vienna, Djerassiplatz 1, A-1030 Vienna, Austria
| | - Vladimir Chobot
- Division of Molecular Systems Biology, Department of Functional and Evolutionary Ecology, Faculty of Life Sciences, University of Vienna, Djerassiplatz 1, A-1030 Vienna, Austria; (L.K.); (G.B.); (W.W.)
| |
Collapse
|
22
|
Darriaut R, Lailheugue V, Masneuf-Pomarède I, Marguerit E, Martins G, Compant S, Ballestra P, Upton S, Ollat N, Lauvergeat V. Grapevine rootstock and soil microbiome interactions: Keys for a resilient viticulture. HORTICULTURE RESEARCH 2022; 9:uhac019. [PMID: 35184168 PMCID: PMC8985100 DOI: 10.1093/hr/uhac019] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/18/2021] [Accepted: 01/17/2022] [Indexed: 05/10/2023]
Abstract
Soil microbiota has increasingly been shown to play an integral role in viticulture resilience. The emergence of new metagenomic and culturomic technologies has led to significant advances in the study of microbial biodiversity. In the agricultural sector, soil and plant microbiomes have been found to significantly improve resistance to environmental stressors and diseases, as well as influencing crop yields and fruit quality thus improving sustainability under shifting environments. Grapevines are usually cultivated as a scion grafted on rootstocks, which are selected according to pedoclimatic conditions and cultural practices, known as terroir. The rootstock connects the surrounding soil to the vine's aerial part and impacts scion growth and berry quality. Understanding rootstock and soil microbiome dynamics is a relevant and important field of study, which may be critical to improve viticulture sustainability and resilience. This review aims to highlight the relationship between grapevine roots and telluric microbiota diversity and activity. In addition, this review explores the concept of core microbiome regarding potential applications of soil microbiome engineering with the goal of enhancing grapevine adaptation to biotic and abiotic stress.
Collapse
Affiliation(s)
- Romain Darriaut
- EGFV, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, F-33882, Villenave d'Ornon, France
| | - Vincent Lailheugue
- EGFV, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, F-33882, Villenave d'Ornon, France
| | - Isabelle Masneuf-Pomarède
- Université de Bordeaux,
UMR Oenologie 1366, INRAE, Bordeaux INP, Bordeaux Sciences Agro, ISVV, Villenave d'Ornon, France
- Bordeaux Sciences Agro, 33170 Gradignan, France
| | - Elisa Marguerit
- EGFV, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, F-33882, Villenave d'Ornon, France
| | - Guilherme Martins
- Université de Bordeaux,
UMR Oenologie 1366, INRAE, Bordeaux INP, Bordeaux Sciences Agro, ISVV, Villenave d'Ornon, France
- Bordeaux Sciences Agro, 33170 Gradignan, France
| | - Stéphane Compant
- AIT Austrian Institute of Technology, Center for Health and Bioresources, Bioresources Unit, Konrad Lorenz Straße 24, Tulln, A-3430, Austria
| | - Patricia Ballestra
- Université de Bordeaux,
UMR Oenologie 1366, INRAE, Bordeaux INP, Bordeaux Sciences Agro, ISVV, Villenave d'Ornon, France
| | | | - Nathalie Ollat
- EGFV, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, F-33882, Villenave d'Ornon, France
| | - Virginie Lauvergeat
- EGFV, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, F-33882, Villenave d'Ornon, France
| |
Collapse
|
23
|
Leon A, Guntur V S, Kishii M, Matsumoto N, Kruseman G. An ex ante life cycle assessment of wheat with high biological nitrification inhibition capacity. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:7153-7169. [PMID: 34472025 DOI: 10.1007/s11356-021-16132-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 08/19/2021] [Indexed: 06/13/2023]
Abstract
It is essential to increase food production to meet the projected population increase while reducing environmental loads. Biological nitrification inhibition (BNI)-enabled wheat genetic stocks are under development through chromosome engineering by transferring chromosomal regions carrying the BNI trait from a wild relative (Leymus racemosus (Lam.) Tzvelev) into elite wheat varieties; field evaluation of these newly developed BNI-wheat varieties has started. Ten years from now, BNI-enabled elite wheat varieties are expected to be deployed in wheat production systems. This study aims to evaluate the impacts of introducing these novel genetic solutions on life cycle greenhouse gas (LC-GHG) emissions, nitrogen (N) fertilizer application rates and N-use efficiency (NUE). Scenarios were developed based on evidence of nitrification inhibition and nitrous oxide (N2O) emission reduction by BNI crops and by synthetic nitrification inhibitors (SNIs), as both BNI-wheat and SNIs slow the nitrification process. Scenarios including BNI-wheat will inhibit nitrification by 30% by 2030 and 40% by 2050. It was assumed that N fertilizer application rates can potentially be reduced, as N losses through N2O emissions, leaching and runoff are expected to be lower. The results show that the impacts from BNI-wheat with 40% nitrification inhibition by 2050 are assessed to be positive: a 15.0% reduction in N fertilization, a 15.9% reduction in LC-GHG emissions, and a 16.7% improvement in NUE at the farm level. An increase in ammonia volatilization had little influence on the reduction in LC-GHG emissions. The GHG emissions associated with N fertilizer production and soil N2O emissions can be reduced between 7.3 and 9.5% across the wheat-harvested area worldwide by BNI-wheat with 30% and 40% nitrification inhibition, respectively. However, the present study recommends further technological developments (e.g. further developments in BNI-wheat and the development of more powerful SNIs) to reduce environmental impacts while improving wheat production to meet the increasing worldwide demand.
Collapse
Affiliation(s)
- Ai Leon
- Japan International Research Center for Agricultural Sciences, Ohwashi, Tsukuba, Ibaraki, 305-8686, Japan.
| | - Subbarao Guntur V
- Japan International Research Center for Agricultural Sciences, Ohwashi, Tsukuba, Ibaraki, 305-8686, Japan
| | - Masahiro Kishii
- International Maize and Wheat Improvement Center, Carretera Mexico-Veracruz Km.45 El Batán, Texcoco, C.P, 56237, Mexico
| | - Naruo Matsumoto
- Japan International Research Center for Agricultural Sciences, Ohwashi, Tsukuba, Ibaraki, 305-8686, Japan
| | - Gideon Kruseman
- International Maize and Wheat Improvement Center, Carretera Mexico-Veracruz Km.45 El Batán, Texcoco, C.P, 56237, Mexico
| |
Collapse
|
24
|
Lacek J, García-González J, Weckwerth W, Retzer K. Lessons Learned from the Studies of Roots Shaded from Direct Root Illumination. Int J Mol Sci 2021; 22:12784. [PMID: 34884591 PMCID: PMC8657594 DOI: 10.3390/ijms222312784] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/22/2021] [Accepted: 11/24/2021] [Indexed: 11/16/2022] Open
Abstract
The root is the below-ground organ of a plant, and it has evolved multiple signaling pathways that allow adaptation of architecture, growth rate, and direction to an ever-changing environment. Roots grow along the gravitropic vector towards beneficial areas in the soil to provide the plant with proper nutrients to ensure its survival and productivity. In addition, roots have developed escape mechanisms to avoid adverse environments, which include direct illumination. Standard laboratory growth conditions for basic research of plant development and stress adaptation include growing seedlings in Petri dishes on medium with roots exposed to light. Several studies have shown that direct illumination of roots alters their morphology, cellular and biochemical responses, which results in reduced nutrient uptake and adaptability upon additive stress stimuli. In this review, we summarize recent methods that allow the study of shaded roots under controlled laboratory conditions and discuss the observed changes in the results depending on the root illumination status.
Collapse
Affiliation(s)
- Jozef Lacek
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany, Czech Academy of Sciences, 165 02 Prague, Czech Republic; (J.L.); (J.G.-G.)
- Department of Experimental Plant Biology, Faculty of Science, Charles University, 128 00 Prague, Czech Republic
| | - Judith García-González
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany, Czech Academy of Sciences, 165 02 Prague, Czech Republic; (J.L.); (J.G.-G.)
- Department of Experimental Plant Biology, Faculty of Science, Charles University, 128 00 Prague, Czech Republic
| | - Wolfram Weckwerth
- Department of Functional and Evolutionary Ecology, Molecular Systems Biology (MoSys), Faculty of Life Sciences, University of Vienna, Djerassiplatz 1, 1030 Wien, Austria;
- Vienna Metabolomics Center (VIME), University of Vienna, Djerassiplatz 1, 1030 Wien, Austria
| | - Katarzyna Retzer
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany, Czech Academy of Sciences, 165 02 Prague, Czech Republic; (J.L.); (J.G.-G.)
| |
Collapse
|